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Editors’ Introduction

Christopher F. Parmeter and Robin C. Sickles

The papers in this collection, all works presented at the 2018 North American
Productivity Workshop X hosted at the University of Miami, represent contributed,
peer reviewed chapters across all areas of efficiency and productivity analysis. They
offer new insights and perspectives into the modeling, identification, and estimation
of productivity and its major components, efficiency and innovation. The collection
is aptly titled Advances in Efficiency and Productivity Analysis. The contributions
in this volume speak to firms or agencies that are privately or state-owned, capitalist
or centrally planned economies, developed, developing or transitional countries–
anywhere where the goal is to measure productivity and identify and explain
possible inefficiencies and thus help a productive enterprise/entity improve and
move to higher levels of efficiency and productivity and a more efficient utilization
of valuable and costly resources. Productivity growth, as we know, is the main
vehicle through which growth in living standards and welfare is achieved. Con-
straints on this growth, whether by ineffective or misguided regulatory oversight,
maldistribution of productivity growth, failure to properly account for hidden costs
and benefits of productive decisions and allocations, or market failures to accurately
price current resources in light of how their depletion impacts future generations, all
contribute to a diminution in productivity growth and thus in living standards. The
papers in this volume provide new research findings on these issues.

We have grouped the 13 chapters into three main themes: measurement, econo-
metrics, and applications. Each of these motifs are important to the field writ
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2 C. F. Parmeter and R. C. Sickles

large and the chapters within each make new contributions to the extant literature.
The recent work of (Grifell-Tatjé et al. 2018; Sickles and Zelenyuk 2019) speaks
to the steady popularity and importance of this area as well as to the speed at
which contributions are arising. Collected works of this ilk are important to allow
researchers to stay on the cutting edge and expand their knowledge. We are honored
to have curated these chapters and indebted to the reviewers who graciously gave
their time to provide feedback to improve the chapters and allowed us to put this
book together.

1 Measurement

Before one can estimate and test and bring theory to the data, there is measurement.
Just as good theory should provide a cogent explanation for some aspect of nature,
good measurement details how best to think about the requirements for testing
and assessing a theory, in our case productivity. The chapters in this collection on
measurement all focus on different aspects of how best to measure productivity and
to begin to think about what we can say about the productivity of some being (a
firm, country, state, region, etc.)

Our first chapter on measurement is co-authored by Diewert and Fox and is
entitled “The Difference Approach to Productivity Measurement and Exact Indica-
tors.” The authors point out that the number of productivity growth decompositions
utilizing ratio forms is relatively large and they aim to reduce these to three
analogous decompositions, based on a value added function for production, a
cost constrained value added function, and a flexible functional form giving rise
to an exact value added decomposition. The approaches range from one that is
relatively transparent and easily implementable but restrictive to one that is more
computationally challenging but has axiomatic advantages that are clearly spelled
out in this well-written and accessible first chapter.

The second chapter on measurement by Triantis, “Efficiency Driven Socio-
Technical System Design,” takes a somewhat different approach to productivity
measurement that is motivated more by industrial engineering than by neoclassical
economic theory. An efficiency (productivity) measurement paradigm is recom-
mended that is meant to evaluate the design of a system rather than rank different
systems (aka firms), taking into consideration organizational design, enterprise
systems engineering, and system complexity. This is referred to as a socio-technical
system evaluation and contrasts with evaluations that rank different systems (firms,
DMU’s, etc.) based on prices and quantities of resources used and produced.
Illustrations are provided. Stakeholder feedback and resource constraints are also
factored into the socio-technical evaluation design.

Daraio’s “A Framework for the Assessment and Consolidation of Productivity
Stylized Facts,” focuses on how researchers’ perspectives and methods are framed
by the traditions of their disciplines and the pedagogy therein, instead of by
“scientific” approaches and experimentation that leave open methods of analysis
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and interpretation of results as an integral part of the measurement paradigm.
She discusses how the research style adopted by productivity experts can be
categorized in terms of mathematical theories of measurement, methods that rely
on information theory, and model-based descriptions of a production system.
As “stylized” heuristics often drive a researcher’s predilection for adopting one
approach versus another to measure productivity, a survey of such stylized heuristics
and “facts” is an important read for any serious researcher in this field.

In Vrachioli and Stefanou contribution “Water’s Contribution to Agricultural
Productivity over Space,” the authors look at both water and space when con-
structing measures of agricultural productivity. Noting that both an efficient and
sustainable management of water resources is of pressing concern, they investigate
how changes in farm-level productivity over space can reflect the economic
performance of a public water infrastructure project. Their spatial optimal water
allocation model provides users with the conditions needed to explain how water
quantity and quality affect the economic performance of farmers. There model is
important as the information it provides can be used by policymakers interested
in maximizing the economic benefit of water allocation across farmers along an
irrigation infrastructure project, where farmers make decisions on irrigation water
use in sequence.

2 Econometrics

Outside of the theory of productivity and efficiency measurement is the means
by which to estimate and conduct inference from data to assess the viability and
reliability of theoretical predictions. The four chapters here speak to this theme. All
four chapters touch on important, but different, aspects of modeling the production
relationship and provide thorough reviews of the state of the art.

In Amsler and Schmidt’s comprehensive chapter “A Survey of the Use of Copulas
in Stochastic Frontier Models,” the use of copulas in stochastic frontier models is
detailed. The authors provide three different motivations for the use of copulas in
the stochastic frontier literature, all of which are likely to arise in practical settings.
Moreover, Amsler and Schmidt provide intuition and insight into several economic
models that arise in the stochastic frontier literature that call for copulas with special
characteristics. They provide rigorous details on copulas in general and how they
can be deployed within the stochastic frontier setting. Another novel feature of the
chapter is the discussion of how the practitioner goes about selecting the copula.

The second chapter in this section by Kumbhakar and Bernstein, “Does Xistence
of Inefficiency Matter to a Neoclassical Xorcist? Some Econometric Issues in Panel
Stochastic Frontier Models,” the focus is on potential nonparametric identification
and estimation when the practitioner has access to panel data. Specifically, they
show that practitioners cannot simply ignore inefficiency when estimating the
production function as this leads to severe inconsistency in the estimates of
the technology parameters due to omitted variables which are determinants of
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inefficiency. Kumbhakar and Bernstein go on to provide practical solutions that
researchers can rely on to both estimate the production frontier and recover the
impact of various determinants of inefficiency in a panel data setting. Their work
applies equally to those who may only be interested in the production function
and those interested in both the production function and the impact of exogenous
variables on inefficiency.

Papadopoulos provides the first comprehensive survey on the two-tier stochastic
frontier model (2TSF) in “The two-tier stochastic frontier framework: measuring
frontiers wherever they may exist.” initially conceptualized by Polachek and Yoon
(1987). This approach lied dormant for nearly two decades until it was revived by
Kumbhakar and Parmeter (2009) and has since seen renewed interest in the field
(both theoretically and empirically). Papadopoulos notes that at present the 2TSF
inhabits only a small fraction of the field of efficiency analysis but that the frontier
methodology extends far beyond the boundaries of cost and production. This work
covers both the direct implementation of the 2TSF estimator as well as offering a
variety of insights into when this methodology may be pertinent. The depth of the
review should serve the profession well, both revealing the diversity of phenomena
where the 2TSF can be deployed and promoting application of the 2TSF model by
focusing on various implementation issues that are likely to arise for practitioners.

Kallio and Halme provide a new approach for estimating productiv-
ity/performance, focusing on the individual production possibility sets (PPS),
in their chapter “Individual Efficient Frontiers in Performance Analysis.” They
model each production unit as somewhat unique in that each embodies outcomes
from a set of different environmental factors and human resource constraints.
Utilizing a partial equilibrium optimization framework they assume that each DMU
is efficient relative to its PPS. They then derive a set of common prices that support
the netputs across all DMUs, assuming that such prices are those most likely
to occur when the DMU is optimizing its profits or returns. The framework is
one in which the statistical data generating process is specified, although they do
employ nonparametric methods to characterize their new performance measure.
They compare their new methods with those from standard DEA and find strong
rank correlations even though their approach does not rely on the radial distance
metric that is DEA to measure performance.

Karagiannis, in “DEA models without inputs or outputs: A tour de force,”
discusses how pure input and/or output DEA models are suitable for applications
other than those related to conventional production models and efficiency analysis.
This significantly broadens the use of these models, opening other areas of science to
their potential benefits to recover “boundaries.” The focus of this chapter is the broad
class of radial DEA models, either without inputs or outputs, or with fixed inputs or
outputs. A detailed treatment of these DEA models with benefit-of-the-doubt (BoD)
models is also provided. These comparisons are useful given the recent popularity
of BoD models in constructing composite indices at various agencies, including the
United Nations and the OECD.



Editors’ Introduction 5

3 Applications

Applications are the true mark of both good theory and good empirics. A well
executed application can validate a theory, offer new avenues for improvement on
an existing theory, pose questions that may lead to a new theory, or uncover areas
where current theory is lacking. Without proper application, it is hard to quantify
the impact that a theoretical curiosity has on the empirical literature at large.

Our first chapter in this group, “U.S. Banking in the Post-Crisis Era: New
Results from New Methods,” by Wilson examines the performance of US bank
holding companies over the time frame bracketing the financial crisis. Given the well
known importance of banks to the national and global economy, it seems reasonable
to assess what happened to them throughout the global financial crises; this is
exactly Wilson’s focus. He provides estimates of technical, cost, and input allocative
efficiency from 2006 to 2016. The results confirm to the implications from basic
microeconomic theory of the firm. After the passage of the Dodd–Frank act, banks’
costs were expected to increase due to substantial increases in regulatory oversight
and burdensome reporting. These constraints on banking behavior effectively led
to lower productivity and higher levels of inefficiency after the end of the global
financial crisis. Thus, while there is need for regulatory oversight, it appears the
effects of Dodd–Frank were to lead banks to take extreme measures to cut costs,
which may have led to a delayed recovery of the national economy. Wilson’s chapter
is a paragon of theory and data coming together to confirm a widely believed story.

Next in this group is Bos and Zhang’s contribution, titled “Room to Move: Why
Some Industries Drive the Trade-Specialization Nexus and Others Do Not,” where
economic integration within the European Union (EU) is studied, with the aim
to determine who drives the relationship between trade and specialization. Both
Jones (2013) and Baqaee and Farhi (2019) have shown that large differences in
growth outcomes (either at the sector, region, or country level) can be explained
through resource misallocation. Bos and Zhang go a step further and document
that subsequent resource reallocation can help explain industry growth, primarily
through responses after trade barriers are reduced. They find that who drives the
trade-specialization relationship are productive firms who benefit from the increase
in trade-openness by appropriating resources from less productive firms. Bos and
Zhang use latent class modeling approaches to determine those industries that
require “room to move” so that increased trade-openness translates into increased
specialization. Their application uses over 390,000 manufacturing firms spanning
18 industries in 14 EU countries. Bos and Zhang’s application is an excellent
example where estimates are consistent with the extant theoretical and empirical
evidence in the international trade literature. Moreover, their findings have important
policy recommendations: policies aimed at removing barriers are likely to enhance
economic activity and the resulting gains in both technical efficiency and scale may
represent an important source of economic growth in the EU.

Brinkerink, Chegut, and Letterie, in “Expansionary Investment Activities:
Assessing Equipment and Buildings in Productivity,” argue that buildings should
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be counted as a direct input factor to production (so-called investment spikes).
They look at how investment in physical structures drives employment, production
technology, and firm capacity in manufacturing industries in the Netherlands. They
look at investment spikes in either equipment, buildings, or both. These spikes are
important to account for when measuring productivity. Neglecting simultaneity
of spikes in buildings and equipment inadequately represents the breadth of the
extensive margin of productivity. Moreover, they document that firms which have
investment spikes in both buildings and equipment experience higher ex post
investment expansion in production and the number of workers relative to firms that
experience a spike solely equipment or buildings.

Asmild, Kronborg, and Rønn-Nielsen’s interesting application “Applying sta-
tistical methods to compare frontiers: Are organic dairy farms better than the
conventional?” Utilizes permutation tests to provide inference on Malmquist index
decompositions introduced by Färe et al. (1992) and more recently studied in terms
of its asymptotic distribution by Kneip et al. (2018). Their study also examines
statistical differences between organic and conventional dairy farms in Denmark.
Bias correction procedures to address DEA finite sample biases in the estimation of
the frontier technology are also pursued. Their applied analysis also has important
implications for Danish competition policy in its agricultural sector and the authors
stress the usefulness of their tests and inferences for informing public policy makers.

Our last chapter, “Nutrient Use and Precision Agriculture in Corn Production in
the United States,” by Mosheim and Schimmelpfennig tackles the role of precision
agriculture in enhancing productivity in agriculture—this result has been shown for
cost savings, profitability, and even farm resource stewardship, but has not been
shown empirically for farm productivity. They use data on the corn sector in 2016
from the Agricultural Resource Management Survey, the largest farm production
survey carried out by USDA in the USA. They employ a matching procedure
where they match on observables to reduce the confoundedness of input choice with
precision agriculture utilization.
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The Difference Approach to Productivity
Measurement and Exact Indicators

W. Erwin Diewert and Kevin J. Fox

Abstract There are many decompositions of productivity growth for a production
unit that rely on the ratio approach to index number theory. In this paper, three
analogous decompositions for productivity growth in a difference approach to index
number theory are obtained. The first approach uses the production unit’s value
added function in order to obtain a suitable decomposition. It relies on various
first order approximations to this function but in the end, the decomposition can
be given an axiomatic interpretation. The second approach uses the cost constrained
value added function and assumes that the reference technology for the production
unit can be approximated by the free disposal conical hull of past observations of
inputs used and outputs produced by the unit. The final approach uses a particular
flexible functional form for the producer’s value added function and provides an
exact decomposition of normalized value added.

Keywords Productivity measurement · Index numbers · Indicator functions ·
The Bennet indicator · Flexible functional forms for value added functions ·
Technical and allocative efficiency · Nonparametric methods for production
theory · Measures of technical progress

The authors thank Knox Lovell for helpful comments on this topic and related topics over the
years. The first author gratefully acknowledges the financial support of the SSHRC of Canada,
and both authors gratefully acknowledge the financial support of the Australian Research Council
(DP150100830). This is an updated version of Discussion Paper 17-05, Vancouver School of
Economics, University of British Columbia.

W. E. Diewert
School of Economics, University of British Columbia, Vancouver, BC, Canada
e-mail: erwin.diewert@ubc.ca

K. J. Fox (�)
School of Economics, UNSW, Sydney, NSW, Australia
e-mail: K.Fox@unsw.edu.au

© Springer Nature Switzerland AG 2021
C. F. Parmeter, R. C. Sickles (eds.), Advances in Efficiency and Productivity
Analysis, Springer Proceedings in Business and Economics,
https://doi.org/10.1007/978-3-030-47106-4_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47106-4_2&domain=pdf
mailto:erwin.diewert@ubc.ca
mailto:K.Fox@unsw.edu.au
https://doi.org/10.1007/978-3-030-47106-4_2


10 W. E. Diewert and K. J. Fox

1 Introduction

Total factor productivity (TFP) growth is usually defined by economists as an output
index divided by an input index. However, in the business and accounting literatures,
there is more interest in measuring productivity growth in a difference framework.1

Thus in the present paper, we will look at the value added produced by a production
unit in two consecutive periods of time and we will attempt to find a decomposition
of the value added difference into explanatory factors. One of these factors will be
productivity growth measured in a difference framework.

As mentioned above, studying value added productivity growth in a difference
framework is useful because this framework is consistent with business accounting
practices which look at revenue, cost, and profit growth of a business enterprise
in terms of differences rather than ratios. There is also a strong technical reason
for taking a difference approach to productivity measurement as opposed to the
usual ratio approach that was developed by Jorgenson and Griliches (1967, 1972),
Caves et al. (1982), Diewert and Morrison (1986), Kohli (1990) and others: these
approaches rely on some use of the translog functional form to describe technology
and these approaches require either positivity of all outputs and inputs used by the
production unit or at least positivity of all primary inputs used. This restriction
is typically not problematic when dealing with sectoral or national data but when
dealing with firm level data, the problem of new and disappearing outputs and
inputs arises, leading to missing reservation prices and 0 outputs or inputs for
the corresponding quantities. Thus the existing ratio type analysis for TFP growth
cannot be applied. The difference approach developed in this paper can deal with
this problem.

We will develop three separate approaches to the value added decomposition
problem in difference format. The first approach will be explained in Sects. 2 and
3. This first approach relies on the assumption that observed production is always
on the frontier of the production possibilities set and makes use of various first
order approximations to the underlying value added functions. However, in the
end, Approach 1 can be given an axiomatic interpretation which has some good
properties. Section 4 notes a problem with the difference approach: nominal value
added measured at two different points in time is measured in monetary units but
the value of the monetary unit is not constant over time. Thus in Sect. 4, we suggest
that all prices be deflated by a suitable general index of inflation.

Section 5 no longer assumes that producers are necessarily on the frontiers of
their production possibility sets. The analysis here makes use of cost constrained
value added functions and it also assumes that the producer’s period t production
possibilities set can be approximated by the free disposal conical hull of past
observations on outputs produced and inputs used by the unit. Thus Approach 2
is a nonparametric one, as is Approach 1.

1See Grifell-Tatjé and Lovell (2015) for an extensive discussion of the difference approach to
productivity measurement and its history.
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Section 6 tries to develop a counterpart to the index number decompositions
for value added growth that were obtained by Diewert and Morrison (1986) and
Kohli (1990) that would be applicable in the difference approach to economic
measurement (as opposed to the ratio approach that was used in these earlier
studies). We succeed in providing a counterpart decomposition but in the end, it
proves to be not very useful.

Section 7 concludes with some observations on the relative merits and demerits
of the three approaches.

2 The First Order Approximation Approach

Let y ≡ [y1, . . . , yM] denote an M dimensional vector of net outputs (if ym > 0, then
net output m is an output, if ym < 0, then net output m is an intermediate input) and
let x ≡ [x1, . . . , xN] ≥ 0N denote a nonnegative N dimensional vector of primary
inputs. We want to look at the productivity of a production unit that produces the
M net outputs using the N primary inputs over periods t = 0, 1, . . . , T. We assume
that the period t production possibilities set is a set of feasible combinations of
net outputs and primary inputs denoted by the set St. For each t, we assume a
constant returns to scale production possibilities set so that St is a cone.2 Suppose
the producer faces the strictly positive vector of net output prices pt ≡ [p1

t, . . . ,
pM

t] � 0M in period t and has the nonnegative vector of primary inputs xt ≡ [x1
t,

. . . , xN
t] at its disposal. The maximum value added that the production unit can

produce is �t(pt, xt) defined as follows for t = 0, 1, . . . , T:

Π t (pt, xt) ≡ maxy
{
pt· y : (y, xt) ∈ St} , (1)

where �t(p, x) is the producer’s period t value added function.3 Let wt ≡ [w1
t, . . . ,

wN
t] � 0N be the period t vector of positive primary input prices. We assume that

observed value added is equal to observed primary input cost in each period:4

2In addition to the cone property, we assume the weak regularity conditions P1–P7 on St that are
listed in Diewert and Fox (2017, p. 277). Essentially, we assume that St is a nonempty closed cone
which is subject to free disposal and (0M, 0N) ∈ St for each t. It is not necessary to assume that
St is a convex set. However, the assumption of constant returns to scale in production is restrictive
(but necessary for our analysis).
3For the properties of value added functions, see McFadden (1966, 1978), Gorman (1968) and
Diewert (1973). In this section, we will assume that first order partial derivatives of �t(p, x) at
p = pt and x = xt exist.
4In empirical applications, there are two main methods for ensuring that the value of outputs equals
the value of inputs: (1) introduce a fixed factor that absorbs any pure profits or losses or (2) use
a balancing rate of return in the user cost formula for durable inputs that will make the value of
inputs equal to the value of outputs. For the early history of the first approach, see Grifell-Tatjé and
Lovell (2015, p. 40) and for applications of the second approach, see Christensen and Jorgenson
(1969) and Diewert and Fox (2016).
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Π t (pt, xt) ≡ pt· yt = wt· xt > 0; t = 0, 1, . . . ,T. (2)

In this section, we also assume that �t(pt, xt) is differentiable with respect to its
components in each period so that we have (Hotelling 1932; Samuelson 1953):5

yt = ∇pΠ
t (pt, xt) ; t = 0, 1, . . . ,T; (Hotellings (1932, p.594) Lemma) (3)

wt = ∇xΠ
t (pt, xt) ; t = 0, 1, . . . ,T; (Samuelsons (1953, p.10) Lemma). (4)

We focus on the growth of value added going from period 0 to period 1. The
growth analysis for other periods is entirely analogous. Assumptions (2) above plus
simple algebra establishes the following Laspeyres and Paasche type value added
growth decompositions in ratio form:

p1· y1/p0· y0 =
[
Π1
(

p1, x1
)
/Π1

(
p0, x1

)] [
Π1
(

p0, x1
)
/Π0

(
p0, x1

)]

[
Π0
(

p0, x1
)
/Π0

(
p0, x0

)]
;

(5)

p1· y1/p0· y0 =
[
Π0
(

p1, x0
)
/Π0

(
p0, x0

)] [
Π1
(

p1, x0
)
/Π0

(
p1, x0

)]

[
Π1
(

p1, x1
)
/Π1

(
p1, x0

)]
.

(6)

The terms �t(p1, xt)/�t(p0, xt) for t = 0, 1 are value added price indexes, the
terms �1(p0, x1)/�0(p0, x1) and �1(p1, x0)/�0(p1, x0) are measures of technical
progress and the terms �t(pt, x1)/�t(pt, x0) for t = 0, 1 are input quantity indexes.
These ratio type decompositions have the following analogous Laspeyres and
Paasche type value added difference decompositions:6

p1· y1 − p0· y0 =
[
Π1
(

p1, x1
)

− Π1
(

p0, x1
)]

+
[
Π1
(

p0, x1
)

− Π0
(

p0, x1
)]

+
[
Π0
(

p0, x1
)

− Π0
(

p0, x0
)]

;
(7)

5See also Diewert (1974, p. 140).
6Hicks (1941-42, pp. 127–134, 1945-46, pp. 72–73) was the first to see the analogy between index
number theory and consumer surplus theory (a difference approach to welfare measurement) and
he developed a first order Taylor series approximation method to obtain empirical counterparts to
his theoretical difference measures of quantity and price change. Thus we are simply adapting his
method to the producer context. See Diewert and Mizobuchi (2009, p. 367) for the early history of
the contributions of Hicks to indicator theory in the consumer context.
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p1· y1 − p0· y0 =
[
Π0
(

p1, x0
)

− Π0
(

p0, x0
)]

+
[
Π1
(

p1, x0
)

− Π0
(

p1, x0
)]

+
[
Π1
(

p1, x1
)

− Π1
(

p1, x0
)]

.

(8)

The terms �t(p1, xt) − �t(p0, xt) are value added indicators of price change,7

the terms �1(p0, x1) − �0(p0, x1) and �1(p1, x0) − �0(p1, x0) are measures of the
absolute change in value added at constant net output prices and constant primary
input quantities due to technical progress going from period 0 to 1 and the terms
�t(pt, x1) − �t(pt, x0) for t = 0, 1 are indicators of input growth at constant prices
and constant technology in difference terms. Our problem is to obtain empirically
observable estimates for the three sets of terms on the right-hand sides of (7) and
(8).

We will use assumptions (2)–(4) in order to form first order Taylor series approx-
imations to the various unobservable value added terms of the form �r(ps, xt) for r,
s, and t equal to 0 or 1. Thus we can derive the following first order approximations
to the unobservable terms on the right-hand sides of the decompositions defined by
(7) and (8):

Π1
(
p1, x1

)− Π1
(
p0, x1

) ≈ p1· y1− [Π1
(
p1, x1

)+∇pΠ
1
(
p1, x1

) · (p0−p1
)]

= p1· y1− [p1· y1+y1· (p0−p1
)]

using (2) and (3)
= y1· (p1−p0

)
.

(9)

Π1
(

p0, x1
)

− Π0
(

p0, x1
)

≈
[
Π1
(

p1, x1
)

+ ∇pΠ
1
(

p1, x1
)

·
(

p0 − p1
)]

−
[
Π0
(

p0, x0
)

+ ∇xΠ
0
(

p0, x0
)

·
(

x1 − x0
)]

=
[
p1· y1 + y1·

(
p0 − p1

)]
−
[
p0· y0 + w0·

(
x1 − x0

)]
using (2)–(4)

=p0· y1 − w0· x1.

(10)

7Diewert (1992, p. 556) introduced the term indicator to distinguish the difference concept from
the usual ratio concept that is applied in index number theory. Diewert (2005, p. 317) also applied
the indicator terminology in the context of measuring profit change over consecutive periods.
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Π0
(

p0, x1
)

− Π0
(

p0, x0
)

≈
[
Π0
(

p0, x0
)

+ ∇xΠ
0
(

p0, x0
)

·
(

x1 − x0
)]

− p0· y0 using (2)

=
[
p0· y0 + w0·

(
x1 − x0

)]
− p0· y0 using (4)

=w0·
(

x1 − x0
)
.

(11)

Substituting (9)–(11) into the decomposition (7) gives us the following approxi-
mate decomposition:8

p1· y1 − p0· y0 ≈
[
y1·
(

p1 − p0
)]

+
[
p0· y1 − w0· x1

]

+
[
w0·
(

x1 − x0
)]

= p1· y1 − p0· y0.

(12)

Similar computations give us the following first order Taylor series approxima-
tions to the three terms on the right-hand side of decomposition (8):

Π0
(

p1, x0
)

− Π0
(

p0, x0
)

≈ y0·
(

p1 − p0
)

; (13)

Π1
(

p1, x0
)

− Π0
(

p1, x0
)

≈ −
[
p1· y0 − w1· x0

]
; (14)

Π1
(

p1, x1
)

− Π1
(

p1, x0
)

≈ w1·
(

x1 − x0
)
. (15)

Substituting (13)–(15) into (8) gives us the following approximate decomposi-
tion:9

p1· y1 − p0· y0 ≈
[
y0·
(

p1 − p0
)]

−
[
p1· y0 − w1· x0

]
+
[
w1·
(

x1 − x0
)]

= p1· y1 − p0· y0.

(16)

Now take the arithmetic average of the two approximate decompositions (12) and
(16) and we obtain the following Bennet (1920) type approximate decomposition:10

8We used w0·x0 = p0·y0 to derive the last equality in (12).
9We used −p0·y0 = −w0·x0 to derive the last equality in (16).
10This last equality follows by simply adding up the terms in the above expression.
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p1· y1 − p0· y0 ≈ (1/2)
(

y0 + y1
)

·
(

p1 − p0
)

+ (1/2)
[(

p0· y1 − w0· x1
)

−
(

p1· y0 − w1· x0
)]

+ (1/2)
(

w0 + w1
)

·
(

x1 − x0
)

=p1· y1 − p0· y0.

(17)

Define the Bennet indicator of technical progress, Bτ(p0, p1, w0, w1, y0, y1, x0,
x1), as the middle term in the above decomposition:11

Bτ

(
p0, p1,w0,w1, y0, y1, x0, x1

)

≡ (1/2)
[(

p0· y1 − w0· x1
)

−
(

p1· y0 − w1· x0
)]

.

(18)

The last equality in (17) shows that the approximate decomposition (17) is in
fact an exact one in the sense that the sum of the right-hand side terms equals
the value added difference between the two periods. The first term on the right-
hand side of (17), (1/2)(y0 + y1)·(p1 − p0), is the Bennet indicator of value
added price change, the middle term, (1/2)[(p0·y1 − w0·x1) − (p1·y0 − w1·x0)],
is an indicator of technical progress between periods 0 and 1, and the last term,
(1/2)(w0 + w1)·(x1 − x0), is the Bennet indicator of input quantity change. Note
that the Bennet indicator of technical progress turns out to equal the arithmetic
average of the hypothetical profit that the net output vector of period 1 would make
if evaluated at the prices of period 0 and the negative of the hypothetical loss that
the net output vector of period 0 would make if evaluated at the prices of period 1.
This shows that there is a strong connection between measures of technical progress
and of profitability.12

The classic Bennet decomposition of value added change into price change and
quantity change components going from period 0 to 1 is the following one:

p1· y1 − p0· y0 = (1/2)
(

y0 + y1
)

·
(

p1 − p0
)

+ (1/2)
(

p0 + p1
)

·
(

y1 − y0
)

(19)

where the Bennet indicator of value added quantity change is defined as (1/2)
(p0 + p1)·(y1 − y0). Substituting (19) into (17) and using definition (18) leads to the
following two alternative expressions for the Bennet indicator of technical progress:

11Kurosawa (1975) recognized p0·y1 − w0·x1 as a measure of productivity growth (or technical
progress); see also Grifell-Tatjé and Lovell (2015, pp. 177–185) for a discussion of this measure
and related measures.
12See Grifell-Tatjé and Lovell (2015) for much more material on the relationships of profitability
measures with measures of productivity growth.
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Bτ

(
p0, p1,w0,w1, y0, y1, x0, x1

)
= (1/2)

(
p0 + p1

)
·
(

y1 − y0
)

− (1/2)
(

w0 + w1
)

·
(

x1 − x0
)

= (1/2)
(

p0 + p1
)

· y1 − (1/2)
(

w0 + w1
)

· x1 −
[
(1/2)

(
p0 + p1

)
· y0

− (1/2)
(

w0 + w1
)

· x0
]

(20)

The first equality in (20) shows that the Bennet indicator of technical progress is
also equal to the Bennet indicator of value added quantity change less the Bennet
indicator of input quantity change. The second equality in (20) shows that the
Bennet indicator of technical progress is equal to the hypothetical profitability of
the overall period 1 net output vector, [y1, −x1], evaluated at the average prices
for period 0 and 1 net outputs, (1/2)[p0 + p1, w0 + w1], less the hypothetical
profitability of the overall period 0 net output vector, [y0, −x0], evaluated at the
same average prices for period 0 and 1 net outputs.

It is possible to obtain a fourth (dual) expression13 for the Bennet indicator of
technical progress. We know that value added change has the Bennet decomposition
defined by (19) above and primary input cost change has the Bennet decomposition
defined by (21) below:

w1· x1 − w0· x0 = (1/2)
(

w0 + w1
)

·
(

x1 − x0
)

+ (1/2)
(

x0 + x1
)

·
(

w1 − w0
)
.

(21)

Using (20), we have:

Bτ

(
p0, p1,w0,w1, y0, y1, x0, x1

)

= (1/2)
(
p0 + p1

) · (y1 − y0
)− (1/2)

(
w0 + w1

) · (x1 − x0
)

= − [p1· y1 − p0· y0
]+ (1/2)

(
p0 + p1

) · (y1 − y0
)+ [w1· x1 − w0· x0

]

− (1/2)
(
w0 + w1

) · (x1 − x0
)

using (2) for t = 0, 1
= − (1/2)

(
y0 + y1

) · (p1 − p0
)

+ (1/2)
(
x0 + x1

) · (w1 − w0
)

using (19) and (21)
= −Σm=1

M (1/2)
(
ym

1 + ym
0
) (

pm
1 − pm

0
)+ Σn=1

N (1/2)
(
xn

1

+xn
0
) (

wn
1 − wn

0
)
.

(22)

Thus the empirical measure of technical progress Bτ(p0, p1, w0, w1, y0, y1, x0,
x1) defined by (18) is also equal to the empirical Bennet measure of input price

13The dual approach to productivity measurement (in the ratio context) dates back to Siegel (1952,
1961, p. 27). See also Jorgenson and Griliches (1967, 1972) and Grifell-Tatjé and Lovell (2015,
pp. 103–109) for more on the early history of this approach.
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change (1/2)(x0 + x1)·(w1 − w0) less the Bennet measure of output price change,
(1/2)(y0 + y1)·(p1 − p0).

The empirical decomposition of productivity growth defined by (22) is useful if
one wishes to allocate aggregate productivity growth to purchasers of the production
unit’s outputs and to suppliers of primary inputs to the production unit. Thus the
benefits of productivity growth flow through to (potentially) lower net output prices
(this effect is captured by the terms—�m=1

M (1/2)(ym
1 + ym

0)(pm
1 − pm

0) on the
right-hand side of (22)) and to higher primary input prices (this effect is captured
by the terms �n=1

N (1/2)(xn
1 + xn

0)(wn
1 − wn

0) on the right-hand side of (22)).14

Kendrick described in plain English the effects of productivity increases on factor
incomes:

Productivity gains provide the increments to real product out of which the real incomes of
the factors are increased. If productivity advances, wage rates and capital return necessarily
rise in relation to the general product price level, since this is the means whereby the fruits
of productivity gains are distributed to workers and investors by the market mechanism.
(John Kendrick 1961, p. 111).

Thus we have four alternative interpretations for the Bennet indicator of technical
progress: the first one which flows from the original definition (18), two more
interpretations which flow from the two equalities in (20), and the final dual inter-
pretation defined by (22). All four interpretations are fairly simple and intuitively
plausible.

3 Decomposing the Theoretical Indicators of Overall Output
Price and Input Quantity Change into Individual Price
and Quantity Indicators

Recall that the decomposition of value added growth defined by (7) had the
overall output price change term �1(p1, x1) − �1(p0, x1) on the right-hand side
of the equation. It is useful to decompose this Paasche type overall measure of
output price change into separate output price change contributions.15 This task
can be accomplished if we make use of the following decomposition of �1(p1,
x1) − �1(p0, x1):

14Grifell-Tatjé and Lovell (2015, pp. 36–41) devote many pages to alternative approaches to this
distribution problem. They note the early contributions of Davis (1947) and Kendrick (1961) to
this problem and their insights into many other aspects of productivity measurement. Grifell-
Tatjé and Lovell do an excellent job on covering the history of productivity measurement and
its connection with accounting theory. See also Lawrence et al. (2006) for a related exact index
number application of this type of distributive analysis.
15As mentioned in the introduction, we are looking for a difference counterpart to the multiplicative
decomposition of aggregate output price change into individual output price and input quantity
change components that Diewert and Morrison (1986, pp. 666–667) and Kohli (1990) obtained in
their traditional index number approach to the decomposition of value added growth.
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Π1
(

p1, x1
)

− Π1
(

p0, x1
)

= Π1
(

p1, x1
)

− Π1
(

p1
0, p2

1, . . . , pM
1, x1

)

+ Π1
(

p1
0, p2

1, . . . , pM
1, x1

)
− Π1

(
p1

0, p2
0, p3

1, . . . , pM
1, x1

)

+ Π1
(

p1
0, p2

0, p3
1, . . . , pM

1, x1
)

−Π1
(

p1
0, p2

0, p3
0, p4

1, . . . , pM
1, x1

)

+ . . .

+ Π1
(

p1
0, . . . , pM−1

0, pM
1, x1

)
− Π1

(
p0, x1

)
.

(23)

Thus the right-hand side of (23) consists of M differences in �1(p, x1) where
each difference changes only one component of the p vector. We will approximate
these terms by taking first order Taylor series approximations to the �1(p, x1)
around the point p = p1. Thus the first order approximation to �1(p1

0, p2
1, . . . ,

pM
1, x1) is the following one:

Π1
(
p1

0, p2
1, . . . , pM

1, x1
) ≈ Π1

(
p1, x1

)+ [∂Π1
(
p1, x1

)
/∂p1

] [
p1

0 − p1
1
]

= p1· y1 + y1
1
[
p1

0 − p1
1
]
. using (2) and (3)

(24)

Thus we have the following first order approximation to the first term on the
right-hand side of (23):

Π1
(
p1, x1

) − Π1
(
p1

0, p2
1, . . . , pM

1, x1
)

≈ p1· y1 − {p1· y1 + y1
1
[
p1

0 − p1
1
]}

using (2) and (24)
= y1

1
[
p1

1 − p1
0
]
.

(25)

In a similar manner to the derivation of (24), we can derive the following first
order approximation to �1(p1

0, p2
0, p3

1, . . . , pM
1, x1):

Π1
(
p1

0, p2
0, p3

1, . . . , pM
1, x1

) ≈ Π1
(
p1, x1

)

+ [∂Π1
(
p1, x1

)
/∂p1

] [
p1

0 − p1
1
]+ [∂Π1

(
p1, x1

)
/∂p2

] [
p2

0 − p2
1
]

= p1· y1 + y1
1
[
p1

0 − p1
1
]+ y2

1
[
p2

0 − p2
1
]
. using (2) and (3)

(26)

Thus we have the following first order approximation to the second term on the
right-hand side of (23):

Π1
(
p1

0, p2
1, . . . , pM

1, x1
)− Π1

(
p1

0, p2
0, p3

1, . . . , pM
1, x1

) ≈ p1· y1

+y1
1
[
p1

0 − p1
1
]− {p1· y1 + y1

1
[
p1

0 − p1
1
]+ y2

1
[
p2

0 − p2
1
]}

using (24) and (26)
= y2

1
[
p2

1 − p2
0
]
.

(27)

In a similar fashion, it can be shown that the mth term on the right-hand side of
(23) has the first order approximation ym

1[pm
1 − pm

0] for m = 1, 2, . . . , M. The
sum of these first order approximations is
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Σm=1
M ym

1
[
pm

1 − pm
0
]

= y1·
(

p1 − p0
)

≈ Π1
(

p1, x1
)

− Π1
(

p0, x1
)
. using (9)

(28)

Thus we have decomposed the Paasche type measure of aggregate price change,
�1(p1, x1) − �1(p0, x1), into the sum of the M individual price change measures
on the right-hand side of (23) and the mth individual price change measure is
approximately equal to ym

1[pm
1 − pm

0] for m = 1, 2, . . . , M.
Recall that the decomposition of value added growth defined by (8) had the

overall output price change term �0(p1, x0) − �0(p0, x0) on the right-hand side
of the equation. We want to decompose this Laspeyres type overall measure of
price change into separate output price change contributions. We use the following
decomposition:

Π0
(
p1, x0

)− Π0
(
p0, x0

) = Π0
(
p1, x0

)− Π0
(
p1

0, p2
1, . . . , pM

1, x0
)

+ Π0
(
p1

0, p2
1, . . . , pM

1, x0
)− Π0

(
p1

0, p2
0, p3

1, . . . , pM
1, x0

)

+ . . .

+ Π0
(
p1

0, . . . , pM−1
0, pM

1, x0
)− Π0

(
p0, x0

)
.

(29)

The right-hand side of (29) consists of M differences in �0(p, x0) where each
difference changes only one component of the p vector. We will approximate these
terms by taking first order Taylor series approximations to the �0(p, x0) around the
point p = p0. Thus the first order approximation to �0(p1

0, . . . , pM−1
0,pM

1,x0) is
the following one:

Π0
(

p1
0, . . . , pM−1

0, pM
1, x0

)
≈ Π0

(
p0, x0

)
+
[
∂Π0

(
p0, x0

)
/∂pM

] [
pM

1−pM
0
]

= p0· y0+yM
0
[
pM

1−pM
0
]

using (2) and (3)

(30)

Thus we have the following first order approximation to the last term on the
right-hand side of (29):

Π0
(
p1

0, . . . , pM−1
0, pM

1, x0
)

−Π0
(
p0, x0

) ≈ p0· y0 + yM
0
[
pM

1 − pM
0
]− p0· y0 using (2) and (30)

= yM
0
[
pM

1 − pM
0
]
.

(31)

In a similar fashion, it can be shown that the mth term on the right-hand side of
(29) has the first order approximation ym

0[pm
1 − pm

0] for m = 1,2, . . . , M. The
sum of these first order approximations is
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Σm=1
M ym

0
[
pm

1 − pm
0
]

= y0·
(

p1 − p0
)

≈ Π0
(

p1, x0
)

− Π0
(

p0, x0
)
. using (13)

(32)

Thus we have decomposed the Laspeyres type measure of aggregate price
change, �0(p1, x0) − �0(p0, x0), into the sum of the M individual price change
measures on the right-hand side of (29) and the mth individual price change measure
is approximately equal to ym

0[pm
1 − pm

0] for m = 1,2, . . . , M.
Recall that the overall Bennet indicator of value added price change was

defined as (1/2)(y0+y1)·(p1 − p0) which is the arithmetic average of the Paasche
and Laspeyres measures of price change, �m=1

M ym
1[pm

1 − pm
0] and �m=1

M

ym
0[pm

1 − pm
0], respectively. Thus the mth term in the Bennet indicator of

value added price change, (1/2)ym
1[pm

1 − pm
0] + (1/2)ym

0[pm
1 − pm

0], can be
interpreted as an approximation to the theoretical measure of change in the price
of the mth output that is defined by the arithmetic average of the mth terms on the
right-hand sides of (23) and (29).

The decomposition of value added growth defined by (7) had the overall input
quantity change term [�0(p0, x1) − �0(p0, x0)] on the right-hand side of the
equation. We want to decompose this Laspeyres type overall measure of input
quantity change into separate input quantity change contributions. We use the
following decomposition:

Π0
(
p0, x1

) − Π0
(
p0, x0

) = Π0
(
p0, x1

)− Π0
(
p0, x1

0, x2
1, . . . , xN

1
)

+ Π0
(
p0, x1

0, x2
1, . . . , xN

1
)− Π0

(
p0, x1

0, x2
0, x3

1, . . . , xN
1
)

+ . . .

+ Π0
(
p0, x1

0, . . . , xN−2
0, xN−1

1, xN
1
)− Π0

(
p0, x1

0, . . . , xN−1
0, xN

1
)

+ Π0
(
p0, x1

0, . . . , xN−1
0, xN

1
)− Π0

(
p0, x0

)

(33)

The right-hand side of (33) consists of N differences in �0(p0, x) where each
difference changes only one component of the x vector. We will approximate these
terms by taking first order Taylor series approximations to the �0(p0, x) around the
point x = x0. Thus the first order approximation to �0(p0, x1

0, . . . , xN−1
0, xN

1) is
the following one:

Π0
(
p0, x1

0, . . . , xN−1
0, xN

1
) ≈ Π0

(
p0, x0

)+ [∂Π0
(
p0, x0

)
/∂xN

] [
xN

1 − xN
0
]

= p0· y0 + wN
0
[
xN

1 − xN
0
]
. using (2) and (4)

(34)

Thus we have the following first order approximation to the last term on the
right-hand side of (33):



The Difference Approach to Productivity Measurement and Exact Indicators 21

Π0
(
p0, x1

0, . . . , xN−1
0, xN

1
)− Π0

(
p0, x0

)

≈ p0· y0 + wN
0
[
xN

1 − xN
0
]− p0· y0 using (2) and (34)

= wN
0
[
xN

1 − xN
0
]
.

(35)

In a similar fashion, it can be shown that the nth term on the right-hand side of
(33) has the first order approximation wn

0[xn
1 − xn

0] for n = 1, 2, . . . , N. The sum
of these first order approximations is

Σn=1
N wn

0
[
xn

1 − xn
0
]

= w0·
(

x1 − x0
)

≈ Π0
(

p0, x1
)

−Π0
(

p0, x0
)
. using (11)

(36)

Thus we have decomposed the Laspeyres type measure of aggregate input
quantity change, �0(p0, x1) − �0(p0, x0), into the sum of the N individual input
quantity change measures on the right-hand side of (33) and the nth individual
quantity change measure is approximately equal to wn

0[xn
1 − xn

0] for n = 1, 2,
. . . , N.

The decomposition of value added growth defined by (8) had the overall input
quantity change term [�1(p1, x1) − �1(p1, x0)] on the right-hand side of the
equation. We want to decompose this Paasche type overall measure of input quantity
change into individual input quantity change contributions. We use the following
decomposition:

Π1
(

p1, x1
)

− Π1
(

p1, x0
)

= Π1
(

p1, x1
)

−Π1
(

p1, x1
0, x2

1, . . . , xN
1
)

+ Π1
(

p1, x1
0, x2

1, . . . , xN
1
)

−Π1
(

p1, x1
0, x2

0, x3
1, . . . , xN

1
)

+ . . .

+ Π1
(

p1, x1
0, . . . , xN−1

0, xN
1
)

− Π1
(

p1, x0
)
.

(37)

The right-hand side of (37) consists of N differences in �1(p1, x) where each
difference changes only one component of the x vector. As usual, we approximate
these terms by taking first order Taylor series approximations to the �1(p1,
x) around the point x = x1. The observable first order approximation to the
unobservable term �1(p1, x1

0, x2
1, . . . , xN

1) is the following one:

Π1
(
p1, x1

0, x2
1, . . . , xN

1
) ≈ Π1

(
p1, x1

)+ [∂Π1
(
p1, x1

)
/∂x1

] [
x1

0 − x1
1
]

= p1· y1 + w1
1
[
x1

0 − x1
1
]
. using (2) and (4)

(38)

Thus we have the following observable first order approximation to the unob-
servable first term on the right-hand side of (37):
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Π1
(
p1, x1

) −Π1
(
p1, x1

0, x2
1, . . . , xN

1
) ≈ p1· y1

− {p1· y1 + w1
1
[
x1

0 − x1
1
]}

using (2) and (38)
= w1

1
[
x1

1 − x1
0
]
.

(39)

In a similar fashion, it can be shown that the nth term on the right-hand side of
(37) has the first order approximation wn

1[xn
1 − xn

0] for n = 1, 2, . . . , N. The sum
of these first order approximations is

Σn=1
N wn

1
[
xn

1 − xn
0
]

= w1·
(

x1 − x0
)

≈ Π1
(

p1, x1
)

−Π1
(

p1, x0
)
. using (15)

(40)

We have decomposed the Paasche type measure of aggregate input quantity
change, �1(p1, x1)�1(p1, x0), into the sum of the N individual input quantity
change measures defined on the right-hand side of (37) and the nth individual
quantity change measure is approximately equal to wn

1[xn
1 − xn

0] for n = 1, 2,
. . . , N.

Recall that the overall Bennet indicator of input quantity change was defined
as (1/2)(w0 + w1)·(x1 − x0) which is the arithmetic average of the Laspeyres and
Paasche measures of input quantity change, �n=1

N wn
0[xn

1 − xn
0] and �n=1

N

wn
1[xn

1 − xn
0], respectively. The nth term in the Bennet indicator of aggregate input

quantity change, (1/2)wn
0[xn

1 − xn
0] + (1/2)wn

1[xn
1 − xn

0], can be interpreted
as an approximation to the theoretical measure of input n quantity change that is
defined by the arithmetic average of the nth terms on the right-hand sides of (33)
and (37).

4 The Problem of Adjusting the Measures for General
Inflation

Today’s dollar is, then, a totally different unit from the dollar of 1897. As the general price
level fluctuates, the dollar is bound to become a unit of different magnitude. To mix these
units is like mixing inches and centimeters or measuring a field with a rubber tape-line.
Livingston Middleditch (1918, pp. 114–115).

Diewert (2005, p. 339) noted the above quotation by Middleditch in his discus-
sion of the problem of adjusting for general inflation in making revenue, cost, and
profit comparisons in difference form over two periods in time. Diewert noted that
if there is a great change in the general purchasing power of money between the
two periods being compared, then the Bennet indicators of quantity change may be
“excessively” heavily weighted by the prices of the period with the highest general
price level. His solution to this weighting problem was very simple: in each period,
divide the period t nominal output and input prices, pm

t and wn
t by a suitable price

index, say ρt. Thus define the period t real output and input price vectors, pt* and
wt* as follows:
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pt∗ ≡ pt/ρt; wt∗ ≡ wt/ρt; t = 0, 1, . . . ,T. (41)

The period t value added function �t(p, x) is linearly homogeneous in the
components of p as are the derivatives ∂�t(p, x)/∂xn for n = 1, . . . , T. Using these
homogeneity properties, we can establish the following counterparts to the Hotelling
and Samuelson Lemma results (2) and (3):

∇pΠ
t (pt∗, xt) ≡ ∇pΠ

t (pt/ρt, xt) = ∇pΠ
t (pt, xt) = yt; t = 0, 1, . . . ,T; (42)

∇xΠ
t (pt∗, xt) ≡ ∇xΠ

t (pt/ρt, xt) = (1/ρt)∇xΠ
t (pt, xt)

= (1/ρt)wt = wt∗; t = 0, 1, . . . ,T.
(43)

Thus all of the nonparametric results established in Sects. 2 and 3 above go
through unchanged if we replace pt by pt* and wt by wt*. The significance of this
result is substantial: if we deflate nominal prices into real prices in each time period,
it is almost certain that real price change from period to period will be less than
the corresponding nominal price change. Thus the first order approximations used
in the previous sections will generally be subject to smaller errors and hence our
decompositions using real prices are going to be more accurate. This is particularly
true if between period inflation is high. This is a powerful argument for using real
prices.

There remains the problem of choosing the deflator, ρt. In order to determine
an appropriate deflator, we need to ask what is the purpose of the analysis or
what is the application of the theory? In most applications, the task at hand is the
measurement of the productivity growth of the production unit under consideration.
If the production unit is a firm, investors will be interested in revenues and costs
deflated by a suitable consumer price index. Factors of production will be interested
in the growth of their real compensation; i.e., how many bundles of consumption can
their present period compensation purchase relative to the previous period. Again,
deflation by a consumer price index seems appropriate. Some policy makers may
argue for a broader deflator such as a deflator for domestic output or absorption.

In summary, the choice of the deflator will depend on the purpose of the exercise
but in most cases, deflation by a consumer price index (or a consumption deflator)
will probably be appropriate.16 However, the accounting profession has resisted
moving to this type of accounting, even when general inflation was high so we
do not expect that productivity decompositions that use the difference approach
adjusted for general inflation will become a routine part of the quarterly and

16This type of accounting for general price level changes was first suggested by Middleditch (1918)
and by Sweeny (1927, 1931). Sweeny called his method “stabilized accounting” as opposed to the
usual historical cost accounting.
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annual reports of corporations.17 But governments and business economists are
interested in productivity decompositions and so in the future, we think it is likely
that decompositions similar to the ones we propose in this paper will be made,
particularly for firm level data where the problems associated with the treatment
of new and disappearing products emerge.

The analysis presented up to this point suffers from (at least) two problems:

• We have assumed constant returns to scale and
• We have assumed (competitive) profit maximizing behavior and hence there is

no possibility of technical inefficiency.

In the following section, we develop an alternative methodology that allows for
the possibility of technical inefficiency.18

5 The Difference Approach to Productivity Measurement
Using the Nonparametric Cost Constrained Value Added
Function

The approach used in this section can be explained in a few sentences. Diewert
and Fox (2018) worked out an approach to the measurement of productivity in a
constant returns to scale context that was based on traditional multiplicative index
number theory.19 The theoretical indexes used in that paper could be calculated
using the concept of a cost constrained value added function that made use of
a particular nonparametric approximation to the true technology of a production
unit. The nonparametric approximation to the true technology is the set of all

17In the 1970s and 1980s when inflation was high in most OECD countries, there was some
interest by academic accountants in moving away from historical cost accounting and towards what
was called “current value accounting”; see Baxter (1975), Whittington (1980), and Zeff (1982).
However, the issues associated with adjusting for price level changes between accounting periods
are complex: there was controversy between those who advocated specific price level changes (for
the treatment of durable asset price changes) and those who advocated general price level changes
of the type considered by Sweeney. As a result, historical cost accounting was not overturned and
as inflation died down in OECD countries, the issues associated with adjusting for general inflation
were forgotten. We believe that these issues will become important again in the future as more and
more microeconomic data on the inputs used and outputs produced by production units become
available. For the record, we agree with the approach taken by the accountant Sterling (1975, p.
51): “It follows that the appropriate procedure is to (1) adjust the present statement to current
values and (2) adjust the previous statement by a price index. It is important to recognize that both
adjustments are necessary and that neither is a substitute for the other. Confusion on this point is
widespread.”
18We are not able to relax the assumption of constant returns to scale because the nonparametric
cost constrained value added function that we use in our analysis in the following section is not
always well defined unless we assume constant returns to scale in production.
19This paper drew heavily on the earlier papers by Balk (2003) and Diewert (2014).
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nonnegative linear combinations of past production vectors. This section simply
reworks their multiplicative index number decompositions into difference form. The
details follow.

Define the production unit’s period t cost constrained value added function, Rt(p,
w, x) as follows:20

Rt (p,w, x) ≡ maxy,z
{
p· y : (y, z) ∈ St; w· z ≤ w· x

}
. (44)

If (y*, z*) solves the constrained maximization problem defined by (44), then the
value added p·y of the production unit is maximized subject to the constraints that
(y, z) is a feasible production vector and primary input expenditure w·z is equal to
or less than “observed” primary input expenditure w·x. Thus if the sector faces the
prices pt � 0M and wt � 0N during period t and (yt, xt) is the sector’s observed
production vector, then production will be value added efficient if the observed value
added, pt·yt, is equal to the optimal value added, Rt(pt, wt, xt). However, production
may not be efficient and so the following inequality will hold:

pt· yt ≤ Rt (pt,wt, xt) ; t = 0, 1, . . . ,T. (45)

Adapting the ratio definition of Balk (1998, p. 143) to the difference context, we
define the value added or net revenue efficiency of the production unit during period
t, et, as follows:

et ≡ pt· yt − Rt (pt,wt, xt) ≤ 0; t = 0, 1, . . . ,T (46)

where the inequality in (46) follows from (45). Thus if et = 0, then production is
allocatively efficient in period t and if et < 0, then production during period t is
allocatively inefficient. Note that the above definition of value added efficiency is a
net revenue difference counterpart to Farrell’s (1957, p. 255) cost based measure of
overall efficiency in the DEA context, which combined his measures of technical and
(cost) allocative efficiency. DEA or Data Envelopment Analysis is the term used by
Charnes and Cooper (1985) and their co-workers to denote an area of analysis which

20The cost constrained value added function is analogous to Diewert’s (1983, p. 1086) balance of
trade restricted value added function and Diewert and Morrison’s (1986, p. 669) domestic sales
function. However, the basic idea can be traced back to Shephard’s (1974) maximal return function,
Fisher and Shell’s (1998, p. 48) cost restricted sales function, and Balk’s (2003, p. 34) indirect
revenue function. See also Färe et al. (1992, p. 286) and Färe and Primont (1994, p. 203) on
Shephard’s formulation. Shephard, Fisher and Shell, and Balk defined their functions as IRt(p, w,
c) ≡ maxy,z {p·y: w·z ≤ c; (y, z) ∈ St} where c > 0 is a scalar cost constraint. It can be seen that
our cost constrained value added function replaces c in the above definition by w·x, a difference
which will be important in forming our input indexes and hence our value added decompositions.
Another difference is that our y vector is a net output vector; i.e., some components of y can be
negative. Excluding Diewert and Morrison (1986) and Diewert (1983), the other authors required
that y be nonnegative. This makes a difference to our analysis. Also, our regularity conditions are
weaker than the ones that are usually used.
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is called the nonparametric approach to production theory or the measurement of the
efficiency of production by economists.21

We assume that the production unit’s period t production possibilities set St is the
conical free disposal hull of the period t actual production vector and past production
vectors that are in our sample of time series observations for the unit.22 Using this
assumption about St, for strictly positive price vectors p and w and nonnegative input
quantity vector x, we define the period t cost constrained value added function Rt(p,
w, x) for the production unit as follows:

Rt (p,w, x) ≡ maxy,z
{
p· y : w· z ≤ w· x; (y, z) ∈ St

}

≥ maxλ {p·λys : w·λxs ≤ w· x;λ ≥ 0} since (λys,λxs) ∈ St for all λ ≥ 0
= maxλ {λp· ys : λw· xs ≤ w· x;λ ≥ 0}
= (w· x/w· xs) p· ys.

(47)

The inequality in (47) will hold for all s = 1, 2, . . . , t. Thus we have

Rt (p,w, x) ≥ maxs
{
p· ys w· x/w· xs : s = 1, 2, . . . , t

}
. (48)

The rays (λys, λxs) ∈ St for λ ≥ 0 generate the efficient points in the set St so
the strict inequality in (42) cannot hold and so we have

Rt (p,w, x) ≡ maxy,z
{
p· y : w· z ≤ w· x; (y, z) ∈ St

}

= maxs {p· ysw· x/w· xs : s = 1, 2, . . . , t}
= w· x maxs {p· ys/w· xs : s = 1, 2, . . . , t}
= maxλ1,...,λt p· (Σs=1

tysλs
) ; w· (Σs=1

txsλs
)

≤ w· x;λ1 ≥ 0, . . . ,λt ≥ 0
}

(49)

where the last line in (49) follows from the fact that the solution to the linear
programming problem is an extreme point and thus its solution is equal to the
second line in (49). Thus all three equalities in (49) can serve to define Rt(p, w,
x). We assume that all inner products of the form p·ys and w·xs are positive and

21The early contributors to this literature were Farrell (1957), Afriat (1972), Hanoch and
Rothschild (1972), Färe and Lovell (1978), Diewert and Parkan (1983), Varian (1984), and Färe et
al. (1985).
22Diewert (1980, p. 264) suggested that the convex, conical, free disposal hull of past and
current production vectors be used as an approximation to the period t technology set St when
measuring TFP growth. Tulkens (1993, pp. 201–206) and Diewert and Fox (2014, 2017) dropped
the convexity and constant returns to scale assumptions and used free disposal hulls of past and
current production vectors to represent the period t technology sets. In this paper, we also drop the
convexity assumption but maintain the free disposal and constant returns to scale assumptions. We
also follow Diewert and Parkan (1983, pp. 153–157), Balk (2003, p. 37), and Diewert and Mendoza
(2007) in introducing price data into the computations.
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this assumption rules out the possibility of a λs = 0 solution to the third line in
(49). The last expression in (49) can be used to show that when we assume constant
returns to scale for our nonparametric representation for St, the resulting Rt(p, w, x)
is linear and nondecreasing in x, is convex and linearly homogeneous in p, and is
homogeneous of degree 0 in w. The bottom line is that the third equality in (49) can
be used to evaluate the function Rt(p, w, x) as p, w, and x take on the observable
values in the definitions which follow.

Our task in this section is to decompose the growth in observed nominal value
added over the two periods, pt·yt − pt−1·yt−1, into explanatory growth factors.

One of the explanatory factors will be the growth in the value added efficiency of
the sector or production unit. Above, we defined the period t value added efficiency
as et ≡ pt·yt − Rt(pt, wt, xt). Define the corresponding period t − 1 efficiency as
et−1 ≡ pt−1·yt−1 − Rt−1(pt−1, wt−1, xt−1). Given the above definitions of value
added efficiency in periods t−1 and t, we can define an index of the change in value
added efficiency εt for the sector over the two periods as follows:

εt ≡ et − et−1 = pt· yt − pt−1· yt−1 −
[
Rt (pt,wt, xt)− Rt−1

(
pt−1,wt−1, xt−1

)]
;

t=1, 2, . . . ,T.
(50)

The above equations can be rewritten as follows:

pt· yt − pt−1· yt−1 = εt + Rt (pt,wt, xt)− Rt−1
(

pt−1,wt−1, xt−1
)

; t=1, 2, . . . ,T.

(51)

Notice that the cost constrained value added function for the production unit in
period t, Rt(p, w, x), depends on four sets of variables:

• The time period t and this index t serves to indicate that the period t technology
set St is used to define the period t value added function;

• The vector of net output prices p that the production unit faces;
• The vector of primary input prices w that the production unit faces, and
• The vector of primary inputs x which is available for use by the production unit

during period t.

At this point, we will follow the methodology that is used in the economic
approach to index number theory that originated with Konüs (1939) and Allen
(1949) and we will use the value added function to define various families of indexes
that vary only one of the four sets of variables, t, p, w, and x, between the two periods
under consideration and hold constant the other sets of variables.

Our first family of factors that explain sectoral value added growth is a family of
net output price indicators, α(pt−1, pt, w, x, t):

α
(

pt−1, pt,w, x, s
)

≡ Rs (pt,w, x
)− Rs

(
pt−1,w, x

)
. (52)
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Following the example of Konüs (1939) in his analysis of the true cost of living
index, it is natural to single out two special cases of the family of net output price
indicators defined by (52): one choice where we use the period t − 1 technology
and set the reference input prices and quantities equal to the period t − 1 input
prices and quantities wt−1 and xt−1 (which gives rise to a Laspeyres type net output
price indicator) and another choice where we use the period t technology and set
the reference input prices and quantities equal to the period t prices and quantities
wt and xt (which gives rise to a Paasche type net output price indicator). We define
these special cases αL

t and αP
t for t = 1, . . . , T as follows:

αL
t ≡ α

(
pt−1, pt,wt−1, xt−1, t − 1

)
≡ Rt−1

(
pt,wt−1, xt−1

)

−Rt−1
(

pt−1,wt−1, xt−1
)

; (53)

αP
t ≡ α

(
pt−1, pt,wt, xt, t

)
≡ Rt (pt,wt, xt)− Rt

(
pt−1,wt, xt

)
. (54)

Our second family of factors that explain value added growth is a family of input
quantity indicators, β(xt−1, xt, p, w, s):

β
(

xt−1, xt, p,w, s
)

≡ Rs (p,w, xt)− Rs
(

p,w, xt−1
)

(55)

It is natural to single out two special cases of the family of input quantity indexes
defined by (55): one choice where we use the period t − 1 technology, input prices
and output prices as the reference p, w, and s which gives rise to the Laspeyres input
quantity indicator βL

t and another choice where we set the reference p, w equal to
pt and wt and set s equal to t which gives rise to the Paasche input quantity indicator
βP

t. Thus define these special cases βL
t and βP

t for t = 1, . . . , T as follows:

βL
t ≡ Rt−1

(
pt−1,wt−1, xt

)
− Rt−1

(
pt−1,wt−1, xt−1

)
; (56)

βP
t ≡ Rt (pt,wt, xt)− Rt

(
pt,wt, xt−1

)
. (57)

Our next family of indexes will measure the effects on cost constrained value
added of a change in input prices going from period t − 1 to t. We consider a
family of measures of the relative change in cost constrained value added of the
form Rs(p, wt, x) − Rs(p, wt−1, x). Since Rs(p, w, x) is homogeneous of degree 0
in the components of w, it can be seen that we cannot interpret Rs(p, wt, x)/Rs(p,
wt−1, x) as an input price index and hence Rs(p, wt, x) − Rs(p, wt−1, x) cannot be
interpreted as an input price indicator. It is best to interpret Rs(p, wt, x) − Rs(p,
wt−1, x) as measuring the effects on cost constrained value added of a change in
the relative proportions of inputs and outputs used in production or in the mix of
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inputs and outputs used in production that is induced by a change in relative input
prices when there is more than one primary input. Thus define the family of input
mix indicators γ(wt−1, wt, p, x, s) as follows:23

γ
(

wt−1,wt, p, x, s
)

≡ Rs (p,wt, x
)− Rs

(
p,wt−1, x

)
. (58)

We will consider two special cases of the above family of input mix indicators,
neither of which is a “pure” Laspeyres or Paasche type indicator:

γLP
t ≡ γ

(
wt−1,wt, pt−1, xt, t

)
≡ Rt

(
pt−1,wt, xt

)

−Rt
(

pt−1,wt−1, xt
)

; t = 1, . . . ,T; (59)

γPL
t ≡ γ

(
wt−1,wt, pt, xt−1, t − 1

)
≡ Rt−1

(
pt,wt, xt−1

)
−Rt−1

(
pt,wt−1, xt−1

)
;

t=1, . . . ,T.
(60)

The reason for these rather odd looking choices for reference vectors will become
apparent below because they lead to exact decompositions of the difference in
observed value added between two successive periods.

Finally, we use the cost constrained value added function in order to define a
family of technical progress indicators going from period t − 1 to t, τ(t, p, w, x),
for reference vectors of output and input prices, p and w, and a reference vector of
input quantities x as follows:24

τ (t, p,w, x) ≡ Rt (p,w, x) − Rt−1 (p,w, x) . (61)

If there is positive technical progress going from period t − 1 to t, then Rt(t, p, w,
x) will generally be greater than Rt−1(p, w, x) and hence τ(t, p, w, x) will be greater

23It would be more accurate to say that γ(wt−1, wt, p, x, s) represents the hypothetical change in
cost constrained value added for the period s reference technology due to the effects of a change
in the input price vector from wt−1 to wt when facing the reference net output prices p and the
reference vector of inputs x. Thus we shorten this description to say that γ is an “input mix
indicator.” If there is only one primary input, then since Rs(p, w, x) is homogeneous of degree
0 in w, Rs(p, w, x) does not vary as the scalar w varies and hence γ(wt−1, wt, p, x, s) ≡ 0; i.e., if
there is only one primary input, then the input mix index is identically equal to 0. For alternative
mix definitions in the index number context, see Balk (2001) and Diewert (2014, p. 62).
24The counterpart to this family of technical progress indicators was defined in the index number
context by Diewert and Morrison (1986, p. 662) using the value added function �t(p, x). A special
case of this ratio family was defined earlier by Diewert (1983, p. 1063). Balk (1998, p. 99) also
used this definition and Balk (1998, p. 58), following the example of Salter (1960), also used the
joint cost function to define a similar family of technical progress indexes.
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than zero. If St−1 is a subset of St (so that technologies are not forgotten), then τ(t,
p, w, x) ≥ 0.

Again, we will consider two special cases of the above family of technical
progress indexes, a “mixed” Laspeyres case and a “mixed” Paasche case. The
Laspeyres Paasche case τLP

t will use the period t − 1 reference output and input
price vectors pt−1 and wt−1 and the period t input vector xt as the reference input
vector while the Paasche Laspeyres case τPL

t will use the period t reference output
and input price vectors pt and wt and use the period t − 1 input vector xt−1 as the
reference input vector:

τLP
t ≡ τ

(
t, pt−1,wt−1, xt

)
≡ Rt

(
pt−1,wt−1, xt

)
− Rt−1

(
pt−1,wt−1, xt

)
.

(62)

τPL
t ≡ τ

(
t, pt,wt, xt−1

)
≡ Rt

(
pt,wt, xt−1

)
− Rt−1

(
pt,wt, xt−1

)
. (63)

We are now in a position to decompose the growth in nominal value added for the
production unit going from period t − 1 to t as the sum of five explanatory indicators
of change:

• The change in cost constrained value added efficiency over the two periods; i.e.,
εt ≡ et − et−1 defined by (50) above;

• Changes in net output prices; i.e., an indicator of the form α(pt−1, pt, w, x, s)
defined above by (52);

• Changes in input quantities; i.e., an indicator of the form β(xt−1, xt, p, w, s)
defined by (55);

• Changes in input prices; i.e., an input mix indicator of the form γ(wt−1, wt, p, x,
s) defined by (58), and

• Changes due to technical progress; i.e., an indicator of the form τ(t, p, w, x)
defined by (61).

Straightforward algebra using the above definitions shows that we have the
following exact decompositions of the observed value added difference going from
period t − 1 to t into explanatory indicators of the above type for t = 1, . . . , T:25

pt· yt − pt−1· yt−1 = εt + αP
t + βL

t + γLP
t + τLP

t; (64)

pt· yt − pt−1· yt−1 = εt + αL
t + βP

t + γPL
t + τPL

t. (65)

Define the period t arithmetic averages of the above α, β, γ, and τ indicators as
follows for t = 1, . . . , T:

25These decompositions are the difference analogues to the ratio decompositions obtained by
Diewert and Fox (2018).
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αt ≡ (1/2)
(
αL

t + αP
t) ; βt ≡ (1/2)

(
βL

t + βP
t) ; γt ≡ (1/2)

(
γLP

t + γPL
t) ;

τt ≡ (1/2)
(
τLP

t + τPL
t) .

(66)

Each of the exact decompositions defined by (64) and (65) gives a somewhat
different picture of the growth process. If we take the arithmetic average of these
decompositions, we will obtain a decomposition that will give the same results
whether we measure time going forward or backwards. Hence our preferred growth
decomposition is the following one which averages the two decompositions:

pt· yt − pt−1· yt−1 = εt + αt + βt + γt + τt; t = 1, . . . ,T. (67)

Following Jorgenson and Griliches (1967), a total factor productivity (TFP)
growth index can be defined as an output quantity index divided by an input quantity
index.26 Translating this concept into the difference context, we define a TFP
indicator as an output quantity indicator less an input quantity indicator. An implicit
output quantity indicator is value added growth less an output price indicator. Thus
we define our TFP indicator for period t as follows:27

TFPt ≡ pt· yt − pt-1· yt−1 − αt − βt; t = 1, . . . ,T
= εt + γt + τt. using (67)

(68)

Thus the indicator of period t Ttotal factor productivity growth, TFPt, is equal to
the sum of period t value added efficiency change εt, the period t input mix indicator
γt (which typically will be close to 0)28 and the period t indicator of technical
progress τt. All of the terms in (68) can be measured under our assumptions on
the technology sets St. The advantage of the decomposition of TFP growth defined
by (68) compared to the decomposition (20) that was defined in Sect. 2 above is that
the technical change indicator τt that appears in (68) is always nonnegative whereas
the Bennet indicator of technical progress Bτ(p0, p1, w0, w1, y0, y1, x0, x1) defined
by (20) will usually become negative when there is a severe recession. Using the
decomposition defined by (68) will avoid this problem: when there is a recession, the
efficiency indicator εt will typically become negative, indicating that the production
unit is no longer on its production frontier. Put another way, the approach outlined
in Sect. 2 assumes that the observed output and input vectors for period t, yt and

26This definition of TFP growth can be traced back to Copeland (1937, p. 31) and Siegel (1952,
1961); see Grifell-Tatjé and Lovell (2015, p. 69) for additional references to the early literature on
definitions of TFP growth.
27The difference decomposition defined by (68) is the difference counterpart to the ratio type
decomposition that was obtained by Diewert and Fox (2018).
28In the empirical estimates made by Diewert and Fox (2018), the mix index counterpart to our
present indicator γt was always close to 1, implying that its difference counterpart will be close
to 0.



32 W. E. Diewert and K. J. Fox

xt, are always on the frontier of the period t production possibilities set St. This
assumption is not plausible during recessions because firms cannot instantaneously
dispose of their fixed inputs (land and structures) and they often employ more labor
input than is efficient because it is not costless to fire and then rehire workers when
the recession ends.

It is possible to decompose the overall output price indicator defined by the
difference Rs(pt, w, x) − Rs(pt−1, w, x) into a sum of M commodity specific price
indicators if we use the same type of decomposition of �0(p1,x0) − �0(p0,x0) into
individual price change components that was defined by (29) in Sect. 3. Similarly,
it is possible to decompose the overall input quantity indicator defined by the
difference Rs(p, w, xt) − Rs(p, w, xt−1) into a sum of N commodity specific quantity
indicators if we use the same type of decomposition of �0(p0,x1) − �0(p0,x0) into
individual quantity change components that was defined by (33) in Sect. 3.

Finally, our discussion at the end of Sect. 4 on the usefulness of replacing the
nominal price vectors, pt and wt, by their deflated counterparts, pt/ρt ≡ pt* and
wt/ρt ≡ wt*, is still relevant in the present context (where ρt is a suitable period t
deflator). Using the approach outlined in this section, we no longer have to worry
about the accuracy of first order approximations since under our assumptions, we
can compute all manner of hypothetical net revenues using the formula for Rs(p,
w, x) defined by the third equation in (49). However, the Middleditch quotation is
still relevant; it does not make sense to compare nominal amounts of money across
time periods when there is general inflation. Thus we recommend that the deflated
prices, pt* and wt*, be used in place of the nominal prices, pt and wt, in the above
definitions and decompositions in order to obtain more meaningful difference type
comparisons.

In the following section, we outline our final approach to decomposing value
added change into explanatory components.29

6 An Exact Indicator Approach to the Decomposition
of Value Added Change

Suppose the period t value added function has the following normalized quadratic
functional form:30

Π t (p, x) ≡ (1/2) pTAp (α· p)−1 (β· x) + (1/2) xTBx (α· p) (β· x)−1 + pTCx
+ (a· p) (β· x) t + (α· p) (b· x) t

(69)

29Balk et al. (2004) also used related techniques in an attempt to obtain an exact economic
decomposition of a cost difference into Bennet type explanatory factors.
30See Diewert and Wales (1987, 1992) for applications of the normalized quadratic functional form
to production theory.
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where A is an M by M symmetric positive semidefinite matrix of parameters, B is
a symmetric N by N matrix of parameters where B has one positive eigenvalue and
N − 1 nonpositive eigenvalues, C is an M by N matrix of parameters, a and α > 0M
are M dimensional vectors of parameters and b and β > 0N are N dimensional vectors
of parameters. It can be shown that the � defined by (69) is a flexible functional
form (in the class of functional forms that are dual to technology sets that are subject
to constant returns to scale) for a twice continuously differentiable value added
function for any predetermined α and β vectors. Moreover, this functional form
allows for commodity specific biased technical charge (the a and b parameter vectors
accomplish this). We note that �t(λp, x) = λ�t(p, x) and �t(p, λx) = λ�t(p, x)
for all scalars λ > 0; i.e., �t(p, x) is linearly homogeneous in the components of p
and x separately.

The term (α·p) can be regarded as a fixed basket price index and the term (β·x)
can be regarded as a linear input quantity index. We use these indexes to form the
normalized price and quantity vectors, ρ and χ:31

ρt ≡ pt/α· pt;χt ≡ xt/β· xt; t = 0, 1. (70)

Using the linear homogeneity properties of �t(pt, xt) and definitions (70), it can
be seen that �t(ρt, χt) is equal to the following expression:

Π t (ρt,χt) = (1/2) ρt· Aρt+ (1/2) χt· Bχt+ρt· Cχt+ (
a· ρt) t+ (b·χt) t; t = 0, 1.

(71)

It can be seen that �(ρ, χt, t) is a quadratic function in ρ, χ, and t. Thus we have
the following identities:32

[
Π0
(
ρ1,χ0

)− Π0
(
ρ0,χ0

)]
+
[
Π1
(
ρ1,χ1

)− Π1
(
ρ0,χ1

)]

=
[
∇ρΠ

0
(
ρ0,χ0

)+ ∇ρΠ
1
(
ρ1,χ1

)]
· [ρ1 − ρ0

] ; (72)

[
Π0
(
ρ0,χ1

)− Π0
(
ρ0,χ0

)]
+
[
Π1
(
ρ1,χ1

)− Π1
(
ρ1,χ0

)]

=
[
∇χΠ

0
(
ρ0,χ0

)+ ∇χΠ
1
(
ρ1,χ1

)]
· [χ1 − χ0

] (73)

We can evaluate the derivatives in (72) and (73) using observed data plus a
knowledge of the parameter vectors α and β. Using Hotelling’s Lemma, we have

yt = ∇ρΠ
t (pt, xt) ; t = 0, 1. (74)

31The new definition for ρt is different from the previous definition for ρt.
32This identity is a generalization of Diewert’s (1976, p. 118) quadratic identity. A logarithmic
version of the above identity corresponds to the translog identity which was established in the
Appendix to Caves et al. (1982, pp. 1412–1413).
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Using Samuelson’s Lemma, we have

wt = ∇xΠ
t (pt, xt) ; t = 0, 1. (75)

Using (74) and (75), definitions (70), and the homogeneity properties of �, we
can establish the following results:

∇ρΠ
t (ρt,χt) = ∇pΠ

t (pt, xt/β· xt) = (β· xt)−1∇pΠ
t (pt, xt) = yt/β· xt; t = 0, 1;

(76)

∇χΠ
t (ρt,χt) = ∇xΠ

t (pt/α· pt, xt) = (α· pt)−1∇xΠ
t (pt, xt) = wt/α· pt; t = 0, 1.

(77)

(76) and (77) and the homogeneity properties of�t(p, x) also imply the following
relations:

Π t (ρt,χt) = pt· yt/
(
α· ptβ· xt) = ρt· yt/β· xt = wt· xt/

(
α· ptβ· xt)

= wt·χt/α· pt; t = 0, 1. (78)

It is convenient to define the inflation adjusted input prices for period t, wt*, as
the unadjusted prices wt divided by the exogenous price index for period t, α·pt.33

It is also convenient to define the normalized net output quantity vector for period
t, yt*, as the unadjusted net output vector yt divided by the exogenous input index,
β·xt. Thus we have

wt∗ ≡ wt/α· pt; yt∗ ≡ yt/β· xt; t = 0, 1. (79)

Using definitions (79), Eqs. (76)–(78) simplify to the following equations:

∇ρΠ
t (ρt,χt) = yt∗; t = 0, 1; (80)

∇χΠ
t (ρt,χt) = wt∗; t = 0, 1; (81)

Π t (ρt,χt) = ρt· yt∗ = wt∗·χt; t = 0, 1. (82)

We will call ρt·yt* = wt*·χt the period t normalized value added for the
production unit. It is equal to unnormalized period t value added, pt·yt = wt·xt,
divided by α·ptβ·xt.

33This definition for wt* is also different from the definition used in the previous section.
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Substituting (76) and (77) into (72) and (73) and using (79)–(82) leads to the
following identities for the Bennet indicators of normalized output price change
and normalized input quantity change:

(1/2)
[
Π0
(
ρ1,χ0

)− Π0
(
ρ0,χ0

)]
+ (1/2)

[
Π1
(
ρ1,χ1

)− Π1
(
ρ0,χ1

)]

= (1/2)
[(

y0/β· x0
)+ (y1/β· x1

)] · [(p1/α· p1
)− (p0/α· p0

)]

= (1/2)
[
y0∗ + y1∗] · [ρ1 − ρ0

]

≡ Bρ

(
ρ0, ρ1, y0∗, y1∗) ;

(83)

(1/2)
[
Π0
(
ρ0,χ1

)− Π0
(
ρ0,χ0

)]+ (1/2)
[
Π1
(
ρ1,χ1

)− Π1
(
ρ1,χ0

)]

= (1/2)
[(

w0/α· p0
)+ (w1/α· p1

)] · [(x1/β· x1
)− (x0/β· x0

)]

= (1/2)
[
w0∗ + w1∗] · [χ1 − χ0

]

≡ Bχ

(
χ0,χ1,w0∗,w1∗) .

(84)

Recall the identities that were defined by Eqs. (7) and (8). Similar
decompositions can be applied to the normalized value added difference,
�1(ρ1,χ1) −�0(ρ0,χ0). Taking the arithmetic average of these two decompositions
leads to the following decomposition:

Π1
(
ρ1,χ1

)− Π0
(
ρ0,χ0

) = (1/2)
[
Π1
(
ρ1,χ1

)− Π1
(
ρ0,χ1

)]

+ (1/2)
[
Π0
(
ρ1,χ0

)− Π0
(
ρ0,χ0

)]

+ (1/2)
[
Π1
(
ρ0,χ1

)− Π0
(
ρ0,χ1

)]
+ (1/2)

[
Π1
(
ρ1,χ0

)− Π0
(
ρ1,χ0

)]

+ (1/2)
[
Π0
(
ρ0,χ1

)− Π0
(
ρ0,χ0

)]
+ (1/2)

[
Π1
(
ρ1,χ1

)− Π1
(
ρ1,χ0

)]

= (1/2)
[
y0∗ + y1∗] · [ρ1 − ρ0

]+ (1/2)
[
Π1
(
ρ0,χ1

)− Π0
(
ρ0,χ1

)]

+ (1/2)
[
Π1
(
ρ1,χ0

)− Π0
(
ρ1,χ0

)]

+ (1/2)
[
w0∗ + w1∗] · [χ1 − χ0

]
using (83) and (84)

= ρ1· y1∗ − w0∗·χ0

(85)

where the last equality follows using (82). The middle term in the above decom-
position is a theoretical measure of technical progress going from period 0 to
1. We can use the last equation in (85) to obtain an empirical expression for
this theoretical measure, the normalized Bennet indicator of technical progress,
Bτ(ρ0,ρ1,w0*,w1*,y0*,y1*,χ0,χ1):
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(1/2)
[
Π1
(
ρ0,χ1

)
− Π0

(
ρ0,χ1

)]
+ (1/2)

[
Π1
(
ρ1,χ0

)
− Π0

(
ρ1,χ0

)]

= ρ1· y1∗ − w0∗· χ0 − (1/2)
[
y0∗ + y1∗] ·

[
ρ1 − ρ0

]
− (1/2)

[
w0∗ + w1∗] ·

[
χ1 − χ0

]

= (1/2)
[
ρ0· y1∗ − w0∗· χ1

]
− (1/2)

[
ρ1· y0∗ − w1∗· χ0

]

≡ Bτ

(
ρ0, ρ1,w0∗,w1∗, y0∗, y1∗,χ0,χ1

)
.

(86)

Note that definition (86) is analogous to definition (18). Substituting (86) into
(85) and making use of definitions (83) and (84) leads to the following Bennet
type exact decomposition of normalized value added growth into explanatory
components going from period 0 to 1 under our functional form assumptions:

Π1
(
ρ1,χ1

)
− Π0

(
ρ0,χ0

)
= Bρ

(
ρ0, ρ1, y0∗, y1∗)

+ Bχ

(
χ0,χ1,w0∗,w1∗)+ Bτ

(
ρ0, ρ1,w0∗,w1∗, y0∗, y1∗,χ0,χ1

)
.

(87)

The above exact decomposition of the difference in normalized value added is
a difference counterpart to the exact ratio decomposition of nominal value added
that was obtained by Diewert and Morrison (1986) and Kohli (1990) where the
translog value added function was the underlying functional form for the nominal
value added function. However, the decomposition (87) is not as useful as these
earlier decompositions for two reasons:

• It is somewhat complicated to go from (87) back to the nominal value added
difference; i.e., we want a nice decomposition of �1(p1,x1) −�0(p0,x0) whereas
we have a nice decomposition of �1(ρ1,χ1) − �0(ρ0,χ0);

• More fundamentally, the decomposition will depend on the analyst’s choice of
the α and β vectors and there is no clear rational for any particular specific
choice.34

7 Conclusion

We have outlined three different approaches to the problem of decomposing the
difference in a value added aggregate into explanatory components that are also
differences. The third approach outlined in the previous section does not seem
promising from an empirical point of view since different choices of the reference
vectors α and β can lead to very different decompositions.

34This is the same problem that makes applications of directional distance function productivity
studies problematic; there is no clear rational for any particular choice of the chosen direction and
results are very much dependent on this choice.
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The first approach leads to very simple intuitively plausible decompositions but
it has the disadvantage of being an approximate approach. It also assumes technical
efficiency which is problematic when recessions occur. However, it is possible to
reinterpret the first approach as an axiomatic approach where we choose the Bennet
indicators of price and quantity change as being “best” from the viewpoint of the
test approach.35 The resulting productivity index combines the effects of technical
progress and improvements in technical and allocative efficiency. Thus from the
viewpoint of the test approach to indicators, one might view Approach 1 as “best.”

The second approach seems “best” from the viewpoint of the economic approach
to indicators. The drawback to the approach is that it is somewhat computationally
intensive. It is also the case that our assumption that the actual period t production
possibilities set can be well approximated by the free disposal conical hull of past
observations may not be an accurate assumption. However, we like the fact that the
approach is able to separate out the effects of technical progress and inefficiency, at
least to some extent.

Finally, we recommend that Approaches 1 and 2 be implemented using prices
that are deflated by a consumer price index or some other exogenous deflator that
is suitable for the purpose at hand. This is particularly important for Approach 1
because the accuracy of the first order approximations used in this approach will be
greatly improved by the removal of general inflation from the nominal prices.
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Efficiency Driven Socio-Technical System
Design

Konstantinos Triantis

Abstract In this paper we advocate that the efficiency measurement paradigm
could transition from an evaluation-to-rank towards an evaluation-to-design
paradigm. We suggest that this transition can inform the design of socio-technical
systems. In order to achieve this type of design would require the consideration of
issues associated with organizational design, enterprise systems engineering along
with system complexity. We recommend that the required research be conducted
within inter- or trans-disciplinary context with all of their benefits and challenges
to achieve high quality application results. We describe five illustrations conducted
over the years at Virginia Tech’s System Performance Laboratory. We present these
illustrations by describing the societal or socio-technical system needs that drove
the research, the research constraints and considerations, the stakeholders affected
by the research, the approach or approaches used, the feedback to theory and open
modeling issues, and a description of societal and socio-technical system impacts.
We describe the potential of a complex adaptive systems approach as an enabler of
socio-technical system design and conclude with a series of open-ended questions
and issues.

Keywords Efficiency driven design · Socio-technical systems · Complexity ·
Trans-disciplinary application research

1 Introduction and Context

What makes the efficiency measurement paradigm a compelling precursor for
the design of future socio-technical systems? The quest to answer this question
drives the content of this document. In many instances, researchers, analysts, and
decision-makers use efficiency measurement as a mechanism to define and evaluate
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appropriate interventions (e.g., organizational policies that drive enterprise and
sector environmental sustainability). In most cases, they use ex-post data for their
analyses and then given their analytical results, define the suggested interventions.
We take an alternative approach by considering efficiency measurement as a design
requirement even before the socio-technical system is built and operated. Never-
theless, our focus is on socio-technical systems given that we are simultaneously
considering their technologies along with their behavioral counter-parts.

The thinking that led to this document has been influenced over the years by
many divergent disciplines and individuals in these disciplines as part of ongoing
research at Virginia Tech’s System Performance Laboratory (SPL). What we offer
in this paper is a set of illustrations (Sect. 3) where efficiency measurement was used
to varying degrees to evaluate and design socio-technical systems. Each illustration
has a unique story behind it. What we have tried to describe as part of each individual
story is the societal or socio-technical system need that drove the research, the
research constraints and considerations, the stakeholders affected by the research,
the approach or approaches used, how each research project benefited from the other
research projects (synergies, learning, and project management), the feedback to
theory and open modeling issues, and a description of societal and socio-technical
system impacts. Two of the stories (Sects. 3.4 and 3.5) are currently ongoing and
final conclusions have not been reached. The references cited at the end of this paper
provide the technical details associated with each illustration. We will not replicate
the technical details in this paper. Our intent is to provide an overview of each story
and to suggest future research opportunities and challenges.

1.1 Systems and System Design

But before we begin, it is important to discuss a number of issues that are pertinent to
our discussion. Our perspective and assumption is that the efficiency measurement
paradigm can inform future socio-technical system designs. This means that we
assume an ex-ante point of view. “By ‘system’ we mean a group of interrelated,
interacting, or interdependent constituents forming a complex whole” (Webster
1998) to achieve some defined objective. An example objective could be efficiency
maximization. But as seen in the illustrations discussed in Sect. 3, is that efficiency
achievement is one of many objectives that are relevant and important for the design
of socio-technical systems. We advocate that the approach or approaches provided
by our research illustrations that focus on efficiency measurement can be used to
measure the achievement of other objectives. As suggested by the American Red
Cross research (Sect. 3.1) the concurrent achievement of financial performance,
efficiency, quality, and effectiveness was necessary and desirable for this socio-
technical system.
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By “design” we mean the implementation of classical systems engineering
and organizational theory principles to derive alternative socio-technical system
configurations. We assume that we either use a requirements-based or value-based
approach for this design. With the requirements-based approach we consider all
the characteristics and their interactions that we wish our socio-technical system
to possess. We then proceed with the usual systems engineering life-cycle that
includes conceptual, preliminary, and detailed design, production/construction,
utilization/support, phase out, and disposal. While with the value-based approach
(Deshmukh and Collopy 2010), we substitute the allocated requirements with an
objective function over the same set of attributes.

As part of the overall system design, one needs to consider the relationship
between the efficiency performance objectives of individual DMUs that constitute
a system to the efficiency performance objective of the overall system. It is not
obvious that for a system where each individual DMU maximizes its efficiency, it
will achieve the same efficiency performance outcome as an overall system, when
the efficiency performance of its individual DMUs are not considered. For example,
from the research projects discussed in Sect. 3, one would need to investigate
the performance (efficiency, financial, quality, and outcome) objectives of chap-
ters versus the same performance objectives of the overall American Red Cross
organization (Sect. 3.1), the relationship between performance (safety, financial,
efficiency) objectives of households versus the same performance objectives of the
community (Sect. 3.4), and the performance (workload, financial, safety) objectives
of individual controller workstations versus the same performance objectives of
the traffic control centers (Sect. 3.5). The examples of the interdependencies of
objectives are part of the operational realities of most socio-technical systems (Sect.
1.2). This issue among others motivated our thinking to pursue research where
coordination (of objectives among other issues) among DMUs exhibits the features
of connectivity, feedback, and adaptation as part of a complex adaptive systems
representation (Sect. 4). Nevertheless, the relationship of overall system efficiency
goals to the efficiency goals of the DMUs that constitute the system remains an open
theoretical and empirical issue.

1.2 Socio-Technical Systems and Complexity

We consider a socio-technical system as one that consists of one or more social
networks and one or more physical networks that interact with each other (Van Dam
2009). One could consider them as different networks where one follows social laws
(e.g., behavioral response theory in disaster management (Sect. 3.4)) and the other
follows the physical laws (e.g., traffic flow theory (Sect. 3.2); asphalt deterioration
theory (Sect. 3.3)) (Van Dam 2009). In a socio-technical system both types of laws
influence the system such as in disaster planning (Sect. 3.4) (Kroes et al. 2006; Van
Dam 2009).
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Additionally, socio-technical system design provides the opportunity to chal-
lenge the limits of economic production theory. In other words to what extent
does the axiomatic economic production theory framework hold in different socio-
technical contexts? The answer to this question gives us an opportunity to modify
or expand the axiomatic framework of production theory (Vaneman and Triantis
2003). Additionally, we need to consider and integrate other disciplinary theoretical
frameworks that describe processes and systems being designed. Within a trans-
disciplinary context (Sect. 1.3), we could relax assumptions and explore alternative
theoretical abstractions and elaborations of the various socio-technical design
configurations.

Typically, these socio-technical systems are described as complex. We first refer
to Simon (1962, p. 468) “Roughly, by a complex system I mean one made up of a
large number of parts that interact in a non-simple way. In such systems, the whole
is more than the sum of the parts, not in an ultimate, metaphysical sense, but in
the important pragmatic sense that, given the properties of the parts and the laws of
their interaction, it is not a trivial matter to infer the properties of the whole. In the
face of complexity, an in-principle reductionist may be at the same time a pragmatic
holist.”

Some key takeaways from this definition are as follows. First, the relationship
between the whole and its parts. Finding and describing this relationship is not
a trivial matter especially when we abstract and elaborate on the socio-technical
system design. Second is the description of the interactions/interdependencies of
the socio-technical system components. Understanding, describing, and predicting
the behaviors associated with the interactions/interdependencies is ongoing research
that affects, for example, the understanding of system resilience in terms of
extreme events (Sect. 3.4; Mili et al. 2018), the sustainability and resilience of
coastal communities, the assessment of “smart” technologies and their unintended
consequences, among other research topics that are driven by basic societal needs.
Third, researchers are being challenged to come up with approaches that offer
unique yet simpler representations that can be described in terms of other more
basic phenomena (Holland 1999). An example where we describe the dynamics of
production systems that learn from one another to achieve an efficiency objective
uses a biological metaphor of “flocking” (Dougherty et al. 2017; see Sect. 4).

The attempted interaction between complexity theory and economic production
theory is driven in part by the characteristics of complex systems. Two such impor-
tant characteristics include the following. First, the non-linear dynamic behavior
associated with production and service systems. This characteristic inspired our
complex adaptive system approach (CAS) where we model the movement of the
(agent) decision-making units in the production possibility space as they approach
the frontier (Sect. 4). Second is the possibility that the production or service system
has more than one equilibrium point (Vaneman and Triantis 2007). This is not
frequently addressed. We typically assume that the production or service system
is in equilibrium and as such is a singular one.
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1.3 Trans-disciplinary, Multi-disciplinary,
and Inter-disciplinary Research

Given the nature of the socio-technical systems that we have researched (Sect.
3), we have reached out to other disciplines in engineering (e.g., transportation
engineering) but also to other domains in the social and behavioral sciences (e.g.,
disaster management). Over the years, we have shifted from multi-disciplinary to
inter-disciplinary approaches and currently aspiring to conduct research in a trans-
disciplinary fashion. A few definitions are in order.

In multi-disciplinary research, each discipline and the researchers associated
with the discipline, maintains its assumptions, methodologies, and understand-
ing without important changes. Researchers understand that the relationships
between disciplines are cumulative but not interactive. On the other hand, in inter-
disciplinary research we assume the interdependence of the disciplines, suggesting
that they are interactive. This leads to changes in disciplinary understanding. In this
context, researchers integrate disciplines, where each discipline’s assumptions and
methodologies are interdependent on the other disciplines. Additionally, researchers
interactively fuse practices in an interactive way so that researchers change the
disciplines during the integrative research process.1

Finally, “transdisciplinary research is, essentially, team science. In a transdis-
ciplinary research endeavor, scientists contribute their unique expertise but work
entirely outside their own discipline. They strive to understand the complexities
of the whole project, rather than one part of it. Transdisciplinary research allows
investigators to transcend their own disciplines to inform one another’s work,
capture complexity, and create new intellectual spaces.” (Washington University
School of Medicine in Saint Louis Transdisciplinary Research on Energetics and
Cancer Center n.d.).

One of the difficult issues is how to conduct inter- or trans-disciplinary research
effectively. This is not a trivial matter. It requires considerable work to reach a
consensus for different and often times conflicting perspectives, to define holistic,
rigorous, and systematic approaches, and to revise mental models and deal with
domain-related biases to reach an overall consensus. Our contention is that we need
additional applications to explore the limits of economic production theory as we
build bridges to other disciplines. We face at least two difficulties or limitations.
First, to find socio-technical systems that will allow access to information, data,
and decision-makers. Second to establish validation mechanisms to reinforce the
connection between theory and practice.

The focus of our illustrations has been to interact with other disciplines in a multi-
or inter-disciplinary fashion. The disciplines that we have interacted with in addition
to economic production theory are the following: service science (Sect. 3.1),
transportation science and engineering (Sects. 3.2 and 3.4), asset management (Sect.

1Other general, good reference Haythornthwaite et al. (2006).
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3.3), disaster management (Sect. 3.4), decision theory (Sect. 3.5), human factors
engineering (Sect. 3.5), systems engineering and systems science (all illustrations
and Sect. 2), and complexity science (Sect. 4).

1.4 Application Research and Application Issues

All of the illustrations described in this paper (Sect. 3) were motivated by
societal/socio-technical system needs. Readers may view the illustrations as
application studies. Therefore, we ask the fundamental question as to what
constitutes “good” application research. There are a number of criteria that we
ascribe to “good” application research. We highlight the ones that our illustrations
have attempted to adhere to.

These include: (a) the uniqueness of the application domain: A number if not all
of our research studies have addressed unique application domains. For example, we
highlight the downtown space reservation system (Sect. 3.2) as a system that was
not built at the time we conducted our research yet it addressed a significant societal
issue, that of traffic congestion; (b) the innovation and thoroughness associated with
the methods and models used: A number of studies have relied on the combination of
efficiency analysis with other methods from other disciplines. Examples include the
integration with system dynamics modeling (Sect. 3.3), survey research (Sects. 3.1,
3.4, and 3.5), transportation simulation modeling (Sects. 3.2 and 3.4), transportation
demand modeling (Sect. 3.4), multivariate statistical modeling (Sect. 3.5), human
factors simulation studies (Sect. 3.5), and asphalt deterioration modeling (Sect.
3.3); (c) the uniqueness, completeness, and precision of the data used: The data
used for all studies are unique and are a combination of data existing in databases
and newly collected data. We have relied on data that were shared with us by
enterprises (American Red Cross (Sect. 3.1); INFRABEL (Sect. 3.5)), newly col-
lected survey data (Sects. 3.1 and 3.4), agency data (Sects. 3.3 (Virginia Department
of Transportation) and 3.4 (Virginia transportation agency in Hampton Roads)),
and simulation data (Sects. 3.2 and 3.4); (d) the validation and replication of the
results obtained: face validation has been the approach used for four of the studies
where we have consulted with engineers at INFRABEL (Sect. 3.5), transportation
engineers at the Virginia Department of Transportation (Sect. 3.3), policy decision-
makers at the American Red Cross both at the chapter and headquarter levels (Sect.
3.1), and households and transportation agency personnel through focus groups
(Sect. 3.4). We have used analytical methods such as sensitivity analysis to evaluate
the sensitivity of the results that we have obtained (Sect. 3.3); (e) the contribution to
theory: In terms of service science, we focused on establishing the determinants of
efficient and effective social service provision (Sect. 3.1). We are in the process of
gaining insights as to the possible admissible tradeoffs among workload, safety, and
economic performance when establishing a safety “envelope” (Rasmussen 1997)
(Sect. 3.5). Additionally, we are assessing the determinants of effective evacuation
strategies for disaster management’s protective action theory (Sect. 3.4); (f) unique
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and relevant policy insights: We have investigated resource allocation (Sect. 3.1),
travel demand management (Sect. 3.2), maintenance, evacuation (Sect. 3.4), and
safety (Sect. 3.5) policies or interventions as part of our research; (g) and relevance
to the literature and useful societal impacts: Some enterprises have acted on the
proposed policies such as the American Red Cross (Sect. 3.1) and INFRABEL
(Sect. 3.5) with discernable gains.

In each illustration we faced unique and substantive application issues and
research challenges. (a) We always need to ask what constitutes the production
possibility set and do the production axioms hold. The answer to this question
is never inherently obvious; (b) we struggled and continue to struggle with the
definition of what constitutes a reasonable unit of analysis. For example, in our
evacuation planning research (Sect. 3.4), we oscillate between considering individ-
ual households versus the community as an aggregate construct; (c) the specification
of the input, output, and contextual (e.g., environmental) representations/variables
over the life-cycle of the socio-technical system is never obvious especially
when considering the provision of services (e.g., social services (Sect. 3.1) or
transportation services (Sects. 3.2, 3.4, and 3.5)); (d) in socio-technical systems
we need to connect the underlying technologies, the behavioral considerations,
the transformation process (es) with the defined variables; (e) additionally, the
measurement of behavioral variables pose their own unique challenge. Typically,
information systems are not designed to facilitate operational performance analyses.
This leads to difficulties in gathering and using data to evaluate alternative socio-
technical system design configurations; (f) in almost all of the illustrations presented
in this paper, the linkage to decision-making is ambiguous and requires a separate
yet rigorous assessment and modeling. This is something that we are undertaking
with our study of traffic control centers (Sect. 3.5); (g) finally, we need to keep the
mapping between the modeling world and the “real world” at the forefront of our
thinking since this is not inherently obvious.

The conceptual mapping between the production axioms to the system dynamic
behaviors (Vaneman and Triantis 2003) and the production axioms to the character-
istics of complex adaptive systems (Dougherty et al. 2017) is part of the foundational
work needed for the effective application of the efficiency measurement paradigm to
the design of socio-technical systems using alternative techniques (system dynamics
(Sect. 3.3) and agent-based modeling (Sect. 4), respectively) to the traditional
efficiency measurement techniques.

Furthermore, as part of the research process, it was important for each of
the examples described in Sect. 3 to question the relevance of the production
axioms. This was done in part through observation and through careful analysis
of the production/service data. Even though there were no apparent departures
from the axioms per se in each of the examples, there were issues that pertained
to the acceptance and use of specific modeling assumptions. For example, in the
traffic control center work (Sect. 3.5) the analysis of the data suggests non-linear
relationships among the key variables that we use for workload modeling. This also
holds true for the implementation of the agent-based modeling of Sect. 4.
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Therefore, the foundational assumptions of linearity, convexity, independence
of DMUs among other assumptions require careful consideration for the underlying
production processes of the socio-technical systems. This is where we can introduce
alternative modeling frameworks (for example, machine learning techniques for
the evaluation of the workload performance of traffic control centers (Sect. 3.5))
that can complement the traditional efficiency measurement analysis approaches.
In addition, it is important to conduct a rigorous verification and validation
analysis (as systems engineers typically do) that can serve as a point of reference
when questioning the appropriateness of the production axioms along with other
hypotheses/assumptions for specific socio-technical systems. Nevertheless, the
formalization of rigorous verification and validation analysis techniques remains
an open-ended research endeavor in this research domain. In the end, our objective
is to generate relevant and useful results.

2 Efficiency Measurement and Socio-Technical System
Design2

Socio-technical system design decisions include among other items allocating
scarce resources and coordinating actions toward the achievement of common
goals taking into account technological, organizational, and behavioral realities. In
this document, we suggest that the efficiency performance measurement paradigm
can be used to inform socio-technical system design. As suggested by Herrera-
Restrepo and Triantis (2018), efficiency performance measurement has been pri-
marily used to describe how well a system has performed, i.e., focusing on an
ex-post assessment. However, investigating on “what could happen” when making
operational changes, i.e., an ex-ante evaluation, has received less attention. To
address this gap Herrera-Restrepo and Triantis (2018) synthesized literature findings
pertaining to socio-technical system design from the organizational design, enter-
prise systems engineering, and efficiency performance measurement literatures.
This synthesis allowed them to identify the integrative role that the efficiency
performance measurement paradigm plays when informing socio-technical system
transformation/change decisions. In other words, the focus is on how the efficiency
performance measurement paradigm can ascertain how well a socio-technical
system could perform if certain design decisions are made up-front.

The synthesis from the organizational design, enterprise design, and perfor-
mance measurement literatures resulted in conclusions that our illustrations in
part show. There are five steps that a number of studies follow where efficiency
performance measurement plays an integrative role between organizational design
and enterprise systems engineering for socio-technical design. These include: the
identification and analysis of needs for design; the identification and analysis of

2The discussion of this section has been modified from Herrera-Restrepo and Triantis (2018).
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socio-technical system components; the identification and analysis of interactions
among components; modeling and evaluation of socio-technical system perfor-
mance; and informing of the socio-technical system design. The literature shows
that performance measurement objectives and drivers in efficiency performance
measurement can be framed into performance measurement objectives and drivers
for both organizational design and enterprise systems engineering. For example,
the illustration of Sect. 3.4 (Herrera-Restrepo et al. 2016) provides a theoretical
conceptualization of an evacuation management socio-technical system through
the prism of a dynamic network DEA approach (Tone and Tsutsui 2014). The
representation includes many stakeholder perspectives, systems, processes, and their
inter-relationships. Additionally, the study links the measurement approach results
to choices among evacuation management strategies.

Nevertheless, we need to consider and address a number of challenges to
move the efficiency performance measurement paradigm from an evaluation-to-rank
towards an evaluation-to-design approach (Herrera-Restrepo and Triantis 2018). We
begin with the modeling assumptions and decisions we make. For modelers, it is
important to think about socio-technical systems as open systems given that they
are subject to always changing contextual/environmental conditions. This suggests
that socio-technical systems cannot be holistically engineered for predictability.
However, we can use analytical and simulation approaches to capture important
key relationships among performance drivers to explore the future uncertainty
associated with design decisions. As stated earlier, we need to ensure that modeling
assumptions and decisions are logical and can be mapped into the real world. In
conjunction with the modeling assumptions and decisions we make, we deal with
the challenge of how we treat data. This is extremely important given that data in
most cases come from different sources (e.g., surveys, simulations, databases, etc.)
and need to be fused. Finally, we need to consider the level of aggregation at which
the analyses will be conducted and how we will deal with influential or unusual
observations (Seaver and Triantis 1992).

3 Efficiency Driven Socio-Technical System Design: Five
Illustrations

We provide five illustrations of socio-technical system designs researched over the
years at Virginia Tech’s System Performance Laboratory (SPL). We do not focus
on the technical details since these are provided by the references at the end of
the document. Our intention is to be concise and to give five different stories
supporting the overall theme of this document, i.e., that the efficiency performance
measurement paradigm can be used to inform socio-technical system design.
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3.1 Social Service Provision: The American Red Cross
(Medina-Borja et al. 2007; Medina-Borja and Triantis
2011; ARC Grant)

3.1.1 Societal/Socio-Technical System Need

In the early to mid-nineties the United Way as a major funder of the American
Red Cross (ARC) requested that the ARC demonstrate the outcomes achieved by
the provision of its major social services. In addition with this initiative, the ARC,
which is one of the largest social service organizations in the USA, was faced with
the challenge to develop and implement an integrated performance measurement
system. What was meant by integration was the consideration of the following
requirements. First was the alignment of multiple performance dimensions, i.e.,
financial performance, capacity building, efficiency, service quality, and outcome
achievement. Second was the use of the performance measurement system by the
field chapters and headquarters. Third was the consideration of data from diverse
sources (databases, customer satisfaction, and outcome surveys).

3.1.2 Research Constraints/Considerations

A key consideration was the measurement system needed to be designed and
implemented to measure and evaluate performance metrics for a network of
over 1000 field units (chapters) nationwide. We needed to consider that not all
units (chapters) have the same operating environments and to account for these
differences. Therefore, this was the first time we practically faced the issue of how
we could meaningfully evaluate efficiency performance given the heterogeneity
of operating environments. We also needed to measure the desired outcomes of
programs and services (program effectiveness) because of the social nonprofit nature
of the organization and because of the requirement defined by the United Way. The
management at the ARC wished to have a basis for comparisons and benchmarking
among its chapters considering the multiple dimensions of performance. This would
allow for analytically grounded resource allocation decisions. Management both at
headquarters and at the chapters wished for us to provide easy to understand and
valid performance improvement recommendations. This was the first time we were
confronted with the issue of validating our analytical results from a very practical
point of view given that decision-makers at the ARC would implement some of
our recommendations. Finally, the ARC did not wish to invest many resources in
collecting new data. This was a concern especially for the chapters since most of
them had very limited labor resources and did not wish to undertake an additional
administrative burden.
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3.1.3 Stakeholders

There were four major stakeholders. The first was the United Way, which provided
the impetus for the ARC to embark on this initiative. The second was ARC
headquarters, which over the years had initiated multiple yet unsuccessful efforts to
measure outcomes and the design and implementation of an integrated performance
measurement system. The third were the ARC chapters who would use the
information generated by the performance measurement system to manage their
operations and to learn best practices from other chapters. Last but not least were the
recipients of ARC services. While they were always appreciative of ARC’s efforts
and services they frequently were interested in providing input for improvement.

3.1.4 Approach

The first major task was to capture the achievement of outcomes and service
quality for each chapter. This required a number of subtasks. First, we designed
and provided a framework for the measurement of outcome objectives and out-
comes. Second, we held four workshops one for each major ARC line of service
where participants from the field and headquarter representatives participated. The
objective of each workshop was to obtain preliminary definitions of the outcome
objectives and outcomes for each line of service. Third, we designed outcome
measurement and customer satisfaction survey instruments for each line of service.
We then formulated a four-stage nested DEA model to measure the performance of
chapters where the actual occurrences (values) of the output variables of each stage
were considered as inputs in the successive linked stage. Each DEA formulation
was a non-radial output-maximization DEA model that assumed variable returns to
scale. Central to each DEA formulation was the need to account for the influence
of socio-economic factors (environment) in both, the selection of peers and target
calculations.

3.1.5 Synergies and Learning from Other Projects

This was one of the first research projects in the area of socio-technical system
design. It drew from multiple and concurrent research initiatives. Initial research on
the application of efficiency measurement paradigm to manufacturing firms (Triantis
1984, 1987, 1990) focused on conceptual, data, and managerial issues. As part
of this experience and dealing with real (“messy”) manufacturing data led to the
research on influential observations and their relationship with efficiency measures
(Seaver and Triantis 1989, 1992). These application and data issues helped inform
our approach taken with the American Red Cross (ARC). The research was driven
by the needs of the ARC and consequently ensured effective project management
and the delivery of project outputs in a timely fashion.
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3.1.6 Feedback to Theory/Open Modeling Issues

As noted earlier, a modeling challenge that we faced was how to deal with the
environmental heterogeneity of each chapter. While we implemented the Banker
and Morey (1986) approach, we understood that this remained an open modeling
issue. Another challenge that we did not handle systematically or rigorously was
the integration of survey data in DEA. This remains an open issue that we are
investigating as part of the evacuation planning research (Sect. 3.4). We also
stumbled from a practical point of view, on the issue of validation. Our approach was
to use face validation since we had access to decision-makers both at the chapter as
well as at the headquarter levels. Finally, it became apparent that there is a need for
a theoretical framework that incorporates the determinants of effective and efficient
social service provision. This would directly contribute to the discipline of service
science.

3.1.7 Societal/Socio-Technical System Impact

Our approach was used by chapters to address the United Way requirements.
Additionally, our results were used by the ARC strategy department to make
important decisions with respect to chapter mergers, closings, and organization-
wide allocation of resources.

3.2 Traffic Congestion: The Downtown Space Reservation
System (Zhao et al. 2010a, b, 2011; NSF Grant # 0527252)

3.2.1 Societal/Socio-Technical System Need

Traffic congestion is an ongoing societal issue that continues to require significant
policy interventions. On the demand side, researchers have investigated travel
demand mitigation strategies (e.g., congestion pricing) that induce travelers to use
existing road networks in alternative ways. One such policy is the downtown space
reservation system (DSRS) where travelers who want to drive to an urban downtown
area have to reserve their time slots in advance before embarking on their trips.
The transportation agency who operates the DSRS allocates time slots to travelers
based on the availability of the road network capacity. Only the travelers who get
permission from the transportation agency can drive in the downtown area during
the requested time period. This idea builds on the literature of revenue management
and is analogous to the way travelers make reservations on various modes of
transportation (airplane, train, etc.). At the time that the research was conducted,
a DSRS did not exist.
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3.2.2 Research Constraints/Considerations

Since the system was not yet built and operated, ex-post data were not available.
Our efficiency measurement approach assumed an ex-ante (design) point of view as
described in this document. We relied on transportation simulation data to populate
the production possibility space for our efficiency measurement formulations. The
most difficult issues were in relation to the definition of the unit of analysis as well
as the definition of the input/output/outcome variables. We ended by comparing
28 different simulated DSRS transportation scenarios as the unit of analyses.
We assumed that the users of the system were relatively homogenous and could
aggregate their physical realities.

3.2.3 Stakeholders

The two main stakeholder groups that we considered were the transportation agency
who would design, build, and manage the DSRS and the users who participated in
this strategy. Thus, it became extremely important to take into account both points
of view in our modeling formulations and the assessment of our results.

3.2.4 Approach

We considered four modeling approaches. We handled these in a sequential
fashion so there was no need to integrate them concurrently. We relied on data
exchanges among modeling approaches as needed. The first modeling approach
was the formulation and solution of an offline optimization module. We solved this
optimization module based on historical travel demand information. We considered
two objectives as part of the objective function. First, the total number of travelers
that the transportation system handles during a certain time period and second
the revenue obtained from the downtown space reservation system. We wished to
maximize both objectives with an understanding that there were tradeoffs between
the two objectives that we needed to consider.

The second modeling approach was the formulation of an online decision-
making module based on neural networks that considered the stochastic variations
in travel demand. We assumed hundreds of historical demand scenarios, and we
obtained optimal solutions for each scenario. From the learning process, the system
was able to recognize a situation characterized by the number of reservations that
already have been made for each vehicle class during each time period and the
corresponding revenue generated from the reservations. When a new request was
provided, the neural network could rely on this historical information to provide a
real-time decision.

Third, a microscopic traffic simulation approach executed in VISSIM was used
to evaluate the DSRS. This traffic simulation approach relied on the physics of
traffic flow at a microscopic level. The simulation was conducted for a revised
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road network representing downtown Boise, Idaho. We conducted a number of
simulations to test various scenarios. For example, the transportation network
performance with and without the DSRS and the DSRS versus First Come First
Serve (FCFS) principle. We also evaluated specific DSRS parameters using the
simulations, such as the relative importance of traveler throughput versus revenue
generation.

The fourth modeling approach was the efficiency performance assessment.
We modeled and implemented a network DEA approach. We considered three
perspectives. Namely, the agency’s/provider’s perspective to evaluate operational
issues and the provision of services. The travelers’/users’ perspective to assess the
quality of service (e.g., mobility issues) by considering the consumption technology.
The community’s perspective where we considered the DSRS social welfare impact
(e.g., sustainability and environmental considerations).

The variability associated with the various scenarios was a function of total
demand, the assigned weights to traveler throughput and revenue in the objective
function of the optimization model, and the inherent stochastic behavior of the
traffic assignments and traffic flow. The data from the simulation model were
complemented with revenue data from the original optimization model of the DSRS.
Travel time, vehicle miles, average speed, fuel costs, emissions, and personal miles
(calculated from total vehicle miles and average occupancy) were obtained from the
micro-simulation. We obtained revenue data from the DSRS optimization.

3.2.5 Synergies and Learning from Other Projects

The ARC project (Sect. 3.1) highlighted the idea of considering multiple perfor-
mance dimensions (efficiency, financial, quality, and outcome). In the case of this
research project, the relationship between efficiency and the level of transportation
service (effectiveness) became important. However, not only did we consider
multiple dimensions, but also multiple perspectives, which in this research project
translated into the transportation agency and user (traveler) perspectives. The ARC
project also highlighted the importance of looking at the overall system in addition
to the individual DMUs (chapters). However, in the context of this research project,
what constituted a DMU for the overall transportation system became a conceptual
and modeling challenge. What we ended up defining as a DMU was an instantiation
of a micro traffic simulation of a downtown transportation network. An additional
challenge became the definition of meaningful improvement strategies for a system
not built or operated yet. Consequently, using the simulation of an engineered
system not yet built or operated to generate operational data became an intriguing
concept that we continue to pursue as part of our research efforts in the System
Performance Lab. Project management was driven as part of the NSF annual report
delivery process.
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3.2.6 Feedback to Theory/Open Modeling Issues

The formulated network DEA structure implied the performance behavior that we
were able to observe as part of our analysis. What remained an open research
question was what would happen if the performance network structure was altered?
Would the efficiency performance results change in a meaningful way? Additionally,
node dominance varied based on the computational approach (radial versus slacks
based) approach. This result could be explained computationally but not from a
policy point of view. This limited the confidence in the recommended interventions
or improvements.

3.2.7 Societal/Socio-Technical System Impact

The validation of the approach could not be carried out at the time of the research,
given that the system had not been built and operated. Prototyping would help
determine the operational and economic feasibility of the system. Nevertheless,
absent any real data we could not predict if traffic congestion would be mitigated.

3.3 Asset Management: Highway Maintenance (Fallah-Fini
et al. 2010, 2012, 2014, 2017; NSF Grant # 0726789)

3.3.1 Societal/Socio-Technical System Need

One of the key societal challenges remains the deterioration of US road infras-
tructure. Due to major budgetary restrictions and the significant growth in traffic
demand, there is an emerging need to improve the performance of highway
maintenance practices. At the time when we undertook this research, the underlying
premise was that privatizing portions of road maintenance operations by state
Departments of Transportation (DOTs) under performance-based contracts would
result in improved performance. Performance-based contracts had been one of the
innovative initiatives in response to better highway maintenance practices. Success-
ful implementation of new maintenance policies required state DOTs to measure the
performance of performance-based contracts (public-private partnerships) versus
traditional contracting approaches.

3.3.2 Research Constraints/Considerations

We relied on the data that the engineers at the Virginia Department of Transportation
(VDOT) provided for us. The data collection was laborious and limited the number
of DMUs that we could have for our analytical approaches. There were issues and
difficulties associated with the definition of the unit of analysis, which in our case
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were highway segments, as well as the definition of the input/output variables. We
started with a total of 25 variables but because of the curse of dimensionality, we
restricted the number of input and output variables to three. Nevertheless in the
end, we provided an adequate representation of the transformation process. The
physical process that we needed to understand and incorporate in our modeling
was asphalt deterioration and renewal. Thus, we consulted with civil and material
engineers who shared with us the requisite empirical relationships of the process.
The other challenge that we faced was that of environmental heterogeneity, i.e.,
climate considerations that were pervasive for the different geographically diverse
counties of the Commonwealth of Virginia. Last but not least was the consideration
of the dynamics of the physical process. We built off the Dynamic Productive
Efficiency Model (Vaneman and Triantis 2007) and consulted with the non-
parametric approaches in the literature (Fallah-Fini et al. 2014).

3.3.3 Stakeholders

The Virginia Department of Transportation (VDOT) was the main beneficiary of
our research. This research provided a modeling approach that could be used by
agencies that are confronted with the following issues: (1) agencies that want to use
their existing databases; (2) agencies that have databases that provide a considerable
amount of data and information but do not isolate all critical data and information
that decision-makers need to focus on, and (3) decision-makers that need to identify
the boundary of best practice performance. The other key stakeholder groups are the
highway maintenance contractors and the highway drivers.

3.3.4 Approach

As was the case in the previous illustration, we again used a mixed methods
approach in this research. We started out with a physics based micro system
dynamics simulation approach (Fallah-Fini et al. 2010) where we represent the
“development over time” of the road condition. As an outcome of the modeling
approach we find the optimal highway maintenance budget allocation given a set of
environmental and operational conditions. We then used a non-parametric meta-
frontier framework that was adjusted by the two-stage bootstrapping approach
(Fallah-Fini et al. 2012). The original non-parametric efficiency scores were
obtained using only controllable inputs/outputs. On the input side we considered
maintenance expenditures, while on the output side we considered the change in the
condition of road sections that have been maintained and the area of road sections
that have been maintained. We used the meta-frontier framework in order to group
the DMUs based on their contract type and then applied the two-stage bootstrapping
technique to the DMUs in each group to estimate the non-parametric efficiency
scores with respect to group frontiers and to find the relation between efficiency
scores and uncontrollable factors. We corrected for the bias of the estimated
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efficiency scores and constructed their confidence intervals. We then applied the
two-stage bootstrapping technique to DMUs in the pooled data set to estimate the
Meta Technology Ratio to evaluate how performance contracting group performed
with respect to the traditional contracting group.

3.3.5 Synergies and Learning from Other Projects

We continued to build on the previous two projects and more specifically, on
the ideas of multiple dimensions (efficiency and level of service (effectiveness)),
multiple perspectives (transportation agency, drivers) and disaggregated processes
(DMUs) as part of the overall system (in this case the road maintenance system)
efficiency evaluation. What constituted a challenge again in this research project was
the appropriate consideration of a DMU, which was finally defined as a highway
segment. In this project, we built off and expanded on research associated with
dynamic efficiency (Vaneman and Triantis 2007). What became apparent from
the research was the need to explicitly consider the physics associated with road
maintenance as part of the research design (Fallah-Fini et al. 2010). Furthermore,
we faced curse of dimensionality issues since we had a limited data set that was
obtained from the Virginia Department of Transportation (VDOT). The other issue
that was highlighted (as was the case with the ARC project (Sect. 3.1)) is the
necessity to consider environmental/contextual conditions (in this case climate
conditions of the highway network). Project management was driven as part of the
NSF annual report delivery process and the promised feedback to VDOT.

3.3.6 Feedback to Theory/Open Modeling Issues

Our findings indicated that the optimum maintenance policy suggested preventive
maintenance to be preferred over corrective maintenance. The overlap in the
priority of preventive and corrective maintenance operations increased as the total
maintenance budget decreased. Also, there is a need to share the budget between
preventive maintenance and corrective maintenance. Additionally, road authorities
that have used traditional contracting can be as efficient as road authorities that
have used performance-based contracting. Minimum/maximum temperatures and
snowfall stood out as significant factors explaining the differences among efficiency
scores of road authorities that are using the same type of contract. Nevertheless, the
research suggests that there is a need to further elaborate on the concept of dynamic
efficiency beyond what the literature offers to date. We were very effective in using
complementary modeling approaches (system dynamics modeling, bootstrapping,
non-parametric efficiency analysis). However, for real socio-technical systems
(as was the case in our first illustration) the data collection, cleaning, and use
were extremely time consuming and expensive to maintain. Given the limited
number of DMUs associated with the analysis, the curse of dimensionality required
fundamental adjustments to the specifications of our models.
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3.3.7 Societal/Socio-Technical System Impact

The research results were validated by VDOT maintenance engineers. Yet there was
reluctance to use the research recommendations. Nevertheless, we could potentially
provide benefits to the society at large by defining and suggesting strategies that
have immediate and long-term impacts on the ways a critical civil infrastructure is
maintained.

3.4 Disaster Management: Evacuation Planning
(Herrera-Restrepo et al. 2016; NSF Grant # 1536808
(Ongoing))

3.4.1 Societal/Socio-Technical System Need

The frequency and intensity of extreme events (e.g., hurricanes) are growing. Public
agencies are tasked to accomplish more with less. However, there is a limited
consensus as to what determines a successful evacuation among different stake-
holder groups. Our research addresses the following questions. What constitutes a
good evacuation? Does this concept change during the evacuation and how? Who
determines what a good evacuation means? Given this context, our research focuses
on the assessment of transportation evacuation strategies and more specifically
ramp closures and contraflow lanes with crossovers. To address our questions,
we are engaged in an inter-disciplinary research project. We engage economic
production theory (efficiency measurement), sociology (disaster management), and
transportation engineering (transportation management). We focus our research on
two perspectives, i.e., that of transportation engineers (agency focus) and that of
social scientists (household focus). Neither of these perspectives have fully and
systematically addressed evacuation performance either individually or together.
Identifying and understanding the links between the two perspectives and how they
contribute to the understanding of what constitutes a good evacuation is our research
motivation.

Our research is an attempt not only to represent stakeholder perspectives in
an integrated fashion, but to explore the interdependencies of the physical infras-
tructures and social systems in the context of evacuation planning. Our premise
is that these interdependencies affect performance substantially. The transportation
engineers (agency focus) typically view evacuation as an optimization problem that
addresses a specific traffic problem. They adhere to a problem-solving approach
driven by time-based and aggregate household measures. On the other hand,
the social scientists (household focus) view evacuation as a social and cognitive
phenomenon and they attempt to understand how individuals and households are
affected by a host of very specific variables or factors. They use theories to derive
and test falsifiable hypotheses. Our contribution is to address evacuation as a multi-
perspective, multi-system, and multi-process concept.
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3.4.2 Research Constraints/Considerations

We consider the transportation engineering (transportation management), disaster
management (protective behavioral response), and economic production theory
(efficiency measurement) domains. In this context, we integrate behavioral consid-
erations, transportation engineering along with data envelopment analysis (DEA)
representations. In order to populate our models (transportation demand, transporta-
tion simulation, and DEA modeling) we fuse data from different sources (focus
groups; surveys; optimization demand modeling; mesoscopic traffic simulations).
The conceptual linkages among the various models remain an open research
challenge. Finally, providing an appropriate survey design to accommodate the data
requirements for our normative models has not yet been resolved.

3.4.3 Stakeholders

There are two primary stakeholder groups. First are the transportation (Virginia
Department of Transportation (VDOT) and the Florida Department of Transporta-
tion (FDOT)) and the emergency management agencies. Second are the households
and their communities. The first community that we collected data from is the
Hampton Roads area in Virginia and the second community that we are collecting
data from are households from Florida where we will capture information on the
hurricane IRMA experience.

3.4.4 Approach

In our preliminary research (Herrera-Restrepo et al. 2016), we proposed a theoreti-
cal representation of a slacks-based dynamic network DEA approach for measuring
evacuation performance when we consider a ramp closure evacuation traffic man-
agement strategy to deal with a hypothetical no-notice threat (e.g., chemical spill)
triggering an evacuation in Blacksburg, VA. A no-notice threat is an extreme event
of unexpected occurrence. The evacuation due to this type of threat typically occurs
after the event has taken place. This research combined the dynamic network DEA
approach with traffic engineering and socio-behavioral theory of protective action.
Our approach allowed for the discovery of efficiency interdependencies among
perspectives (agency and household), which in turn provided useful information and
insights for the future design of holistic evacuation traffic management strategies.
We continue to build on this preliminary research by focusing on the fundamental
phenomena of evacuation and reconsidering how good or bad outcomes of that
phenomena are evaluated and measured. At this junction, it is not clear how our
evolving efficiency modeling conceptualizations will materialize given some of the
open modeling issues.
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3.4.5 Synergies and Learning from Other Projects

We continue to build from the previous projects and more specifically, on the ideas
of multiple dimensions (efficiency, safety, and level of service (effectiveness)),
multiple perspectives (transportation agency, household) and disaggregated pro-
cesses (DMUs) as part of the overall system (in this case the hurricane evacuation
system) efficiency evaluation. What we continue to struggle with are the appropriate
definitions of a DMU, where we have considered households, the community and
instances of the transportation simulation as DMUs (a similar concept that was
introduced in the downtown space reservation project (Sect. 3.2)). The choice of
a DMU definition depends on the research questions we wish to address. We face
curse of dimensionality issues since our data set is limited by the number of times
that we can execute the transportation simulation (each DMU requires 3 days of
computational time). The other issue that is highlighted that is quite different than
the previous projects is the conceptual/modeling/data integration across different
research domains (disaster management, transportation engineering, and economic
production theory). Project management has been driven as part of the NSF annual
report delivery process.

3.4.6 Feedback to Theory/Open Modeling Issues

There are a number of open questions that remain as we are working on this
research. How should we incorporate data collected from surveys into our DEA
analysis? How do we formulate meaningful hypotheses and what is the resulting
theory? Is the dynamic network DEA approach the most appropriate framework
to capture the interactions and the resulting complexity between stakeholder
perspectives and their dynamics? What is the appropriate unit of analysis (e.g.,
manifestation of the strategy? household? community?)? Finally, what are the key
considerations that define homogeneity of the households and at an aggregate
level of the communities that we use for our analysis? How do we consider
dynamic behaviors and stochastic representations consistently across our modeling
approaches?

3.4.7 Societal/Socio-Technical System Impact

Our suggestion to represent an evacuation as a network composed of perspectives by
considering systems, and systems containing processes (linked through efficiency
measures) is the point of departure for disaster management, transportation engi-
neering and efficiency measurement literatures on evacuation planning. Given that
the research information/data of this research is based on agency and household
responses and transportation occurrences calibrated in realistic scenarios (e.g.,
hurricane IRMA) suggests that approach and research results targets could be
adapted by both agencies, households, and communities.
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3.5 Supervision of Autonomous Systems: Railway Traffic
Control Centers (Topcu et al. 2019) (Ongoing)

3.5.1 Societal/Socio-Technical System Need

The design and operation of critical infrastructure systems face competing perfor-
mance pressures of efficiency and safety, along with uncontrollable environmental
phenomena and societal demands. In order to design and operate these complex
socio-technical systems, we need to effectively model the inter-relationships derived
from these considerations. This is a very difficult complex modeling problem that
exceeds the reach of any single research domain. Thus, in our research, we consider
the domains of decision theory, human factors engineering, infrastructure systems,
and economic production theory. For various modes of transportation safe and
efficient control room operation is paramount. For these control room operations,
various infrastructure providers are continuously introducing new technologies,
procedures, and processes. The impact of these technologies on the quality of
the decisions made, the quality of controller work life, the safety associated with
the controller room operations, and the economic efficiency of the control room
operations is not well understood. Additionally, there is a growing need to balance
efficient staff alignment with safe operations.

3.5.2 Research Constraints/Considerations

This is our first attempt to conduct trans-disciplinary research in the sense that we
contribute by our own unique expertise but we also work entirely outside of our
own disciplines. We need to concurrently consider human factors engineering to
explore issues related to distributed situational awareness and mental workload as
controllers experience these in the control centers, decision theory to investigate
the stated and revealed preferences of controllers and management, and economic
production theory to explore real-time production control. Each one of us will try to
understand the complexity associated with the whole traffic control center socio-
technical system and we transcend our own disciplines to inform and alter one
another’s work. One of the challenges that we face from the beginning is that we
need to create a decision-support system for management in part because of the
requirements of one of our key collaborators (INFRABEL). As is the case with the
evacuation planning research (Sect. 3.4), it is not entirely clear how we will fuse
production data, survey data, on-site interviews and data from simulator studies.

3.5.3 Stakeholders

Two US universities along with a group of key industry collaborators is undertaking
this research. All of our research collaborators (INFRABEL, ProRail, Network
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Rail, TU Delft, German Aerospace Agency, and the European Union agency for
railways) will provide input to research tasks and the validation and verification
of our research. INFRABEL as our main collaborator will manage large-scale
and comprehensive socio-technical database and provide real-life and simulator
environments. TU Delft will be the liaison with the Next Generation Infrastructure
program, which is a joint initiative of the Dutch National Science Foundation and
the Next Generation Infrastructures foundation (a not-for-profit legal entity). Other
important stakeholder groups include other infrastructure providers and the users of
the infrastructure systems (e.g., passenger trains, airplanes, etc.).

3.5.4 Approach

We use a combination of normative and inductive approaches (as is the case with the
evacuation planning research (Sect. 3.4)). For the two important macro-ergonomic
factors of situational awareness (SA) and mental workload (MWL), our work will
utilize the theoretical construct of distributed situational awareness to develop a
systems-model of SA for control rooms. In decision theory we study the interaction
of decisions at multiple levels (individuals interacting with autonomous systems,
teams, and overall control rooms). We are reconsidering for the first time, the notion
of a “frontier” from economic production theory as a “boundary” by integrating
workload, safety, and economic perspectives in support of achieving a “safety
envelope” (Rasmussen 1997).

3.5.5 Synergies and Learning from Other Projects

We continue to build from all previous projects and more specifically, on the
ideas of multiple dimensions (safety, workload, economic efficiency), multiple
perspectives (controllers, traffic control centers, and riders) and disaggregated
processes (DMUs) as part of the overall system (in this case the traffic control
center) efficiency evaluation. We use different definitions of a DMU (workstation
and traffic control centers). The operational data set we are using is rich so there
is no curse of dimensionality issue. The other issue that is highlighted as was the
case with the ARC (Sect. 3.1) and the highway maintenance (Sect. 3.3) projects
is the necessity to consider contextual factors (in this case transportation network
conditions (e.g., network complexity)). The other issue that is highlighted as is
in the evacuation performance project (Sect. 3.4) is the conceptual/modeling/data
integration across different domains (human factors, decision theory, and economic
production theory). Project management is driven by reporting back to our key
collaborator INFRABEL (Belgian railways) who also provides the rich data set.
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3.5.6 Feedback to Theory/Open Modeling Issues

We are investigating the limits of economic production theory by addressing issues
of real-time production control as this control is informed by the preferences (stated
or revealed) of the decision-makers (controllers and management), is constrained
by physiological and cognitive limitations (situational awareness and mental work-
load), and is limited and influenced by new technologies. At this junction, it is not
clear to what extent the production axioms assumed by economic production theory
will hold. Additionally, in the spirit of going from an ex-post to ex-ante (design)
perspective as we suggested throughout this paper, we will need to reconsider some
of the dynamic approaches in the non-parametric efficiency literature (Fallah-Fini
et al. 2014). Within this context, we need to augment the integration of efficiency
analysis with dynamic modeling (Vaneman and Triantis 2007) and invest further
in our exploratory research where we consider the marriage of complex adaptive
systems as a mechanism to address efficiency goals (Sect. 4). These approaches
could potentially shift our exploration of the causes of efficiency under-performance
from a meta-analysis perspective (e.g., finding best practices from our peers) to
a more predictive point of view. In other words, anticipating and predicting the
influence of potential factors on the performance of infrastructure systems.

3.5.7 Societal/Socio-Technical System Impact

This research is aligned with the investigation of the human-technology frontier. As
an outcome of the research, we could investigate the effect of various interventions
(e.g., merging of traffic control centers) on the overall infrastructure system
performance. This research provides an application platform (Sect. 1.4) anchored
in the real world to study how the impact of individual and group decision-making
in a safety critical environment affects socio-technical system performance.

4 Complex Adaptive Systems and Efficiency Measurement3

A key assumption of efficiency analysis is the independence of the decision-making
units (DMUs). In other words, DMUs typically do not interact or learn from one
another at least when the initial analysis is performed. The learning takes place as
a meta-analytic activity when best practices are identified from the identified peers.
One possible mechanism to address the interactions and learning among decision-
making units as part of the initial analysis is to follow an alternative approach.
We bridge the complex adaptive systems (CAS) paradigm (Holland 1999) with

3This section is adapted from Dougherty et al. (2017) and Herrera-Restrepo and Triantis (2019).
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economic production theory (Dougherty et al. 2017; Herrera-Restrepo and Triantis
2019).

Within this framework we assume that the decision-making units (agent DMUs)
are individual autonomous, goal seeking decision-makers within a larger complex
socio-technical system. The autonomous DMUs interact with one another and
with their environment. We build from Holland (1999) and propose an agent-
based simulation modeling approach labeled as the Complex Adaptive Performance
Efficiency Model (CAPEM) (Dougherty et al. 2017). This simulation environment
is used as a mechanism to conduct exploratory research to investigate the notion of
productive efficiency “emergence” when complex socio-technical systems interact
with one another and with their environments.

We consider the collection of agent DMUs representing a CAS. The agent
DMUs use “flocking” (Reynolds 1987) as their decision-making paradigm. We
assume that for these agent DMUs, flocking on an individual level takes into
account the autonomy of an agent DMU but at a collective level captures aggregate
interactions and interdependencies. Flocking explicitly represents agent DMUs
own goal seeking behaviors (e.g., risk avoidance, continuous improvement among
others) where each agent DMU uses identical rules (e.g., alignment with others who
share the same goals, cohering with others who exhibit successful and effective
behaviors, and independence in decision-making).

The CAPEM simulation framework allows us to study managerial policies and
their effect on socio-technical system efficiency performance. These socio-technical
systems operate on their own or could also be part of a group of interacting systems
that we could represent as a network. For socio-technical systems that operate under
a similar or a complementary mission and under the same or different ownership,
the coordination of decisions and actions is vital. We consider that this coordination
exhibits the features of connectivity, feedback, and adaptation, which are also
characteristic of complex adaptive systems (CAS).

We can represent socio-technical system networks as CAS and then study
managerial policies that affect the coordination among the socio-technical systems
and its subsequent effect on technical efficiency. This effect takes place both at
the individual and at the aggregate network levels. We assume that flocking can
be used as a proxy for managerial policies. Up until recently, we have conducted
simulation experiments using a socio-technical network of deregulated power
plants. In more recent research, we are investigating a network of regulated banks.
Our experimental results demonstrate when and how managerial policies augment
the coordination among network members and allow for the exploration of the
inter-relationships and interactions that exist between individual decisions and
collective interdependencies. The inter-relationships among the deregulated power
plants result in an emergent goal seeking aggregate network behavior with respect
to achieving technical efficiency.
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5 Conclusions and Future Directions

The research that we summarized in this paper represents evolving thinking as
to how to meaningfully integrate the efficiency measurement paradigm as a vital
consideration in socio-technical system design. In order to go down this path, we
need to take into account a number of issues.

First that this research requires an inter- or trans-disciplinary approach. Inte-
grating multiple domains along with the consideration of translation relevance
makes the feedback from theory to implementation and then back to theory a
challenge. This last statement implies that there is some degree of consensus among
disciplines as to what constitutes theory, good research, theoretical, translational,
and application research. This is rarely the case but offers an opportunity to
challenge our collective mental models.

Second, by their very nature, socio-technical systems are complex. The interac-
tions between the technologies and human behaviors in these systems are rarely
understood. This offers an opportunity for many future research investigations
where hypotheses can be tested and evaluated.

Third, the collection, cleaning, understanding, and use of the data are paramount.
One may suggest that the evolving field of machine learning can assist to clarify
and challenge some of the basic premises/axioms of our disciplines. Additionally,
within the context of complex adaptive systems as described in the previous section,
machine learning may provide the means to understand the meaning of productive
efficiency “emergence” when complex socio-technical systems interact with one
another and with their environments.

Fourth, in all illustrations of Sect. 3, we identified the impact or the potential
impact of the research for the socio-technical systems and/or society. This is not
to imply that meaningful research cannot be conducted without an “eye” for its
impact. Our bias is that in all illustrations, the research problem originated with
societal and/or socio-technical system needs and resulted in recommendations for
improved system performance. This provided the context for our research and for
the approaches that we undertook where the mapping between the “virtual” and
“real” worlds was paramount.

There are many research problems for which our framework could be of use.
We will refer only to the following three. (a) The modeling and understanding
of the resilience of interdependent critical infrastructure systems as a reaction to
extreme events is ongoing (Mili et al. 2018). This is not surprising given the
growing frequency and intensity of extreme climate events; (b) the interactions
of infrastructure, human and natural systems in coastal areas and the prediction
of their future behaviors in light of a series of mitigating strategies to extreme
events and disasters is of great societal concern; (c) the modeling and prediction
of the performance of research enterprises is an important issue for universities,
government agencies, and learning communities. The intense competition for
research funding is the main motivator for the understanding and modeling of this
issue.
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A Framework for the Assessment and
Consolidation of Productivity Stylized
Facts

Cinzia Daraio

Abstract This chapter tackles the little-treated subject of how productivity and
efficiency stylized facts are measured and consolidated. We show that measurement
requires the formulation of a model starting from a general framework. We propose
a doubly conditional performance evaluation model for the measurement of produc-
tivity stylized facts and an econometric approach for consolidating stylized facts.
The proposed framework can complement recent methodological works guiding
the users to describe and choose the most appropriate method for their context of
analysis. Our performance measurement framework may act as a leading thread for
bringing together different strands of literature that are outlined in the concluding
section.

Keywords Performance · Productivity · Nonparametric · Efficiency ·
Heterogeneity · Innovation

1 Introduction

Knowing how to bake a cake is knowing how to execute the sequence of operations that
are specified. . . in a cake recipe. [. . . ] But the recipe is not fully revealed by the list of
ingredients.

An even more serious limitation of the list of ingredients approach . . . [appears] when
we are asking not about the ability to execute a given recipe but about the ability to create
the recipe”. . . Winter (2006, pp. 131–133)
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1.1 Stylized Facts and Productivity/Efficiency Stylized Facts

Stylized facts (Kaldor 1963; Lawson 1989; Boland 1994) are observations that have
been made in so many contexts that they are widely understood to be empirical
truths, to which theories must fit. In social sciences, especially economics, a stylized
fact is a simplified presentation of an empirical finding. While results in statistics
can only be shown to be highly probable, in a stylized fact, they are presented as
true. A stylized fact is often a broad generalization, which although essentially true
may have inaccuracies in the detail.

In literature, especially growth and financial economics, there are several articles
that survey stylized facts. Very little attention is devoted instead on how these facts
are observed, measured, and consolidated.

Stylized facts on productivity and efficiency differentials (productivity or effi-
ciency stylized facts) are central to economic theory. What is usually done by
economists is to start the investigation by setting a set of stylized facts and then
propose a theoretical model able to reproduce them. After that, the theoretical model
is used to explain the functioning mechanisms and to make prediction (in the best
cases and when it is not too complicate).

Stylized facts are measured on an attempt to measure reality. Measurement can
be defined in different ways. One commonly agreed definition of measurement
among philosophers is as “an activity that involves interaction with a concrete
system with the aim of representing aspects of that system in abstract term” (Tal
2015). In our case, concrete implies real, and hence, measurement of stylized
facts involves the representation of ideal systems. Complementary aspects of mea-
surement and modern philosophical discussions about the nature of measurement
and the conditions that make measurement possible and reliable are surveyed in
Tal (2015). Of interest to our analysis are mathematical theories of measurement,
information theoretic and model-based accounts, and epistemology of measurement
(which includes standardization, theory-ladenness of measurement, accuracy, and
precision). Quantification or measurement is then a critical issue as we will see in the
following of this chapter (Sect. 2). An underpinning question to applied economic
modeling concerns the method or approach used by applied economists to gauge
productivity/efficiency differentials,1 that is to measure these stylized facts, based
on observation (data) coming from the real world. Problems related to productivity

1For productivity of a unit we mean the the ratio of its output to its input. This ratio is easy to
compute if the unit uses a single input to produce a single output. Otherwise, for multiple outputs—
multiple inputs cases, the inputs and outputs have to be aggregated so that productivity remains the
ratio of two scalars. We can distinguish between a partial productivity, when it concerns a sole
production factor, and a total factor (or global) productivity, when referred to all factors. Similar,
but not equal, is the concept of efficiency, although, in the literature many authors consider the
terms productivity and efficiency as synonyms. Following Daraio and Simar (2007, p. 14), we
define efficiency of a unit as the distance between its output/input ratio, and the output/input value
that defines the best practice frontier, or the most efficient frontier. Efficiency and productivity,
anyway, are two cooperating concepts. The measures of efficiency are more accurate than those of
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and production efficiency2 are at the core of the interest of economic analysis since
the time of Adam Smith’s study on the Wealth of Nations, if not even before.

Usually, researchers make surveys of existing studies, taking into account the
results of previous analyses without considering the methods used and the implicit
assumptions that were made. Moreover, quality, availability, and data problems are
often underestimated and only skimmed in empirical works. Griliches (1994) calls
“data woes” the problems of empirical data and his analysis is still valid today.3

Data constraints are really fundamental for empirical evidence on productivity
differentials and have been analyzed in various contexts (e.g. Bartelsman and
Beaulieu 2007). Bartelsman et al. (2005) investigate comparability problems of
microdata.

Another fundamental question, for theoretical development in economics, is
related to how these stylized facts are consolidated. This is connected to the
methodology of economics and the role of theory to interpret and explain the real
world, that is at the core of different investigations including, without claiming
of completeness: (1) philosophy of science, (2) works asking for more empirical-
based evidence in economics (e.g. Anand 2003; Dosi 2004, Fagiolo et al. 2006),
(3) economic methodology and econometric approaches (e.g., Hendry 1980, 2001;
Pagan 1987; Hendry and Mizon 2000; Hoover and Perez 1999; Spanos 1999, 2000;
Hoover 2005; Doornik and Hendry 2015), (4) management approaches (Davis et
al. 2007) as summarized by Maanen et al. (2007) that survey how theory and
method have been treated in management studies and suggest that respecting both

productivity in the sense that they involve a comparison with the most efficient frontier, and for
that they can complete those of productivity, based on the ratio of outputs on inputs.
2In this chapter we consider production activity as a broad activity involving not only the
realization of material goods but also intangibles and services.
3Griliches (1994, p. 14) states: Why are the data not better? [. . . ] at least three observations
come to mind: (1) The measurement problems are really hard. (2) Economists have little clout
in Washington, especially as far as data-collection activities are concerned. Moreover, the
governmental agencies in these areas are balkanized and underfunded. (3) We ourselves do not
put enough emphasis on the value of data and data collection in our training of graduate students
and in the reward structure of our profession. It is the preparation skill of the econometric chef that
catches the professional eye, not the quality of the raw materials in the meal, or the effort that went
into procuring them (Griliches 1986). In many cases the desired data are unavailable because their
measurement is really difficult. After decades of discussion we are not even close to a professional
agreement on how to define and measure the output of banking, insurance, or the stock market
(see Griliches 1994). Similar difficulties arise in conceptualizing the output of health services,
lawyers, and other consultants, or the capital stock of R&D. While the tasks are difficult, progress
has been made on such topics. The work of Jorgenson and Fraumeni (1992) on the measurement of
educational output is an example both of what can be done and of the difficulties that still remain.
But it is not reasonable for us to expect the government to produce statistics in areas where the
concepts are mushy and where there is little professional agreement on what is to be measured
and how. Much more could be done, however, in an exploratory and research mode. Unfortunately,
the various statistical agencies have been both starved for funds and badly led, with the existing
bureaucratic structure downplaying the research components of their enterprise when not being
outright hostile to them, research being cut first when a budget crunch happens (Triplett 1991).”
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the primacy of theory and the primacy of evidence is not an easy task but a necessary
balancing practice that characterizes high-quality research.

1.2 Productivity and Efficiency Measurement

Theoretical mainstream production analysis has always focused on production
activity as an optimization process. Conventional microeconomic theory assumes
that producers optimize by not wasting resources in a systematic way: producers
operate on the boundary of their production possibility sets (see, e.g., Varian 1992).
However, numerous and various empirical evidences show that not all producers
optimize in all circumstances. Hence, it is important to analyze the degree to which
producers fail to optimize and the extent of departures from technical and economic
efficiency.

Available empirical evidence shows wide and persistent “asymmetries” in
efficiency among firms within the same industry (e.g. Cimoli and Dosi 1996).
Mainstream empirical production has concentrated its analysis on central tendency,
or “average” or “most likely” relationship constructed by intersecting data with a
function rather than surrounding data with a frontier. Available evidence (Bartels-
man and Doms 2000; Bartelsman et al. 2004, 2005) seems not coherent with some
of the most entrenched economic assumptions,4 such as the aggregate production
function based on the notion of representative agent, and the transient nature of
asymmetries in production efficiency. These evidences may give impetus to the
competing evolutionary theory of production and technical change (Winter 2017).
On the other hand, evolutionary theory suffers from some limitations that are at the
core of recent developments.

The approach of production frontiers (e.g. Färe et al. 1994) is an effort to
empirically define an envelopment of production data. This approach combines
the construction of production frontiers with the measurement and interpretation
of efficiency relative to the constructed frontiers. Best practices (captured by the
frontier approach) may be better than average practices (measured in a regression-
based framework) in the sense that best practices exploit available substitution
possibilities or scale opportunities that average practices do not. Griliches and
Mairesse (1983) observed that “the simple production function model, even when
augmented by additional variables and further nonlinear terms, is at best just an
approximation to a much more complex and changing reality at the firm, product,

4The stylized facts surveyed by Bartelsman and Doms (2000), for instance, point up largely that
“productivity levels are quite dispersed, that productivity differences between plants may be very
persistent, that entry and exit of plants with different productivity levels is an important source of
productivity growth, and that plants long-run employment changes and productivity changes are
not correlated. The existence of productivity heterogeneity, even among producers of comparable
products with comparable equipment, has forced analysts to rethink and reassess some old truths
that find no support in the microdata. For instance, these results begin to cast doubt on the
appropriateness of an aggregate production function that is based on a representative firm.”
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and factory floor level.” The approach of production frontiers, instead, is based on
the envelopment of production data. From the empirical point of view, a frontier
approach allows for estimating the “efficient” production frontier and for measuring
and interpreting the relative efficiency of each individual unit with respect to
this estimated frontier, instead of relying on standard or typical (representative)
behavior.

As we will see in Sect. 2, the measurement of productivity/efficiency is a complex
task that is included in the broader activity of the management of the performance.
There are many techniques for the estimation of the efficiency/productivity differ-
entials and many software that implement these techniques (see Daraio et al. 2019
for a survey of existing software options). Surveys and presentation of the existing
methods can be found in Parmeter and Kumbhakar (2014), Simar and Wilson (2013,
2015), and Sickles and Zelenyuk (2019). We may classify efficient frontier models
according to the three criteria listed in Table 1.

In Parametric models, the attainable set is defined trough a production frontier
function which is a known mathematical function depending on some unknown
parameters, where generally the output is univariate. The main advantages of this
approach are the economic interpretation of parameters and the statistical properties
of estimators; the main drawbacks are the choice of the function for the frontier
and the handling of multiple inputs, multiple outputs cases. Nonparametric models
do not assume any particular functional form for the frontier. The main strengths
of this approach are the robustness to model choice and the easy handling of
multiple inputs, multiple outputs case. The main limitations of nonparametric
models are the estimation of unknown functional and the so-called curse of
dimensionality,5 typical of nonparametric methods. Deterministic Models assume
that all observations belong to the production set with probability one. The main
weakness of this approach is the influence of “super-efficient” outliers. Stochastic
Models instead allow for noise in the data, i.e. some observations might lie outside
the production set. The main problem of this approach is the identification of
noise from inefficiency. In Cross-sectional models the data sample is composed

Table 1 A taxonomy of
efficient frontier models

Criterium Model type

Functional form Parametric

specification of the frontier Nonparametric

Semi-parametric

Presence of noise Deterministic

Stochastic

Robust

Type of data Cross-section

Panel data

5The “course of dimensionality,” shared by many nonparametric methods means that to avoid large
variances and wide confidence interval estimates a large quantity of data is needed.
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by observations on a given number of units, while Panel Data models include
observations on a given number of units that are available over a number of periods
of time. Panel data allow the measurement of productivity change as well as the
estimation of technical progress or regress.

The limitations of the parametric approach are mainly related to the additional
assumptions on the functional specification of the frontier and the functional specifi-
cation of the inefficiency term. These assumptions/specifications may strongly affect
the efficiency estimates. The preference of the nonparametric approach over the
parametric approach is due to the small amount of assumptions required and mainly
to the fact that we do not have to specify the functional form of the relation inputs-
outputs and we do not need to specify a distributional form for the inefficiency term.
Nonetheless, traditional nonparametric estimators based on envelopment techniques
(i.e., Data Envelopment (DEA)/Free Disposal Hull (FDH) types) were for a long
time limited by several drawbacks: deterministic (meaning that all deviations from
the efficient frontier are considered as inefficiency, and no noise is allowed) and
non-statistical nature; influence of outliers and extreme values; lack of parameters
for the economic interpretation; unsatisfactory techniques for the introduction of
environmental or external variables in the measurement of the efficiency. See, e.g.,
Daraio and Simar (2007) that provide an overview of some advances to overcome
the limits of nonparametric frontier models. Stock (2010) identifies one of the
causes of the development of nonparametric models in the dissatisfaction towards
traditional parametric models.

Figure 1 shows a schematic evolution of the methods of frontier estimation.
At the beginning, the parametric approach was mainly developed and adopted
by economists, while the nonparametric approach was developed and used in

1950s 1960s 1970s 1980s 1990s 2000s

Nonparametric Approach

Parametric Approach

Operations research and management science
approach

Econometric  approach

Linear programming
(deterministic nature)

parametric
stochastic

parametric
deterministic

Statistical
framework

Semiparametric
approach

Towards a unifying
framework

− robust estimators
− parametric approx
− explanation of inefficiency
− better inference

− flexible functional forms
− general distributions for inefficiency
− better inference

Fig. 1 Convergence of methods for frontier estimation
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the operational research literature. Later, different semi-parametric approaches
were introduced, with the aim of providing more flexible functional forms, more
general distributions for inefficiency and better inference. Parmeter and Zelenyuk
(2019) survey recent methodological advances that try to combine the virtues of
nonparametric approaches with those of parametric ones, confirming our view,
illustrated in Fig. 1, that shows a trend towards a unifying approach in which
parametric and nonparametric approaches tend to converge overcoming their own
specific limitations. Parmeter and Zelenyuk (2019) discuss the operationalization
of the new methods introduced in the literature based on local likelihood estimation
and other semi-parametric approaches and their implementation and admit that these
new approaches are not yet used in the empirical literature. One reason for this may
be the neglected importance of the need to specify a framework for the assessment
of productivity and the consequent missing description of the production process
that is a current practice in empirical works.

Choosing a model for the assessment of productivity and efficiency means to
specify the main features of a data generating process (DGP) that can be used to
carry out the estimation of the inefficiency differentials. Table 2 summarizes the
main options that are available and that should be carefully described and discussed
in the specific application context. Moving from the North-West towards the South-
East part of Table 2 implies an increasing difficulty in running inference as the
problems of estimation become more complex. Obviously, if the representation
of the production process is not discussed and described, it is difficult to choose
a model for the assessment of productivity that identifies a reasonable DGP
appropriate for the empirical context.

Table 2 Specifying a data generating process: the options available

Parametric Semi-parametric Nonparametric

Deterministic Analytical models Some parametric
specifications

No specific model

for frontier for frontier

And for distance from
it

No noise allowed No noise allowed

(No noise allowed)

Robust Analytical models Some parametric
specifications

No specific model

for frontier for frontier

Some deviations Some deviations Some deviations

(Outliers) allowed (Outliers) allowed (Outliers) allowed

Stochastic Analytical models Some parametric
specifications

No specific model

for frontier for frontier

Including noise Including noise Some structure on noise

for identification
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1.3 Main Aim and Organization of the Paper

The main objective of this paper is to propose a framework for the development of
models of performance that permits the correct description of the hypotheses and
correct specification of the DGP to make an appropriate measurement of produc-
tivity/efficiency stylized facts. This work can complement recent methodological
works surveyed, e.g., in Simar and Wilson (2015), Parmeter and Zelenyuk (2019),
and Sickles and Zelenyuk (2019), guiding the users to describe and choose the
most appropriate method for the analysis taking into account all the other relevant
dimensions and conditions.

In the next section, we analyze in details the need to specify a framework
for developing performance measurement models and discuss the implementation
problem. Section 3 proposes a doubly conditional performance measurement model.
The following section deals with the important role played by the representation of
the production process. After that, Sect. 5 introduces recent advances in modeling
coming from computer science at the intersection with statistics and behavioral
economics.

Section 6 proposes a general econometric methodology for deriving economic
regularities and let empirical evidence contribute to the advancements of economic
theory. Section 7 shows that our approach to measuring and consolidating perfor-
mance can be a valuable tool for bringing together different strands of literature.

2 The Need for a Framework to Assess Productivity

The evaluation of productivity and efficiency is a complex task for many reasons, as
we have seen in the previous section. The evaluation of productivity falls within
the field of performance measurement and management. Performance may be
defined as “an organization’s ability to achieve its goals and objectives measurably,
reliably, and sustainably through intentional actions” (Hunter and Nielsen 2013,
p. 10). Performance management includes several constitutive elements, such as
performance leadership, operational leaders, operational managers, management
structure, accountability systems, performance budgeting, information and knowl-
edge production, measuring and monitoring systems (for more information, see,
e.g., Hunter and Nielsen 2013). Figure 2 illustrates the main elements involved in
performance evaluation starting with the evaluative purposes that are formulated
within a policy-making process, or by the governance of institutions, or may arise
from research questions. Performance evaluation includes also development of
models and methodological choices.

Generally, the main purposes of productivity and efficiency analyses are the
comparative evaluation of the performance of production units, the investigation
on the explicative factors, a benchmarking of the units analyzed, the contribution
to relevant economic issues, with rigorous empirically based evidence. There are
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Fig. 2 An outline of the performance evaluation setup. This is composed by three blocks. Perfor-
mance measurement is in the middle between demand and supply of performance information

several possible reasons for comparative efficiency (productivity) analysis in a wide
range of empirical applications (see Daraio et al. 2020, for a survey of existing
surveys).

Figure 2 shows how the process of providing information related to performance,
included in the broader performance management, is connected to performance
measurement. The latter represents the focus of our discussion. To perform a
measurement of the performance appropriate to the evaluative purposes, we support
the need to have a reference framework. A framework is necessary to develop
models of performance that are as close as possible to the reality being assessed.
Identifying a model and describing its constitutive elements and basic hypotheses
(DGP) are necessary for being able to check the robustness of the model and its
coherence with its purposes. In the next section, we describe the importance of
the issue of designing relevant and appropriate models to assess productivity and
efficiency which are at the core of the stylized facts.

2.1 Developing Models

A model is an abstract representation of an object or real phenomenon. A model is
built on the reality, from some point of view, and has some aims. The representation
of reality is achieved through the analogy established between aspects of reality
and aspects of the model. We can state that a model is a tool for understanding
reality (Gibbard and Varian 1978). Econometric models are quantitative models of
economic variables. These are models in which the analogy with the real world
takes place through the quantification of objects, facts, and phenomena and the
identification of the relationships existing between the previously identified objects,
and the reality that is the object of the model (see also Sugden 2000; Viskovatoff
2003). The practical use of a model depends on the different roles that the model
can have including interpretation, forecasting, and/or intervention (here the famous
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sentence of Box (1976) applies: “all models are wrong, but some are useful”) and
from the different steps of the decisional process in which the model can be used.

Within this context, we consider the framework introduced in Daraio (2017a)
as a reference to develop models for productivity/efficiency assessment. See Fig. 3.
Theory identifies the conceptual content (background) of the analysis, answering
the question “what is the domain of interest” and delineating the boundary of
the investigation. Methodology identifies the range of methods, techniques, and
approaches that are relevant for the evaluation purpose. Methodology answers
the question “how” the investigation is handled. Data are instances coming from
the domain of interest and represent the raw materials (or basic ingredients) on
which the empirical evidence is built. Data are a relevant dimension which has a
problematic definition. This is because the definition of data depends on their use
and not on the inherent characteristics of the data (Borgman 2015, p. 74).

The development of a model requires the understanding of the theoretical
background of the problem (or analyzed reality). From a methodological point of
view, developing a model is connected to the identification of the subject (what
to assess) of the analysis and of the means (how to assess) or methods of the
analysis. The subject of the analysis may be: (1) the output or the result of a
transformation process which uses inputs to produce products or services, (2) partial
or total factor productivity or/ efficiency (productivity with respect to a reference),
(3) effectiveness which considers inputs, outputs and account for the aims of the
activity, and (4) impact including contributions outside the production activity, to
the general economy or society. The means of the assessment may be quantitative,

Fig. 3 A three-dimensional framework for the development of models for productivity/efficiency
assessment. Adapted from Daraio (2017a)
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qualitative, or mixed approaches. Finally, it is important to assess the availability, the
usability of data, together with their interoperability and the level of objectiveness
of the considered information (independence from the unit of analysis or unit free
property of data in Daraio 2017a).

As observed in Daraio (2017a), each quantitative evaluation is based on a model
that can be implicitly or explicitly defined and discussed. If the model underlying
the assessment is not described, this does not allow clarifying and accounting for
the underlying theoretical choices, methodological assumptions, and data limits,
in an explicit way. As a consequence, when the model related to the quantitative
assessment is not explicitly described, it is not possible to check its robustness.

Developing models is important for (1) learning about the explicit consequences
of assumptions, test the assumptions, highlight relevant relations; and for (2)
improving, to better operate, document/verify the assumptions, decompose analysis
and synthesis, systematize the problem and the evaluation/choice done, explicit
the dependence of the choice to the scenario. There are however several pitfalls
and difficulties in modeling that should be taken into account, namely: (1) the
possibility that the targets are not quantifiable, (2) the complexity, uncertainty, and
changeability of the environment in which the controlled system works, (3) the
limits in the decision context, (4) the intrinsic complexity of calculation.

We support that the ability to develop (and afterwards understand and use
effectively) models for the assessment of productivity/efficiency is linked and
depends, among other factors, on the degree or depth of the conceptualization
and formalization, in an unambiguous way, of the underlying idea of quality.
Quality is the overarching concept of this framework. It is intended as “fitness for
purpose” and is also an attribute of the different dimensions of the framework.
The framework includes also three implementation factors, namely Tailorability
(the adaptability to the features of the problem at hand), Transparency (that relates
to the description of the choices made and underlying hypothesis masked in the
proposed/selected theory/methodology/data combination), and Openness (accessi-
bility to the main elements of the modeling). Factors supporting model development
(the so-called enabling conditions) include: mixed methods, convergence, and
knowledge infrastructure. According to Daraio (2017a), Mixed Methods refer to the
intelligent combination of qualitative and quantitative approaches, Convergence is
the evolution of the transdisciplinary approach, which allows for overcoming the
traditional paradigms, increasing the dimensional space of thinking, and Knowledge
infrastructures refer to networks of people that interacts with artifacts, tools, and
data infrastructures. As we will see in the following, these attributes are included in
the broader implementation problem.

2.2 The Implementation Problem

Once we have introduced a framework for the development of productivity assess-
ment models, we have to deal with the implementation problem, already mentioned
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in Fig. 2, in which it is part of the performance management activities. The problem
of implementation refers to the application of methods developed as basic research
for assessing the productivity/efficiency in a concrete organization and/or context.

Figure 4 outlines the generalized implementation problem proposed in Daraio
(2017b).6 Panel A of Fig. 4, on the top-left side, shows three systems, which
constitute the context of the intervention. According to Mingers (2006) the three
systems are the agents undertaking the intervention (intervention), the real-world
situation of concern (problem content), and the available theories and methodologies
(intellectual resources). The right and bottom part of Panel A of Fig. 4 illustrates
the approach of the Level of Abstraction (LoA, Floridi 2008). According to this
approach, reality can be viewed from different perspectives or levels and the
identification relation between two observables is always contextual. The context
is a function of the level of abstraction chosen for the required analysis. This
contextualization permits the configuration of a model specifying its ontological
commitment. The LoA (the Ontological committing step) generates the model (the
ontological committed outcome) which is used to identify the properties that are
attributed to the application context. Panel B of Fig. 4 adds to the previous figure the
translations that are related to the configurations and reconfigurations of mediations
originated by the movements of the instantiation and abstraction which transform
the actors involved in the process (Latour 2005).

From this illustration it clearly appears the complexity of the model development
phase and the difficulties that may arise in each step of the implementation.
Difficulties may arise in setting the correct LoA that is connected with the
ontological commitment of the modeling phase, in identifying the properties of the
model that can be attributed to the context of intervention and in the movements (or
translations) of the abstraction and instantiation from the global to the local context
of intervention.

3 A Doubly Conditional Performance Model

For the assessment of productivity and efficiency stylized facts we propose the
doubly conditional performance evaluation model introduced by Daraio (2017b)
and illustrated in Fig. 5. This performance model is called doubly conditional
because the evaluation is conditioned two times: on the available information and
on the information that are not available. The model distinguishes two kinds of
conditioning: (1) Internal conditioning or normalization; (2) External conditioning
or contextualization. Internal conditioning factors are the items reported in the
bottom of Fig. 5 (actors, processes, and results). Normalization means to compare

6It is called generalized problem because it considers (1) the interaction of method development
with its useful application; (2) the implementation which changes the unit of assessment and
includes (3) knowledge and technological innovation (see Daraio 2017b).
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Fig. 4 An illustration of the generalized implementation problem. Source: Daraio (2017b)

comparable entities, setting appropriate reference sets. External conditioning factors
are the items reported in the top of Fig. 5. Contextualization corresponds to account-
ing for heterogeneity factors. This model allows us to identify the components of
the analysis (in terms of theory-method-data characterization) that are excluded
(i.e., what remains outside) from the specific context of the evaluation. The model
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Fig. 5 A Doubly Conditional performance evaluation model. Source: Daraio (2017b)

provides an interpretative value of the measure calculated, that has to be considered
as a residual, what remains after the consideration of the dimensions (variables)
included, that is due to other factors/components not accounted for. Finally, the
model illustrated in Fig. 5 represents a step toward the “democratization” of the
evaluation practice (Daraio 2018), able to balance the opposite views of external
accountability and internal improvement (Ewell 2009).

As discussed also in Daraio (2019), this performance evaluation model guides
the user to the specification of the following components:

– Purpose of the assessment (including evaluative purposes, stakeholders, and
policy), that describes why the assessment is carried out;

– Level of analysis, that is specification of the actors (including individuals or
organizations—micro level, regional systems or sectorial aggregations—meso
level, country or other macro aggregate—macro level) who are involved in the
assessment;

– Object of the evaluation (including outputs, efficiency, results, effectiveness, and
impact) that identifies what is assessed;

– Means of the evaluation (including (1) qualitative, (2) quantitative, and (3) mixed
methods and data) that specifies how the assessment is carried out;

– Internal conditional factors (including actors, processes, and results) considering
how, when, and where the assessment is done;
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– External conditional factors (including time, context, other contextual factors,
potential heterogeneity, criteria, rules, standards, understandings, incentives,
actions, and consequences) considering how, when, and where the assessment
is done.

At this point, a question arises: What is the relationship between the framework
illustrated in Fig. 3 and the performance evaluation model shown in Fig. 5? The link
between these two is given by the representation of the production process that is
illustrated in the next section.

4 The Representation of the Production Process

Productivity seems a simple concept although its operationalization and application
are difficult including some critical issues, such as the definition of the production
process that is the set of knowledge about production. We need to specify a model of
the production process, select a representation of the production process, and have
to measure the inputs, outputs, and other factors.

A production process may be represented in different ways, including the neo-
classical production function (defined as the maximum value of output associated
to a given value of input), according to the accounting view in monetary values,
according to an engineering production function approach (Chenery 1949, based on
production functions rewritten in terms of cost per unit of engineering variables),
through a frontier approach (in particular the nonparametric frontier approach that
does not rely on the specification of a functional form for the frontier) which departs
from the mainstream economics based on production function specification, and
finally, based on the flows and funds model of Georgescu Roegen (1971).

Georgescu Roegen (1971) describes at length his ideas about the economic
process as a process dominated by a qualitative change (transformation) making a
close connection between the entropy law and the economic process. Georgescu
Roegen (1971) makes a distinction between arithmomorphic characteristics (of
mathematical models) typical of mechanistic-deductive knowledge and dialecti-
cal characteristics of dialectic-evolutionary knowledge. He strongly criticizes the
neoclassical production function approach, with its arithmomorphic characteristics,
because it is not able to account for time and the boundary of the production process.
In fact, in order to perform an analytical study, the process shall be separated from
its environment by identifying a boundary. Only analyzing the elements crossing
the boundary permits to understand what is happening in the process. The elements
crossing the boundary can be either inputs or outputs and may be characterized
in two types: stock (all material inputs or outputs that physically takes part of the
transformation due to the process; they can be stored and are measured in terms
of flow, i.e. volume of material per unit of time) and services (these are used, not
consumed by the process; they cannot be stored and are supplied by fund of services;
they are measured as size of the used fund of service times the used period of time).
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This representation of the production process suggests the following elements to
improve productivity: (1) organizational changes, to improve the activities on the
line; (2) increase of the time in which the funds are used; (3) faster execution of the
operations on the flows; (4) changes on the relations of inputs and outputs.

Georgescu Roegen (1971) proposes a more general production function in which
time is integrated and this lead to a production function that is not anymore a
single point function but is a functional, defined in a given interval of time and
determined by the nature of the process. Fioretti (2007) shows that this model
of production, which accounts for organizational aspects of the production, has
some connections with recent neural network developments. Morroni (1992, 2006,
2014) highlights the organizational aspects of the production process present in
the Georgescu-Roegen’s (1971) funds and flows model and their interactions at
different levels of analysis. The different productivity network models introduced
in the data envelopment analysis literature (see Kao 2017 for an encyclopedic
overview) are an implementation of the funds and flows model. Daraio et al.
(2017) and Daraio (2019) propose a new more general framework for modeling
the production process which is based on Georgescu-Roegen’s (1971) model of
production, includes nonparametric productivity networks, combines information
theoretic approaches to econometrics, machine learning, and statistical inference
from the physics of complex systems.

The approach that we consider suitable to analytically represent the production
process for measuring the stylized productivity/efficiency facts is the one described
by Georgescu Roegen (1971). This is the most general approach, currently available,
to analytically represent a production process. This approach, moreover, is closely
connected to our framework (Fig. 3): it links the enabling conditions of our frame-
work illustrated in Fig. 3 with the doubly conditional performance measurement
model of Fig. 5. Georgescu Roegen (1971) in fact criticizes the merely quantita-
tive (arithmomorphic or mathematical) models, favoring a qualitative-quantitative
approach (mixed methods); proposes to overcome the disciplinary limits ranging
from philosophy to physics and supports the combination of multiple mono-
prospective visions (convergence); highlights the importance of the human factor
and the need for a conceptual dialectical reasoning (knowledge infrastructure),
finally discusses the important role of quality that represents the overarching concept
of our framework (see Fig. 3).

5 Behavioral Economics and Behavioral Model Building

The role of human behavior in the development of models for the measurement
of performance is important and has been illustrated in Sect. 2 discussing the
implementation problem. This connects our discussion with behavioral economics,
that is according to Thaler (2016, p. 1577) the “mixture of psychology and
economics.” Tversky and Kahneman (1974) introduce three heuristics that are
employed in taking decisions under uncertainty, usually neglected in mainstream
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economic models, namely (1) representativeness, related to the use of categories to
evaluate the probability that a given event belongs to a given class or a given process;
(2) availability of instances or scenarios, related to the evaluation the frequency of
a given class or the likelihood of a particular progress; and (3) adjustment from
an anchor, related to numerical prediction, when a pertinent value is available.
These heuristics that are generally effective lead to regular and expected biases.
The study of heuristics in decision making introduced by Tversky and Kahneman
(1974) extended Simon’s research on human bounded rationality in problem solving
(see, e.g., Simon 1969, 1982, 2000) which lead to the satisficing situation where
people seek solutions or accept choices or judgments that are “good enough” for
their purposes, instead of maximizing behavior. The discussion on heuristics in
human decision making and of their inherent biases is extended in Kahneman
(2011) that describes two different ways of thinking, a “fast system,” characterized
by fast, automatic, frequent, emotional, stereotypic, subconscious, and a “slow
system,” characterized by slow, effortful, infrequent, logical, calculating, conscious.
On the base of heuristics, Kahneman (2011) asserts that the fast system involves
the association of new information with existing patterns instead of building new
patterns for each new event.

These recent developments in behavioral economics decision making may be
further explored in combination with recently developed statistical and machine
learning approaches (see, e.g., Mezard and Montanari 2009; Barber 2012). Machine
learning techniques, lying at the intersection of computer science and statistics, are
at the core of artificial intelligence and data science, and are showing increasing
potentialities (Jordan and Mitchell 2015). Thaler (2016) considers behavioral
economics as an empirical and evidence based discipline able to exploit the most
sophisticated statistical techniques having access to increasingly large and rich
datasets.

In the previous sections we illustrated the importance of describing a model of
the production process to have an appropriate measurement of productivity stylized
facts. We have seen (see Sect. 2) how complex is the implementation of a model
and the importance of considering the information that are available in the model
together with the information that could be relevant but are not available for the
analysis (see Sect. 3). The proposed doubly conditional model shows how each
model is conditioned by the information contained in the variables used by the
model, but also by the relevant information not considered in the model. The
framework described in the previous sections is therefore necessary to formulate
a model to be used to quantify the stylized facts of productivity.

Model identification requires specifying the relationships that exist among the
variables. An important role in this context is represented by causal relationships.
Structural causal model is nicely discussed in Pearl (2000), which provides a
mathematical foundation for the analysis of causes and counterfactuals, including
and unifying other approaches to causation (for a review see Pearl 2010). In
concluding the survey on recent advances in causal analysis, Pearl (2010) states that
“Causal inference requires two additional ingredients: a science-friendly language
for articulating causal knowledge, and a mathematical machinery for processing
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that knowledge, combining it with data and drawing new causal conclusions about
a phenomenon. This paper [. . . ] shows how statistical methods can be supplemented
with the needed ingredients. The theory invokes nonparametric structural equations
models as a formal and meaningful language for defining causal quantities,
formulating causal assumptions, testing identifiability, and explicating many con-
cepts used in causal discourse. These include: randomization, intervention, direct
and indirect effects, confounding, counterfactuals, and attribution. The algebraic
component of the structural language coincides with the potential-outcome frame-
work, and its graphical component embraces Wright’s method of path diagrams.
When unified and synthesized, the two components offer statistical investigators a
powerful and comprehensive methodology for empirical research.”

The identification and estimation of causal relationships, based on clearly defined
assumptions in a behavioral (structural) model, is a relevant part of the modelling
exercise. Identifying restrictions that are not testable but are necessary to allow for
the interpretation of coefficients in a production function or frontier, or for the role of
unobserved heterogeneity as fixed or random is an important investigation to carry
out in the selection of the method of analysis to apply for the measurement of the
productivity stylized fact.

Geffner (2018) shows that in artificial intelligence there is a need to combine
model-free learners and model-based solvers to have intelligent systems that are
robust and general. Model-free learners are based on black-boxes that do not
have the flexibility, transparency, and generality of their model-based counterparts.
Model-based approaches require the specification of models. These two models are
connected to the two systems of human mind developed in Kahneman (2011), a
“fast” system and a “slow” system. The next section proposes a methodology to
consolidate productivity stylized facts which combines “General to Specific” with
“Specific to General” approaches in econometrics.

6 The Accumulation of Productivity Stylized Facts

In order to carry out an empirical study we need to follow a methodological
framework. As pointed out by Hendry (2001, p. 7), “there can be little dispute that
econometric methodology lacks a consensus.” The traditional econometric method-
ology illustrated in the top panel of Fig. 6 has been the reference methodology for
a large number of econometric applications, starting from the consumer-income
relations modeling and going to other applied economics exercises.

Meanwhile, several factors of changes have emerged. According to Lütkepohl
(2001), some of these are the advances in computer technology, the data availability,
some new developments in statistical theory (e.g. bootstrap), some new ideas in eco-
nomic theory, the dissatisfaction with unexplained phenomena or poorly modeled
data characteristics, some problems in the economic conditions. These forces have
played and are going to play a central role in the development of the econometric
methodology. They contribute to amplify the gap existing between econometric
theory and applied economics. On the origin of this increasing gap, Heckman
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Fig. 6 Evolution of the Econometric methodology: from a traditional perspective (e.g. Gujarati
1978) toward a more flexible “general to specific”–“specific to general” approach
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(2001) suggests two main reasons. On the one hand, theoretical econometrics has
become more closely linked to mathematical statistics; on the other hand, empirical
economists as a whole have adopted more of a public policy focus in their research,
emphasizing transparency and simplicity as hallmarks of good empirical research
for communication in public policy forums. Heckman (2001) indicates that the
average level of econometric literacy among empirical economists has declined
because the perceived need for rigorous econometrics has declined.

In this section we describe a flexible econometric methodology to consolidate
productivity differentials. It is based on the Kaldor’s (1985) approach to address
stylized facts that we propose to use for measuring and consolidating productivity
stylized facts (Hildenbrand 1981) starting from estimated efficiency (productivity)
differentials. On the method of proceeding by collecting “stylized facts,” Kaldor
(1985, pp. 8–9) states:

[Arthur Okun] His main motive was not the pursuit of economic theory for its own sake
- the construction of more advanced theoretical models- but the severely practical motive
of discovering methods or policies to improve the performance of the economy in terms
of the twin objectives of efficiency and equality, that is how to minimize the cost in
terms of economic inequality of policies aiming at higher productivity or efficiency. There
are broadly the same objectives I myself [. . . ] regard as making the study of economics
worthwhile. But I particularly valued in Okun what I once called the method of proceeding
by collecting “stylized facts” and then constructing a hypothesis that fits them. [. . . ] One
should subordinate deduction to induction and discover the empirical regularities first,
whether through a study of statistics or through special inquiries [. . . ] One should also seek
the most reasonable explanation capable of accounting for these “facts,” independently of
whether they fit into the general framework of received theory or not. I called them “stylized
facts” [. . . ] because in the social sciences [. . . ] it is impossible to establish facts that are
precise and at the same time suggestive and intriguing in their implications, and that admit
to no exception. [. . . ] We do not imply that any of these “facts” are invariably true in every
conceivable instance but that they are true in the broad majority of observed cases- in a
sufficient number of cases to call for an explanation that would account for them. Such
hypotheses relate to particular aspects of the economy and they may be suggestive of others.
They may be discarded if they prove inconsistent with other observed features and then be
replaced by something else.

The econometric approach we propose is illustrated in Fig. 6. The bottom panel
of Fig. 6 shows the main building blocks of the approach that rely on the work
of Juselius (1999, 2006). Steps (1)–(4) on the bottom panel of Fig. 6 show the
first component of our methodology, called (following the “datamining” approach)
“General to Specific” approach, in the sense that we propose to apply general
models based on few economic assumptions on data, in order to obtain specific
economic results. However, we believe that the datamining approach, considered
alone, is not sufficient and therefore, we suggest to integrate it by performing
the steps (5) and (6) to complete the empirical investigation, applying the second
component of our methodology, called “from the Specific to the General,” in
the sense that an economic interpretation is needed to get empirical evidence on
economic phenomena and deriving sound policy implications.7

7At this purpose, we report the conclusions of Heckman (2001, p. 5): If the limits of mathematical
statistics as a guide to empirical analysis and interpretation of economic data are appreciated and



A Framework for the Assessment and Consolidation of Productivity Stylized Facts 89

Step one Step two Step three

"Light"   Economic Theory 

Data Collection

Econometric Methods 

Results

Economic Interpretation 

Empirical Finding 

Consolidation of
Empirical Evidence 

Policy Implications 

"Light"  Economic Theory 

Data
Collection

Econometric Methods 

Results

Economic Interpretation 

Empirical Findings 

Consolidation of
Empirical Evidence 

Policy Implications 

Stylised Fact 

Consolidation of
Stylised Facts

Measures of Economic
Policy

"Light"  Economic Theory 

Data
Collection

Econometric Methods 

Results

Economic Interpretation 

Empirical Findings 

Consolidation of
Empirical Evidence 

Policy Implications 

Stylised Facts 

Consolidation of
Stylised Facts

Measures of Economic
Policy

Economic Regularity 
Tools of Economic
Policy

evfipetSruofpetS

"Light"  Economic Theory 

Data
Collection

Econometric Methods 

Results

Economic Interpretation 

Empirical Findings 

Consolidation of
Empirical Evidence 

Policy Implications 

Stylised Facts 

Consolidation of
Stylised Facts

Measures of Economic
Policy

Economic
Regularity

Tools of Economic
Policy

Consolidation of
Economic Regularities 

"Light"  Economic Theory 

Data
Collection

Econometric Methods 

Results

Economic Interpretation 

Empirical Findings 

Consolidation of
Empirical Evidence 

Policy
 Implications 

Stylised Facts 

Consolidation of
Stylised Facts

Measures of
Economic
Policy

Economic
Regularities

Tools of
Economic
Policy

Consolidation of Economic
 Regularities

Patterns, Generating Mechanisms
of new elements of the
Economic Theory

Fig. 7 Illustration of a flexible econometric methodology to consolidate productivity stylized facts

This methodology offers a way for consolidating empirical evidence and analyz-
ing its generating mechanisms, patterns, and dynamics.8

In the following Fig. 7 we illustrate how productivity/efficiency differentials
(measured by an efficient frontier model, see Tables 1 and 2) may be consolidated

economics is more closely integrated into the development of and justification for estimators, then
the gap between econometric theory and applied work will diminish and econometrics will reassert
itself as an important part of the corpus of economics.
8In the end, econometrics is useful only if it helps economists conduct and interpret empirical
research on economic data. Empirical research is intrinsically an inductive activity, building up
generalizations from data, and using data to test competing models, to evaluate policies and to
forecast the effects of new policies or modifications of existing policies (Heckman 2001, p. 3).
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in a Kaldor’s (1985) approach: the stylized facts come out from the consolidation
of the empirical findings and economic regularities are generated by consolidating
the observed stylized facts. In so doing, there are feedbacks mechanisms and with
a spiral procedure (see the five steps in Fig. 7) the empirical evidence is able
to contribute to the consolidation of economic regularities and may contribute to
the analysis of the patterns and generating mechanisms of new elements of the
economic theory. At the beginning, the framework illustrated in Fig. 3 is applied
to obtain empirical finding (see step one of Fig. 7). This empirical finding is
stocked in the box “Consolidation of Empirical Evidence” and used to derive policy
implications (see step two of Fig. 7). Repeating the measurement of empirical
findings many times (see steps three, four, and five of Fig. 7) we obtain stylized
facts and their consolidation in economic regularities which may contribute to the
advancement of economic theory.

7 A Unifying Leading-Thread for Different Streams of
Literature

In this paper we provide a general operationalization of performance measurement
based on the specification of a framework and a doubly conditional model to assess
and consolidate empirical productivity and efficiency. We detail the importance of
the description of the production process and propose an econometric methodology
for the accumulation and consolidation of the empirical evidence (stylized facts).

Coming back to Winter’s (2006) sentence at the beginning of the introduction, in
this chapter we have learned that stylized facts could be considered as recipes about
the empirical world. Each recipe can be described by a list of ingredients and the
preparation method. To better understand the recipe, its content, to reproduce it and
potentially to improve it, adding novelty in it, it is essential to describe carefully
the production process, having a framework that allows us to specify all the choices
done, and the procedures followed to obtain the result of the recipe (the cake in
Winter’s 2006 words).

The proposed framework may act as a leading-thread for different streams of
literature in economics, management, and political science which may all take
advantage from our general operationalization of performance measurement.

Section 5 introduced behavioral economics and its connection to the development
of models for performance evaluation. Tomer (2007) identifies and compares differ-
ent strands of behavioral economics against mainstream economic theory, including
Simon (1969, 1982) bounded rationality and satisficing objective; psychological
economics (Kahneman 2011; Nelson and Winter 1982) evolutionary theory, as well
as Leibenstein (1966) X-efficiency theory looking at understanding why less than
optimal internal efficiency is the usual state of affairs in firms. While Simon and
psychological economics were described in Sect. 5, in the following we describe
the other streams of behavioral economics that can be unified by our framework
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and introduce other strands of literature that may be included as well, which are
resource-based view of the firm, complementarity theory, variety of governance,
and design of evaluation and control systems.

7.1 Evolutionary Theory of the Firm

The notion of technological paradigm (Dosi 1982, 1988) has been introduced in
literature to develop an “alternative” theoretical framework with respect to the
conventional (neoclassical) production theory, largely criticized on the ground
of its strong assumptions (maximizing behavior, functional specification of the
relation inputs-outputs, representative agent, and so on). It is based on a view of
technology grounded on the following three fundamental ideas. First, it suggests
that any satisfactory description of what technology is and how it changes must also
embody the representation of the specific forms of knowledge on which a particular
activity is based and cannot be reduced to a set of well-defined blueprints. It
primarily concerns problem-solving activities involving—to varying degrees—also
tacit forms of knowledge embodied in individuals and organizational procedures.
Second, paradigms entail specific heuristic and visions on “how to do things” and
how to improve them, often shared by the community of practitioners in each
particular activity. Third, paradigms often also define basic templates of artifacts
and systems, which over time are progressively modified and improved. As high-
lighted in Nelson and Winter (1982, 2002) technical change and market structure
must be understood as mutually interactive, with each affecting the other. In the
evolutionary theory, technical change and production activities play a central role
in explaining economic change. Evolutionary thinking sees questions of production
as tightly and reciprocally connected with questions of coordination, organization,
and incentives. Also production activity is embedded in a variety of processes of
knowledge creation. The knowledge invoked in productive performances resides for
the most part in individual skills. Skills are formed in individuals, and routines in
organizations, largely through “learning by doing.” These concepts are related to the
evolutionary theory of the firm that characterizes the firm for the “specificity” of the
competencies of problem solving that organizations incorporate (Metcalfe 2018).
This theory considers the firm as a behavioral organization characterized by specific
competencies incorporated in its operational routines, which evolve over time,
partly for their internal learning and partly in answer to environmental changing
(Dosi and Malerba 1996). The increasing of structural diversity in the firms and
the simultaneously reduction of the efficacy of the formal ways of coordination and
controls can explain the great emphasis given by the firms to the informal means
of control (Chandler, Hagström and Sölvell 1999). The firm is then considered as a
depository of knowledge, for a great extent incorporated in its operational routines,
which evolves over time influenced by its behavioral and strategic “meta-rules.”
Competencies of the firm, its ability of learning and problem solving, the rules of
the internal organization are then considered as “specific” of the firm. They are
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mainly tacit and not formalized, very often difficult to copy or transfer. It is this
“competence specificity” on the base of the corporate and national system diversity
(Coriat and Dosi 2000).

Nevertheless, evolutionary theory suffers from some limitations. First, there is
not a fully developed formal theory based on assumptions of bounded rationality and
learning applied to production. This makes extremely difficult to introduce notions
of efficiency in production (Winter 2005). Second, the theory captures the notion
of realized production at the level of individual firms, conditional on idiosyncratic
knowledge, but fails to identify a frontier of potential production, based on the pool
of productive knowledge available at the industry level. Some recent attempts (e.g.,
Dosi and Grazzi 2006) discuss technologies as problem-solving procedures and
as input-output relations but do not provide any rigorous and coherent approach
(alternative to the standard regression-based production function approach) which
can be used for consolidating empirical evidence on productivity differentials. Our
framework may be useful to provide such approach.

7.2 X-Inefficiency and Resource-Based View of the Firm

X-(in)efficiency theory of the firm is developed by Leibenstein (1966), Leibenstein
(1979) tries to capture the performance of the management at a micro-micro level
of analysis, trying to explore and characterize individual productivity differentials.9

A related stream of literature is the resource-based view (RBV) of the firm
(Barney 1991; Barney and Arikan 2001; Rumelt 1987; Dierickx and Cool 1989;
Peteraf 1993) which is based on the existence of sustained differences in firms’
resources and capabilities. In this field, researchers have proposed definitions
of resources and capabilities and the conditions under which they contribute
to competitive advantage. For instance, Makadok (2001) defines “resources” as
observable assets that can be individually valued and traded; “capabilities” as
organizationally embedded; Hoopes et al. (2003) suggest that scale advantages are

9It is interesting to recall here Griliches (1994) about Leibenstein’s X-inefficiency and the lack of
quantitative operationalization:

Our theories tend to assume that we are, indeed, at the frontier and that we can only either
move along it or try to shift it, the latter being a difficult and chancy business. In fact
we may be far from our existing “frontiers.” Harvey Leibenstein’s (1966) ideas about X-
efficiency, or more correctly X-inefficiency, did not get much of a sympathetic ear from
us. They were inconsistent with notions of equilibrium, the absence of unexploited profit
opportunities, and the possibilities for economic arbitrage. But real economic growth is
the consequence of both the appearance of such disequilibria and the devising of ways
of closing them. How quickly they are eliminated depends on the strength of incentive
systems within enterprises, and on their organizational quality. In spite of the large growth
in the literature on organizations, we have not yet developed useful ways of quantifying
their strengths and weaknesses (Griliches 1994, pp. 15–16). See also Griliches (2003).
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neither resources nor capabilities, but fall in a separate category of “cost drivers.”
Even so, the RBV has lacked the clarity required for empirical specification, it
has proved difficult to operationalize. Empirical work, such as Lieberman and
Dhawan (2005), has been largely ad hoc, lacking common approaches to modeling,
measures, and testing (Barney and Mackey 2005). A subsequent contribution by
Leibenstein and Maital (1992) suggests the data envelopment analysis (DEA)
approach to empirically estimate X-(in)efficiency differentials and hence links this
literature to the quantitative framework proposed in this chapter that may be well
suited for the operationalization of the performance measurement.

7.3 Economic Theory, Complementarity, and Innovation in
Production

Complementarity is an economic property opposite to substitutability and is a
classic topic in the theory of production. Factors of production (e.g., capital, labor)
are said to be complementary when they are jointly necessary for production.
Milgrom and Roberts (1990, 1995) have introduced a more sophisticated notion,
suggesting that firms may increase their production more than proportionally if
they achieve complementarity between sub-systems of the organization. Generally
speaking, complementarity involves the interactions among changes in different
variables in affecting performance. Two choice variables are complements when
doing (more of) one of them increases the returns to doing (more of) the other.
In more mathematical language, the incremental or marginal return to one choice
variable increases in the level of any complementary choice variable (Roberts 2007,
p. 34).

The conventional theory of the firm based on microeconomics offers a very poor
representation of complementarities. Marginal rates of substitution between inputs,
on the one hand, and economies of scope in multi-product firms, on the other hand,
are the only analytical tools available to explore complementary relations. The only
analytical treatment of complementarity in the mainstream theory of the firm was
proposed by Milgrom and Roberts (1990, 1995). More recently, the mathematical
theory of supermodularity has been employed to model complementary relations
also in a non-mainstream framework (e.g. Buenstorf 2005); however, this theory
is far from being full developed. Lindbeck and Snower (2003) showed that factor
complementarities together with transaction costs can determine the boundary of
the firm. Even if it is a nice attempt to integrate recent theories of the firm that
emphasize communication and coordination costs, principal-agent problems, and
so on, in the paper there is not an operationalization of this idea for empirical work.

An attempt to recognize a central role of production activities inside the theory of
the firm can be found in Morroni (2006). The flows and funds model of Georgescu-
Roegen is a representation of the production process that takes into account the
actual characteristics of production elements and processes such as indivisibility,
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complementarity, tacitness, and heterogeneity productive knowledge. In most liter-
ature, capabilities, transactions, and scale-scope are considered rival explanations
of firm competitiveness and organizational boundaries. Morroni (2006) shows that
these three aspects are not rivals, but they interplay in explaining the boundaries
and the competitiveness of the firm. Under radical uncertainty, complementarity
between inputs, indivisibility of inputs, and setup processes, the weight and the
interplay of these three aspects are significant; firm competitiveness is linked to
its ability of coordinating the development of capabilities, the arrangement of
transactions, and the design of the scale of production.

Morroni (2014) shows that there are three levels of analysis. The analysis of
inputs-outputs (first level) is encompassed in the analysis that is carried out by the
flow funds model that includes the organizational aspects of production and the
time dimension. This second level of analysis, the representation of the production
process with the flow funds model is then encompassed in the third level of analysis
that consider the theory of the firm and the production of new knowledge in which
processes (represented with the flow fund model) take place in historical time with
productive knowledge that is tacit, local, non-tradable, and heterogeneous across
firms. The implication for the theory of the firm is that innovative activity creates: (1)
tacit and heterogeneous knowledge; (2) unexpected outcomes (radical uncertainty);
(3) new processes that are characterized by indivisible and complementary funds.
The framework described in this paper encompasses the general representation of
the production process (see Sect. 4) required by Morroni (2014).

7.4 Comparative Institutional Analysis

The framework proposed in this chapter is particularly suited for comparative
institutional analysis. There has been an attempt to integrate the literature on
institutions, firm strategy, and technological innovation (see e.g. Nelson 1994, 1995;
Mowery and Nelson 1999; Tushman and Murmann 1998). This effort has developed
descriptive studies of how institutions, firm capabilities, and technologies co-evolve
so that particular societies and firms at specific moments in time excel in particular
kinds of innovations.

Even though there are innumerable discussions on institutional change, the
ability to measure the rate of institutional change is very limited. As pointed out
by Hollingsworth (2000), one of the reasons for this shortcoming is that the social
sciences are deficient in a theory of institutions, and there is a need to define
the parameters of institutional analysis. Therefore, Hollingsworth (2000) proposes
a map, with multiple levels at which institutional analysis occurs, see Table 3.
Theoretically, each of these areas on the map is interrelated with each other level.
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Table 3 Components of institutional analysis (Source: Hollingsworth 2000, p. 601)

1 Institutions Norms, rules, conventions,

habits and values

2 Institutional arrangements Markets, states, corporate hierarchies,

networks, associations, communities

3 Institutional sectors Financial system, system of education,

business system, system of research

4 Organizations

5 Outputs and performance Statutes; administrative decisions, the nature,

quantity and the quality of industrial products,

sectoral and societal performance

Note The five components in this table are arranged in descending order of permanence and
stability. That is, norms, conventions, etc. are more enduring and persistent than each of
the other components of institutional analysis. Each component is interrelated with every
other component, and changes in one are highly likely to have some effect in bringing
about change in each of the other components. For references on each component see
Hollingsworth (2000, p. 601)

7.5 Design of Evaluation and Control Systems

As we have seen in Sect. 2”, the assessment of productivity and efficiency is a
component of a broader process of performance assessment and management.
Within this process, the design of evaluation and control mechanisms is crucial.
Ouchi (1979) frames the problem of evaluation and control of organizations propos-
ing three mechanisms through which organizations obtain cooperations among a
collection of individuals that have only partially congruent objectives: (1) markets
that deal with the control problem through their ability to precisely measure and
reward individual contributions; (2) bureaucracies (Weber 1947, 2009) that rely
instead upon a mixture of closed evaluation with a socialized acceptance of common
objectives; and (3) clans that rely upon a relatively complete socialization process
which effectively eliminates goal incongruence between individuals (suited for
loosely coupled systems, see Weick 1976).

Ouchi (1979) states that the essential element which underlies any bureaucratic
or market form of control is the assumption that it is feasible to measure the
performance (output or behavior) with reasonable precision. He identifies two
conditions determining the measurement of behavior and of output: (1) the ability to
measure outputs and (2) knowledge of the transformation process. Under conditions
of ambiguity, loose coupling (Weick 1976) and uncertainty, measurement with
reliability and precision is not possible. In this case, the clan form of control which
operates by stressing values and objectives as much as behavior is preferable.
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7.6 Varieties of Governance

In the previous section, we introduced the classification of evaluation, coordinating
and control systems in market (based on worth), hierarchy (evenness) and network
or clan (appropriateness). This was developed in Ouchi’s (1979) and is at the base
of the recent theories of governance. Governance is necessary for analyzing the
complexity of contemporary policy-making that is the way in which a society and
its political processes are organized and steered. Governance is included in the per-
formance evaluation setup illustrated in Fig. 2. Recent trends include fragmentation
of the policy-making process (new stakeholders, NGOs, public opinion, and general
public), new governance arrangements, as responses to changes in state-societal
arrangements (characterized by policentrism, flexibility, co-operation, deliberation,
non-coerciveness). New actors enter in the policy arena, new policy instruments
are added: contracts, partnership, recommendations, participation, benchmarking,
learning. New policy tools emerge from these recent trends and should start to
be addressed by various other policy instruments, including financial incentives,
periodic evaluation, and request for transparent processes.

Governance is a heuristic tool with which to describe some of the complexity
of political processes. There is a variety of governance characterized by dynamics,
ability of government to change strategy (actions and interactions) and capacity
that is its effectiveness in achieving their objectives. A mode of governance is
an equilibrium of these three components at a moment (Capano et al. 2015).
Empirical oriented focus, policy mixes/instruments, connected to the performance.
Governance arrangements are usually composed by a prevailing coordinating
principle (hierarchy) accompanied by other principles (market and network). Real
governance arrangements consist of complex policy mixes, that is a blend of
different coordinating principles and their respective policy instruments (Capano
et al. 2012). The increasing role of market principles of coordination is an effect
of the financial crisis and the new public management policy instruments. Public
administration, more accountable and responsible, is needed to legitimize their
decisions outside the normal route of democratic parliamentary procedures. The
knowledge governance approach (Foss 2007) emerges to study how governance
mechanisms influence knowledge processes.

Governance is a problem solving activity in a dynamic context accounting for
strategy and capacity (Capano et al. 2015). The connection of governance to
performance measurement is an important issue, still rarely explored (Peters et al.
2018). The comprehensive approach we propose in this chapter may be a useful
reference for the operationalization of the performance measurement within the
varieties of governance.
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Water’s Contribution to Agricultural
Productivity over Space

Maria Vrachioli and Spiro E. Stefanou

Abstract After recent projections for food and agricultural production for the
next three decades, water is at the centre of the discussion. Given the increase in
population growth, food demand will increase and the agricultural sector will likely
have to expand the use of irrigation water to meet this rising demand. However,
water scarcity leads to significant water management issues in the agricultural
sector. With agriculture playing an important role in the water crisis as it is by far the
largest user of water, the emphasis is finding ways to allocate this scarce resource
more efficiently and to produce increasing quantities of food with decreasing
quantities of water. The improved effectiveness of water conveyance, the efficiency
in its use, and the associated impact on non-water input and output choices have
the potential to impact the economic well-being of the farming community and
promote the sustainability of agricultural production. The objective of this paper is
to contribute toward productivity-enhancing policies by estimating the magnitude of
gains from the more effective use of water in agriculture. The effectiveness of these
policies depends on the proper measurement of water’s contribution to agricultural
efficiency and productivity. This paper develops a measure of water’s contribution
to total factor productivity (TFP) change that accounts for spatial water quantity and
quality adjustments. This spatial model is a first attempt to estimate the contribution
of water use to agricultural productivity and to capture differences in farm-level
productivity due to head versus tail disparities in water allocation and water quality.
Water policy strategies should aim toward internalizing the spatial externalities and
encouraging productivity-enhancing techniques allowing the farmers to produce
more output with the same or even less water and to improve the quality of water
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used in the agricultural sector by deploying sustainable management practice and
promoting community engagement.

Keywords Agricultural water use · Total factor productivity · Spatial
optimization · Quantity and quality of agricultural water

1 Introduction to the Theoretical Framework

Sustainable and efficient water management constitutes one of the greatest twenty-
first century challenges that the world faces to ensure prosperity for all, address
poverty, and build resilient communities. With the world population projected to
reach 8.6 billion by 2030 (United Nations 2017), the demand for fresh water
is expected to increase exponentially. At the same time, the supply of water is
becoming less predictable due to climate change, and competition among different
users is rising. Energy and sanitization needs in expanding cities and rising food
demand in the agricultural sector will exacerbate global water stress, which can
hinder economic growth and shared prosperity.

Water touches practically every aspect of development, but puts particular
pressure on agriculture. Population growth, in combination with increasing incomes,
is leading to an increasing food demand with a higher nutritional quality that has
driven the agricultural sector to expand the use of water for irrigation, bringing
the water crisis to the center of the global debate (United Nations 2015). Water
shortages and fresh water competition from other sectors are two serious risks for
the sustainable development of agriculture. Thus, the next years are crucial for the
immediate implementation of policy scenarios that can establish not only food and
nutrition security but also promote water security and conserve water resources.

The current direction of projects related to sustainable agricultural water manage-
ment practices suggests that shifting to more productive, water-saving technologies
is the cornerstone to achieving effective use of agricultural water (IFPRI 2017;
World Bank 2017; United Nations 2015; FAO 2012). The improved effectiveness of
water conveyance, the efficiency in its use, and the associated impact on non-water
input and output choices have the potential to impact the economic well-being of
the farming community and promote the sustainability of agricultural production.

At a global level, 70–90% of fresh water withdrawals are used for agricultural
irrigation (Molden and Oweis 2007). In addition, irrigated land accounts for 20% of
the total cultivated land and for 40% of the total agricultural production (Rosegrant
et al. 2009). Thus, even small improvements in water productivity can have a
significant effect on the local and global water supply. In 2000, the UN Secretary
General in his Report to the Millennium Conference mentioned “We need a Blue
Revolution in agriculture that focuses on increasing productivity per unit of water—
more crop per drop” (Kofie A. Annan 2000). Also, FAO (2012) considers “an
increase in agricultural water productivity as the single most important avenue for
managing water demand in agriculture.”
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This paper uses a spatial model to examine water’s contribution to agricultural
productivity by assuming that water follows a gravity system where individual farms
draw this resource along a path (i.e. irrigation canal) extending from the water
source and ending at the last farm. The quantity of water in the canal decreases
with distance from the water source, with farmers at the tail end of the canal
facing potential water scarcity. Farmers near the water source are said to consume
a disproportionate share of irrigation water, while tail farmers are left with limited
and unreliable residual supplies (Wade 1982). Except for the water scarcity, farmers
at the tail end can face potential water quality degradation (Sigman 2002).

The model used in this paper follows the approach proposed by Chakravorty and
Roumasset (1991) and Chakravorty et al. (1995) augmented with irrigation return
flows as modelled by Huffaker and Whittlesey (2000). Based on Isard and Liossatos
(1979) and Knapp and Schwabe (2008), we address the spatial water allocation
model and we derive the rules for the economic optimization of water supplied to
the farmers at various distances from the water source. We next use the solutions
of the spatial optimal water allocation model to decompose total factor productivity
change over space at the farm level, and analyse water’s contribution and its shadow
value impact on agricultural productivity while we are accounting for spatial water
quantity and quality adjustments.

In the literature, the majority of the studies that use a spatial model of a water
project focus mainly on the efficient allocation of water (or allocative inefficiencies)
among farmers along an irrigation shared canal based on different investment
scenarios in on-farm irrigation efficiency as a mechanism to control water use in
agriculture. Our model differs from past spatial models of water conveyance along a
unidirectional irrigation canal with a fixed supply of water resources by examining
how agricultural water productivity changes over space including irrigation return
flows. In this paper, we investigate how changes in farm-level productivity over
space can reflect the economic performance of a water public infrastructure project.
The spatial optimal water allocation model provides us with the conditions needed
to explain how water quantity, water quality, and shadow value of water affect the
economic performance of the farmers (measured by productivity), while we are
moving away from the water source. This information can be used by policymakers
or social planners who are interested in maximizing the economic benefit of water
allocation across farmers along an irrigation infrastructure project, where farmers
make decisions on irrigation water use in sequence. This policy intervention can
be achieved, for example, by adjusting the water quantity received by the farmer at
each location and by charging farmers water permit prices according to the spatial
shadow values of water, when a water market exists. These shadow values of water
can also be adjusted to capture changes in the quality of water over space.

Agricultural water productivity (“crop per drop”) is a partial measure of eco-
nomic performance that focuses on a single input, water, and it is defined as
the ratio of total output produced to the water used. However, when the partial
factor productivity is estimated for variable inputs like water, misleading and biased
performance indicators may be produced. For example, a gain in agricultural water
productivity can come at the expense of agricultural labour productivity. In Fig. 1,
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Fig. 1 Agricultural water and labour productivity

moving from point A to point B decreases the amount of water used, which
increases the agricultural water productivity, but this also leads to a decrease in the
partial measure of agricultural labour productivity. To overcome the issue of biased
estimators, total factor productivity (TFP) measures that account for all the inputs
should be considered. This paper contributes to the existing literature of total factor
productivity assessment in the agricultural sector by isolating and studying the effect
of water use. While most of the studies attribute TFP growth to land productivity,
there is little or no evidence on how water affects agricultural productivity despite
its importance in the agricultural production process.

The remainder of this paper is organized as follows. The second Section presents
the optimization framework of the spatial model, and the derivation and decom-
position of agricultural productivity change over space into various components,
emphasizing on the contribution of water. We next solve the optimal water allocation
model by accounting for water quality changes over space, and then decompose the
quality adjusted productivity index. The fourth Section provides some concluding
remarks, policy recommendations, and suggestions for further research.

2 Model Specification

2.1 Spatial Optimization Problem

Following Chakravorty et al. (1995), we consider a single cropping season model of
a water distribution system conveying water from a source (e.g. a dam or an aquifer)
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into an irrigation canal.1 Farms are located on either side of this canal and draw
water from it for agricultural purposes. Also, farmers are assumed to be identical in
all aspects except for their distance from the head of the canal and that no investment
is made from the water distributor for improving the canal quality (e.g. earthen
canal). Departing from Chakravorty et al. (1995) and using Huffaker and Whittlesey
(2000), we assume that there is a portion (β) of the delivered water that has not been
consumed by the crops on the farm and re-enters the irrigation system. If β = 1,
all the unconsumed water is available as irrigation return flow; while when β = 0,
all the water that has not been used by the crops cannot be reused and it is lost
in the system. However, these are two extreme cases and in reality β takes values
between 0 and 1, where part of the unconsumed water returns to the system and can
be reused, while the other part cannot be retrieved and it is lost.

With w(r) being the quantity of water delivered to a farm at location r and
	(r) being the volume of instream flow at the same location, then the relationship
between instream flow and diverted water in a two-farm case framework (farms A
and B, with farm A located upstream) is given by

	B (r) = 	A (r)− wA(r)+ βwA(r) (1)

Changes in water diversion (w) upstream can lead to changes in the reliability
of water supplies downstream. The presence of return flows in Eq. (1) highlights
the linkage between upstream and downstream water use capturing potential water
quantity and quality externalities along an irrigation canal. These spatial trade-off
externalities can likely affect other water users further downstream at the end of the
irrigation canal, including other water utilities or environmental uses.

All farms produce the same output (y) using two inputs, the quantity of water
delivered to the farm (w) and an aggregate index of all the other inputs used by the
farmer in the production process (x). Let p denote the output price of the crop, z
the aggregate input price, and τ the price of water. Let r represent the distance of
each farm from the source, with r = 0 denoting the first farm. There is no loss
of water from the source to the first farm of the system, and r increases while we
are moving away from the source. The variable r can take values from the interval
[0, R], where R denotes the fixed length of the system. Also, the amount of water
available at the source, 	(0), is exogenously determined and is equal to w0. The
production function, f (x,w,	, r), has the usual properties that apply to stage II of
the neoclassical production function:

f (x,w,	, r) > 0 ; f ′ (x,w,	, r) > 0 ; f ′′ (x,w,	, r) < 0 (2)

1To assess agricultural water productivity change over space, we assume that water resource
availability follows a unidirectional flow with an exogenously determined and fixed initial supply,
and the source of water is external to the spatial model framework.
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where f (x,w,	, r) is a twice continuous differentiable, strictly increasing and
concave function in inputs and represents the maximum amount of output than
can be produced using aggregate input, x, and water, w, given the distance from
the water source, r . Also, the production function will be strictly increasing in the
instream flow, 	.

The spatially optimal maximization problem of an irrigation water shared infras-
tructure represents the value generating from the irrigation canal by aggregating the
individual maximum profits of farmers, considering the impact that distance has on
the availability of water along the canal, and is given by

maxπ
(x,w)

=
∫ R

0
[pf (x(r), w(r),	(r), r) − zx(r)− τw(r)] d r (3)

s.t. 	̇(r) = −w(r)+ βw(r) (4)

	(0) = w0 (5)

x(r), w(r) ≥ 0 (6)

where 	̇ is the spatial rate of change of instream flow at point r.
The objective of the above maximization problem (Eqs. (3)–(6)) is to define the

amount of delivered water, w(r), and the level of input use, x(r), to maximize
farmers’ profits, π , along an irrigation canal in a single cropping period, subject
to the equation of motion (Eq. (4)). The profit function, π(p, z, τ,	, r), is non-
decreasing in output prices, p, and non-increasing in aggregate input price, z, and
the price of water, τ . It is also convex in p, z, τ (Chambers 1988). Based on the
equation of motion, the instream flow adjusts to each location r according to the
volume of water diverted to the farm, w(r), and the portion of unconsumed water
that re-enters the system as irrigation return flow, βw(r). Finally, we assume that
the canal inflow at r = 0 is fixed at an exogenously determined level w0 (Eq. (5)).
For the profit maximization problem, the first order conditions are given as follows:

pfx − z = 0 (7)

pfw − τ − (1 − β)π	 = 0 (8)

The marginal value product of input use is equal to the input price (Eq. (7)), while
Eq. (8) shows that the marginal value product of water use is equal to the water price
plus the shadow value of instream flow (π	) weighted by the term (1−β) accounting
for the extent to which unconsumed water at the farm level re-enters the system
as irrigation return flow. In the case that the system is characterized by irrigation
return flows (β = 1), the marginal value product of water use will be equally to
the externally determined price of water, τ (Eq. (9)). On the other hand, with no
irrigation return flows (β = 0), the marginal value product of water use will be equal
to the externally determined water price, τ , plus the internally defined water price,
which is the shadow value of instream flow, π	 (Eq. (10)). From Eqs. (9) and (10),
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we can conclude that the marginal value product of water use in the absence of
irrigation return flows will be associated with a higher marginal cost of water use.

pfw = τ , ifβ = 1 (9)

pfw = τ + π	 , ifβ = 0 (10)

An approach to spatial optimization problem is the Bellman’s dynamic program-
ming equation (Kamien and Schwartz 1991). With sufficient differentiability, the
dynamic programming approach presented by Kamien and Schwartz (1991) can
be applied to a spatial framework and used to develop the necessary conditions of
optimal control. For the case of spatial adjustment:

0 = max
x,w

(pf (x,w,	, r) − zx − τw − π	w + βπ	w + πr) (11)

where the optimal choices are expressed as x∗ = x(p, z, τ,	, r) and w∗ =
w(p, z, τ,	, r). The optimized programming equation is given by

0 = (pf (x∗, w∗,	, r) − zx∗ − τw∗ − π	w
∗ + βπ	w

∗ + πr) (12)

where π	 = π	(p, z, τ,	, r) and πr = πr(p, z, τ,	, r). While π	 captures
changes in profit given a change in instream flow level (	); πr captures changes
in farmer’s profit given a change in location (r).

From Eq. (12) and the optimal solutions for x,w, π	, πr , we will obtain the
fundamental partial differential equation of the value function π(p, z, τ,	, r):

0=pf (x(p, z, τ,	, r), w(p, z, τ,	, r),	, r)−zx(p, z, τ,	, r)−τw(p, z, τ,	, r)

− π	 (p, z, τ,	, r)w(p, z, τ,	, r) + β π	(p, z, τ,	, r)w(p, z, τ,	, r)

+ πr (p, z, τ,	, r) (13)

Differentiating the optimized partial differential Eq. (13) at the optimal point with
respect to aggregate input price (z) yields

0 = pfx
∂x∗

∂z
+ pfw

∂w∗

∂z
− x∗ − z

∂x∗

∂z
− τ

∂w∗

∂z
− π	

∂w∗

∂z
+ βπ	

∂w∗

∂z
− π	zw

∗

+ βπ	zw
∗ + πrz (14)

Using Eqs. (14), (7), and (8), the optimal level of aggregate input use, x, can be
expressed as follows:

x∗ = −π	zw
∗ + βπ	zw

∗ + πrz (15)

Differentiating the optimized partial differential Eq. (13) at the optimal point with
respect to water price (τ ) gives
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0 = pfx
∂x∗

∂τ
+ pfw

∂w∗

∂τ
− w∗ − z

∂x∗

∂τ
− τ

∂w∗

∂τ
− π	

∂w∗

∂τ
+ βπ	

∂w∗

∂τ
− π	τw

∗

+ βπ	τw
∗ + πrτ (16)

From Eqs. (16), (7), and (8), the optimal level of water diverted to the farm is given
by

w∗ = −π	τw
∗ + βπ	τw

∗ + πrτ (17)

Rearranging Eq. (17) and substituting to Eq. (15), we have the following optimal
solutions for x and w:

x∗ = x(p, z, τ,	, r) = (β − 1)π	z
1 + (1 − β)π	τ

πrτ + πrz (18)

w∗ = w(p, z, τ,	, r) = 1

1 + (1 − β)π	τ
πrτ (19)

These optimal solutions, (x∗, w∗), exploit the derivative property of the value
function akin to a Hotelling’s lemma in the presence of change over space. Epstein
(1981) presents the duality properties for an optimization problem similar to this
type presented in Eqs. (3)–(6), along with candidate functional forms amenable to
econometric estimation.

Finally, differentiating the optimized partial differential Eq. (13) at the optimal
point with respect to the instream flow (	) leads to:

0 = pfx
∂x∗

∂	
+pfw

∂w∗

∂	
+ pf	 − z

∂x∗

∂	
− τ

∂w∗

∂	
−π	

∂w∗

∂	
+βπ	

∂w∗

∂	
−π		w

∗

+ βπ		w
∗ + πr	 (20)

Applying the first order conditions Eqs. (7) and (8) in Eq. (20) lead to

pf	 = −[(1 − β)w∗π		 + πr	] (21)

and using Eq. (4)

pf	 = −
(
π		

d	

dr
+ πr	

)
(22)

To facilitate interpretation of Eq. (22), we can differentiate the shadow value of
water, π	, with respect to the change over space, r , to yield:

dπ	

dr
= π		

d	

dr
+ π	r (23)
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Using Eq. (23), this leads to Eq. (22) being expressed as

pf	 = −dπ	

dr
(24)

which implies that the marginal value product of an additional unit of water at the
source equals the change in the shadow value of water available at the source over
space along the irrigation canal. As we are moving away from the source, the water
available to the farmers for irrigation purposes decreases and fewer farmers are able
to access it and gain value from it. Despite there is change in the shadow value of
instream flow while we are moving along the canal, this change is getting smaller
and smaller as we are getting away from the source.

2.2 Contribution of Agricultural Water to Total Factor
Productivity

The measure of the partial agricultural water productivity is defined as output per
unit of water used (yi/wi), where i = 1, 2, . . . , N . In Fig. 2, consider a starting point
A (wA, yA) that corresponds to a hypothetical farm. We can define two different
possible scenarios that lead to an increase in the agricultural productivity. Under the
first scenario, the farmer is moving from point A(wA, yA) to point B(wA, yB ), which

Fig. 2 Agricultural water productivity
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in economic terms means higher output production with the same amount of water.
In this case, agricultural water productivity is defined as yB/wA, with yB > yA.
Then, based on the second scenario, the farmer instead of producing in point A, she
is now producing in point C(wC, yA), which implies same output production with
less amount of water and now agricultural water productivity is defined as yA/wC ,
with wA > wC . Consequently, an improvement in agricultural water productivity
can be occurred either by increasing output holding water usage constant, or by
decreasing water usage while the output level remains the same.

Total factor productivity change over space, ˆT FP , is the change in outputs
explained by the change in water use over space ( ˆT FPw), or by the change in both
aggregate input index and water use over space ( ˆT FP ). Under the framework of
spatial adjustment, the formulas of total factor agricultural productivity change over
space with an emphasis in water use and with respect to all the inputs are given by
Eqs. (25) and (26), respectively:

ˆT FPw = dy

dr

1

y
− dw

dr

1

w
(25)

ˆT FP = dy

dr

1

y
−
(∑ dx

dr

1

x
+ dw

dr

1

w

)
(26)

where y = f (x,w,	, r) represents the production technology, which is the same
for all the farms along the irrigation canal.

Solow (1957), Jorgenson and Griliches (1967) and Christensen and Jorgenson
(1970) pioneered efforts in multiple factor definitions of productivity. Luh and
Stefanou (1991) develop the multiple output total factor productivity growth under
dynamic adjustment and present an estimation of growth indices for US production
agriculture. The measure of the total factor productivity change under spatial adjust-
ment is derived by totally differentiating the production function y = f (x,w,	)

with respect to distance, r:

dy

dr

1

y
=
∑

fx
dx

dr

1

y
+ fw

dw

dr

1

y
+ f	

d	

dr

1

y
(27)

where

∑
fx

dx

dr

1

y
=
∑ zx

py

dx

dr

1

x
=
∑ zx

py
x̂, using Equation (7) (28)

fw
dw

dr

1

y
= (τ+π	−βπ	)w

py

dw

dr

1

w
= (τ+(1−β)π	)w

py
ŵ, using Equation (8)

(29)

f	
d	

dr

1

y
= (π		w − βπ		w − πr	)	

py

d	

dr

1

	

= ((1 − β)π		w − πr	)	

py
	̂, using Equation (21) (30)

whereˆ indicates the proportional rate of change over space.
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From Eqs. (25) and (28) to (30), the total factor productivity change over space
with an emphasis in water use, ˆT FPw, can be decomposed as

ˆT FPw =
∑ zx

py
x̂ + (τ + π	 − β)w

py
ŵ + ((1 − β)π		w − πr	)	

py
	̂ − ŵ

(31)

ˆT FPw =
∑ zx

py
x̂ + τw

py
ŵ + π	(1 − β)w

py
ŵ + π	(w(1 − β) − 	̇)

py
π̂	 − ŵ

(32)

Defining total factor productivity spatial change as the difference between output
change and input change over space (aggregate input use, x̂, and water use, ŵ), we
obtain from Eqs. (26) and (28)–(30):

ˆT FP =
∑ zx

py
x̂ + (τ + π	 − βπ	)w

py
ŵ + ((1 − β)π		w − πr	)	

py
	̂ − x̂ − ŵ

(33)

ˆT FP=
(∑ zx

py
−1

)
x̂+
(
τw

py
−1

)
ŵ + π	(1 − β)w

py
ŵ + π	(w(1 − β) − 	̇)

py
π̂	

(34)

ˆT FP =
(

1

εc
− 1

)
F̂ + π	(1 − β)w

py
ŵ + π	(w(1 − β) − 	̇)

py
π̂	 (35)

where F̂ is the change in all the inputs used in the production process and is defined
as the summation of input change, x̂, and water change, ŵ, along the irrigation
canal; and εc is the scale elasticity and is defined as the ratio of average cost (AC)
to marginal cost (MC). When the scale elasticity is equal to one, the production
technology is characterized by constant returns to scale and there is no scale effect.
In the case that scale elasticity is greater than 1 (less than 1), the farm operates under
increasing (decreasing) returns to scale.

Table 1 presents the interpretation of all the components of ˆT FPw and ˆT FP .
The additional total factor productivity components that are associated with the
change of water use along the irrigation canal, comparing to the traditional total
factor productivity, are: (1) the change in the water use with internal values,
π	(1−β)w

py
ŵ, and (2) the change in the shadow value of water, π	(w(1−β)−	̇)

py
π̂	.

Both of these components are also weighted by the extent to which unconsumed
water returns to the system and can be used by other farmers downstream, β.

The components of total factor productivity in Eqs. (32) and (35) can be
estimated either computationally or involving restrictive production function spec-
ification for a closed form solution. For the latter case, farm-level data on the full
range of farm inputs, including water conveyed, and output choices are needed in a
spatial framework in which the exact position of each farm along the irrigation canal
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Table 1 Definition of the components of spatial total factor productivity decomposition

Expression Description∑ zx
py

x̂ Change in variable input
use

The change in the use of
variable inputs along the canal,
excluding water

τw
py

ŵ Change in water use with
external values

The change in water use along
the canal using externally
determined prices for water (τ )

π	(1−β)w
py

ŵ Change in water use with
internal values

The change in water use along
the canal using internally
determined prices for water
(π�)

π	(w(1−β)−	̇)
py

π̂	 Change in shadow value
of water

The change in shadow value of
water from moving along the
canal

(
1
εc

− 1
)
F̂ Total input scale effect The scale effect captured by

changes in the use of inputs,
including water, along the canal

Quality adjustment

π̃	(1−β(qww−q))w
py

ŵ Change in water use with
internal values

The change in water use along
the canal using internally
determined prices for water
(π�)

- QUALITY ADJUSTED -

π̃	(w(1−βq)−	̇)
py

ˆ̃π	 Change in shadow value
of water

The change in shadow value of
water from moving along the
canal

- QUALITY ADJUSTED -

βwπ̃	q
py

q̂ Change in water quality The change in quality of water
from moving along the canal

is reported. However, the availability of data for modelling purposes at different
spatial scales can be an issue.

3 Accounting for Water Quality Adjustments over Space

Apart from capturing the quantity aspect of water, the proposed model can also
be extended by considering debates about agricultural water quality, as the head
versus tail conflict not only affects the quantity of water but also its quality. The
reusable property of water can suffer from externalities related to salinity from
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irrigation and nitrate pollution from the use of fertilizers. Deterioration in the
agricultural water quality can lead to decreasing water productivity, as upstream
water use can have spillover effects on downstream farmers. The proposed spatial
framework can incorporate water quality adjustments in the agricultural water
productivity measurement and enable policy makers to examine the effect of
advancing agricultural water management on both water quantity and quality.

Disputes over water quality along a canal have recently been the source of
international or intra-national conflicts over water rights. The increasing use of
chemicals and the intensification of agriculture due to higher food demand can
result in water quality issues. For studying the spatial patterns of pollution along
a canal, we can model the behaviour of the farmer who wants to optimally
increase her profits, but she does not take into consideration the external effects
on downstream farmers. As a result, upstream water use can have spillover effects
on downstream farmers (Sigman 2002). Despite the fact that the farmers can face the
same technology and output prices along a canal, due to externalities, the allocation
of clean water among them is not efficient and market failure can arise.

The water quality dimension enters the spatial optimization model described
above by using a water quality indicator, q, that can vary over space and is a
function of the amount of water diverted, w, and the volume of water in the canal,
	 (Kanazawa 1991). While on the one hand, upstream water diversions can affect
the quality of water in the canal due to the amounts of dissolved solids that are
discharged back into the canal, on the other hand, reducing volume of instream flow
downstream can also be associated with diminishing surface water quality. In partic-
ular, water quality spatially diminishes with increases in upstream water diversions
(qw < 0) and with decreases in the volume of instream flow in the canal (q	 > 0).

To model the water quality impact on TFP change over space, it will be assumed
that the quality of water in the canal is directly associated with the quantity of
the return flow, βw(r). This implies that the equation of motion of the spatial
optimization model will be given by

	̇(r) = −w(r)+ q(w,	)βw(r) (36)

In this case, the new spatial optimization problem, where π̃(p, z, t,	, r, g(.))

reflects the water quality adjusted profit, is given by

maxπ̃
(x,w)

=
∫ R

0
[pf (x(r), w(r),	(r), r) − zx(r) − τw(r)] d r (37)

s.t. 	̇(r) = −w(r)+ q(w,	)βw(r) (38)

	(0) = w0 (39)

x(r), w(r) ≥ 0 (40)

The first order condition with respect to the aggregate input use, x, remains the
same like in Eq. (9), while the one with respect to the water use, w, changes to the
following expression:
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pfw − τ − (1 − qβ − qwβw)π̃	 = 0 (41)

The quality adjusted marginal value product of water use is equal to the water price
plus the shadow value of instream flow adjusted for changes in water quality over
space. This quality adjustment is captured by the term (1 − qβ − qwβw) showing
that water quality changes over space due to the quality of the irrigation return flow.
The optimal solutions for the aggregate input use, x, and for the water diverted to
the farm, w, can be expressed as follows:

x∗ = −π̃	zw
∗ + qβπ̃	zw

∗ + π̃rz (42)

w∗ = −π̃	τw
∗ + qβπ̃	τw

∗ + π̃rτ (43)

Rearranging Eq. (43) and substituting to Eq. (42), we have the following optimal
solutions for x and w that account for both water quantity and quality spatial
adjustments:

x∗ = x(p, z, τ,	, r) = (qβ − 1)π̃	z
1 + (1 − qβ)π̃	τ

π̃rτ + π̃rz (44)

w∗ = w(p, z, τ,	, r) = 1

1 + (1 − qβ)π̃	τ
π̃rτ (45)

In addition, Eq. (46) shows that the quality adjusted marginal value product of an
additional unit of water at the source equals the change in the shadow value of water
available at the source plus a quality adjusted shadow value of water associated
with the change in the quality of water given a change in the volume of instream
flow (Eq. (46)).

pf	 = −
(
dπ̃	

dr
+ q	βw

∗π̃	
)

(46)

Then, the total factor productivity change over space with an emphasis in water use
with water quality adjustments will be decomposed as follows:

ˆT FP
q

w =
∑ zx

py
x̂+τw

py
ŵ+ π̃	(1 − β(qww − q))w

py
ŵ + π̃	(w(1 − βq) − 	̇)

py
ˆ̃π	

− βwπ̃	q

py
q̂ − ŵ (47)

The water quality adjusted total factor productivity spatial change, accounting for
both aggregate input and water change, can be given by the following expression:

ˆT FP q =
(

1

εc
−1

)
F̂+ π̃	(1−β(qww − q))w

py
ŵ+ π̃	(w(1−βq)−	̇)

py
ˆ̃π	

− βwπ̃	q

py
q̂ (48)
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The lower part of Table 1 presents the three components of the quality adjusted TFP
and their interpretation. In the case that the water quality dimension is not ignored,
the change in the water use with internal values ( π̃	(1−β(qww−q))w

py
ŵ) and the change

in the shadow value of water ( π̃	(w(1−βq)−	̇)
py

ˆ̃π	) are weighted by the water quality
indicator, q. Further exploring the water quality adjusted TFP change over space,
there is an extra component that captures the direct impact of changing water quality
over space (βwπ̃	q

py
q̂). This component indicates that agricultural productivity can be

negatively affected by changes in the quality of water while we are moving away
from the water source, and the magnitude of this effect is related to the quality of
the return flows and the shadow value of water.

4 Discussion and Further Remarks

4.1 Irrigation Efficiency, Technical Efficiency, and Water
Productivity

In the context of sustainable agriculture and water resources, many empirical studies
have focused on measuring agricultural water efficiency and productivity that are
essential aspects of sustainable agricultural production. However, among these
studies there is no consensus on the definitions and estimation procedures of these
performance indicators in agriculture (Giordano et al. 2017). This heterogeneity
stems from the complex nature of water and its numerous users (farmers, municipal
water utilities, industries, and recreational users) in different geographical scales.
For this reason, the absence of common measures of agricultural water efficiency
and productivity has led to different results. Based on Van Halsema and Vincent
(2012), the content and the purpose of each study are the main drivers of which
measure is used.

While irrigation efficiency can provide useful information regarding the perfor-
mance of the irrigation system, its economic rationale is suspect. In the engineering
field, irrigation efficiency is defined as the ratio of the water diverted from a
specific source to the water received at the farm level and contributed to output
growth. In this case, irrigation efficiency is measured in physical units of water
without accounting for output value, allocation of inputs, or even environmental
externalities. However, when crop production or farm profitability is the items of
interest, economic efficiency is the concept to be used to enable the measurement
and interpretation of the economic implications of an irrigation system.

Economic efficiency can be defined as the maximum attainable output that can
be produced (technical efficiency) and the optimal allocation of inputs (allocative
efficiency) when the farmer exploits the full potential of the available production
technology. Input-specific efficiency can be a special case of the input-oriented
measure of efficiency with the only difference that we are interested in a single input,
i.e. irrigation water (Lansink et al. 2002; Kapelko et al. 2015). While input-specific
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efficiency measures can be a useful tool for policy makers, their use in the efficiency
literature is limited. Water-specific efficiency in the agricultural economics literature
has mainly be limited to the context of technical efficiency measures examining the
impact of different irrigation systems on technical efficiency levels (Bravo-Ureta
2014).

In addition, productivity also plays an important role in the economic literature
and is defined as the ratio of output(s) to inputs(s) and serves as measure of how well
economic units can transform inputs into output(s). Agricultural water productivity
(“crop per drop”) is a partial productivity measure of economic performance that
focuses on a single input, water, and is affected by the farmers’ managerial abilities
among other factors. However, the criticism is whether it can serve as a useful
agricultural performance measure. Partial factor productivity can produce unbiased
performance measures when it accounts for quasi-fixed input changes. However,
when the partial factor productivity is estimated for variable inputs, like water,
misleading and biased performance indicators may be produced. To address the
problem of biased estimators, total factor productivity measures that account by
definition for all input adjustments need to be considered.

Regardless of which measure the analyst selects, irrigation efficiency, (input-
specific) technical efficiency, and agricultural (total factor or partial) productivity
are three different measures assessing performance. While most of the research has
been focused on measuring the impact of spatial allocation of water on irrigation
or technical efficiency, this paper applies the spatial optimization framework with
return flows to assess the impact of water allocation along a canal to agricultural total
factor productivity. We highlight the role of water in the measurement of agricultural
productivity by decomposing the productivity measurement into components asso-
ciated with changes in shadow value of water, and water quantity and quality over
space. We are able to identify costs associated with both water quantity and water
quality changes due to upstream–downstream externalities through the change in
the shadow values of water along the canal.

4.2 Future Outlook

Although the study in this paper is static, the dynamic nature of water highlights
that water lost in seepage often ends up as groundwater recharge and is available for
pumping. In this case, the proposed model can be extended to include not only the
use of surface irrigation water from the canal but also groundwater from the aquifer
with the irrigation technology at each location being determined as a function of
the irrigation return flow (Umetsu and Chakravorty 1998; Chakravorty and Umetsu
2003). According to Chakravorty and Umetsu (2003), the optimal water allocation
suggests specialization: upstream farmers tend to use surface water for irrigation
while downstream farmers pump from the aquifer as very often they do not have
access to secure supplies of canal water. In reality, farmers usually drew on a mix of
surface water and groundwater irrigation with the portion of surface water relative to
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groundwater decreasing along the irrigation canal. Irrigation return flows can have a
significant economic value (Griffin and Hsu 1993) and including them in the spatial
modelling framework can affect the level of productivity at the farm level, and alter
the spatial distribution of water and its shadow value across space. Also, high water
table elevation and transfer of water between locations can affect the decision of
farmers to pump groundwater from the aquifer as the pumping costs can vary with
location and the stock of groundwater.2

Studying the allocation of water over space and time in the same framework will
allow future work where the agricultural land allocation/conversion effect due to
changes in water access can be modelled.3 This land reallocation effect due to water
availability can be included as a state variable in the proposed optimization model
and then the land/farm size effect can be incorporated in the total factor productivity
decomposition. While this can be a very interesting extension of the current paper
with important policy implications as most of the total factor productivity growth in
the agricultural sector comes from land productivity, it comes with some limitations
that need to be addressed. First, the reality of land transfers/allocations in the
agricultural sector is not frequent. And if these land size changes occur under
variable returns to scale, this can adversely affect the economic performance of the
farmers. In addition, land reallocations can be difficult due to spatial constraints and
land market imperfections that can lead to land transfer/allocation inertia.

Some of the simplifying assumptions of the model in this paper could be relaxed
in future work with the spatial model of water use to accommodate multiple-
input and multiple-output production technologies. In addition, the spatial model
proposed in this paper can be extended by considering the possibility of changing
the production technology over space. Due to the head versus tail water disparities,
farmers can decide to use another production technology as the distance from the
water source is changing. For example, within the conjunctive surface water and
groundwater regime, farmers may choose to use a different production technology
(i.e. invest in groundwater pumping equipment) to assure water supplies.

Finally, scaling-up the spatial change of total factor productivity in unidirectional
framework could be of great importance for policy analysis; however, there may
be many obstacles in this attempt. While this paper is purely characterized by
a micro-level, project-specific framework, it can be scaled-up to a watershed
level. However, assessing the impact of agricultural water quantity and quality to
productivity change over space at the country level can suffer from modelling and
data limitations. Regarding the modelling aspects, the assumption of a unidirectional
flow with exogenously determined initial water supply needs to be relaxed in future
work. In this way, we can expand the optimization modelling framework in a

2The use of both surface and ground water in the same spatial optimization framework needs to be
augmented by the inherent quality differences between these two different water sources.
3We thank two anonymous referees for raising the issue of agricultural land change due to water
availability. This suggestion can make the current proposed modelling framework more intricate
and open the door for future extensions.
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more aggregated level (i.e. country) when multiple sources of water with different
geographical and political boundaries are shaping the supply of water. In addition,
while water plays an important role in the agricultural production and the impact
of water stress due to climatic variability on agricultural productivity has been
extensively highlighted in the last decade. However, information on water quantity
and quality is not included in the productivity accounts of the countries. When this
information will be available in more aggregated levels, this will allow us to scale-up
the framework and analysis presented in this paper.

5 Conclusion

Current discussions on agricultural water management issues, due to irrigation
water scarcity, have resulted in many policy recommendations aiming to enhance
effective water use in agriculture. The magnitude of gains from the more effective
use of agricultural water imply that water policy can aim toward efficiency- and
productivity-enhancing techniques that can lead to better use of scarce water
resources and sustainability of the ecosystems. However, the effectiveness of
these policies depends on the proper measurement of water’s contribution to
agricultural productivity. Given the intensity of water used in agriculture, even small
improvements in agricultural productivity associated with irrigation water use can
have a significant impact on local and global water resources. The water savings can
be used to improve water allocation on a local level, and farms that utilize the same
water source can have access to reliable water allocations regardless of being placed
close to or far away from the water source.

This paper presents a unique framework for measuring the contribution of water
to total factor productivity in the agricultural sector. The analysis is carried out
within a spatial framework, which enables the measurement of productivity along an
irrigation canal accounting for both quantity and quality aspects of water. Improving
water’s contribution to productivity under the water scarcity constraint must address
the issue that not all individuals or regions experience the water shortages when
taking a global perspective. Those at the head of the water source have access
to abundant clean water relative to the other downstream users, and thus have
no incentive to limit their consumption, or alter their current practices to the
detriment of producers downstream. A spatial model generating measures of water’s
contribution to productivity along a canal by determining optimal water allocation
can accommodate this externality.

The proposed spatial model in this paper captures the differences in productivity
in the agricultural sector due to head versus tails discrepancies in water allocation,
while at the same time it accounts for irrigation return flows and their impact
on water quality. The results of the spatial optimization model suggest that in
the absence of irrigation return flows the farmer faces a higher marginal cost of
irrigation water use. In addition, the spatially adjusted total factor productivity index
provides insight on how a change in location can affect the shadow value of water
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and the water use based on this value, when both elements are weighted by the level
of irrigation return flows. More specifically, the quantity of water decreases and the
shadow value of water increases at a decreasing rate as we are moving away from
the source. The shadow value of water within the proposed framework captures the
extra cost that the farmer needs to absorb due to the change in the quantity of water
while we are moving along the canal.

With water quality deterioration being another major concern related to the
management of water resources in agriculture, the proposed spatial model is
enhanced on accounting for changes in the quality of water over space. The water
quantity and quality adjusted TFP decomposition reveals the impact of diminishing
water quality over space in agricultural productivity given a change both in the
quantity of water diverted in each location, and consequently the quantity of return
flows, and in the volume of instream flow while the distance from the water source
is increasing. It has been found that agricultural productivity is negatively affected
by changes in the quality of water while we are moving along the canal with the
magnitude of this effect related to the shadow value of water and the extent of
return flows. The quality adjusted shadow value of water captures the effect of water
quality externalities on farmer’s economic performance due to the spatial water
trade-off.

Water policy strategies should aim toward internalizing the spatial externalities
and encouraging productivity-enhancing techniques allowing the farmers to produce
more output with the same or even less water and to improve the quality of water
used in the agricultural sector by deploying sustainable management practice and
promoting community engagement. Policy makers can improve water use efficiency
and productivity, spatial water allocation and management through different mech-
anisms. Attention should be paid on aligning the water management strategies of
producers with the overall goal of socially efficient water use (Wichelns 2003).
This can be achieved through economic instruments (Huffaker and Whittlesey 2003;
Tiwari and Dinar 2000) such as water pricing (Dinar and Subramanian 1997) or
subsidies for improved irrigation technologies that can enhance the spatial allocation
of water resources and the choice of technologies upstream that ensure not only
adequate quantity of water for downstream farmers but also diminishing return flows
and run-off that can directly affect the quality of water downstream. In addition,
regulatory approaches related to the management of water rights (Meinzen-Dick
and Bakker 2001) and permits on performance-based norms and standards can
encourage farmers to achieve higher water productivity levels that can offset the
cost of the water rights and permits.
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A Survey of the Use of Copulas
in Stochastic Frontier Models

Christine Amsler and Peter Schmidt

1 Introduction

Copulas are used to create joint distributions with specified marginal distributions.
The copula models the dependence between the corresponding marginal random
variables. In the normal case, the multivariate normal distribution is a natural choice
of joint distribution with normal marginals and its covariance matrix parameterizes
the dependence between the individual marginal normals. But how would we
specify a joint distribution for a normal and a half-normal, where these two random
variables are allowed to be dependent? We can do this using copulas.

We will distinguish three different motivations for the use of copulas in the
stochastic frontier literature. (1) Allowing statistical noise and inefficiency to be
dependent (correlated) in an otherwise standard stochastic frontier model (SFM).
(2) Allowing dependence between different composed errors and/or other types of
errors; for example, with panel data, or across different equations in a multi-equation
model. (3) Allowing non-standard types of dependence between the errors in a
multi-equation system. We will discuss papers that fit into each of these categories.

Although this is a survey, we will try to make it more than a list of papers. We
will discuss some important issues that arise as a consequence of different modeling
strategies and which have not previously been systematically addressed.

The plan of the paper is as follows: Section 2 gives a few basic results about
copulas. Section 3 discusses dependence between noise and inefficiency in an
otherwise standard SFM. Section 4 covers panel data and errors in different
equations in a multi-equation system. Section 5 discusses non-standard types of
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dependence. Section 6 discusses the problem of choosing a copula. Finally, Section
7 gives some concluding remarks.

2 Copula Basics

We begin with two basic facts. (1) If Z has cdf F, then W ≡ F(Z) is uniform on [0,1].
(2) If W is uniform on [0,1] and F is a cdf, then Z ≡ F−1(W) has cdf F.

Definition A copula is a multivariate distribution whose marginal distributions are
uniform.

The copula, therefore, is the distribution of the cdf values (W, above) of a set of
random variables.

We will use the following standard notation. The copula cdf is C(w1, . . . , wn)
and the copula density is c(w1, . . . , wn), where n is the number of random variables
linked by the copula.

Here are some examples (all for n = 2).
Independence: c(w1, w2) = 1
Farlie–Gumbel–Morgenstern (FGM):

c (w1, w2) = 1 + θ (1 − 2w1) (1 − 2w2)

Normal:

c (w1, w2) =
(

1 − ρ2
)− 1

2
exp

[
−1

2

(
1 − ρ2

)−1 (
ρ2w2

1 + ρ2w2
2 − 2ρw1w2

)]

These are prominent examples, but there are many, many more copulas. For one
(long) list of copulas, see Nadarajah et al. (2017).

The basis for most uses of copulas is the following important result. We state it
somewhat informally. For a more technically detailed statement, see, for example,
Nelson (2006, p. 18).

Sklar’s Theorem
Suppose that Z1, . . . , Zn have marginal cdfs F1(z1), . . .Fn(zn); marginal densities
f1(z1), . . . fn(zn); joint cdf H(z1, . . . , zn); and joint density h(z1, . . . , zn). Then

h (z1, . . . , zn) =
∏n

j=1
fj
(
zj
) · c (w1, . . . , wn) , (1)

where wj = Fj(zj), j = 1, . . . , n.
We note that we have h (z1, . . . , zn) = ∏n

j=1fj
(
zj
)

if Z1, . . . , Zn are mutually
independent. If they are not mutually independent, the extra term c(w1, . . . , wn) in
(1) quantifies their dependence.
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This theorem has two parts: First, if we specify a joint distribution h for con-
tinuous random variables Z1, . . . , Zn, the marginal distributions and the copula are
uniquely defined. The uniqueness of the copula depends on these being continuous
random variables. Second, and for our purposes more importantly, if we specify the
marginal distributions and a copula, then h as defined above is a joint distribution,
and it has the correct marginals and it implies the correct copula. So, to construct
a joint distribution with specified marginal distributions, we just need to choose a
copula.

The first use of copulas in econometrics appears to be Lee (1983). He has a
selectivity model with non-normal errors that he wants to be correlated. So, in
generic terms, he wants random variables U1 and U2 to have cdfs F1 and F2. To
do this he assumes the representation

U1 = F−1
1 (� (V1)) , U2 = F−1

2 (� (V2)) , (2)

where (V1, V2) has a standard bivariate normal distribution (means equal to 0,
variances equal to 1, correlation ρ) and where Φ is the standard univariate normal
cdf. Lee was not aware of copulas, and he (correctly) reinvented the normal copula.

3 Allowing Dependence Between Noise and Inefficiency

The first use of copulas in the stochastic frontier literature appears to be Smith
(2008). He considers a SFM with composed error ε = v − u, where v is noise
and u ≥ 0 is inefficiency. (For notational simplicity we suppress the observational
subscript “i.”) He does not want to assume that v and u are independent, so he uses
a copula to model their dependence.

The most standard case in the SF literature is that v is normal and u is half-normal,
in which case it is well known that if v and u are independent, ε has a skew-normal
distribution. If v and u are dependent, the distribution of ε is generally intractable.
However, in the case that v is logistic and u is exponential and the FGM copula
is assumed, Smith derives closed-form expressions for the density of ε and for the
usual predictor of u, û = E (u|ε). He also considers the normal/half-normal model
with three different copulas where these closed-form expressions are analytically
intractable.

If the density of ε is analytically intractable, it can be calculated by numerical
integration, or by simulation, leading to a simulated likelihood function. The
marginal distributions for v and u and the assumed copula yield a joint density
h(v, u). Then the joint density of ε and u is

h(ε + u, u) and the marginal density of ε is

fε (ε) =
∫ ∞

0
h (ε + u, u) du.



128 C. Amsler and P. Schmidt

This can be calculated by numerical quadrature, which is what Smith does.
Alternatively,

fε (ε) =
∫ ∞

0

h (ε + u, u)

fu(u)
· fu(u)du = Eu

h (ε + u, u)

fu(u)
, (3)

where “Eu” means the expectation over the distribution of u. This corresponds
to Eq. (3.6) of Smith. We can calculate (estimate) this density as the average of
h(ε+u,u)
fu(u)

over a large number of draws from the distribution of u. This is a slight
generalization of the method of simulated likelihood in the case of independence of
v and u, for which a standard reference is Greene (2003).

This can be simplified (or at least rewritten) by noting that h(v, u) = fv(v) · fu(u) ·
c(Fv(v), Fu(u)) and therefore

fε (ε) =
∫ ∞

0
c (Fv (ε + u) , Fu(u)) · fv (ε + u) · fu(u)du (4)

= Eu

[
c (Fv (ε + u) , Fu(u)) · fv (ε + u))

]
.

This may or may not be easier to simulate than the expression in (3).
We note that the simulation based on (3) does not require that fu(u) be the correct

marginal density of u. That is, for an arbitrary density p(u), we can write

fε (ε) =
∫ ∞

0

h (ε + u, u)

p(u)
· p(u)du = Ep(u)

h (ε + u, u)

p(u)
, (5)

where the notation Ep(u) indicates the expectation over the distribution p(u). This
is called importance sampling. It could be useful in cases in which it is difficult to
sample from the true density fu(u), or we do not know how to do so, but there is a
similar density p(u) from which it is easy to sample. Similarity of p(u) and fu(u) is
important so that the ratio h(ε+u,u)

p(u)
is not close to 0 or infinity.

For the calculation of û = E (u|ε), similar considerations apply. The joint
density of ε and u is h(ε + u, u), as above. The density of u conditional on ε is
h(ε + u, u)/fε(ε) and

E (u|ε) =
∫ ∞

0
u
h (ε + u, u)

fε (ε)
du = 1

fε (ε)

∫ ∞

0
uh (ε + u, u) du.

This corresponds to Eq. (3.7) of Smith. It can be calculated numerically, or by
simulation. To calculate it by simulation, note

E (u|ε) = 1

fε (ε)

∫ ∞

0
u
h (ε + u, u)

fu(u)
fu(u)du = 1

fε (ε)
Eu u

h (ε + u, u)

fu(u)
(6)
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As in the calculation of the density of ε, we can calculate the last term by
averaging over a large number of draws from the distribution of u. However, this
requires two separate simulations: one to obtain the density of ε and a second one
to obtain the last term in the equation above.

An alternative is to estimate E(u| ε) nonparametrically. If we can make draws
from the joint distribution of (v, u), then we can construct draws from the joint
distribution of (ε, u), just by calculating ε = v − u. From a sample of such draws,
we can estimate E(u| ε) using nonparametric methods such as kernels or nearest
neighbors. This procedure is used (in a different context) by Amsler et al. (2014).

Quite a few other papers use copulas to allow for dependence between v and
u. A few of these papers choose the marginal distributions and copula in such
a way that analytical expressions can be found for the density of ε and/or the
value of E(u| ε). For example, Gomez-Deniz and Perez-Rodriguez (2015) consider
the normal/half-normal model with a Sarmanov copula, which allows closed-
form expressions. Gomez-Deniz and Perez-Rodriguez (2017) also consider the
normal/exponential model in which a different Sarmanov copula allows analytical
expressions. Similarly, Bonanno et al. (2017) assume that noise is Type 1 logistic,
inefficiency is exponential, and the copula is the FGM copula, which also allows
closed-form expressions. Their motivation is to allow the possibility of either
positive or negative skew for ε.

Other examples include El Mehdi and Hafner (2014), who suggest inference
via bootstrapping; Kinaci et al. (2016), Najjari et al. (2016), Pipitpojanakarn et al.
(2016), who consider a stochastic frontier quantile model; and Tibprasorn et al.
(2017).

4 Allowing Dependence Between Different Composed Errors
or Composed Errors and Other Errors

4.1 Panel Data

Suppose that we have panel data consisting of T observations on each cross-
sectional unit. So (again suppressing the cross-sectional subscript) we have ε but
now ε = (ε1, . . . , εT )

′
, and similarly for v and u. Suppose that the εt (t = 1, . . . , T)

are identically distributed as skew-normal, the standard composed error distribution.
So we are assuming that vt and ut are independent. The only issue is correlation of
v or u over different values of t.

An important point is that we can ignore this correlation. The quasi-MLE based
on the likelihood that (incorrectly) assumes independence over t is consistent. The
conventional standard errors would be incorrect, but they can be corrected using the
familiar HAC standard errors. Also the usual Jondow et al. (1982) form of ût =
E (ut |εt ) applies.



130 C. Amsler and P. Schmidt

So why use a copula? There are two possible reasons: First, by accounting for
the autocorrelation, we can have a more efficient estimation. Second, and more
importantly, in some models we can have a better prediction of the ut.

Amsler et al. (2014) discuss both of these points. They consider two models: In
Model 1, they assume a copula for the joint distribution of ε. In Model 2, the vt are
i.i.d. (over t) and they assume a copula for the joint distribution of u.

Model 1 was previously considered by Shi and Zhang (2011). The advantage of
Model 1 is that it is straightforward. A closed-form expression exists for the joint
distribution of ε and therefore for the likelihood. This yields more efficient estimates
than the quasi-MLE that assumes independence. The disadvantage is that we still
must use the Jondow et al. (1982) expression for ût = E (ut |εt ). The values of the
other εs (s �= t) are not informative because the model does not specify whether the
correlation over t is due to v or u.

The disadvantage of Model 2 is that it is numerically complicated. Amsler et al.
(2014) suggest estimation by simulated MLE, assuming that the copula is one that
we can draw from. In their case it was the multivariate normal copula which is easy
to draw from. In other cases they suggest importance sampling. But in any case this
is harder than Model 1 where there is a closed-form expression for the likelihood.
The advantage of Model 2 is that it leads to improved predictions of u. Specifically,
now we have ũt = E (ut |ε1, . . . , εT ) which is better (more explained variation and
less unexplained variation) than ût = E (ut |εt ). The calculation (estimation) of ũt is
based on kernels or nearest neighbors and is more complicated than before because
we now have a conditioning set of T dimensions.

More complicated models are possible. Das (2015) has a model where vt and ut

are correlated; the vt are not autocorrelated; and the ut are autocorrelated but ut and
us are correlated only for �t − s � ≤ 1.

Even less restrictive models could be formulated, but there are unexplored issues
of identification and possible numerical difficulties. At the extreme, if we do not put
any restrictions on the covariance structure of v and u, we have ½T(T + 1) distinct
covariances for each, for a total of T(T + 1) covariances to identify. We “observe”
ε and can estimate its ½T(T + 1) distinct covariances. Clearly without some sort
of restrictions we cannot identify this unrestricted model. (And this count does not
take into account any additional parameters that may arise if v and u are correlated.)

4.2 Correlation of Errors Across Equations

Next we will discuss multi-equation models in which some or all of the errors
are non-normal and we do not want to assume independence across equations.
These models are similar to the panel data models just discussed, in that the
quasi-likelihood maximum likelihood estimator based on the false assumption of
independence is still consistent.

An early paper with this kind of model is Genius et al. (2012). They have a
set of stochastic frontier models for input demands. Each equation (input) has a
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composed error and a copula is used to allow dependence across equations. A
somewhat similar paper is Lai and Huang (2013), in which each firm has J divisions.
They assume a stochastic frontier model for each division and the normal copula is
used to model correlation across divisions. Carta and Steel (2012) have a multiple
output production function where there is an equation with a composed error for
each output. Only the one-sided component is correlated across equations, so this
is similar to Model 2 of Amsler et al. (2014). They use a Bayesian treatment of
the model and it is not entirely clear (at least to us) how this correlation affects
the posterior distributions of the inefficiencies. Repkine (2014) has a metafrontier
model in which the inefficiency of a firm relative to its group frontier and the
metafrontier distance (inefficiency of the group frontier relative to the metafrontier),
both of which are non-negative, are correlated using a copula. Amsler et al. (2016,
2017) consider endogeneity in stochastic frontier models, so they have a production
frontier with a composed error and reduced-form equations for the endogenous
explanatory variables, with normal errors. Huang et al. (2018b) have two equations,
one for cost efficiency and one for market power, each of which has a composed
error, and the two composed errors are linked using the normal copula.

There is a long list of other papers that have multiple equations with various
kinds of errors, some or all of which are composed errors, where a copula is used
to model correlation across the errors. Examples include Tran and Tsionas (2015),
Huang et al. (2017a, b, 2018a), and Sriboonchitta et al. (2017).

5 Copulas Designed to Handle Specific Non-Standard Types
of Dependence

There may be special aspects of dependence that call for specific types of copulas.
As a prominent example, in the copula literature there is a feature of the copula
called “tail dependence.” Lower tail dependence is defined as

λL = lims→0P
[
Z2 ≤ F−1

2 (s)|Z1 ≤ F−1
1 (s)

]
(7)

(Nelson 2006, p. 214). It is a measure of how likely it is that an event in the
extreme left tail of Z1 occurs along with an event in the extreme left tail of Z2. That
is, it is a measure of how likely it is that a very low probability Z1 event occurs
in conjunction with a very low probability Z2 event. The Gaussian (normal) copula
has tail dependence equal to 0, whereas some other copulas, notably the Clayton
copula, allow for positive tail dependence. This distinction came to the fore in the
2008 financial crisis. Starting with Li (2000), the Gaussian copula was used to model
the probability of simultaneous defaults on mortgages and therefore to construct and
price mortgage-based derivatives. However, because it has no tail dependence, the
Gaussian copula is thought to have understated the probability of a large number
of simultaneous defaults and thus to have led to the collapse of mortgage-based
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derivatives. This is perhaps the only time that the concept of a copula has made
it into the popular press. See, e.g., Jones (2009), “The Formula that Felled Wall
Street.” Subsequent work has used copulas with positive tail dependence, such as
the Clayton copula, to better allow for the prospect of many simultaneous mortgage
defaults.

The last paragraph has nothing to do with stochastic frontier models, other than
to argue that one should ask whether the dependence implied by standard copulas
is appropriate for an intended application. One case in which it is arguably not
appropriate is the estimation of a system consisting of a cost function (or production
function) plus a set of first-order conditions (e.g., for cost minimization). This issue
is sometimes referred to as the “Greene Problem.” Christensen and Greene (1976)
estimate a system with a translog cost function and equations for the optimal shares.
The errors in these equations are correlated in the usual way. The “Greene problem”
is that this is not reasonable. Incorrect shares (too big or too small) raise costs. The
error in the cost function should be correlated with the absolute value of the share
equation errors. A normal copula or other standard copulas cannot accomplish this.

An early paper that deals with this problem is Schmidt and Lovell (1980). They
have a stochastic frontier production function model

yi = α + x′
iβ + vi − ui = α + x′

iβ + εi, i = 1, . . . , N (8)

with y and x in logs, where εi = vi − ui, and equations for the optimal input ratios

xi1 − xij = Bij + ωij , j = 2, . . . , K, (9)

where K is the number of inputs and Bij = pij − pi1 + ln (β1) − ln (β j). They want
technical inefficiency and allocative inefficiency to be dependent. But they want ui

to be correlated with �ωij�, not with ωij.
Dropping the subscript i for simplicity, Schmidt and Lovell assume that u = � u∗

�,

where

[
u∗
ω

]
∼ N (0, �) and where Σ=

[
σ 2
u �ωu

′
�ωu �ωω

]
. Then u is half-normal and

ω is multivariate normal; u and ω are uncorrelated, and the correlation between u
and �ωj� is

(2/π)
[√

1 − ρ2
j + ρj arcsin

(
ρj
)− 1

]
≥ 0,

where ρj is the correlation between u∗ and ωj.
The connection of this to copulas is that clearly there must be a copula implicit

in this construction. Amsler et al. (2018) show that this copula is the mixture (with
weights equal to ½) of the Gaussian copula with variance matrixΣ and the Gaussian

copula with variance matrix Σ∗=
[

σ 2
u −�ωu

′
− �ωu �ωω

]
. This is a copula that could be

used in other settings, as long as one wants a random variable to be uncorrelated
with another random variable, but correlated with its absolute value.
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Of course, there must be other copulas with the same property. For now, consider
the case of two inputs so that ω is a scalar. In generic notation, we have a copula
density c(w1, w2), where w1 and w2 are scalars. The relevant random variables
are u and scalar ω; then the copula arguments are w1 = Fu(u) and w2 = Fω(ω).
For any two random variables, Spearman’s rho is the correlation between the
copula arguments. We are interested in copulas such that Spearman’s rho equals
0, that is, w1 = Fu(u) and w2 = Fω(ω) are uncorrelated. (The covariance between
the original random variables u and ω depends on the marginal distributions Fu

and Fω). However, we want copulas such that Spearman’s rho equals 0, but
cov(w1, � w2 − ½ � ) �= 0. For the case that ω has a symmetric distribution around 0,
w2 = ½ corresponds to ω = 0, which explains our interest in �w2 − ½�.

Amsler et al. (2018) define a family of copulas with this property, as follows.

Definition An APS-2 copula is a copula of the form c (w1, w2) = 1 +
θ (1 − 2w1)

(
1 − k−1

q q (w2)
)

, where q(s) is integrable on [0,1]; q(s) is symmetric

around s = ½, that is, q(s) = q(1 − s); q(s) is monotonically decreasing on [0, ½]
and therefore monotonically increasing on [½, 1]; and kq = ∫ 1

0q(s)ds.
Two specific members of this family are as follows.
APS-2-A c(w1, w2) = 1 + θ (1 − 2w1)[1 − 12(w2 − ½)2], �θ � ≤ ½
APS-2-B c(w1, w2) = 1 + θ (1 − 2w1)(1 − 4| w2 − ½| ), �θ � ≤ 1.
They establish a number of results for this family of copula, including the

following. (The numbering of these results follows the numbering in Amsler et al.
(2018).)

Result 1. For any APS-2 copula, cov(w1, w2) = 0.
Result 4. (i) The APS-2-A copula is a copula for �θ � ≤ ½.

(ii) cov

[
w1,

(
w2 − 1

2

)2
]

= 1
90θ.(iii) var[

(
w2 − 1

2

)2] = 1
180 .

(iv) corr[w1, (w2 − ½)2] = 2√
15
θ ∼= 0.516 θ .

Result 5. (i) The APS-2-B copula is a copula for �θ � ≤ 1.

(ii) cov
[
w1, |w2 − 1

2 |
]

= 1
72θ.(iii) var(| w2 − 1

2 |
)

= 1
48 .

(iv) corr[w1, � w2 − ½�] = 1
3θ .

They also consider the three-dimensional case. This corresponds to three inputs,
so two equations for the optimal input ratios, as in Schmidt and Lovell. They propose
the following:

APS-3-A c∗ (w1, w2, w3) = 1 + (c12 − 1) + (c13 − 1) + (c23 − 1), where

c12(w1, w2) = 1 + θ12 (1 − 2w1)
[
1 − 12

(
w2 − 1

2

)2
]

c13(w1, w3) = 1 + θ13 (1 − 2w1)
[
1 − 12

(
w3 − 1

2

)2
]

c23(w2, w3) = bivariate normal copula
APS-3-B c∗ (w1, w2, w3) = 1 + (c12 − 1) + (c13 − 1) + (c23 − 1), where

c12(w1, w2) = 1 + θ12 (1 − 2w1)
(

1 − 4
∣∣
∣w2 − 1

2

∣∣
∣
)

c13(w1, w3) = 1 + θ13 (1 − 2w1)
(

1 − 4
∣
∣∣w3 − 1

2

∣
∣∣
)
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c23(w2, w3) = bivariate normal copula.
See Amsler et al. (2018) for more details.

6 Choosing the Copula

There are many different copulas and it is not altogether clear how one should
be chosen. Often they appear to be chosen on the basis of algebraic tractability
or computational simplicity. At a more statistical level, we can consider two
alternatives: (1) Use an explicit model-choice procedure, such as the Akaike
Information Criterion (AIC) or the Bayes Information Criterion (BIC) to choose
one copula from a set of possible copulas. (2) Pick a copula (or a small number of
possible copulas) and then apply a goodness-of-fit test to see if it is rejected by the
data.

6.1 Information Criteria

The use of information criteria for copula choice was apparently first suggested
by Joe (1997, Sect. 10.3). A few stochastic frontiers papers have used AIC to
pick a copula. For example, Smith (2008) used AIC to choose among the AMH,
Frank, Plackett, and independence copulas. Das (2015) used AIC to choose between
the FGM and normal copulas. Sriboonchitta, Liu, Wiboonpongas, and Denoeux
(Sriboonchitta et al. 2017) used AIC to choose a copula from a large set of different
copulas (Gaussian, Frank, Clayton, Gumbel, Joe, rotated Clayton, rotated Gumbel,
and rotated Joe).

The value of AIC is 2k−2 ln L̂, where k is the number of parameters in the model
and L̂ is the maximized value of the likelihood. We pick the model with the smallest
value of AIC. If we are comparing models with the same marginal distributions,
then if the various copulas have the same number of parameters, comparing the AIC
values is the same as comparing the likelihood values. BIC could also be used. The
value of BIC is (lnN) k − 2 ln L̂, where k and L̂ are as above and N is the sample
size (not to be confused with n, the number of variables being linked). So, again, if
we are comparing models with the same marginal distributions, and if the various
copulas have the same number of parameters, a comparison of the BIC values will
be the same as a comparison of the AIC values or the likelihood values.

In the previous paragraph, the likelihood values come from the estimation of
the model based on the joint distribution of the random variables. That is, we
estimate the models for the marginal distributions along with the copula. An
appealing alternative is to estimate the distributions of the marginal variables
nonparametrically, so as to choose the copula without requiring correct specification
of the marginal distributions. Suppose that the variables we are linking with the
copula are Z1, · · · , Zn, and the copula density is defined as c(F1(z1), · · · , Fn(zn)),
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as in Eq. (1) above. Then for each observation we replace each cdf value Fj(zj)
with F̂j

(
zj
)
, the value of the empirical cdf at zj for that observation. This amounts

to reducing the data to ranks. The ranked empirical cdf values are actually taken
to be 1

N+1 ,
2

N+1 , · · · , N
N+1 , where N is the sample size; these equal the F̂j

(
zj
)

scaled by N
N+1 , so as to avoid values of 0 or 1. A likelihood constructed from

c
(
F̂1 (z1) , · · · , F̂n (zn)

)
is called the pseudo-likelihood (e.g., Gronneberg and

Hjort 2014) and the AIC criterion can be calculated from the pseudo-likelihood.
However, Gronneberg and Hjort point out that the standard formula for AIC no
longer applies. The effects of using the empirical (estimated) cdf need to be
taken into account, and they propose a Copula Information Criterion (CIC) and a
Cross-Validation Information Criterion (xv-CIC) which do so. These criteria were
evaluated in simulations by Jordanger and Tjostheim (2014). So far as we know
these new methods have not been applied in the stochastic frontiers setting.

6.2 Goodness-of-Fit Tests

There is surprisingly little discussion of goodness-of-fit testing in stochastic frontier
models. The only systematic treatment that we are aware of is Wang et al. (2011).
There do not appear to be any applications of goodness-of-fit tests for the copula in
a stochastic frontier model.

However, there is a relevant statistical literature on goodness-of-fit tests for
copulas. This includes good surveys by Berg (2009) and Genest et al. (2009) and
more recent papers by Genest et al. (2013) and Huang and Prokhorov (2014).
Similar considerations to those of the previous subsection apply when we consider
goodness-of-fit (GOF) testing. If we specify the marginal distributions and the
copula, then we have specified the joint distribution for the data and we have a
standard GOF problem. However, we may want to test the adequacy of the copula
independently of the correctness of the marginal distributions. To do so we once
again consider the ranks F̂j

(
zj
)

which will be the basis of the test. The term
“blanket test” is used to describe a test that does not require the specification of
the marginal distributions, is applicable to any copula family, and does not require
the choice of tuning parameters like kernels or bandwidths. Genest, Rémillard, and
Beaudoin discuss and compare five different blanket tests. See also Genest, Huang,
and Dufour. A problem with these tests is that they have non-standard asymptotic
distributions and bootstrap methods are required to achieve correct size. Huang and
Prokhorov suggest a test based on the information matrix equality, similarly to the
famous test of White (1982) but using the pseudo-likelihood. This is a blanket test
that is notable because it has a standard chi-squared asymptotic distribution under
the null, so there is no need for bootstrapping.
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7 Concluding Remarks

We have tried to provide a reasonably comprehensive survey of previous uses of
copulas in stochastic frontier models. We have also tried to explain some issues in
the use of copulas, notably whether the copula should be applied to the technical
inefficiency term u or the composed error ε = v − u. This distinction leads to
computational issues, such as the need for simulated maximum likelihood and
importance sampling.

We have also discussed the sense in which the economic models that arise in the
stochastic frontier literature call for copulas with special characteristics. For normal
random variables, the multivariate normal distribution is a natural choice to model
their dependence. The multivariate normal distribution has normal marginals and the
Gaussian (normal) copula. We could have normal marginals and a different copula,
but the multivariate normal distribution is natural because of the multivariate central
limit theorem. For non-normal marginals, the Gaussian copula is still popular,
because it is simple and because it has a non-controversial definition in the case of
more than two dimensions. But it is not so natural as in the case of normal marginals,
and in some cases (like the Greene problem) it does not seem appropriate. So there
is scope for the invention of new copulas as well as new uses of existing copulas.
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Abstract Does the presence of inefficiency affect estimation of the production
function? This paper shows that one cannot ignore inefficiency in estimating the
production function simply because standard neoclassical production theory does
not recognize its existence. Exclusion of inefficiency can cause inconsistency in
the estimates of the technology parameters due to omitted variables which are
determinants of inefficiency. We show how one can avoid this inconsistency in
estimating the production technology irrespective of whether one is interested in
estimating inefficiency or not. Our proposed estimation methods use two state-
of-the-art stochastic frontier (SF) panel models. Since distributional assumptions
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1 Introduction

To dogmatic neoclassical economists who believe in perfectly competitive markets,
inefficiency is “non-existent.” This is especially true in the long-run. That is, an
inefficient firm cannot survive in the long-run in a competitive market. Thus, one
often justifies the presence of inefficiency in regulated markets when the rules
of competitive markets do not apply. In the 1970s, Leibenstein (1973) had testy
exchanges with Stigler (1976) on the “xistence” of inefficiency. Stigler was a strong
believer in neoclassical production theory with full efficiency. To him, inefficiency,
if any, is nothing but representation of unmeasured/unobserved inputs.

The term “inefficiency” may be unfortunate, although its theoretical under-
pinning does not go against neoclassical production theory. In fact the textbook
definition of a production function is the upper bound (maximum of output) for a
given vector of inputs. We define this upper bound as the production “frontier.” Thus,
the neoclassical theory acknowledges the possibility that some producers may not
be able to operate at the production frontier, given their input usage. The production
technology is often defined in terms of a production set for a given input vector. This
definition allows existence of technical inefficiency—failure to attain the production
frontier (given the inputs), although there is no universally accepted theory to justify
why a producer is unable to attain the production frontier.

Thus, modeling inefficiency does not go against the neoclassical theory—in fact
it complements the neoclassical production theory. If all the producers operate
on the production frontier, one gets back to the neoclassical production theory of
full efficiency. This is a testable hypothesis in econometrics. That is, inclusion of
inefficiency if firms are fully efficient can easily be tested, and if the test shows
no inefficiency, the standard neoclassical theory holds. So the empirical question
is whether ignoring inefficiency creates any econometric problems in estimating
the production frontier consistently. In particular, one may not be interested in
estimating inefficiency per se but everyone is interested in estimating the technology
consistently. So the issue is whether consistency is affected by the omission of
inefficiency in the econometric model. That is, whether there is omitted variable
bias arising from ignoring inefficiency from the estimating equation.

To address this issue we consider two widely used state-of-the-art panel data
stochastic frontier (SF) models. In doing this we want to accomplish two goals.
First, to obtain consistent estimates of the technology parameters in the presence of
inefficiency that is explained by exogenous (environmental) factors, although one
may not be interested in estimating inefficiency. Second, to produce estimates of
inefficiency and the marginal effects of the determinants of inefficiency after esti-
mating the technology. In addressing these issues we do not make any distributional
assumptions on the noise and inefficiency components. To estimate inefficiency,
we consider a two-step procedure. The first step is focused on estimating only
the technology, although in doing so one may need to include inefficiency in the
estimating equation. The second-step is for estimating inefficiency and might not be
of interest to those (e.g., ardent followers of Stigler) who are not into inefficiency
alone.
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The rest of the paper proceeds as follows. Section 2 specifies the panel SF models
and derives the estimating equations to show whether exclusion of inefficiency
creates inconsistency problems. Estimation issues are discussed in Sect. 3. Section 4
presents Monte Carlo simulations. Section 5 concludes the paper.

2 Model Specification

We consider two state-of-the-art and widely used panel SF models to illustrate
the main points of the paper. The first model separates transient inefficiency from
the firm effects. The second model does the same but adds an extra inefficiency
component, viz. persistent inefficiency. We treat firm effects as either fixed or
random.1 In the fixed effects setting, we allow for possible correlation between
the firm effects and the inputs. Following the SF literature, the noise and transient
inefficiency components are assumed to be uncorrelated with the inputs in all the
models we consider, although this assumption can be relaxed (Lai and Kumbhakar
2019).

2.1 The Model with Firm Effects and iid Transient Inefficiency

2.1.1 Random Firm Effects

First, we consider the case where firm effects are random and specify the production
function as

yit = β0 + x′
it β + bi + vit − uit , i = 1, · · · , n; t = 1, · · · , T (2.1)

where yit is log output for firm i at time t , xit is a vector of inputs for firm i at time t
(which include inputs in logarithm if the production function is Cobb–Douglas, and
log inputs, their squares and cross-product terms for a translog production function),
vit is the noise term that is iid over i and t with zero mean and constant variance,
bi are firm effects, and uit ≥ 0 are transient inefficiency. Initially, we assume the
transient inefficiency uit to be iid over i and t . Since uit are iid and non-negative,
we assume that E(uit |xit ) = μu > 0 where μu is a constant.

Rewrite (2.1) as

yit = (β0 −μu)+ x′
it β + bi + [vit − {uit −μu}] ≡ β∗

0 + x′
it β + bi + εit (2.2)

1In practice, a simple Hausman test may not suffice, see, for example, (Guggenberger 2010; Amini
et al. 2012).
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where the error term εit has zero mean by construction. The model in (2.2) fits into a
standard random effects (RE) panel data model, which can be estimated to produce
consistent estimator of β. Thus proponents of Stigler can rightfully argue that there
is no penalty in the econometric estimation of (2.2) ignoring inefficiency. In fact
one will use Eq. (2.2) to estimate the parameters even if there is no inefficiency.
Thus the presence of inefficiency does not change the estimating equation, except
for the intercept.

2.1.2 Fixed Firm Effects

We now consider the case where the firm effects bi are correlated with xit .
Although (2.2) fits into a random effects (RE) panel model, the use of GLS will
give inconsistent parameter estimates because of the correlation between bi and xit .
One can avoid this inconsistency problem by considering either a first difference
(FD) or within transformation. The FD transformation to (2.1) gives

�yit = �x′
it β + �vit − �uit ≡ �x′

it β + �εit (2.3)

Note that �εit has zero mean and is uncorrelated with xit under the standard
assumptions. Thus one can use OLS to (2.3) to get consistent estimates of the
technology parameters β. And there is no penalty in the econometric estimation
of (2.3), which would be the estimating equation without inefficiency. In other
words, ignoring the presence of inefficiency, if any, does not cost consistency of
the parameter estimates.

2.2 The Model with Determinants of Inefficiency and Firm
Effects

Here we consider the same two specifications discussed earlier but allow transient
inefficiency to be non-iid. That is, we assume that there are exogenous variables that
can explain inefficiency.

2.2.1 Random Firm Effects

The model is the same as (2.1)

yit = β0 + x′
it β + vit + bi − uit , (2.4)

but we allow the transient inefficiency uit to depend on zit so that E(uit |xit , zit ) =
h(zit ) ≥ 0 (Parmeter et al. 2017). If we rewrite (2.4) as
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yit = β0 −h(zit )+x′
it β+bi+[vit −{uit −h(zit )}] ≡ [β0 −h(zit )]+x′

it β+bi+ξit ,

(2.5)
so that ξit = [vit − {uit − h(zit )}] is a zero mean random variable, (2.5) cannot
be treated as a standard RE model as in (2.2) because of the presence of h(zit )
in (2.5) which cannot be subsumed by the intercept. Thus use of the RE model
cannot give a consistent estimate of β unless the x and z variables are uncorrelated.
And the standard RE model will suffer from omitted variable bias if inefficiency is
ignored. In other words, even if one is not interested in estimating inefficiency per
se, its presence cannot be ignored from the econometric model if the objective is to
estimate β consistently. To put it differently, the presence of inefficiency matters in
estimating the technology parameters whether one is interested in estimating it or
not.

2.2.2 Fixed Firm Effects

As before we assume firm effects bi to have zero mean, but are correlated with xit .
To purge this correlation we take a FD of the model in (2.4) which gives

�yit=�x′
it β+�vit−�uit≡�x′

it β−[h(zit )−h(zit−1)]+{�vit−[�uit−E(�uit−1)]}
(2.6)

Note that the error term {�vit − [�uit − E(�uit−1)]} has a zero mean by
construction and is uncorrelated with �xit . However, one cannot use OLS to
estimate (2.6) because of the presence of the unknown function [h(zit )− h(zit−1)].
Note that without inefficiency the nonparametric function [h(zit ) − h(zit−1)] will
be absent from (2.6) and one could use OLS to estimate it. Thus, the estimating
equation with and without inefficiency will be different and using OLS ignoring
inefficiency (meaning excluding the nonparametric function [h(zit )−h(zit−1)]) will
lead to biased and inconsistent estimates of β. That is to say, inefficiency matters in
getting consistent estimates of β whether one is interested in estimating it or not.

2.3 The Model with iid Persistent and Transient Inefficiency
and Firm Effects

Now we consider the second model that generalizes the previous model by allowing
an extra component of inefficiency which is time invariant (labeled as persistent
technical inefficiency in Colombi et al. (2014), Kumbhakar et al. (2014), and
Tsionas and Kumbhakar (2014); Filippini and Greene 2016). Although this model is
proposed with random firm effects, we discuss both fixed and random firm effects.
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2.3.1 Random Firm Effects

The new model is

yit = β0 + x′
it β + bi − ηi + vit − uit , (2.7)

where ηi ≥ 0 is persistent inefficiency. All other variables are the same as before. If
both the inefficiency components are iid with constant means, i.e., E(uit |xit ) = μu

and E(ηi) = μη, then we can rewrite (2.7) as

yit = β∗
0 + x′

it β + bi + εit , (2.8)

where β∗
0 = [β0 − μu − μη] and εit = [vit − (uit − μu) − (ηi − μη)]. Thus,

ignoring both persistent and transient inefficiency will not affect consistency of
the β parameters when (2.1) is estimated (instead of (2.8)) using a RE approach,
provided that ηi are uncorrelated with xit . That is, there is no econometric problem
in estimating the technology parameters (viz. β) consistently using the RE approach
when inefficiencies are excluded from the estimating equation in (2.8). This is good
news for the proponents of Stigler because there is no penalty (econometrically
speaking) in ignoring both components of inefficiency.

2.3.2 Fixed Firm Effects

If the firm effects bi in (2.7) are correlated with xit , the use of the GLS procedure
to (2.8) will give inconsistent parameter estimates because of the correlation
between bi and xit . As before one can avoid this inconsistency problem by
considering the FD transformed model in (2.3) or in (2.8) and apply OLS to it
to get consistent estimates of the technology parameters β. Again nothing is lost
econometrically (so far as consistent estimation of β is concerned) if one ignores
both persistent and transient inefficiency and estimates the FD transformed model.
This is because both persistent inefficiency and firm effects are eliminated by the
FD transformation.

2.4 The Model with Determinants of Persistent and Transient
Inefficiency and Firm Effects

2.4.1 Random Firm Effects

We now extend the model in the preceding subsection by allowing exogenous
determinants of persistent inefficiency ηi and transient inefficiency uit (Badunenko
and Kumbhakar 2017; Lai and Kumbhakar 2019). We do this by assuming E(ηi) =
g(wi) ≥ 0 and E(uit |xit , zit ) = h(zit ) ≥ 0 and rewrite the model in (2.7) as
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yit = β0 − g(wi) − h(zit ) + x′
it β + bi + ε̃it , (2.9)

where ε̃it = [vit − (ηi − g(wi)) − (uit − h(zit ))]. It is clear that (2.9) is not a
standard RE panel model and estimating it ignoring g(wi) and h(zit ) will lead
to inconsistency in the estimates of the technology parameters so long as z and
x are correlated. There is an endogeneity issue if persistent inefficiency (which is
included in the error term) is correlated with xit . Thus, as before one cannot exclude
inefficiency from the estimating equation in (2.9) even if the objective is to estimate
only the technology parameters. That is, a neoclassical economist cannot remove
the inefficiency effects from the estimating equation, and therefore their exclusion
from (2.9) will lead to inconsistency in the estimate of β parameters.

2.4.2 Fixed Firm Effects

Here the model is the same as in (2.9) above except that bi are correlated with xit .
To purge this correlation we consider the FD transformation which gives

�yit = �x′
it β − [h(zit ) − h(zit−1)] + {�vit − [�uit − E(�uit−1)]}, (2.10)

which is identical to the model without persistent inefficiency. This is because the
persistent inefficiency (no matter whether it is iid or its mean is a function of time-
constant variables, wi) is eliminated upon the FD transformation. Even after the
FD transformation one cannot ignore inefficiency because of the presence of the
−[h(zit ) − h(zit−1)] term in (2.10).

The model with determinants of inefficiency is more realistic because it allows
both components of inefficiency to be systematically related to exogenous variables.
It can explain why some firms are more or less efficient than others, and more
importantly how inefficiency can be altered by changing the use of the z and w

variables. For example, ∂h(zit )
∂zkit

= ∂E(uit )
∂zkit

, k = 1, · · · ,K shows whether the kth z

variable is transient efficiency enhancing or not. Similar arguments can be made
about the w variables affecting persistent inefficiency. Again this might not be
important to the followers of Stigler who are not interested in estimating inefficiency
components and their marginal effects, but their presence cannot be ignored from
the estimating Eq. (2.5) or (2.10) without affecting consistency of the β parameters.

We now summarize the main issues in terms of the two state-of-the-art SF panel
models. (1) When there are factors that determine inefficiency, the technology
parameters cannot be consistently estimated by ignoring/excluding inefficiency
from the econometric model (estimating equation). (2) One needs to model inef-
ficiency and it has to be included in the estimating equation in order to estimate the
technology parameters consistently.
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3 Estimation

In this section we consider estimation of the models discussed in the preceding
section. We consider procedures to get consistent estimates of the technology
parameters irrespective of whether one wants to estimate inefficiency or not. Since
ignoring the presence of iid inefficiency does not matter in estimating the technology
parameters, we only consider the cases where there are exogenous determinants of
inefficiency.

3.1 Models with Determinants of Inefficiency and Firm Effects

3.1.1 Fixed Firm Effects

The estimating equation for this model specified in (2.4) is

yit = β0 − h(zit )+ x′
it β + bi + [vit − {uit − h(zit )}], (3.1)

where E(uit |xit , zit ) ≡ h(zit ) ≥ 0 is fully nonparametric. We assume that x and
z variables are separated and do not assume any functional form for the h(zit )

function.2

Take expectation of (2.4) conditional on zit , i.e.,

E(yit |zit ) = β0 + E(x′
it |zit )β + bi − E(uit |zit ) = β0 + E(x′

it |zit )β + bi − h(zit )

(3.2)
assuming that E(vit |zit ) = 0. Subtracting (3.2) from (2.4) gives

ỹit = x̃′
it β + [vit − {uit − h(zit )}] ≡ x̃′

it β + ξit , (3.3)

where ỹit = yit − E(yit |zit ) and the same for each x̃it . By construction E(ξit ) = 0
and therefore the model in (3.3) can be estimated using OLS. That is, OLS applied
to (3.3) will give consistent estimates of the technology parameters. Note that the
”tilde” transformation requires computation of conditional expectation of the y and
x variables using nonparametric methods. Thus if someone is interested in only
estimating the technology parameters, the story ends with the use of OLS on (3.3).
This is step 1.

There are alternative estimation methods if one prefers estimating the technology
parameters and inefficiency jointly. For this we consider (2.5) and write it as

yit = μi − h(zit ) + x′
it β + ξit , (3.4)

2See Parmeter et al. (2017) for details on the estimation of this model.
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where μi = β0 + bi . In the panel data literature this model is considered both in
Baltagi and Li (2002) and in Su and Ullah (2007). Following the procedure in Su and
Ullah, one can get a consistent estimate of the β parameters and the h(zit ) function.
To the neoclassical economists, estimation of the h(zit ) function is not of interest but
its presence cannot be ignored. Since the estimate of h(zit ) comes as a by-product
and we are treating h(zit ) as an estimator of inefficiency (barring the intercept which
is not identified), we can estimate inefficiency from ûit = max

i
{h(zit )} − h(zit )

for each t . That is, inefficiency is relative to the best firm in the sample for each
year and we do this to ensure that estimated inefficiency is non-negative. Another
advantage of estimating h(zit ) and the partial derivatives of it is that the derivatives
are marginal effects of the z variables on inefficiency which are of interest to policy
makers and practitioners.

If one prefers to estimate β in complete isolation (not in the presence of
inefficiency), then the “tilde” transformation à la (Robinson 1988) in (3.3) might
be preferred. Since the “tilde” transformation gives consistent estimates of β,
estimation ends here for those who are interested in the estimation of the technology
parameter. However, for those who also want to estimate inefficiency there is one
additional step. For this we define the residuals (plugging in the estimated value of
β) in (3.1),

rit = yit − x′
it β = μi − h(zit ) + ξit . (3.5)

This is a nonparametric FE model, estimation of which is considered by Henderson
et al. (2008) and by Parmeter and Racine (2018) in the panel data literature. Thus we
can obtain estimates of h(zit ) and its derivatives with respect to each z from (3.5).
These derivatives are the marginal effect of each z on the mean inefficiency, and
are robust to distributional assumptions. If the interest is to get relative inefficiency,
then we can estimate them, as before, from ûit = max

i
{h(zit )} − h(zit ) for each t .

3.1.2 Random Firm Effects

If firm effects bi are correlated with xit , then “tilde” transformation à la (Robinson
1988) still works to estimate the β parameters consistently. That is, one can use the
model in (3.4) to estimate the technology parameters irrespective of whether firm
effects are fixed or random. Thus step 1 is identical to the case discussed above.

Step 2: To estimate uit , we need to change the equation in (3.5) and rewrite is as

rit = yit − x′
it β = [β0 − h(zit )] + [ξit + bi] ≡ h∗(zit ) + ξ∗

it , (3.6)

where the random firm effects term is added to the error term, and β0 is added to
the nonparametric function h(zit ) since it cannot be separated from the intercept
term in h(zit ). To define rit we plug in the estimated value of β. The above
model can be estimated nonparametrically (see Li and Racine 2006) but it only
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gives estimates of relative inefficiency as before. However, in both cases one
can compute the marginal effects of the zit variables on inefficiency from the
derivatives of h(zit ).

3.2 Models with Determinants of Persistent and Transient
Inefficiency and Firm Effects

3.2.1 Fixed Firm Effects

When there are determinants of both persistent and transient inefficiency, and bi are
correlated with xit , a two-step procedure can be utilized as follows.

Step 1: Following Sect. 2.4 we write the estimating equation as

yit = μ∗
i − h(zit ) + x′

it β + εit , (3.7)

where μ∗
i = [β0 −g(wi)+bi] and εit = [vit −(ηi −g(wi))−(uit −h(zit )]. Note

that (3.7) is similar to (3.4), except for the definition of μ∗
i and the error term εit .

Thus we can estimate (3.7) using the “tilde” transformation à la (Robinson 1988)
to get consistent estimates of β. Since ηi is part of the error term, we need to
make an additional assumption that it is uncorrelated with xit .

Step 2: To estimate h(zit ) we consider the nonparametric FE model rit = yit −
x′
it β = μ∗

i − h(zit )+ εit , after plugging in the estimated value of β. This can be
estimated, for example, using the approach in Parmeter and Racine (2018). From
the estimator of h(zit ) one can estimate marginal effect of zk on inefficiency from
∂h(zit )
∂zkit

= ∂E(uit )
∂zkit

. Relative inefficiency can be obtained from ûit = max
i

{h(zit )}−
h(zit ) for each t . This part is similar to the model without persistent inefficiency.

The steps above do not give an estimate of persistent inefficiency. In fact, there
is a problem in estimating persistent inefficiency ηi from rit + h(zit ) = β0 + bi −
g(wi)+ [vit − (ηi − g(wi))− (uit − h(zit ))]. If bi are fixed parameters, one cannot
separate (identify) bi from ηi , since there is no cross-sectional variations left in
[vit − (ηi − g(wi))− (uit − h(zit ))] after the fixed effects μ∗

i = [β0 − g(wi)+ bi]
are removed. Thus, although the presence of fixed bi together with random ηi do not
create any problem in estimating β and h(zit ) in the steps above, the model cannot
separate (identify) ηi when bi are fixed parameters irrespective of whether the mean
of ηi is a constant or a function of some wi variables.

3.2.2 Random Firm Effects

Given the identification problem, it is necessary to assume bi to be random (although
it can be correlated with xit ), if one is interested in estimating ηi . Since the “tilde”
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transformation removes both ηi and bi , estimation of β in step 1 and estimation
h(zit ) in step 2 remain unchanged.

Step 3: To estimate persistent inefficiency ηi from g(wi),we plug in the estimates
of β and h(zit ) to get

r̃it = yit−x′
it β+h(zit ) = [β0−g(wi)]+[ξit+bi−(ηi−g(wi))] ≡ g∗(wi)+ξ̃it .

(3.8)
Since g∗(wi) varies cross-sectionally we can consider the following nonparamet-
ric regression to estimate g∗(wi).

r̃i. = g∗(wi) + ξ̃i., (3.9)

where r̃i. =∑t r̃it /T and ξ̃i. =∑t ξ̃it /T .
Note that β0 cannot be separated from the nonparametric functions g∗(wi) and
it is not possible to estimate persistent inefficiency absolutely. However, one can
estimate marginal effects of the wi from the estimates of g∗(wi).

4 Monte Carlo Simulations

The Monte Carlo design herein follows Badunenko and Kumbhakar (2016) for
the sample sizes n ∈ {50, 100, 500}, time periods t ∈ {3, 6, 10}, and replications
R = 1000. These results indicate that the structural parameters of a Cobb–Douglas
production function will be poorly estimated under particular settings discussed in
the previous sections, but perform relatively well in the null situation where the zit
are absent from the underlying data generating process (DGP).

4.1 Specific Equation

A two input production DGP with constant returns to scale is selected:

yit = β0 + β1x1,it + β2x2,it + bi − 1ηηi + vit − h(zit )u
∗
i , (4.1)

where X1,it ∼ U [3, 10], X2,it ∼ U [1, 50], xk,it = log(Xk,it ) for k ∈ {1, 2}, bi ∼
N (0, 0.08), 1η is a zero-one indicator variable, β0 = 0.5, β1 = 0.6, and β2 = 0.4.
The covariates and individual effects, bi , are fixed across all replications, whereas
all other shocks change for each replication based on the seed selected. Thus, vit ∼
N (0, 0.08), ηi ∼ N+(0, ση), u∗

i ∼ N+(μ, σu∗) and several different assumptions
are made on zit :
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DGP0 := zit ∼ N+(0, 0.4) and h(z)u∗ = u, where uit ∼ N+(0, 0.4) and z ⊥ u;
DGP1 := zit ∼ N+(0, 1) where h(z) = ez, and μ = 0;
DGP2 := zit ∼ U [2, 7] where h(z) = | sin(z)|, and μ = 0;
DGP3 := zit ∼ U [2, 5] where h(z) = 0.2e0.5z, and μ = 0.5.

Two regions for the signal to noise ratio are selected. In the first case, σu∗ =
ση = 0.1, so the signal to noise ratios are close to unity. In the second case,
σu∗ = ση = 0.4, (i.e., σu >> σv and ση >> σb) to see how well the model
performs when the signal to noise ratios are far from unity. DGP0 describes the
null situation where the model follows a classic stochastic frontier panel model, so
that the zit is uninformative about the underlying process. DGP1 is an ordinary
exponential model. DGP2 is selected given the popularity of estimating the sin
function in nonparametric settings. DGP3 modifies the functional form of DGP1
slightly. Lastly, the model in Eq. (4.1) is considered under both a RE framework and
a FE framework along the lines of Chen et al. (2014), so that, in the FE setting:

x
f e
k,it = τbi +

√
(1 − τ 2)xki t , where τ = 0.5, for k ∈ {1, 2},

while this is not the case in the RE setting. Simulation results with τ = 0.1 indicate
that the lower degree of correlation tends to favor conventional methods (as in
Tables 2, 3, and 4). The level of MSE (as in Tables 7, 8, and 9) is also consistently
lower for the “tilde” method when τ = 0.1.3 While it is also possible to introduce
other forms of dependence among the covariates and transient effects, this is not
necessary to illustrate the magnitude of estimation issues induced by nonlinearities
in uit .

4.2 Estimation and Results

This Monte Carlo experiment examines the extent to which a neoclassical economist
might err in ignoring possible nonlinearities in the functional form of the zit . Thus,
two different possible neoclassical economists are considered. Namely, the pure
xorcist (“P” before either FE or RE in Tables 1, 2, 3, and 4) estimates the model in
Eq. (4.1) by standard panel methods, completely ignoring zit , and the linear xorcist
(“L” in Tables 1, 2, 3, and 4) estimates this model including zit as a covariate. More
explicitly, the estimating equations assumed by the xorcists are the following:

pure : yit = β0 + β1x1,it + β2x2,it + bi + vit ;
linear : yit = β0 + β1x1,it + β2x2,it + β3zit + bi + vit ,

3These results are available upon request.
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Table 1 DGP0: Ratio of MSE of standard panel models to MSE of model with nonparametric
‘tilde’ transformation multiplied by 100 across various sample sizes

σu∗ = ση = 0.1 σu∗ = ση = 0.4

PRE PFE LRE LFE PRE PFE LRE LFE

n t β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

1η = 1

50 3 76 74 83 75 77 74 84 76 93 90 95 93 94 92 96 95

100 84 68 90 81 84 68 90 81 97 89 98 93 96 90 98 94

500 94 86 96 93 94 86 96 94 100 97 100 99 100 97 100 98

50 6 81 73 85 78 81 73 85 78 97 91 98 93 96 92 98 94

100 92 83 96 87 92 84 96 87 97 96 97 97 97 97 97 97

500 99 97 98 95 99 97 98 95 100 99 99 99 100 99 99 99

50 10 88 79 90 85 89 79 90 85 97 96 98 97 98 97 98 97

100 94 86 96 89 94 86 97 89 99 94 99 95 99 95 99 95

500 95 95 97 97 95 95 97 97 100 99 100 99 100 99 100 99

1η = 0

50 3 79 76 82 76 80 77 83 77 94 91 97 94 95 92 98 96

100 86 71 90 81 86 71 90 81 98 88 99 94 98 88 99 95

500 94 85 96 93 94 85 96 93 100 96 101 98 100 96 101 98

50 6 82 73 86 80 82 73 86 80 96 90 98 93 96 91 98 94

100 91 80 95 85 91 80 95 85 96 93 98 96 97 94 98 96

500 98 96 99 97 98 97 99 97 100 99 99 99 100 99 99 99

50 10 89 77 90 84 90 77 90 84 99 96 99 96 100 97 99 97

100 94 85 95 88 94 86 95 88 98 95 99 96 99 96 99 96

500 95 95 97 96 95 95 97 96 100 99 100 100 100 99 100 99

Numbers greater than 100 indicate greater performance of nonparametric ‘tilde’ transformation

for both the FE and RE settings. The pure and linear settings are compared to an
econometrician who estimates the model with the same standard methods, for both
FE and RE in the second stage, but by first performing the nonparametric “tilde”
transformation on all covariates and on the dependent variable with the zit . All
bandwidths for the nonparametric regressions are selected using least-squares cross-
validation. Furthermore, the local-linear regression has a Gaussian kernel.4 Then,
the squared error for all 1000 replications of the estimates for β1 and β2 is computed,
and the average of the squared errors is compared as a ratio multiplied by 100. When
this ratio is greater than 100, this means that the “tilde” method outperforms the pure
xorcist or linear xorcist.

Prior to illustrating the strength of the “tilde” transformation method, it is
important to understand how this method performs in the null setting. The null

4Regressions are run in R using the np package (Hayfield and Racine 2008).
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Table 2 DGP1: Ratio of MSE of standard panel models to MSE of model with nonparametric ‘tilde’
transformation multiplied by 100 across various sample sizes

σu∗ = ση = 0.1 σu∗ = ση = 0.4

PRE PFE LRE LFE PRE PFE LRE LFE

n t β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

1η = 1

50 3 242 203 289 227 125 117 142 123 382 326 445 372 184 171 198 182

100 223 200 255 265 140 119 153 147 333 348 360 407 197 193 206 213

500 261 220 285 238 150 139 155 146 314 296 346 301 171 174 177 170

50 6 271 230 283 249 153 122 163 130 383 353 394 373 204 173 212 180

100 275 220 271 245 146 137 144 152 364 329 352 339 176 194 171 200

500 284 256 292 264 164 137 165 139 340 321 347 330 185 159 185 160

50 10 252 243 257 259 142 128 144 136 338 388 337 382 176 186 175 182

100 247 229 261 251 148 125 154 138 333 332 340 334 186 170 186 173

500 255 255 259 256 137 146 139 146 304 316 309 319 152 166 154 166

1η = 0

50 3 242 206 291 232 126 119 142 126 386 331 447 380 188 174 199 185

100 225 207 252 259 142 122 151 144 336 351 366 414 201 194 210 217

500 260 215 286 237 150 135 155 145 314 294 348 301 171 171 178 170

50 6 274 240 291 253 155 126 167 132 380 356 394 375 202 173 212 181

100 275 215 271 238 146 134 144 147 363 327 350 337 176 192 170 199

500 284 253 293 263 164 135 166 138 340 321 345 330 185 158 184 160

50 10 248 238 259 256 140 126 145 134 334 380 336 394 175 183 174 188

100 245 235 261 248 147 129 154 137 335 330 340 332 187 169 187 172

500 257 252 261 259 138 144 140 148 303 317 308 318 152 165 154 166

Numbers greater than 100 indicate greater performance of nonparametric ‘tilde’ transformation

setting following DGP0 exactly nests Eq. (2.7) for both the FE and RE assumptions.
Thus, Table 1 shows that in the worst case scenario when σu∗ = ση = 0.4, for
n = 100 and T = 3, the “tilde” method would be nearly 12% worse at estimating
β2 relative to the pure xorcist who correctly, in this case, estimates the model, while
β1 is only 3% off in terms of mean squared error (MSE). When σu∗ = ση = 0.1 this
method becomes less accurate, given the difficulty of separating signal from noise.
For moderate sample sizes, the “tilde” method becomes more accurate, eventually
reaching parity both when σu∗ = ση = 0.1 and when σu∗ = ση = 0.4.

For DGP1 in Table 2, when n = 50, T = 3, σu∗ = ση = 0.4 and 1η = 1,
the MSE ratio is 171 for β2 under the linear xorcist for the RE setting. This means
that the linear xorcist estimates β2 with 71% higher MSE than the econometrician
who first performs the nonparametric “tilde” transformation. The dramatic increase
in MSE for the RE setting can be entirely attributed to the nonlinear nature of the
conditional mean of uit . When the RE assumption is relaxed, some deviance stems
from the particular relationship between bi and the covariates. The linear xorcist in
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Table 3 DGP2: Ratio of MSE of standard panel models to MSE of model with nonparametric ‘tilde’
transformation multiplied by 100 across various sample sizes

σu∗ = ση = 0.1 σu∗ = ση = 0.4

PRE PFE LRE LFE PRE PFE LRE LFE

n t β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

1η = 1

50 3 63 61 77 70 64 62 78 72 103 94 112 92 103 96 111 94

100 82 59 87 69 82 60 87 70 124 89 129 95 124 90 131 96

500 101 91 103 96 102 90 104 96 162 137 169 150 160 136 167 149

50 6 71 56 80 64 72 56 81 64 117 84 128 98 118 84 129 98

100 81 70 89 81 81 70 89 81 121 100 130 112 120 99 129 111

500 105 98 106 97 105 98 105 97 163 137 167 142 161 137 166 142

50 10 95 87 96 89 95 87 96 88 130 98 137 106 129 97 137 105

100 93 81 98 86 93 81 98 86 149 120 155 132 147 119 154 131

500 101 97 103 99 101 97 103 99 169 159 173 163 169 158 172 162

1η = 0

50 3 59 58 77 71 60 59 78 72 87 88 113 102 86 89 112 105

100 78 57 88 70 78 58 89 71 123 88 138 108 124 88 140 108

500 102 88 104 98 102 87 105 98 157 124 170 149 155 123 168 148

50 6 74 60 84 67 74 60 84 67 117 76 132 92 118 76 133 92

100 82 69 89 78 82 69 89 78 126 94 136 106 125 94 136 106

500 105 99 106 98 105 99 106 99 167 139 170 144 165 139 168 144

50 10 97 88 96 89 97 87 97 89 143 108 146 117 143 108 146 117

100 93 81 98 86 92 81 98 85 141 113 157 128 140 112 155 126

500 100 96 103 98 100 96 103 98 168 155 174 162 168 154 173 161

Numbers greater than 100 indicate greater performance of nonparametric ‘tilde’ transformation

Table 2 performs dramatically better than the pure xorcist owing to the fact that a
first order approximation is better than nothing in this setting.

For DGP2 in Table 3, it is interesting to note that unlike in Table 2, the linear
xorcist performs almost identically to the pure xorcist, owing to the fact that a
sin function is selected. Therefore, DGP2 elucidates the fact that merely including
the inefficiency term as a covariate may have little impact on correctly estimating
the technology parameters. Further, though DGP1 approximations for linear and
pure estimates improve as the sample grows, DGP2 estimates become worse. This
demonstrates the fact that in many settings, the standard methods are not consistent.

For DGP2 and DGP3, Tables 3 and 4 demonstrate that for small sample sizes,
neither method may be totally reliable, indicating the presence of a finite sample
bias. Nonetheless, comparing outcomes as the sample size increases, it is apparent
that the “tilde” method vastly outperforms the null setting described in DGP0, in
almost all of the settings considered.

In summary, this section covers four different DGPs, across a range of sample
sizes. These four DGPs demonstrate the importance of applying advanced SFA
tools. In the null situation where zit is completely uninformative about the underly-
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Table 4 DGP3: Ratio of MSE of standard panel models to MSE of model with nonparametric ‘tilde’
transformation multiplied by 100 across various sample sizes

n σu∗ = ση = 0.1 σu∗ = ση = 0.4

PRE PFE LRE LFE PRE PFE LRE LFE

n t β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

1η = 1

50 3 514 525 651 655 92 86 101 88 229 248 247 275 90 87 92 91

100 579 513 731 671 97 84 103 92 271 267 288 284 96 94 98 96

500 661 621 799 793 119 116 124 122 282 260 295 280 106 105 107 106

50 6 585 476 657 611 97 75 104 91 271 262 282 275 99 92 101 95

100 672 750 761 812 108 99 113 104 299 317 309 320 102 99 103 100

500 801 750 837 818 132 125 131 127 282 306 285 313 110 107 110 107

50 10 773 646 796 701 112 98 114 104 298 243 304 252 97 87 99 91

100 773 711 820 782 121 108 123 114 309 293 315 302 105 101 105 103

500 784 748 824 781 121 113 124 114 296 287 299 288 107 102 108 102

1η = 0

50 3 502 501 635 665 91 82 98 89 233 252 255 283 93 89 95 93

100 583 511 736 695 97 84 104 95 272 259 288 287 96 93 98 97

500 655 613 801 787 119 115 124 121 279 257 297 279 107 105 107 106

50 6 590 471 664 576 97 75 105 86 271 261 283 278 99 91 102 96

100 655 736 766 818 107 97 114 105 299 316 309 317 103 98 103 99

500 800 749 839 819 132 126 131 128 282 304 286 313 111 107 111 107

50 10 776 640 789 688 112 97 113 102 311 251 314 262 101 91 102 94

100 759 707 820 777 119 108 123 113 307 290 314 297 104 99 105 101

500 776 743 818 782 122 112 124 114 295 285 300 287 107 101 108 101

Numbers greater than 100 indicate greater performance of nonparametric ‘tilde’ transformation

ing process, very little is lost for sufficiently large sample sizes. Alternatively, when
zit does impact the underlying process, much can be gained from SFA methods, and
recognizing the presence of inefficiency.

4.3 State-of-the-art Methods

Whereas Sect. 4.2 establishes superior performance of the “tilde” method to con-
ventional methods in instances of inefficiency, and for large enough sample
sizes, Sect. 4.3 focuses on the state-of-the-art. After estimation of the Cobb–
Douglas parameters, one can take the resulting residuals and estimate Eq. (3.6)
from Sect. 3.1, with the same nonparametric methods as in Sect. 4.2, in order to
approximate the shape of h(z). For simulations in Tables 5 and 6, the intercept is
excluded and only the RE setting is considered. Nonetheless, the level of MSE and
ρ varies from DGP to DGP.



Table 5 DGP1–DGP3: MSE and correlation (ρ) of h(z) to ĥ(z) across various sample sizes as
well as adjusted R2 from first stage, RE. (σu∗ = ση = 0.4)

DGP1 DGP2 DGP3

n T R̄2 ρ MSE R̄2 ρ MSE R̄2 ρ MSE

1η = 1

50 3 0.33 0.93 5.99 0.85 0.76 0.08 0.69 0.97 0.17

100 3 0.28 0.94 5.97 0.86 0.88 0.07 0.68 0.98 0.15

500 3 0.26 0.96 5.65 0.89 0.97 0.05 0.72 1.00 0.13

50 6 0.33 0.94 5.86 0.88 0.88 0.07 0.73 0.98 0.15

100 6 0.33 0.95 5.71 0.91 0.93 0.06 0.76 0.99 0.13

500 6 0.29 0.97 5.60 0.91 0.98 0.05 0.76 1.00 0.13

50 10 0.35 0.95 5.74 0.91 0.92 0.06 0.78 0.99 0.14

100 10 0.32 0.96 5.69 0.91 0.95 0.05 0.76 0.99 0.13

500 10 0.28 0.98 5.58 0.92 0.99 0.05 0.77 1.00 0.13

1η = 0

50 3 0.34 0.93 7.10 0.86 0.90 0.25 0.70 0.97 0.45

100 3 0.29 0.94 7.08 0.87 0.94 0.23 0.69 0.98 0.42

500 3 0.27 0.96 6.74 0.90 0.98 0.20 0.72 1.00 0.39

50 6 0.33 0.94 6.96 0.89 0.94 0.23 0.73 0.98 0.42

100 6 0.33 0.95 6.81 0.91 0.97 0.21 0.77 0.99 0.39

500 6 0.29 0.97 6.69 0.91 0.99 0.20 0.76 1.00 0.39

50 10 0.35 0.95 6.82 0.91 0.96 0.21 0.78 0.99 0.41

100 10 0.32 0.96 6.78 0.91 0.98 0.20 0.76 0.99 0.39

500 10 0.28 0.98 6.68 0.92 0.99 0.20 0.77 1.00 0.40

Table 6 DGP1–DGP3: MSE and correlation (ρ) of h(z) to ĥ(z) across various sample sizes as well
as adjusted R2 from first stage, RE. (σu∗ = ση = 0.1)

DGP1 DGP2 DGP3

n T R̄2 ρ MSE R̄2 ρ MSE R̄2 ρ MSE

1η = 1

50 3 0.82 0.93 11.88 0.93 0.45 0.31 0.90 0.99 0.40

100 0.80 0.93 11.92 0.93 0.66 0.29 0.90 1.00 0.39

500 0.81 0.96 11.81 0.94 0.92 0.28 0.92 1.00 0.38

50 6 0.83 0.94 11.90 0.94 0.69 0.30 0.92 1.00 0.39

100 0.84 0.95 11.78 0.95 0.83 0.28 0.93 1.00 0.37

500 0.83 0.97 11.79 0.95 0.95 0.28 0.93 1.00 0.38

50 10 0.85 0.95 11.82 0.95 0.80 0.28 0.94 1.00 0.38

100 0.84 0.95 11.78 0.95 0.89 0.27 0.93 1.00 0.37

500 0.82 0.97 11.81 0.95 0.97 0.28 0.93 1.00 0.38

1η = 0

50 3 0.82 0.92 12.28 0.93 0.48 0.39 0.90 0.99 0.50

100 0.80 0.93 12.33 0.93 0.72 0.37 0.90 1.00 0.48

500 0.81 0.96 12.22 0.94 0.93 0.36 0.92 1.00 0.47

50 6 0.83 0.94 12.30 0.94 0.75 0.38 0.92 1.00 0.49

100 0.84 0.95 12.18 0.95 0.86 0.36 0.93 1.00 0.47

500 0.83 0.97 12.19 0.95 0.96 0.35 0.93 1.00 0.47

50 10 0.85 0.95 12.21 0.95 0.84 0.35 0.94 1.00 0.47

100 0.84 0.95 12.18 0.95 0.91 0.35 0.93 1.00 0.46

500 0.83 0.97 12.21 0.95 0.97 0.36 0.93 1.00 0.47
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Fig. 1 Density plots of h(z) and ĥ(z) for DGP1–DGP3, for T = 6, n = 100, σu∗ = ση = 0.4

Tables 5 and 6 give the MSE and correlation (ρ) between the true value of h(z)
and the estimated values for DGP1-DGP3. Additionally, the adjusted R-squared
(R̄2) from the first stage is given. For each DGP, it can be seen that both correlation
and MSE are roughly converging with the sample size. When 1η = 1, h(z) is
estimated up to a constant. Equation (3.6) would not work to estimate h(z) when
1η = 1 if ηi contained nonlinearities such as uit , and results from Sect. 3.2 would
be necessary. However, as ηi ∼ N+(0, 0.4) across all simulations, this is not a
concern.

Figures 1 and 2 illustrate how the average density (using all 1000 replications:
i.e., 6×10×1000 = 600,000 data points) of estimated values of ĥ(z) deviates from
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Fig. 2 Density plots of h(z) and ĥ(z) for DGP1–DGP3, for T = 6, n = 100, σu∗ = ση = 0.1

the true density h(z) for DGP1–DGP3, T = 6, n = 100, and assuming RE with
1η = 0. These figures also demonstrate that being in a large signal to noise setting
is crucial in obtaining a small MSE, despite the strong performance of correlation.
Tables 7, 8, and 9 demonstrate the rate of convergence of DGP1–DGP3, respectively.
It can be seen that the functional form as well as degree of noise impacts the level
of MSE, but that both β1 and β2 are clearly converging for each DGP, regardless of
the signal to noise ratio.

In summary, this section covers the three non-null DGPs, across a range of
sample sizes. Tables 5 and 6 illustrate that the level of MSE decreases across all
simulations as the sample size increases, and the correlation also increases. Figures 1
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Table 7 DGP1: MSE of nonparametric ‘tilde’ transformation across various sample sizes

1η = 1 1η = 0

RE FE RE FE

n t β1 β2 β1 β2 β1 β2 β1 β2

σu∗ = ση = 0.1

50 3 0.002393 0.000513 0.003027 0.000713 0.002358 0.000505 0.003014 0.000696

100 0.001224 0.000230 0.001736 0.000282 0.001201 0.000221 0.001759 0.000288

500 0.000209 0.000044 0.000304 0.000061 0.000207 0.000044 0.000303 0.000061

50 6 0.001073 0.000186 0.001411 0.000238 0.001053 0.000180 0.001373 0.000235

100 0.000466 0.000084 0.000634 0.000104 0.000462 0.000086 0.000633 0.000107

500 0.000089 0.000016 0.000121 0.000023 0.000089 0.000017 0.000120 0.000023

50 10 0.000617 0.000090 0.000802 0.000114 0.000627 0.000091 0.000796 0.000115

100 0.000270 0.000051 0.000348 0.000062 0.000272 0.000049 0.000348 0.000063

500 0.000058 0.000009 0.000078 0.000012 0.000058 0.000009 0.000078 0.000012

σu∗ = ση = 0.4

50 3 0.020741 0.004521 0.028450 0.006264 0.020165 0.004464 0.028335 0.006146

100 0.012141 0.001897 0.017823 0.002723 0.011854 0.001863 0.017548 0.002677

500 0.002542 0.000475 0.003663 0.000703 0.002528 0.000471 0.003644 0.000702

50 6 0.010837 0.001734 0.014748 0.002281 0.010860 0.001730 0.014754 0.002267

100 0.005275 0.000809 0.007191 0.001082 0.005233 0.000817 0.007233 0.001085

500 0.001082 0.000196 0.001472 0.000270 0.001081 0.000196 0.001477 0.000271

50 10 0.006654 0.000834 0.008899 0.001146 0.006727 0.000848 0.008936 0.001109

100 0.002930 0.000519 0.003922 0.000691 0.002907 0.000521 0.003920 0.000694

500 0.000707 0.000108 0.000951 0.000145 0.000708 0.000108 0.000953 0.000146

and 2 provide a graphical illustration of the estimation of h(z). Lastly, Tables 7, 8,
and 9 in Sect. 4.3 can also be viewed as the denominators of Tables 2, 3, and 4
in Sect. 4.2, so one can get an idea of the degree of accuracy these methods have
intrinsically.

5 Conclusion

This paper showed that one cannot ignore inefficiency in estimating the production
function just because the standard neoclassical production theory does not recognize
its existence, especially when inefficiency can be explained by some exogenous vari-
ables. We showed that exclusion of inefficiency causes inconsistency in the estimate
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Table 8 DGP2: MSE of nonparametric ‘tilde’ transformation across various sample sizes

1η = 1 1η = 0

RE FE RE FE

n t β1 β2 β1 β2 β1 β2 β1 β2

σu∗ = ση = 0.1

50 3 0.000967 0.000201 0.001066 0.000252 0.001079 0.000202 0.001062 0.000250

100 0.000373 0.000084 0.000529 0.000099 0.000361 0.000084 0.000519 0.000098

500 0.000057 0.000012 0.000085 0.000016 0.000054 0.000012 0.000084 0.000016

50 6 0.000441 0.000074 0.000515 0.000089 0.000436 0.000070 0.000493 0.000084

100 0.000158 0.000026 0.000196 0.000031 0.000153 0.000026 0.000195 0.000032

500 0.000025 0.000004 0.000034 0.000006 0.000025 0.000004 0.000034 0.000006

50 10 0.000170 0.000024 0.000224 0.000032 0.000166 0.000024 0.000224 0.000032

100 0.000076 0.000014 0.000097 0.000018 0.000075 0.000014 0.000098 0.000018

500 0.000014 0.000002 0.000019 0.000003 0.000015 0.000002 0.000019 0.000003

σu∗ = ση = 0.4

50 3 0.001722 0.000407 0.002208 0.000578 0.002017 0.000403 0.002196 0.000519

100 0.000828 0.000165 0.001083 0.000210 0.000735 0.000161 0.001013 0.000185

500 0.000114 0.000024 0.000152 0.000030 0.000108 0.000024 0.000152 0.000031

50 6 0.000730 0.000143 0.000890 0.000165 0.000735 0.000158 0.000861 0.000175

100 0.000316 0.000054 0.000395 0.000065 0.000301 0.000056 0.000377 0.000068

500 0.000048 0.000008 0.000063 0.000011 0.000047 0.000008 0.000062 0.000011

50 10 0.000374 0.000065 0.000472 0.000080 0.000334 0.000058 0.000442 0.000073

100 0.000139 0.000029 0.000178 0.000036 0.000144 0.000031 0.000176 0.000037

500 0.000025 0.000005 0.000033 0.000006 0.000025 0.000005 0.000033 0.000006

of the technology (parameters) due to omitted variables which are determinants of
inefficiency. Finally, using two widely used state-of-the-art stochastic frontier panel
models, we showed how one can avoid this inconsistency irrespective of whether
one is interested in estimating inefficiency or not. Monte Carlo simulations help to
elucidate these findings and shed some light on how to estimate the components of
transient inefficiency. Unlike the existing stochastic frontier models, our proposed
estimation methods do not use distributional assumptions on firm effects, noise and
inefficiency components.
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Table 9 DGP3: MSE of nonparametric ‘tilde’ transformation across various sample sizes

1η = 1 1η = 0

RE FE RE FE

n t β1 β2 β1 β2 β1 β2 β1 β2

σu∗ = ση = 0.1

50 3 0.001181 0.000226 0.001412 0.000306 0.001200 0.000232 0.001447 0.000301

100 0.000519 0.000100 0.000712 0.000131 0.000509 0.000098 0.000707 0.000126

500 0.000085 0.000016 0.000115 0.000022 0.000084 0.000016 0.000115 0.000022

50 6 0.000520 0.000097 0.000653 0.000107 0.000516 0.000097 0.000646 0.000114

100 0.000211 0.000029 0.000271 0.000037 0.000213 0.000030 0.000269 0.000037

500 0.000034 0.000006 0.000045 0.000008 0.000033 0.000006 0.000045 0.000008

50 10 0.000234 0.000035 0.000303 0.000044 0.000233 0.000035 0.000306 0.000045

100 0.000097 0.000018 0.000130 0.000023 0.000098 0.000018 0.000130 0.000023

500 0.000020 0.000003 0.000027 0.000005 0.000020 0.000003 0.000027 0.000005

σu∗ = ση = 0.4

50 3 0.004404 0.000873 0.005791 0.001119 0.004285 0.000848 0.005615 0.001089

100 0.002084 0.000351 0.002857 0.000473 0.002064 0.000352 0.002852 0.000469

500 0.000374 0.000068 0.000503 0.000093 0.000368 0.000068 0.000500 0.000093

50 6 0.001781 0.000284 0.002348 0.000363 0.001777 0.000284 0.002339 0.000360

100 0.000816 0.000105 0.001081 0.000139 0.000805 0.000106 0.001082 0.000140

500 0.000152 0.000025 0.000204 0.000034 0.000151 0.000025 0.000203 0.000034

50 10 0.000943 0.000147 0.001227 0.000190 0.000905 0.000142 0.001186 0.000183

100 0.000389 0.000071 0.000519 0.000093 0.000389 0.000072 0.000521 0.000094

500 0.000085 0.000014 0.000113 0.000019 0.000085 0.000014 0.000112 0.000019
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The Two-Tier Stochastic Frontier
Framework (2TSF): Measuring Frontiers
Wherever They May Exist

Alecos Papadopoulos

1 Introduction

Stochastic frontier analysis (SFA) focuses mostly on measuring and analyzing
matters of efficiency in production and in cost decisions, based on the conceptual
and modeling device of a frontier, a boundary beyond which a firm can find itself
only by chance, literally. But the existence of frontiers in human activity is a
consequence of physical and of economic scarcity: the fact that resources are always
less than what we would desire to have available in order to fulfill whatever needs
and wants we are able to imagine (or cannot ignore no matter how hard we try).
Scarcity creates restrictions, constraints, bounds, boundaries... frontiers. Therefore
“frontier modeling” is not constrained to be a specialized tool for efficiency and
productivity analysis but can be used as a general methodological approach to
formulate and then study economic phenomena (and not only).

The two-tier stochastic frontier model (2TSF henceforth) occupies a rather small
place in the SFA field. But it shows in a tangible way how the concept of efficiency
goes beyond direct matters of production and cost, and more generally, it is the
clearest and most colorful example of how frontier modeling can be applied to
very diverse situations, economic and non-economic alike. For this reason we will
often call it the 2TSF framework. It has been proposed in the literature 30 years

This review paper draws material from my PhD thesis Papadopoulos (2018), where one can find
all necessary tools to implement in empirical studies the various models that are presented here
summarily for matters of space.
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ago, lying rather dormant for its first two decades of existence. But in the last
ten years researchers have started to realize its flexibility and potential and many
applications and theoretical extensions have been published, while this newfound
interest appears to be accelerating. Still, a review of the 2TSF framework has yet to
be written, and this is the purpose of the present work: to provide an overview of
the empirical applications, the theoretical foundations, and the technical tools that
currently constitute the 2TSF framework.

The generating mechanism of our object of study can be very simple: sup-
pose that we have an outcome/dependent variable y for which we postulate
that it is a function f (·) of a vector of explanatory variables/regressors x on
which we have data. The dependent variable is further affected by a stochastic
noise/disturbance/shock/error denoted v. Suppose now that we know (or that we
can adequately argue) that apart from x and v, there exist two forces that affect
y each in the opposite direction, but for which we possess no data. Denote the
positive influence w and the negative influence u. Since we have no data on them, it
is natural to treat them both as one-sided (positive) latent random variables attaching
a negative sign to the one representing the negative influence. Then the expression
for the dependent variable becomes

y = f (x) + ε, ε = v + w − u.

Single-tier SF models in their various incarnations use either u or w. By using
both, the 2TSF framework transforms the representation of the frontier: in a single-
tier model f (x) is the deterministic frontier, and f (x) + v is its stochastic counterpart,
while w or u (which one is present) measure the distance from it. In the 2TSF context
there are two inherently stochastic frontiers and w or u take part in determining
the one while measuring the distance from the other: f (x) + v + w represents the
stochastic upper frontier (or the frontier of the “seller” in an economic exchange)
while u represents the distance from it. At the same time, f (x) + v − u represents the
stochastic lower frontier (or the frontier of the buyer), and here it is w that measures
the distance from the latter.

This is the 2TSF model, characterized by its three-component composite error
term, its two-sided frontier concept, and its applicability to a large number of
circumstances. And indeed researchers have used it to model all sort of situations, as
the literature review in Sect. 2 makes evident. Section 3 analyzes specific structural
foundations that have been proposed in order to rationalize the 2TSF model more
concretely, while Sect. 4 presents the technical tools available for its implementation
in empirical studies. A final section discusses some novel applications of the
2TSF approach, as well as suggesting how the many new methods that have been
developed rather recently in its context can be used to revisit familiar domains with
new eyes and knives.
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2 Roads Taken: Applications of the 2TSF Framework

2.1 Labor Market

The 2TSF model was introduced by Polachek and Yoon (1987) with a focus on the
labor market. The authors pointed to the fact that even in relatively homogeneous
competitive labor markets we observe wage variation and not a single equilibrium
wage as standard theory would predict. Based on search theory premises, they
attributed this phenomenon to the (optimal) existence of incomplete information:
employees searching for work do not know of all the opportunities and work
offers (because it would be costly to obtain such information). On the other hand,
employers do not know all workers that search for work, and what they would
be willing to supply at any given wage. And because incomplete information
is heterogeneous and varies from employer to employer and from employee to
employee, we also observe wage dispersion.

In order to estimate both effects, the authors extended previous work by Hofler
and Polachek (1982) where a single-tier SF model with a negative one-sided term
was used to estimate the effects of “employee ignorance” only, to which they
added an additional one-sided unobservable term representing now the “employer
ignorance” and having a positive effect on the realized wage, arriving at a composite
error term of the form ε = v + w − u. The systematic part of the regression equation
represented the wage under full information but taking into account individual
heterogeneity and variation around the observable characteristics of the “average”
firm-worker pair. And thus, the 2TSF model was born, technically as a combination
of a “production” and a “cost” frontier in the same equation.

The authors assumed that the two one-sided error terms each followed an
Exponential distribution, derived the density of the three-component error term (the
third one being the random disturbance, assumed to follow a zero-mean Normal
distribution), and applied maximum likelihood estimation. They also stratified their
sample and calculated measures of employee and employer ignorance for various
subsamples partitioned according to characteristics like gender, race, education, and
tenure. In all cases, the realized wage was on average below the full-information
estimated level.

The stratification exercise in the foundational 2TSF paper accounted up to a
degree for the existence of heterogeneity that was used to rationalize the observed
wage dispersion. 2TSF models that directly allowed for heterogeneity at the
observation level came later. Groot and Oosterbeek (1994) extended the model in
order to explain information effects through individual attributes, by assuming that
the moments of each one-sided disturbance is a linear function of the regressors
and/or other variables.1 Since the assumed distributions have a single parameter, this

1From a technical point of view one can object to the linear formulation used by the authors, since
these parameters should be constrained to be positive, as noted in Parmeter (2018). Specifying an
exponential function instead solves this issue.
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setup not only allowed for individual heterogeneity regarding the mean value, but
also accommodated conditional heteroskedasticity. Using data from the Netherlands
the authors found that average realized wages were above the full-information wage.

Polachek and Yoon (1996) extended their original model to accommodate
earnings-related panel data in order to disentangle unobserved individual het-
erogeneity from the informational imperfections. They found that the panel-data
approach improved the quality of the results, and that the significance of incomplete
information, although it was reduced, persisted.

Polachek (2017) digs more deeply into the relation between unobservable
individual heterogeneity and incomplete information by combining the 2TSF
model with research from Polachek et al. (2013, 2015) that exploited the fact
that, as the years pass, long-enough time-series data on individuals have become
available, allowing the authors to estimate five key individual parameters for a
specific sample of persons. Three of these parameters measure two types of ability,
another quantifies skill depreciation, and the last one constitutes the respondent’s
time discount rate. Polachek (2017) estimates then a 2TSF model for the same
individuals, while using these five parameters to stratify the data and obtain how
incomplete information may change in each subgroup.

Kumbhakar and Parmeter (2009) proposed a different reason why variations
around the full-information wage exist: they pointed out that the value of an
employer–employee match is uncertain and remains so, and it is this uncertainty
that creates the necessary space for bargaining to take place. And in a bargaining
situation over some price, each side tries to pull the outcome in opposing directions:
a framework suitable for the 2TSF approach. Their model estimates the expected
value of the match (the observable systematic component of the regression equa-
tion), and, through the two one-sided error components, the monetary value of the
gap claimed by the two negotiating parties (depending on their relative bargaining
power). Regarding quantitative findings, they obtained that the bargaining power of
buyers (employers) was relatively higher than that of sellers (employees), leading
the realized wage to be on average below the expected value of the match.

Blanco (2017) focused on the market for job placement services. He found that
employees that used these services are not more informed about wage offers than
employees that did not use them, while firms that employed individuals through job
placement agencies are more informed about reservation wages relative to firms that
did not use such services. Combined, these results tell us that job placement services
tend to benefit more the employer side.

Das and Polachek (2017a, b) developed a new panel-data 2TSF model in order to
estimate gross flows in and out of the labor market, employment and unemployment
(“Joiners and Leavers”), flows that are more important (compared to net ones)
in order to understand the actual dynamics of this market. The model embeds
heterogeneity directly into the composite error term of the 2TSF specification.

Other studies of the labor market and the wage equation using the basic or
heteroskedastic 2TSF framework are Sharif and Dar (2007), Murphy and Strobl
(2008), and Dar (2014).
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2.2 Health Services Market

The 2TSF model has also seen applications in the health services market, where
informational asymmetries and inefficiencies are believed to abound, favoring the
supply side of the market. Gaynor and Polachek (1994) applied it to the physician
services’ market in the USA arguing that the observed wide variations in physician
fees went beyond differences in quality-of-service, and part of them were to be
explained by the incomplete and asymmetric information of the market participants.
Their findings aligned with conventional wisdom, estimating that the monetary
effects of the incomplete patient information were approximately 50 percent greater
than those of the incomplete physician information. The paper also contained a new
structural 2TSF framework that we will present in the next section.

In a purely empirical paper Chawla (2002) used the original 2TSF model on
health services data from Egypt, and also found that doctors were extracting a larger
surplus in their transactions with the patients.

Tomini et al. (2012) estimated the effects of incomplete information on the
informal (“under-the-table”) payments made to physicians, using a sample from
Albania. They found that prices were below full-information levels, meaning that
patients were better informed than doctors in these transactions, and this has
intuition: in the absence of a public market and price system, buyers–patients tend
to exchange more information regarding informal costs, while on the other hand
sellers–doctors possess less information for the same reasons, and also tend to avoid
exchanging information because informal revenues are considered unethical and
usually are illegal. The fundamental asymmetry here is the fact that patients are not
saddled with the moral burden of participating in an illegal/unethical transaction,
because they are the ones in need. Nevertheless, the inherent asymmetry in the
bargaining power that favors the physicians should still be present, implying that
the informational advantage of the patients is strong enough to more than offset it.

2.3 A Lot of Other Markets (And Not Only Markets)

Kumbhakar and Parmeter (2010) developed a 2TSF hedonic price framework for the
house-selling market, and applied it to the US data. As Pope (2008) observes, it is
reasonable to expect incomplete and asymmetric information in the housing market,
since sellers have lower search costs and are more informed than buyers by virtue
of knowing the property beforehand and/or actually living in the area.

Rajapaksa (2015) applied their model to the housing market in Brisbane,
Australia and found that the incomplete information of the buyer was higher than
that of the seller’s, leading to a price above the full-information level, in accordance
with the argument in Pope (2008). But in the empirical study in the Kumbhakar
and Parmeter paper, the selling price was found to be somewhat below the full-
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information one, showing that buyers are in a better position than sellers (in both
the standard model as well as in its heteroskedastic variant).

We can rationalize this result by observing that sometimes houses are sold under
financial distress for the sellers, creating an unfavorable bargaining situation for
their side that may mitigate and even reverse their informational advantage. We
encountered an analogous situation just previously in the health services market,
where information and bargaining effects may “compete” with each other in
the same side of the transaction. This creates an interesting identification and
measurement challenge for which we will have more to say later on.

The 2TSF Nash bargaining framework mentioned previously has seen many
applications to other markets and situations. Kinukawa and Motohashi (2010,
2016) applied the model to the biotechnology market and the trading of biotech-
nologies/knowledge assets through company alliances/collaborations that are very
common in this market. They too found that buyers had greater bargaining power
than sellers.

Wang (2016a) applied it to the field of bilateral aid to developing countries.
The related literature has identified different setups in which aid takes place.
One of them is the “aid-for-policy” framework, where aid is conditioned on the
recipient countries implementing specific policies, either because the donors are
self-interested and they require something in return, or because they are altruistic
but have specific opinions as to what policies would benefit the population of the
recipient country. Here the donors are the “buyers,” “buying” the aid-recipients’
government command over local resources and the authority to implement policies.
The author found that donor countries enjoyed more bargaining power in surplus
division than recipients. This conclusion was reinforced by the empirical study in
Wang (2016b) related to the US economic aid for the period 1976–2011.

Zhang et al. (2017) applied the bargaining model to the tourism industry in
relation to tourist shopping. They found that tourists (buyers) extract a higher
surplus compared to the sellers, which perhaps runs against widely held expectations
that picture tourists as temporary customers, outside their comfort zone and their
supporting social networks, and so in a “weaker” position than sellers and ripe for
exploitation. But on a second thought the results have intuition. Doing business with
tourists is a high-volume short-length activity and so sellers are pressed to complete
a high volume of transactions in a short period of time. This weakens their position
in a bargaining situation, since they will bear the hidden cost of losing business if
each individual negotiation is protracted. On the other hand tourists come in the
negotiation with a bias that sellers will try to “rip them off” and so we may expect
that they will put up a tough negotiating stance from the beginning.

Ferona and Tsionas (2012) examined auctions in order to assess the extent
of systematic underbidding and overbidding behavior. Using data from timber
auctions, they found that overbidding behavior dominated. In a tasty paper, Fried
and Tauer (2019) applied the model to study over-pricing and under-pricing in the
wine market of US Rieslings in the period 2000–2016. Their empirical finding of
average over-pricing was not so tasty.
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These applications already exemplify the wide reach of the 2TSF framework,
outside the traditional topics of research in SFA. But there is more.

Researchers in China have taken a strong interest in the model, and although at
times their approach is lacking as regards the conceptual and/or formal justification
of its use, their work certainly exemplifies the ability of the model to analyze
very diverse situations:2 Lian and Chung (2008), Yu and Liang (2012), Zhang and
Zheng (2012), Li et al. (2014), and Wen et al. (2016) used it to investigate the
effects of financing constraints and agency costs on investment behavior and also
on dividend policies, of listed Chinese firms. Lv (2013) investigated volume and
efficiency in R&D investment of Chinese listed companies, pitting agency conflicts
against incentive compatibility through a 2TSF model. The effects were reported
as large but diminishing through time. Wei (2015) studied the opposing forces
of financial constraints and government subsidies on R&D investment. Lin et al.
(2017) synthesized these topics by examining the effects of financing constraints
and agency costs on R&D investment specifically. Liu (2017) examined the internal
struggles in corporations that may lead to over-investment, while Xie and Li (2018)
applied the model in order to measure investment efficiency and test whether equity-
incentives to management had an effect on the former.

Zheng and Zhang (2012a), Huang (2013), and Liu and Liu (2014) used the
model to separate the “premium” effect from the “under-pricing” effect in Initial
Public Offerings (IPOs) of Chinese firms. All three studies found that the under-
pricing effect dominated in the samples examined. Huang et al. (2017) went one
step deeper and decomposed the under-pricing effect into a discount effect from the
primary market and a premium effect from the secondary market. Zheng and Zhang
(2012b) examined extreme IPO returns. Tao et al. (2014) examined the allocation
of bargaining power between listed companies and banks in the credit market (and
found that banks had the upper hand). Du and Wei (2014) used the model to measure
the efficiency of urban industrial emissions. Zhang and Sun (2015) investigated the
exchange rate of China’s currency RBM using the 2TSF model, and found evidence
that, if anything, the intervention of the Chinese government in the exchange market
tends to overvalue the currency, contrary to the predominant belief. Xu et al. (2016)
identified a dual effect of government intervention on the real-estate market in
China, one tending to increase prices and one tending to decrease them, and used the
2TSF model to quantify them. Yan and Qi (2017) used the 2TSF model to study the
effects of asymmetric information and bargaining power in the fruit export market
in China. Lyu et al. (2018) visited the labor market and examined the compensation
of CEOs in Chinese firms using the 2TSF Nash bargaining model.

And then, we have the truly exotic applications.
Groot and van den Brink (2007) used the 2TSF framework to measure the effects

of “optimism” and “pessimism” in self-reported quality of life. Compared to the
estimated “realistic” (mean) values of life satisfaction, they found that “optimistic”

2We were not able to obtain full English copies for some of the papers from China referenced here,
so for them we rely on the available abstracts.
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people are too optimistic, while “pessimistic” people tend in comparison to be below
of, but much closer to, the realistic value of life satisfaction. Other findings of
their study were that men are relatively more optimistic and less pessimistic than
women. Also, that cardiovascular disease makes people both less optimistic and less
pessimistic, i.e. it dampens the intensity of these psychological tendencies, which is
a reasonable result considering that people with such health issues are advised and
usually do try to avoid strong emotional states.

Poggi (2010) went back to the labor market, but this time in order to measure
“perceived job satisfaction” and how it is affected by downward and upward biases
created by peoples’ aspirations. She found that perceived job satisfaction languished
on average a good 13% below its realistic level, a result that is consistent with the
findings of the previous study: optimism (high aspirations) leads to disappointment
and downward bias in evaluating the actual situation.

2.4 The DEA Connection

We close this section with the sister field of Data Envelopment Analysis (DEA),
where there also exist papers similar in spirit to the 2TSF framework that model
various situations as “double price frontiers.”3 Lins et al. (2005) introduced the
“Double Perspective” DEA model (DP-DEA), in order to study the housing market
in Brazil but also to provide a real-estate value assessment tool. The authors
essentially created an equivalent of the core of an Edgeworth’s exchange box
by taking an input-oriented DEA model, transposing it and super-imposing it on
an output-oriented DEA model. Hadley and Ruggiero (2006) applied the same
approach to study the arbitraged salary negotiations in the market for Major League
Baseball players in the USA. Mouchart and Vandresse (2007, 2010) studied the
freight market in Belgium, modeling the contract space of the related negotiations
as a “maximum willingness to pay/minimum willingness to sell” double frontier, an
approach that is conceptually analogous to that of Gaynor and Polachek (1994).
Mouchart and Vandresse estimated their model by an extension of the standard
DEA approach using “bidirectional” free disposability, and it is interesting that
the estimated densities (p. 1301, Fig. 3 in the 2007 paper) of what in their model
corresponds to the positive and negative one-sided error components in the 2TSF
approach, roughly indicate an Exponential-like distribution for both.

Lakhdar et al. (2013) studied the illicit drug trade. They abandon the convexity
assumption of DEA and formulate a double-frontier model using a free disposal
hull (FDH) model. They explicitly invoke incomplete information as the force
that drives price up or down from a perfect-information equilibrium. Wolff (2016)
also adopts an FDH approach to study “bargaining power” in on-line diamond
markets. The author first runs a standard hedonic price regression in order to select

3I would like to thank professor Kristiaan Kerstens for bringing this literature to my attention.
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the most important features that influence the buying-selling decision, which are
subsequently used in his main model. This is similar in spirit to the 2TSF “scaling
property” approach proposed by Parmeter (2018) that we will present in a while,
where covariates are used as “determinants of inefficiency.”

Finally Shabanpur et al. (2017) apply a multistage Goal Programming-DEA
model to estimate a double frontier, this time around the same “decision making
unit” (this is structurally analogous to the situations examined by Groot and
van den Brink 2007 and Poggi 2010). Their case study concerns estimating the
“sustainability” of a sample of suppliers, creating in the process upper and lower
boundaries for (in)efficiency using data on “inputs” like price, environmental and
work-safety indices, and on “outputs” like quality of products, financial stability,
and efficiency in energy consumption.

It is natural to envision a comparative study of these methods together with the
2TSF approach, in the sense of applying all of them on the same data set(s) and
explore and understand the differences in the obtained results (or marvel at their
similarity). This would best be a collaborative effort.

3 Structural Foundations

3.1 The “Incomplete Information” Framework of Polachek
and Yoon (1987)

In the first paper to introduce the 2TSF model, Polachek and Yoon (1987) had the
insight that incomplete information on the one side of the market essentially affects
the effective presence of the other side in the market: if employers do not know
all labor supplied at a given wage, then the effective labor supplied by workers is
only what the employers know. And if workers do not know all the labor demanded
at a given price, the effective labor demanded is what the workers know. In short:
“If the other side does not know that I exist, I don’t.” This turns the complete-
information supply and demand schedules into frontiers with the distance from the
frontier determined by the degree of incomplete information of the other side. The
effective demand and supply functions were stochastically modeled as

LD = f
(

xD,ω
)

− eD, ∂f/∂ω < 0, LS = g
(

xS, ω
)

− eS, ∂g/∂ω > 0

where ω equals wage; eD is a non-negative random variable, reflecting the part of
labor demanded not seen by workers due to their incomplete information; the vector
xD lists the determinants of f (xD,ω) other than ω. Similarly for the supply curve,
the actual quantity supplied LS is below the maximum labor quantity g(xS,ω) which
will be supplied at any wage level. The term eS is a non-negative random variable to
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reflect the amount of labor supplied not seen by employers due to their incomplete
information. Defining the non-stochastic portion of excess labor demand

h (x, ω) ≡ f
(

xD,ω
)

− g
(

xS, ω
)
, x =

(
xD, xS

)
,

imposing the market-clearing condition LD = LS, and manipulating the relation lead
to a wage determination equation where the error term has the composite 2TSF
structure,

ωi = ωFI + (xi − E (xi ))′β + vi + wi − ui, (1)

w =
∣∣∣
∣
∂h (xFI , ωFI )

∂ω

∣∣∣
∣

−1

· eS, u =
∣∣∣
∣
∂h (xFI , ωFI )

∂ω

∣∣∣
∣

−1

· eD,

and where ωFI is the full-information wage (for the average worker in the average
firm). It can be consistently estimated as the constant term of the regression
(with centered regressors and uncentered dependent variable), as long as we
apply maximum likelihood estimation and estimate directly the parameters of the
distribution of the composite error term. Equilibrium in such a market can intuitively
be drawn in a diagram (Fig. 1).

Labor Supply as observed
by firms due to employers'
incomplete information

Sum of individual demands

Labor Demand as observed
by workers due to workers'
incomplete information

Sum of individual supplies

Fig. 1 Incomplete information at market level as failure to know the whole market
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From the diagram it is clear that the unambiguous effect of incomplete informa-
tion is to depress the equilibrium employment level. The effect on the equilibrium
wage is ambiguous: it may be higher, lower, or equal to the full-information wage.

The incomplete information interpretation has received empirical validation in
Polachek and Robst (1998). The authors used independent direct measures of work-
ers’ “knowledge of the world of work” obtained from the National Longitudinal
Survey of Young Men (NLSYM) in the USA. They compared frontier estimates
of incomplete information to these direct measures of workers’ knowledge and
verified that stochastic frontier analysis provides a reasonable measure of a worker’s
incomplete information.

3.2 The “Reservation Price” Framework of Gaynor
and Polachek (1994)

This was the first paper to apply the 2TSF model to the health services market.
The authors started their build-up toward the 2TSF reduced form by assuming
structural regression equations for the reservation prices of both buyer (patient) and
seller (physician). Namely, here the model starts at the individual level, imagining
a bilateral transaction between buyer and seller. The equations take the usual linear
form (subscript “b” for the buyer and “s” for the supplier),

Pb = x′
bβb + vb, Ps = x′

sβs + vs. (2)

The vector xb contains the factors that affect the maximum fee the patient will
be willing to pay (such as the extent of insurance coverage, the patient’s education
and income, the severity of the patient’s illness, and the frequency with which the
physician’s services are needed), and vb is a random disturbance. Analogously for
the physician, the vector xs contains regressors such as input prices, technology,
age of equipment, and factors affecting efficiency, that determine the minimum fee
a physician is willing to accept. The authors then define “gains” for the buyer and
the seller, as the distance between reservation prices and actual price P. Each gain
is a consequence of the incomplete information of the other side of the transaction.
These gains are defined for the buyer and seller, respectively, as

U ≡ Pb − P ≥ 0, W ≡ P − Ps ≥ 0. (3)

Combining with the expressions for the reservation prices we get

P = x′
bβb + vb − U, P = x′

sβs + vs + W. (4)
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Summing up and dividing by 2 we obtain

P = x′β + v + w − u, (5)

x′ = (x′
s , x′

b

)
, β = 1

2

(
βs

′, βb ′)′, v = 1

2
(vs + vb) , w = W/2, u = U/2.

Equation (5) has the structure of a 2TSF reduced-form equation. It is important
to point out that the definitions for W and U are ex post representations, and not
ex ante structural relations. If they were the latter, they would render Eq. (5) an
identity let alone inducing all sorts of statistical dependencies that would threaten
the reliability of the estimation results. In other words, W and U are only measured
ex post as indicated by the right-hand sides of the equations in (3), they are not
caused by these expressions, but rather, they arise due to the incomplete information
of the participants in the transaction.

This is a foundation for the 2TSF model that can be used for any mar-
ket/transaction where we can argue for the existence of reservation prices on both
sides of the market (and have some covariates to express them). In applying this
framework, we should not forget the factor 1/2 when we quantitatively assess the
effects of incomplete information on price, since in expected-value terms we have
Ê(W) = 2Ê(w), Ê(U) = 2Ê(u), and it is Ê(w), Ê(u) that we will obtain from
the estimation procedure, while it is E(W), E(U) that we are interested in.

3.3 The “Hedonic Price” Framework of Kumbhakar
and Parmeter (2010)

In this paper the authors applied the 2TSF model in the house-selling market, in a
hedonic analysis framework. Superficially, their approach may appear similar with
the one in Gaynor and Polachek (1994) analyzed just above, but it is not, quite the
contrary, and it leads to different quantitative consequences.

The authors define the gains to the buyer and the seller due to the incomplete
information of the other in the same way as in Gaynor and Polachek (1994),
but they do not construct structural equations for the reservation prices of buyers
(“willingness to pay”) and sellers (“willingness to accept”).

When they impose the necessary condition that price received must equal price
paid, they essentially add the loss to the seller to, and subtract the loss to the buyer
from, the transaction price, thus creating a “full-information” price expression. In
the notation of the previous part we have

PFI = P + u − w, u = U, w = W. (6)
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They then point out that in a hedonic analysis approach we have the hedonic
function decomposition of full-information price (not actual price) PFI = h(z) + v,
where z is a vector of characteristics of the house on sale, h(·) is the hedonic
function, and v is a random disturbance. Equating the two and rearranging we get

P = h (z) + v + w − u, u = U, w = W, (7)

which is a 2TSF reduced-form equation.
The evident difference from the “reservation price” framework of Gaynor and

Polachek (1994) analyzed previously is that here the one-sided error terms in the
2TSF model equal the gains of the parties due to incomplete information of the
other, while previously each was only half of them (compare Eq. (7) with Eq. (5)).
This is certainly crucial when using the model to obtain quantitative results. So it is
important to understand clearly why do these frameworks differ, and so when it is
appropriate to use the one or the other.

The fundamental difference is that Kumbhakar and Parmeter (2010) obtain two
equations for the full-information price, something that allows them to eliminate
it and obtain a single expression for the transaction price. Gaynor and Polachek
(1994) do not assume the existence of an “independent” expression for the “full-
information” price (physician’s fee) as Kumbhakar and Parmeter do (the hedonic
equation). But they do assume the existence of structural equations for the reserva-
tion prices (while Kumbhakar and Parmeter do not). Consequently, what Gaynor and
Polachek obtain is two expressions for the transaction price (Eq. 4) and they have
to add them and divide by 2 to arrive at a single expression that can be implemented
econometrically.

Both frameworks are valid. As for which one to use, it will depend on the data
available and the model developed in each case.

3.4 The Nash Bargaining 2TSF Framework

In Kumbhakar and Parmeter (2009), the authors made the first attempt to build a
2TSF model for a bilateral wage bargaining situation. They assumed realistically
that since the productivity/output of the worker lies in the future, it is uncertain.
To analyze this they adjusted the benchmark deterministic search and match labor
market model of Pissarides (2000, chap. 1) that uses reservation prices to form the
negotiation space and a Nash bargaining solution concept, substituting expected
output for its deterministic counterpart. But as we show in Papadopoulos (2018,
chap. 2), the end result was really a single-tier SF model, despite its 2TSF
appearance. Specifically, the fundamental issue is that in order to obtain the 2TSF
structure, the authors had to assume that the maximum wage that the firm is willing
to pay is equal or greater than the expected output of the worker (as expected by
the firm). But this means that the firm is a priori prepared to incur a loss by hiring
the worker, which cannot be an accurate description for the bulk of the situations
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encountered in the real world.4 Once we acknowledge this and postulate that the
maximum wage the firm is willing to pay is equal to the expected output of the
worker, the model collapses to a single-tier SF one.

But a bargaining situation is without any doubt a natural place for the 2TSF
approach to emerge, so we tried again. First, we used the fact that as bargaining
unfolds in cases where we ultimately reach an agreement, the initial reservation
prices become non-binding and irrelevant for the outcome since the two parties are
moving closer and so bargain in the interior of the feasible space defined by these
initial prices. This led us to formulate the equilibrium situation as depending on the
targets that each party formulates as regards the desired outcome. Denoting ωT

e the
target of the employee and ωT

f the target of the firm, the Nash bargaining solution
can now be expressed as

ω∗ = ηωT
e + (1 − η) ωT

f ,

where ω∗ is the observed equilibrium wage, and η the relative bargaining power of
the employee. Next, we acknowledge the existence of heterogeneous information
in the two bargaining parties, as well as a non-empty common information set,
If �= Ie, If ∩ Ie �= ∅. This permits us to define the symmetric-information expected
value of the match, E(p|If ∩ Ie), which may change somehow during the bargaining
process as more information is exchanged. So the equilibrium common-information
expected value is

μ (x) = E
(
p
∣∣If ∩ Ie

)+ v.

This cannot be the conditional expectation of any of the parties, since it does
not use the full information of either, but it is reasonable to model their targets
as pivoting off from this common base. For the sellers, the target tends to be
always higher than μ(x), either for strategic reasons or because of a “own-evaluation
premium” that arises from the private information they have on themselves or on
what they sell,

ωT
e ≡ μp (x) + g = E

(
p
∣∣If ∩ Ie

)+ v + g, g ≥ 0.

For the buyers, their target will always be belowμ(x), either again due to strategic
bargaining considerations, or due to a “prudential discount” (“it is never as good as
it looks”),

ωT
f ≡ μp (x) − d = E

(
p
∣∣If ∩ Ie

)+ v − d, d ≥ 0.

4One may think of cases where the firm will incur a tangible loss (like a contract penalty) if it does
not fill a position. In such a case, it could hire the worker at a loss, as long as the latter loss is
smaller than the former. But these are rather exceptional cases.
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Inserting this into the targets-based Nash bargaining solution we obtain

ω∗ = E
(
p
∣∣If ∩ Ie

)+ v + ηg − (1 − η) d. (8)

E(p|If ∩ Ie) is the systematic part of the regression, and v + ηg − (1 − η)d is a
proper 2TSF composite error term. The relative bargaining power of the employees
η is not a constant but a random variable, since we expect that in principle it will
vary in each separate bilateral bargaining that takes place. The same holds for the
variables g and d.

The products ηigi and (1 − ηi)di achieve separate representation (if not identifi-
cation) of the information effect (gi and di) from the bargaining power effect (ηi and
1 − ηi), providing the theoretical base of the earlier discussion related to empirical
results from the health services and housing markets.

We make a note that informational aspects here are used in a totally different way
than in the original 2TSF paper of Polachek and Yoon (1987). As we have analyzed
earlier, there the focus was on incomplete information of each party, and how this
affected the other party. Here, the focus is on private information and how it affects
the behavior of its owner.

We stress that the model is not just a re-writing of an earnings relation a la
Mincer. In an empirical application, one should use here a data set that includes
variables reflecting characteristics of both bargaining parties (namely, a matched
employer–employee data set), in order to represent and estimate properly the
common-information expected value E(p|If ∩ Ie). The good news is that since
the systematic part represents the common information, it should be adequately
represented by covariates that are generally available in accessible data bases.

On the other hand, characterizing the properties of ηi separately from the own-
evaluation premium gi and the prudential discount di appears infeasible without
additional information/restrictions on the model. In Sect. 4.2.3 we discuss a possible
way forward on this issue.

The above targets-based 2TSF Nash bargaining framework is generally applica-
ble, beyond the labor market, and it validates ex post the various 2TSF empirical
applications in other bargaining situations that were mentioned earlier. The model
is fully developed and presented in Papadopoulos (2020c).

4 Tools of the Trade

4.1 Distributional Specifications

4.1.1 The Exponential 2TSF Specification

2TSF models come equipped with distributional assumptions on the composite error
term. All applied studies up to now have used the Exponential 2TSF specification,
where the assumptions on the composite error term ε = v + w − u are
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v ∼ N
(

0, σ 2
v

)
, w ∼ Exp (σw) , u ∼ Exp (σu) ,

where σw, σ u are scale parameters of Exponential distributions. The three compo-
nents are assumed to be jointly independent. The density of the composite error
term, as obtained in Kumbhakar and Parmeter (2009), is

fε (ε) = exp {a1}Φ (b1) + exp {a2}Φ (b2)

σw + σu
, (9)

where �(·) is the standard normal distribution function and where

a1 = σ 2
v

2σ 2
u

+ ε

σu
, b1 = −

(
ε

σv
+ σv

σu

)
, a2 = σ 2

v

2σ 2
w

− ε

σw
, b2 = ε

σv
− σv

σw
.

(10)

As with the single-tier SF models, of importance are also individual measures
(i.e., at the observation level), usually in the form of conditional expected values.
Kumbhakar and Parmeter (2009) provide these expressions5 that are based on the
approach of Jondrow et al. (1982), sometimes called the JLMS measures. Some
additional results and formulas related to the 2TSF Exponential specification can be
found in Papadopoulos (2018).

An issue specific to the 2TSF models, and related to the JLMS measures arises
when we regress the dependent variable in logarithmic form. Then the ultimate
individual measures will be based on the exponentiated variables, ew, e−u. Naturally
we would like to consider their net effect. But E(ewe−u|ε) �= E(ew|ε) · E(e−u|ε)
because, even though we assume that w and u are independent, they stop being
independent when conditioned on ε, something that have escaped notice in the
literature. To obtain E(ewe−u|ε) directly, we need first to derive the distribution of
the variable z = w − u. For w and u Exponential, their difference is an asymmetric
Laplace distribution, except if w, u have the same parameter.

4.1.2 The Half-Normal 2TSF Specification

Papadopoulos (2015a) presented an alternative distributional specification for the
2TSF composite error term, where the one-sided error terms are assumed to
follow each a Half-Normal distribution instead of the Exponential one. Here the
distributional assumptions for ε = v + w − u are

5And, as luck would have it, it contains typographical errors in two formulas in the main text (Eqs.
11 and 12). The corresponding formulas in their Appendix (Eqs. A.10 and A.13) are the correct
ones and should be used instead.
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v ∼ N
(

0, σ 2
v

)
, w ∼ HN (σw) , u ∼ HN (σu) ,

where σw, σ u are the standard deviations of the symmetric zero-mean Normals of
which the two Half-Normals are their absolute values. Joint independence is again
assumed. The density of the composite error term is

fε (εi) = 2

s
φ (εi/s) [G1 (εi; 0, ω1,−λ1) − G2 (εi; 0, ω2, λ2)] , (11)

with

θ1 ≡ σw

σv
, θ2 ≡ σu

σv
, s ≡

√
σ 2
v + σ 2

w + σ 2
u = σv

√
1 + θ2

1 + θ2
2 ,

and

ω1≡
s

√
1+θ2

2

θ1
, ω2 ≡

s

√
1+θ2

1

θ2
, λ1 ≡ θ2

θ1

√
1+θ2

1 +θ2
2 , λ2 ≡ θ1

θ2

√
1+θ2

1 +θ2
2

and where φ(·) is the standard Normal density while G(z; location, scale, skew) is the
distribution function of a univariate Skew Normal random variable. An alternative
way to express this distribution function is in terms of the correlated bivariate
standard normal integral �2,

G(εi; ξ, ω, λ) = 2�2

(
εi − ξ

ω
, 0; ρ = −λ√

1 + λ2

)
. (12)

In our case, ξ = 0. This is convenient for empirical implementation, since �2(·)
is widely available in software packages as a special function. Using this we can
re-write the density of the composite error as

fε (εi) = 4

s
φ (εi/s)

⎡

⎣�2

⎛

⎝ εi

ω1
, 0; ρ = λ1√

1 + λ2
1

⎞

⎠− �2

⎛

⎝ εi

ω2
, 0; ρ = −λ2√

1 + λ2
2

⎞

⎠

⎤

⎦ .

(13)

The paper also includes formulas for the JLMS observation-specific measures,
either for a specification in levels or for the semi-log and log-log regression spec-
ifications that are commonly found in the literature. The density of the difference
z = w − u has been derived in Papadopoulos (2015b).
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4.1.3 The Truncated Normal 2TSF Specification

As a by-product of a panel-data 2TSF model, Wang (2017) presented the 2TSF
Truncated Normal specification for cross-sectional data, where the one-sided terms
follow the Truncated Normal distribution (rather than the Exponential or the Half-
normal). Unfortunately, the provided expression for the density of the composite
error term was wrong. The assumptions here for ε = v + w − u are

v ∼ N
(

0, σ 2
v

)
, w ∼ TN≥0 (μw, σw) , u ∼ TN≥0 (μu, σu) ,

where TN≥0(μ, σ ) stands for a Normal distribution truncated from below at zero
with non-zero location parameter. Then, using the same notations and shorthands
that we used for the Half-Normal 2TSF specification, the correct density of the
composite error term is

fε (ε) = [�(μw/σw)� (μu/σu)]−1

s
φ

(
εi − (μw − μu)

s

)

×
⎧
⎨

⎩
�2

⎡

⎣ 1

ω1

(

ε +
(
σ 2
v + σ 2

u

)

σ 2
w

μw + μu

)

, λ0; ρ = λ1√
1 + λ2

1

⎤

⎦

−�2

⎡

⎣ 1

ω2

(
ε − μw − σ 2

v + σ 2
w

σ 2
u

μu

)
, λ0; ρ = −λ2√

1 + λ2
2

⎤

⎦

⎫
⎬

⎭
,

(14)

λ0 = (σu/σw)μw + (σw/σu) μu

s0
, s0 ≡

√
σ 2
w + σ 2

u .

If μw = μu = 0 the density collapses to the density of the 2TSF Half-Normal
specification, as should be expected.

4.1.4 The Semi-Gamma 2TSF Specification

An early criticism by Stevenson (1980) was that by using the Exponential or the
Half-normal distribution in SF models we impose the assumption that the most
likely values for these components are near zero, something not necessarily true or
justifiable in all cases. Responding to this criticism, Papadopoulos (2018) presented
two new specifications that relax this constraint.

The first one is the semi-Gamma specification that comes in two variants.
One variant is the Gamma-Exponential 2TSF specification where we have for

ε = v + w − u,
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v ∼ N
(

0, σ 2
v

)
, w ∼ Gamma (kw, θw) , u ∼ Exp (σu) .

For the Gamma distribution we adopt the shape-scale parametrization. Here the
positive one-sided component is allowed to have its mode away from zero. The
density of the composite error term is

fε (ε) =

σ
kw−1
u

(σu + θw)
kw

⎡

⎣exp

{
ε

σu
+ σ 2

v

2σ 2
u

}
−

∞∫

0

exp {z/σu} 1

σv
φ

(
ε − z

σv

)
FG (z; kw, δ) dz

⎤

⎦ .

(15)

where FG(z; kw, δ) is the Gamma distribution function with shape parameter k and
scale parameterδ ≡ σ uθw/(σ u + θw). The density does not have a closed form and so
the model requires other estimation methods than standard maximum likelihood.6

Individual measures are also of non-closed form, and can be computed by Gauss–
Laguerre or Newton–Cotes quadrature.

The second variant of the semi-Gamma specification is the Exponential-
Gamma,where

v ∼ N
(

0, σ 2
v

)
, w ∼ Exp (σw) , u ∼ Gamma (ku, θu) .

The density of the composite error term is

fε (ε) = σ
ku−1
w

(σw + θu)
ku

⎡

⎣exp

{
− ε

σw
+ σ 2

v

2σ 2
w

}
−

∞∫

0

exp {z/σw} 1

σv
φ

(
ε + z

σv

)
FG (z; ku, δ) dz

⎤

⎦ .

(16)

with δ ≡ σwθu/(σw + θu), and the same comments apply.
The semi-Gamma specification is the only one where the one-sided components

follow different distributions (although of the same family). Evidently, such cross-
breeding can be extended and applied to the other specifications as well, at least to
those that assume independence between the two terms.

6Using the Fast Fourier Transform, Tsionas (2012) estimated a model where both one-sided errors
were initially specified as following the Gamma distribution. For the sample he used, he found
that the negative component was actually an Exponential random variable, thus ending up with the
Gamma-Exponential specification.
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4.1.5 The Generalized Exponential 2TSF Specification

The semi-Gamma specification allows only one of the non-negative error com-
ponents to have its mode away from zero. Moreover, Ritter and Simar (1997)
have shown that the Gamma distribution may be a risky choice, because its
shape parameter (the one that structurally provides its shape flexibility) is weakly
identifiable, even for large samples. To allow for both error components to possess
the non-zero mode property, we have also developed the Generalized Exponential
2TSF specification. The marginal density, say for w is

fw(w) = 2

θw
exp {−w/θw} (1 − exp {−w/θw}) , θw > 0, w ≥ 0, (17)

and analogously for u. It can be seen as a special case of the three-parameter
“Generalized Exponential” distribution of Gupta and Kundu (1999) and we will
write w~GE(2, θw, 0). But there is a price to pay: The strictly positive mode is
an inherent property and it does not nest the Exponential case (so in a sense
“Generalized Exponential” is an inaccurate name). This is a specification that has
to be supported by economic and behavioral arguments—and once it does, this
statistical inflexibility does not loom large over the model.

We see that the GE density equals 2fE(x)FE(x), where fE(x)is the density and
FE(x) is the distribution function of an Exponential random variable. But then
2fE(x)FE(x) is the density of the maximum of two i.i.d Exponentials. This carries
over to the case of a logarithmic specification, where we are ultimately interested
in exp{w}, exp{u} and the measures derived from them. These measures each
follow the distribution of the maximum of two i.i.d. random variables. So if we
mentally picture two possible outcomes for each variable, the model will give us
the stronger of the two. We can say then that the 2TSF Generalized Exponential
specification pictures the real world as operating at maximum intensity, something
not incompatible with fundamental ideas in economic theory.

For ε = v + w − u with v ∼ N
(
0, σ 2

v

)
, w ∼ GE (2, θw, 0) , u ∼ GE (2, θu, 0),

jointly independent, we have the density function

fε (ε) = 2
θw+θu

[
2θu exp{au}�(bu)

θw+2θu
− θu exp

{
2au+(σv/θu)

2}�(bu−σv/θu)

2θw+θu

+ 2θw exp{aw}�(bw)
2θw+θu

− θw exp
{
2aw+(σv/θw)

2}�(bw−σv/θw)

θw+2θu

] (18)

with

au = ε

θu
+ σ 2

v

2θ2
u

, bu = −
(
ε

σv
+ σv

θu

)
, aw = σ 2

v

2θ2
w

− ε

θw
, bw = ε

σv
− σv

θw
.
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This specification was developed in order to focus on the modes of the distribu-
tions, and so it seemed appropriate to do the same as regards measures at the
observation level. We derived the conditional densities for w|ε, u|ε, as well as for
exp{±w}|ε, exp {−u}|ε. Then, computing the conditional mode for each ε̂i is done
by iterative non-linear maximization. This specification is presented in detail, also
for single-tier SF models, in Papadopoulos (2020a).

4.1.6 Dependence Between the One-Sided Error Components: The 2TSF
Correlated Exponential Specification

In many cases, maintaining the assumption that the three error components are
jointly independent is indefensible. For example, in the 2TSF Nash bargaining
framework, the two one-sided components are functions of the relative bargaining
power of the employee η which is not a constant but a random variable, and
dependence is inescapable. To cover these situations, we developed the 2TSF
Correlated Exponential specification, where the two one-sided components are
assumed to follow jointly the bivariate Exponential extension of Freund (1961). We
maintain the assumption that v ∼ N

(
0, σ 2

v

)
, while the joint density of w and u is

fwu (w, u) =
⎧
⎨

⎩

ab′ exp
{−b′u − (a + b − b′)w

}
0 < w < u

a′b exp
{−a′w − (a + b − a′) u

}
0 < u < w

a, a′, b, b′ > 0

The Pearson’s correlation coefficient range allowed by this bivariate distribution
is (−1/3, 1) which is respectable, taking into account that we are talking about the
correlation of two non-negative random variables (that cannot reach −1). Setting
m ≡ a/(a + b), the density of the composite error term ε = v + w − u is

fε (ε) = √
2πϕ (ε/σv)

[
mb′ exp

{
1

2
ω2

2

}
�(−ω2)+ (1 − m) a′ exp

{
1

2
ω2

3

}
Φ (ω3)

]

ω2 ≡ ε

σv
+ b′σv, ω3 ≡ ε

σv
− a′σv.

Note that in the regression context with the composite error term, (a, b) are
not separately identifiable, only m ≡ a/(a + b) is. Introducing intra-dependence
weakens the role of skewness of the residuals as an indication of the relative
strengths of the one-sided components: we can show that for certain combinations of
parameter values, we may have E(w − u) > 0 together with negative third cumulant
κ3(ε) < 0 and vice versa. This result is analogous with what Smith (2008) found for
single-tier SF specifications under dependence.
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Papadopoulos (2018, chap. 4.1) completes the specification with individual
JLMS measures, the distribution of z = w − u, as well as a formal statistical test for
the postulated dependence.7

4.2 Estimation Methods

4.2.1 Maximum Likelihood

Maximum likelihood is the dominant method of estimation for 2TSF models.
Compared to single-tier SF models, the 2TSF framework provides an additional
flexibility regarding the composite error term from a technical point of view: in
ε = v + w − u, the v term is no longer needed to ensure that the regularity conditions
of ML estimation are satisfied (as is the case for single-tier SF models). Of course,
the presence of this term is justified also by real-world considerations: random
shocks do happen. Still, if in the process of an empirical study we obtain a nearly
zero-variance for v, implying that its effect compared to w and u is negligible, we
can safely discard it and re-estimate. In fact if we do not do this, our ML estimator
will be non-standard (although now with known properties), since we have the true
value of one of the parameters on the boundary of its parameter space, and a singular
Hessian matrix. Discarding the v term will restore the standard properties of the
MLE, while the regularity conditions will be respected too. This is another reason
why having available the distribution of z = w − u is useful—we may need to
use it in the core estimation step of a study, and not just for calculating individual
measures.

The maximum likelihood framework is also the one that can be used in order to
account for regressor endogeneity using Copulas rather than instrumental variables.
In Papadopoulos (2019) we expand on the work of Tran and Tsionas (2015) and
detail the application of the Gaussian Copula for this purpose.

Previously, we have also presented densities for the composite error term that are
not in closed form and cannot be estimated by the usual ML estimator. A solution
here is to use simulated maximum likelihood. The first application in a 2TSF context
appears to be Murphy and Strobl (2008). The authors used for their main work the
2TSF Exponential specification, but they reported a specification test where they
estimated by simulated maximum likelihood a full Gamma specification for the
model (i.e., where both one-sided error components are assumed to follow Gamma
distributions, that nests the Exponential). Blanco (2017) adjusted the 2TSF model
to take into account sample-selection bias, and extended and applied the simulated
maximum likelihood methodology that Greene (2010) has developed for the single-
tier SF framework. Another approach is to use the Fast Fourier Transform algorithm

7 For additional 2TSF specifications with intra-error dependence, see Papadopoulos, Parmeter and
Kumbhakar (2020).
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as proposed in Tsionas (2012). Scaling back on technical sophistication, we have
also developed a Corrected OLS/Method-of-Moments estimator, which we present
next.

4.2.2 Corrected OLS/Method of Moments.

It is a known result that the residuals from OLS estimation of a single-tier or two-
tier SF model converge in probability to the true centered composite error term,

ε̂OLS
p→ ε − E (ε). Therefore the residual moments are consistent estimators

of the central error moments. But the central error moments are functions of the
unknown parameters of the composite error distribution. This allows us to construct
an estimator that is based on the method of moments: in the first stage we estimate
the model with OLS, obtaining consistent estimates for the regressor coefficients, an
estimate for the constant term that is biased because it includes also the estimated
mean of the error term, and a series of residuals. In the second step, we formulate
a method-of-moments estimator, using the error moment equations and the OLS
residual series to obtain consistent estimates for these unknown error distribution
parameters. With these we can obtain a consistent estimate for the mean of the error
term. In the third step, we use this to correct the OLS estimate of the constant term,
and subsequently to correct also the OLS residual series. Then we can also proceed
with calculating the various individual measures using the corrected OLS residuals.

Various studies have developed method-of-moments estimators for single-tier SF
models, starting with Olson et al. (1980), and continuing with Greene (1990), Kopp
and Mullahy (1990), Coelli (1995) and Chen and Wang (2004). The 2TSF composite
error term has at least three unknown parameters in its distribution and in the semi-
Gamma specification, it has four. The first-order moment equation cannot be used
since the sum and mean of the OLS residuals will be by construction zero. So in
order to estimate four unknown parameters, we need to use the moment equations
for the second, third, fourth, and fifth central moment. For small and medium sized
samples, the downward bias of central sample moments of higher order is well
known, and it gets worse as the order of the moment increases. When we deal
with regression residuals the downward bias increases also with the number of
regressors. Fisher’s (1930) unbiased estimators for the central error moments and
the cumulants, the latter going by the name “k-statistics,” do not account for the
bias in our case, since they assume that we have data from the true distribution. To
offset the bias, we derived unbiased estimators for the central error moments, μ̂j (ε)

and also for their cumulants κ̂j (ε), up to and including the fifth order.
We called the unbiased cumulant estimators the “kapa-statistics” and it is those

that we used to formulate our COLS/MM estimator, rather than the central moments
(they are the same though for the second and third order). Erickson et al. (2014)
provide Monte Carlo evidence that cumulant estimators perform better than moment
estimators when used in a regression estimation.
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The COLS/MM estimator can be implemented with any specification that
satisfies the following for ε = v + w − u: v has zero mean, is symmetric around
zero and so it has all odd moments equal to zero, w and u have non-zero mean and
non-zero third, fourth, and fifth central moments, the three random variables are
jointly independent, and the unknown parameters are no more than four.

In practice, this can be implemented as an exactly identified GMM estimator.
Starting values can be provided by numerically solving the system of cumulant
equations. This will essentially give us almost exactly the final estimates, but the
application of the GMM routine is required in order to obtain standard errors for
the estimates. The use of the unbiased kapa-statistics makes the application of the
Analogy Principle exact in finite samples also, while the COLS/MM estimator is
consistent and asymptotically Normal.

4.2.3 Non-linear Least Squares

In a purely methodological paper, Parmeter (2018) exploits the “scaling property”
that characterizes all single-parameter distributions (and not only), in order to
make feasible a non-linear least squares (NLS) estimator, thus doing away with the
distributional assumptions that are needed for maximum likelihood and can cause
misspecification. The approach has similarities with the heteroskedastic extension
of the 2TSF model discussed earlier, since it can be implemented only if we have
available covariates to use as determinants of the one-sided error components. But
here, the functional specification is non-linear, and it guarantees identification even
if it so happens that the two one-sided unobservables are symmetric. Contrast this
with the work of Harding et al. (2003). They essentially apply the 2TSF philosophy
in order to measure bargaining power in a hedonic framework for existing homes.
But they model the bargaining power of buyers and sellers as linear functions
of observable individual characteristics, and so for identification they need these
characteristics to take different values for the two sides of the transaction.

Another important property of the NLS approach is that it allows automatically
for the existence of dependence between the error terms and between them and the
regressors, since in essence, the one-sided error terms become composite regressors
themselves, leaving only the random symmetric disturbance as unobservable: the
regression equation here looks like

y = x′β + exp
{
z′
wδw

}− exp
{
z′
uδu
} + v,

E (w |x, zw, zu ) = exp
{
z′
wδw

}
, E (u |x, zw, zu ) = exp

{
z′
uδu
}
.

Now, consider again the Nash bargaining regression Eq (8): for estimation
purposes, we make the mappings ηigi ≡ wi, (1 − ηi)di ≡ ui, namely we map
products of random variables to a single random variable. The relative bargaining
power variable ηi ranges in (0, 1) while the variables gi, di that represent private
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information effects are non-negative. It could reasonably be argued that the distribu-
tion of their product will not be adequately approximated by any one of the familiar
non-negative distributions (and using non-standard distributions would most likely
make the composite density intractable). So applying the distribution-free NLS
estimator appears even more justified in this case.

Moreover, if we have distinct covariates to use as explanatory variables for the
bargaining power and the information effects, we can obtain separate estimations on
how each factor affects the conditional mean of the product variables.

For example, “length of unemployment spell” or “number of dependents in the
household” would probably affect negatively the bargaining power of a prospective
employee, while the self-evaluation premium will tend to co-vary positively with
“length of experience” since the longer the experience the more information about
professional achievements stays out of a resumé (even though previous job positions
may all be listed).

For the side of the employer, strong product demand may negatively affect its
bargaining position (due to prospective loss of profits if vacancies persist), while a
high employee turn-over rate would tend to strengthen the prudential discount.

4.3 Panel Data

The Exponential 2TSF specification has initially been extended for panel data in
Polachek and Yoon (1996). The authors applied a fixed-effects model and a two-
step estimation procedure. Das and Polachek (2017a, b) introduced heterogeneity
in the following way: although they assume that the one-sided error components
each follow an Exponential distribution as in the benchmark model, one of them is
no longer identically distributed because it contains a group-specific heterogeneity
parameter (so it remains an Exponential distribution but with changing parameter).
This leads to a different likelihood function and a different estimation algorithm
than the usual one.

Wang (2017) extends the four-component single-tier SF panel-data model of
Kumbhakar et al. (2014), and formulates an all-encompassing six-component 2TSF
model for panel data: it includes an individual heterogeneity component, the random
disturbance, and two one-sided effects where each is decomposed into a time-
varying and a time-invariant part. We have the specification

yit = α0 + x′
it β + (θi + vit ) + (γi + wit ) − (ηi + uit ) ,

i = 1, . . . , N, t = 1, . . . , T .
(19)

The terms vit, wit, uit are now the time-varying components of their cross-
sectional selves, while θ i, γ i, ηi are the time-invariant parts (with θ i being the
“individual heterogeneity” parameter). All are treated as random variables. We
assume that E(θ i) = E(vit) = 0 and Normally distributed. Let a tilde above a variable
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denote that the variable is centered on its mean, x̃ = x − E(x). Estimation can
proceed in two stages as in Kumbhakar et al. (2014). In the first stage, we define

α∗
0 ≡ α0 + E (γi) − E (ηi) + E (wit ) − E (uit ) ,

αi ≡ θi + γ̃i − η̃i , εit ≡ vit + w̃it − ũit .

Then the main equation can be written

yit = α∗
0 + x′

it β + αi + εit , i = 1, . . . , N, t = 1, . . . , T .

This is a standard random-effects panel-data model, and can be estimated as
usual, which, among other estimates, it will provide an estimated set of values

{
α̂i
}

over cross-sections and an estimated panel
{
ε̂it
}
.

In the second stage, we perform two separate maximum likelihood estimations.
For the time-invariant components, we have (subject to estimation error),

α̂i + E (γi) − E (ηi) = θi + γi − ηi ≡ ψi.

The right-hand side is a 2TSF composite error term, and we have by now
alternative distributional specifications to choose from. Selecting one of them gives
us the density of the left-hand side,

fψ (ψi) = fψ
(
α̂i + E (γi) − E (ηi)

)
.

Here the
{
α̂i
}

estimates are treated as the sample (no regression relation is
involved), while E(γ i), E(ηi) are simple or composite functions of the unknown
parameters already present in fψ . The sum of lnfψ (ψ i)’s forms the log-likelihood.
We apply the same method for the time-varying components since

ε̂it + E (wit ) − E (uit ) ≡ vit + wit − uit .

The panel aspect of
{
ε̂it
}

is not taken into account and the data are pooled to
function as the sample based on which we can estimate the parameters of the 2TSF
density.

In principle, the 2TSF distributional specifications may differ in the two legs
of the second stage. This may have a behavioral justification. For example, the
researcher may have reasons to believe that the time-invariant components have their
mode away from zero and/or are correlated, while the time-varying components
have zero modes and are independent (or vice versa, depending on the real-world
situation).

This estimation method ignores the estimation error of the first stage, but also
the fact that the series used in the second stage, being estimated series, no longer
form an independent sample (although the elements of the series are identically
distributed). Still, under consistency, this dependence vanishes asymptotically.
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5 Moving Forward

After a 20-year period of rather sparse application, the 2TSF approach has started
to increasingly attract the attention of researchers. The present review hopes to
reinforce this trend by accomplishing two things: first, reveal the diversity of the
real-world phenomena that can be fruitfully formulated as 2TSF situations, and
promote in this way the application of the model to these areas, but also others
as yet uncovered. Indicatively, our own research has led us to apply the model in
the most traditional single-tier SF situation, the production function, where we use
it in order to capture the effects on output of the ever-intriguing management factor
(Papadopoulos 2020b). This allows us to offer a simple and intuitive explanation
of the “wrong skewness” issue that appears often in production data samples. As
another example of an application that expands the horizon of frontier analysis
beyond matters of efficiency, one can identify two main opposing forces in the
pricing decisions of a firm: brand loyalty and the fear of competition, both as
assessed by the firm. These may make observed prices deviate from their hedonic
level that is based on the “objective” characteristics of a product. A 2TSF model
would be immediately applicable here, revealing important aspects of the “mind
of the firm” that are never available as data. Yet one more unexpected area where
the model has been applied is Huang et al. (2018), which combine the 2TSF
approach with a business cycle model with autocorrelation, opening at once two
new territories to the 2TSF treatment: serial correlation, and macroeconomics.

The second thing that we hope we have accomplished here, and perhaps even
more important, is to clearly signal that the 2TSF framework is no longer a poor
relative as regards the tools available to dissect and interpret the data. While
virtually all empirical studies up to now have been conducted on cross-sectional data
using standard maximum likelihood and the Exponential specification, the 2TSF
framework nowadays includes many more weapons in its arsenal to accommodate
data sets that are richer and statistical structures that are more demanding, as well
as to offer more concrete interpretations.

It appears worthwhile to revisit the birthplace of the 2TSF model, the labor
market, in order to re-examine the determination of the wage using the robust
bilateral Nash bargaining framework as the interpretation tool, a matched employer–
employee data set, and the Correlated Exponential specification to account for
statistical dependence between the one-sided error components.

If data on determinants of the one-sided term are available, the use of Parmeter’s
(2018) non-linear least squares estimator guards against regressor endogeneity with
respect to these terms, frees us from the need of possibly unrealistic distributional
assumptions, and may also allow us to separate and identify separately the infor-
mational effects from the bargaining power effects, as has been discussed in the
relevant section. This applies not just to the labor market and wage determination,
but to any situation where bilateral bargaining takes place and both bargaining power
and private information affect the outcome.
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Markets with complex goods like houses and information technology products
are expected to be characterized by incomplete and asymmetric information, and
most likely non-zero, especially from the side of the buyers. To do justice to such
an unbalanced structure requires one of the one-sided distributions to have its
mode away from zero, like the Gamma-Exponential variant of the semi-Gamma
specification that moreover can be estimated relatively effortlessly with the method-
of-moments/COLS estimator and the kapa-statistics.

Analogous thoughts apply to the markets for health services. Their perennial
status as a sensitive sociopolitical issue makes the insightful analysis of the data in
order to inform the public dialogue even more crucial than what scientific principles
would alone dictate. Using the Generalized Exponential specification with its many
individual measures of informational inefficiencies (expected values, modes, and
medians) would provide a rich characterization of this group of idiosyncratic
markets.

All the above can immediately translate to a panel-data environment using the
approach described earlier that allows for flexible modeling and estimation. Panel-
data samples enhance our ability to separate concurrent latent forces and this is
the ever-present challenge that the 2TSF framework faces: the accurate separation,
identification, and measurement of what is actually at work behind the data.
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Abstract We propose a new approach for performance comparisons with a goal
similar to the DEA or efficiency analysis based on stochastic frontiers. Our approach
accounts for varying environmental factors and human resources among the units
under consideration by assuming individual production possibility sets (PPS). In
a partial equilibrium framework we assume that the observed netputs represent
an equilibrium. Thus, each DMU is efficient with respect to its individual PPS.
The netputs and estimated prices common for all units reveal characteristics of
the individual PPSs and assess the units’ relative performance. To obtain such
prices from scarce data we assume that the observed netput vectors represent a
random sample of netput vectors. We use prices which render the realizations of
individual profits or returns of the DMUs most likely. We compare the DEA

based efficiency rankings with our performance rankings. Strong rank correlation
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1 Introduction

Financial accounting figures, such as profit, return on assets, etc., remain widely
used and easily understandable performance measures of firms, for instance, in
annual and quarterly reports. They are commonly used for performance compar-
isons of individual firms as well. On the other hand, since the introduction of DEA

by Charnes et al. (1978), we have witnessed the success of efficiency analysis both
in academic and in field studies. DEA provides a simple framework to compare
the efficiency of units with multiple inputs and outputs. Commonly, a production
possibility set (PPS) is defined by feasible combinations of input and output
vectors, and using some distance function, the efficiency score of a DMU is based
on how far its netput vector is from the efficient frontier of the PPS. A number of
articles involve a stochastic production frontier which may be parametric or non-
parametric; see e.g., Kumbhakar and Lovell (2000), and Kumbhakar et al. (2015).

The approach we put forward does not fall in the domain of DEA or stochastic
frontier approaches but it has common goals with them: to produce for units
under consideration scores ranking their performance. It includes two important
advantages that are not present in the simple original DEA models: first, our
approach takes care of different environments and human resources of the units
and, second, has superior discriminatory power. Additional elements have been
suggested for taking care of the varying environments and lack of discriminations
in DEA models.

When productivity analysis is carried out the assumption of units functioning
in similar environments is rarely close to the true situation. In the DEA several
additions have been suggested (e.g. Ruggiero 1998; Fried et al. 2002; Banker and
Natarajan 2008) as a remedy, while our approach deals with different environments
assuming individual production possibility sets (PPS). The discriminatory power
of DEA related to the scores of the units can been increased by the inclusion of
preference information (weight restrictions or benchmarks, see Pedjara-Chaparro
et al. 1997; Halme et al. 1999), or by e.g. second stage DEA (e.g. Ramalho et al.
2010). Our approach considers value (profit) or return efficiency (for corresponding
DEA formulations see Halme et al. 1999; Kuosmanen et al. 2010, Eskelinen et al.
2014) instead of dealing with technical efficiency. The approach uses the same
prices for all units.

One major factor that apparently increases the variety of the units is the quality
of the management. Personnel economics research provides strong evidence that
a firm’s productivity and its production possibility set (PPS) can be strongly
influenced by human resources, such as management skills; for an extensive survey,
see Bloom and Van Reenen (2011). Furthermore, there are other DMU -specific
environmental factors, such as those determined by location. A single PPS may
not be entirely feasible for any DMU . Motivated by the above, we assume an
individual (possibly unobservable) PPSj for each DMUj , j = 1, . . . , n, and
propose an approach where performance scores are not based on some common
efficient frontier. To avoid confusion, our methodology is introduced as performance
analysis (PA) to distinguish it from frontier based efficiency analysis (EA).
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In a partial equilibrium framework, given prices of inputs and outputs, we assume
that each DMUj chooses the best feasible netput vector; i.e., given the resources
and environment of DMUj , the management and employers do the best within their
skills. Noting that each PPSj is assumed to account for human resource capabilities
and other differing factors of the environment for each DMUj , we assume that the
observed choices of the DMUs are equilibrium netput vectors. To obtain estimates
for equilibrium prices from the scarce data of netput vectors, we assume that the
observed netput vectors represent a random sample of netput vectors.

We use profit or return as a performance measure, which depends on the prices of
inputs and outputs. From an admissible set we look for a price vector which renders
the realizations of individual performance measures of the DMUs most likely. Such
prices are used as estimates for equilibrium prices. Optimality conditions together
with such prices and the netput vectors yield an estimated PPS for each DMUj

individually. The generally non-convex likelihood maximization problem for price
estimates is solved using an evolutionary algorithm of Deb et al. (2002).

In our performance measurement—unlike typically in DEA approaches—the
prices used for evaluation of the DMUs are common for each unit. Profit or return
is used as a performance measure. The fact that market conditions are present today
everywhere, also in public organizations, supports the one-price-for-all choice as an
approximation of real world.

Our approach suffers neither from the lack of discriminatory power often
encountered by DEA applications nor from the problems related to economies of
scale (DEA can use some tests for diagnosing the returns to scale assumption such
as suggested by Kneip et al. 2016). For instance, in the field study discussed in this
article, 28–32% of the DMUs are found efficient by DEA.

Since both the frontier based methods and our approach provide a basis of
ranking for the DMUs, we compare the rankings of a field study whose results
qualitatively represent well numerous other cases we have considered. Despite the
differences our test results of the two approaches show a strong correlation of
rankings; however, a stronger discriminatory power is achieved by PA.

The rest of the article proceeds as follows. In Sect. 2 we introduce performance
analysis (PA). Section 3 reviews traditional efficiency analysis (EA) methods to
be used for comparison with PA in Sect. 4. Section 5 concludes. Supplementary
material is in the Appendix: an evolutionary optimization procedure for price
estimation is presented in Appendix A illustrative simulated examples of PA are
in Appendix B; data and results of a field study are shown in the Appendix C.

2 Performance Analysis

We begin by introducing the economic basis of PA in Sect. 2.1. The principle of
estimating the price vector is introduced in Sect. 2.2. Thereafter we define PA

scores in Sect. 2.3, propose density estimates of profit and return in Sect. 2.4, and
discuss computational considerations in Sect. 2.5.
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2.1 Economic Foundation

Consider firms or other decision-making units DMUj for j = 1, 2, . . . , n. Because
of differing availability of resources (including human resources) and environmental
considerations, we assume a specific production possibility set PPSj for each
DMUj . In a partial equilibrium framework, consider profit maximizing producers
DMUj , j = 1, . . . , n. For each DMUj , there are m inputs and k outputs. Let
ξj ≤ 0 denote the input vector and ηj ≥ 0 the output vector of DMUj . For all j ,
let gj (ξj , ηj ) be a multi-input multi-output transformation function of DMUj such
that PPSj is defined by gj (ξj , ηj ) ≤ 0. Transformation function gj (ξj , ηj ) may
represent, for instance, CET -GD technology (e.g., Kumbhakar et al. 2015). Let
p(η) be an integrable price function (inverse demand function) facing aggregate
output supply η = ∑

j η
j and let c(ξ) be an integrable marginal cost function

(supply function) facing aggregate input demand ξ =∑j ξ
j .

Assuming price taking behavior1 for each DMUj , consider a competitive
equilibrium. For each DMUj , the observed inputs ξj = −xj ∈ Rm+ and outputs
ηj = yj ∈ Rk+ represent equilibrium choices lying on the efficient frontier of
PPSj . For a non-negative input vector x ∈ Rm+ and a non-negative output vector
y ∈ Rk+, the netput vector z is defined by

zt = (−xt , yt ), (1)

where superscript t refers to a transpose. For all j , zj is the observed equilibrium
netput vector of DMUj with input vector xj and output vector yj .

Given an equilibrium price vector μ∗
x for inputs and μ∗

y for outputs with μ∗ =
(μ∗

x, μ
∗
y), the performance of DMUk in terms of profit or return may appear

superior toDMUj because of the differences in PPSk and PPSj . Using optimality
conditions of each DMUj , we note that price estimates for μ∗ together with inputs
xj and outputs yj imply the individual transformation functions—provided that the
number of parameters of each transformation function is not excessive—and thereby
the production possibility sets PPSj are revealed. For numerical examples, see
Appendix B.

2.2 Estimating Prices

The price function for outputs, the cost function for inputs, and transformation
functions for the DMUs are not known; in addition to observed inputs and outputs,
we may only have partial price information which imposes some conditions for

1If prices of some products or services are not observable in the market, we interpret the prices
resulting from rational expectations equilibrium.
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price relationships and possibly takes into account some price observations, for
instance. Therefore, to estimate the prices we assume that observed netput vectors
zj represent a random sample from netput vector z̃ with a multivariate pdf �(z).
While an efficient production frontier characterizes each PPSj , we need not assume
a bounded support for z̃.

Let row vector μ = (μx, μy) ∈ Rm+k denote the vector of prices with input
prices μx ∈ Rm and output prices μy ∈ Rk . The prices are expressed in monetary
units per unit of product. Partial price information is given by the admissible set of
prices P . We require μ ≥ ε, for some ε ≥ 0. Prices are restricted by other means
as well. For scaling the prices, we may fix the value of some cost and/or revenue
component. Some prices may be fixed or restricted to some interval and price ratios
may be bounded. We may also employ subjective judgment. For instance, if zj is
seen superior to zk in terms of profit in a pair-wise comparison among two netput
vectors, we may include such judgmental information in the analysis. In this case
we require μ(zj − zk) ≥ 0. We assume that the set of admissible prices P is a non-
empty compact and convex set defined by linear equations and linear inequalities.

We now turn to an estimate μ̂ of μ∗ to be used in PA. For netput vector
zt = (−xt , yt ) with x ≥ 0 and y ≥ 0, given a price vector μ = (μx, μy) ∈ P

we determine a performance measure κ = κ(μ, z). Subsequently κ stands for profit
π = r − c or return ρ = r/c with revenue r = μyy and cost c = μxx. Given
pdf �(z), price vector μ, and the definition of κ , a pdf ψ(κ;μ) of κ is implied
for each μ. Of course, ψ(κ;μ) may not have an analytical expression even if �(z)
has one. An estimate of ψ(κ;μ) is denoted by ψ̂(κ;μ) and it will be discussed
in Sect. 2.4. Prices are parameters of such a pdf and we look for prices which
make the individual performance figures of the DMUs most likely. For DMUj ,
the performance measure κj = κj (μ, z

j ) depends on prices μ ∈ P whose values
we determine by log-likelihood maximization:

max
μ∈P

n∑

j=1

log ψ̂(κj (μ, z
j );μ). (2)

An optimal price vector in (2) is denoted by μ̂ and it is used to evaluate the return
and value performance scores defined in Sect. 2.3.

2.3 Return and Value Performance Scores

Given an estimate μ̂ of the equilibrium price vector and the netput vector zj we can
evaluate return and profit. Thereby we may state alternative scores for return and
value performance.

For return performance analysis (RPA), return ρ plays the role of performance
measure κ . Given estimate μ̂ for the equilibrium price vector with components
μ̂x for inputs and μ̂y for outputs, the random return is ρ̃ = μ̂y ỹ/μ̂x x̃ and we
calculate the return ρ̂j of each DMUj . Then the return performance (RP ) score of
DMUj is the probability of ρ̃ ≤ ρ̂j . A score 0.68 of DMUj means that 68% of the
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realizations of z̃ are inferior or as good as DMUj or that DMUj is ranked among
top 32%; see Fig. 1.

For value performance analysis (VPA) measure κ is profit π . Given price vector
estimate μ̂, we obtain the random profit π̃ = μ̂z̃ and we calculate profit π̂j of each
DMUj . Then the value performance (VP ) score of DMUj is the probability of
π̃ ≤ π̂j .

2.4 Density Estimates of Profit and Return

Consider three cases for the distribution of netput vector z̃: Case 1, z̃ is multivariate
normal; Case 2, no distributional assumption is made; Case 3, a parametric family
of multivariate distributions is adopted. Case 1 in Sect. 2.4.1 applies to VPA but
not for RPA. In Sect. 2.4.2 of Case 2, a kernel density estimate is employed for pdf
ψ̂(κ;μ) of the performance measure κ . In Sect. 2.4.3 of Case 3, parameters of pdf
�(z) are estimated first to obtain �̂(z) and ψ̂(κ;μ) is derived thereafter. At the first
reading, one may proceed directly to Sect. 2.5.

2.4.1 Multivariate Normal Distribution of Netput Vectors

In this section we assume z̃ has a multivariate normal pdf �(z).2 Maximum
likelihood estimates z̄ and V for the expected value and the covariance matrix of
z̃ are

z̄ = 1

n

∑

j

zj

V = 1

n

∑

j

(zj − z̄)(zj − z̄)t .

Hence pdf �̂(z), the estimate of �, is the pdf N(z̄, V ), and given a price vector
μ ∈ P , the random profit π = μz̃ has the pdf N(π̄, σ 2), where π̄ = μz̄ and
σ 2 = μVμt . Therefore, in case of VPA, ψ̂(π;μ) has a normal distribution. For
each DMUj , price vector μ ∈ P and netput vector zj yield profit πj = μzj .
Thus the log-likelihood function in (2) for profits πj (omitting constant terms) is
−(n/2) log(σ 2). Hence, the estimate for price vector μ is obtained by minimizing
the variance σ 2; i.e. our problem is to find price vector μ to

min
μ∈P μVμ

t . (3)

2In this case we expect that the likelihood for x �≥ 0 and y �≥ 0 is small.
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Given optimal price vector μ̂ in (3), we obtain the normal pdf for the random profit
π̃ = μ̂z, whose expected value is μ̂z̄ and variance is the optimal objective function
value in (3).

2.4.2 Kernel Density Estimate of ψ(κ;μ)

Kernel density estimate with Gaussian kernel and bandwidth δ is a standard
approach which may be adopted for estimating univariate distribution ψ ; see e.g.,
Rosenblatt (1956) and Silverman (1998). Given price vector μ and netput vectors
zj , with κj = κ(μ, zj ) we define

ψ̂(κ;μ) = 1

n

n∑

j=1

1√
2πδ

exp[− (κ − κj )
2

2δ2 ]. (4)

We employ the following result in Silverman (1998): if the pdf to be estimated is
normal with variance σ 2, then an approximate optimal bandwidth δ minimizing the
mean integrated square error is

δ = σ(4/3n)1/5. (5)

Figure 1 shows the kernel density estimate ψ̂(ρ; μ̂) with bandwidth δ = 0.088 in
the grocery stores case study of Sect. 4.

We use (5) where σ 2 is replaced with the variance σ̂ 2 of the sample {κj }. Since
σ̂ depends on prices, we need to search for a suitable bandwidth δ to satisfy (5) with
sample variance associated with the estimate μ̂ of equilibrium prices. In the case
studies in Sect. 4 such values of δ range from 0.063 to 0.158.

Fig. 1 Kernel density
estimate of probability
density function ψ̂(ρ; μ̂) of
return for RPA in the grocery
stores case study of Sect. 4.
The shaded area is the return
performance (RP ) score 0.68
of the DMU ranking eighth
among the 25 DMUs

2.5

1.5

0.5

0
0 mean return

1

2
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2.4.3 Parametric Distribution of Netput Vectors

Next, consider a family of multivariate pdfs for �(z) with some set of parameters
(a multivariate log-normal distribution, for example). The observations zj , j =
1, . . . , n, are used for parameter estimation and �̂(z) denotes the estimated pdf of
z̃. Given pdf �̂(z), price vector μ and the definition of κ , let φ(κ;μ) denote the
associated pdf of the measure κ given price vector μ.

Typically an analytical expression for φ(κ;μ) is not available, wherefore we
employ an approximation ψ̂ of φ. To derive ψ̂ , consider a family of normal pdfs
f (κ; κ ′, δ2) of κ with expected values κ ′ and variance δ2. In this family, let φ(κ ′;μ)
be the pdf of expected values κ ′. Then expected pdf at κ is

E(κ, δ) ≡ E[f (κ; κ ′, δ2)] =
∫

κ ′
f (κ; κ ′, δ2)φ(κ ′;μ)dκ ′. (6)

As δ approaches zero, f (κ; κ ′, δ2) approaches the Dirac delta function, and
therefore

lim
δ→0

E(κ, δ) = φ(κ;μ). (7)

We approximate the integral in (6) by a sample average. Using a random sample
{zs} of S independent draws from �̂(z), define κs = κ(μ, zs). Then {κs} is a random
sample of S draws from φ(κ;μ) and the sample average pdf is

ψ̂(κ;μ) = 1

S

∑

s

f (κ; κs, δ2) = 1

S

∑

s

1√
2πδ

exp[− (κ − κs)
2

2δ2
]. (8)

By (6)–(8), for large S and small δ > 0 we have

ψ̂(κ;μ) ≈ E(κ, δ) ≈ φ(κ;μ). (9)

Equation (8) is in fact a Gaussian kernel density estimate of φ(κ;μ) based on
the sample. However, an advantage compared with (4) is that we now are better
informed in choosing the bandwidth δ. Based on pdf �̂(z), the true pdf φ(κ;μ) is
known in principle but not necessarily its analytic expression. However, sample esti-
mates for its moments can be evaluated. Therefore, we employ approximation (8)
choosing the bandwidth in such a way that the first few moments of φ(κ;μ) and
ψ̂(κ;μ) are approximately the same.

To get an idea of the precision of this approximation, we compare the moments
of κ based on the sample from φ(κ;μ) and on the approximation ψ̂(κ;μ). For
integers l > 0, m̂l = (1/S)

∑
s κ

l
s is the sample mean of κl and ml denotes the lth

moment of κ with respect to ψ̂(κ;μ). Using (8) and the moments of N(κs, δ
2) we

obtain (Cook 2012)
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ml = 1

S

∑

s

[l/2]∑

i=0

(
l

2i

)
(2i − 1)!! δ2i κ(l−2i)

s =
[l/2]∑

i=0

(
l

2i

)
(2i − 1)!! δ2i m̂(l−2i)

= m̂l + O(δ2), (10)

where [·] denotes rounding down and (·)!! denotes double factorial.3 The residual
term O(δ2) is of the order of δ2. For example, m1 = m̂1, m2 = m̂2 + δ2, m3 =
m̂3 + 3m̂1δ

2 m4 = m̂4 + 6m̂2δ
2 + 3δ4, etc. For large S, the sample means m̂l

approach the respective moments based on φ(κ;μ), and for small δ, the momentsml

are close to respective moments m̂l . Silverman’s rule (5) here matches the moments
unsatisfactory.

Note that for the first moments, m1 = m̂1. Let σ̂ 2 = m̂2 − m̂2
1 denote the sample

variance of κ and σ 2 = m2 − m2
1 the variance based on ψ̂(κ;μ). Their relative

difference is δ2/σ̂ 2. For computations in Sect. 4, we use sample size S = 1000 and
1/2δ2 = 105. For these choices the relative difference δ2/σ̂ 2 of the variances is less
than 0.03% in all cases considered. Furthermore, in Sect. 2.4.1

A test of approximation (8) is as follows. In the multivariate normal case for
VPA an approximation is not needed but can be used; an optimal price estimate
is obtained from (3), while near optimal prices are obtained using the sample
approximation (8) in (2). With sample size S = 1000 and 1/2δ2 = 105 we
solve (2) in two cases of Sect. 4 where the distribution of netput vectors most closely
resembles a multivariate normal distribution. These cases refer to bank branches and
grocery stores. Based on the results we rank the DMUs according to VP scores.
Then the ranking is done based on the scores obtained from the “exact” problem (3).
The Spearman rank correlation (of approximate vs. “exact”) is 1.00 both for bank
branches and grocery stores.

2.5 Price Computations

Finally, we discuss computations for obtaining a price vector estimate μ̂ from
the likelihood problem (2). In the special and simple case of VPA assuming the
netput vector z̃ is multivariate normal an optimal solution for (2) is obtained solving
the convex problem (3). For other cases we use evolutionary optimization. Using
approximation (8) for pdf ψ̂ in (2) the objective function may become highly
nonlinear with plenty of local optima; for an illustration of RPA, see Fig. 2 (right)
concerning the grocery stores case in Sect. 4. Instead, using the kernel density
estimate (4) the objective can be relatively smooth; see Fig. 2 (left). In both cases
we end up with a non-convex problem. For global optimization we employ an
implementation of the evolutionary optimization procedure PCX-G3 (see Deb
et al. 2002). The algorithmic steps are presented in Appendix A including some

3For integer k ≥ 1, k!! is the product of positive integers up to k with the same parity as k, and
0!!=(-1)!!=1.
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Fig. 2 Log-likelihood functions for RPA in the grocery stores case study with two inputs, two
outputs, and price constraints μ1 + μ2 = 1 and μ3 + μ4 = 1. On the left, kernel density estimate
(4) with bandwidth δ = 0.088. On the right, multivariate log-normal distribution for netput vectors
is employed and approximation (8) with sample size S = 1000 and 1/2δ2 = 105. Both figures
show the log-likelihood in (2) as a function of price vector μ. The horizontal coordinates refer to
μ2 (increasing to the left) and μ4, both ranging from 0 to 1. Optimal price vector on the left is
μ̂ = (0.914, 0.086, 0.892, 0.108) and on the right μ̂ = (0.912, 0.088, 0.921, 0.079)

sensitivity analysis for the control parameters of evolutionary optimization. For
computations we use AMPL (Fourer et al. 2003) and MINOS (Murtagh and
Saunders 1978).

3 Conventional DEA Based Methods

We now review two DEA based approaches for EA, value (or profit) efficiency
analysis (VEA) based on profit (see e.g., Nerlove 1965, Chambers et al. 1998 and
Halme et al. 1999) and return efficiency analysis (REA) based on return (see e.g.,
CCR by Charnes et al. 1978 and BCC by Banker et al. 1984). The rankings based
on these methods are used for comparisons with VPA and RPA in Sect. 4 using
five real cases of efficiency analysis.

We adopt the presentation of VEA and REA from Kallio and Kallio (2002). We
begin by introducing the set of feasible netput vectors (PPS). We judge DMUr in
terms of its netput vector zr with respect to a production possibility set T of feasible
netput vectors z and (as in Sect. 2.2) a set P of admissible price vectors μ. For each
DMUj , we assume that zj ∈ T .

Consider feasible netput vectors, which are linear combinations of the netput
vectors zj ; i.e., for a set � ⊂ Rn of weight vectors λ = (λj ), we define

T = {z| z =
∑

j

λj z
j , λ ∈ �}. (11)



Individual Efficient Frontiers in Performance Analysis 205

Choices of � result in alternative sets T of which one is adopted for efficiency
evaluation. In our comparisons of Sect. 4 we use two alternatives. Under a constant
returns to scale (CRS) hypothesis,

� = {λ ∈ Rn| λ ≥ 0}, (12)

and under a variable returns to scale (VRS) hypothesis,

� = {λ ∈ Rn|
∑

j

λj = 1, λ ≥ 0}. (13)

In value efficiency analysis (VEA) the difference measure of efficiency ofDMUr

is the difference of the best profit achievable by netput vectors in T and the profit
of DMUr and the prices are chosen from the admissible set P to minimize the
difference. To test for profit efficiency of DMUr we solve the problem of finding
admissible prices μ ∈ P and a scalar θ to

min
θ,μ

{θ − μzr | μ ∈ P and μz ≤ θ for all z ∈ T }. (14)

At an optimal solution of (14), θ is the maximum profit over T and θ − μzr ≥ 0
because zr ∈ T . If θ − μzr = 0, then zr maximizes μz over T and DMUr is profit
efficient. The optimal objective function value θ − μzr in (14) is the difference
measure of profit efficiency.

In return efficiency analysis REA, the ratio measure of return efficiency of
DMUr is the return (productivity) relative to the best return taking into account all
netput vectors in T , and the prices are chosen from the admissible set P to maximize
return ratio for DMUr . To test for return efficiency of netput vector zr of DMUr ,
we solve the problem of finding admissible prices μ = (μx, μy) ∈ P and a scalar
θ , recalling decomposition of netput vector z in (1), to

max
θ,μx,μy

{ μyy
r

μxxr

1

θ
| μ ∈ P and

μyy

μxx
≤ θ for all z ∈ T }. (15)

At the optimal solution of (15), θ is the maximum return over T and the optimal
objective function value in (15) is the ratio measure of return efficiency. This
measure is at most one because zr ∈ T , and it is equal to one if zr maximizes
the return over T in which case DMUr is return efficient. As usual, LP is applied
to solve (14) and (15).
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4 Comparison of PA and EA Methods

For comparisons of VEA and REA with VPA and RPA, we used five published
field studies concerning (i) bank branches (Eskelinen et al. 2014), (ii) parishes
(Halme and Korhonen 2015), (iii) dental care units (Halme and Korhonen 2000),
(iv) grocery stores (Korhonen et al. 2002), and (v) power plants (Kuosmanen 2012).
Here we only discuss case (i) in some detail; results from the other four cases were
very similar.

The bank branch study by Eskelinen et al. (2014) concerns sales performance
of branches in the Helsinki OP Bank. The analysis covers the years 2007–2010 in
the 25 branches operating in the Helsinki metropolitan area. The bank considers
financing and investment services as outputs in the model. The output quantities by
bank branch are shown in the Appendix C where both output figures are in average
number of aggregated transactions per annum. There are five inputs: total work time
in five categories of the sales force. The input figures in average full-time years per
annum for each branch are shown as well. For VEA and REA, a constant returns to
scale (CRS) hypothesis is adopted for the set T of feasible netput vectors. Hence,
T is defined by (11) and (12).

For PA we consider both a multivariate log-normal distribution z̃ and a kernel
density estimate for the performance measure (return or profit). We use a set of
admissible prices with a lower limit 10−6 for all prices and we scale the input prices
such that the average cost μxx̄ = 1, where x̄ is the average of input vectors xj in
the sample. Additionally for REA and RPA, we require that the revenue μyȳ ≥ 1,
where ȳ is the average of output vectors yj .4

For the bank branch case the Appendix C shows PA and EA based efficiency
scores as well as ranking of DMUs based on different methods. Figure 3 (top)
shows the comparisons of conventional REA efficiency (horizontal axis in each
diagram) vs. return performance of RPA (vertical axis). Figure 3 (bottom) displays
a similar comparison of VEA and VPA. In each case, results based on both
density estimates (log-Normal/kernel) are depicted.5 In these figures, one can see
the correlation between the pairs of scores. The corresponding Spearman rank
correlation ranges from 0.80 to 0.91. The number of efficient DMUs is 9 for
both VEA and REA. The ranking based on PA is nearly independent of the
distributional assumption of z̃.

4For VEA this additional requirement under CRS leads to infeasibility.
5Note that in Fig. 3 the REA and RPA scores are positively correlated whereas in Fig. 3 the VEA
and VPA scores have negative correlation because high VEA score means poor performance.
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Fig. 3 The bank branches case with 25 units. Top: Correlation diagrams of REA scores
(horizontal axis in each diagram) and return performance (vertical axis) of RPA. REA employs
the ratio measure of return efficiency. Bottom: Correlation diagrams of VEA scores (horizontal
axis in each diagram) and value performance (vertical axis) of VPA. VEA shows the difference
measure of profit efficiency

5 Conclusions

We propose a novel approach to measure value (profit) and return performance of
decision-making units. The method does not rely on distances from an efficient
frontier. Therefore, for the sake of clarity, we discuss performance analysis (PA)
instead of frontier based efficiency analysis. Contrary to the assumption made by
DEA the units considered typically function in various environments which is why
we assume the production possibility sets are individual for each unit. We adopt a
partial equilibrium perspective wherefore the observed netput vector of each unit
is assumed to be on the efficient frontier of the individual production possibility
set. Common prices are calculated for all the units and they represent estimates for
equilibrium prices. Our single-price requirement is justified, for instance, by the
market forces confronting all kinds of organizations today. Price restrictions can
be employed to account for partial price information. The discriminatory power is
superior to DEA based methods.
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The rankings produced by PA are compared with the rankings based on
efficiency analysis of DEA methods. In spite of the significantly different starting
points, it turned out that in five published case studies our ranking results compared
with conventional DEA based methods of value (profit) and return efficiency were
highly correlated. This is an interesting observation as the problem of zero prices is
quite common in DEA.
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DEA Models Without Inputs or Outputs:
A Tour de Force

Giannis Karagiannis

Abstract In this paper we review DEA models without outputs or inputs and
models with a single constant input or output and we explore their properties and
relations. Then we summarize their potential usefulness in several applications,
including (a) multiple criteria decision-making (MCDM) such as supplier selection
and ABC inventory classification, (b) construction of composite indicators (environ-
mental, sustainability, subjective well being, etc.), (c) ratio analysis, and (d) spatial
efficiency. We further consider the cases of optimistic versus pessimistic composite
indicators and of intra- and inter-group composite indicators. We also explore the
usefulness of these models in other topics of performance evaluation such as cross
efficiency, efficiency based on common weights, and productivity analysis. Lastly,
we consider their aggregation across DMUs rules.

Keywords Data envelopment analysis · Radial models without inputs or outputs ·
Radial models with single constant input or output

1 Introduction

Besides its main use as a tool for estimating efficiency, Data Envelopment Analysis
(DEA), in contrast to its econometric rival (i.e., stochastic production frontier),
has been used in a number of other applications. These include (1) multi-criteria
decision-making (MCDM) problems, such as inventory classification (Ramanathan
2006a; Ng 2007) and vendor/supplier selection (Weber and Desai 1996; Seydel
2006; Ng 2008), (2) derivation of local and global priority weights in the Analytic
Hierarchy Process (AHP) (Ramanathan 2006b; Wang and Chin 2009), (3) determi-
nation of design requirements’ relative importance in quality function deployment
(referred to as house of quality) (Ramanathan and Yunfeng 2009), (4) derivation of
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weights for Grey Relational Analysis (GRA) (Huang et al. 2015), (5) assessment of
quality perception (i.e., SERVQUAL and SERVPREF) (Lee and Kim 2014; Charles
and Kumar 2014), (6) construction of composite indicators (Cherchye et al. 2007a;
OECD 2008) and quantity/quality indices (Sahoo and Acharya 2010; O’Donnell
and Nguyen 2013; Whittaker et al. 2015; Molinos-Senante et al. 2017), (7) location
choice and spatial efficiency (Thompson et al. 1986; Desai and Storbeck 1990;
Adolphson et al. 1991), (8) analysis of preference voting for election and product
or project ranking (Cook and Kress 1990; Green et al. 1996; Hashimoto 1997), (9)
ratio analysis when the underlying data do not allow splitting ratio variables into
numerators (outputs) and denominators (inputs) (i.e., DEA-R) (Despic et al. 2007;
Wei et al. 2011), (10) game theory (e.g., Banker 1980; Lins et al. 2003; Nakabayashi
and Tone 2006; Xu et al. 2013), (11) extended (multiple attribute) utility theory
(Yang et al. 2014), (12) price and attributes efficiency (Kamakura et al. 1988; Doyle
and Green 1991; Fernandez-Castro and Smith 2000), and (13) portfolio evaluation
(Morey and Morey 1999; Murthi et al. 1997).

Interestingly, in all but the last two of the aforementioned applications, pure
input or output DEA models or their equivalent single constant input or output
models have been used. These two special cases of DEA models contain either only
input or output variables or restrict the value of inputs or outputs to be constant
(i.e., invariant) across decision-making units (DMUs) (see Lovell and Pastor 1999;
Caporaletti et al. 1999; Liu et al. 2011).1The underlying logic and intuition of these
models is related to assessment without inputs or assuming that all DMUs use the
same amount of input(s) or, on the other hand, performance evaluation without
outputs or assuming that all DMUs produce the same quantity of output(s). They are
thus compatible with Koopman’s idea of a helmsman who has at his/her disposal a
unitary quantity of an aggregate input (output) and attempts to steer (squeeze) all
outputs (inputs) toward their maximum (minimum) levels. Consequently, the pure
input or output DEA models are suitable for applications other than those related to
conventional production models and efficiency analysis. Such applications include
the following: first, estimating effectiveness (i.e., ability to state and achieve goals)
rather than efficiency (i.e., benefits realized versus resources used), where goals are
determined by observed behavior (i.e., best practice) and our objective is to evaluate
the extent to which they are achieved (Prieto and Zofio 2001). Second, evaluating
the performance of DMUs in relation to targets set by stakeholders or experts, where
the outputs are the percentage of target coverage (Lovell and Pastor 1997). Third,
accessing performance by means of ratios, as in some business and management
studies, where it is difficult (if not impossible) to reformulate the data into original
input and output variables and apply conventional DEA (Yang et al. 2014). Fourth,
determining the ideal or most preferred alternative in MCDM problems where we

1The value of inputs or outputs is set usually to one but this is not necessary, it has only to be the
same for all DMUs.
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do not need to consider input (sometimes output) variables (Yang et al. 2014).2

Fifth, aggregating indicators, indices, or votes by means of an additive linear share-
weighting scheme, where the weights are determined endogenously and are not a
priori equal.

The increasing popularity in recent years of the DEA models considered here is
related to the construction of composite indicators as one of their variants, namely
the Benefit-of-the-Doubt (BoD) model—an input-oriented DEA model with a single
constant input, has been included in OECD (2008) manual as one of four statistical
models recommended for constructing composite indicators. The BoD model has
been used in a large number of applications, including (but not limiting to) the
Human Development Index (e.g., Despotis 2005), the OECD Better Life Index
(Mizobuchi 2014), the Quality of Life Indicator (e.g., Morais and Camanho 2011),
several life satisfaction indices (see e.g. Guardiola and Picazo-Tadeo (2014), the
Internal Market Index (e.g., Cherchye et al. 2007b), the Competitiveness Index
(e.g., Bowen and Moesen 2011), the Digital Access Indicator (e.g., Gaaloul and
Khalfallah 2014), the Technology Achievement Index (e.g., Cherchye et al. 2008),
Students’ Evaluation of Teaching indicators (e.g., de Witte and Rogge 2011),
educational quality indicators (Murias et al. 2008), the Health System Performance
Index (e.g., Lauer et al. 2004), and the Environmental Performance Index (e.g.,
Zanella et al. 2013).

The aim of this paper is to provide a critical survey of radial DEA models without
inputs and outputs or their equivalent single constant input or output models. In that
respect, we provide a feat of their strength in terms of their relations with other DEA
models and the great number of different applications that may be used. We review
the existing literature to provide the main features of these models and discuss some
recent extensions. Even though there are some work on non-radial DEA models
without inputs and outputs, the main body of existing work is on radial models. We
focus on the theoretical aspects of these models and we present a selection of the
most interesting applications to illustrate their relevance and usefulness in empirical
analysis.

In the next section, we present the main models, we explore the relations among
them, and we highlight some of their most interesting applications. In the third
section, we examine their relation with other DEA and linear programming models
while in the fourth section we consider several extensions. Aggregation (across
DMUs) issues are discussed in the fifth section and results related to productivity
analysis are presented in the sixth section. Concluding remarks follow in the last
section.

2In MCDM analysis, alternatives can be seen as DMUs and attributes or criteria for evaluating the
alternatives as inputs or outputs, with the former corresponding to the less-is-better type criteria
and the latter to the more-is-better type criteria.
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2 Models Presentation and Uses

The various DEA models without inputs or outputs and with single constant input
or output are presented, respectively, in the upper and the lower panel of Table 1.3

They are distinguished by orientation, i.e., input- versus output-oriented, and by
the type of returns to scale, i.e., constant-returns-to-scale (CRS) versus variable-
returns-to-scale (VRS). Since it makes no sense to have an input-oriented model
without inputs and an output-oriented model without outputs, and given that a CRS
input-oriented (output-oriented) model without outputs (inputs) rates all DMUs as
infinitely inefficient, as Lovell and Pastor (1999) shown (see their proposition 1),
we are left with only two usable pure input or output DEA models, namely the VRS
output-oriented model without inputs, which in its multiplier and envelopment form
is given as:

Table 1 DEA models without input and outputs and with single constant input or output

Input-oriented Output-oriented

CRS VRS CRS VRS

No inputs Infinitely
inefficient

No outputs Infinitely
inefficient

Single constant 
input

All

efficient

Single constant 
output

All 

efficient

3As Lovell and Pastor (1999, p. 51) claimed, “considering a single constant input (output) is
equivalent to considering multiple constant inputs (outputs).”
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min
ukj ,v

k
0

− vk0 max
λkj ,θ

k
θk

st
J∑

j=1
ukj y

k
j = 1 st

K∑

h=1
λkhy

h
j ≥ θkykj j = 1, . . . , J

J

−∑
j=1

ukj y
h
j − vk0 ≥ 0 h = 1, . . . , K

K∑

h=1
λkh = 1

ukj ≥ 0 j = 1, . . . , J λkh ≥ 0 h = 1, . . . , K

vk0 f ree in sign
(1)

and the VRS input-oriented DEA model without outputs, which is its multiplier and
envelopment form is given as:

max
vki ,u

k
0

− uk0 min
λkj ,φ

k
φk

st
I∑

i=1
vki x

k
i = 1 st

K∑

h=1
μk
hx

h
i ≤ φkxki i = 1, . . . , I

I∑

i=1
vki x

h
i + uk0 ≥ 0 h = 1, . . . , K

K∑

h=1
μk
h = 1

vki ≥ 0 i = 1, . . . , I μk
h ≥ 0 h = 1, . . . , K

uk0 f ree in sign
(2)

where y and x refer to output and input quantities, u and v to output and input
multipliers, v0 and u0 to parameters related to returns to scale, θ and φ to input-
and output-oriented technical efficiency scores, λ and μ to intensity variables, j = 1,
. . . , J is used to index outputs, i = 1, . . . , I to index inputs and h = 1, . . . , k, . . . ,
K to index DMUs.

The VRS output-oriented DEA model without inputs in (1) was firstly used by
Lovell and Pastor (1997) for target setting while the VRS input-oriented DEA model
without outputs in (2) was firstly employed by Adolphson et al. (1991) for location
choice.

In contrast, there are more modeling options in the class of models with a single
constant input or output. Notice however that, as Gomes et al. (2012) shown, a VRS
input-oriented model with a single constant input rates all DMUs as fully efficient
and thus it is not really useful for performance evaluation.4 One can easily verify

4It is only the slacks that render a DMU inefficient in this case as in regard to ordinal factors DEA
model.
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that a similar result holds for the corresponding output-oriented model: that is, a
VRS output-oriented model with a single constant output rates all DMUs as fully
efficient.

Considering first the models with a single constant input, we have the CRS
output-oriented model, which in its multiplier and envelopment form is given as:

min
ukj ,v

k
vk max

λkj ,θ
k
θk

st
J∑

j=1
ukj y

k
j = 1 st

K∑

h=1
λkhy

h
j ≥ θkykj j = 1, . . . , J

vk −
J∑

j=1
ukj y

h
j ≥ 0 h = 1, . . . , K

K∑

h=1
λkh = 1

ukj ≥ 0 j = 1, . . . , J λkh ≥ 0 h = 1, . . . , K

vk ≥ 0
(3)

and the corresponding VRS model given as:

min
ukj ,v

k,vk0

vk − vk0 max
λkj ,θ

k
θk

st
J∑

j=1
ukj y

k
j = 1 st

K∑

h=1
λkhy

h
j ≥ θkykj j = 1, . . . , J

vk −
J∑

j=1
ukj y

h
j − vk0 ≥ 0 h = 1, . . . , K

K∑

h=1
λkh ≤ 1

ukj ≥ 0 j = 1, . . . , J
K∑

h=1
λkh = 1

vk ≥ 0 λkh ≥ 0 h = 1, . . . , K

vk0 f ree in sign
(4)

According to Lovell and Pastor (1999, proposition 2) and Caporaletti et al. (1999,
Appendix A), the CRS output-oriented model with a single constant input in (3)
is equivalent to the VRS output-oriented model with a single constant input in
(4). To verify this notice first that the presence of the convexity constraint, i.e.,∑K

h=1 λ
k
h = 1, in (4) renders the constraint associated with the single constant input,

i.e.,
∑K

h=1 λ
k
h ≤ 1, redundant (Ferrier and Trivitt 2013) and second, that the input

constraint in (3) must be binding and thus should be replaced by an equality, i.e.,∑K
h=1 λ

k
h = 1 (Liu et al. 2011). For the multiplier form, vk in (3) should be equal to

vk − vk0 in (4) for all k.
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The CRS output-oriented DEA model with a single constant input in (3)
was firstly used by Mahlberg and Obersteiner (2001) for constructing composite
indicators (the HDI in particular) while the VRS output DEA model with a single
constant input in (4) was firstly employed by Fernandez-Castro and Smith (1994)
to analyze financial ratios. Later, the CRS output-oriented DEA model with a single
constant input in (3) was used by Xu et al. (2013) to analyze min-max strategy
games, where the evaluated DMU freely selects weights to maximize its output
score and the evaluator select among competitive DMUS to increase the relative
loss function in order to force the evaluated DMU to change its output weights.5

On the other hand, the CRS input-oriented model with a single constant input is
given as:

max
ukj ,v

k

J∑

j=1
ukjy

k
j min

μk
j ,φ

k
φk

st vk = 1 st
K∑

h=1
μk
hy

h
j ≥ φkykj j = 1, . . . , J

vk −
J∑

j=1
ukj y

h
j ≥ 0 h = 1, . . . , K

K∑

h=1
μk
h ≤ φk

ukj ≥ 0 j = 1, . . . , J μk
h ≥ 0 h = 1, . . . , K

vk ≥ 0
(5)

in its multiplier and envelopment form, respectively. This model was firstly used by
Greenberg and Nunamaker (1987) to aggregate ratio indicators and since then, it
has been used in several other applications including (1) modeling of preference
voting for election (Cook and Kress 1990; Hashimoto 1997) or product/project
ranking (Doyle et al. 1995), (2) construction of composite indicators, where it
is known as the Benefit-of-the-Doubt (BoD) model (Cherchye et al. 2007a), (3)
effectiveness evaluation (Prieto and Zofio 2001), e.g. research and teaching activities
of faculty members (de Witte and Rogge 2010, 2011; Kao et al. 2012; Karagiannis
and Paschalidou 2017), libraries (Kao and Lin 2004), and sports (Cooper et al.
2009; Ruiz et al., 2013), (4) MCDM applications, such as inventory classification
(Ramanathan 2006a) and supplier selection (Seydel 2006), (5) construction of
output quantity indices (O’Donnell and Nguyen 2013) and monetary aggregation
(Sahoo and Acharya 2010), (6) construction of quality indices (Molinos-Senante et
al. 2017), (7) assessment of quality perception (i.e., SERVQUAL and SERVPREF)

5In their set-up, there are two players in the game: one player is the DMU under evaluation who
attempts to max (min) its gain (loss) and the other player is a central evaluator who wants to min
(max) its loss (gains). On the other hand, there are two strategy spaces in the game: one is related
to the weights in the multiplier form of the DEA model and the other to the index h, which selects
a competitive DMU.
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(Lee and Kim 2014; Charles and Kumar 2014), (8) in AHP analysis (Ramanathan
2006b; Wang and Chin 2009), (9) in GRA (Huang et al. 2015), and (10) estimating
overall efficiency for grouping on levels (Cook et al. 1998).

Regarding next the models with a single constant output, we have the CRS input-
oriented model, which in its multiplier and envelopment form is given as:

max
vki ,u

k
0

uk min
λkj ,φ

k
φk

st
I∑

i=1
vki x

k
i = 1 st

K∑

h=1
μk
hx

h
i ≤ φkxki i = 1, . . . , I

I∑

i=1
vki x

h
i − uk ≥ 0 h = 1, . . . , K

K∑

h=1
μk
h ≥ 1

vki ≥ 0 i = 1, . . . , I μk
h ≥ 0 h = 1, . . . , K

uk ≥ 0
(6)

and the corresponding VRS model is:

max
vki ,u

k,uk0

uk − uk0 min
μk
j ,φ

k
φk

st
I∑

i=1
vki x

k
i = 1 st

K∑

h=1
μk
hx

h
i ≤ φkxki i = 1, . . . , I

I∑

i=1
vki x

h
i − uk + uk0 ≥ 0 h = 1, . . . , K

K∑

h=1
μk
h ≥ 1

vki ≥ 0 i = 1, . . . , I
K∑

h=1
μk
h = 1

uk ≥ 0 μk
h ≥ 0 h = 1, . . . , K

uk0 f ree in sign
(7)

According to Lovell and Pastor (1999, proposition 2), which is based on a
reasoning similar to the one used for (3) and (4), one can verify that the CRS input-
oriented DEA model with a single constant output in (6) is equivalent to the VRS
input-oriented DEA model with a single constant output in (7).

The CRS input-oriented DEA model with a single constant output in (6) was
firstly used by Thompson et al. (1986) for comparative site evaluation (i.e., location
choice) and the VRS input-oriented DEA model with a single constant output in (7)
was employed by Desai and Storbeck (1990) for the same purpose. Later, the CRS
input-oriented DEA model with a single constant output in (6) was used by Xu et al.
(2013) to analyze max-min strategy games, where the evaluated DMU selects the
worst practice DMU and the evaluator would choose the best weights.
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On the other hand, the CRS output-oriented model with a single constant output
is given as:

min
vki ,u

k

I∑

i=1
vki x

k
i max

λkj ,θ
k
θk

st uk = 1 st
K∑

h=1
λkh ≥ θk

I∑

i=1
vki x

h
i − uk ≥ 0 h = 1, . . . , K

K∑

h=1
λkhx

h
i ≥ xki i = 1, . . . , I

vki ≥ 0 i = 1, . . . , I λkh ≥ 0 h = 1, . . . , K

uk ≥ 0

(8)

in its multiplier and envelopment form, respectively. This model was firstly used by
Doyle et al. (1995) in a multiple attributes problem (see also Caporaletti et al. 1999)
and then by Weber and Desai (1996) for supplier selection and Takamura and Tone
(2003) for cite selection. It is known as the inverted BoD model and it has been
used in conjunction with the BoD model to compare composite indicators based
on the most and least favorable weights; see for example Zhou and Fan (2007) for
multi-criteria ABC inventory classification and Zhou et al. (2007) for constructing
composite indicators. It was also employed for constructing input quantity and
quality indices; see respectively O’Donnell and Nguyen (2013) and Whittaker et
al. (2015).

Interestingly, models in the upper and the lower panel of Fig. 1 are related to
each other: as Lovell and Pastor (1999) have shown (see their proposition 3), a
VRS input-oriented (output-oriented) model with a single constant output (input) is
equivalent to a VRS input-oriented (output-oriented) model without output (inputs).
This establishes the equivalence between (1) and (4) and between (2) and (7). Given
in addition the equivalence between (3) and (4) and between (6) and (7), due to
Lovell and Pastor (1999) proposition 2, one can verify the equivalence between (1)
and (3) and between (2) and (6); this is corollary 3.1 in Lovell and Pastor (1999).
On the other hand, due to CRS, one can verify that (3) and (5) as well as (6) and (8)
are reciprocal to each other (Caporaletti et al. 1999; Yang et al. 2014, theorem 1).

Thus, we end up with two quadrat equivalencies: first, the VRS input-oriented
model without outputs in (1), the VRS input-oriented model with a single constant
output in (7), the CRS input-oriented model with a single constant output in (6), and
the inverse of the CRS output-oriented model with a single constant output in (8) are
all equivalent to each other (this equivalence is depicted by the yellow line in Fig.
1).6 Second, the VRS output-oriented model without inputs in (2), the VRS output-

6Interestingly, the three models that have been used for site evaluation, namely the VRS input-
oriented model without outputs in (1) used by Adolphson et al. (1991), the VRS input-oriented
model with a single constant output in (7) used by Desai and Storbeck (1990), the CRS input-
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Fig. 1 The BoD and the inverted BoD models

oriented model with a single constant input in (4), the CRS output-oriented model
with a single constant input in (3), and the inverse of the CRS input-oriented model
with a single constant input in (5) are all equivalent to each other (this equivalence
is depicted by the red line in Fig. 1). Thus, we actually have only two models in the
class of the pure and single constant input or output DEA models.

From now on, these two models will generically be referred to as the BoD and
the inverted BoD model, respectively. Their multiplier and envelopment forms in
(5) and (8) may be rewritten after few manipulations as:

max
ukj

J∑

j=1
ukj y

k
j min

μk
j

K∑

h=1
μk
h

st
J∑

j=1
ukj y

h
j ≤ 1 h = 1, . . . , K st

K∑

h=1
μk
hy

h
j ≥ φkykj j = 1, . . . , J

ukj ≥ 0 j = 1, . . . , J μk
h ≥ 0 h = 1, . . . , K

(9)

and

oriented model with a single constant output in (6) used Thompson et al. (1986), and the CRS
output-oriented model with a single constant output in (8) used by Takamura and Tone (2003) are
equivalent to each other and result in the same assessment results.
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min
vki
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vki x
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i max
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h=1
λkh

st
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vki x

h
i ≥ 1 h = 1, . . . , K st
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h=1
λkhx

h
i ≥ xki i = 1, . . . , I

vki ≥ 0 i = 1, . . . , I λkh ≥ 0 h = 1, . . . , K

(10)

By disregarding inputs and outputs in (9) and (10) and instead considering
both of them as indicators, attributes, or criteria, we can see from their multiplier
formulation that the BoD and the inverted BoD models provide, respectively, an
optimistic and a pessimistic perspective of performance evaluation. This is also
reflected in their two-dimensional graphical representation in Fig. 1, where the
values of indicators, attributes, or criteria (I) are measured in the two axes. From
there we can see that the BoD model may be viewed as an upper envelop of data
points (it is presented here as a CRS output-oriented model with indicators as
outputs and a unitary input) while the inverted BoD model as lower envelop (it
is represented here as a CRS input-oriented model with indicators as inputs and a
unitary output).7 Moreover, in Table 2 we summarize all possible up-to-now uses of
these two models.

Table 2 Applications of the BoD and the inverted BoD models

BoD model Inverted BoD model

1. Composite indicators 1. Composite indicators
2. Inventory classification 2. Inventory classification
3. Supplier selection 3. Supplier selection
4. Min-max strategy games 4. Min-max strategy games
5. Output indices 5. Input indices
6. Quality indices 6. Quality indices
7. Long-run output-oriented CU 7. Long-run input-oriented CU
8. Quality perception 8. Spatial efficiency
9. Aggregating preference voting
10. Ratio analysis—DEA-R
11. Target setting
12. Effectiveness
13. AHP analysis
14. GRA
15. Multiple attribute utility theory
16. Group efficiency

7See van Puyenbroeck (2018) for a discussion on the output orientation of the BoD model.
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3 Relations with Other Models

In this section we consider the relation of the DEA models without inputs or outputs
with other DEA formulations and linear programming models. First, consider what
we referred to as the normalized BoD model. This model can be obtained from
the multiplier form of (9) by assuming that either all indicators are measured in a
common scale or they are normalized to range between zero and one and in addition,
we require output multipliers to sum up to one. Then, the second constraint in the
multiplier form of (9) becomes redundant and we get the following model:

max
ukj

J∑

j=1
ukj I

k
j

st
J∑

j=1
ukj = 1

ukj ≥ 0 ∀j = 1, . . . , J

(11)

which was firstly used by Melyn and Moesen (1991) and later by Kao and
Hung (2003).8 Even though (9) and (11) have the same objective function they
differ in terms of the model’s constraints. In (11) there is only one (equality)
constraint, besides the non-negativity constraints on the weights, while the number
of inequality constraints in the multiplier form of (9) is equal to the number of
DMUs. Besides these differences, Kao et al. (2008) have shown that they result in
the same value of the objective function, i.e., in the same estimated value of the
composite indicator so long as the weights in (9) sum up to one, which holds by
default in (11). In addition, Karagiannis and Paschalidou (2017) have noticed that,
once we estimate the weights in (9) we can use them to obtain the weights in (11)
but the opposite is not possible. This asymmetry is due to the type and the number
of constraints in (11).

Nakabayashi and Tone (2006) considered a special case of (11) where in addition,∑J
j=1 I

k
j = 1. On the other hand, Ng (2007, 2008) considered a variant of (11) with

the following descending order weighting scheme, uk1 > uk2 > uk3 . . . ., and Hadi-
Vencheh (2010) a distance-based version of it.

On the other hand, the normalized inverted BoD model, which is related to (10)
above, is given as:

8Melyn and Moesen (1991) were the first to use the name BoD model but they did so for (11) not
for (9), as it is common now days.
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min
vki

I∑

i=1
vki I

k
i

st
I∑

i=1
vki = 1

vki ≥ 0 ∀i = 1, . . . , I

(12)

and was firstly used by Nakabayashi et al. (2009).
Second, the BoD (inverted BoD) model is equivalent to the input-oriented

(output-oriented) DEA-R model (Mozaffari et al. 2014).
Third, following Färe and Karagiannis (2014), the diet problem (the first linear

programming problem—see Stigler (1945) for its formulation) and the BoD model
are linear programming duals. That is, the primal (dual) formulation of the diet
problem is equivalent to the dual (primal) formulation of the BoD model so long as
food prices are set equal to one.9 In addition, the diet problem and the inverted BoD
are linear programming equivalent so long as the nutritional requirements are set
equal to one. That is, the primal (dual) formulation of the diet problem is equivalent
to the primal (dual) formulation of the inverted BoD model so long as the nutritional
requirements are set equal to one.

Fourth, according to Yang et al. (2014), the linear form of the multi-attribute
utility model with variable weights (see Keeney and Raiffa 1976) coincides with the
BoD model.

Fifth, the long-run plant capacity utilization (CU) measures, introduced by
Cesaroni et al. (2019), are identical to models of a VRS technology without inputs
or outputs. In particular, the long-run output-oriented CU measure is obtained
by estimating the BoD model while the long-run input-oriented CU measure by
estimating the inverted BoD model.

4 Some Extensions

In this section we summarize the results of some extensions of the models presented
in the second section. These extensions concern:

4.1 Weak Disposability and Non-isotonic Indicators

In nonparametric production models, weak disposability of outputs may be modeled
by means of either a uniform or a multiple abatement factor specification; see e.g.

9For the BoD and the inverted BoD models, the primal formulation corresponds to the multiplier
form and the dual to the envelopment form.
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Färe and Grosskopf (2003) and Kuosmanen (2005). Kuosmanen and Podinovski
(2009) have shown that in the case of a single constant input (or equivalently if all
DMUs use the same input quantity) the abatement factors in the multiple abatement
factor specification of production technology collapse to a single one as it is the case
in the uniform abatement factor specification.

In the case of composite indicators, bad outputs correspond to indicators that
are not isotonic and increasing values are considered as unfortunate events. There
are two modeling strategies for treating non-isotonic indicators: first, the directional
BoD model (Fusco 2015; Vidoli et al. 2015; Zanella et al. 2015a, 2015b; Charles
et al. 2016) treats non-isotonic indicators as undesirable outputs by means of
weak disposability. Implicit in this modeling choice is the assumption of null-
jointness, namely that desirable outputs cannot be produced without the production
of undesirable outputs, which is a rather reasonable assumption for conventional
production processes but less justifiable in the context of the BoD model.

Alternatively, Färe et al. (2019) suggest treating non-isotonic indicators as
reverse rather than undesirable outputs. The main difference is that reverse outputs
might not be accompanied by desirable outputs. That is, the presence of forward
indicators does not imply nor it is implied by the presence of reverse indicators.
The proposed BoD model is the single-constant-input version of Lewis and Sexton
(2004) CRS input-oriented DEA model with forward inputs and forward and reverse
outputs. The multiplier and the envelopment form of the BoD model with forward
and reverse indicators are given as:

max
uj

m∑

j=1
ujyk’j −

J∑

j=m+1
ujyk’jmin

λk

K∑

h=1
λkh

st
m∑

j=1
ujyk’j −

J∑

j=m+1
ujy

k’j ≤ 1k h = 1, . . . , K

st
K∑

h=1
λkhykj ≥ y

k’j j = 1, . . . , m

uj ≥ 0 j = 1, . . . , J
K∑

h=1
λkhykj ≤ y

k’j j = m + 1, . . . , J

λkh ≥ 0 h = 1, . . . , K
(13)

where yk ′ j refers to forward indicators and yk ′ j’s to reverse indicators.

4.2 Intra- and Inter-Group BoD Models

The primary models presented in the second section assume implicitly a common
set of environmental or contextual conditions for all DMUs. These factors are
related to the conditions surrounding the performance of the evaluated DMUs.
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Assessing performance across different environments requires splitting the sample
of DMUs into separate groups and then analyzing performance differences within
and between groups. Intra-group composite indicators are estimated using the
conventional BoD model in (9) by restricting the reference set into DMUs that
belong to a particular group.

Inspired from the notion of programmatic efficiency (see Charnes et al. 1981),
Karagiannis and Karagiannis (2018) have proposed two alternative approaches for
estimating inter-group composite indicators. The first approach proceeds in three
steps: first, estimate the intra-group composite indicators separately for each group;
second, adjust the “unitary input” to eliminate any intra-group inefficiency, which
means replacing 1j with Ij

m /Ik
m in the conventional BoD; third, estimate the

following form of the conventional BoD model (the multiplier and the envelopment
form of which is given in (14) below) for the pooled data (including all groups) to
obtain the values of the inter-group composite indicators:

max
ski
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k
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λkh
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gI jm/

gI km

)

st
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h
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)
h = 1, . . . , K

g = 1, . . . ,G

st
K∑

h=1
λkhI

j
i ≥ I ki i = 1, . . . , N

ski ≥ 0 i = 1, . . . , N λkh ≥ 0 h = 1, . . . , K
(14)

The second approach also proceeds in three steps: first, estimate the intra-group
composite indicators separately for each group; second, estimate the conventional
BoD model for the pooled data (including all DMUs); and third, calculate the inter-
group composite indicator by the ratio of the latter to the former.

One can easily verify that the two approaches result in the same inter-group
composite indicators. However, the second is easier to implement, but it provides
no insights about the identification of peers and/or the estimated component weights
because the values of the inter-group composite indicator are calculated residually
instead of being estimated as in the first alternative (Karagiannis and Karagiannis
2018). In addition, the second approach does not provide any insights for the
aggregation of inter-group composite indicators, in which we will turn after the next
sub-section.

4.3 Average Cross Efficiency in the BoD Model

Another interesting implication of the BoD model is in terms of the average cross
efficiency. Cross efficiency is a peer-appraisal performance measure that is obtained
by using the optimal weights of all DMUs to evaluate the performance of a particular
DMU. Then average cross efficiency (ACE) results by computing the simple average
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of these cross efficiency scores (Doyle and Green 1994). The ACE in the BoD model
is computed based on a common set of weights given by the simple arithmetic
average of the weights obtained from the self-appraisal version of the model as in
(9) (Karagiannis and Paleologou 2014; Rogge 2018). These common weights allow
for complete ranking and comparison of all (efficient and inefficient) DMUs and
they can be applied to calculate performance indices for DMUs not in the sample.

5 Aggregation Across DMUs

In several empirical applications we are interesting on the performance of the group
that the evaluated units belong to instead of the units themselves. To proceed in
this direction one needs a theoretically consistent way to aggregate across all or
some of the DMUs. By theoretically consistent way we mean that the resulting
aggregate composite indicator will have exactly the same intuitive interpretation as
the individual ones. This necessitates the development of an aggregation scheme
that is compatible with the BoD and the inverted models and which involves the
choice of aggregation weights as well as the type of average to be used.

According to Färe and Karagiannis (2017, 2020) denominator rule, consistency
in aggregation of ratio-type performance measures, including efficiency indices, is
ensured so long as the weights are defined in terms of the denominator variable of
the relevant index. This, which constitutes the practical counterpart of Koopmans
theorem (Koopmans 1957) in aggregating ratio-type performance indices, refers to
arithmetic aggregation. For harmonic aggregation one should use the numerator rule
and define the aggregation weights in term of the numerator variable of the relevant
index.

Following the denominator rule, Karagiannis (2017) has shown that the arith-
metic average is the theoretically consistent aggregation rule for the BoD model
and thus, for the input-oriented DEA model with a single constant input. Then, the
aggregate composite indicator equals the simple (un-weighted) arithmetic average
of the estimated individual DMU’s composite indicators. As an input-oriented
model, the aggregation weights for the BoD model should be defined by means
of the input variables and in particular, by means of actual input values, which is
the variable in the denominator of the corresponding efficiency score. However, in
the case of the BoD model there is only one input that is equal to one across all
DMUs. This implies that the aggregation weights equal to one over the number of
the evaluated DMUs, which in turn implies that the aggregate composite indicator is
equal to the arithmetic average of DMU’s composite indicators. This holds without
requiring the relative weights of each indicator to be the same across DMUs, as
Morais and Camanho (2011) have claimed. On the other hand, considering the BoD
as an output-oriented model, Rogge (2018) argued that the aggregation weights are
equal to the arithmetic mean of the share of every DMU in each indicator. The
relation (if any) between these two results needs further investigation.
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6 Productivity Analysis

The use of radial DEA models without inputs or outputs can be taken one step
further by considering their potential use in inter-temporal performance evaluation
by means of productivity indices. Using an output-oriented model with a single
constant input, Karagiannis and Lovell (2016) have shown that in this case (a)
the Malmquist and Hicks–Moorsteen productivity indices coincide, (b) they are
multiplicatively complete, and (c) the choice of orientation for the measurement of
productivity change does not matter.10 In addition, there is a unique decomposition
of the sources of productivity change containing three independent components, i.e.,
technical efficiency change, neutral technical change, and output-biased technical
change. Lastly, the aggregate output-oriented Malmquist productivity index is given
by the geometric average between any two periods of the simple (un-weighted)
arithmetic average of the individual contemporaneous and mixed period distance
functions. A similar analysis can be conducted in the case of an input-oriented model
with a single constant output.

7 Concluding Remarks

The aim of this paper is to provide a critical review of the radial DEA models
without input or outputs as well as their equivalent single constant input or output
models and to summarize the fields that they have been applied so far. This literature
review is by no means complete, as we have only focused on radial models. There
are in the literature several papers dealing with non-radial as the additive model
without inputs (Cai and Wu 2001; Liu et al. 2011), the output-oriented slack based
model without outputs (Sahoo and Acharya 2010; Liu et al. 2011), and the Russell
measure (Liu et al. 2011; Yang et al. 2014). On the other hand, we have implicitly
assumed convexity, which is not necessary in this kind of models: see for example,
the works of Athanassopoulos and Storbeck (1995), Bardhan et al. (1996) and
Garcia-Romero et al. (2016), which used a free disposal hull model. The former
has used an input-oriented model without outputs to estimate spatial efficiency and
the other two an output-oriented model without inputs and with a single constant
input, respectively. In addition, Xu et al. (2013) have used a free disposal hull
model without inputs or outputs to analyze max-min strategy games. Finally, we
did not also consider models with weight restrictions (see e.g. Cook and Kress
1990; Cherchye et al. 2007a) and several variants of the BoD model that result
in common weights such as the one based on the goal programming approach

10This simply means that the aforementioned result also holds for an input-oriented model with a
single constant input, i.e., the BoD model.



228 G. Karagiannis

(Despotis 2005; Bernini et al. 2013; Sayed et al. 2018) and the one based on the
meta-goal programming approach (Sayed et al. 2015). All these are left for future
work.
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U.S. Banking in the Post-Crisis Era: New
Results from New Methods

Paul W. Wilson

Abstract This paper examines the performance of U.S. bank holding companies
before, during, and after the 2007–2012 financial crisis. Fully nonparametric
methods are used to estimate technical, cost, and input allocative efficiencies.
Recently developed statistical results are used to test for changes in efficiencies
as well as productivity over time, and to test for changes in technology over time.
I find evidence of non-convexity of banks’ production set is found. In addition, the
data reveal that mean technical efficiency declined during the financial crisis, but
recovered in the years after, ending higher in 2016 than in 2006, while both cost and
input allocative efficiencies declined from 2006 to 2016. Statistical tests indicate
that technology shifted downward throughout the period 2006–2016.

1 Introduction

The financial crisis of 2007–2012 began ostensibly, in the USA, with problems
in housing mortgage markets.1 On 27 February 2007, The Federal Home Loan
Mortgage Corporation announced that it would no longer buy the most risky

1Gorton (2018) refers to the financial crisis of 2007–2008, while Bolt et al. (2012) and others refer
to the crisis of 2008. The National Bureau of Economic Research lists the corresponding peak-to-
trough business cycle contraction as fourth-quarter 2007 through second-quarter 2009. Many of
the effects of the recent financial crisis lasted beyond 2009.
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sub-prime mortgages and mortgage-related securities. Just over a month later, on
2 April 2007, New Century Financial Corporation, a leading player in the sub-
prime mortgage market, filed for chapter “U.S. Banking in the Post-Crisis Era:
New Results from New Methods” bankruptcy protection. On 7 June 2007 Bear
Stearns suspended redemptions from its High-Grade Structured Credit Strategies
Enhanced Leverage Fund; later, on 31 July, the company liquidated two hedge
funds that invested in various types of mortgage-backed securities. Countrywide
Financial Corporation warned of “difficult conditions” in Securities and Exchange
Commission Filing on 24 July. Problems accelerated in the second half of 2007 and
during 2008, with Lehman Brothers Holdings Inc. filing for chapter “U.S. Banking
in the Post-Crisis Era: New Results from New Methods” bankruptcy protection on
15 September 2008.

As with other financial crises, the crisis that began in 2007 started with a credit
boom likely related to a glut of global savings as described by Bernanke (2005).
Gorton et al. (2012) note that the rise of the shadow banking system had by 2007
significantly and permanently changed the U.S. financial system. Bernanke (2013)
defines shadow banking as comprising “a diverse set of institutions and markets
that, collectively, carry out traditional banking functions—but do so outside, or
in ways only loosely linked to, the traditional system of regulated depository
institutions. Examples of important components of the shadow banking system
include securitization vehicles, asset-backed commercial paper conduits, money
market funds, markets for repurchase (repo) agreements, investment banks, and
mortgage companies.” Yet as of 2007, there were almost no data available to
measure or monitor activities within the shadow banking system.

Hördahl and King (2008) note that repo markets doubled in size between 2002
and year-end 2007, amounting to roughly $10 trillion in each of the U.S. and
Euro repo markets, and another $1 trillion in the U.K. repo market by the end
of 2007. A repo involves the sale of a security with an agreement to repurchase
the same security at a specified price at the end of the contract. Repo markets are
an important source of secured financing for both banks and non-bank financial
institutions (including those in the shadow banking system), as well as a key tool
for the implementation of monetary policy. Despite the presence of collateral, repo
markets are sensitive to financial turmoil.

Gorton (2018, Section 4) describes how the financial crisis began in 2007 with
runs on asset-backed commercial paper, repo, and money market mutual funds.
In the first two markets, short-term debt holders became concerned that privately
produced asset- and mortgage-backed securities rated AAA or Aaa were not as
safe as their ratings implied. Consequently, starting in mid-2007, repo transactions
became increasingly limited to short-term maturities involving only the highest-
quality securities, making lesser-quality securities increasingly illiquid. Financing
in unsecured markets became more expensive or unavailable, forcing financial
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institutions needing funds to bid more aggressively in repo markets or to turn
to foreign exchange swaps and cross-currency swaps as noted by Baba et al.
(2008). At the same time, repo investors withdrew cash from the repo market,
further reducing the quantity of financing available. The simultaneous flight to and
hoarding of U.S. Treasury securities by investors created a scarcity of top-quality
collateral, causing repo rates (i.e., the difference between sale and buy-back prices)
for U.S. Treasuries to fall to levels close to zero. Hördahl and King (2008) note that
the U.S. repo market suffered significantly more disruption than either the Euro or
the U.K. markets. The repo market in mid-2007 was in turmoil and was the seed
of the financial crisis, but this was noticed by few who were not trading in the repo
market.2

The period 2007–2012 and beyond was very disruptive to the banking industry.
The period is remarkable for its historically low interest rates, large numbers of
bank failures, forced mergers, and eventually an increase in regulatory burden with
enactment of the Dodd-Frank Wall Street Reform and Consumer Protection Act
in 2010 (otherwise known as the “Dodd-Frank Act”). Although banks eventually
became awash in cash, with large excess reserves, the demand for loans fell, thereby
impacting opportunities for banks to earn revenue.3

Banks are an important component of nations’ economies. The business of
banking involves transforming short-term debt into longer-term loans. Banks facil-
itate “cash smoothing” between depositors and borrowers, thereby contributing to
economic growth. Bankers make profits (when they can) by managing risk and the
spread between interest rates on deposits and loans. As Diamond and Rajan (2001)
observe, banks perform valuable functions on both sides of their balance sheets.
They make loans to illiquid borrowers, enhancing the flow of credit in the economy,
and they provide liquidity on demand to depositors. Although both of these actions
are important, it makes banks inherently risky and potentially unstable. Banks may
have different business plans, and may change their business plans over time. Given
the importance of banks in the economy, it is reasonable to ask what happened to
the U.S. banking industry following 2006, the last year before the financial crisis.

This paper provides evidence on the performance of large U.S. banks just before,
during, and after the 2007–2012 financial crisis. The approach is fully nonparamet-
ric, and exploits new theoretical results that have been recently developed. Estimates

2See Hördahl and King (2008), Bernanke (2018) and Gorton (2018) for additional discussion. See
also the comprehensive timeline of the financial crisis provided by the Federal Reserve Bank of
St. Louis at https://www.stlouisfed.org/financial-crisis/full-timeline.
3Total loans and leases, net of unearned income for U.S. commercial banks reached a peak of 6.807
trillion dollars in 2008Q3, fell to 6.415 trillion dollars by 2009Q4, and did not reach the level of
2008Q3 until 2012Q4. All real estate loans reached a peak of 3.835 trillion in July 2009, fell to
3.491 trillion in September 2011, and did not reach the July 2009 level until November 2015.
Commercial real estate loans reached a peak of 1.730 trillion in December 2008, fell to 1.419
trillion in January 2012, and did not reach the level of December 2008 again until September 2015.
The levels of loans outstanding reflect in large part past loan-making activity; i.e., there is a good
deal of inertia reflected in the values given here. The decline in values of loans originating during
the financial crisis is likely far larger than the levels of loans outstanding, but is harder to measure.

https://www.stlouisfed.org/financial-crisis/full-timeline
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of technical, cost, and input allocative efficiency at 2-year intervals from 2006 to
2016 are examined in a statistical paradigm permitting inference and hypothesis
testing. As such, this paper both (1) contributes to the banking literature by shedding
light on the reaction of large U.S. banks to the recent financial crisis and (2) provides
an illustration of state-of-the art nonparametric, statistical methods for performance
benchmarking.

The primary regulatory response to the financial crisis that began near the end
of 2007 was enactment of the Dodd-Frank Act. The Dodd-Frank Act contains 845
pages, 16 titles, and 225 new rules to be implemented by 11 government agencies;
see U.S. Congress (2010) for details. The Dodd-Frank Act is the largest, most far-
reaching financial regulation passed by the U.S. Congress since the Banking Act of
1933. Among other things, the Dodd-Frank Act addresses systemic risk by imposing
(1) capital requirements that are supposed to increase during times of financial stress
and (2) restrictions on certain asset holdings (e.g., using the Volcker rule outlined
in Section 619 of the Act). However, as discussed by Acharya and Richardson
(2012), capital regulation may be ineffective due to financial activities involving
regulatory capital arbitrage and carry trades.4 To protect against systemic risk in
the financial sector, regulators must require banks to hold sufficient capital to cover
large losses that may occur with only small probability and when aggregate risk in
the financial system is present. This implies banks must hold excess capital more or
less continuously, even during (most) times when the probability of failure is small
or even zero (see Kashyap et al. 2008 for discussion).5 Consequently, subsequent to
passage of the Dodd-Frank Act, one might expect banks’ costs to increase due to
the increased regulatory and reporting burdens imposed by the Act.6 In addition, one
might expect a downward shift in banks’ production frontier, i.e., a contraction of
their production possibilities set due to the requirements for increased capitalization
of banks, as well as perhaps decreased productivity. These effects and others are
investigated below.

The paper proceeds as follows. A statistical model, essential for statistical
inference, is presented in the next section. Estimators of technical, cost, and input
allocative efficiency and their properties are discussed in Sect. 3. In addition, various

4Carry trades are those trades with an initial return or “carry,” but with large tail risks involving
losses in the future which have low probability but which are perhaps catastrophically large.
5An unintended consequence of burdensome capital requirements may be to induce movement of
financial intermediation out of regulated entities into weakly or unregulated entities. This in large
part gave rise to shadow banking that existed by 2007.
6Patel (2014) reports that JP Morgan Chase & Co.’s chief executive officer, Jamie Dimon, stated
in mid-2014 that JP Morgan would hire 13,000 new staff in compliance, audit, and other areas by
year-end, increasing the bank’s risk control staff by 30%. The number of audit staff at Bank of
America Corp. roughly doubled from mid-2011 to mid-2014. Between the end of 2011 and mid-
2014, Citigroup Inc. increased its staff working on regulatory and compliance issues by 33% for a
total of about 30,000 employees, representing 12.3% of Citi’s 244,000 total employees at the end
of second-quarter 2014. Patel (2014) observes that these increases represent “the new normal for
banks as they grapple with a host of new regulations and capital requirements in the wake of the
financial crisis, according to analysts.”
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statistical results needed for testing hypotheses about model features are also
discussed in Sect. 3. The data used for estimation and inference are discussed in
Sect. 4, and empirical results are presented in Sect. 5. Summary and conclusions are
given in Sect. 6.

2 The Statistical Model

To establish notation, let X ∈ R
p
+ and Y ∈ R

q
+ denote (random) vectors of input

and output quantities, respectively. Let W ∈ R
p
++ denote random vectors of input

prices. Similarly, let x ∈ R
p
+, y ∈ R

q
+ and w ∈ R

p
++ denote fixed, nonstochastic

vectors of input and output quantities and input prices. The production set

� := {(x, y) | x can produce y} (2.1)

gives the set of feasible combinations of inputs and outputs. Several assumptions
on � are common in the literature. The assumptions of Shephard (1970) and Färe
(1988) are typical in microeconomic theory of the firm and are used here.

Assumption 21 � is closed.

Assumption 22 (x, y) �∈ � if x = 0, y ≥ 0, y �= 0; i.e., all production requires
use of some inputs.

Assumption 23 Both inputs and outputs are strongly disposable, i.e., ∀(x, y) ∈ �,
(i) x̃ ≥ x ⇒ (̃x, y) ∈ � and (ii) ỹ ≤ y ⇒ (x, ỹ) ∈ �.

Here and throughout, inequalities involving vectors are defined on an element-by-
element basis, as is standard. Assumption 21 ensures that the efficient frontier (or
technology) �∂

�∂ :=
{
(x, y) | (x, y) ∈ �, (γ−1x, γy) /∈ � for any α ∈ (1,∞)

}
(2.2)

is the set of extreme points of � and is contained in �. Assumption 22 means that
production of any output quantities greater than 0 requires use of some inputs so
that there can be no free lunches. Assumption 23 imposes weak monotonicity on
the frontier.

The Farrell (1957) input efficiency measure

θ(x, y | �) := inf {θ | (θx, y) ∈ �} (2.3)

gives the amount by which input levels can feasibly be scaled downward, propor-
tionately by the same factor, without reducing output levels. The Farrell (1957)
output efficiency measure gives the feasible, proportionate expansion of output
quantities and is defined by
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λ(x, y | �) := sup {λ | (x, λy) ∈ �} . (2.4)

Both (2.3) and (2.4) provide radial measures of efficiency since all input or output
quantities are scaled by the same factor θ or λ, holding output or input quantities
fixed (respectively). Clearly, λ(x, y | �) ≥ 1 and θ(x, y | �) ≤ 1 for all
(x, y) ∈ �.

Alternatively, Färe et al. (1985) provide a hyperbolic, graph measure of efficiency
defined by

γ (x, y | �) := inf
{
γ > 0 | (γ x, γ−1y) ∈ �

}
. (2.5)

By construction, γ (x, y | �) ≤ 1 for (x, y) ∈ �. Just as the measures θ(x, y | �)

and λ(x, y | �) provide measures of the technical efficiency of a firm operating
at a point (x, y) ∈ �, so does γ (x, y | �), but along the hyperbolic path from
(x, y) to the frontier of �. The measure γ (x, y | �) gives the amount by which
input levels can be feasibly, proportionately scaled downward while simultaneously
scaling output levels upward by the same proportion.

Given a vector w ∈ R
p
+ of input prices, the minimum cost of producing a specific

vector y0 of output quantities from a given vector x0 of input quantities is

Cmin(x0, y0 | �,w) = min
x

{w′x | (x, y0) ∈ �, x ∈ R
p
+, w ∈ R

p
++}. (2.6)

Cost efficiency (sometimes called input overall efficiency) for the firm operating at
(x0, y0) ∈ � and facing input prices w is then defined by

C(x0, y0 | �,w) := Cmin(x0, y0 | �,w)
w′x0

= w′x∗
w′x0

(2.7)

where x∗ is the argmin of the expression on the right-hand side (RHS) of (2.6). The
cost efficiency measure in (2.7) gives the fraction by which cost of producing output
quantities y0 could be reduced when facing input prices w; achieving this reduction
might require altering the mix of inputs used to produce y0.

Simar and Wilson (2020) define the set

�w := hw(�) = {(c, y) | (c, y) = hw(x, y) ∀ (x, y) ∈ �} (2.8)

where hw : Rp+q
+ �→ R

1+q
+ is the affine function such that hw(x, y) = Aw

[
x′ y′]′

where

Aw =
[

w′ 0′
q

0′
p×q Iq

]

, (2.9)

0q is a (q × 1) vector of zeros, 0p×q is a (p × q) matrix of zeros, and Iq is a
(q × q) identity matrix. Due to the properties of affine functions (e.g., see Boyd
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and Vandenberghe 2004, pp. 36–38), it is clear that since hw is affine, �w is convex
if and only if � is convex. The set �w ⊂ R

q+1
+ gives the set of feasible pairs

of cost and output quantities. Simar and Wilson (2020, Lemma 3.2) prove that for
(x, y) ∈ � and c = w′x,

C(x, y | �,w) = θ(c, y | �w). (2.10)

Then the input allocative efficiency defined by Färe et al. (1985) can be written as

Ax(x0, y0 | �,w) :=C(x, y | �,w)
θ(x0, y0 | �)

= θ(c, y | �w)

θ(x0, y0 | �)
. (2.11)

Input allocative efficiency measures the amount of cost inefficiency that would
remain if any technical inefficiency was eliminated by proportionately reducing
input quantities by the factor θ(x0, y0 | �).

All of the quantities and model features defined so far are unobservable, and
therefore must be estimated. The sets � and �w can be estimated using the free-
disposal hull (FDH) estimator introduced by Deprins et al. (1984) or either the
variable returns to scale (VRS) or constant returns to scale (CRS) versions of
the data envelopment analysis (DEA) estimator proposed by Farrell (1957). But,
inference is needed in order to know what might be learned from data, and inference
requires a well-defined statistical model. The assumptions that follow are similar to
Assumptions 3.1–3.4 of Kneip et al. (2015) and complete the statistical model. The
first two assumptions that follow are needed for both FDH and VRS estimators.

Assumption 24 (i) The random variables (X, Y ) possess a joint density f with
support D ⊂ � and (ii) f is continuously differentiable on D.

Assumption 25 (i) D∗ := {θ(x, y | �)x, y) | (x, y) ∈ D} = {(x, λ(x, y | �)y)

| (x, y) ∈ D} = {
(γ (x, y | �)x, γ (x, y | �)−1y) | (x, y) ∈ D

} ⊂ D; (ii) D∗ is
compact; and (iii) f (θ(x, y | �)x, y) > 0 for all (x, y) ∈ D.

The next two assumptions are needed when VRS estimators are used. Assump-
tion 26 imposes some smoothness on the frontier. Kneip et al. (2008) required only
two-times differentiability to establish the existence of a limiting distribution for
VRS estimators, by the stronger assumption that follows is needed to establish
results on moments of the VRS estimators.

Assumption 26 θ(x, y | �), λ(x, y | �) and γ (x, y | �) are three times
continuously differentiable on D.

Recalling that the strong (i.e., free) disposability assumed in Assumption 23
implies that the frontier is weakly monotone, the next assumption strengthens this
by requiring the frontier to be strictly monotone with no constant segments. This is
also needed to establish properties of moments of the VRS estimators.
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Assumption 27 D is almost strictly convex; i.e., for any (x, y), (̃x, ỹ) ∈ D
with ( x

‖x‖ , y) �= ( x̃
‖x̃‖ , ỹ), the set {(x∗, y∗) | (x∗, y∗) = (x, y) + α((̃x, ỹ) −

(x, y)) for some 0 < α < 1} is a subset of the interior of D.

Alternatively, when FDH estimators are used, Assumptions 26 and 27 can be
replaced by the following assumption.

Assumption 28 (i) θ(x, y | �), λ(x, y | �) and γ (x, y | �) are twice
continuously differentiable on D and (ii) all the first-order partial derivatives of
θ(x, y | �), λ(x, y | �) and γ (x, y | �) with respect to x and y are nonzero at any
point (x, y) ∈ D.

Assumption 28 strengthens the assumption of strong disposability in 23 by
requiring that the frontier is strictly monotone and does not possess constant
segments (which would be the case, for example, if outputs are discrete as opposed
to continuous, as in the case of ships produced by shipyards). Finally, part (i) of
Assumption 28 is weaker than Assumption 26; here the frontier is required to
be smooth, but not as smooth as required by Assumption 26.7 Assumptions 21–
25 and 28 comprise a statistical model appropriate for use of FDH estimators
of technical efficiency, while Assumptions 21–27 comprise a statistical model
appropriate for use of VRS estimators of technical efficiency.8

Regardless of whether VRS or FDH estimators are used, and additional assump-
tion regarding input prices is needed. The assumption here is similar to Assumption
2.9 of Simar and Wilson (2020).

Assumption 29 (i) The random variable (W) has probability density fW with
compact support DW ⊂ R

p
++ and (ii) The random variables (X, Y,W) are defined

on an appropriate probability space such that the joint density fX,Y,W (x, y,w)

exists and is well-defined with support D × DW .

Assumption 29 ensures that all prices are strictly positive and have finite upper
bounds. In some situations firms may face the same prices. In such cases fW is
degenerate with mass at a single point.

3 Estimation and Inference

Let SXYW,n = {(Xi, Yi,Wi)}ni=1 be a random sample drawn from the density
fX,Y,W introduced in Assumption 29, and let Sn = {(Xi, Yi)}ni=1 be the cor-
responding set of input-output pairs. Given a random sample Sn = {(Xi, Yi)},

7Assumption 28 is slightly stronger, but much simpler than assumptions AII–AIII in Park et al.
(2000).
8Additional assumptions are needed for CRS efficiency estimators. See Kneip et al. (2015) for
additional discussion.
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the production set � can by estimated by the free-disposal hull of the sample
observations in Sn,

�̂FDH, n :=
⋃

(Xi ,Yi )∈Sn

{
(x, y) ∈ R

p+q
+ | x ≥ Xi, y ≤ Yi

}
, (3.1)

proposed by Deprins et al. (1984). Alternatively, � can be estimated by the convex
hull of �̂FDH of the free-disposal hull of the sample observations in Sn, i.e., by

�̂VRS,n := {(x, y) ∈ Rp+q | y ≤ Yω, x ≥ Xω, i′
nω = 1, ω ∈ Rn+

}
, (3.2)

where X = (X1, . . . , Xn

)
and Y = (Y1, . . . , Yn

)
are (p×n) and (q×n) matrices

of input and output vectors, respectively; in is an (n × 1) vector of ones, and ω is
a (n × 1) vector of weights. The estimator �̂VRS imposes convexity, but allows
for VRS. This is the VRS, DEA estimator of � proposed by Farrell (1957) and
popularized by Banker et al. (1984). The CRS, DEA estimator �̂CRS,n of � is
obtained by dropping the constraint i′

nω = 1 in (3.2). FDH, VRS, or CRS estimators
of θ(x, y | �), λ(x, y | �) and γ (x, y | �) defined in Sect. 2 are obtained by
substituting �̂FDH,n, �̂VRS,n, or �̂CRS,n for � in (2.3)–(2.5) (respectively). In
the case of VRS estimators, this results in

θ̂VRS(x, y | Sn) = min
θ,ω

{
θ | y ≤ Yω, θx ≥ Xω, i′

nω = 1, ω ∈ Rn+
}
, (3.3)

λ̂VRS(x, y | Sn) = max
λ,ω

{
λ | λy ≤ Yω, x ≥ Xω, i′

nω = 1, ω ∈ Rn+
}

(3.4)

and

γ̂VRS(x, y | Sn) = min
γ,ω

{
γ | γ−1y ≤ Yω, γ x ≥ Xω, i′

nω = 1, ω ∈ Rn+
}
.

(3.5)
The corresponding CRS estimators θ̂CRS(x, y | Sn), λ̂CRS(x, y | Sn) and
γ̂CRS(x, y | Sn) are obtained by dropping the constraint i′

nω in (3.3)–(3.5). The
estimators in (3.3)–(3.4) can be computed using linear programming methods, but
the hyperbolic estimator in (3.5) is a non-linear program. Nonetheless, estimates can
be computed easily using the numerical algorithm developed by Wilson (2011).

Substituting �̂FDH into (2.3)–(2.5) (respectively) leads to integer programming
problems, but the estimators can be computed using simple numerical methods. In
particular, let Dx,y denote the set indices of points in Sn dominating (x, y), i.e.,
Dx,y = {i | (Xi, Yi) ∈ Sn, Xi ≤ x, Yi ≥ y}. Then

θ̂FDH(x, y | Sn) = min
i∈Dx,y

max
j=1,...,p

(
X
j
i

xj

)

, (3.6)
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where for a vector a, aj denotes its j -th component. The output-oriented estimator
can be computed by solving

λFDH(x, y | Sn) = max
i∈D(x,y)

min
j=1,...,q

(
Y
j
i

yj

)

, (3.7)

and Wilson (2011) shows that the hyperbolic estimator can be computed by solving

γ̂FDH(x, y | Sn) = min
i=1, ..., n

⎛

⎝ max
j=1, ..., p
k=1, ..., q

(
x
j
i

xj
,

yk

yki

)⎞

⎠ . (3.8)

The statistical properties of these efficiency estimators are well-developed. Kneip
et al. (1998) derive the rate of convergence of the input-oriented VRS estimator,
while Kneip et al. (2008) derive its limiting distribution. Park et al. (2010) derive
the rate of convergence of the input-oriented CRS estimator and establish its limiting
distribution. Park et al. (2000) and Daouia et al. (2017) derive both the rate of
convergence and limiting distribution of the input-oriented FDH estimator. These
results extend trivially to the output orientation after straightforward (but perhaps
tedious) changes in notation. Wheelock and Wilson (2008) extend these results
to the hyperbolic FDH estimator, and Wilson (2011) extends the results to the
hyperbolic DEA estimator.

Kneip et al. (2015) derive moment properties of both the input-oriented FDH,
VRS and CRS estimators and establish central limit theorem (CLT) results for
mean input-oriented efficiency after showing that the usual CLT results (e.g., the
Lindeberg-Feller CLT) do not hold unless (p + q) < 3 in the DEA case, or unless
p + q < 2 in the FDH case.9 Kneip et al. (2015) use these CLT results to establish
asymptotically normal test statistics for testing differences in mean efficiency across
two groups, convexity versus non-convexity of�, and CRS versus VRS. All of these
results extend trivially (but again, tediously) to the output-oriented FDH, VRS, and
CRS estimators. Kneip et al. (2020) extend these results to the hyperbolic VRS and
CRS estimators. Moment results for the hyperbolic FDH estimator are provided by
the following result.

Theorem 31 Under Assumptions 21–25 and 28, there exists a constant 0 < C < ∞
such that for all i, j ∈ {1, . . . , n}, i �= j ,

E
(
γ̂FDH(Xi, Yi | Sn) − γ (Xi, Yi)

) = Cn
− 1

p+q + O

(
n

− 2
p+q (log n)

p+q+2
p+q

)
,

(3.9)

9In other words, standard CLT results hold in the FDH case if and only if p = 1 and output is fixed
and constant, or q = 1 and input is fixed and constant.
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VAR
(
γ̂FDH(Xi, Yi | Sn) − γ (Xi, Yi)

) = O
(
n

− 2
p+q (log n)

2
p+q

)
, (3.10)

and
∣∣∣COV

(
γ̂FDH(Xi, Yi | Sn) − γ (Xi, Yi), γ̂FDH(Xj , Yj | Sn) − γ (Xj , Yj )

)∣∣∣

= O

(
n

− p+q+1
p+q (log n)

p+q+1
p+q

)
= o

(
n−1
)
.

(3.11)

The value of the constant C depends on f and on the structure of the set D ⊂ �.

Proof Define the mapping φ : R(p+q)
+ �→ R

(p+q)
+ such that (x, y) �→ (x, y−1)

where y−1 is the vector whose elements are the inverses of the corresponding
elements of y. Denote z = φ(x, y). and note that φ is a continuous, one-to-one
transformation. Hence (x, y) = φ−1(z).

Clearly,

γ̂FDH(x, y) = min
i=1, ..., n

(

max
j=1, ..., (p+q)

(
z
j
i

zj

))

. (3.12)

This is identical in form to the input-oriented estimator in (3.3) in (x, y)-space
with (p + q) input dimensions and no output dimensions. Obviously, it makes no
difference whether the hyperbolic FDH estimator is computed in (x, y)-space or in
z-space. In either case, the resulting estimate is the same due to the fact that the
transformation φ preserves the ordering of the observations in Sn in each of the
(p + q) dimensions, and the estimator is computed in terms of distance to the free-
disposal hull of the sample observations in either case. Consequently, the results
hold using the arguments in the proof of Kneip et al. (2015, Theorem 3.3). �

Theorem 31 and the argument in the proof showing that the hyperbolic FDH
estimator can be viewed as an input-oriented FDH estimator in a transformed space
make clear that the CLT results of Kneip et al. (2015) as well as the results from
Kneip et al. (2016) on tests of differences in means, returns to scale, and convexity
of � carry over to the hyperbolic FDH estimator.

To summarize, in all cases, the FDH, VRS, and CRS estimators are consistent,
converge at rate nκ (where κ = 1/(p+q) for the FDH estimators, κ = 2/(p+q+1)
for the VRS estimators and κ = 2/(p + q) for the CRS estimators) and possess
non-degenerate limiting distributions under the appropriate set of assumptions. In
addition, the bias of each of the three estimators is of order O

(
n−κ

)
. Bootstrap

methods proposed by Kneip et al. (2008, 2011) and Simar and Wilson (2011a)
provide consistent inference about θ(x, y | �), λ(x, y | �) and γ (x, y | �)

for a fixed point (x, y) ∈ �, and Kneip et al. (2015) provide CLT results
enabling inference about the expected values of these measures over the random
variables (X, Y ). In addition, Theorem 3.1 of Simar and Wilson (2020) establishes
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consistency, rate of convergence, and the existence of a limiting distribution for the
FDH and VRS estimators of cost efficiency. Moment properties are established by
Theorems 3.2 and 3.3 of Simar and Wilson provides CLT results for cost efficiency.
Similar results for FDH and VRS estimators of input allocative efficiency are
provided by Theorems 3.6–3.8 of Simar and Wilson (2020).

4 Data and Variable Specification

Year-end data for 2006, 2008, . . ., 2016 are taken from the FR Y-9C Consolidated
Financial Statements for U.S. Bank Holding Companies. I specify p = 4 inputs
(borrowed funds, consisting of purchased funds and core deposits (X1); labor,
measured in full-time equivalents (X2); physical capital measured by the book value
of premises and fixed assets including capitalized leases (X3); and equity capital
(X4)) and q = 2 outputs (total loans and leases (Y1); and total securities (Y3)). In
addition, prices W1, W2, and W3 for the first three inputs are obtained by multiplying
the reciprocals of X1, X2, and X3 by the corresponding expenses incurred for
each of these inputs. However, the price of equity capital is unobservable.10

Consequently, I consider two input-output specifications, either with inputs X1,
X2, and X3 but without equity capital, or with all four inputs. In the former case,
technical, cost, and input allocative efficiencies are estimated, but in the latter case
only technical efficiency can be estimated. As will be seen below, the main results
are broadly similar across the two specifications.11 All dollar amounts are measured
in constant 2016 U.S. dollars. Both input-output specifications used here reflect the
view that banks borrow money from those with a surplus of cash, and lend to those
who desire more cash than they have. The input-output specifications are typical and
standard; e.g., see Wheelock and Wilson (2018).

I assume that all banks operate in the same production set � defined by (2.1),
and consequently face the same frontier in the five-dimensional input-output space.
Note, however, that banks may have very different business plans, and hence may
operate in different regions of the production set or under different parts of the
frontier. To give an example, Bank of America became one of the largest banks
operating in the USA in part by building an extensive retail network of branches,
often by acquiring other banks. By contrast, JP Morgan Chase grew its business

10Conceivably one could estimate the shadow price of equity capital, but for inefficient firms this
is problematic since the estimated shadow price would depend on the particular direction in which
an inefficient firm is projected onto the estimated frontier.
11Note that equity capital can arguably be viewed as a free source of financial capital for banks. In
each year 2006, 2008, . . ., 2016, the median value of X4/X1 varies between 0.1005 and 0.1144,
while the first quartiles range between 0.0802 and 0.0977 and the third quartiles range between
0.1229 and 0.1362. Hence equity capital typically amounts to around 10–11% of the financial
capital of banks in the sample. One should perhaps not expect large differences between results
from the two different specifications.
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in large part through business lending. The two banks apparently operated under
rather different business plans, and hence in different regions of the production set
�. More recently, Bank of America has shed many of its retail branches, perhaps
adopting at least in part or moving closer to the business plan of JP Morgan Chase.

The view here contrasts with studies that assume different frontiers for different
firms. Papers that do so invariably rely on fully parametric estimation methods, and
allowing different frontiers buys some flexibility. The model described in Sect. 2
is fully nonparametric, and hence quite flexible. The assumptions listed in Sect. 2
impose only minimal restrictions involving free-disposability, continuity, and some
smoothness of the frontier, etc. Note that there is no assumption of convexity of �,
which is tested below in Sect. 5.

The flexibility of the nonparametric model specified in Sect. 2 comes with a
price, however, in terms of the well-known “curse of dimensionality.” Wilson (2018)
discusses dimension reduction in the context of nonparametric efficiency estimation,
and presents several diagnostics to indicate when reducing dimensionality might be
advantageous. As discussed in Sect. 3, FDH, VRS, and CRS estimators converge
at rate nκ , where κ = 1/(p + q) for FDH estimators, κ = 2/(p + q + 1) for
VRS estimators and κ = 2/(p + q) for CRS estimators. With the (p + q) = 5
dimensional specification where equity capital is not included, the convergence
rates are n1/5, n1/3, and n2/5 for FDH, VRS, and CRS estimators, respectively.
Moreover, the number of observations in each period that I consider range from
533 to 943. The effective parametric sample size defined by Wilson (2018) is then,
in the worst case, 5332/5 ≈ 12 for FDH estimators, 5332/3 ≈ 66 for VRS estimators
and 5334/5 ≈ 152 for CRS estimators. In other words, with a sample size of 533,
FDH estimators should be expected to result in estimation error of the same order
one would achieve with a typical parametric estimator and only 12 observations.
With VRS (or CRS) estimators, one should expect estimation error of the same
order that 66 (or 152) observations would provide in a parametric model. Of course,
consistency of the VRS estimators requires convexity of �, and consistency of the
CRS estimators requires in addition CRS. It remains to be seen whether � satisfies
such restrictions.12

Wilson (2018) also suggests examining the ratios Rx , Ry of the largest eigenval-
ues of the moment matrices XX′, YY ′ to the corresponding sums of eigenvalues for
these moment matrices. Table 1 gives values of these ratios for each of the 6 periods
represented in the data. The smallest value (97.13 for Rx in 2008) is well above
the level needed for dimension reduction to be likely to reduce mean square error

12The situation becomes even worse if equity capital is included. Then the effective parametric
samples sizes for the FDH, VRS, and CRS estimators are 3, 36, and 66 (respectively) for n = 533.
Of course, the notion of effective parametric sample size defined by Wilson (2018) presupposes that
one has a correctly specified parametric model. As Robinson (1988) notes, the root-n parametric
convergence rate means that estimators converge quickly to the wrong thing in a mis-specified
model, leading the author to refer to root-n inconsistency.
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Table 1 Eigensystem
analysis by year

Without equity With equity

Year Rx Rx Ry

2006 97.65 97.37 97.14

2008 97.13 97.17 97.86

2010 97.62 98.04 97.75

2012 98.12 98.43 97.67

2014 97.32 97.70 98.41

2016 98.12 98.17 98.43

of either DEA or FDH estimates as indicated by the simulation results reported by
Wilson (2018). Consequently, I compute (1 × n) vectors of principal components
X∗ = E′

xX and Y ∗ = E′
yY whereEx andEy are the (p×1) and (q×1) eigenvectors

corresponding to the largest eigenvalues of the moment matrices XX′ and YY ′,
respectively. Given the values of Rx and Ry in Table 1, it is clear that these principal
components contain most of the independent information in the p = 3 (or p = 4)
inputs and q = 2 outputs specified above. Consistent with earlier observations,
Rx is little changed when equity is included or omitted. Except as noted below,
all estimation is done using the principal components X∗ and Y ∗. In this two-
dimensional setting, the convergence rates of the FDH, VRS, and CRS estimators
are n1/2, n2/3, and n1, respectively. The simulation results of Wilson (2018) provide
clear evidence that relying only on X∗ and Y ∗ for estimation likely results in less
estimation error than would be the case with five dimensions. This is true regardless
of whether the technology is homothetic, contrary to what is suggested by Färe and
Lovell (1988) and Olesen and Petersen (2016).

Table 2 gives summary statistics for the original input and output variables as
well as the input prices W1, W2, and W3, cost C = W1X1 +W2X2 +W3X3, and the
principal components X∗ (both with and without equity capital) and Y ∗. For each
variable, the table shows the minimum value, first quartile (Q1), median, mean,
third quartile (Q3), and the maximum value. Comparing differences between the
median and Q1 and between Q3 and the median for the input and output variables
reveals that the marginal distributions are heavily skewed to the right, reflecting the
skewness of the distribution of bank sizes.

Table 3 shows total assets of the five largest institutions in each of the 6 periods
represented in the data. The table reveals that the largest institutions grew larger
throughout the financial crisis. Total assets of the five largest institutions amount
to about 5.89 trillion dollars in 2006, and about 8.85 trillion dollars in 2016, for
an increase of about 50%. Moreover, the results in Table 3 indicate that growth
occurred throughout the financial crisis.
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Table 3 Total assets of five largest BHCs by year in thousands of 2016 US dollars

Name Total assets Name Total assets

2006 2012

Citigroup 1,884,318,000 JP Morgan Chase 2,359,141,000

Bank of America 1,463,685,485 Bank of America 2,212,004,452

JP Morgan Chase 1,351,520,000 Citigroup 1,864,660,000

Wachovia 707,121,000 Well Fargo 1,422,968,000

Well Fargo 481,996,000 Bank of NY Mellon 359,301,000

2008 2014

JP Morgan Chase 2,175,052,000 JP Morgan Chase 2,572,773,000

Citigroup 1,938,470,000 Bank of America 2,106,796,000

Bank of America 1,822,068,028 Citigroup 1,842,181,000

Well Fargo 1,309,639,000 Well Fargo 1,687,155,000

PNC FNCL SVC GROUP 291,092,876 US Bancorp 402,529,000

2010 2016

Bank of America 2,268,347,377 JP Morgan Chase 2,490,972,000

JP Morgan Chase 2,117,605,000 Bank of America 2,189,266,000

Citigroup 1,913,902,000 Well Fargo 1,930,115,000

Well Fargo 1,258,128,000 Citigroup 1,792,077,000

US Bancorp 307,786,000 US Bancorp 445,964,000

5 Empirical Results

Before turning to the main results, as a further check on whether dimension
reduction might be useful, I estimate hyperbolic efficiency in each year using first
the full-dimensional data with five or six dimensions (omitting or including equity
capital), and then using the reduced-dimension data with only two dimensions.
For either case, I use FDH, VRS, and CRS estimators. Table 4 shows counts of
the number of estimates equal to one in each of the resulting 6 scenarios. As
discussed by Wilson (2018), large proportions of efficiency estimates equal to one
are symptomatic of the need for dimension reduction.

The counts in Table 4 reveal show that the FDH estimator produces more
estimates equal to one than either of the DEA estimators, and that the VRS estimator
results in more estimates equal to one than the CRS estimator. This is to be
expected. More importantly, however, the FDH estimator, when used on the full-
dimensional data, results in 69.65 to 87.43% of observations in a given year having
estimates equal to one when equity capital is omitted (or 87.75–95.31% when
equity is included). The proportions for the DEA estimators are much smaller—
4.24 to 7.13% with the VRS estimator, and 1.59 to 3.19% for the CRS estimator
when equity capital is omitted (or 7.46–11.82% and 3.51–5.82%, respectively, when
equity is included). The large proportion of ones obtained with the FDH estimator is
clear evidence of too many dimensions for the given sample sizes (see Wilson 2018
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Table 4 Numbers of
observations with estimated
hyperbolic technical
efficiency equal to 1 in each
year

Without dim. With dim.

reduction reduction

Year n FDH VRS CRS FDH VRS CRS

Equity not included

2006 912 727 49 19 154 9 1

2008 881 674 56 24 157 8 1

2010 898 637 52 20 145 8 1

2012 906 631 41 15 137 7 1

2014 943 683 40 15 149 8 1

2016 533 466 38 17 139 7 1

Equity included

2006 912 834 68 32 201 12 1

2008 881 805 86 38 178 9 1

2010 898 791 101 45 166 10 1

2012 906 795 79 32 180 8 1

2014 943 847 91 45 190 10 1

2016 533 508 63 31 158 7 1

for discussion). Moreover, the large difference in the proportions obtained with the
FDH estimator and those obtained with the VRS estimator suggest that � may not
be convex.

With dimension reduction, Table 4 indicates that the FDH estimator results in
smaller proportions of estimates at one than when working in the full-dimensional
space. However, the proportions obtained with the FDH estimator are roughly 15–
20 times those obtained with the VRS estimator, again suggesting that perhaps �
is not convex. Overall, the results in Table 4 provide evidence (in addition to the
values of Rx and Ry and the effective parametric sample sizes discussed in Sect. 4)
that dimension reduction likely reduces estimation error relative to what would be
obtained working in the full, five-dimensional space. Hence all results that follow
are obtained using the principal components X∗ (with or without equity) and Y ∗
described above in Sect. 4.

The next question to consider is which estimator should be used. In increasing
order of restrictiveness lie the FDH, VRS, and CRS estimators. But this is also
the increasing order of the estimators’ rates of convergence. Using the principal
components X∗ and Y ∗, I test the null hypothesis of convexity of � versus the
alternative hypothesis that � is not convex using the test developed by Kneip et al.
(2016). This test involves randomly splitting the sample for a given year into two
subsamples of size n1 = �n/2� and n2 = n−n1, where �a� denotes the integer part
of a ∈ R. I do this by randomly ordering the observations using the randomization
algorithm described by Daraio et al. (2018) and then taking the first n1 observations
as the first subsample, and the remaining n2 observations as the second subsample.
The randomization algorithm of Daraio et al. provides a machine-independent,
pseudo-random sort of the observations and requires neither a random number
generator nor an initial seed, thereby ensuring (1) that the results of the tests can be
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easily replicated and (2) that the results are not sensitive to the choice of an initial
seed value. The first subsample is used to compute VRS estimates, and the second
is used to compute FDH estimates. The test statistic given in equation (50) of Kneip
et al. (2016) involves the difference of the means of these two sets of estimates, with
generalized jackknife estimates of biases and corresponding sample variances, and
is asymptotically normally distributed with mean zero and unit variance. The test
is a one-sided test since under the null the two means should be roughly similar,
but should diverge with increasing departures from the null resulting in the mean of
the FDH estimates exceeding the mean of the VRS estimates. The statistic given in
equation (50) of Kneip et al. (2016) is defined in terms of input-oriented estimators,
but extends trivially to output-oriented and hyperbolic estimators. The tests are one-
sided, and I define the statistics so that “large” positive values indicate rejection of
the null hypothesis.

Table 5 gives the results of the convexity tests for each year and for both
input-output specifications. The results reveal that neither of the three tests reject
convexity in 2012 when equity is omitted, but all three tests reject convexity
when equity is included. In 2006, omitting equity, convexity is soundly rejected
in the input orientation, and at better than 5% in the hyperbolic direction, although
convexity cannot be rejected in the output orientation. In all other cases, convexity
is overwhelmingly rejected when equity is omitted. When equity is included,
convexity is rejected in every case except for 2014 in the output orientation.

The results in Table 5 provide substantial evidence of non-convexity of � except
in 2012 when equity is omitted (but not when it is included). However, failure to
reject the null does not mean the null is true. Moreover, the FDH estimator is the
safer choice, as it is consistent regardless of whether � is convex, while the DEA

Table 5 Results of convexity tests (with dimension reduction, p = q = 1)

Input Output Hyperbolic

Year Statistic p-value Statistic p-value Statistic p-value

Equity not included

2006 5.8905 1.92 × 10−09 −1.9925 9.77 × 10−01 2.2268 1.30 × 10−02

2008 35.7747 1.37 × 10−280 31.6805 1.44 × 10−220 34.7482 7.37 × 10−265

2010 38.0250 1.11 × 10−316 36.6606 1.55 × 10−294 39.9191 9.27 × 10−349

2012 0.5653 2.86 × 10−01 0.3956 3.46 × 10−01 0.4351 3.32 × 10−01

2014 20.9089 2.22 × 10−97 8.5365 6.92 × 10−18 19.9513 7.30 × 10−89

2016 44.0234 1.30 × 10−423 18.1325 8.83 × 10−74 39.3904 1.20 × 10−339

Equity included

2006 12.5929 1.16 × 10−36 9.8292 4.21 × 10−23 11.9265 4.31 × 10−33

2008 10.1610 1.48 × 10−24 6.8068 4.99 × 10−12 10.1284 2.07 × 10−24

2010 8.6850 1.89 × 10−18 6.6418 1.55 × 10−11 7.7757 3.75 × 10−15

2012 7.5624 1.98 × 10−14 5.8638 2.26 × 10−09 6.5516 2.85 × 10−11

2014 6.9305 2.10 × 10−12 0.8491 1.98 × 10−01 5.7448 4.60 × 10−09

2016 7.4840 3.61 × 10−14 2.9769 1.46 × 10−03 6.6392 1.58 × 10−11
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estimators require convexity. In addition, the simulation results of Wilson (2018)
indicate that the FDH estimator often yields smaller mean square error than the
VRS estimator after dimension reduction, even if the underlying production set is
convex. Consequently, for the remainder of the analysis, I use the FDH estimators.

Table 6 presents summary statistics on the FDH technical efficiency estimates in
the input, output, and hyperbolic orientations for the case where equity is omitted.
Table 7 presents similar summary statistics for the case where equity is included. In
both tables, statistics for the reciprocals of the output-oriented estimates are shown
so that all the estimates represented in Tables 6 and 7 are weakly less than 1 in
order to facilitate comparisons. As might be expected, the hyperbolic estimates are
more conservative on average, with mean efficiencies ranging from 0.9392 to 0.9636
in Table 6 and from 0.9620 to 0.9758 in Table 7. By contrast, the means of the
input-oriented estimates range from 0.8845 to 0.9314 and from 0.9274 to 0.9538 in
Tables 6 and 7 (respectively), while the means of the output-oriented estimates range
from 0.8895 to 0.9280 and from 0.9268 to 0.9555 Tables 6 and 7 (respectively).
These difference are due to the geometry of the efficiency measures as discussed
by Wilson (2011). Nonetheless, overall patterns appear to be the same across the

Table 6 Summary statistics for FDH technical efficiency estimates (with dimension reduction,
equity not included, p = q = 1)

Year Min Q1 Median Mean Q3 Max

Input orientation

2006 0.4347 0.8892 0.9359 0.9198 0.9798 1.0000

2008 0.4507 0.8965 0.9426 0.9294 0.9830 1.0000

2010 0.4946 0.8625 0.9225 0.9074 0.9729 1.0000

2012 0.4049 0.8218 0.9069 0.8845 0.9715 1.0000

2014 0.1536 0.8645 0.9323 0.9116 0.9812 1.0000

2016 0.1580 0.9069 0.9608 0.9314 1.0000 1.0000

Output orientation

2006 0.3799 0.8831 0.9339 0.9136 0.9800 1.0000

2008 0.4325 0.8925 0.9419 0.9290 0.9814 1.0000

2010 0.4536 0.8560 0.9229 0.9051 0.9750 1.0000

2012 0.4660 0.8364 0.9118 0.8895 0.9729 1.0000

2014 0.1197 0.8749 0.9328 0.9146 0.9774 1.0000

2016 0.1742 0.8990 0.9609 0.9265 1.0000 1.0000

Hyperbolic orientation

2006 0.6678 0.9414 0.9679 0.9562 0.9906 1.0000

2008 0.6035 0.9463 0.9703 0.9636 0.9921 1.0000

2010 0.6549 0.9272 0.9611 0.9506 0.9876 1.0000

2012 0.6943 0.9061 0.9548 0.9392 0.9851 1.0000

2014 0.3574 0.9338 0.9640 0.9538 0.9891 1.0000

2016 0.4097 0.9536 0.9796 0.9620 1.0000 1.0000

Note: Statistics for the reciprocals of the output efficiency estimates are given to facilitate
comparison with the input-oriented and hyperbolic estimates
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Table 7 Summary statistics for FDH technical efficiency estimates (with dimension reduction,
equity included, p = q = 1)

Year Min Q1 Median Mean Q3 Max

Input orientation

2006 0.4398 0.9266 0.9631 0.9509 0.9954 1.0000

2008 0.3351 0.9232 0.9613 0.9469 0.9919 1.0000

2010 0.4793 0.8962 0.9439 0.9274 0.9879 1.0000

2012 0.3748 0.8979 0.9481 0.9285 0.9894 1.0000

2014 0.1141 0.9183 0.9576 0.9407 0.9914 1.0000

2016 0.1555 0.9375 0.9722 0.9538 1.0000 1.0000

Output orientation

2006 0.4519 0.9289 0.9623 0.9502 0.9950 1.0000

2008 0.3154 0.9263 0.9612 0.9484 0.9916 1.0000

2010 0.5042 0.8938 0.9454 0.9273 0.9858 1.0000

2012 0.3789 0.8938 0.9493 0.9268 0.9893 1.0000

2014 0.0866 0.9139 0.9556 0.9390 0.9914 1.0000

2016 0.1300 0.9404 0.9743 0.9555 1.0000 1.0000

Hyperbolic orientation

2006 0.6792 0.9644 0.9806 0.9744 0.9972 1.0000

2008 0.5780 0.9616 0.9801 0.9728 0.9966 1.0000

2010 0.7066 0.9463 0.9712 0.9620 0.9930 1.0000

2012 0.6229 0.9462 0.9743 0.9621 0.9948 1.0000

2014 0.2963 0.9574 0.9777 0.9686 0.9949 1.0000

2016 0.3682 0.9698 0.9865 0.9758 1.0000 1.0000

Note: Statistics for the reciprocals of the output efficiency estimates are given to facilitate
comparison with the input-oriented and hyperbolic estimates

three sets of estimates and the two input-output specifications, with mean efficiency
declining (though perhaps not monotonically) from 2006 to 2010 or 2012, after
which the means rise again.

I use the test described by Kneip et al. (2016, Section 3.1.1) to test for significant
differences between the means reported in Table 6 from one year to the next, as well
as from the first year to the last year. As discussed in Kneip et al. (2015, 2016),
even with the reduced dimensionality so that p+ q = 2, the usual CLT results (e.g.,
the Lindeberg-Feller CLT) do not hold for means of FDH efficiency estimates. As
with the convexity test discussed above, the test statistic given by equation (18) of
Kneip et al. (2016) involves not only the difference in sample means of efficiency
estimates in a pair of years, but also the corresponding difference in generalized
jackknife estimates of bias. The test extends trivially to the output orientation, and
due to Theorem 31 in Sect. 3 it also extends easily to the hyperbolic orientation. In
each case, the statistic used here is defined so that a positive value indicates that
efficiency increases from year 1 to year 2, while a negative value indicates that
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Table 8 Tests of differences in means for FDH technical efficiency estimates (with dimension
reduction, p = q = 1)

Input Output Hyperbolic

Period Statistic p-value Statistic p-value Statistic p-value

Equity not included

2006–2008 7.7153 1.21 × 10−14 9.1496 5.72 × 10−20 7.7992 6.23 × 10−15

2008–2010 − 8.7378 2.38 × 10−18 −10.0008 1.51 × 10−23 −10.4234 1.94 × 10−25

2010–2012 − 9.9423 2.73 × 10−23 − 8.6392 5.66 × 10−18 −11.5666 6.09 × 10−31

2012–2014 − 0.4688 6.39 × 10−01 − 0.3685 7.12 × 10−01 0.3247 7.45 × 10−01

2014–2016 14.2125 7.67 × 10−46 4.1348 3.55 × 10−05 13.5037 1.49 × 10−41

2006–2016 9.9013 4.11 × 10−23 3.6628 2.49 × 10−04 9.7570 1.72 × 10−22

Equity included

2006–2008 − 3.0179 2.55 × 10−03 − 2.1029 3.55 × 10−02 − 2.9811 2.87 × 10−03

2008–2010 − 5.5593 2.71 × 10−08 − 4.1699 3.05 × 10−05 − 4.5160 6.30 × 10−06

2010–2012 0.1097 9.13 × 10−01 − 0.3467 7.29 × 10−01 − 0.1998 8.42 × 10−01

2012–2014 2.8955 3.79 × 10−03 0.2732 7.85 × 10−01 3.1004 1.93 × 10−03

2014–2016 1.4422 1.49 × 10−01 − 0.5556 5.79 × 10−01 1.5738 1.16 × 10−01

2006–2016 − 0.1643 8.70 × 10−01 − 0.6141 5.39 × 10−01 0.4869 6.26 × 10−01

efficiency decreases from year 1 to year 2.13 As shown by Kneip et al. (2016), the
test statistics are asymptotically normal with zero mean and unit variance.

Note that the test of differences in means described by Kneip et al. (2016)
requires that the two sample means to be compared be computed from independent
samples. Here, where means from two periods are compared, many banks in the first
period also appear in the second period. Consequently, the observations in period
one are likely not independent of the observations in period two. Let n1 denote the
number of observations in period 1, and let n2 denote the number of observations
in period 2. Let n0 denote the number of observations for banks appearing in both
periods. Then clearly n0 ≤ min(n1, n2). to implement the test, I randomly sort the
n0 “common” observations, and then use the first �n0/2� of these together with the
n1 − n0 observations for banks represented in period one but not in period two to
compute the sample mean for period 1. Similarly, I compute the sample mean for
period 2 using the remaining n0 − �n0/2� common observations together with the
n2 − n0 observations for banks that appear only in period two. This ensures that
the sample means that are compared are independent, as required by Kneip et al.
(2016).

Results of the tests of significant differences in mean efficiency are given in
Table 8. With equity omitted, the tests provide clear evidence that mean efficiency
increased from 2006 to 2008, then declined from 2008 to 2010 and from 2010 to
2012. No significant change is found for 2012–2104, and significant increases are

13Consequently, the statistic I use for the input orientation is the negative of the statistic appearing
in equation (18) of Kneip et al. (2016).



254 P. W. Wilson

found for 2014–2016 as well as for 2006–2016. then increased from 2012 to 2014.
Except for 2012–2014, all of the p-values for two-sided tests are less than 0.001 in
all three orientations. When equity is included, the tests show evidence of declines in
mean efficiency in each of the three orientations for 2006–2008 and 2008–2010. For
2010–2012 the tests are insignificant, but two of the three orientations the tests find
evidence of increasing mean efficiency for 2012–2014. The results for 2014–2016
as well as 2006–2016 are insignificant. For both input-output specifications, there
is strong evidence of a decline in mean efficiency during 2008–2010, but otherwise
the evidence is mixed. But of course the period 2008–2010 encompasses the recent
financial crisis.

Estimates of cost efficiency and input allocative efficiency (with equity omitted,
as discussed in Sect. 4) are shown in Table 9. In both cases, both mean and median
efficiencies (as well as the first, second, and third quartiles) decline from 2006
to 2014, but rise from 2014 to 2016. Since estimation of cost efficiency involves
estimating an input-oriented efficiency measure in cost-output space as discussed
earlier in Sect. 3, the test statistic appearing in equation 18 of Kneip et al. (2016,
Section 3.1) can be used without modification due to the results in Simar and Wilson
(2020, Section 3.3) to test for significant changes in mean cost efficiency from
one period to the next. In addition, Simar and Wilson (2020, Section 3.4) establish
moment properties as well as CLT results for the FDH estimator of input allocative
efficiency, and hence straightforward reasoning permits construction of a statistic
analogous to the one in equation 18 of Kneip et al. (2016, Section 3.1) to test for
significant differences in mean input allocative efficiency from one period to the
next. As with the tests of differences in mean technical efficiency from one period

Table 9 Summary statistics for FDH cost and input allocative efficiency estimates (with dimen-
sion reduction, equity not included, p = q = 1)

Year Min Q1 Median Mean Q3 Max

Cost efficiency

2006 0.1168 0.6211 0.7167 0.7234 0.8193 1.0000

2008 0.0294 0.6148 0.7071 0.7168 0.8162 1.0000

2010 0.0600 0.4942 0.6033 0.6178 0.7272 1.0000

2012 0.0429 0.4112 0.5210 0.5443 0.6521 1.0000

2014 0.0217 0.3856 0.4786 0.5189 0.6125 1.0000

2016 0.0549 0.4115 0.5220 0.5613 0.6832 1.0000

Input allocative efficiency

2006 0.1286 0.6854 0.7785 0.7817 0.8847 1.0000

2008 0.0427 0.6667 0.7641 0.7662 0.8722 1.0000

2010 0.0804 0.5542 0.6633 0.6755 0.7947 1.0000

2012 0.0509 0.4815 0.5907 0.6092 0.7165 1.0000

2014 0.0549 0.4308 0.5262 0.5632 0.6650 1.0000

2016 0.0689 0.4359 0.5664 0.5981 0.7327 1.0000
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Table 10 Tests of differences in means for cost and input allocative efficiency estimates (with
dimension reduction, p = q = 1)

Cost eff. Input alloc. eff.

Period Statistic p-value Statistic p-value

2006–2008 − 2.7604 5.77 × 10−03 − 5.4293 5.66 × 10−08

2008–2010 − 9.5337 1.52 × 10−21 − 9.3787 6.68 × 10−21

2010–2012 −12.2249 2.29 × 10−34 −11.3125 1.14 × 10−29

2012–2014 2.8068 5.00 × 10−03 0.9022 3.67 × 10−01

2014–2016 0.9465 3.44 × 10−01 − 1.2896 1.97 × 10−01

2006–2016 −14.8843 4.17 × 10−50 −19.5096 9.10 × 10−85

to the next, independence is crucial for the tests here, and similar care must be taken
to split the observations for banks observed in both years as described above.

The outcomes of tests of significant changes in the means from one period to the
next, as well as from 2006 to 2016, are shown in Table 10. The change in mean cost
efficiency is not significant for 2014 to 2016, but is highly significant for all other
pairs of years. Changes in mean input allocative efficiency are significant except for
2012–2014 and 2014–2016. The tests provide strong evidence of decreasing mean
cost and input allocative efficiencies from 2006 through 2012. Over the entire period
from 2006 to 2016, there is strong evidence of declines in both efficiencies, with p-
values of order 10−50 and 10−85.

In order to measure productivity, note that with the dimension reduction to
(p + q) = 2 dimensions using the principal components X∗

i , Y ∗
i as described

in Sect. 4, (output) productivity can be measured by Y ∗
i /X

∗
i for firm i. Similarly,

cost productivity is measured by Y ∗
i /Ci , where Ci is the cost incurred by firm i as

defined in Sect. 4. Summary statistics for both of these measures are displayed in
Table 11 for each period. Note that the output-productivity measures and the cost-
productivity measures involve different units of measurement and different scales.
Consequently, one should resist temptation to compare values of one measure with
those of the other measure. Nonetheless, one can examine changes from one period
to the next, and it appears that both mean and median output productivity steadily
decreases over the period covered by the data, except for a small increase in mean
productivity from 2012 to 2014. By contrast, mean (and median) cost productivity
steadily increases from one period to the next.

Since both output productivity and cost productivity are measured by simple
ratios that do not involve estimators of efficiency, standard CLT results can be
used to test for significant changes in means from one period to the next or from
2006 to 2016.14 The results of these tests are shown in Table 12. The change in
output productivity from 2012 to 2014 is insignificant when equity is included,

14Since standard CLT results apply here, one can use sample covariance to account for dependence
across periods among observations for banks observed in both periods. There is, however, some
subtlety. Details are given in Appendix.
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Table 11 Summary statistics for productivity (with dimension reduction, p = q = 1)

Year Min Q1 Median Mean Q3 Max

Output productivity (equity not included)

2006 0.6109 1.3283 1.3694 1.3603 1.4079 2.0872

2008 0.5781 1.2725 1.3200 1.3067 1.3599 1.6662

2010 0.6475 1.1753 1.2506 1.2295 1.3034 1.6864

2012 0.5888 1.1333 1.2150 1.1875 1.2654 1.8825

2014 0.1571 1.1583 1.2143 1.1948 1.2566 1.5355

2016 0.1915 1.1612 1.2036 1.1815 1.2314 1.7778

Output productivity (equity included)

2006 0.6496 1.3756 1.4207 1.4053 1.4604 1.5821

2008 0.4581 1.3291 1.3777 1.3606 1.4159 1.5356

2010 0.6419 1.2367 1.3045 1.2812 1.3556 1.4862

2012 0.4862 1.1873 1.2591 1.2301 1.3069 1.4145

2014 0.1130 1.2043 1.2568 1.2344 1.2977 1.3828

2016 0.1685 1.2001 1.2428 1.2185 1.2722 1.3631

Cost productivity

2006 2.4912 14.1331 15.5515 15.4151 16.8372 39.6868

2008 0.8107 14.7619 16.3845 16.4718 17.8742 62.7839

2010 1.2506 18.0673 20.7045 21.3348 23.5244 390.2392

2012 2.2836 20.7653 24.0726 24.2964 27.4853 65.2999

2014 0.7103 23.5049 27.2784 27.5346 31.2966 66.4672

2016 0.8283 25.2607 28.8047 29.0594 32.8342 71.1294

Table 12 Tests of differences in means of productivity estimates (with dimension reduction, p =
q = 1)

Output prod. Cost prod.

Period Statistic p-value Statistic p-value

Equity not included

2006–2008 −18.3422 3.81 × 10−75 9.8930 4.47 × 10−23

2008–2010 −23.0461 1.61 × 10−117 11.0725 1.71 × 10−28

2010–2012 −13.2578 4.07 × 10−40 6.5999 4.11 × 10−11

2012–2014 2.4434 1.45 × 10−02 20.7864 5.74 × 10−96

2014–2016 − 3.6589 2.53 × 10−04 6.0032 1.93 × 10−09

2006–2016 −37.9799 3.85 × 10−631 43.5253 1.49 × 10−827

Equity included

2006–2008 −15.7000 1.51 × 10−55

2008–2010 −24.3466 6.30 × 10−131

2010–2012 −17.4127 6.61 × 10−68

2012–2014 1.4492 1.47 × 10−01

2014–2016 − 4.5213 6.15 × 10−06

2006–2016 −38.2847 3.04 × 10−641
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but significant and positive when equity is omitted. Otherwise output productivity
declines significantly for all pairs of years in Table 12. All of the other changes
in output productivity are negative and highly significant. All of the changes in
cost productivity are positive and highly significant. For both output and cost
productivity, the changes from 2006–2016 are numerically large and, to provide a
comparison, have p-values 31–227 orders of magnitude smaller than the reciprocal
of the Shannon number raised to a power of 5.15 Note that although mean cost
efficiency declined from 2006 to 2016 as seen in Table 10, mean cost productivity
increased over 2006–2016.

The results presented so far provide clear evidence of changes in mean efficiency
(i.e., technical efficiency, cost efficiency, and input allocative efficiency) as well
as both output and cost productivity over the years represented in the sample. To
gain further insight, I examine pairs of years 2006–2008, . . . , 2014–2016 as well as
2006–2016 and apply the test of “separability” developed by Daraio et al. (2018)
while treating time as a binary “environmental” variable (see Daraio et al. 2018 for
details). The separability test in this case amounts to a test of whether time affects
the frontier, i.e., whether the frontier changes over time.

Implementation of the separability test of Daraio et al. (2018) involves pooling
the data for two periods and then randomly shuffling the observations using the
randomization algorithm presented by Daraio et al. Then the pooled, randomly
shuffled observations are split into two subsamples of equal size (or, if the combined
number of observations is odd, one subsample will have one more observation
than the other). Using the first subsample, efficiency is estimated as usual for each
observation, ignoring which period a particular observation comes from, and the
sample mean of the efficiency estimate is computed. The second subsample is split
into the set of observations from period 1 and the set of observations from period 2.
Efficiency is estimated for the period-1 observations using only the observations
from period 1, while efficiency for the period-2 observations is estimated using
only those observations from period 2. Then the sample mean of these two sets
of efficiency estimates from the two sub-subsamples (of the second subsample) is
computed. The resulting test statistic involves differences in the two sample means
as well as differences in the corresponding generalized jackknife estimates of bias.
See Daraio et al. for discussion and details.

Results of the separability tests using input- and output-oriented as well as
hyperbolic FDH efficiency estimators are shown in Table 13. When equity is
omitted, separability is rejected in every case with p-values less than 0.01, and in
most cases well less than 0.01. When equity is included, separability is not rejected
for 2014–2016, nor for 2012–2014 when working in the output orientation. But in
all other cases when equity is included, separability is soundly rejected, with p-
values less than 0.01. The separability tests provide clear evidence of changes in the

15What has come to be known as the Shannon number, i.e., 10120, is a conservative lower bound
on the game-tree complexity of chess calculated by Shannon (1950).
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Table 13 Test for separability with respect to time (with dimension reduction; p = q = 1)

Input Output Hyperbolic

Period Statistic p-value Statistic p-value Statistic p-value

Equity not included

2006–2008 14.0622 3.24 × 10−45 16.7043 6.10 × 10−63 16.8664 3.98 × 10−64

2008–2010 3.2325 6.13 × 10−04 2.8191 2.41 × 10−03 2.8708 2.05 × 10−03

2010–2012 19.6520 2.78 × 10−86 15.1182 6.14 × 10−52 17.5059 6.46 × 10−69

2012–2014 9.4825 1.24 × 10−21 6.0759 6.17 × 10−10 10.0947 2.92 × 10−24

2014–2016 9.3826 3.22 × 10−21 3.4992 2.33 × 10−04 7.2694 1.80 × 10−13

2006–2016 11.8802 7.50 × 10−33 6.9104 2.42 × 10−12 10.4223 9.81 × 10−26

Equity included

2006–2008 6.1698 3.42 × 10−10 3.3137 4.60 × 10−04 5.2119 9.34 × 10−08

2008–2010 4.4977 3.43 × 10−06 4.2561 1.04 × 10−05 5.6692 7.17 × 10−09

2010–2012 6.1936 2.94 × 10−10 4.3509 6.78 × 10−06 5.9456 1.38 × 10−09

2012–2014 4.2779 9.43 × 10−06 0.2516 4.01 × 10−01 2.7496 2.98 × 10−03

2014–2016 0.4843 3.14 × 10−01 − 1.2833 9.00 × 10−01 − 0.4653 6.79 × 10−01

2006–2016 11.8802 7.50 × 10−33 6.9104 2.42 × 10−12 10.4223 9.81 × 10−26

technology between pairs of years (except perhaps 2014–2016) as well as over the
entire period 2006–2016 covered by the data.16

In order to learn something about the direction in which technology may have
shifted, I adapt new results from Simar and Wilson (2019) who provide CLT
results for components of productivity changed measured by Malmquist indices.
Simar and Wilson define the Malmquist index in terms of hyperbolic distances,
and then consider various decompositions that can be used to identify components
of productivity change. In particular, let �t represent the production set at time
t ∈ {1, 2} and let Zt

i = (Xt
i , Y

t
i ) denote the i-th firm’s observed input-output pair

at time t . Then technical change relative to firm i’s position at times 1 and 2 is
measured by

Ti =
[
γ (Z2

i | �1)

γ (Z2
i | �2)

× γ (Z1
i | �1)

γ (Z1
i | �2)

]1/2

. (5.1)

16A number of papers in the banking literature have regressed DEA efficiency estimates on
some explanatory variables including categorical variables to capture differences in regulatory
environments across countries. As far as I know, none of these tests the separability condition
discussed by Simar and Wilson (2007, 2011b). Here, banks face the same regulatory environment
at a given point in time, but the regulatory environment changes with passage of the Dodd-Frank
Act in 2010. Rejection of separability with respect to time amounts to a rejection with respect
to the different regulatory regimes before and after 2010. Hence my results cast some doubt on
results from cross-country analyses that attempt to control for differing regulatory regimes across
countries in second-stage regressions.
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Table 14 FDH estimates of
technical-change index (with
dimension reduction;
p = q = 1)

Period T̂ 1,2 p-value # obs

Equity not included

2006–2008 0.9713 8.04 × 10−207 796

2008–2010 0.9825 2.41 × 10−72 761

2010–2012 0.9953 3.13 × 10−12 800

2012–2013 0.9891 3.02 × 10−84 829

2014–2016 0.9940 1.87 × 10−02 513

2006–2016 0.9173 4.33 × 10−284 400

Equity included

2006–2008 0.9849 2.48 × 10−142 796

2008–2010 0.9812 2.80 × 10−624 761

2010–2012 0.9802 6.26 × 10−915 800

2012–2013 0.9948 3.57 × 10−71 829

2014–2016 0.9874 4.88 × 10−59 513

2006–2016 0.9293 2.16 × 10−1026 400

This is the hyperbolic analog of the output-oriented technical-change index that
appears in the decompositions of Ray and Desli (1997), Gilbert and Wilson (1998),
and Wheelock and Wilson (1999). The first ratio inside the brackets in (5.1)
measures technical change relative to firm i’s position at time 2, while the second
ratio measures technical change relative to the firm’s position at time 1. The measure
Ti is the geometric mean of these two ratios. Values greater than 1 indicate an
upward shift in the technology, while values less than 1 indicate a downward shift
(a value of 1 indicates no change from time 1 to time 2).

Estimates T̂i are obtained by substituting the hyperbolic FDH estimator for each
term in (5.1). Simar and Wilson (2019) develop CLT results for geometric means
T̂ 1,2 of Ti over firms i = 1, . . . , n, for periods 1 and 2, and these results can be
used to test significant differences of the geometric means from 1. The theoretical
results obtained by Simar and Wilson (2019) are based on estimates of Ti using DEA
estimators, but the results for the geometric mean of Ti extend trivially to FDH
estimators, but with the slower convergence rate of the FDH estimator. Table 14
shows values of the geometric means T̂ 1,2 for successive pairs of periods as well as
for 2006–2016 and the corresponding p-values for tests of differences from 1. The
last column of Table 14 gives the number of banks observed in both periods under
consideration, and for which Ti can be estimated in each pair of years. All of the
geometric means are less than one, suggesting downward shifts of the technology
in each pair of years. The p-value for 2014–2016 is 0.0187 when equity is omitted,
and all of the other p-values are well less than 0.01, with a number of p-values well
less than the reciprocal of the Shannon number mentioned above. Consequently, the
data provide clear and convincing evidence of downward shifts in the technology
throughout the period from 2006 through 2016.
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6 Summary and Conclusions

Among studies that use either FDH or DEA estimators to estimate efficiency and
benchmark the performances of firms, the vast majority use VRS, DEA estimators
which impose convexity on the production set. The test of convexity versus non-
convexity of � developed by Kneip et al. (2016) allows researchers to let the data
tell them whether DEA estimators are appropriate in a given setting. Here, in the
context of banks, convexity is strongly rejected. This is consistent with the results
of Wheelock and Wilson (2012, 2018), who find evidence of increasing returns to
scale among even the largest banks operating in the USA.

Because I reject convexity of the production set, I use FDH estimators which
remain consistent when � is not convex, whereas DEA estimators do not. I
exploit collinearity in the data to reduce inputs and outputs to their first principal
components, resulting in a two-dimensional problem. Results from Wilson (2018)
indicate that this substantially reduces mean square error of efficiency estimates.
Moreover, the simulation evidence provided by Wilson (2018) suggests that when
production sets are convex, FDH estimates often have less mean square error than
DEA estimators after dimension reduction.

By rigorously comparing estimates and testing differences across the years
represented in my data, I find that technical efficiency declined during the financial
crisis, but recovered afterward. By 2016, technical efficiency is significantly better
than in 2006 when input-oriented and hyperbolic estimators are used. However, I
also find that both cost and input allocative efficiency declined significantly from
2006 to 2016, and that the frontier shifted downward throughout the financial crisis
and from 2006 to 2016. At the same time, output productivity declined from 2006
to 2016, while cost productivity increased from 2006 to 2016. These results are
broadly consistent with the hypothesized effects of the Dodd-Frank Act discussed
near the end of Sect. 1.

It is well known that despite unprecedented low interest rates, banks reduced their
loan outputs through the financial crisis and beyond. My finding regarding output
productivity is consistent with this. The result that cost productivity increased,
together with the reduction in output, is consistent with the well-known observation
that many banks ruthlessly cut costs during and after the crisis. However, the finding
that cost inefficiency worsened suggests that banks could have cut costs even more.

Appendix: Technical Details

As discussed in Sect. 5, with dimension reduction productivity can be measured
by simple ratios. In addition, since neither FDH nor DEA estimators are involved,
the usual Lindeberg-Feller CLT can be used to make inference about differences in
mean productivity between two periods. However, the samples in each period are
unbalanced, and care must be taken to properly account for covariance.
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Suppose banks are observed in two periods t ∈ {1, 2}. Let nt be the number
of banks observed only in period t , and let n0 be the number of banks observed
in both periods (here, n1 and n2 are defined differently than in the discussion about
testing differences in mean technical efficiency in Sect. 5). Then the total numbers of
observations in periods 1 and 2 are given by (n1 +n0) and (n0 +n1). Let Pjti denote
productivity (measured by output/input or output/cost after reducing dimensionality
to p = q = 1) for bank i in group j ∈ {0, 1, 2} in period t ∈ {1 2}. Group 0
consists of banks observed in both periods, while groups 1 and 2 consist of banks
observed only in periods 1 and 2 (respectively). We have sample means μ̂1, μ̂2 for
periods 1 and 2, with

μ̂t = (n0 + nt )
−1

[
n1∑

i=1

P11i +
n0∑

i=1

P01i

]

(6.1)

for t = 1 or 2.
Due to Assumption 24, the P s are independent within a given period, but may be

dependent across periods. Hence any covariance between μ̂1 and μ̂2 can result only
from the n0 banks observed in both periods. Let

σ 2
t := VAR(P11i ) = VAR(P01i ) (6.2)

and

σ12 := COV(P01i , P02i ) (6.3)

for all i. Then

VAR(μ̂2 − μ̂1) = σ 2
1

n1 + n0
+ σ 2

2

n0 + n2
− 2n0σ12

(n1 + n0)(n0 + n2)
. (6.4)

The variances σ 2
t and covariance σ12 can be estimated by the corresponding sample

moments, i.e.,

σ̂ 2
t = (n0 + n2)

−1

[
n0∑

i=1

(P0t i − μ̂t )
2 +

nt∑

i=1

(Ptti − μ̂t )
2

]

(6.5)

for t = 1 or 2 and

σ̂12 = n−1
0

[
n0∑

i=1

(P01i − μ̂1)(P02i − μ̂2)

]

. (6.6)

Then the test statistic
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τ̂ := μ̂2 − μ̂1
[

σ̂ 2
1

(n1+n0)
+ σ̂ 2

2
(n0+n2)

− 2n0σ̂12
(n1+n0)(n0+n2)

]1/2
d−→ N(0, 1) (6.7)

as (n1 +n0 → ∞ and (n0 +n2) → ∞ by the Lindeberg-Levy CLT. For a two-sided
test of size α, the null hypothesis H0 : μ1 = μ2 is rejected in favor of H1 : μ1 �= μ2
whenever |̂τ | > �−1(1− α

2 ) where �−1(·) is the standard normal quantile function.

Acknowledgments An early version of this work was presented at the North American Produc-
tivity Workshop, University of Miami Business School, Miami, Florida, 12–15 June 2018. I thank
conference participants and Shirong Zhao for helpful comments.

References

Acharya, V. V., & Richardson, M. (2012). Implications of the Dodd-Frank act. Annual Review of
Financial Economics, 4, 1–38.

Baba, N., Packer, F., & Nagano, T. (2008). The spillover of money market turbulence to FX swap
and cross-currency swap markets. BIS Quarterly Review, 73–86.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and
scale inefficiencies in data envelopment analysis. Management Science, 30, 1078–1092.

Bernanke, B. S. (2005). Remarks by Governor Ben s. Bernanke: The global saving glut and
the U.S. current account deficit, Board of Governors of the Federal Reserve System. Speech
delivered April 14, http://www.federalreserve.gov.boarddocs/speeches/2005/20050414/default.
htm.

Bernanke, B. S. (2013). The crisis as a classic financial panic, Board of Governors of the
Federal Reserve System. Speech delivered November 8 at the Fourteenth Jacques Polak Annual
Research Conference, Washington, D.C., https://www.federalreserve.gov/newsevents/speech/
bernanke20131108a.htm.

Bernanke, B. S. (2018). The real effects of the financial crisis. Brookings Papers on Economic
Activity Conference Drafts, September 13–14.

Bolt, W., de Haan, L., Hoeberichts, M., van Oordt, M. R. C., & Swank, J. (2012). Bank profitability
during recessions. Journal of Banking and Finance, 36, 2552–2564.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University
Press.

Daouia, A., Simar, L., & Wilson, P. W. (2017). Measuring firm performance using nonparametric
quantile-type distances. Econometric Reviews, 36, 156–181.

Daraio, C., Simar, L., & Wilson, P. W. (2018). Central limit theorems for conditional efficiency
measures and tests of the ‘separability condition’ in non-parametric, two-stage models of
production. The Econometrics Journal, 21, 170–191.

Deprins, D., Simar, L., & Tulkens, H. (1984). Measuring labor inefficiency in post offices. In
M. M. P. Pestieau & H. Tulkens (Eds.), The performance of public enterprises: concepts and
measurements (pp. 243–267). Amsterdam: North-Holland.

Diamond, D. W., & Rajan, R. G. (2001). Liquidity risk, liquidity creation, and financial fragility:
A theory of banking. Journal of Political Economy, 109, 287–327.

Färe, R. (1988). Fundamentals of production theory. Berlin: Springer.
Färe, R., Grosskopf, S., & Lovell, C. A. K. (1985). The measurement of efficiency of production.

Boston: Kluwer-Nijhoff Publishing.
Färe, R., & Lovell, C. A. K. (1988). Aggregation and efficiency. In: W. Eichhorn (Ed.),

Measurement in economics (pp. 639–647). Heidelberg: Physica-Verlag.

http://www.federalreserve.gov.boarddocs/speeches/2005/20050414/default.htm
http://www.federalreserve.gov.boarddocs/speeches/2005/20050414/default.htm
https://www.federalreserve.gov/newsevents/speech/bernanke20131108a.htm
https://www.federalreserve.gov/newsevents/speech/bernanke20131108a.htm


U.S. Banking in the Post-Crisis Era: New Results from New Methods 263

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical
Society A, 120, 253–281.

Gilbert, A., & Wilson, P. W. (1998). Effects of deregulation on the productivity of Korean banks.
Journal of Economics and Business, 50, 133–155.

Gorton, G. (2018). Financial crises. Annual Review of Financial Economics, 10, 43–58.
Gorton, G., Lewellen, S., & Metrick, A. (2012). The safe-asset share. American Economic Review,

102, 101–106.
Hördahl, P., & King, M. (2008). Developments in repo markets during the financial turmoil. BIS

Quarterly Review, 37–53.
Kashyap, A. K., Rajan, R. G., & Stein, J. C. (2008). Rethinking capital regulation, in Maintaining

Stability in a Changing Financial System, Kansas City: Federal Reserve Bank of Kansas City,
pp. 431–471. Economic Policy Symposium Proceedings.

Kneip, A., Park, B., & Simar, L. (1998). A note on the convergence of nonparametric DEA
efficiency measures. Econometric Theory, 14, 783–793.

Kneip, A., Simar, L., & Wilson, P. W. (2008). Asymptotics and consistent bootstraps for DEA
estimators in non-parametric frontier models. Econometric Theory, 24, 1663–1697.

Kneip, A., Simar, L., & Wilson, P. W. (2011). A computationally efficient, consistent bootstrap for
inference with non-parametric DEA estimators. Computational Economics, 38, 483–515.

Kneip, A., Simar, L., & Wilson, P. W. (2015). When bias kills the variance: Central limit theorems
for DEA and FDH efficiency scores. Econometric Theory, 31, 394–422.

Kneip, A., Simar, L., & Wilson, P. W. (2016). Testing hypotheses in nonparametric models of
production. Journal of Business and Economic Statistics, 34, 435–456.

Kneip, A., Simar, L., & Wilson, P. W. (2020). Inference in dynamic, nonparametric models of
production: Central limit theorems for Malmquist indices. Forthcoming.

Olesen, O. B., & Petersen, N. C. (2016). Stochastic data envelopment analysis—A review.
European Journal of Operational Research, 251, 2–21.

Park, B. U., Jeong, S.-O., & Simar, L. (2010). Asymptotic distribution of conical-hull estimators
of directional edges. Annals of Statistics, 38, 1320–1340.

Park, B. U., Simar, L., & Weiner, C. (2000). FDH efficiency scores from a stochastic point of view.
Econometric Theory, 16, 855–877.

Patel, S. S. (2014). Citi will have almost 30,000 employees in compliance by year-
end. July 14, 2014, https://blogs.marketwatch.com/thetell/2014/07/14/citi-will-have-almost-
30000-employees-in-compliance-by-year-end/.

Ray, S. C., & Desli, E. (1997). Productivity growth, technical progress, and efficiency change in
industrialized countries: Comment. American Economic Review, 87, 1033–1039.

Robinson, P. M. (1988). Root-n-consistent semiparametric regression. Econometrica, 56, 931–954.
Shannon, C. E. (1950) Programming a computer for playing chess. The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science, 41, 256–275.
Shephard, R. W. (1970) Theory of cost and production functions. Princeton: Princeton University

Press.
Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semi-parametric models

of productive efficiency, Journal of Econometrics, 136, 31–64.
Simar, L., & Wilson, P. W. (2011a). Inference by the m out of n bootstrap in nonparametric frontier

models, Journal of Productivity Analysis, 36, 33–53.
Simar, L., & Wilson, P. W. (2011b). Two-Stage DEA: Caveat emptor. Journal of Productivity

Analysis, 36, 205–218.
Simar, L., & Wilson, P. W. (2019). Central limit theorems and inference for sources of productivity

change measured by nonparametric Malmquist indices. European Journal of Operational
Research, 277, 756–769.

Simar, L., & Wilson, P. W. (2020). Technical, allocative and overall efficiency: Estimation and
inference. European Journal of Operational Research, 282, 1164–1176.

U.S. Congress. (2010). Dodd-Frank Wall Street Reform and Consumer Protection Act. Wash-
ington, DC: GPO. http://www.gpo.gov/fdsys/pkg/PLAW-111publ203/pdf/PLAW-111publ203.
pdf.

https://blogs.marketwatch.com/thetell/2014/07/14/citi-will-have-almost-30000-employees-in-compliance-by-year-end/
https://blogs.marketwatch.com/thetell/2014/07/14/citi-will-have-almost-30000-employees-in-compliance-by-year-end/
http://www.gpo.gov/fdsys/pkg/PLAW-111publ203/pdf/PLAW-111publ203.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-111publ203/pdf/PLAW-111publ203.pdf


264 P. W. Wilson

Wheelock, D. C., & Wilson, P. W. (1999). Technical progress, inefficiency, and productivity change
in U. S. banking, 1984–1993. Journal of Money, Credit, and Banking, 31, 212–234.

Wheelock, D. C., & Wilson, P. W. (2008). Non-parametric, unconditional quantile estimation for
efficiency analysis with an application to Federal Reserve check processing operations. Journal
of Econometrics, 145, 209–225.

Wheelock, D. C., & Wilson, P. W. (2012). Do large banks have lower costs? New estimates of
returns to scale for U.S. banks. Journal of Money, Credit, and Banking, 44, 171–199.

Wheelock, D. C., & Wilson, P. W. (2018). The evolution of scale-economies in U.S. banking.
Journal of Applied Econometrics, 33, 16–28.

Wilson, P. W. (2011). Asymptotic properties of some non-parametric hyperbolic efficiency estima-
tors. In I. Van Keilegom & P. W. Wilson (Eds.) Exploring research frontiers in contemporary
statistics and econometrics, pp. 115–150. Berlin: Springer.

Wilson, P. W. (2018). Dimension reduction in nonparametric models of production. European
Journal of Operational Research, 267, 349–367.



Room to Move: Why Some Industries
Drive the Trade-Specialization Nexus and
Others Do Not

Jaap W. B. Bos and Lu Zhang

Abstract We investigate which industries drive the trade-specialization nexus in
the European Union over the 1997–2006 period. We study the impact of the
reallocation of resources within industries. We find that the true drivers of the trade-
specialization nexus are productive firms, who benefit from the increase in trade
openness by appropriating resources from less productive firms, coinciding with the
expansion of the industry in which they operate, at the expense of other industries,
in which there is no room to make such moves.

Keywords Trade barriers · Latent class model · Gravity model

1 Introduction

Over the past two decades, economic integration, mirrored by a rapid growth in
international trade, has had a strong impact on specialization in the European
Union (EU). During the 1997 to 2006 period, all EU14 countries except Portugal
have experienced a significant increase in industrial specialization. Particularly
large increases are observed in United Kingdom, Austria, and France, where Gini
coefficients have risen by 14.5, 10.1, and 9.8%, respectively.1

1The Gini coefficient in Portugal has decreased by 5.6%.
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The economic literature has a long tradition of analyzing what drives the
relationship between trade and specialization. Classical trade theories predict that
trade integration will result in increasing specialization in sectors where a country
has a comparative advantage due to cross-country differences in technology or factor
endowment (Ricardo 1817; Ohlin 1933).2 New trade theories stress the importance
of increasing returns to scale and product differentiation in facilitating intra-industry
trade and predict that international trade will induce a shift of increasing-return
industries towards countries with good market access, i.e., the core (Krugman 1979,
1980). New economic geography theories emphasize agglomeration forces and
suggest a non-monotonic relationship between trade liberalization and location of
economic activities, depending on the level of trade costs (Krugman 1991; Venables
1996).3

Much less is known about who drives the relationship between trade and
specialization. The reduction of trade barriers has caused major restructuring across
industries and countries. The process of reallocation of production within and across
sectors is likely to be a key determinant of aggregate productivity growth. The
relative importance of these two types of reallocation depends on asset specificity. In
particular, a growing literature has demonstrated the importance of within-industry
reallocation in explaining industry growth. This phenomenon is often motived by
the existence of significant and persistent gaps in productivity within industries
(Bartelsman et al. 2013). Not all firms grow. Some firms may come out on top,
whereas others lose market shares and eventually exit the market. Since the seminal
work by Schumpeter (1942), these effects have been well-documented empirically.
A key message from this literature is that firm-level dynamics are crucial to
understand industry-level outcomes.

Recent work by Jones (2013) and Baqaee and Farhi (2017) has shown that
a misallocation of resources can explain large differences in growth outcomes.
Most of these misallocations occur within industries (Calligaris et al. 2017), and
they are often related to the productivity of firms and establishments within these
industries, thereby affecting aggregate output and productivity (Bhattacharya et al.
2013; Restuccia and Rogerson 2008, 2013; Hsieh and Klenow 2009). Indeed, the
importance of misallocation has resulted in attempts to endogenize the development
of firm-level productivity (Gabler and Poschke 2013). For the purpose of this
paper, it is not the source of misallocation that we are interested in, but rather the
subsequent reallocation that can help explain industry growth (Foster et al. 2008).

2Most neoclassical trade theories, with reference to the theory of comparative advantage, predict
a positive relationship between trade liberalization and industrial specialization. For example,
Dornbusch et al. (1977) demonstrate that falling trade costs result in a narrowing non-traded sector;
it is therefore cheaper to import goods than to produce them domestically. Thus resources are
freed up and used more intensely in fewer activities. The empirical studies are numerous. See for
example, Sapir (1996), Brülhart (2001), Longhi et al. (2003) and Riet et al. (2004).
3Lower trade costs result in the agglomeration of economic activities into fewer locations.
However, a further reduction in trade costs leads to a geographical dispersion of activities when
labor mobility across sectors exhibits finite costs.
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We demonstrate that the removal of trade barriers can in fact provide the impetus
for reallocation within industries, but only if there was enough misallocation—and
concomitant productivity differences—prior to the removal. The result then is an
increase in the growth of industries where these circumstances indeed exist, but not
in other industries, thus changing the trade-specialization relationship.4

We are further motivated by a growing body of empirical literature that docu-
ments the intra-industry reallocation process following trade openness. A substantial
part of the effect of international trade is channeled into the reallocation of resources
within the industry, which in turn shapes the industry aggregates (Tybout and
Westbrook 1995; Pavcnik 2002; Trefler 2004; Bernard et al. 2006; Eslava et al.
2009). Pavcnik (2002) finds that trade liberalization in Chile during the 1979–
1986 period has had substantial reallocation and productivity effects. Trefler (2004)
examines the reallocation and productivity effect of the Canada–U.S. Free Trade
Agreement (FTA) on Canadian industries, and finds that industries with the deepest
Canadian tariff reduction experienced a reduction in employment by 12% plus
a 15% increase in industry labor productivity due to the contraction of low-
productivity plants. For the USA, Bernard et al. (2006) demonstrate that productivity
gains are most pronounced in industries where trade barriers have declined the
most.5

In our paper, the true drivers of the trade-specialization nexus are productive
firms, who benefit from the increase in trade openness by appropriating resources
from less productive firms, thus causing the industry in which they operate to
expand, at the expense of other industries, in which there is no room to make
such moves. Wacziarg and Wallack (2004) find that reallocation between industries
is either not affected or negatively affected by trade liberalization. We argue
and find, however, that the potential for reallocation within industries determines
whether there is a trade-specialization nexus; in industries with little potential for
reallocation, increased trade openness has no effect, or a negative effect, on that
industry’s share of total value added. As a result, the trade-specialization nexus is
driven by a small number of industries, which nevertheless have a significant impact
on concentration patterns.

In this paper, we investigate which industries are driving the trade-specialization
nexus. We distinguish between industries that do and not drive the nexus using
a conditional latent class model (Bos et al. 2010). We argue that industries need
“room to move” in order for increasing trade openness to translate into increased
specialization. We condition the potential for reallocation (a latent variable) on the
within-industry spread in efficiency and scale elasticity, at the start of our sample
period. Our latent class setup avoids the disaggregation bias that would otherwise
exist when we test the trade-specialization nexus at the industry level. Furthermore,
by allowing industries to switch classes over time, we enable our model to help

4In which direction this change occurs is not obvious, ex ante. Segerstrom and Sugita (2015) show
that productivity may in fact increase more strongly in non-liberalized industries.
5For a comprehensive survey, see Tybout (2000).
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explain the slow-down in the specialization trend. And we demonstrate that under
certain conditions, we can infer quasi-treatment effects from our latent class
estimations. To the best of our knowledge, our study is the first contribution to the
literature on how firm-level dynamics affect the trade-specialization nexus, based
on a unique sample of EU manufacturing firms.

To analyze who drives the trade-specialization nexus, we use a panel data set con-
sisting of 390,350 manufacturing firms spanning 18 industries in 14 EU countries
over the period 1997–2006. After we estimate firm-level economies of scale and
technical efficiency levels for each industry, we use the initial dispersion in both
productivity measures to endogenously sort each industry into one of two classes.
We observe a positive, inverted-U shape trade-specialization relationship for the
high-potential class; the same relationship is insignificant or slightly negative for the
low-potential class. Our analysis is further supported by a detailed instrumentation
strategy and an elaborate robustness analysis. In addition, we verify the relevance
of our approach by demonstrating how closely our predicted specialization patterns
match the actual specialization that took place in the EU over our sample period.

The remainder of the paper proceeds as follows. Section 2 presents the models
used and the econometric strategy. Section 3 presents the data and the measures
proposed. Section 4 discusses the results. Finally, Sect. 5 summarizes and concludes.

2 Methodology

In this section we first present a conditional latent class framework to examine
the heterogeneous effect of trade integration on specialization, conditional on
the within-industry potential for reallocation. Next, we discuss methodological
concerns and our identification strategy.

2.1 Empirical Framework

In order to find out who drives the trade-specialization nexus, we need to estimate
the nexus in a way that allows us to distinguish between those industries that can
use trade liberalization to drive the increase in concentration of output and those that
cannot.

We start with a straightforward parametrization that allows for a non-linear effect
in the spirit of new economic geography theories (Krugman 1991; Venables 1996):

Siot = β0 + β1Tiot + β2T
2
iot + β ′Ziot + εiot , (2.1)

where Siot is a measure describing the extent to which a country o at time t

specializes in industry i, Tiot is that industry’s trade openness at the same time,
β ′ is a 1 × n parameter vector, and Ziot is a n × 1 vector of control variables.
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But can we use Eq. (2.1) to test the trade-specialization nexus? After all, whereas
trade openness has increased for most industries in most countries, if a country
specializes in some industries, the share of output produced by other industries is
reduced. As a result, the trade-specialization nexus implies that ∂ ln Siot

∂lnTiot
is positive

for some industries (differing from country to country, and possibly also over time)
and zero or negative for other industries (idem).

Since (Melitz 2003), we know that industries that grow after an increase in trade
openness largely do so through an intra-industry reallocation of resources. Melitz
(2003) also teaches us that whereas actual reallocation is expected to be endogenous
to trade openness, the potential for reallocation matters, as trade openness can act
as the catalyst that facilitates the realization of this potential, as reflected in changes
in specialization.

Consequently, we expect the trade-specialization nexus to be driven by those
industries that have a large enough potential to reallocate resources, thus benefiting
from the increased trade openness. Let us call these industries high-potential (HP )
industries, as opposed to low-potential (LP ) industries. Formally, for any industry
i in country o at time t :

εiot =
⎧
⎨

⎩

εHP
iot if HPiot = 1;

εLPiot if HPiot = 0,
(2.2)

where εiot = ∂ ln Siot
∂ ln Tiot

and εLPiot ≤ 0 < εHP
iot . Therefore, in order to test the trade-

specialization nexus and find out who drives it, we wish to estimate:

Siot = β0|HP,LP + β1|HP,LP Tiot + β2|HP,LP T
2
iot + β ′

HP,LPZiot + εiot |HP,LP ,

(2.3)
where HP and LP industries have their own parameter vector β.

In practice, of course, HP is a latent variable. We can, however, estimate the
likelihood that an industry i in a country o at time t is an HP industry, if we can
measure the potential for reallocation in an industry. If we let θiot measure the odds
of being an HP industry, conditional on the set of variables in the vector Viot , then

θiot = exp
(
Viot θ

HP
)

exp
(
Viot θHP

)+ exp
(
Viot θLP

) . (2.4)

Of importance in the light of our analysis is the vector Viot : it should contain
covariates that predict whether an industry will be able to reallocate from its least
productive to its most productive firms, thus benefiting from the opportunities that
have arisen as a result of increased trade openness and resulting in an increased
share of this industry in total production or value added. In Sect. 3, we explain the
variables contained in Viot in detail. For now, we note that these variables capture
productivity differences at the firm level within each industry i in country o at time
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t . As a result, Viot captures the potential for reallocation, and is then used to estimate
θiot .

Since HP is a latent variable, we require the prior probability of being part of
the HP class, for each industry i in country o at time t , so we can estimate θiot with
a logit model. To this purpose, we estimate Eq. (2.3) jointly with Eq. (2.4) using
an iterative procedure with an expectation-maximization (EM) algorithm, following
Greene (2007). In this procedure, the unconditional likelihood for each industry i in
country o at time t is obtained as a weighted average of its class-specific likelihood
using the prior probabilities of being in classes HP and LP as the weights. Each
industry i in country o at time t is thereby placed in the class where it contributes
the most to the total likelihood of the estimated system, which is being maximized.6

It is natural in light of our investigation to estimate Eqs. (2.3) and (2.4) for two
classes. Following Orea and Kumbhakar (2004), we use the Akaike Information
Criterion (AIC) and Schwartz Bayesian Information Criterion (SBIC) to verify
whether the specification with two classes is indeed the preferred specification.

In practice, the class allocation may exhibit a certain degree of persistence
and is likely to be stable. However, following Bos et al. (2010), industries can
switch classes over time, since an industry’s allocation in a given period is ex ante
independent of its allocation in other periods. We can thus study how changes in the
potential for reallocation affect the dynamics of the trade-specialization relationship
and can possibly explain the slow-down in the specialization process. In addition,
adding this flexibility to the model may enable us to identify causality, as explained
below.

To summarize, we employ a conditional latent class model to examine the
heterogeneous relationship between trade integration and specialization in two
endogenously determined groups of industries. The group membership probabilities
are conditional on the potential for reallocation by exploring firm-level productivity
characteristics within industries.

2.2 Identification

We aim to shed light on the real effect of trade openness on specialization.
Obviously, the simple correlation between trade openness and specialization can-
not be interpreted as evidence of causality because specialization itself also
affects trade. For example, Imbs (2004) demonstrates a negative relationship

6The sum of all unconditional likelihoods over all industries i in countries o at time t is maximized
with respect to the parameter vectors for each class in Eq. (2.3) and the parameters in the sorting
equation (2.4). With these parameter estimates, a posterior estimate of the class membership
probability for each industry i in country o at time t can be computed using Bayes’ theorem. Each
observation is assigned to a particular class with the largest posterior probability. The posterior
estimate of the parameter vector β can also be obtained by multiplying the posterior membership
probability.
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running from specialization to trade, as a result of intra-industry trade. Further-
more, unobserved industry/country characteristics can influence both trade and
specialization/production—such as industrial policies or demand shifts that are
difficult to measure and control for.7 Given these concerns, identification based
on the direct impact of trade openness on specialization will yield inconsistent
estimates.

2.2.1 Benefits of a Three-Dimensional Panel

As a first step to proper inference, we observe that the three-dimensional panel that
we have (industry, country, time) makes it possible to include a wide array of fixed
effects in order to control for the unobservables and resolve omitted variable bias
concerns to a large extent. In particular, the possibility to introduce interacted fixed
effects enables us to sweep out a much wider range of omitted variables.

For example, industry × time (it) effects would not only absorb industry fixed
effects, but also the average effects of time-varying industry characteristics, such
as industrial policy, economies of scale, research-orientation, technology level, and
labor-intensiveness (Midelfart-Knarvik et al. 2000; Longhi et al. 2003). Similarly,
country × time (ot) effects eliminate all time-varying country characteristics that
affect specialization, such as market potential, R&D spending, or labor abundance
(Midelfart-Knarvik et al. 2000; Longhi et al. 2003).

Furthermore, the industry × country effects capture various sources of com-
parative advantage that matters to understand the impact of trade openness on
specialization. Chor (2010) presents a framework to quantify the importance of
a wide range of sources of comparative advantage, e.g. Heckscher–Ohlin force,
Ricardian effect, etc. He expresses comparative advantage as a function of industry-
country characteristics, so that countries specialize in those industries whose
production needs they can best meet with their endowment mix or institutional
strengths.

Therefore, in our specification, we control for all these three types of interactive
fixed effects, namely industry × time, country × time, and industry × country
by demeaning both sides of Eq. (2.3) along these three dimensions. However, all
these fixed effects may still not eliminate factors at the industry × country × time
dimension. To deal with this concern, we incorporate output per worker as a control
variable to correct for any technological shifts at the industry × country × time level
that could affect specialization (López and Sánchez 2005).

7Another reason is that specialization is theoretically linked to the factor content of trade, as an
industry that has a large share in GDP is likely to be an exporting sector. So the relationship
between production patterns and endowments is not independent of the relationship between trade
and endowments.
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Essentially, our identification strategy thereby exploits the time variation within
each industry in each country, in line with our aim of exploring the role of (time-
varying) firm dynamics in the trade-specialization relationship.

2.2.2 Alternative Measures to Control for Endogeneity

It is notoriously difficult to use direct measures of trade barriers (e.g., tariffs)
and exploit the time variation in the lifting of these barriers across industries
and countries for identification. Because trade barriers and costs have declined
significantly in the EU over the past few decades. Our second method for identifying
causality involves the creation of two instrumental variables for trade openness, at
the industry level.

First, we construct an instrument for trade openness using gravity estimates. The
method we apply was developed by Frankel and Romer (1999) in the context of
studying the relationship between trade openness and growth at the country level,
and has been extended by Di Giovanni and Levchenko (2009) to the industry
level. For each industry, Di Giovanni and Levchenko (2009) estimate a (cross-
section) gravity equation to predict bilateral trade openness by means of distance,
population, language, land border, land area, and land-locked status. The summation
of the predicted trade openness across trading partners yields an industry-level
natural openness measure, i.e., predicted trade volume as a percentage of output
not only in each country, but also in each industry within each country. Gravity
estimates provide a good instrumental variable as the geographical variables used
are plausibly exogenous and highly correlated with the actual trade openness.

Our point of departure is to extend (Di Giovanni and Levchenko 2009) within a
panel framework. Our approach corrects for important mis-specifications of gravity
models commonly used in the literature, and yields a time-varying industry-level
natural openness. The latter is particularly appealing in our context as we are
interested in the evolution of the effects of trade openness on specialization over
time, given the fact that trade barriers and costs have decreased significantly in the
EU during the past few decades (Chen and Novy 2011).

Second, we construct an industry-specific time-varying trade integration measure
as proposed by Chen and Novy (2011). They derive a micro-founded measure of
bilateral sector-specific trade frictions, i.e., the inverse of bilateral trade integration.
They model disaggregated trade flows at the industry level in a gravity framework,
allowing trade costs to be heterogeneous across industries. This measure is proven
to be theoretically consistent with a wide range of trade models and correlated with
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a large set of observable trade cost proxies.8 The Appendix lays out the details of
our approach.

Even though our identification strategy is comprehensive, we cannot rule out the
possibility that other factors may still bias our results, such as the restrictiveness of
the i.i.d. assumption.

3 Data

We use an extensive data set that contains firm-level, industry-level, and country-
level data for 18 manufacturing industries in 14 EU countries over the period
1997–2006. For the firm-level data, we have compiled a comprehensive data set
based on annual editions of the AMADEUS (Analyze Major Databases from
European Sources) database.9 We supplement this data set with industry- and
country-level data from various sources. Industry-level data—disaggregated at
NACE 2-digit—on value added, output, imports, exports, and employment are taken
from the OECD (2008) Structural Analysis Database (STAN). Country-level data
on manufacturing GDP and country-level GDP are retrieved from the World Bank
(2008) World Development Indicators (WDI). Except for employment, all data are
reported in current U.S. dollars. The industries and countries included in our sample
are listed in Tables 5 and 6 in Appendix, respectively. Below, we explain how each
of the variables we use is constructed.

Our aim is to construct an industry-specific specialization index, since we are
primarily interested in examining the heterogeneity of the trade-specialization
relationship across industries. Our starting point is Redding (2002), who uses
neoclassical trade theory to derive a specialization measure (spe), defined as
nominal industry value added as a percentage of a country’s total GDP.10 In

8It is worth noting that measurement error in independent variables can lead to misleading
inferences in regression-type applications. Although employing the instrumental variable of trade
openness we have constructed might introduce measurement errors in our estimations, using Chen
and Novy (2011)’s measure does not have this problem. In addition, while the gravity approach in
a panel setting can be subject to criticisms that most of the independent variables used in the
estimation are time invariant, which poses challenges to the validity of this instrument, Chen
and Novy (2011)’s micro-funded measure does not suffer from this issue. Essentially these two
approaches complement each other. Therefore, we present results using both approaches to ensure
the validity of our results.
9One of the characteristics of the AMADEUS database is that each edition only includes surviving
firms. In addition, as time has gone by, the coverage of AMADEUS has increased. By using all
annual editions of AMADEUS, and compiling the data set both backward looking (to reduce
survivorship bias) and forward looking (to increase the coverage), we are able to construct the
most comprehensive firm-level data set of European manufacturing firms.
10This measure has the advantage of being theory-consistent, in contrast with ad hoc definitions of
specialization that have been used by other authors, such as the indexes of revealed comparative
advantage, pioneered by Balassa (1965).
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Eq. (3.1), we express Redding (2002)’s measure as the product of an industry’s
share of a country’s manufacturing value added (S) and manufacturing’s share
of a country’s GDP (MS). In our estimations, we log transform each of these
components, which then allows us to include the log of MS as a control variable
and the log of S as our dependent variable. In this manner, we isolate the impact of
increased trade openness within manufacturing industries from the overall decline
in manufacturing activity:

speiot = VAiot

GDPot
= VAiot

V A
manufacturing
ot

× VA
manufacturing
ot

GDPot
= Siot × MSot . (3.1)

As a robustness test, we also construct an additional measure of specialization, S′.
This measure is the log of the normalized value added, where for each country,
normalization is based on the value added of the food industry (NACE 15–16),
which is set at 100 at the beginning of our sample, in 1997. Essentially, this
normalized variable captures the changes of industry composition within a country
over time. We describe the results using this variable as a robustness check in
Appendix. From Table 1, we observe that there is a wide variation in shares
across manufacturing industries, as expected. The variation of the share of the
manufacturing sector as a whole, however, varies much less. In addition, we control
for industry-specific, time-varying productivity by including output per worker
(Y/L), which varies significantly across our sample.

In a similar vein, we measure trade integration at the industry level. The existing
literature distinguishes between de jure and de facto measures of trade integration
(Sachs and Warner 1995; Wacziarg and Welch 2008). De jure measures capture the
extent of government restrictions on trade flows, whereas de facto measures quantify
the degree of openness through realized trade flows. Since de jure measures are
typically not available at the industry level, we mainly rely on the measure of de
facto openness (T ), defined as the ratio of industry imports and exports to output
(Di Giovanni and Levchenko 2009). Table 1 contains descriptives of both T and
its instruments T ′ and T ′′, described in the previous section. The main observation
from comparing the three trade openness measures is that the measure based on
Chen and Novy (2011) has far less variance than the other two measures. The
correlation between openness and natural openness is 0.9, whereas the correlation
between openness and trade integration is 0.2. Both correlations are significant at
the 1% level.

To capture the intra-industry potential for reallocation, we need a set of con-
ditioning variables Viot . Since this type of reallocation takes place between firms
in the same industry, we require firm-level observations to construct industry-level
measures. Our objective is to show the extent to which the most productive firms
in an industry can grow by appropriating the assets of the least productive firms.
Therefore, we need to measure the dispersion in productivity within each industry
in each country. We measure the productivity of each firm in two ways. First, and
most closely related to Melitz (2003), we estimate each firm’s economies of scale.
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Table 1 Descriptive statistics

Variable Source Mean Min Max Std

S Specialization (S) OECD STAN 5.877 0.016 23.585 4.267

Normalized
specialization (S′)

OECD STAN 1.458 −4.110 3.161 0.905

T Openness (T ) (imports+exports)/value
added

153.290 16.677 5735.303 405.529

Natural openness
(instrument, T ′)

Di Giovanni and
Levchenko (2009)

165.858 11.655 9344.317 562.117

Trade integration
(instrument, T ′′)

Chen and Novy (2011) 2.273 0.710 6.206 1.017

Z Labor productivity,
$1000 (Y/L)

OECD STAN 281.449 17.895 8036.795 522.882

Manufacturing share
(MS)

OECD STAN 18.311 8.715 26.452 4.071

V Efficiency dispersion,
25/75 ratio

AMADEUS, own
calculations

1.151 1.001 13.085 0.279

Efficiency dispersion,
10/90 ratio

AMADEUS, own
calculations

1.435 1.001 13.516 0.576

Efficiency dispersion,
standard deviation

AMADEUS, own
estimations

0.112 0.001 0.365 0.038

Scale dispersion, 25/75
ratio

AMADEUS, own
calculations

1.035 1.002 1.109 0.014

Scale dispersion, 10/90
ratio

AMADEUS, own
calculations

1.070 1.003 1.174 0.026

Scale dispersion,
standard deviation

AMADEUS, own
calculations

0.028 0.002 0.073 0.009

Initial efficiency level
(weighted)

AMADEUS, own
calculations

0.773 0.176 0.910 0.082

Initial scale level
(weighted)

AMADEUS, own
calculations

1.091 0.886 1.623 0.149

Number of observations is 2138; based on specifications given in Table 3; Std = standard deviation

Second, and based on the same estimations, we estimate each firm’s efficiency.
Our primary measure of dispersion is the ratio of the productivity of firms in the
top quantile (i.e., with the highest economies of scale, or the most efficient) to
the productivity of firms in the bottom quartile (i.e., with the lowest economies of
scale, or the least efficient), the 25/75 ratio. To check the robustness of our results,
we also use two other measures of dispersion, the 10/90 ratio and the standard
deviation of scale and efficiency, described in the robustness analysis in Appendix.
For our identification approach, it is important that we control for the initial level
of efficiency and scale elasticity in each industry. Therefore, we also include the
average efficiency and scale elasticity in the first year of our sample, weighted by
each firm’s total assets.

We estimate each firm’s scale elasticity and efficiency as follows. First, we
estimate a stochastic production frontier for each industry, described in detail
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in Appendix. Our approach has three distinct features. First, by estimating a
translog production function, we allow for increasing, decreasing, and constant
economies of scale, within an industry, at any time. Second, by estimating this
production function using stochastic frontier analysis (SFA), we can also measure
efficiency, i.e., the extent to which firms with the same economies of scale and
input levels produce different levels of output. In our approach, the error term of
that stochastic production frontier is composed of two parts (Aigner et al. 1977;
Battese and Corra 1977; Meeusen and Broeck 1977): a one-sided component
with a truncated distribution that captures inefficiency, as well as a systematic
component that allows for measurement errors or other random shocks around
the production frontier. Third, we account for systematic differences in production
technologies, which may otherwise be wrongly labeled as inefficiency (Orea and
Kumbhakar 2004), by estimating true fixed effects frontiers (Greene 2005), with
firm- and country-fixed effects for each industry-specific frontier. In so doing, we
still assume that firms that produce similar products and thereby operate in the
same industry can be benchmarked against each other, even if they operate in
different countries. Put differently, even though we allow for structural differences
in output (and productivity) between firms that operate in the same industry, but in
different countries, we assume that these firms have access to the same production
technology.11

For our firm-level productivity estimations, we use the all-companies module of
AMADEUS, a database provided by Bureau Van Dijk Electronic Publishing. This
pan-European database contains detailed financial and business data on more than
ten million public and private firms in 44 European countries. The homogeneity
of the data collecting process across countries and its fairly complete coverage,
especially of privately held firms makes it well suited for our analysis. Our sample
consists of 390,350 manufacturing firms across 14 EU countries over the 1997–
2006 period. We choose manufacturing industries because in contrast to services,
they are more involved in trade and more responsive to trade integration.12 We
group all firms into 18 industries to ensure a sufficient number of firms in each
industry-country combination, and compatibility with other industry-level data. The
choice of countries is based on the quality of firm-level coverage.13 To estimate
the stochastic production frontier, we use raw data on gross value added, tangible
fixed assets, and number of employees to construct firm-level output (Y ), capital
(K), and labor (L), respectively. Appendix describes the AMADEUS database, the

11Bos et al. (2010) endogenize the allocation of European manufacturing industries in a low- and
high-technology class. Although, in their paper, the same industry can belong to one class in one
country and another class in another country, in their Table A4 they show that most industries
cluster in the same class, confirming that technology difference, in EU manufacturing, are industry-
rather than country-specific.
12On average, manufacturing trade accounts for 80% of total merchandize trade in the EU.
13We compare the total number of manufacturing firms and the number reported in OECD 2006
Structural and Demographic Business Statistics (SDBS) and select countries with more than 30%
of firms covered.
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sample selection procedure and the construction of our variables in detail. Table 1
summarizes the definitions, sources, and descriptive statistics of the main variables
used in our analysis, respectively.

In Table 1, we observe that the most efficient quartile of firms is on average 15%
more efficient than the least efficient quartile. However, if we move one standard
deviation (0.279) above this average, the difference has increased to more than
40%. Results are similar for the other two efficiency dispersion measures. Average
efficiency at the beginning of the sample period is 77.3%, indicating that the average
firm should be able to increase its output by 22.7% without increasing its use of
inputs. The average return to scale at the beginning of the sample period are 1.091,
indicating that the average firm experiences increasing returns to scale, and can
increase its output by 1.091% by increasing its inputs by 1%. The top quartile firms
operate with return to scale that are on average 3.5% larger than the bottom quartile,
although this difference can increase to more than 10% for some industries.

As explained in the previous section, for the purpose of our analysis, we aim
to measure the potential for reallocation in each of the industries in each of the
countries. But how valid are our measures introduced above? In order to validate
them, we also calculate the actual degree of reallocation that takes place in each
industry in each country over the sample period, using a decomposition method
suggested by Olley and Pakes (1996). Consider the following decomposition of
efficiency and scale for an industry i in country o at the period t :

Scaleiot=
∑

j

wjiotScalejiot=Scaleiot+
∑

j

(wjiot−wiot )(Scalejiot−Scaleiot )

(3.2a)

Effiot =
∑

j

wjiotEffjiot = Effiot +
∑

j

(wjiot − wiot )(Effjiot − Effiot ),

(3.2b)

where j indexes firms, and Scale and Eff refer to efficiency and return to scale,
respectively. In Eq. (3.2a), Scaleiot represents the value-added weighted average
scale in industry i in country o at time t and Scaleiot the unweighted average scale.
Equation (3.2b) decomposes the value-added weighted average efficiency into a
first component that is size invariant, and a second component that is not. It is this
second component in which we are interested, as it measures the sample covariance
between return to scale and value added. The larger this covariance, the higher
the share of the value added that is produced by firms with higher return to scale,
and consequently the higher the industry-level return to scale. The same applies to
efficiency, in Eq. (3.2b). Validating our measures of the potential for reallocation
therefore involves assessing whether they are positively correlated with the changes
of these two covariance terms over time.
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4 Results

In this section we present our results. First, we validate our measures of the potential
for reallocation. Secondly, we examine whether the potential for reallocation has
indeed driven the trade-specialization nexus. Thirdly, we explore the treatment effect
from changes in trade openness, and fourthly we verify our results by comparing the
actual shares of industries with the ones predicted by our model.

4.1 The Potential for Reallocation and Subsequent Actual
Reallocation

Do we find that industries with the most “room to move” are also the ones
where subsequently reallocation is most likely to take place? To validate our
measures of the potential for reallocation, in Fig. 1a and b we compare them to
the actual reallocation that took place during our sample period based on Eqs. (3.2a)
and (3.2b).

Two concurrent developments can be noted from these figures. First, we observe
that higher levels of dispersion, signifying the greater potential for reallocation, are
positively correlated with actual reallocation, especially for return to scale. Second,
as the changes of most covariance terms are positive, the reallocation is indeed in
line with Melitz (2003), and can lead to the expansion of the industry in which firms
are located.

4.2 How Has the Potential for Reallocation Driven the
Trade-Specialization Nexus?

Our aim is to explain why some industries drive the trade-specialization nexus and
others do not. Therefore, we start by determining the number of groups or classes
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Room to Move: Why Some Industries Drive the Trade-Specialization Nexus. . . 279

Table 2 Specification tests of the number of groups

Natural openness Trade integration

Specification Likelihood Parameters AIC SBIC Likelihood Parameters AIC SBIC

Two-group 2313.357 15 14.507 100.734 2195.605 15 14.612 100.83

Three-group 2360.783 25 34.467 178.178 2256.219 25 34.557 178.269

Four-group 2415.082 35 54.421 255.617 No convergence

Akaike Information Criterion (AIC) = 2m − 2nLF(k), Schwartz Bayesian Information Criterion
(SBIC) = −2lnLF(k) + mln(n); m is the number of parameters, n is the number of observations,
LF(k) is the log likelihood for groups. The preferred specification has the lowest AIC or the lowest
SBIC. See Orea and Kumbhakar (2004). Obs = 2318; Natural openness based on Di Giovanni and
Levchenko (2009); Trade integration based on Chen and Novy (2011)

of industries identified by our latent class model. Following Orea and Kumbhakar
(2004), we estimate for two, three, and four classes, respectively, and formally
test using the Akaike and Schwartz Bayesian information criteria (AIC and SBIC,
respectively). We do so using the natural openness measure following (Di Giovanni
and Levchenko 2009) and the trade integration measure from Chen and Novy
(2011). As shown in Table 2, a specification with two classes is preferred for both
measures, since this results in the lowest AIC and SBIC.14

Table 3 contains our estimation results. Panel B contains parameter equality tests
and confirms what we have found so far: there are two distinct groups of industries,
with significantly different parameters, both for trade openness and output per
worker. Also, the parameters for variables used in the sorting equation are jointly
significantly different from zero.

Turning to Panel C, we see that the industries in the first class are characterized
by a higher efficiency dispersion, a lower initial efficiency level, and a higher initial
return to scale level. Scale dispersion, however, is not higher in this first class. Most
notable is the difference in �S̄, the average percentage change in the manufacturing
share of industries. In the first class, the change is between 2.5 and 3.2%, whereas it
is approximately −1.5% on average in the second class. Summing up, we henceforth
refer to the first class as the high-potential or HP class, whereas the second class
is referred to as the low-potential or LP class. The prior class probabilities (at data
means) show that approximately between 7 and 9.2% of our sample belongs to the
HP class, while the rest is assigned to the LP class.

Of course, what remains to be seen is whether the trade-specialization nexus is
indeed driven by the HP class, as we conjecture. We therefore turn to Panel A,
which contains the parameter estimates. We start with the parameters in the sorting
equation. Scale and efficiency dispersion increase the likelihood of being in the HP

class, as expected. High initial scale levels make it more likely that an industry will
be driving the trade-specialization nexus, whereas high efficiency levels make it less
likely that an industry is in the HP class. Overall, results are more significant for

14For a possible third group, we find that parameters are jointly not significant from zero, and the
number of observations allocated in this additional group is rather small.
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Table 3 The trade-specialization Nexus at the industry level

Parameter Natural openness Trade integration

estimates High-potential Low-potential High-potential Low-potential

Panel A
Kernel

T 0.708 (0.218)*** −0.171 (0.067)** 0.396 (0.320) −0.261 (0.062)***

T 2 −0.087 (0.017)*** −0.016 (0.007)** −0.421 (0.581) 0.077 (0.048)

Output
per
worker

0.251 (0.066)*** 0.215 (0.021)*** 0.408 (0.071)*** 0.285 (0.021)***

Constant 0.001 (0.016) 0.000 (0.001) 0.007 (0.017) 0.000 (0.002)

Sorting

Scale
dispersion

17.719 (8.137)** Reference 14.066 (9.459) Reference

Efficiency
dispersion

5.940 (1.438)*** Reference 5.720 (1.411) *** Reference

Initial
scale level

14.282 (1.426)*** Reference 14.998 (1.475)*** Reference

Initial
efficiency
level

−4.144 (1.860)** Reference −2.499 (2.576) Reference

Constant −39.846 (8.665)*** Reference −38.130 (9.856)*** Reference

Prior class
probabil-
ity

0.092 0.908 0.072 0.928

Natural openness Trade integration

Equality tests Wald P-value Conclusion Wald P-value Conclusion

Panel B
All parameters 14.519 0.000 Rejected 32.980 0.000 Rejected

T and T 2 15.306 0.000 Rejected 19.362 0.000 Rejected

Sorting variables 62.224 0.000 Rejected 50.380 0.000 Rejected

Natural openness Trade integration

Class characteristics HP LP P-value HP LP P-value

Panel C
Scale dispersion 1.033 1.036 0.000 1.032 1.036 0.000

Efficiency dispersion 1.243 1.135 0.000 1.252 1.135 0.000

Initial scale level 1.333 1.048 0.000 1.349 1.050 0.000

Initial efficiency level 0.708 0.784 0.000 0.704 0.784 0.000

�S̄ (%) 2.504 −1.511 0.001 3.203 −1.548 0.000

Standard errors in parentheses; significance at the 10/5/1% level (**/***); Natural openness based
on Di Giovanni and Levchenko (2009); Trade integration based on Chen and Novy (2011); in panel
C, P values for significance of difference in means, HP is high-potential industry, LP is low-
potential industry, �S̄ is the average percentage change in industry shares in a class
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the natural openness measure (Di Giovanni and Levchenko 2009) than for the trade
integration measure (Chen and Novy 2011), which may be explained by the latter’s
low variance.

In the top part of panel A, we find the parameter estimates for trade openness and
labor productivity. As expected, labor productivity always has a positive relationship
to an industry’s manufacturing share (López and Sánchez 2005). More interesting
are the results for trade openness: in line with our expectations, an increase in
natural openness (Di Giovanni and Levchenko 2009) increases an industry’s share
in manufacturing in the HP class, whereas it has a negative, but much smaller effect
in the LP class. Both effects are similar, but less significant for an increase in trade
integration (Chen and Novy 2011). For the HP class, results are in line with the
trade-specialization nexus. For the LP class, increases in trade openness have a
negative effect on an industry’s share in manufacturing.

This is in line with López and Sánchez (2005), who find a negative relationship
between openness and specialization for ten European countries. They assert that
the convergence of industrial structures following the openness to foreign trade is
consistent with the prediction of the Hechscher–Ohlin–Vanek theory: when factor
prices are equalizing, the sources of comparative advantage arising from relative
differences in factor prices disappear.15

An interesting question to ask at this point is whether there is a threshold point
beyond which further opening-up to international trade may not lead to increased
specialization. Thus, the relationship between trade openness and specialization
may no longer be positive for industries with very high levels of openness—a
phenomenon that is identified in new economic geography theories (Krugman 1991;
Venables 1996). These theories postulate a non-linear relationship between trade
costs and location of economic activity. The decrease in trade costs induces firms to
agglomerate into fewer locations, and a further decline in trade costs can result in
geographical dispersion of activities when mobility across sectors exhibits a finite
cost. Beine and Coulombe (2007) document a similar positive short-run relationship
and a negative long-run relationship between trade integration and specialization,
i.e., short-run specialization and long-run diversification based on export data of
Canadian regions.

Therefore, in order to further assess the economic nature of the relationship
between trade openness and specialization, we calculate the marginal effect of trade
on specialization, i.e., the partial derivative of S with respect to T in Eq. (2.3),
conditional on the level of trade openness T for both the HP and the LP class.
Fig. 2a and b illustrate these conditional marginal effects and the corresponding
95% confidence intervals (Brambor et al. 2006). We find for the HP class that
although the effect of openness on specialization decreases as industries’ natural

15Trade integration implies the creation of new exporting industries, which in turn leads to
the expansion of aggregate production in those industries. This process could be driven by
agglomeration forces and forward (large market)–backward (large input variety) linkages identified
by new economic geography theories (Fujita et al. 2001).
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Fig. 2 Conditional marginal effect. (a) Natural openness. (b) Trade integration

openness (in the top part of Fig. 2a) and as trade integration increases (in the top
part of Fig. 2b). However, the marginal effects remain positive. Thus, although there
is some saturation with respect to trade openness, we do not find evidence of a
threshold effect for the HP class.

Things are even clearer for the LP class, where the marginal effect of natural
openness (in the bottom part of Fig. 2a) and trade integration (in the bottom
part of Fig. 2b) is scarcely affected by changes in openness or integration and is
consistently below zero.

To check the robustness of our results, we first consider an alternative measure
of specialization, the log of normalized industry value added. The results are
reported in Panel A of Table 7 in Appendix. We find that they are qualitatively
and quantitatively very similar to those in Table 3, despite the lack of significance
for two of the conditioning variables, namely scale dispersion and initial efficiency
level. In addition, the division of the sample into a small HP and a large LP group
resembles that of our main specification in Table 3.

We then consider two other measures of dispersion, namely the 10/90 ratio
and the standard deviation. Panels B and C of Table 7 in Appendix display the
results. We find no significant changes from our main results, except that the scale
dispersion and/or initial efficiency level loses its significance when the dispersion
is measured as 10/90 ratio in Panel B of Table 7. Similar results are found when
using the standard deviation as the dispersion measure in Panel C of Table 7. We
find no evidence of changes in the main parameter estimates. But the power of our
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conditioning variables becomes somewhat weaker—except for the initial return to
scale level—as the individual significance of three variables drops and the efficiency
dispersion appears to have the “wrong” sign. These results mainly highlight the
problems of using the standard deviation as the dispersion measure, because firm
efficiency and scale are not normally distributed within each industry. Overall, our
results do not seem to be driven by the use of an alternative specialization measure,
nor by the choice of a particular dispersion measure.

To summarize, we find that the effects of trade openness on specialization
appear to be very different in the HP and LP class. The potential for reallocation,
as measured by the four conditioning variables, determines the allocation of an
industry into either the HP or LP class.

4.3 Can We Explain the Slow-Down in Specialization?

An interesting question that arises is how the changes in the potential for reallocation
affect the dynamics of the trade-specialization nexus. The distinctive features of our
latent class model allows us to explore this question. In our modeling framework,
the probability of belonging to a certain group depends on the average of all four
conditioning variables. As a result, the changes in these variables can alter this
probability. Therefore, we prefer here to permit industries to switch groups over
time, rather than imposing the assumption that they are restricted to one group.

Panel A in Table 4 shows the migration matrices, including the absolute number
and percentage of group allocation changes over time. We can see that the diagonal
elements carry the largest percentage as would be expected, which indicates that the
potential for reallocation hardly changes drastically. Transitions from theLP toHP

group are rare. At the same time, transitions from the HP to LP group are more
frequent, suggesting that if industries react to the trade openness by realizing the
potential for reallocation, the remaining potential is reduced. Thus, these industries
are more likely to migrate to the LP group.16

Most of the industry transitions, i.e., 31.03% of all cases, take place in the
petroleum industry (18 out of 58), followed by 13.8 and 12.07%, respectively, in
basic metals and electronic equipment industries. In terms of country divisions,
22.41% of industries transit from the HP to LP group in Hungary (13 out of 58),
which seems not surprising given that CEEC countries are expected to be mostly
affected by trade integration. They are closely followed by Portugal and Sweden
with 12.07 and 10.34% (7 out 58 and 6 out of 58), respectively. However, we find
no trends with regard to when these transitions occur.

16We checked whether the occurrence of transition is due to the fact that the conditional probability
of an industry being in one group our model assigned is close to 50%, which is the conventional
cut-off point in the multinomial logit model of Eq. (2.4). However, the conditional probability of
group membership is very high in almost all cases, i.e., above 90%. Therefore, the transition is not
related to the flexibility of our model.
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Table 4 Transitioning from high-potential to low-potential

Panel A: transition matrices

Natural openness Trade integration

To To

From HP LP Total From HP LP Total

HP 215 58 273 HP 193 55 248

(78.75) (21.25) (100) (77.82) (22.18) (100)

LP 56 1574 1630 LP 54 1601 1655

(3.44) (96.56) (100) (3.26) (96.74) (100)

Total 271 1632 1903 Total 247 1656 1903

14.24 85.76 (100) (12.98) (87.02) (100)

Panel B: covariates

Variable Mean Sign t-test KW Mean Sign t-test KW

Efficiency dispersion 1.156 − ** *** 1.146 − ** ***

Scale dispersion 1.038 + ** *** 1.038 + *** ***

Initial efficiency level 0.766 + *** *** 0.776 + *** ***

Initial scale level 1.155 − *** *** 1.170 − *** ***

Percentages in parentheses; significance at the 10/5/1% level (**/***); Natural openness based on
Di Giovanni and Levchenko (2009); Trade integration based on Chen and Novy (2011); in panel B,
t-test for difference in means and Kruskal–Wallis (KW) rank test; HP is high-potential industry,
LP is low-potential industry

Panel B in Table 4 provides some further insights into why and how some
industries migrate from the HP to the LP group. We examine whether the potential
for reallocation is significantly lower for these switchers. More specifically, we
employ a t-test and a Kruskal–Wallis test to assess whether the four conditioning
variables used to predict group membership differ significantly on average between
industries that switch and those that stay in the HP group. A positive (negative) sign
indicates the variable is higher (lower) than for the industries that stay in the HP

group. For example, the first column in panel A indicates that efficiency dispersion is
significantly lower (at 5 and 1%) than that of the average of the HP group. Overall,
we find that the potential for reallocation of these switchers is significantly lower,
evidenced by a lower efficiency dispersion, a higher efficiency level, and a lower
scale level. The scale dispersion appears to have the “wrong” sign, however. These
results provide additional support for the saturation effect of trade openness: the
process of openness-driven-specialization is not monotonic, but rather, it is slowing
down.

4.4 Actual and Predicted Industry Shares

Last but not least, we examine the predictive power of our model by looking at how
well it predicts our specialization measure Siot , i.e., the industry shares. To do so,
the top parts of Fig. 3a and b plot the predicted Siot against the actual Siot on the
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Fig. 3 Predictability of the latent class model. (a) Natural openness, demeaned. (b) Trade
integration, demeaned. (c) Natural openness, not demeaned. (d) Trade integration, not demeaned

basis of Eq. (2.3) using natural openness and trade integration, respectively. It shows
that the predicted Siot captures a considerable amount of variation embedded in the
actual Siot (the correlation coefficient is 0.4 and 0.35, respectively).

One point which deserves noting here is that since the specialization measure
used in the estimation is in logs and demeaned, our model essentially predicts the
deviation from the means. To retrieve the predicted shares, we add back the actual
means (i.e., country-time, industry-time, and industry-country averages discussed in
the methodology section).

The bottom parts of Fig. 3a and b plot the predicted industry shares (in levels)
against the actual shares. It is clear from the figures that they are highly correlated
(the correlation coefficient is 0.99 and 0.98, respectively), confirming the predictive
power of our model. The caveat to bear in mind is that the “means” we take out may
contain important information in explaining specialization, that is beyond the scope
of our model.

To summarize, three main findings emerge from our analysis so far. First, the
trade-specialization nexus is not homogeneous across all industries, nor is the
relationship entirely unique for each industry. Instead, we find two distinctive
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groups of industries, and the potential for reallocation, i.e., the four conditioning
variables, determines the assignment of each industry into a specific group. Second,
the trade-specialization relationship is in stark contrast between the HP and LP

group. We find that trade openness induces more specialization towards industries
with high potential for reallocation. And the effect of trade decreases when trade
openness is beyond a certain threshold. On the contrary, trade openness leads to less
specialization in industries when their potential for reallocation is low.

Lastly, some industries switch from the HP to the LP group when they run
out of potential for reallocation, further when the remaining potentials are lower,
furthering confirming that the trade-induced specialization process slows down over
time.

5 Conclusion

This paper has examined the role of reallocation as a driver of the trade-
specialization nexus, and shown how firm dynamics constitute a channel through
which trade liberalization affects the industrial composition within EU economies.

We have proposed a conditional latent class model to examine the dynamic
effect of trade liberalization on specialization across industries. The proposed
model allows for a heterogeneous trade-specialization relationship across different
endogenously determined groups of industries. The group membership probability
is modelled as a function of four firm-based measures that encapsulate the intra-
industry potential for reallocation, namely the dispersion of firm efficiency and scale
and the initial level of industry average efficiency and scale. To obtain firm-specific
efficiency and scale, we set up a model of production that permits the inefficient
use of resources and estimate a stochastic production function. In order to overcome
endogeneity problems, we employ two novel instrumentation strategies based on the
exogenous geographic determinants of trade flows and a micro-founded measure of
industry-specific trade frictions.

Using a unique panel of manufacturing firms in 14 EU countries during 1997–
2006, we have found evidence that the trade-specialization relationship differs
markedly between two distinctive groups of industries and that the relationship
depends on the potential for reallocation. We have shown that the potential for
reallocation appears to be positively associated with the future actual reallocation
observed in reality. On the one hand, an inverted U-shaped trade-specialization
pattern has been found in one group of industries which are characterized by greater
potential for reallocation, indicating that trade openness induces specialization at a
decreasing rate. On the other hand, trade openness results in less specialization in the
other group when the potential for reallocation is small. Our results are consistent
with the theoretical and empirical evidence that international trade acts as a catalyst
in facilitating the intra-industry reallocation of economic activity.

Our findings have important policy implications. As reallocation is a key channel
through which industries can benefit from trade liberalization, policies aimed at
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removing barriers in the factor and product markets are likely to enhance the
reallocation of economic activity. The resulting gains in efficiency and return to
scale appear to be an important source of long-run competitiveness and economic
growth in the EU.

Appendix

Construction of Alternative Measures for Trade Openness

This appendix gives a detailed description of two time-varying industry-level
alternative measures for trade openness used in the estimations of Eqs. (2.4) and
(2.3).

Industry-Level Natural Openness

The first measure is a time-varying measure of industry-level natural openness. Our
starting point is the use of the gravity model of trade that has enjoyed remarkable
empirical success in predicting a large proportion of variations in observed trade
volumes. Furthermore, the gravity model has a solid theoretical foundation and can
be derived from almost any standard trade model, including the monopolistic com-
petition model, the Heckscher–Ohlin model, and the latest trade models featuring
firm heterogeneity. Frankel and Romer (1999) introduce a natural openness measure
that can be used as an instrument. They propose a (cross-section) gravity equation to
predict bilateral trade openness between each pair of countries based on a large set
of geographical variables, such as distance, population, language, land border, land
area, and land-locked status.17 The summation of predicted trade openness across
all trading partners yields a natural openness measure, i.e., the ratio of predicted
trade volume to GDP for each country. This measure carries exogenous elements
and permits the examination of the causal effect of trade on growth, and is later
applied to a wide range of settings in which trade openness and other variables are
potentially jointly determined.18

Recent literature has extended the gravity estimation using disaggregated data.
Although the dependent variable in a gravity equation is generally observed at the
country level and does not vary across industries, trade volumes react differently
to geographical characteristics in different industries. In other words, the gravity
coefficients are found to vary considerably across industries. Consider for example
the coefficient for distance: assuming some industries are more sensitive to distance

17Instead of predicting trade volumes, Frankel and Romer (1999) predict trade openness, i.e., the
trade volumes as a percentage of a country’s GDP.
18See, for example, Rose et al. (2000), Glick and Rose (2002), Subramanian and Wei (2007).
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than others, countries that are located further away from their trading partners
will have less predicted trade in sectors that are distance-sensitive. Theoretically,
Anderson and van Wincoop (2004) demonstrate that the estimated coefficient for
distance in the gravity model is a function of trade costs and the elasticity of
substitution between product varieties within the sector. Since both trade costs—
direct and informational—and the elasticity of substitution differ significantly
across industries, it is not surprising that the distance coefficient exhibits significant
variations. Di Giovanni and Levchenko (2009) report an industry-specific distance
coefficient ranging from −0.8 to −1.6, close to the range of −0.5 to −1.5 reported
in Chaney (2008). Therefore, the variation in (all) gravity coefficients is the key for
this procedure to work.

Di Giovanni and Levchenko (2009) apply the methodology of Frankel and Romer
(1999) at the industry level and subsequently construct an industry-level natural
openness measure. Following Di Giovanni and Levchenko (2009), we estimate the
following gravity specification for each industry i:

ln(Tiodt ) = α0
i + η1

i ldistod + η2
i lpopot + η3

i lareao + η4
i lpopdt

+ η5
i laread + η6

i landlockod + η7
i borderod + η8

i borderod × ldistod

+ η9
i borderod × lpopot + η10

i borderod × lareac

+ η11
i borderod × lpopdt + η12

i borderod × laread

+ η13
i borderod × landlockod + Dot + Ddt + εiodt ,

(5.1)

where c denotes sector, o denotes origin country, d denotes destination country, and
t denotes time. ln(Tiodt ) is the natural log of bilateral trade (imports plus exports) as
a share of output in industry i, from country o to country d at time t . We follow Di
Giovanni and Levchenko (2009), and include a series of gravity variables: ldistod
is the natural log of the distance between two countries, defined as the distance
between the capitals in the two countries; lpopot is the natural log of the population
of country o at t ; lareac is the natural log of land area of country c; lpopdt is the
natural log of the population of country d at t ; laread is the natural log of land area
of country d; landlockod takes the value of 0, 1, or 2 depending on whether none,
one, or both of the countries are land-locked; borderod is a contiguity dummy that
takes the value of 1 if countries o and d share a land border; Dot and Ddt are a
list of time-varying origin and destination country dummies, serving as proxy for
multilateral resistance in Anderson and van Wincoop (2003); εiodt is a normally
distributed random error term that has a zero mean and a constant variance.

Having estimated Eq. (5.1) for each industry i, we then obtain the predicted log
of bilateral trade as a share of output from country o to each of its trading partners
d at time t , i.e., ̂ln(Tiodt ). To construct the predicted overall trade in industry i

from country o at t , we take the exponential of ̂ln(Tiodt ), and sum across all trading
partner countries d as shown in Eq. (5.2):



Room to Move: Why Some Industries Drive the Trade-Specialization Nexus. . . 289

Tiot =
∑

d

exp ̂(ln(Tiodt )). (5.2)

Hence, we have created a time-varying measure of industry-level natural openness,
i.e., the predicted trade volume as a share of output for each industry i in each
country o at time t . Importantly, our instrument is entirely independent of trade
liberalization, as all variables used to generate the instrument are deep parameters
that are not themselves endogenous to the trade liberalization process.

It is worth noting that in contrast to past gravity literature based on cross sectional
data, we use panel data. Therefore, our approach has three distinctive advantages,
compared to Di Giovanni and Levchenko (2009). First, following Anderson and van
Wincoop (2003), we recognize that the standard gravity specification may have been
misspecified in ignoring a multilateral resistance term, since a country pair’s relative
distance to all other markets may have a punitively large effect on its bilateral trade.
Failing to properly include this multilateral resistance term can result in a serious
estimation bias, resulting the so-called ‘gold medal error’ of gravity model estima-
tions (Baldwin and Taglioni 2006). An early study by Rose et al. (2000) includes
a “remoteness” term. Anderson and van Wincoop (2004) suggest that the inclusion
of time-invariant importer and exporter dummies captures multilateral resistance
reasonably well in a cross-section setting; however, it does not address the time-
varying nature of trade costs in panel data. Hence, we correct by including a series of
time-varying importer and exporter dummies to avoid the gold medal error. Second,
and equally important, by including these time-varying dummies we can avoid the
“bronze medal error,” i.e., the inappropriate deflation of nominal trade values by the
US aggregate price index.

Thus, our ability to incorporate these time-varying dummies in a panel context
allows us to properly address these two misspecification issues. Third, the panel
setup permits the construction of an industry-level natural openness that is time-
varying. This is much more appealing in our context as we are interested in
the evolution of trade openness and specialization over time, given the fact that
trade barriers and costs have decreased significantly in the EU over the past few
decades.19

To estimate Eq. (5.1), we use the OECD STAN Bilateral Trade Database to obtain
information on bilateral trade flows (imports and exports) for 18 manufacturing
industries in 14 EU countries across 53 trading partner countries over the 1997–2006
period. The industry output data is obtained from the same source. Table 5 lists the

19As robustness checks, we estimate two extended specifications. The first one adds additional
covariates, such as language, trade agreement, colonial history, monetary union as commonly used
in the gravity literature (Rose et al. 2000). The second one introduces a set of country-pair dummies
to capture any unobserved factors that are influencing bilateral trade. As a result, some country-
pair specific covariates may be absorbed into the pair fixed effects. We find that the industry-
level natural openness derived from these two specifications is highly correlated with our preferred
specification.
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Table 5 Industries and NACE codes

Industry NACE code

Food products, beverages, and tobacco products 15–16

Textiles, wearing apparel, footwear 17–19

Wood and products of wood and cork 20

Pulp, paper products, and printing 21–22

Coke, refined petroleum, and nuclear fuel 23

Pharmaceuticals 24

Rubber and plastics products 25

Other non-metallic mineral products 26

Basic metals 27

Fabricated metal products 28

Machinery, NEC 29

Office, accounting, and computing machinery 30

Insulated wire, other electrical machinery 31

Electronic valves and tubes, telecommunication equipment 32

Scientific instruments 33

Motor vehicles, trailers, and semi-trailers 34

Building and repairing of ships and boats, aircraft, and spacecraft 35

Manufacturing nec, recycling 36–37

Table 6 Country of origin and destination

Country of Origin (14)

Austria, Belgium, Denmark, Estonia, Finland, France, Hungary, Italy, Netherlands, Norway,

Portugal, Spain, Sweden, United Kingdoms

Country of Destination (53)

Argentina, Australia, Austria, Belgium, Bangladesh, Brazil, Canada, Switzerland, Chile, China,

Cyprus, Czech Republic, Germany, Denmark, Spain, Estonia, Finland, United Kingdoms, Greece

Hong Kong, Hungary, Indonesia, India, Ireland, Iceland, Israel, Italy, Japan, Korea, Lithuania,
Latvia

Mexico, Malta, Malaysia, Netherlands, Norway, New Zealand, Philippines, Poland, Portugal,
Russia,

Saudi Arabia, Singapore, Slovakia, Slovenia, Sweden, Thailand, Turkey, Taiwan, USA,

Vietnam, South Africa

18 industries and their corresponding NACE codes. The countries included in our
sample are listed in Table 6. All gravity variables are taken from the database, which
was compiled by Centre d’Études Prospectives et d’Informations Internationales
(CEPII).
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Industry-Level Trade Integration

Our second approach to address the endogeneity of trade openness is to compute
a time-varying measure of industry-specific trade integration proposed by Chen
and Novy (2011). They derive a micro-founded measure of bilateral sector-specific
trade frictions measured as the inverse of bilateral trade integration. This measure
is derived from a model of disaggregated trade flows at the sector level in a gravity
framework, allowing trade costs to be heterogeneous across sectors. This measure is
shown to be consistent with a wide range of theoretical trade models. Empirically,
Chen and Novy (2011) regress it on a large set of observable trade cost proxies and
find that technical barriers to trade as well as high transportation costs associated
with heavy-weight goods are the most important factors in explaining the variation
in their bilateral trade integration measure.

Following Chen and Novy (2011), we compute the following for each industry:

θiodt = (
xioot · xiddt
xiodt · xidot )

1
2(σi−1) , (5.3)

where i denotes industry, o denotes origin country, d denotes destination country,
t denotes time, and x represents export flows. The more two countries trade with
each other, i.e., the higher xiodt ·xidot is, the lower the trade frictions, ceteris paribus.
Conversely, the more two countries trade domestically, i.e. the higher xioot ·xiddt , the
higher the trade frictions, ceteris paribus. Domestic trade in industry i is defined as
gross industry output minus total industry exports to the rest of the world. A higher
elasticity of substitution σi means that consumers are price sensitive; a small price
difference induced by bilateral trade costs can lead to a high ratio of domestic to
bilateral trade, resulting in a lower θiodt . The elasticity of substitution is taken from
Imbs and Mejean (2009). Therefore, θiodt not only captures bilateral trade barriers
but also a low degree of product differentiation. We take the weighted average of
θiodt across all trading partners d using the bilateral trade volumes as the weights
and then invert it, yielding a time-varying industry-level trade integration measure.

A Stochastic Frontier Production Model

We model the firm performance by means of a stochastic frontier production
function (Aigner et al. 1977). A frontier production function defines the maximum
output achievable, given the current production technology and available inputs. If
all firms in produce on the boundary of a common production set that consists of an
input vector with two arguments, physical capital (K) and labor (L), output of each
firm can be described as:

Y ∗
j iot = f (Kjiot , Ljiot , t;β) exp{vjiot }, (5.4)
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where Y ∗
j iot is the firm’s frontier (optimum) level of output; f and parameter vector

β characterizes the production technology; t is a time trend variable that captures
neutral technical change (Solow 1957); and vjiot is an i.i.d. error term distributed as
N(0, σ 2

v ), which reflects the stochastic nature of the frontier.
Some firms, however, may lack the ability to employ existing technologies

efficiently and therefore produce less than the frontier output. If the difference
between the optimum and actual (observable) output is represented by an expo-
nential factor, exp{−ujiot }, then the actual output, Yjiot can be written as Yjiot =
Y ∗
j iot exp{−ujiot }, or equivalently:

Yjiot = f (Kjiot , Ljiot , t;β) exp{−ujiot } exp{vjiot }, (5.5)

where ujiot ≥ 0 is assumed to be i.i.d., with a normal distribution truncated at zero
|N(0, σ 2

u )| and independent from the noise term, vjiot .20

To operationalize Eq. (5.5), we test different functional forms, and find that a
translog production function is preferred. Thus, the stochastic frontier production
specification function becomes:

lnYjiot = βi + β1 lnKjiot + β2 lnLjiot + 1
2β11 lnK2

j iot

+ 1
2β22 lnL2

j iot + β12 lnKjiot lnLjiot + γtDt

+ δ1 lnKjiotDt + δ2 lnLjiotDt + αX + vjiot − ujiot , (5.6)

where βi are firm-specific fixed effects, and X is a vector of country dummies. We
include a set of time dummies D—which also interact with the vectors K and L—
to encapsulate a general index of technical changes (Baltagi and Griffin 1988). We
estimate Eq. (5.6) using a true fixed effects model, following Greene (2007). In this
model, the fixed effects βi are allowed to be correlated with other parameters, but
are truly independent of the inefficiency and the error term.

Recent studies have shown that industries employ different technologies, and
are therefore likely to be characterized by different production frontiers (Bos et al.
2010). Imposing a common frontier across industries can create biased estimates of
the true underlying technology. Moreover, omitted technological differences may
be wrongly labeled as inefficiency (Orea and Kumbhakar 2004). We account for the
heterogeneity in production technology by estimating a separate frontier for each
of the 18 industries, and including country dummies. In other words, we assume
technology is industry-specific, with (limited) country-level variation. As a result,
we obtain efficiency and economies of scale for each firm that reflects the distance
to an industry-specific technology.

20When estimating Eq. (5.5), we obtain the composite residual
exp{υjiot }= exp{−ujiot } exp{vjiot }. Its components, exp{−ujiot } and exp{vjiot }, are identified
by the λ (=σu/σv) for which the likelihood is maximized (for an overview, see Coelli and Battese
2005).
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Two final aspects are worth noting regarding our approach. First, the production
frontier represents a set of maximum outputs for a range of input vectors. It is
defined by the observations from a number of firms in a specific industry at each
time period, in contrast to the conventional approach of assuming that the leading
firm constitutes the frontier (Cameron et al. 2005). Second, our approach treats
the frontier as stochastic through the inclusion of the error term ujiot , which
accommodates noise in the data and therefore allows for statistical inference. In
this respect, it differs fundamentally from other non-parametric frontier analysis.21

After obtaining the estimated parameters of frontier, the efficiency score for each
jiot is computed as the ratio of actual over maximum output, exp{−ujiot } = Yjiot

Y ∗
jiot

,

where (0 � exp{−ujiot } � 1 and exp{−ujiot } = 1 implies full efficiency.
The return to scale of each firm j in industry i in country o at time t is computed

by taking the derivative of the production function with respect to K and L in
Eq. (5.6) as follows:

scalejiot = β1 + β11 lnKjiot + β12 lnLjiot + δ1Dt︸ ︷︷ ︸
∂lnYjiot
∂lnKjiot

+ β2 + β22 lnLjiot + β12 lnKjiot + δ2Dt︸ ︷︷ ︸
∂lnYjiot
∂lnLjiot

. (5.7)

If scalejiot is equal to one, the production of the firm is subject to constant
returns to scale, referring to a situation where the output change is proportional
to the change in all inputs. If the value is larger (smaller) than one, this indicates
increasing (decreasing) return to scale, where output increases by more (less) than
that proportional change in inputs.

Data and Variables

The AMADEUS Database

We take the core data used in our analysis from the AMADEUS database. This is a
firm-level panel created by the Bureau Van Dijk Electronic Publishing (BvD), which
collects standardized commercial data from 50 regional information providers (IPs)

21Comprehensive reviews of frontier approaches can be found in Kumbhakar and Lovell (2003),
and Coelli and Battese (2005).
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across Europe. The AMADEUS 2007 edition, for example, covers more than ten
million private and public firms in 44 European countries.22 It not only contains
detailed information about the profile of companies, such as legal status, year of
incorporation, activity code, etc., but also includes financial information on standard
balance sheet and income statement items. The AMADEUS database comprises all
sectors with the exception of the financial sector and consists of observations for up
to 10 years per firm, although the coverage varies by industry and country.23 The
coverage improves significantly over time.

The AMADEUS database has several important advantages, which make it
especially well suited to our analysis (Gomez-Salvador et al. 2004). First, the data
collection process is fairly homogeneous, ensuring the comparability of results
across industries and countries. This overcomes the drawbacks of other cross-
country firm panels which are typically constructed using different sources of data
(administrative vs. survey), various units of measurement (firm vs. establishment),
inconsistent inclusion criteria (large firms vs. small firms), and uneven sector
coverage (manufacturing vs. service) and periods of observation (cross-section vs.
panel). Secondly, AMADEUS covers a large proportion of privately held firms,
which account for more than 99.5% of the total number of firms in the 2007
edition. Previous firm samples which only cover public/large firms are far from
representative and may have yielded misleading conclusions regarding the overall
behavior of firms. Therefore, the availability of data on private firms in AMADEUS
provides a better representation of the entire population of firms, which is the key
to measuring the intra-industry dispersion in a more accurate manner. Lastly, one
unique advantage of our sample is that the “attrition bias” has been corrected by
using different editions of the AMADEUS database. We are able to retrieve data
on firms that no longer exist in the current version, but did exist in the previous
editions.

Sample Selection

In constructing the sample for our analysis, we face a number of considerations.
First, having a sufficiently complete set of firms within each industry-country com-
bination is crucial in order to derive an accurate measure of dispersion. Additionally,
the choice of industry aggregation needs to be compatible with other industry data,
in particular industry-level trade and production data. A third consideration lies

22The AMADEUS database is supplied at three levels of coverage, depending on the number
of firms included, namely the Top 250,000 module, the Top 1.5 million module, and the All-
companies module. We use the All-companies module, which is the most complete version.
23Information on banks and insurance companies are not included in the AMADEUS database.
They are presented in two separated databases, i.e., BankScope and ISIS, provided also by BvD.
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in the fact that we require a relatively broad set of countries to ensure sufficient
variations in industry structural patterns. Last but not least, a longer time span is
preferred to show the effects of trade integration as this is a complex process that
requires time to develop.

Our main source is the 2007 edition of AMADEUS, which is the latest edition at
our disposal. We limit our sample to manufacturing firms, based on the premise that
manufacturing industries are more involved in trade and more responsive to trade
liberalization. We aggregate these firms into 18 industries. We follow additional
steps to complete our sample. We correct for attrition bias by obtaining data
from previous editions of AMADEUS on exiting firms that no longer exist in the
current edition. For example, we compare the 2007 edition with the 2006 edition
of AMADEUS and detect the firms which are included in the 2006 edition, but
no longer in the 2007 edition. We then retrieve data on those firms from the 2006
edition. Similarly, data on those firms that exited in 2006, but remained active in
2005 are extracted from the 2005 edition. The same procedure is repeated between
three other pairs, i.e., the 2005 and 2004 editions, the 2004 and 2003 editions, and
the 2003 and 2002 editions.24 Following this step, we have assembled the data
on a series of exiting firms that are not overlapping with those in 2007 edition.
The combination of the main source, together with these non-overlapping firms
ensures the unique coverage of our sample.25 We find that on average, the exit rate
is between 5 to 10% on an annual basis.26

We apply several exclusion restrictions to our sample. First, our frontier esti-
mation requires firms to have some basic information in their annual accounts.
Specifically, we drop all firm-year observations where input (capital, labor) and/or
output (value added) information is missing. The reasons for dropping these non-
reporting firms are twofold (Klapper et al. 2006). One, there could be country
differences in the criteria for including firms with no account information. The other
reason is that this restriction eliminates any “phantom” firms established for tax

24The 2002 edition is the earliest edition in which AMADEUS substantially improves its coverage
by including private firms; editions prior to 2002 only covered listed firms. As the coverage of
firms increases from 200,000 in the 2001 edition to 3,500,000 in the 2002 edition, this makes prior
data less comparable in this respect.
25In order to maximize the time-series dimension, we also retrieve some observations in 1994,
1995 and 1996 from the 2004, 2005, and 2006 editions, respectively. Since company accounts are
typically published annually at the end of March, the AMADUES 2007 edition records data for the
10 years from 1997 to 2006. Thus, we extract additional data going back to 1996 from the 2006
edition, and similarly, to 1995 from the 2005 edition and 1994 from the 2004 edition. However, the
quality of the early data is rather poor and we decide to begin our sample in 1997.
26Arguably, the AMADEUS database may be subject to selection bias as well. Since it is not census
data, there is no legal commitment for firms to provide information. Firms can self-select into the
sample or stay out, as, for example, in the case of small and medium sized German firms which
are not legally required to disclose (Gomez-Salvador et al. 2004). However this bias appears to be
less severe, as coverage of most firms in Europe is provided—i.e., 95% guaranteed by the IPs.
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or other purposes. Secondly, to minimize measurement error in the data, we also
drop firms where the absolute value of either the output or the input growth rate is
above 500% over the entire sample period. Next, we exclude consolidated accounts
if firms also have unconsolidated accounts, to avoid double counting.27 After data
cleaning, our final sample consists of 390,350 firms in 14 countries over the 1997–
2006 period.

Variable Definitions

To estimate the stochastic frontier, we require data on firm output (Y ), capital (K),
and labor (L) from the AMADEUS database. We take gross value added as the
preferred measure of firm output.28 Since value added is measured in local currency
units at current prices, we apply an industry-level value added deflator extracted
from the EU KLEMS database and convert each series to constant prices based on
the year 1995. For cross-country comparisons, we then use purchasing-power parity
(PPP) exchange rates, taken from the Penn World Table, Version 6.3 (PWT 6.3) to
convert the local currency measures into 1996 international PPP dollars.

We construct capital stocks using data on tangible fixed assets in local currency
at current prices. Next, we use a gross fixed capital formation (GFCF) deflator,
extracted from the EU KLEMS and AMECO database, and a PPP exchange rate,
taken from PWT 6.3, to convert each series.29 We take the number of employees as
the labor input.

27The accounting practice in AMADEUS is classified into six types. (1) Consolidated accounts
C1—accounts of the company headquarters of a group, aggregating all companies belonging to
the group (affiliates, subsidiaries, etc.), where the company headquarters has no unconsolidated
account. (2) Consolidated accounts C2—accounts of the company headquarters of a group,
aggregating all companies belonging to the group (affiliates, subsidiaries, etc.), where the company
headquarters does have an unconsolidated account. (3) Unconsolidated accounts U1—accounts
of a company with no consolidated accounts. (4) Unconsolidated accounts U2—accounts of a
company which does have a consolidated account. (5) Limited number of financial items LF—
accounts of a company with only a limited number of information/variables included. (6) No
financial items at all NF—accounts of a company with no financial items/variables included.
Therefore, we drop firms with the type C2.
28Value added is defined as total staff costs plus depreciation plus profit before tax. We impute
some missing value-added data using this formula. We have also calculated an alternative measure
of value added without depreciation. However, the two measures are highly correlated (correlation
coefficient 0.88) and results using both measures are quantitatively similar.
29We use the industry-level GFCF deflator from the EU KLEMS database whenever it is available.
Otherwise, we employ the country-level GFCF deflator from the AMECO database instead.
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Robustness Checks

Our robustness tests are included in Table 7 below.

Table 7 Robustness tests

Panel A: normalized industry value added as the dependent variable

Natural openness Trade integration

High-potential Low-potential High-potential Low-potential

Kernel

T 0.871 (0.240)*** −0.089 (0.074) 0.513 (0.285)* −0.252 (0.065)***

T 2 −0.098 (0.019)*** −0.023 (0.008)** −0.159 (0.443) 0.116 (0.052)**

Output
per
worker

0.237 (0.069)*** 0.226 (0.022)*** 0.395 (0.069)*** 0.283 (0.023)***

Constant −0.005 (0.015) 0.000 (0.016) 0.004 (0.015) 0.000 (0.002)

Sorting

Scale
dispersion

8.995 (7.629) Reference 2.718 (8.316) Reference

Efficiency
dispersion

5.260 (1.228)*** Reference 5.334 (1.210) *** Reference

Initial
scale level

10.256 (0.999)*** Reference 10.111 (0.987)*** Reference

Initial
efficiency
level

−1.062 (1.869) Reference −0.544 (1.852) Reference

Constant −27.643 (7.816)*** Reference −21.529 (8.379)** Reference

Prior class
probabil-
ity

0.129 0.871 0.123 0.877

Panel B: 10/90 ratio as the dispersion measure

Natural openness Trade integration

High-potential Low-potential High-potential Low-potential

Kernel

T 0.716 (0.222)*** −0.158 (0.066)** 0.389 (0.320) −0.260 (0.061)***

T 2 −0.087 (0.018)*** −0.017 (0.007)** −0.438 (0.576) 0.077 (0.048)

Output per
worker

0.247 (0.067)*** 0.216 (0.021)*** 0.405 (0.071)*** 0.288 (0.014)***

Constant 0.001 (0.016) 0.000 (0.016) 0.008 (0.017) −0.000 (0.002)

Sorting

Scale
dispersion

1.924 (4.721) Reference 0.321 (5.347) Reference

Efficiency
dispersion

0.881 (0.381)** Reference 0.844 (0.444) ** Reference

Initial
scale level

13.675 (1.351)*** Reference 14.678 (1.454)*** Reference

(continued)
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Table 7 (continued)

Panel C: standard deviation as the dispersion measure

Natural openness Trade integration

High-potential Low-potential High-potential Low-potential

Initial
efficiency
level

−3.189 (1.871)** Reference −2.558 (2.536) Reference

Constant −18.078 (5.341)*** Reference −18.140 (5.974)*** Reference

Prior class
probabil-
ity

0.091 0.909 0.072 0.928

Kernel

T 0.749 (0.235)*** −0.148 (0.066)** 0.411 (0.335) −0.281 (0.062)***

T 2 −0.089 (0.019)*** −0.018 (0.007)** −0.489 (0.613) 0.065 (0.048)

Output
per
worker

0.250 (0.069)*** 0.213 (0.020)*** 0.409 (0.073)*** 0.284 (0.021)***

Constant 0.000 (0.001) 0.000 (0.001) 0.006 (0.017) 0.000 (0.000)

Sorting

Scale
dispersion

19.047 (12.971) Reference 18.461 (15.325) Reference

Efficiency
dispersion

−3.408 (2.799) Reference −4.126 (3.073) *** Reference

Initial
scale level

13.164 (1.328)*** Reference 14.820 (1.515)*** Reference

Initial
efficiency
level

−3.148 (1.910)* Reference −2.084 (2.604) Reference

Constant −14.528 (1.987)*** Reference 17.346 (2.675)*** Reference

Prior class
probabil-
ity

0.080 0.920 0.061 0.939

Standard errors in parentheses; significance at the 10/5/1% level (*/**/***); Natural openness based
on Di Giovanni and Levchenko (2009); Trade integration based on Chen and Novy (2011); HP is
high-potential industry, LP is low-potential industry
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Expansionary Investment Activities:
Assessing Equipment and Buildings
in Productivity

Jasper Brinkerink, Andrea Chegut, and Wilko Letterie

Abstract We study firm-level expansionary investment activities in both equip-
ment and buildings—the so-called investment spikes. Our identification strategy
decomposes firm investment spikes into three streams: a spike in equipment only,
buildings only, or a simultaneous spike. Empirically, we find that the timing and size
of investment in equipment and buildings are not independent. Firms conducting a
simultaneous spike enhance firm scale more than in the case of a spike in equipment
or buildings alone. Employment growth occurs when a firm builds structures.
Investment in equipment affects the optimal input mix and high productivity in
equipment and buildings provides investment timing signals. In low-tech sectors
firm production growth depends on investment in buildings. In contrast, a necessary
condition for firms in high-tech sectors to grow their production is investment in
equipment.

Keywords Investment spikes · Equipment · Buildings · Interrelation · Scale ·
Productivity · Input mix · Efficiency · Low- and high-tech · Labour intensity

1 Introduction

Buildings are an important production factor; they house employees and shield
equipment. In this chapter we investigate whether investment in structures drives
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employment, production technology, and firm capacity in manufacturing industries,
and also distinguish industries by research and labour intensity. Our empirical
results inform investment in buildings and equipment is interrelated—the timing
and size of investment in equipment and buildings are not independent phenom-
ena. We also find that adding investments in buildings to a firm’s decision set
improves understanding of key firm-level performance and production metrics. Our
conclusion is that to properly understand firm-level production processes one should
incorporate investment in buildings.

Capital adjustment patterns are lumpy. Generally, annual firm investment activity
is low until there is an investment trigger. Then, evidence suggests, firms experience
investment spikes (Doms and Dunne 1998; Cooper et al. 1999; Caballero et
al. 1995). This investment pattern holds internationally (Nilsen and Schiantarelli
2003; Letterie and Pfann 2007) and for expansionary investment and capital
replacement (Letterie et al. 2010). Economically, these irregular investment patterns
have implications for understanding the dynamic behaviour of micro-level invest-
ment decisions by firms and may have implications for macroeconomic activity
(Caballero et al. 1995; Caballero 1999; Caballero and Engel 1999; Bachmann et
al. 2013) or not (Thomas 2002).

A nascent literature investigates investment in equipment to understand its
triggers and economic productivity after investment spikes occur. Empirical analysis
is consistent with the notion of firm expansion. At the time of an investment burst,
both output and the number of employees increase (Sakellaris 2004; Nilsen et al.
2009). Firms also invest in the latest technologies incorporated in equipment to
stave off economic obsolescence (Goolsbee 1998), to adopt changes in production
technology (Klassen and Whybark 1999), or derive a new optimal mix between
labour and capital (Acemoglu 2015; Dunne et al. 1989; Hémous and Olsen 2013).
Moreover, subsequent to the investment spike, firms may anticipate improved
productivity, but quite some economists have found that there is no improvement
in labour productivity (Power 1998; Sakellaris 2004; Nilsen et al. 2009). This
phenomenon may point at a “missing link” between technology, investment, and
productivity (Power 1998).

We have learned that microeconomic models of firm behaviour need to incor-
porate fixed adjustment costs, investment irreversibility, and/or indivisibilities to
be able to replicate the behaviour observed in firm investment data (Cooper and
Haltiwanger 2006; Bloom 2009; Asphjell et al. 2014). In this way, these studies
inform the extensive margin in microeconomic investment. A caveat of this area of
research is the sole focus on identifying investment in capital equipment, but not
other components of capital that are factors of production.

This chapter explores the consequences of firm-level investment spikes in pro-
ductive capital, like equipment, and non-productive capital, like buildings. Hence, in
our study we also investigate the impact of investment spikes concerning structures.
By doing that, we (1) separate expansionary investment from that of replacement—
which further calibrates the extensive margin; (2) identify distinct investment
profiles of the firm—in buildings, equipment, or a simultaneous spike of both. By
broadening the examination of how the composition of firms’ investment spikes
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(equipment, buildings, and both) affects the scale of production and employment,
productivity, the input mix, and operational efficiency we aim to contribute to the
goals of the productivity literature (Sickles and Zelenyuk 2019) and the role of
buildings in microeconomics.

To disentangle the drivers and implications of firms’ investment composition,
we use yearly data from Statistics Netherlands (CBS) concerning 652 firms for the
2000–2008 period. We investigate firm-level investment decisions and production
statistics for manufacturing industries in the Netherlands. Firm-level data allows us
to identify when an investment spike in either equipment or buildings occurs and
when a simultaneous spike occurs in both buildings and equipment. Our empirical
strategy reveals individual firm’s microeconomic activity before and after an episode
of intense capital adjustment. To obtain more detailed insight we follow Robertson
et al. (2009) and Czarnitzki and Thorwarth (2012) in accounting for differences
across high- and low-tech sectors. Similar to Ramirez et al. (2005), we assess firms
by industry labour intensity to understand variation in the cross-section by low,
medium and high labour intensity.

Identifying investment spikes in buildings and equipment has implications for the
productivity literature. First, the extensive margin of firm investment activity can be
decomposed further. We observe that 14% of the datapoints concern spikes related
to capital equipment expansion. However, single equipment investment spikes,
not coinciding with spikes in buildings, are observed in 11% of the observations.
Thus, neglecting simultaneity of spikes in buildings and equipment represents
inadequately the breadth of the extensive margin. In fact, we show that about 20%
of the equipment spikes, i.e. those that concur with building spikes, have a very
different character according to our empirical results.

Second, the decomposition further calibrates the intensive margin. A measure
of the investment size is more informative when including both expenditures on
buildings and equipment. Our empirical results document that firms who signal
expansion through simultaneous investment spikes in both buildings and equipment
experience a higher post investment expansion in production and number of workers
than firms that experience a spike in either equipment or buildings only. However,
the results also reveal that large investments do not improve firm-level productivity.
Instead high productivity acts as a signal of when to invest. What we observe is
that before an investment takes place firm productivity is high and afterwards it
decreases. Our results also suggest investment in equipment tends to increase the
employee wage rate at a firm on average; based on this result we infer that firms
buying new machinery display an increase in the skilled worker ratio. Likewise
we deduce firms investing in structures hire more unskilled workers. Furthermore,
when firms invest in equipment, the labour intensity decreases as well. These
latter findings suggest that capital investments also affect the production technology
employed by the firm.

Finally, our empirical study highlights that production processes are fundamen-
tally different across industry sectors. Firms in high-tech sectors rely more on
investment in equipment to be able to grow, whereas companies in low-tech sectors
need investment in buildings to be able to expand.
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The paper proceeds with providing a theoretical grounding in Sect. 2. Next,
Sect. 3 describes the data isolating details on firm-level panel data, our investment
spike identification strategy. We outline our methodology including our model of
investment spikes and estimation strategy in Sect. 4. In Sect. 5, we report empirical
results and in Sect. 6 an industrial cluster analysis. Finally, we discuss our findings
in relation to the investment literature in Sect. 7.

2 Theoretical Grounding

Our analysis is based on the notion of investment spikes. Spikes represent large
capital expenditures. We aim to identify these as they reflect major retooling or
expansionary efforts of a firm. In Appendix 2, we show under which conditions
lumpy investments take place. If the evolution of input factors is characterized by
the occurrence of spikes, we expect that the production level of the firm will increase
substantially upon large investment, especially if more types of capital goods are
adjusted at the same time. A CES production technology, i.e.

Yt = φtL
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(
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t

)ρ)β/ρ
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yields this prediction. We also expect that if investment in equipment and stuctures
is interrelated and if at least one of them is subject to fixed adjustment costs, other
input factors will display a lumpy adjustment pattern as well (Abel and Eberly
1998). It is likely that if the firm buys capital, the number of workers will increase.
This can be seen as follows. Let pt = ϕt(Yt)−1/ε denote an isoelastic demand
function whereε > 1 and the wage is given by wt. Assuming labour is a flexible
input factor, the optimal number of employees Lt is determined by maximizing
ptYt − wtLt. The first-order condition is given by:
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As ε(α − 1) − α < 0 with higher stocks of capital, the number of workers needs
to increase as well to restore equality of the first-order condition.

Power (1998) investigated whether investment affects productivity of a firm.
When investment embodies more recent technology available in the market one
would expect that over time productivity will increase (Jovanovic and Nyarko
1996). There may be a delay in improved productivity, in that firms need to learn
about the new technology. Technology specific human capital may be lost when
new machines are present. However, results by Abel and Eberly (1998) imply that
factor productivity is a signal for a firm of when to invest. If productivity is high,
meaning that the level of input (capital) is low relative to the level of output, this
signals the firm is running at high capacity and that it may be sensible to start
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investing. In Appendix 2, we also show that investment in buildings, for instance,
is driven by expectations about its future productivity. Hence, investment tends
to become more likely if the firm expects higher future productivity. If current
productivity is high and also transmits into high future productivity, for instance,
due to persistent technology shocks φt being governed by an autoregressive process,
current productivity acts as a signal for a firm of when and how much to invest.
Obviously, immediately after investment productivity will be lower. For this reason
it may be difficult to investigate investment causing productivity.

We investigate the dynamics of productivity surrounding major investment events
at the firm level to determine whether productivity acts as a signal for the firm
of when to invest or whether it is possible to see improvements in productivity
after investments. Note that our framework discriminating between buildings and
equipment is more suitable to do that. We will be able to separate expansionary
from replacement investment, assuming that investing in equipment alone represents
replacing older with newer technology. In addition, we distentangle operating
expenditures in buildings from that of large scale capital expenditures or new
development.

Investment may not only affect the scale of a firm’s operations or firm productiv-
ity. It may also imply production technology changes when new capital enters the
firm (Acemoglu, and Restrepo 2020, Acemoglu 2015; Dunne et al. 1989; Hémous
and Olsen 2013). For instance, upon investment the parameters of the production
function depicted in Eq. (1) may change, which potentially affects the optimal
mix of input factors or productivity of input factors. In our study we explore this
issue in two different ways. First, we aim to analyse average wage costs. Changes
in the average wage signal either changes in the composition of the workforce
or changes in labour productivity. Second, we assess how investment types affect
capital intensity of firms. The final issue we address in our study is whether major
investment episodes affect the cost efficiency experienced by firms.

3 Data Description

Statistics Netherlands (CBS) annually collects data on production statistics and
investment figures at the firm level. Specifically, a random selection of all Dutch
companies employing less than 50 people is sent questionnaires and all Dutch
firms with 50 or more employees receive a survey.1We merge the annual data sets
on production statistics and investments of the manufacturing sector using a firm
specific identifier, resulting in a panel for 2000–2008. Importantly, we aim to capture
regular firm investment intensity dynamics and not extreme events like divestments

1Detailed information (in Dutch only) on sampling strategies and collection methods of Statis-
tics Netherlands can be retrieved from http://www.cbs.nl/nl-NL/menu/themas/industrie-energie/
methoden/dataverzameling/korte-onderzoeksbeschrijvingen/productie-statistiek.htm.

http://www.cbs.nl/nl-NL/menu/themas/industrie-energie/methoden/dataverzameling/korte-onderzoeksbeschrijvingen/productie-statistiek.htm
http://www.cbs.nl/nl-NL/menu/themas/industrie-energie/methoden/dataverzameling/korte-onderzoeksbeschrijvingen/productie-statistiek.htm
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or mergers. To do so, we analyse a balanced set of panel data (cf. Letterie et al.
2004). In this way, the balanced panel conservatively controls for firm entry and exit,
major (dis)investment decisions like mergers, acquisitions, bankruptcies, and/or
geographic relocations. Moreover, as we want to assess empirical data, imputed
observations are deleted. The panel data set isolates investment behaviour for a
9 year period, concerning 652 firms and for a total of 5868 yearly investment
observations.2

3.1 Identifying Investment Spikes

In line with the literature, we identify an investment spike as the investment ratio of

a firm i in year t,
I zit
Kz
it

, that exceeds the median investment ratio of that firm by an

investment threshold (Power 1998). An investment spike is identified as follows:

Szit =
{

1 if
[
I zit
Kz
it

> θ · median
τ

(
I zit
Kz
iτ

)
and

I zit
Kz
it

> δz
]

0 otherwise
, (3)

where I is the financial capital investment, K is the existing physical capital stock
of firm i for investment in capital type z. The variable z represents investment
in equipment, E, or buildings, B.3 Importantly, we exogenously define θ as the
investment threshold factor. We set the value of θ = 1.75.4 Based on the latter,

if a firm does not invest at all (i.e.,
I zit
Kz
it

= 0) in at least 5 out of 9 observed

years t, even a miniscule investment in any of the remaining years will classify
as an investment spike, since the median investment rate will be 0. To remain
conservative, we therefore incorporate a second condition in our investment spike
definition. Specifically, the investment rate should also exceed the depreciation
ratio for the asset in casu. The depreciation ratio is denoted by δz. A strictly
positive number for depreciation tends to limit the number of spikes in buildings

because of the restriction
I zit
Kz
it

> δz in the spike definition. For buildings we

set depreciation at 0.02, which is fairly conservative for the commercial building
sector in Europe (Bokhari and Geltner 2018; Bokhari and Geltner 2014; Chegut et

2To prevent potential contamination of our findings by extreme outliers, we decided to remove the
1% largest investment ratios to obtain the final data.
3The appendix documents our calculations for assessing the initial physical capital stock K.
4We have tested three values for θ , a low (1.75), medium (2.5), and high (3.25) threshold (cf. Power
1998). Our empirical results are robust to the θ value.
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al. 2015). Following Letterie and Pfann (2007), who also employ Dutch data for
equipment, the depreciation rate is set at 0.05.5,6

Investment spikes may signal significant expansion when investment in both
buildings and equipment occurs, and may have important consequences in identi-
fying changes in productivity, firm scale, input mix, and operational efficiency. To
measure significant expansion, we include a simultaneous investment spike variable:

SCit =
{

1 if
[
SBit = 1 and SEit = 1

]

0 otherwise
(4)

So, the variable SCit identifies the event of a simultaneous spike.
Table 1 documents the descriptive statistics for the investment spikes in buildings,

equipment, or simultaneously in both. We have 5868 observations from general firm
investments, representing general capital expenditures on equipment and buildings.
According to Table 1 our assumptions imply that the frequency of equipment spikes
is somewhat larger than that of the spike frequency of buildings. This is consistent
with the notion that equipment is a more flexible input factor than structures. In
fact, in our dataset firms abstain from investing in buildings far more often than
they refrain from investing in equipment. More specifically, we observe 2896 year
observations without building investment (i.e., in roughly 49% of the observations)
and only 552 year observations without investment in equipment (i.e., about 9%).
In case we also add the simultaneous spikes to the spikes in equipment we observe
a ratio of about 14% in equipment spikes. Hence, the equipment spike frequency is
in line with Power (1998) who observes investment spikes in equipment in 13.6%
of her observations for a θ of 1.75.7

The average investment rate of firms in buildings is 1.0% and for equipment
about 5.9%. The average investment rate in the single spike regimes is 6.8% for
buildings and 21.6% for equipment. Noticeably, the average rate of investment
increases with the occurrence of a spike. The occurrence of a simultaneous
investment spike in buildings and equipment we observe in 3% of the sample. The
average conditional investment rates are at their largest across the sample, 7% and

5Our depreciation rates for buildings and equipment are consistent with the geometric depreciation
approach employed by the US Bureau of Economic Analysis calculating the depreciation rate
dividing the declining balance rate by the service life using the information provided by Görzig
(2007) and van den Bergen et al. (2009).
6Following a helpful suggestion by one of our reviewers we tested the robustness of our results to
a higher equipment depreciation rate (12.6%), based on rates used by the US Department of Labor,
Bureau of Economic Analysis (see Feenstra et al. 2015, Online Appendix Table 2). Although the
coefficients tend to be slightly (though not significantly) larger, in terms of sign and significance
the results are stable.
7Various studies have also employed an absolute spike definition. For instance, one may define a
spike to realize if the investment rate exceeds 0.2. We have a relative spike definition, because the
absolute spike definition is not well suited for capturing spasmodic investment bursts that cannot
be seen as large in an absolute sense (Power 1998).
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Table 1 Descriptive statistics investment rates

Investment rate Observations Percentage of total (N = 5868) Mean Std. dev.

All observations

Rate buildings 5868 100% 0.010 0.028
Rate equipment 5868 100% 0.059 0.105

Building spikes

Rate buildings 486 8% 0.068 0.054
Rate equipment 486 8% 0.046 0.066

Equipment spikes

Rate buildings 651 11% 0.004 0.007
Rate equipment 651 11% 0.216 0.171

Simultaneous spikes

Rate buildings 155 3% 0.070 0.047
Rate equipment 155 3% 0.240 0.199

This table documents the distribution of investment rates for all observations and spikes in
buildings, equipment, and simultaneous. Percentage of total is a frequency measure representing
the number of data points observed

24% for buildings and equipment, respectively, when simultaneous investments in
both buildings and equipment are identified.

3.2 Identifying Firm Scale, Productivity, and Efficiency

Table 2 documents the mean and standard deviation of firm scale operations,
productivity, and operational efficiency under the scenarios of (1) all observations,
(2) no investment spikes, and in case of (3) single spikes in buildings, (4) single
spikes in equipment and (5) simultaneous spikes. The variables used in the empirical
analysis as dependent variable have received a natural log transformation.8

We measure the scale of firm operations by production output (firm revenues) and
the number of workers (full time equivalent, i.e., FTE). For estimation, production
has been deflated by the producer price index (PPI) for the industrial sector to
reflect real production.9 Conditional on firms making an investment spike, the mean
statistics for levels and natural logarithms suggest it is larger firms that experience an
investment spike involving equipment (a single equipment spike or a simultaneous
spike).

Micro-level productivity is measured by dividing output by the number of
workers, the stock of buildings or the stock of equipment. In the cross-section, we

8Kernel density plots of all natural log-transformed dependent variables available upon request
from the authors show near-perfect normal distributions.
9All these indices were retrieved from the Statistics Netherlands (CBS) Statline online datacenter.
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see productivity of equipment and labour conditional on observing an equipment
spike is high. We also measure features of the overall production technology, or
to put it differently, the mix of physical capital and labour. A number of variables
provide information in this respect. Our data do not provide a distinction between
various types of workers, but to measure the composition of the work force we
employ the average real wage per worker of the firm.10 We expect lower values of
this variable to indicate that a firm hires relatively more unskilled employees. We
identify the mix between capital and labour by dividing the stock of buildings and
the stock of equipment by the number of workers. Table 2 reveals spikes involving
equipment are associated with firms paying higher wages on average. The latter
observation may hint at relatively more skilled workers employed by firms that
increase the stock of equipment (together with structures).

The final variable we analyse accounts for the overall efficiency of the firm:
the ratio of total costs to sales. Within the cross-section, the efficiency variable
is considerably constant at about −0.07 over the observed period regardless of
investment activity. In the next section we depict our methodology by which we
can analyse the dynamic consequences of investment activity.11

4 Methodology

In our analysis of investment spike consequences for some firm-level metrics—
production and employment scale as well as productivity, the input mix, and firm
efficiency—as denoted by DVit, we adhere to the following model:

DV it = μi + αi +
∑

z∈{B,E,C}
β ′
zX

z
it + εit , (5)

where μi is a firm specific time-invariant effect.12 Furthermore, αt is a year dummy
vector (2001–2008, base year is 2000) that captures potential macro-economic
shifts. The idiosyncratic error is given by εit. Based on earlier work by Sakellaris
(2004), Letterie et al. (2004), and Nilsen et al. (2009), Xz

it is an independent variable
vector. It identifies the relative position of the firm in a series of annual observations
around investment spikes for both capital types (i.e., buildings where z = B and
equipment where z = E), as well as for an event named a simultaneous spike, z = C,
where a simultaneous investment spike in buildings and equipment takes place (i.e.,

10Labour costs have been deflated by the wage development index for the industrial sector obtained
from Statistics Netherlands (CBS) Statline online datacenter.
11A table with correlations of variables used in the empirical analysis is available upon request.
12The fixed effect controls for heterogeneity due to, for instance, cross sectional variation in
managerial ability, local input market conditions, and strategic interaction at output markets
unobserved to the econometrician.
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where SBit = SEit = 1). It behaves as described below:

[
XB
it

]
=

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

XB
1it

XB
2it

XB
3it

XB
4it

XB
5it

XB
6it

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

(
1 − SBit

) (
1 − SBit+1

)
SBit+2

(
1 − SEit+2

)
(
1 − SBit

)
SBit+1

(
1 − SEit+1

)

SBit

(
1 − SEit

)
(
1 − SBit

)
SBit−1

(
1 − SEit−1

)
(
1 − SBit

) (
1 − SBit−1

)
SBit−2

(
1 − SEit−2

)
(
1 − SBit

) (
1 − SBit−1

) (
1 − SBit−2

) · max
τ≤t−3

{
SBiτ

}

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(6)

[
XE
it

]
=

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

XE
1it

XE
2it

XE
3it

XE
4it

XE
5it

XE
6it

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

(
1 − SEit

) (
1 − SEit+1

)
SEit+2

(
1 − SBit+2

)
(
1 − SEit

)
SEit+1

(
1 − SBit+1

)

SEit

(
1 − SBit

)
(
1 − SEit

)
SEit−1

(
1 − SBit−1

)
(
1 − SEit

) (
1 − SEit−1

)
SEit−2

(
1 − SBit−2

)
(
1 − SEit

) (
1 − SEit−1

) (
1 − SEit−2

) · max
τ≤t−3

{
SEiτ

}

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

(7)

[
XC
it

]
=

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

XC
1it

XC
2it

XC
3it

XC
4it

XC
5it

XC
6it

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

(
1 − SCit

) (
1 − SCit+1

)
SCit+2(

1 − SCit

)
SCit+1

SCit(
1 − SCit

)
SCit−1(

1 − SCit

) (
1 − SCit−1

)
SCit−2(

1 − SCit

) (
1 − SCit−1

) (
1 − SCit−2

) · max
τ≤t−3

{
SCiτ

}

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(8)

For z{B, E} Xz
1it takes the value 1 if a spike occurs in year t + 2 for investment in

asset z, but not a spike of the other kind, and no spikes of asset z occur in years t and
t + 1. In this case, the variable will be 0 otherwise. For z = C,XC

1it takes the value 1
if a simultaneous spike occurs in year t + 2, but not in t and t + 1. The variables with
the sub-index 2 measure how a dependent variable behaves 1 year before a specific
investment spike. Xz

2it , z ∈ {B,E} takes the value 1 if a spike of the asset z (but
not of the other kind of asset) occurs in year t + 1, but not in year t; it takes value 0
otherwise. XC

2it is 1 if a simultaneous spike occurs in year t + 1, but not in year t. To
measure changes in the dependent variable at the time of a spike we define variables
with the sub-index 3. Xz

3it , z ∈ {B,E} takes the value 1 if a spike of type z occurs
in year t, and there is no spike of the other kind in t and it will be 0 otherwise. If
z = C, XC

3it is 1 if a simultaneous spike occurred in year t. The variables Xz
4it and

Xz
5it function like Xz

2it and Xz
1it , with the difference that it concerns a spike in year

t − 1 (t − 2) rather than t + 1 (t + 2). Hence these variables identify what happens
1 and 2 years after a spike event, respectively. Finally, Xz

6it takes the value 1 if a
spike took place before year t − 2, but not in t − 2, t – 1, and t. This last variable
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therefore captures the effect of investment spikes that occurred at least 3 years and
at most 8 years (i.e., in case a firm experiences an investment spike in 2000 and no
subsequent spikes are observed for that firm) in the past.

After performing Hausman tests on all models, all dependent variables DVit

except for total costs/sales required a fixed effects specification. For comparability
reasons, we therefore decided to apply a fixed effects specification for all dependent
variables. The models are estimated using fixed effects, within estimators. Time-
invariant variables are omitted from the model due to differencing fixed effects.
Hence, we abstract from such variables.13

In our estimations of Eq. (3), the regression coefficients βz obtained for
independent variables Xz

it , z ∈ {B,E,C} identify what happens to any dependent
variable DVit for firms i that find themselves in the situation described by the specific
variable, relative to firms that do not. Note that due to the fixed effects specification
the estimates compare the within variation of the dependent variable across various
types of investment experiences of firms. The dependent variables are in natural
logarithms. The βz coefficients thus indicate percentage differences in the dependent
variable between firms that are, and firms that are not in situation Xz

it . For instance,
if the dependent variable is the natural logarithm of production in year t and the
parameter estimate for XC

3it receives a value of 0.01, then relative to a firm that
does not conduct a (simultaneous) spike, a firm that simultaneously does invest in
equipment and structures experiences an output level 1% higher than its mean.

5 Empirical Results

In Fig. 1 and Table 3 we depict the results of an analysis to determine to what
extent investment rates are interrelated.14 We observe from the figure that at the
time of an investment spike in either buildings or equipment the investment rate of
the other investment component is significantly higher. Especially at the time of a
spike in buildings the rate of investment in equipment is higher by almost 4% points.
Strikingly, the figure depicts, that firms on average start to invest in equipment
already 2 years before the firm builds new structures. Perhaps before expanding
the firm first replaces older machinery or uses its existing buildings more efficiently.
Once the firm is more certain about future growth prospects, it also decides in favour

13Within our analysis, within estimators in principle should be more efficient than first differencing,
assuming that the idiosyncratic error terms εit are i.i.d. Since we do not (for example) include any
lagged variables in the regression, we think this should be a safe assumption after averaging out
the fixed effects. Note, we do not intend to estimate a model obtaining causal insights. We rather
aim at obtaining insight of a descriptive nature regarding dynamic patterns of some key firm level
variables.
14To avoid endogeneity issues in the analysis where investment rates are dependent variables, the

vectors XB
it and XE

it have been constructed such that
(

1 − SEiq

)
= 1 and

(
1 − SBiq

)
= 1 for q ∈

{−2, . . . , 2} respectively.
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Fig. 1 Interrelation between investment types. This figure depicts investment rate of either
equipment or buildings before, during, and after the investment spike in the other investment type.
The vertical axis represents the difference relative to firms that experienced no spike event. Markers
represent estimates significant at p < 0.10 level (two-tailed)

of more risky and larger investments by investing simultaneously in buildings and
equipment. These results suggest that investments in equipment and buildings are
interrelated in the sense that the timing of these decisions is not independent. Using
country level data Garcia-Belenguer and Santos (2013) find evidence of interrelation
as well. The firm-level data employed in our paper allow identification of a richer
dynamic interaction between investment in buildings and equipment.

Our previous discussion of the shadow value of investment in Eq. (10) is in line
with these findings. There we argued that investments are interrelated through the
production technology. In fact, investment in one type of capital tends to raise the
marginal profit of the other type, making it more likely to conduct simultaneous
investment. Or, if the firm invests in only one type, it becomes more likely that in
the near future the firm also invests in the other type of capital. Figure 1 confirms
these thoughts.

Empirical results for the estimation of Eq. (14) are presented in Table 4. The
table reports the coefficients and statistical significance at the 1%, 5%, and 10%
levels. The dependent variables outlined in Sect. 3 are on the horizontal axis and the
independent timing variables are on the vertical axis for buildings, equipment, and
for simultaneous spikes.

5.1 Changes in Scale: Production and Employment

Table 4 documents the differences in production and number of workers—FTE
employees—across the investment spike horizon in Columns (1) and (2). Figure 2
depicts these changes—2 to 1 years before an investment spike, the year of the
investment spike, 1–2 years after the investment spike as well as three or more years
after the investment spike. First, in Column (1) production increases significantly
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Table 3 Interrelated investment

(1) (2)
IB

KB
IE

KE

VectorXB
it Buildings

XB
1it 2 years before spike 0.018***

XB
2it Year before spike 0.020***

XB
3it Year of spike 0.038***

XB
4it Year after spike 0.005

XB
5it 2 years after spike −0.001

XB
6it At least 3 years after spike 0.001

VectorXE
it Equipment

XE
1it 2 years before spike −0.002

XE
2it Year before spike 0.000

XE
3it Year of spike 0.008***

XE
4it Year after spike 0.004***

XE
5it 2 years after spike 0.000

XE
6it At least 3 years after spike 0.001

This table presents the results of the estimation parameters for the impact of investment spikes
in equipment and buildings. Dependent variables across regressions are on the horizontal row.
Dependent variables: (1) Investment rate of buildings and (2) investment rate of equipment. The
vertical axis presents independent variables. The vectors XB

it and XE
it have been constructed such

that
(

1 − SEiq

)
= 1 and

(
1 − SBiq

)
= 1 for q ∈ {−2, . . . , 2}. Parameter estimates, conditioned

upon observing an investment spike, are documented by investment spike time and investment type.
Statistical significance is reflected by: *p ≤ 0.10, **p ≤ 0.05, ***p ≤ 0.01. The models include year
dummies, that are however not displayed to save space

when a firm invests in both buildings and equipment, in the immediate 0–2 year
horizons by 8–15% and an impact on production of about 8% after 3 years. This
finding is distinct from firms who invested in equipment or buildings alone where
firms saw short-term marginal gains in production of about 0% and 8%, respectively.
Investment in buildings does not yield production changes beyond 3 years after the
spike, but equipment does increase production scale by about 4% then. A notable
finding is that the production level is highest at the time of the investment spike. The
data indicate that once investment payments have been booked, production capacity
has increased substantially. In case increased capacity is not fully installed yet a
larger demand has been met by increasing factor utilization rates. Altogether, the
empirical observation that production increases with higher input levels is in line
with a standard production technology.

Second, as expected and highlighted in Column (2), the number of workers
increases after an investment in buildings, equipment, or a simultaneous investment.
In fact, we find that employment may increase by 3–15% in the short-run. However,
only in instances where investment in buildings is involved, a longer-lasting effect
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Fig. 2 Production scale and number of workers. This figure depicts the production scale and
number of workers before, during, and after the investment spike. The vertical axis represents the
percentage difference relative to firms that experienced no spike event. Markers represent estimates
significant at p < 0.10 level (two-tailed)

on employment is observed represented by a 5–7% increase.15 Apparently, it is
investment in buildings that increases the marginal profit of labour inducing the
firm to attract more workers even after 3 years.

5.2 Change of Average Wage and Capital Intensity

Table 4 Column (3) and Fig. 2 depict that when the firm experiences a spike in
equipment the average wage bill becomes higher 3 years afterwards. This may
indicate more skilled workers were hired by the firm. Alternatively, productivity
has become higher in general due to investment justifying a higher wage on average.
However, when the firm only invests in buildings, the wage decreases before, during,

15Using a Wald statistic we have tested whether parameters of the model in Eq. (11) are statistically
different between investment types. For instance, we have tested the hypotheses whether for
k ∈ {1, . . . , 6} the coefficient of XB

kit equals that of XE
kit , whether the coefficient of XB

kit equals
that of XC

kit , and whether the coefficient of XE
kit equals that of XC

kit . For the dependent variable
production we find that in general, i.e. for k ≤ 5, the coefficients relating to the equipment and
combination spikes are statistically different. We find the same for the coefficients relating to the
building and the combination spikes after the spike occurred, i.e. for k ≥ 3. For the dependent
variable number of workers, coefficients relating to equipment spikes in general, i.e. for k ≥ 2,
are different from those of the combination spikes. Those relating to buildings are generally
significantly different from those concerning the equipment spikes, for k ≥ 2. These tests are
significant at least at the 10% significance level, but often at 5%. They are not reported in the
paper, but are available upon request.
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Fig. 3 Development Wage. This figure depicts the average wage per worker before, during, and
after the investment spike, relative to firms that experienced no spike event. Markers represent
estimates significant at p < 0.10 level (two-tailed)

and after the investment spike. This hints at firms hiring relatively more unskilled
workers in those instances or productivity going down.16

Table 4, Columns (4) and (5), and Fig. 3 reveal that before a spike the
firm becomes more labour intensive. The capital intensity for both buildings and
equipment drops considerably in anticipation of the investment. The capital intensity
for buildings gets back to the pre-spike period, but the equipment intensity increases
by 12% in the post-spike period when a spike in equipment is involved. These
numbers indicate that a change occurs in the input factors’ optimal mix.17 This may
be due to capital investment causing a change in the parameters of the production
technology.

The event order described above is consistent with the real option investment
theory (Dixit and Pindyck 1994). Firms tend to first adjust factors of production that
are relatively flexible. Labour is flexible compared to fixed capital assets (Asphjell
et al. 2014). Firms adjust inflexible inputs like structures once uncertainty has been
resolved to a large extent (Dixit 1998; Eberly and van Mieghem 1997).

16The Wald test tells that the coefficient of XB
6it is not equal to that of XE

6it .
17The Wald test informs that coefficients of XB

kit , where k �∈ {4, 5} do not equal that of either XE
kit

or XC
kit .
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Fig. 4 Capital intensity. This figure depicts the capital stock of buildings or equipment as a
percentage of the number of workers. The vertical axis represents the percentage difference relative
to firms that experienced no spike event. Markers represent estimates significant at p < 0.10 level
(two-tailed)

The study period 2000–2008 includes two recessionary periods and a boom.
The period is marked by real wages increasing 6.6% in 9 years. In addition, long-
and short-term interest rates have not increased, but have followed a U-shaped
pattern consistent with the state of the economy during contraction and expansion.18

This implies that during the period we have considered labour has become more
expensive relative to the cost of financing capital. In this way, our findings are
largely in line with the dynamics of the Dutch economy. Investment in buildings
reflects an expansion of production in the economy. We also found that during events
where firms invest in buildings they increase the number of workers (Fig. 2). When
firms invest in equipment, we find that the share of workers decreases relative to
the stock of capital employed by the firm (Fig. 4). This potentially reflects the need
for firms to design a production process that is less labour intensive due to wages
increasing over time.19

5.3 Changes in Firm Productivity and Efficiency

Columns (6), (7), and (8) of Table 4 further document, that most often productivity is
higher before investment spikes. However, in the years subsequent to the investment

18The relevant statistics can be found at https://data.oecd.org/netherlands.htm.
19Note that the models we estimated control for year fixed effects. These will account for the
general state of the Dutch economy (real wages and interest rates). Disaggregate data on relative
input factor prices are not available. Persistent heterogeneity of these relative prices will be
controlled for by the fixed effect panel data estimation technique we employed.

https://data.oecd.org/netherlands.htm
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Fig. 5 Labour, buildings, and equipment productivity. This figure depicts productivity for labour,
buildings, and equipment. The vertical axis represents the percentage difference relative to firms
that experienced no spike event. Markers represent estimates significant at p < 0.10 level (two-
tailed)

spike, productivity gains are lower and even negative in some cases. Figure 4 depicts
the sharp contrast in labour, building, and equipment productivity pre and post
investment, where productivity reaches a summit just as investment occurs.

Our results confirm Power’s (1998) finding of a “Missing Link” between tech-
nology, investment, and productivity. Her conclusion was based on investigating the
relationship between the history of large investment outlays and labour productivity.
Recalling Fig. 2 our two firm scale measures, production and number of workers,
display very similar behaviour. Hence, it is not surprising that labour productivity is
hardly affected by investment dynamics according to Table 4 and Fig. 5.

In line with Abel and Eberly (1998), in Sect. 2 of this chapter we have argued
that productivity may act as a signal of when to invest. Hence, high productivity
should precede investment. We find small labour productivity gains of about 2–
4% in case of investment in equipment after 3 years. However, productivity from
equipment drops by as much as 10–12% when equipment is involved. At the same
time productivity of structures improves beyond 3 years. In order to be able to
understand productivity consequences of capital adjustment, our findings suggest
one probably needs to conduct a structural estimation approach identifying the
process that generates firm productivity.

Lastly, we see in Table 4 Column (9) and Fig. 5 that there is an impact on firm
operational efficiency after investment spikes. Capital expenditures for equipment
improve cost efficiency by 1% after 3 years. In contrast, investment in buildings
decreases cost efficiency by 1% or so. This means there is a small but notable
difference in cost efficiency between a single spike in equipment and buildings
of about 2% after 3 years.20 One way of interpreting this finding is that firms are

20Interestingly, the Wald test signals that the coefficient of XB
6it does not equal that of XE

6it .
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operating in a competitive manufacturing environment. Firms in such a competitive
market operate efficiently where marginal cost is equal to marginal revenue, and the
firms cannot afford to do much worse than their competitors in terms of operating
efficiency. Firms undergoing investments in equipment and buildings document
little variation in efficiency pre and post investment spike events. Instead, investment
tends to increase firm production capacity, as seen previously in Fig. 1, by which the
firm obtains more production revenues and a larger share of the market place, but its
efficiency remains more or less at the same level.

6 Industry Cluster Decomposition

Recent empirical work argues that firms in high-tech and low-tech are different
along various dimensions (Robertson et al. 2009; Czarnitzki and Thorwarth 2012).
To obtain more detailed insight, we run our firm-level analysis in Eq. (3) by
innovation industry clusters as well. In addition, we distinguish industries in terms
of labour intensity. We adopt a classification developed by Raymond et al. (2006),
which identifies high- and low-tech industry categories for Dutch manufacturing
firms. A low-tech firm is categorized by its low propensity to engage in innovation
seeking activities, e.g., R&D activities and innovation subsidy achievement.21 In
addition, we employ a Dutch industry grouping established by Ramirez et al.
(2005) who document labour intensity. Table 5 provides results for our sample’s
firm industry classification by innovation and labour intensity.22 High-tech and
low-tech sectors account for 39% and 45% of the investment sample’s sectors,
respectively. Innovation intensity in high-tech sectors is observed largely in the oil
and coal, chemicals, and machines and apparatuses sector, which also corresponds
with low-labour-intensity manufacturing. High-, medium- and low-labour-intensive
industries reflect 22%, 30%, and 49% of the investment sample’s sectors, respec-
tively. Interestingly, low-labour-intensive industries are split almost evenly between
high-tech and low-tech industries.

Figure 6 depicts production and number of employees for high- and low-tech
industries. Compared to establishments operating in high-tech industries, low-tech
firms tend to expand firm size by adding structures rather than equipment. Instead,
high-tech industries need equipment to expand production. Apparently, in the low-
tech industries the production process is rather labour intensive. In this way, should
a low-tech firm want to grow, it needs to create a workplace for its workers.

21The model developed by Raymond et al. (2006) identifies three categories of innovation intensity:
high-technology, low-technology, and wood. Wood is a distinctively non-innovative industry.
22We have also estimated Eq. (3) for industries separated by employing the twodigit SIC classifi-
cation code. However, we generally find no statistically significant patterns. One reason might be
that breaking up by SIC codes yields relatively few observations per industry classification.
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Table 5 Sample breakdown by sector, innovation intensity, and labour intensity

1993 SBI code Sector N % Innovation intensity Labour intensity

15–16 Food and drinks;
tobacco

918 16 Low-tech Low

17–19 Textile; clothes;
leather goods

180 3 Low-tech High

20 Wood 162 3 Wood High
21 Paper and pulp 461 8 Wood Medium
22 Publishers, printing

companies, etc.
351 6 Wood Low

23–24 Oil and coal;
chemicals

638 11 High-tech Low

25 Rubber and plastics 241 4 High-tech Medium
26 Non-metallic minerals 441 8 Low-tech Medium
27 Metals 237 4 Low-tech Low
28 Metal products 662 11 Low-tech High
29 Machines and

apparatuses
700 12 High-tech Low

30–32 Office machinery and
computers; electronic
machines and
equipment; audio,
video, and telecom
devices

294 5 High-tech Medium

33 Medical and optical
apparatuses and
instruments

139 2 High-tech Medium

34 Cars and trailers 178 3 High-tech High
35 Other transportation

means and products
95 2 High-tech High

36 Furniture and other
products

171 3 Low-tech Medium

Total 5868 100

This table documents the frequency of our sample by industry classification, technology intensity,
and labour intensity. Sectors have been aggregated into bigger groups, as Statistics Netherlands
(CBS) requires reported statistics to be based on some minimum number of firms to ascertain
anonimity of findings. The SBI classification system is the Dutch equivalent of the United States
SIC system. Innovation intensity classification based on Raymond et al. (2006) and labour intensity
classification based on Ramirez et al. (2005)

Figure 7 graphs the dynamics of production and number of employees in
industries distinguished by different levels of labour intensity. Notably, firms in
labour-intensive industries do not expand production and number of employees by
investing in structures or equipment. Production processes in these industries are
less dependent on capital inputs overall. Apparently, then the share of capital in the
production technology is too small to make capital accounting for variation in firm
size measures. We find a more pronounced influence of capital investment on firm
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Fig. 6 Operational efficiency. This figure depicts total costs relative to total sales of the firm,
reflecting a basic measure of firm operating efficiency. The vertical axis represents the percentage
difference relative to firms that experienced no spike event. Markers represent estimates significant
at p < 0.10 level (two-tailed)

size measures in industries characterized by low- and medium-labour-intensity. In
particular, simultaneous investment spikes increase production scale and number of
workers.

Our results based on a firm investment panel dataset, presented in the previous
section, stress the role of simultaneous spikes in understanding firm growth.
In particular, capital intensive industries (i.e., low- and medium-labour-intensive
sectors) exhibit features that are common to what we observed for the entire
sample. For these industries simultaneous spikes are important to understand both
employment and production growth. Firms operating in high-tech industries are
more dependent on investment in equipment to increase production volume after
3 years, but employment growth is established by all investment spike types. To
grow in low-tech industries firms build structures. Simultaneous spikes in low-
tech industries increase production, whereas in high-tech industries they increase
employment (Fig. 8). Figure 8 documents a similar breakdown by production
and number of workers by low, medium and high labor intensity. The results
document significant variation by labor intensity, where medium labor intensity
faces significant investment impact from a combination of buildings and equipment.
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Fig. 7 Production (a) and number of workers (b) by sector innovation intensity. This figure depicts
production and the number of workers, broken down by different levels of innovation intensity. The
vertical axis represents the percentage difference relative to firms that experienced no spike event.
Markers represent estimates significant at p < 0.10 level (two-tailed)

7 Conclusion

Central to firm production is investment in capital. We find the distinction between
productive capital, like equipment, and non-productive capital, like buildings, is
critical for understanding the scale and production technology of a firm. This
chapter documents the impact of decomposing investment spikes in buildings and
equipment on scale, productivity, mix of input factors, and firm efficiency. Firms that
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Fig. 8 Production (a) and number of workers (b) by sector labour intensity. This figure breaks
down the sample by labour intensity, and shows the effect of investment spikes on production
and the number of workers for low, medium, and high labour-intensive sectors. The vertical axis
represents the percentage difference relative to firms that experienced no spike event. Markers
represent estimates significant at p < 0.10 level (two-tailed)

invest in buildings, equipment, or simultaneously in both obtain different outcomes
concerning production technology and performance metrics.

Our results reveal high productivity acts as a signal for firms to invest. Further-
more, firms conducting simultaneous investment spikes experience the largest post
investment expansion in production and number of workers. We find employment
growth does not come from spikes in equipment only. Especially, when buildings
are constructed the number of workers increases. Investments involving equipment
affect the optimal input mix. In those instances, labour tends to be substituted by
equipment. Additionally, operational efficiency is economically affected by spike
investments in equipment.

We also conducted a more fine-grained analysis by type of industry. We
distinguished high- and low-tech sectors and employed a classification based
on labour intensity. The industry analysis reveals that simultaneous spikes drive
firm production growth in capital intensive industries (i.e., low- and medium-
labour-intensive sectors) and in low-tech industries. Simultaneous spikes enhance
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employment in capital intensive industries and in a high-tech environment. In order
to grow production a necessary condition for low-tech firms is building structures
to house workers. High-tech firms depend more on equipment to be able to grow
production. These results tell production processes are different across industries.
Furthermore they reveal how revenue and employment growth are advanced in
different industrial settings.

For future research we recommend three opportunities. First, production pro-
cesses are different across sectors and there could be gains in our analysis by looking
at stochastic frontier analysis (SFA) that can accommodate potential time-varying
or invarying inefficiencies with panel data (Schmidt and Sickles 1984; Kumbhakar
et al. 2017). Moreover, within sectors processes may alter over time according
to our results, possibly depending on technological developments and changes in
factor input costs and could be looked at in an SFA framework (Cornwell et al.
1990; Sickles and Zelenyuk 2019). An interesting topic for future research concerns
whether, how, and with what speed firms are capable of adjusting in response to
such developments.

Second, our results based on distinguishing between firm expenses on structures
and equipment suggest adding firm-level investment dimensions to the micro
investment literature is worth the effort. We propose a research agenda resulting
in a better understanding of investment in both equipment and buildings. Studies on
interrelated factor demand have revealed that models of more flexible input factors
need to be complemented with less flexible ones. In particular, Bloom (2009) and
Asphjell et al. (2014) observed that performance of labour demand models improves
by also incorporating the dynamics of investment in equipment. However, models
concerning the stock of equipment do not have to include labour demand to be able
to match important moments of the data. Likewise, we expect that to properly model
the dynamics of equipment accounting for investment in buildings is mandatory.

Third, the distinction between firms’ investment choices underscores different
expected outcomes for economic growth and macroeconomic activity. Caballero and
Engel (1999) document lumpiness in firm investment is critical for understanding
macroeconomic activity. Bachmann et al. (2013) further advance the role of
investment lumpiness in impacting business cycle activity. However, other studies
inspired by Thomas (2002) are more critical regarding the role of investment
lumpiness in driving the business cycle. A more recent strand in the literature
suggests it is particularly uncertainty that drives macro-economic outcomes through
investment (Bloom 2009; Bloom et al. 2012), but this can be further amplified
by the firm’s timing in the business cycle as well as the type of industry that is
implementing change (Samaniego and Sun 2015). Due to irreversibility firms tend
to become cautious when experiencing higher uncertainty (Guiso and Parigi 1999;
Ghosal and Loungani 2000) and this could especially be the case when investing
in buildings (Driver et al. 2005). In fact, investment in structures is subject to a
larger degree of lumpiness than equipment hinting at fixed adjustment costs or
indivisibility. Hence, uncertainty potentially affects investment in structures to an
even larger extent than investment in equipment.
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Furthermore, distinct capital investments result in specific financing frictions,
due to varying degrees of irreversibility. Additionally, capital market stakeholders
for buildings and equipment differ (Bayer 2006). Hence, the timing and size of
investment depend on capital type, business cycle properties like uncertainty, and
access to the capital market (Fiori 2012). Decomposing investment into structures
and equipment will be an important contribution in understanding micro and macro
level growth. It will also provide better insight into which policies need to be in
place to advance growth and employment at both the national and sectoral level.

Appendix 1: Construction of Capital Stock Variables

We construct the starting value of a firm’s capital stock for buildings and for
equipment as follows. The initial capital stock for a firm is the contemporaneous
ratio of firm to industy output multiplied by the industry’s capital stock of an asset.
More specifically, for a given firm i in period t, the firm’s capital stock, i.e. Kc

it is

calculated using Kc
it = Kc

jt · Yit
Yjt

, where j denotes the industry a firm is operating in,

Yit (Yjt) depicts output of firm i (industry j) in year t, Kc
it (K

c
jt ) denotes the capital

stock of asset z of company i (industry j) at the beginning of year t. The industry
level data are obtained from the Statline online datacenter of Statistics Netherlands
(CBS). To construct the starting values of the capital stock series, data from the year
prior to the start of the sample are collected. Hence, these series start in the year
2000.

The capital stock for the remaining years is determined by the perpetual inventory
method. Importantly, in the analysis we employ real investment and capital figures.
The nominal numbers have been deflated using producer price indices on buildings
or equipment assets. The nominal numbers refer to investments done in the book
year.

Appendix 2: Available upon Request: Derivation of Investment
Model

Few recent studies have analysed firm decisions along more than one dimension
when it comes to input demand. Those that have done so usually have focused on
two types: investment in equipment and labour (Bloom 2009; Asphjell et al. 2014)
and investment in equipment and structures (Bontempi et al. 2004; Del Boca et al.
2008). An exception is Ghosal and Nair-Reichert (2009) who distinguish between
four categories: investment in mechanical devices, chemical devices, monitoring
devices, and information technology. Bloom and Asphjell et al. conclude that adding
a margin to the decision problem of the firm improves the empirical performance of
models. Often part of the model relating to a relatively flexible input factor (labour
when compared to equipment, or equipment when compared to buildings) gains
accuracy in being able to explain the data when analysed jointly with the less flexible
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factor. This finding reflects the insight by Eberly and van Mieghem (1997) that the
adjustment timing of flexible input factors is driven by the fundamentals of the less
flexible inputs as well.

We present a simple model to guide our empirical analysis of firm-level
investment decisions. Consider a firm that at time t uses two capital inputs—the
stock of buildings is given by KB

t and the stock of equipment is given by KE
t —to

produce a non-storable output. The firm’s objective function is given by

Vt = Et

( ∞∑

s=0

βs
[
F
(
At+s , K

B
t+s , K

E
t+s

)
− AC

(
IBt+s , K

B
t+s , I

E
t+s , K

E
t+s

)])

(9)

The term Et indicates that expectations are taken with respect to information
available at time t. The discount rate is given by β with 0 < β < 1. The expression
F
(
At,K

B
t ,K

E
t

) = ptYt − wtLt denotes sales minus wage costs. Note that a
CES production technology takes on the shape of a Cobb–Douglas production
technology if ρ → 0. In the derivation below we employ the Cobb–Douglas example
for ease of exposition. Consider a standard Cobb–Douglas production technology
Yt = φt

(
KB
t

)ν(
KE
t

)μ
(Lt )

κ , where Y, L, and φ denote production, labour, and a
technology parameter, respectively, and where 0 < ν, μ, κ < 1. Labour is a fully

flexible factor of production. Let pt = ϕt (Yt )
− 1

ε denote an isoelastic demand

function where ε > 1, then ptYt − wtLt = ϕt
(
φt
(
KB
t

)ν(
KE
t

)μ
(Lt )

κ
)1− 1

ε − wtLt .

The term At = ϕtφ
1− 1

ε
t captures randomness in both total factor productivity and

demand that the firm is facing.
The firm incurs adjustment costs when investment takes place given by

AC
(
IBt ,K

B
t , I

E
t ,K

E
t

)
=
⎡

⎢
⎣
pBt I

B
t + αB · I

(
IBt �= 0

)+ bB

2

(
IBt
KB
t

)2 · KB
t

+ pEt I
E
t + αE · I

(
IEt �= 0

)+ bE

2

(
IEt
KE
t

)2 ·KE
t

⎤

⎥
⎦

(10)

The indicator function I(.) takes the value 1 if the condition in brackets is
satisfied and equals zero otherwise. As usual the adjustment cost function allows
for convex costs. The size of these costs is reflected by the parameters bB and bE.
Such costs imply a penalty on large capital expenditures and hence induce firms
to smooth investment over time. The cost function also allows for non-convexity.23

For instance, the prices of the input factors are expressed as pBt and pEt , where for
z ∈ {B, E}, pzt = pz+ · I

(
I zt > 0

) + pz− · I
(
I zt < 0

)
. The purchase price for a unit

of capital c is pz+, while the value of one unit of sold capital would be pz-. Due to

23Such costs may be skipped when the level of aggregation is high (see, for example, Groth 2008).
However, we use plant level data featuring lumpy capital adjustment patterns.
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irreversibility of investment decisions, the purchase price of capital is higher than
the resale price: pz+ > pz-. Another non-convexity is due to fixed costs given by
αB and αE. We assume these to be symmetric by being independent of whether the
inputs are positive or negative.

Investment in buildings and equipment is denoted by IBt and IEt , respectively.
By investment the firm decides upon the optimal size of the capital stocks, KB

t+1
and KE

t+1. If the parameters δB and δE measure the rate of capital depreciation of
buildings and equipment, respectively, the evolution of capital is governed by

Kz
i,t+1 = (1 − δz

)
Kz
i,t + I zi,t (11)

where z ∈ {B, E}. To obtain the optimal values for IBt and IEt Eq. (9) is optimized
with respect to these decision variables subject to Eq. (11). The variables λBt and λEt
are the shadow values of an additional unit of capital. Their formal expression for
z ∈ {B, E} is

λzt = Et

( ∞∑

s=0

(
1 − δz

)s
βs+1

[
∂F
(
At+s+1,K

B
t+s+1,K

E
t+s+1

)

∂Kz
t+s+1

− ∂AC
(
IBt+s+1,K

B
t+s+1, I

E
t+s+1,K

E
t+s+1

)

∂Kz
t+s+1

])

(12)

They measure how the value of the firm changes if the constraints in Eq. (11)
are relaxed or equivalently, if capital is increased by one unit. The shadow values
represent the expected present discounted value of the marginal profit of capital
minus the marginal adjustment costs in future periods. For z ∈ {B, E} the first-order
condition for capital adjustment is given by

λzt − pzt − bz
(
I zt

Kz
t

)
= 0 (13)

In line with Abel and Eberly (1994) and Eberly (1997) optimal factor demand
adjustment equals:

I zt

Kz
t

=
(
λzt − pzt

bz

)
(14)

The equation determining whether to change the stock of capital for z ∈ {B, E} is
given by

λzt I
z
t ≥ AC

(
I zt , K

z
t

)
(15)
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The left-hand side of Eq. (15) measures the expected benefits of investing. The
right-hand side denotes the cost associated with the firm’s decisions.24 Using Eq.
(14) it can be shown that Eq. (15) holds if 1

2bz
(
λzt − pzt

)2
Kz
t ≥ αz > 0. Hence, the

sufficient condition for changing the amount of capital z ∈ {B, E} is

∣∣λzt − pzt

∣∣ >

√
2bzαz

Kz
t

≡ Az (16)

Equation (16) shows that if the net benefits of adjusting capital do not exceed
a certain minimum threshold, the firm decides to abstain from adjusting. The
thresholds are also caused by the presence of the fixed adjustment costs αB and
αE. With larger fixed costs, the threshold will increase. Hence, investment becomes
less likely, all else equal. In addition, we observe that with larger fixed costs, once
the firm decides to invest, the size of the investment will be larger, because with
a larger threshold the left-hand side of Eq. (16) must be higher and this expression
drives the size of investment as can be seen from Eq. (14). Hence, fixed costs largely
explain the phenomenon of investment spikes as mentioned before.
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Frontiers: Are Organic Dairy Farms
Better Than the Conventional?
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Abstract The Malmquist index is widely used in empirical studies of productivity
change over time. The index is based on estimates of the frontier obtained from
the convex envelopment of the data as in DEA. The statistical properties of the
Malmquist index and its components, i.e. the frontier shift and the efficiency
change, have until recently only been subject to a limited number of studies. The
asymptotic properties of the geometric mean of the individual Malmquist indexes
have been studied in the literature. Permutation tests for performing statistical
inference in finite samples have recently been proposed and are easily performed.
In the present paper we illustrate the permutation methods by an analysis of data
comprising organic and conventional dairy farms in Denmark from 2011–2015.
Further, differences between the frontiers of the production possibility sets for two
separate samples are studied, specifically those of the organic and the conventional
producers. We suggest to use jackknife methods when estimating the differences
to ensure that these are not affected by the well-known bias originating from
estimation of the frontier. In summary, the paper offers an illustration of how to
analyse productivity data, in particular a comparison of two independent groups, and
furthermore an analysis of how the separate groups evolve over time is provided.
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1 Introduction

Using the Malmquist index to measure productivity change over time was proposed
by Caves et al. (1982). Following Färe et al. (1992), the productivity change is
frequently calculated using non-parametric data envelopment analysis (DEA) to
estimate the relevant frontiers. The Malmquist index and its components, measuring
changes in efficiency and in technology between two time periods, respectively,
are subsequently determined, and typically the geometric means of the individual
indexes are reported. However, these indexes are often interpreted without any
associated measures of uncertainty. Simar and Wilson (1999) propose methods for
calculating confidence intervals for the Malmquist index and its components using
bootstrapping. Kneip et al. (2018) note that this bootstrap method is not based
on theoretical results, and provide a method for calculating asymptotic confidence
intervals for the Malmquist index. However, this method is only applicable for
the Malmquist index itself and not for the frontier shift or the efficiency change
components. To the best of our knowledge, Asmild et al. (2018) are the first to
suggest exact statistical tests to assess the significance of the Malmquist index as
well as of its components. The present paper reviews the permutation tests recently
developed by Asmild et al. (2018) and provides an application hereof. Furthermore,
where the Malmquist index is used to analyse changes over time for balanced panel
data, comparisons of frontiers for separate groups in terms of the relative location
of the group specific frontiers, provide information about which group technology
offers superior production possibilities. Comparison of frontiers can be performed
by calculating an index almost similar to the frontier change index for two time
periods which is also presented in the present paper.

The various approaches are used to analyse the case of dairy farms in Denmark,
over a number of years, with focus on comparison of the performance over time of
organic and conventional dairy farming. The development of the dairy industry over
time is, of course, relevant to practitioners and policy makers alike. Furthermore, it
is of particular importance to distinguish between organic and conventional farms,
not only with respect to the relative locations of their frontiers, but also concerning
the development over time of the productivity within each of the groups. This has
implications for, for example, policy interventions.

2 Methodology

Using standard notation, let input and output quantities be denoted by (x, y) ∈
R
p+q
+ . Under the usual assumptions of closedness, convexity, and strong disposabil-

ity in both inputs and outputs, the production possibility set is given as

� = {(x, y) ∈ R
p+q
+ | x can produce y},
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and the efficient frontier of � is defined as

�δ = {(x, y) ∈ � | (γ−1x, γy) /∈ �, ∀γ > 1}.

The technical input efficiency index of Farrell (1957) is defined as

θ(x, y) = inf{θ > 0| (θx, y) ∈ �}.

The production possibility set � is unobserved and can in empirical applications
be estimated from a set of n observations of random variables, (Xi, Yi), i =
1, . . . , n, which are assumed to be independent and identically distributed, such
that (Xi, Yi) has distribution F for all i = 1, . . . , n. Denoting X = (X1, . . . , Xn)

and Y = (Y1, . . . , Yn), the estimate, �̂, of the production possibility set assuming
constant return to scale (CRS) is

�̂ = {(x, y) ∈ R
p+q
+ |∃ω ∈ R

n+ : x ≥ Xω, y ≤ Yω},

and the input efficiency for (x, y) can be estimated as θ̂ (x, y) = inf{θ ∈
R+| (θx, y) ∈ �̂} or equivalently using the standard DEA linear programming
formulation:

θ̂ (x, y) = min
θ,ω

{θ | θx ≥ Xω, y ≤ Yω, ω ∈ R
n+}.

Consider a situation, where each unit is observed in two time periods, t1 and
t2, such that we are given observations from the random variables (Xt1

i , Y
t1
i ) and

(X
t2
i , Y

t2
i ) for the two time periods, respectively. We will allow the possibility set and

the distribution of the variables to differ between the two time periods, and therefore
we introduce the notation �t , �δ

t , and Ft for the possibility set, the frontier, and the
distribution of the random variables (Xt

i , Y
t
i ) in time period t ∈ {t1, t2}. We shall

allow dependence between variables from the same unit in different time periods,
i.e. (Xt1

i , Y
t1
i ) and (X

t2
i , Y

t2
i ), while there is (still) independence between variables

concerning different units.
The traditional Malmquist index of productivity change (see e.g. Färe et al.

1992), from one period t1 to another t2 for unit i observed in both time periods
is defined as

M(X
t1
i , Y

t1
i , X

t2
i , Y

t2
i ) =

∏

t∈{t1,t2}

(
θ̂ t (X

t2
i , Y

t2
i )

θ̂ t (X
t1
i , Y

t1
i )

) 1
2

,

where θ̂ t denotes the input efficiency estimated relative to the frontier for time t , i.e.

θ̂ t (x, y) = min
θ,ω

{θ | θx ≥ Xtω, y ≤ Ytω, ω ∈ R
n+}, t ∈ {t1, t2}.
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We consider the geometric mean of the calculated Malmquist indices, i.e.

TM =
n∏

i=1

M(X
t1
i , Y

t1
i , X

t2
i , Y

t2
i )

1
n , (1)

which can be interpreted as the productivity change for the whole technology,
similar to the logic of the global indexes of Asmild and Tam (2007). The Malmquist
index is often decomposed into two effects; the frontier shift and the efficiency
change. The frontier shift for an individual unit (Xt

i , Y
t
i ) is defined as

FSti = θ̂ t1(Xt
i , Y

t
i )

θ̂ t2(Xt
i , Y

t
i )
, t ∈ {t1, t2},

and the frontier shift component of the Malmquist index is the geometric mean of
FSti over t ∈ {t1, t2},

FS(X
t1
i , Y

t1
i , X

t2
i , Y

t2
i ) = (FSt1i × FS

t2
i

) 1
2 .

The efficiency change between t1 and t2 for unit i is given as

EC(X
t1
i , Y

t1
i , X

t2
i , Y

t2
i ) = θ̂ t2(X

t2
i , Y

t2
i )

θ̂ t1(X
t1
i , Y

t1
i )

.

With the above notation, the geometric mean of the frontier shift component can
be written

TFS =
n∏

i=1

FS(X
t1
i , Y

t1
i , X

t2
i , Y

t2
i )

1
n , (2)

and similarly the geometric mean of the efficiency change is

TEC =
n∏

i=1

EC(Xi
t1
, Y i

t1
, Xi

t2
, Y i

t2
)

1
n . (3)

Note thatM(X
t1
i , Y

t1
i , X

t2
i , Y

t2
i )=FS(X

t1
i , Y

t1
i , X

t2
i , Y

t2
i )×EC(X

t1
i , Y

t1
i , X

t2
i , Y

t2
i )

and TM = TFS × TEC . All these statistics are positive.
The statistic TFS can be used as a measure of how the two possibility sets �t2

and �t1 are placed relative to each other. A TFS greater than 1 indicates that the
possibility set generally is smaller in time t1 than in time t2. Since intersections of
the frontiers are possible, when TFS > 1 we cannot generally conclude that �t1 is a
subset of�t2 . For a more thorough discussion of the properties and the interpretation
of the statistic see Asmild et al. (2018).
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While the Malmquist Index and the efficiency change component are only
defined for balanced panel datasets, the (geometric mean of the) frontier shift can
also be estimated for unbalanced panels, with nt1 and nt2 observations in the two
time periods, respectively:

T u
FS =

∏

t∈{t1,t2}

nt∏

i=1

(FSti )
1

nt1 +nt2 . (4)

If, like in the present analysis, there are separate (independent) groups within
the dataset, the above analysis can be done within each of the groups, letting
(X

g,t
i , Y

g,t
i ), i = 1., . . . , ng denote observations from group g, g = 1, . . . ,G in

time period t . In the empirical example we consider G = 2 separate groups of
organic and conventional farms, respectively, as well as analysis done on the full
dataset.

Besides comparing frontiers over time (possibly within a given group), we are
here also interested in comparing the frontiers for the two independent groups, g1,
g2 (organic and conventional producers) at a fixed time. Similar to the definitions
above, the geometric mean of the difference between the two groups’ frontiers is
defined as the ratio of the efficiencies relative to each of the two frontiers

T
g1,g2
FD =

∏

g∈{g1,g2}

ng∏

i=1

(
θ̂ g1(X

g
i , Y

g
i )

θ̂g2(X
g
i , Y

g
i )

) 1
ng1 +ng2

, (5)

which for subsequent use can be decomposed as

T
g1,g2
FD =

⎛

⎝
ng1∏

i=1

(
θ̂ g1(X

g1
i , Y

g1
i )

θ̂ g2(X
g1
i , Y

g1
i )

) 1
ng1

⎞

⎠

ng1
ng1 +ng2

×
⎛

⎝
ng2∏

i=1

(
θ̂ g1(X

g2
i , Y

g2
i )

θ̂ g2(X
g2
i , Y

g2
i )

) 1
ng2

⎞

⎠

ng2
ng1 +ng2

,

(6)
i.e. a weighted product of geometric means of the difference between the two
groups’ frontiers for observations from each of the two groups, which indicates the
relative location of the two possibility sets.

It is well known that the estimate of the production possibility set is downward
biased and therefore the efficiency scores are biased too. The bias decreases with
increasing number of observations, so with large differences between the sizes of the
two groups, the numerator and the denominator in (4) and (5) are determined with
quite different biases. For a review of the asymptotic properties of the efficiency
estimates see Simar and Wilson (2015).

Jackknifing methods can be used to address the issue of (differences in) biases by
ensuring that whenever two frontiers are compared, the frontier estimates are based
on groups of equal sizes: From the larger group, draw without replacement the same
number of observations as in the smaller group, and calculate the relevant statistic
(T u

FS or T g1,g2
FD ). Repeat this a large number of times, say 1000, and calculate the
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geometric mean of the frontier difference measures (4) resp. (5) over the jackknife
replications.

If the jackknifed T
g1,g2
FD is greater than 1, this indicates that the possibility set

for g1 is smaller than that for g2, implying that the g2 technology (on average)
offers better production possibilities (and similarly for T u

FS). However, considering
the two components of T g1,g2

FD in (6) provides additional information. Particularly, if
one of the components is larger than 1 and the other smaller than 1, this implies that
neither production possibility set is a subset of the other, meaning that their frontiers
intersect. Furthermore, it also implies that the observations in the two groups are
located differently in the production space. This can be further investigated by
considering the input- and output mixes in the groups, for example, represented by
the dimension-specific contributions to the overall length of the input- (or output)
vector, Xi||Xi || (respectively Yi||Yi || ). Analysis hereof can, for example, be performed
using the methodology of Asmild et al. (2016), by transforming the contributions
into angles, φ, using the inverse cosine.1

2.1 Statistical Inference of the Malmquist Index and Its
Components

To test the significance of the changes over time, i.e. of the Malmquist Index
and its components, within each of the separate groups, we utilize permutation
tests. Overall, the hypothesis we wish to test is that (Xt1 , Y t1 , Xt2 , Y t2) and
(Xt2 , Y t2 , Xt1 , Y t1) have the same distribution, i.e. that the distribution in time
period t1 can be interchanged with the distribution in time period t2. For this we
use three tests designed to detect different forms of deviations from this hypothesis.

We first present the test procedures for balanced panels as described in detail
in Asmild et al. (2018). The procedure compares the observed values of the test
statistics TM , TFS , and TEC given in (1), (2), and (3), respectively, with N similar
values of the test statistics calculated based on appropriate permutations of the
original dataset: Each of the permuted datasets are obtained by interchanging every
pair of observations (X

t1
i , Y

t1
i ) and (X

t2
i , Y

t2
i ) randomly with probability 0.5 and

independently for different i = 1, . . . , n.
Under the hypothesis being tested, the test statistics TM , TFS , and TEC based on

the original dataset all have the same distributions as their N permuted counterparts
calculated from permuted versions of the dataset. Thus, significance probabilities
are obtained by finding the proportion of simulated test statistics that are further
away from one than the observed test statistic.

1It is here worth noting that these angles are not scale invariant. Therefore, one should ensure that
all input (output) variables are measured in similar metrics, like, e.g. in the present case where all
inputs are costs and the outputs are revenues.
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As discussed in Asmild et al. (2018) a set of three tests can be used to identify
the nature of any differences between the two time periods: If the value of TM is
significantly different from one, an overall deviation from the null hypothesis can
be concluded, i.e. that there is some difference between the distributions Ft1 and
Ft2 in the two periods. If, furthermore, the test associated with TFS is significantly
different from one, the deviation from the null hypothesis is of such nature that the
two frontiers are different or at least that the distributions Ft1 and Ft2 are different
near the frontier. If, on the other hand, TEC has a value significantly different from
one, the null hypothesis is rejected because the efficiency distributions are different
in the two periods.

As mentioned in the previous section, the test statistic for frontier shift, TFS , can
be generalized to an unbalanced version, T u

FS , as formulated in Eq. (4) in order to
take all available information into consideration. To perform a significance test, the
permutation procedure for producing N permuted datasets also has to be modified:
All complete observation pairs (Xt1

i , Y
t1
i ) and (Xt2

i , Y
t2
i ) are randomly interchanged

as before. All remaining observations, that by assumption are independent and
furthermore are identically distributed under the null hypothesis, are permuted
and divided randomly into the two groups such that the two group sizes remain
unchanged in the permuted dataset. Finally, a significance probability is obtained
by comparing the observed (original) value of TFS with the empirical distribution
of the test statistic when based on each of the N permuted datasets.

It should be noted that while there is unequal bias when estimating the frontiers
for the two groups of different sizes, this will not give problems in the described
test procedure as long as the sizes of the groups are fixed in all permutations of
the dataset. Thereby the observed test statistic is still comparable with the permuted
counterparts.

3 Danish Dairy Farms

The dataset is provided by SEGES (who amongst other things provide specialist
advisory services to the Danish agricultural sector) and contains annual farm-level
accounting data from the years 2011–2015. For the current analysis, only full-time
farmers specialized in dairy production and with at least 100 dairy cows and at
least 25 hectares of cultivated land are included. Observations with problematic data
based on various screening criteria are excluded (as detailed in Lillethorup 2017),
resulting in an only partly balanced dataset comprising between 1355 and 1567
observations in each year.

The variables included in the efficiency models are as follows:
Inputs:

• Feed costs (costs of purchasing grains and fodder)
• Labour costs (estimated value of family labour plus paid labour)
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• Other variable costs, OVC (including energy, fuel, fertilizer, veterinary costs,
etc.)

• Fixed costs, FC (including costs of maintenance, taxes, insurances, etc.)
• Capital costs (defined as 4% of the value of the tangible assets, including

land)

Outputs:

• Milk revenue
• Other (output) revenue, OO (revenue from all other outputs)

Descriptive statistics of the variables in each year, for both the conventional and the
organic producers, are provided in Table 1.

In Sect. 4 below we illustrate how the approaches outlined in Sect. 2, when used
together can provide various insights on the development over time of the Danish
dairy producers, as well as on the differences between conventional and organic
farms.

4 Results

4.1 Frontier Differences

Comparison of the organic and conventional farms is performed within each of the
5 years. The frontier differences are here defined as the efficiency scores relative
to the frontier for the organic farms divided by the efficiency scores relative to the
frontier for the conventional farms. Frontier difference measures (TFD) larger than
1 mean that the observations on average are closer to the organic frontier than to the
conventional frontier, implying that the conventional technology (on average) offers
better production possibilities.

First, consider the geometric mean frontier difference within each of the two
subgroups, accounting for different sample sizes using the described jackknife
technique. The results are shown in the upper part of Table 2 where it is seen,
that during the study period the organic farms on average are located nearer the
production frontier for the conventional farms than that for the organic farms, imply-
ing that the organic technology (on average) offers better production possibilities
in the directions determined by the locations of the organic farms. Conversely,
for the conventional farms the frontier difference measures are larger than one
in 2012–2014, implying that the conventional technology (on average) offers
better production possibilities in the directions determined by the locations of the
conventional farms in 2012–2014. However, in 2015 the frontier difference measure
for the conventional farms is smaller than one, implying that the organic technology
now offers better possibilities for the conventional farms (as well as for the organic
farms). The (geometric) average of the frontier differences for the organic and the
conventional farms is in all years smaller than or equal to one, indicating that the
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Table 2 Group frontier
differences, T g1,g2

FD and its
components (as in (6))

2011 2012 2013 2014 2015

With jackknife

Organic 0.840 0.900 0.864 0.934 0.786

Conventional 0.988 1.023 1.041 1.071 0.920

Average 0.911 0.959 0.948 1.000 0.850

Without jackknife

Organic 0.949 1.008 0.994 1.084 0.872

Conventional 1.070 1.115 1.167 1.206 0.991

All 1.054 1.102 1.144 1.191 0.976

organic technology overall tends to be superior (after controlling for sample size
biases).

Calculating the frontier differences without jackknifing yields the results in the
lower part of Table 2, which give substantially different (and misleading) conclu-
sions. In particular, that the mean frontier difference across all the observations is
larger than one all years besides 2015, would lead to the (wrong) conclusion that the
conventional technology is superior in those years. This highlights the importance
of controlling for sample size biases using, e.g. jackknifing.

As the organic technology (on average) offers better production possibilities
for the organic farms, but the conventional technology (on average) offers better
production possibilities for the conventional farms in 2012–2014, is evidence of
the two frontiers intersecting in (at least) those years. That the organic farms tend
to be located with an input-output mix where the organic technology offers better
possibilities, and similarly for the conventional farms, makes perfect sense from an
economic point of view.

4.2 Mix Differences

To investigate the differences in input-output mix between the organic and the
conventional farms we express the dimension-specific contributions to the overall
length of the input and the output vectors by the angles φ. The average angles for
the organic and the conventional farms in 2015 for each dimension are shown in the
top part of Table 3. In the bottom part of the table test statistics and corresponding
p-values for equality of the mean direction in the truncated ([0, π/2]) approximative
normal distribution of the angles (c.f. Asmild et al. 2016)2 are shown.

From the mean angles we observe that the average φMilk is much smaller than
the average φOO (for both conventional and organic farms), which implies that the
share of revenue from milk is much larger than that from other outputs.

2Note that since there are only two outputs, the angles are complementary and therefore the test
statistics and p values for the two output angles are identical.
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Table 3 Average input- and output angles φ in 2015, and test statistics for comparisons
(conventional and organic) and corresponding p-values

Type φFeed φLab φOVC φFC φCap φMilk φOO

Conv 1.098 1.249 1.060 1.125 1.057 0.239 1.332

Org 1.177 1.244 1.146 1.097 0.950 0.229 1.342

LR 40.26 0.758 123.74 12.71 120.68 1.835 1.835

p 0.0000 0.384 0.0000 0.0004 0.0000 0.176 0.176

In terms of the comparison of the organic and the conventional farms we note
that there are significant differences on four out of the five inputs. The differences
on labour and on the outputs are not significant. The organic farms have a larger
angle on feed than the conventional farms, meaning a smaller contribution from feed
to the overall length of the input vector. Correspondingly, the organic farms have a
larger contribution from capital than the conventional farms. This is likely due to the
fact that being classified as an organic dairy farm in Denmark entails requirements
for animal welfare, which means that the organic dairy cows in Denmark must be on
pasture for around 6 month during the summer. This requires additional farmland,
but results in saving on hard feed, thus more capital but less feed costs are necessary
for the organic farmers compared to the conventional. Furthermore, the organic
farms have a larger angle thus smaller contribution from other variable costs than
the conventional farms, which is likely because of less veterinary costs and/or costs
associated with pesticides, etc.

Performing similar analysis in the other years shows that the main changes over
time are on the contribution from milk to the overall length of the output vector.
Specifically it was large in 2013 and 2014 (for both organic and conventional farms)
but dropped substantially in 2015. The latter is likely due to a drop in the raw milk
prices in the European Union in 2015, as also discussed below.

4.3 Permutation Tests for Productivity Change and Its
Components

To further investigate the changes over time the TM (1), TFS (2), and TEC (3) are
calculated for the balanced subsets of the organic, respectively, the conventional
farms as well as T u

FS (4) for the unbalanced groups. Further, permutation tests as
described in Sect. 2.1 are performed and shown in Tables 4 and 5.

Considering the Malmquist indexes for all the year-on-year shifts, we note that
the test statistics for comparisons are extreme, so the null hypothesis is rejected,
meaning that the distributions Ft1 and Ft2 are not interchangeable for either the
organic or the conventional farms. This can be interpreted as significant productivity
changes within both groups between all consecutive time periods. To understand the
nature of the productivity changes we next consider its components, i.e. TFS and
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Table 4 Test statistics and significance probabilities for the subset of conventional farms (based
on 1000 permutations)

2011–12 2012–13 2013–14 2014–15

No. obs. balanced 1373 1348 1332 1220

No. obs. first year 1567 1530 1499 1454

No. obs. second year 1530 1499 1454 1355

Balanced dataset

TM 0.970 (0.000) 1.050 (0.000) 1.026 (0.000) 0.871 (0.000)

TEC 1.002 (0.836) 0.991 (0.510) 1.000 (0.982) 1.059 (0.002)

TFS 0.968 (0.000) 1.059 (0.000) 1.026 (0.145) 0.823 (0.000)

Unbalanced dataset

T u
FS 0.971 (0.000) 1.081 (0.000) 1.031 (0.063) 0.811 (0.000)

Table 5 Test statistics and significance probabilities for the subset of organic farms (based on
1000 permutations)

2011−12 2012−13 2013−14 2014−15

No. obs. balanced 200 186 178 166

No. obs. first year 223 214 206 196

No. obs. second year 214 206 196 179

Balanced dataset

TM 0.9511 (0.000) 1.0383 (0.000) 1.0152 (0.009) 1.0172 (0.002)

TEC 1.0119 (0.477) 1.0159 (0.228) 1.0477 (0.006) 0.9928 (0.412)

TFS 0.9399 (0.000) 1.0220 (0.123) 0.9689 (0.191) 1.0246 (0.009)

Unbalanced dataset

T u
FS 0.926 (0.000) 1.089 (0.000) 0.961 (0.027) 1.021 (0.023)

TEC . For TFS we do not need a balanced dataset and more information is included
when considering the unbalanced version T u

FS shown in the last rows of the tables.
As these all are significant, the frontiers are significantly different for all time shifts
(or the distribution of points near the frontiers are different). Furthermore, when the
efficiency changes TEC are insignificant, we conclude that the productivity changes
are likely to be due to frontiers movements.

The change from 2014 to 2015 is particularly interesting: The conventional
farms exhibit worse production possibilities in 2015 compared to 2014, whereas
the organic farms experienced significantly better productions possibilities in 2015
than in 2014. This explains the findings from Table 2, where the conventional farms
in 2015 found the organic technology to be superior, unlike earlier years. It is here
worth noting that this does not imply that the organic frontier strictly dominates the
conventional frontier in 2015, since the frontiers might still intersect.

The likely reason for the change in 2015 that made organic farming superior to
conventional farming for most input-output mixes is the abolishment of the milk
quotas in Europe on March 31, 2015. While it (especially in the long run) enables
an increased production, it in the short run led to a 25% drop in EU raw milk prices
from 40 e per 100 kg in January 2014 to 30 e per 100 kg in January 2016, c.f.
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e.g. the EU Milk Market Observatory (2018). This price drop had a relatively larger
impact on the conventional farms since the premium paid for the organic milk in
Denmark is fixed/independent of the price level.

This result is also supported by the more standard profitability analysis in
Jørgensen (2017) which show that the profitability of the organic farms became
much higher than that of the conventional farms in Denmark in 2015.

5 Final Remarks

This paper has focused on measures of productivity changes over time as well as
frontier differences between independent groups. Statistical inference for produc-
tivity change measured by the Malmquist index, and the corresponding measures of
frontier shift and efficiency change can be performed as permutation tests. These
are exact tests and are in a recent paper by Asmild et al. (2018) found to be very
powerful. We also suggest a method to measure frontier differences for separate
independent groups, which accounts for the inherent bias in DEA estimated frontiers
by using a jackknife method to minimize the effect of differences in sample sizes.

Formal tests for the significance of the differences between independent groups
can be implemented in line with the methods in Asmild et al. (2018) using
permutations. These methods, as well as the power of the tests, will be presented
in a forthcoming paper.

The types of analyses presented here can have important policy implications,
since the Danish government is focused on enhancing the competitiveness of the
agricultural sector in Denmark at the same time as aiming at doubling the organic
production between 2007 and 2020. Thus, formal analysis comparing the economic
production possibilities associated with organic and with conventional farming is
important as is the analysis of their respective productivity changes over time.

The results of the analysis presented in this paper showed that there might
not have been a compelling argument for organic dairy production up until 2014,
since the conclusion in terms of which production technology is superior differed
depending on the input-output mix. However, in 2015 both the organic and the
conventional farmers on average agreed to the organic technology being superior.
An explanation for this pattern could be that the conventional farms have been
“protected” by high milk prices, partly caused by the quota system. After the
abolishment of the milk quotas and the corresponding drop in milk prices, which
had a relatively larger impact on the conventional farms than on the organic, the
frontier for the organic farming became superior to that of the conventional. This is
also evident from the Malmquist index results which showed a large and significant
productivity decrease for the conventional farms from 2014 to 2015 likely caused by
a significant deterioration of the frontier, but a significant productivity (and frontier)
improvement for the organic farms in the same period.

If subsequent analysis find that the difference between the organic and the
conventional frontier is indeed significant (once the permutation based tests for
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comparisons of the frontiers for independent groups are fully investigated and can be
applied), and persistent over the subsequent years, the business case for conversion
to organic farming may be straightforward (at least if ignoring transition costs). This
could also potentially be a solution to the lack of competitiveness for Danish dairy
farming identified by Asmild et al. (2019).
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Nutrient Use and Precision Agriculture
in Corn Production in the USA
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Abstract This is a timely study of precision agriculture as both data manage-
ment (mapping) and field production technologies for agricultural production are
changing rapidly. We compare the performance of producers who adopt precision
agriculture tools versus those that do not. We estimate both their own frontier
performance and a metafrontier that enables the research to compare the efficiency
of producers across technologies. To make these comparisons we pre-processed the
data with a matching procedure in order to have a sample of producers of equal
size for each category who faced similar conditions. In the metafrontier results we
find that GPS yield maps, guidance auto-steering precision agriculture technologies,
and managerial ability save input costs and increase farm production efficiency
which has environmental benefits. Maps created from soils or aerial data and input
applications using VRT did not produce useable results.
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1 Introduction

This study uses US corn production as a case study of precision agriculture
(PrecAg). Such a study is timely as both data management (mapping) and field
production technologies for agricultural production are changing rapidly. These
information-based crop technologies allow farmers easier access to data and are
increasing the effectiveness of production practices that use that data; their use is
likely to accelerate in the near future. Sensor technologies for crop plants and soil,
for example, are poised to increase the volume of data on crop conditions available
to farmers. Internet-of-things devices are under development that can collect and
store sensor data and produce crop practice recommendations in real-time in a
farmer’s fields. Field View, for instance, developed by Bayer AG, could be placed
in the back of a combine to detect soil health resulting in reduction of nitrogen
application by 10 pounds per acre, increasing yield by 2–3 bushels per acre, and
increasing profitability by $12 per acre (Condon 2018).

Corn production in the USA and its associated use of agricultural chemicals
(fertilizer and pesticides) has a significant effect on soil erosion and water quality
and thus provides a valuable window onto the attempts to tackle the grand challenge
problem of global sustainable agriculture and use of the world’s land and water
resources in the twenty-first century. As Purdue University’s Global to Local
Analysis of Systems Sustainability (GLASS), for one, emphasizes, sustainability is
a local concept with global significance. Global forces drive local (un)sustainability,
and local responses to individual stresses can have global consequences. PrecAg
can enhance the benefits and diminish the costs of fertilizer use in corn production
by better targeting the various nutrients to crop needs, thus reducing waste and
environmental damage.

Profitability evaluations by Swinton and Lowenberg-DeBoer (1998), Griffin et
al. (2004), and Schimmelpfennig (2016) are unanimous that precision technologies
can be profitable on a large scale, notably in US corn production. These studies also
agree with Griliches (1957) that profitability drives adoption, and as Lusk (2016)
and Schimmelpfennig (2018) point out, their use has resource stewardship and
environmental benefits brought about by fact-based crop management. This study
tackles the question of whether these groundbreaking technologies also make field-
crop farms more efficient. Paraphrasing economist Robert Solow’s famous saying
we see precision agriculture everywhere and our study shows where it is making an
impact on the data.

Three technologies have been the most popular across a range of field crops,
growing regions, and farm sizes. First, data management technologies that map
harvester yield data and soil-test data using global positioning systems (GPS)
coordinates can inform a wide range of production management decisions. Second,
tractor guidance systems use GPS computer programs to self-steer farm machinery,
and third, variable rate technology (VRT) seeding, fertilizer, and pesticide applica-
tions use GPS coordinates and are programmed from yield and soil maps.
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2 Description of Precision Agricultural Technologies

Yield-by-location data from harvesters with yield-monitoring sensors and GPS
receivers record latitude/longitude coordinates that use geographic information
systems (GIS) to produce a yield map. Usually several years of yield data are
necessary to discern consistent yield patterns. Soil tests show soil properties on
a map using GPS data collected from a smaller number of locations often using
core samples. Aerial maps show growing conditions using data collected from
remotely sensing satellites with various light-spectrum sensitivities, small aircraft
mounted with sensors, and unmanned aerial vehicles (UAVs) commonly referred
to as drones. These UAVs may be quadcopters with four sets of propellers and are
smaller versions of the jet engine drones used in military applications. Together
these maps help to inform production management decisions.

Producers often use tractor or combine auto-guidance systems that self-steer
farm equipment using maps that include the GPS boundaries of their fields.
Auto-guidance has the benefit of relative simplicity, with one piece of steering
equipment mounted on a steering column attached to a GPS receiver. In case studies,
guidance systems have helped farmers efficiently reduce input costs by increasing
the accuracy of row cut-offs and reducing overlapping or missed applications, that
can also increase yields, while reducing operator fatigue.

VRT uses mapped data to program machinery controllers and servo motors
to apply different levels of inputs, even seeds, at different rates across one field.
VRT planters that can site-specifically select from different multiple-hybrid seeds
are becoming available. Machinery with VRT is more expensive to purchase and
time-consuming to maintain than other PrecAg options. In addition to production
management support, maps also help identify conditions when VRT may not save
costs or increase profit. Crop farmers hire custom service providers (CSPs) to
perform routine production tasks that they are unable to perform, and the use
of PrecAg technologies by CSPs is increasing. Erickson and Widmar (2015) and
Erickson and Lowenberg-DeBoer (2017) report three-quarters of dealers offer GPS
field mapping services and VRT fertilization in the Midwest, West, and Southern
United States. CSPs are also heavy users of guidance systems, providing evidence
for the practical and cost-effective usefulness of the technologies.

To estimate the productivity effect of PrecAg, this paper extends distance
function models by Bravo-Ureta et al. (2012) and Henningsen et al. (2015) by
accounting for technological heterogeneity of the corn sector in the USA using
a stochastic metafrontier following Huang et al. (2014) and Amsler et al. (2017).
Three frontiers are estimated: (1) One for those firms that use PrecAg; (2) another
for those firms that are not users of PrecAg; and (3) metafrontier that includes both.
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2.1 Data Sources and Variable Construction

This project uses nationally representative data from the 2016 Agricultural Resource
Management Survey (ARMS) (ERS-ARMS 2017). The ARMS, administered
jointly by USDA’s Economic Research Service and National Agricultural Statistics
Service, collects field-level data on practices and resource use for a rotating set of
field crops in Phase II. Respondents to the Phase II survey are also surveyed as
part of Phase III, which collects farm-level financial data. Detailed data provide
crucial information on inputs used for agricultural production like nutrients and
pesticides, machinery, labor, and the use of precision technologies, including GPS
mapping, guidance systems, and variable rate application (VRT). ARMS Phase
II asks over thirty questions about PrecAg use, and the identification of precision
technologies is now an integral part of the ARMS survey. This dataset, in other
words, is particularly well-suited to our analysis.

Technology adoption is estimated using sample responses to individual tech-
nology use questions, expanded to the number of farms using sample weights,
to estimate the share of corn farms adopting a technology.1Table 1 presents the

Table 1 Variables description

Variable Units Definition

Output quantity

y1 Units Corn for grain
Input quantities

x1 Acres Field planted with corn
x2 _ a Paid hours Direct labor used for corn production
x2 _ b Imputed hours Operator + partner + unpaid labor hours
x3 Horsepower Sum power all machinery
x4a $ Other inputs
x4b $ Contract + custom + consulting work
Further explanatory variables in production function
Farm size
Precision Ag. adoption
Variables hypothesized to affect inefficiency
Operator identifies main occupation as farming
Random component
Yield goal
Other variables in the metafrontier equation
Yield monitor (data creates a map) P2463
GPS-enabled guidance auto-steering P2148
Managerial ability (Yield goal - Actual output)2

1This survey method means that each sample farm represents multiple farms from the same state
and size class, and that the stratum weights have to be adjusted for nonresponse. Samples are
expanded to population estimates with sample weights.
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variable definitions and description of the output and input quantity information
employed in the input distance frontier. Output quantity measures corn for grain in
bushels. We distinguish four input quantities: first, land used is measured in acres
of corn planted on the farm. The opportunity cost of land is measured as its rental
rate. Second, labor is hours of labor and management employed in the field. Hired
labor is collected on an hourly basis for time spent operating machinery, scouting
for weeds, insects, and diseases, and other work-by-hand. Different wage rates are
used for labor hours by part-time/seasonal and full-time workers as well as contract
laborers. Unpaid labor is commonly family labor in some kind of actual or implied
partnership with the farm owner. The cost of unpaid labor is an opportunity cost
estimated from whole farm financial data. The attributes of unpaid operators—such
as age, education, marital status, and location—allow estimation of foregone off-
farm hourly earnings. In Griffin et al.’s (2004) profitability survey, only one-fifth
of reviewed PrecAg studies include operator time, but those studies found it was
significant.

Third, capital, is approximated by the sum of the horsepower of all equipment
employed on the farm. Fourth, we include the sum in dollars of miscellaneous
expenses and contract and custom expenditures. These expenses include fuel and oil,
taxes, and insurance, while custom service costs are for custom seeding, fertilizer,
or pesticide applications. Costs include specific operations paid by task rather than
by hour and are separated from the cost of inputs used by custom applicators. We
integrate two additional variables in the distance function: farm size and corn field
size. Farm size is in acres which is larger than corn field size in ARMS Phase II. A
correlation test together with a multicollinearity test between corn acreage and farm
size is also included in Table 2. The size of the condition number excludes concerns
of multicollinearity between these two variables.

We model heteroskedasticity in both the random and the inefficiency terms of
the frontier model. We also model heteroskedasticity in the random portion of the
error term employing the variable yield goal which captures the information the
farmer has about the agroeconomic conditions of his or her fields and hence is
used to control for location. We hypothesized that an operator that identifies his
or her occupation as primarily in farming affects the performance of the agricultural
enterprise. Following Huang et al. (2014) we hypothesize that different variables
affect the enterprise performance and the metafrontier: yield monitors, GPS-enabled
auto-steering, and a variable we call managerial ability and define as yield goal
minus actual output squared. See Table 1 for a tabulation of these definitions.

We followed Bravo-Ureta et al. (2012) in using propensity score matching
utilizing 1-to-1 nearest neighbor in order to impose common conditions that farmers
face. In our case we employ the R software MatchIt on the adoption or non-adoption
of PrecAg to ensure that both groups face similar observed characteristics. In the
following table we present summary statistics for matched and unmatched data for
adopters and non-adopters of PrecAg and present means difference tests.
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Table 2 Summary statistics for the pooled and the matched samplea

Pooled Precision Ag. Conventional t Mean
Variables Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Test

Unmatched sample

y 175 47 177 47 168 45 2.87***
x1 74 82 81 80 56 84 4.01***
x2 13,547 52,548 15,047 60,337 9774 23,129 1.90*
x3 882 397 900 384 837 428 2.08**
x4 472,948 818,554 549,124 885,952 281,328 575,728 5.36***
Precision Ag. 0.72 0.45 1 0 0 0
Ocuppd 0.91 0.29 0.92 0.27 0.88 0.33 1.83*
Fsz 817 1358 971 1475 429 898 6.74***
Yg 176 40 179 39 168 41 3.84***

Correlation (significance in parentheses) and condition number for x1 and Fsz
Correlation 0.230 (0.000) 0.213 (0.000) 0.230 (0.000)
Cond. number 2.539 2.764 2.088
Observations 907 649 258
Matched sample

y 179 45 190 43 168 44.96716 5.75***

x1 85 94 114 94 56 84.26028 7.36***

x2 16,950 67,757 24,125 92,529 9774 23128.57 2.40**

x3 902 393 967 343 837 427.5712 3.81***

x4 631,971 1,034,740 982,614 1,251,886 281,328 575728.3 8.17***

Precision Ag. 0.5 0.5
Ocuppd 0.92 0.27 0.97 0.18 0.88 0.33 3.79***

Fsz 1146 1146 1863 2014 429 898 10.45***

Yg 180 40 192 35 168 41 7.40***

Correlation (significance in parentheses) and condition number for x1 and Fsz
Correlation 0.219 (0.000) 0.061 (0.331) 0.230 (0.000)
Cond. number 2.585 3.400 2.089
Observations 516 258 258

aA t-test for testing whether the mean values of the variables are the same for precision Ag. adopter
farmers and non-adopter farmers
Source: USDA, Agricultural Resource Management Survey (ARMS) 2016
Notes: *P = <0.10; **P = <0.05; ***P = <0.01

3 Input Distance Function Model

3.1 Metaproduction Technology

The metafrontier was introduced by Hayami (1969) and Hayami and Ruttan
(1970). It captures the idea that relative differences in production environments
(for example, economic resources, relative prices, regulation) inhibit firms in some
groups from choosing the best technology from the potential technology set creating
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a so-called production technology gap. To estimate the most appropriate technology
and corresponding efficiency for a sector like corn production by simply pooling
all data on inputs and outputs is not justified because the frontier may not cover
some producer groups. Also, there is the problem of benchmarking a group by a
production technology estimated for another group. In the interest of measuring
performance across groups of producers that employ different technologies, Battese
and Rao (2002) and Battese et al. (2003) pioneered the idea of the metafrontier in
the productivity literature. They applied a two-step procedure: first, they estimated
stochastic frontiers for different groups of producers, and second, they employed
a nonparametric method to envelop all the technologies of the different groups.
The metafrontier, T∗ , is conceptualized as the “totality” of group technologies. For
example, if output y can be produced employing input vector x with a non-precision
type of technology, then the input–output bundle (x, y) belongs to T∗ . Huang et
al. (2014) and Amsler et al. (2017) proposed fully stochastic methods to estimate
metafrontiers that we employ in this study.

Formally, the metatechnology is defined as:

T ∗ = {(x, y) : x ≥ 0 and y ≥ 0, such that x can produce y employing

precision Ag or not, T 1, T 2
}
, hence, T ∗ ⊇ {T 1 ∪ T 2}.

(1)

If T1, T2satisfy the production axioms, then T∗ also satisfies all production
axioms, except the convexity property. Then T∗ is defined as a convex hull of the
union of the specific technologies:

T ∗ ≡ Convex Hull
{
T 1 ∪ T 2

}
. (2)

Farmers produce output, y, using input vector, x, and technology k, Tk, k = 1, 2
correspond, respectively, to adoption or non-adoption of PrecAg technologies.

Given the output, y, define the input set as

Lk(y) =
{
x : (x, y) ∈ T k

}
. (3)

Define Dk
i (x, y) as the input distance function for technology k given by

Dk
i y, x

)
= maxλ

[
λ : x

/

λ
∈ Lk(y)

]
. (4)

If vector x lies in the boundary of Lk(y), then Dk
i (x, y) = 1 is defined as the max-

imum contraction in input usage while still remaining within the production possi-
bilities of the firm. If x lies in its interior Dk

i (x, y) > 1. The expression D∗
i (x, y)
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denotes the input distance function defined using the metatechnology, T∗ . Battese et
al. (2003) established that for any given k, Dk

i (x, y) ≤ D∗
i (x, y) , (k = 1, 2), which

follows from the fact that the input sets for any particular technology are a subset of
the corresponding sets constituting the metatechnology.

The input-oriented technical efficiency of an observed pair (x, y) with respect to
technology k is defined as:

T Ek
i (x, y) = 1

Dk
i (x, y)

. (5)

The input-oriented technology gap ratio can be defined using the input distance
functions for technologies Tk and T∗ as:

TGRk
i (x, y) = Dk

i (x, y)

D∗
i (x, y)

= T E∗
i (x, y)

T Ek
i (x, y)

. (6)

It follows that

T E∗
i (x, y) = TGRk

i (x, y) × T Ek
i (x, y) . (7)

We can use Eq. (7) to test for the coverage of the metafrontier, i.e. to test whether
the metafrontier covers every group of producers entirely and Eqs. (5), (6), and (7)
comprehensively measure efficiency and decompose the metafrontier.

4 Econometric Estimation and Results

The samples we used for the estimations consist of 907 farms before matching and
516 after matching. We started the examination of the empirical model by specifying

a Cobb–Douglas input distance function, lnDi = βo + φ ln y1 +
4∑

n=1
βn ln xn + v.

We follow Coelli et al. (2003, 2005) who point out that this function must be
non-decreasing, linearly homogeneous, and concave in inputs, βn ≥ 0 for all n

and
4∑

n=1
βn = 1 and non-increasing in output if φ ≤ 0. We estimate a homogeneity-

constrained Cobb–Douglas frontier:

− ln x1 = βo + φ ln y +
4∑

n=2

βn ln (xn/x1) + vi − ui. (8)

In the above equation − ln Di = vi − ui. Distance is conceptualized as the radial
distance between the data points and the frontier, having both an inefficiency and
a stochastic element. We assume a normal distribution for the random error term
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v ∼ N
(
0, σ 2

v

)
and a half-normal distribution for inefficiency, u ∼ N+ (0, σ 2

u

)
.

The input-oriented efficiency and the random error terms are heteroskedastic. As
in Greene (2008, p. 219) the variance is doubly heteroskedastic (Hadri et al. 1999,
2003a, b) which means that both variances are a linear function of a set of covariates,
Z. We assume that both the inefficiency and the error terms are heteroskedastic,
depending on different sets of covariates:

V ar (u|zi) = σ 2
u exp (wiδ)

V ar
(
v|zj

) = σ 2
v exp

(
wjδ

)
.

(9)

Input-oriented technical inefficiency is T I = 1
DI

= exp (−ui).
We estimate Eq. (9) above employing the input, output, and covariate variables

described in Table 1. Table 2 shows a comparison of matched and unmatched
variables employed in the econometric estimation. There are several aspects worth
noticing about this table. First, difference in means statistical tests points to
significant differences in the means of the variables between adopters of PrecAg and
non-adopters. Second, the most important difference is that farm size of adopters is
more than twice that of non-adopters. Third, yield goal and self-identification as in
the farming profession are surprisingly similar but still statistically different between
adopters and non-adopters. Fourth, the table presents a strong justification against
using a model where both adopters and non-adopters of PrecAg are pooled. Last, the
matching procedure resulted in more significant difference of means tests between
adopters of precision and non-adopters for all variables.

Table 3 shows the estimates of the unmatched and matched samples. The
result from the matching procedure brought that sample down from 907 to 516
observations, 258 adopters and 258 non-adopters. In the estimated input distance
function labor, power (capital) and other inputs were divided by land, x1, to impose
linear homogeneity. Output was not so divided. Hence − ln (1/x1)serves as the
measure of distance for the enterprise. The signs of the input and output elasticities
of the unmatched and matched samples correspond to expectations from economic
theory. Overall the estimates using the unmatched sample are more significant than
those using the matched sample. However, they have the drawbacks controlled
during the matching process.

The variable “adopt” in both the pooled and matched samples is highly significant
and shifts the distance function inward, that is, farms that employ PrecAg use less
of every input to produce the same quantity of corn than those that do not use it. The
effect of PrecAg is higher for the matched sample. The effect of the variable “farm
size” is also to economize resources. On average, larger farms are more efficient than
smaller farms. Yield goal is highly significant when modeling heteroskedasticity of
the error term. Yield goals are generally associated with farm size and what the
farmer estimates the farm can produce according to its agroecological conditions
determined by the location of the farm.

Table 4 compares the individual matched samples of farmers that use PrecAg
tools in their farms with those that do not. This table highlights some important
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Table 3 Estimates of inefficiency effects model

Unmatched sample Matched sample
Variables Coefficient Rbst. Std. Err. Coefficient Rbst. Std. Err.

di
lny −0.177*** 0.043 −0.104 0.066
ln(x2/x1) 0.060*** 0.010 0.057*** 0.014
ln(x3/x1) 0.785*** 0.019 0.766*** 0.024
ln(x4/x1) 0.101*** 0.016 0.112*** 0.022
adopt −0.206*** 0.035 −0.426*** 0.048
const −0.327** 0.053 −6.408*** 0.384
lnsig2v
yield goal −0.006*** 0.001 −0.006*** 0.002
const −0.608*** 0.236 −0.672** 0.326
lnsig2u
farm size −0.0005*** 0.0001 −0.0003*** 0.0001
const −3.377*** 0.492 −3.975*** 1.023
Log-likelihood −566.20 −302.85
Observations 907 516

Note: *P = <0.10; **P = <0.05; ***P = <0.01

Table 4 Estimates of inefficiency effects model

Precision Ag. farmer Non-precision Ag. farmer
Variables Coefficient Rbst Std. Err. Coefficient

di
lny −0.073 0.036 −0.026
ln(x2/x1) 0.030** 0.010 0.046**
ln(x3/x1) 0.494*** 0.042 0.786***
ln(x4/x1) 0.345*** 0.038 0.141***
farm size −0.00008*** 0.00002 −0.0002***
const −8.234*** 0.425 −6.903***
lnsig2v
yield goal −0.001 0.003 −0.0003
const −3.521*** 0.417 −1.460***
lnsig2u
farming occupation 27.296*** 4.034 24.185***
const −31.149*** 3.778 −26.884***
Log-likelihood −39.29 −182.37
Observations 258 258

Note: *P = <0.10; **P = <0.05; ***P = <0.01
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results for adopters of PrecAg. First, technology coefficients have the same theoret-
ically consistent effects as to input and output elasticities though they are slightly
weaker. Second, yield goal, the variable that we use to model heteroskedasticity is
not significant. Third, the effect of farm size is strong and shifts the frontier towards
the origin, that is, efficiency improves with farm size. Fourth, farmers can have
various occupations apart from farming. The variable “farming” points to whether
the farmer’s main occupation was indeed farming, and an operator that identifies as
a farmer is more efficient than those that do not. This effect is also quite strong. For
non-adopters of PrecAg, however, if a farmer identifies as a farmer the variable has a
much stronger effect. Specialization makes up for the expanded skill set brought to
the farm by adopters. In contrast, the effect of farm size is stronger for adopters
than non-adopters which makes sense as well since many technologies become
economical for larger farms. Relative to their respective frontiers, group 1 (adopters)
has an average technical efficiency score of 0.832 with a std. dev. of 0.101, and group
2 (non-adopters) has one of 0.675 with a std. dev. of 0.194. We can infer that the
level of competition is higher for adopters than non-adopters. The results presented
in Table 4 also represent the first step of the two-step procedure used to estimate a
metafrontier where we specify Dk

i (x, y) for adapters and non-adapters of PrecAg,
as was mentioned above.

The striking difference in the structure of the output elasticities shown in Tables
3 and 4 needs to be explained. Table 3 shows similar estimates for output elasticities
for both matched and unmatched models. Table 4 shows pretty wide differences
in output elasticities between PrecAg and Non-PrecAg farmers. It is important to
remember that the matching process makes the conditions that both PrecAg and
Non-PrecAg farmers face as similar as possible, including their sample size. The
matching process reduced the overall sample from 907 to 516. The matching process
attempts to make the conditions that both types of firms face as similar as possible.
We hypothesize it is desirable that the unmatched and matched sample estimations
generate similar output elasticity results. For the process to not introduce a statistical
bias, the end result should produce an overall matched sample with very similar
mean and variance for all variables. These results are presented in Table 3.

Table 4 presents estimates for the two distinct types of firms after elimination
of firms in each group with the most dissimilar external conditions. The matching
process does not attempt to make the elasticities of the two different groups as
similar as possible but to ensure they face the same external conditions.

Table 5 shows the coefficient estimates of the metafrontier using an almost
identical procedure as in Huang et al. (2014) in which the predictions of the
individual frontiers are employed to construct the stochastic metafrontier. Here we
use Battese and Coelli (1995) in both steps. We followed Huang et al. (2014) in
choosing different sets of exogenous variables for the first and the second steps.
The estimated coefficients on output are non-increasing and the ones on inputs are
non-decreasing meeting the theoretical properties of the input distance function. All
these coefficients are strongly significant. We also include two PrecAg variables
for the technology in the distance function, finding that GPS-enabled auto-steering
decreases the usage of all inputs. This result is significant at the 1% level. Yield
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monitors also decrease input usage shifting the isoquant downward. However,
this result is significant only at the 10% level. We used “farm size” to model
heteroskedasticity in the error with the variable significant at the 1% level. Farmers’
ability to predict future production (yield goal—realized yield squared) is a strong
indicator of managerial ability. Greater variance in this metric results in a lower
efficiency score. The effect of this latter variable is significant at the 5% level.
Larger farms are more efficient as they are able to exploit the cost-cutting effect
of size through scale economies.

We checked the predicted metafrontier distance against both adopter and non-
adopter predicted distances to verify that the metafrontier covered both groups.2

The results of this initial probe were that the metafrontier encompassed totally the
group that adopted PrecAg but almost also encompassed the group that did not. We
will follow this finding by examining the random error relation between groups as
in Amsler et al. (2017). Nevertheless, the results we got from following Huang et al.
(2014) are valuable as an initial step as seen below.

Table 5 shows the estimates of the metafrontier. Of note is that the metafrontier
meets all of the theoretical properties of an input distance function. Here we tested
two PrecAg variables directly into the technology. We also employed “farm size” to
model heteroskedasticity in the random error term. At the same time, we tested the
performance metric yield goal minus realized production directly into the distance
frontier. We also included farm size concurrently with that of managerial ability to
isolate the effects. The estimates are significant at the 1% level. These preliminary
results point to a strong impact of PrecAg on technology, shifting the distance
function downward, i.e. saving in the input bundle to produce the output, corn. The
bottom of Table 5 shows the implied group efficiencies for adopters versus non-
adopters of PrecAg which were presented in Table 4. The most interesting aspect
is that the implied average efficiency of both groups in the metafrontier is close
to one, a result of the use of the best available production technology overall. The
technology gap hence matters quite a bit here in that it tells producers how far they
still need to go to achieve overall best practice. Not surprisingly non-adopters are
further away than adopters.

5 Summary of Results and Conclusion

In the above study, we estimated Cobb–Douglas distance models for all corn
producers in the USA. These functions met the basic theoretical properties of
distance functions. In the metafrontier results we find that GPS yield maps, guidance
auto-steering PrecAg technologies, and managerial ability save input costs and

2O’Donnell’s (2018, personal communication), suggestion.
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Table 5 Coefficients of econometric metafrontier (robust standard errors)

Variables Prec. Ag. Non-prec. Ag. Metafrontier

di pred2
lny −0.073 −0.026 lny −0.070***
ln(x2/x1) 0.030** 0.046** ln(x2/x1) 0.051***
ln(x3/x1) 0.494*** 0.786*** ln(x3/x1) 0.785***
ln(x4/x1) 0.345*** 0.141*** ln(x4/x1) 0.135***
farm size −0.00008*** −0.0002*** P2463 −0.095*
const −8.234*** −6.903*** P2148 −0.342***

const −6.628***
lnsig2v
yield goal −0.001 −0.0003 lnsig2v
const −3.521*** −1.460*** fsz 0.001***
lnsig2u Const −6.521***
farming occup. 27.296*** 24.185***
const −31.149*** −26.884*** lnsig2u

diff −0.00005**
fsz 0.0008***
const −3.669***

Log-likelihood −38.40 −182.37 227.73
Observations 258 258 516

Predicted group efficiencies

Prec. Ag. Non-prec. Ag.
Mean 0.832 0.675
Std. Dev. 0.101 0.194
Min 0.439 0.207
Max 1 1
Metafrontier

Prec. Ag. Non-prec. Ag.
Mean 0.999 0.962
Std. dev. 0.001 0.029
Min 0.987 0.898
Max 1 1
Technology gap
Mean 0.831 0.652
Std. dev. 0.101 0.195
Min 0.437 0.199
Max 1 1
OBS 258 258

Note: *P = <0.10; **P = <0.05; ***P = <0.01
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increase farm production efficiency which has environmental benefits. Maps created
from soils or aerial data and input applications using VRT did not produce useable
results, however. In the end, this study confirms that PrecAg can have important
benefits to farmers on a local level which also translates into important results for
global sustainable agriculture.

References

Amsler, C., Donnell, C. O.’., & Schmidt, P. (2017). Stochastic metafrontiers. Econometric Reviews,
36(6–9), 1007–1020.

Battese, G. E., & Prasada Rao, D. S. (2002). Technology gap, efficiency, and a stochastic
metafrontier function. International Journal of Business and Economics, 1(2), 87–93.

Battese, G. E., Rao, D. S., & Donnell, C. O’. (2003). Metafrontier functions for the study of inter-
regional productivity differences (Working Paper Series No. 01/2003). Centre for Efficiency
and Productivity Analysis.

Battese, G. E., & Coelli, T. J. (1995). A model for technical inefficiency effects in a stochastic
frontier production function for panel data. Empirical Economics, 20, 325–332.

Bravo-Ureta, B. E., Greene, W., & Solis, D. (2012). Technical efficiency analysis correcting
for biases from observed and unobserved variables: An application to a natural resource
management project. Empirical Economics, 43(1), 55–72.

Coelli, T., Estache, A., & Trujillo, L. (2003). A primer on efficiency measurement for utilities and
transport regulators. Washington, DC: World Bank Institute.

Coelli, T., Rao, D. S., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and
productivity analysis (2nd ed.). New York, NY: Springer.

Condon, L. (2018, September 27). Crop Science Division, Bayer AG, 2018 Wall Street Journal,
Global Food Forum, NY.

Erickson, B., & Lowenberg-DeBoer, J. (2017). 2017 Purdue Dealer Survey, CropLife.
Erickson, B., & Widmar, D.A. (2015). 2015 precision agricultural services dealership survey

results. Dept. of Agricultural Economics and Dept. of Agronomy, Purdue University, W.
Lafayette, IN. http://agribusiness.purdue.edu/precision-ag-survey

ERS-ARMS. (2017). ARMS farm financial and crop production practices. Retrieved October 15,
2017, from https://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-
practices/

Greene, W. (2008). The econometric approach to efficiency analysis. In H. Fried, C. A. K. Lovell,
& S. S. Schmidt (Eds.), The measurement of productive efficiency and productivity growth (pp.
92–250). New York, NY: Oxford University Press.

Griffin, T. W., Lowenberg-DeBoer, J., Lambert, D. M., Peone, J., Payne, T., & Daberkow, S. G.
(2004). Adoption, profitability, and making better use of precision farming data (Staff Paper
#04–06). Dept. of Agricultural Economics, Purdue University.

Griliches, Z. (1957). Hybrid corn: An exploration in the economics of technical change. Econo-
metrica, 25(4), 501–522.

Hadri, K., Guermat, C., & Whittaker, J. (1999). Doubly heteroscedastic stochastic production
frontiers with an English cereal farms (Discussion Paper 99–08). University of Exeter, School
of Business and Economics.

Hadri, K., Guermat, C., & Whittaker, J. (2003a). Estimation of technical inefficiency effects using
panel data and doubly heteroscedastic stochastic production frontiers. Empirical Economics,
28(1), 203–222.

Hadri, K., Guermat, C., & Whittaker, J. (2003b). Estimating farm efficiency in the presence of
double heteroscedasticity using panel data. Journal of Applied Economics, 6(2), 255–268.

http://agribusiness.purdue.edu/precision-ag-survey
https://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/


Nutrient Use and Precision Agriculture in Corn Production in the USA 363

Hayami, Y. (1969). Sources of agricultural productivity gap among selected countries. American
Journal of Agricultural Economics, 51(3), 564–575.

Hayami, Y., & Ruttan, V. W. (1970). Agricultural productivity differences among countries.
American Economic Review., 40, 895–911.

Henningsen, A. Mpeta, D., Daniel, F., Adem, A, Anwar, J. K., & Czekaj, T, et al. (2015). A meta-
frontier approach for causal inference in productivity analysis: The effect of contract farming
on sunflower productivity in Tanzania. 2015 AAEA & WAEA joint annual meeting, July 26-28,
San Francisco, CA.

Huang, C., Huang, T. H., & Liu, N. (2014). A new approach to estimating the metafrontier
production function based on a stochastic frontier framework. Journal of Productivity Analysis,
42(3), 241–254.

Lusk, J. (2016, September 23). Why industrial farms are good for the environment. New
York Times. https://www.nytimes.com/2016/09/25/opinion/sunday/why-industrial-farms-are-
good-for-the-environment.html?mcubz=0

Schimmelpfennig, D. (2016). Farm profits and adoption of precision agriculture (Economic
Research Report ERR-217). U.S. Department of Agriculture, p. 46.

Schimmelpfennig, D. (2018). Crop production costs, profits, and ecosystem stewardship with
precision agriculture. Journal of Agricultural and Applied Economics, 50(1), 81–103.

Survey, A. R. M. (2016). United States Department of Agricluture, Washington D.C. 20250,
November. 2016. In ARMS 3 agricultural resource management Survey phase 3 Interviewer’s
manual.

Swinton, S. M., & Lowenberg-DeBoer, J. (1998). Evaluating the profitability of site-specific
farming. Journal of Production Agriculture, 11(4), 439–446.

https://www.nytimes.com/2016/09/25/opinion/sunday/why-industrial-farms-are-good-for-the-environment.html?mcubz=0


Index

A
Aggregation, 49, 82, 213, 217, 226, 294, 330
Agricultural water use

future outlook, 118–120
irrigation efficiency, 117–118
spatial optimization problem, 106–111
technical efficiency, 117–118
TFP, 111–114
theoretical framework, 104–106
water productivity, 117–118

Allocative efficiency
cost, 239, 254
input, 244
productivity index, 37
statistical paradigm, 236
summary, statistics, 254
technical and, 25
tests of differences, 255

AMADEUS database, 273, 275, 276, 293–296
American Red Cross (ARC), 43, 46

approach, 51
feedback to theory/open modeling issues,

52
research constraints/considerations, 50
societal/socio-technical system

impact, 52
need, 50

stakeholders, 51
synergies and learning, 51

Asset management
approach, 56–57
feedback to theory/open modeling issues,

57
research constraints/considerations, 55–56

societal/socio-technical system
impact, 58
need, 55

stakeholders, 56
synergies and learning, 57

Autonomous systems supervision
approach, 62
feedback to theory/open modeling issues,

63
research constraints/considerations, 61
societal/socio-technical system

impact, 63
need, 61

stakeholders, 61–62
synergies and learning, 62

B
Behavioral economics, 84–86, 90
Benefit-of-the-doubt (BoD)

average cross efficiency, 225–226
conventional production processes, 224
DEA models (see Data envelopment

analysis (DEA))
effectiveness evaluation, 217
input-oriented, 213
intra-and inter-group, 224–225
inverted models, 220, 221
nutritional requirements, 223

The Bennet indicator
arithmetic average, 14
decomposition, 16
explanatory factors, 32
quantity change, 22

© Springer Nature Switzerland AG 2021
C. F. Parmeter, R. C. Sickles (eds.), Advances in Efficiency and Productivity
Analysis, Springer Proceedings in Business and Economics,
https://doi.org/10.1007/978-3-030-47106-4

365

https://doi.org/10.1007/978-3-030-47106-4


366 Index

The Bennet indicator (cont.)
technical progress, 15, 16, 31, 35
value added change, 15

Buildings
behavioral model, 84–86
economic impact, 317
and equipment, 6
production factor, 303
See also Expansionary investment activities

C
Capital stock variables, 328
Central limit theorem (CLT), 242–244, 252,

254, 255, 258–260, 262
Complex adaptive systems (CAS), 43, 44, 47,

63–65
Complexity

CAS, 63–64
model development phase, 80
policy-making, 96
socio-technical system, 43–44
system, 2
traffic control center socio-technical

system, 61
Composed errors

correlation, 130–131
panel data, 129–130
SFM, 127

Copulas
basics, 126–127
composed errors, 129–131
Gaussian, 184
goodness-of-fit tests, 135
inefficiency, 127–129
information criteria, 134–135
noise, 127–129
non-standard types, 131–134
specified marginal distributions, 125
stochastic frontier models, 3

Crop production
corn, 350
econometric estimation, 356–360
input distance function model, 354–356
PrecAg (see Precision agriculture

(PrecAg))

D
Danish dairy farms, 341–343
Data envelopment analysis (DEA)

aggregation, 226

applications, 197
bias correction procedures, 6
composite indicators, 213
connection, 170–171
econometric rival, 211
extensions

average cross efficiency, 225–226
intra- and inter-group BoD models,

224–225
non-isotonic indicators, 223–224
weak disposability, 223–224

formulated network, 55
four-stage nested, 51
input/output variables, 196, 212
linear programming models, 213
models, 4, 214–221
productivity analysis, 227
quantity/quality indices, 212
relations, 222–223
slacks-based dynamic network, 59
survey data, 52
uses, 214–221

Decision-making units (DMUs), 44, 63, 64,
198, 207, 212

aggregation, 226
contract type, 56
disaggregated processes, 57
environmental factors, 196
evaluator, 218
logic and intuition, 212
multi-input multi-output transformation,

198
partial equilibrium optimization framework,

4
socio-technical systems, 48
transportation simulation, 60
weights

optimal, 225
output, 217

Disaster management
approach, 59
feedback to theory/open modeling issues,

60
learning, 60
research constraints/considerations, 59
societal/socio-technical system

impact, 60
need, 58

stakeholders, 59
synergies, 60

Doubly conditional performance model, 76,
80–85, 90



Index 367

E
Econometrics

DEA, 4
economic regularities, 76
efficiency measurement, 3
estimation, 356–360
evolution, 87
PPS, 4
productivity, 3
results, 356–360
selectivity model, 127
SF (see Stochastic frontier (SF))
theoretic approaches, 84
2TSF, 4

Efficiency
BoD model, 225–226
CAS, 63–64
EA (see Efficiency analysis (EA))
firm productivity, 320–322
identifying firm scale, 310–312
irrigation, 117–118
and noise, 127–129
and productivity (see Productivity)
socio-technical system design (see

Socio-technical systems)
stylized facts, 70–72
technical, 117–118
VEA, 205
water productivity, 117–118
X-(in)efficiency theory, 92–93

Efficiency analysis (EA), 196, 197, 204, 206,
207

Efficiency-driven design
application, 46–48
complexity, 43–44
inter-disciplinary research, 45–46
multi-disciplinary, 45–46
socio-technical (see Socio-technical

systems)
systems, 42–43
trans-disciplinary, 45–46

Endogeneity, 131, 145, 184, 189, 272–273,
291, 314

Equipment
and buildings (see Buildings)
Dutch data, 309
interrelation, 315
investment spikes, 6
productivity, 320

Evolutionary theory, 72, 90–92
Exact indicator approach, 32–36
Expansionary investment activities

capital adjustment patterns, 304
data description

firm scale, 310–312
investment spikes, 308–310

economic productivity, 304
efficiency, 310–312
empirical results

average wage, 319, 320
capital intensity, 319, 320
efficiency, 320–322
employment, 316–318
firm productivity, 320–322
interrelated, 316
production, 315–318
types, 314, 315

firm-level data, 305
methodology, 312–314
microeconomic models, 304
production, 310–312

factor, 303–304
processes, 305

theoretical grounding, 306–307

F
First order approximation approach, 11–23, 32,

153
Fixed effects, 141, 148, 187, 271, 276, 292,

312, 314, 319
Flexible functional forms for value added

functions, 2, 33, 75
Free disposal hull (FDH), 26, 74, 227, 241

bargaining power, 170
double-frontier model, 170
estimators, 240–245, 248, 249, 260
nonparametric estimators, 74
technical-change index, 259
technical efficiency, 252–254

Frontier differences, 340, 342, 344, 347

G
Generalized exponential (GE), 182–183
Goodness-of-fit tests, 134, 135
Gravity model, 287–289
Greene problem, 132, 136

H
Half-normal distribution, 125, 127, 129, 132,

178–180, 357
Heterogeneity

corn sector, 351
environmental, 52
group-specific, 187



368 Index

Heterogeneity (cont.)
heteroskedasticity, 166
observable characteristics, 165
operating environments, 50
production technology, 292

I
Independent samples, 188
Index numbers

analogy, 12
decompositions, 11
multiplicative, 25
ratio concept, 13
technical progress indicators, 29
value added growth, 17

Indicator functions, 330
Individual price, 17–22, 32
Industry cluster decomposition, 322–326
Inflation

index of, 10
nominal amounts of money, 32
problem of adjusting, 22–24

Information criteria, 134–135
Information technologies, 190, 329
Innovation, 1, 46, 80, 93–94, 322, 323, 325
Input distance function model, 354–356
Input mix, 29–31, 305, 309, 312, 327
Inter-disciplinary application research, 45–46,

58
Interrelation, 315
Intra-industry reallocation process, 267, 269,

286
Investment model derivation, 329–331
Investment spikes

economic impact from, 317
equipment/buildings, 305
firm-level performance, 304
identification, 308–310
input factor, 6

Irrigation
agricultural, 104
canal, 105, 107, 108
efficiency, 117–118
infrastructure project, 3
and nitrate pollution, 115
return flows, 109, 118
water scarcity, 120

K
Kernel density estimate, 200–204, 310

L
Labour intensity, 304, 305, 322–324, 326, 327
Latent class model, 5, 267, 270, 279, 283, 285,

286
Low-and high-tech, 305, 322–325

M
Malmquist index

decompositions, 6
efficiency change component, 339
geometric mean, 338
hyperbolic distances, 258
permutation tests, 336
production possibility set, 336–337, 339
productivity change, 336, 337
statistical inference, 340–341

Maximum likelihood, 130, 136, 165, 172, 181,
184–186, 188, 189

Measures of technical progress, 13, 15, 16,
29–31, 35, 74

Metaproduction technology, 354–356
Method of moments, 185–186
Mix differences, 344–345
Monte Carlo simulations

estimation, 150–154
results, 150–154
specific equation, 149–150
state-of-the-art methods, 154–160

Multi-disciplinary application research, 45–46
Multivariate normal distribution, 125, 136,

200–201

N
Nash bargaining, 2TSF, 168, 175–177, 183,

186
Non-isotonic indicators, 223–224
Non-linear least squares (NLS), 186–187
Nonparametric cost constrained value added

function, 24–32
Nonparametric methods, 4, 73, 129, 146, 154,

355
cost constrained value, 24–32
efficiency estimation, 245
estimators, 74
FE model, 148
identification, 3
marginal distributions, 134
production models, 223
sample sizes, 159
tilde transformation, 158

Non-standard types, 125, 131–134, 184, 187



Index 369

O
OLS estimation, 142–144, 146, 185–186
Omitted variables, 3, 140, 143, 159, 271
One-sided error components, 165, 166, 175,

178, 183–184, 187, 189
On-farm irrigation efficiency, 105
Organic farming, 346–348

P
Panel data, 187–188

determinants of inefficiency, 4
firm investment, 324
models, 130
multi-equation model, 125
numerical difficulties, 130
observations, 74
practitioner, 3
quasi-MLE based, 129
SF models (see Stochastic frontier (SF))
time-varying nature, 289
2TSF model, 166

Partial equilibrium, 4, 197, 198, 207
Performance

DMUs, 43
doubly conditional model, 80–83
DSRS, 54
economic, 118
financial, 42
management of, 73
multiple dimensions, 50
public water infrastructure, 3
stylized facts (see Stylized facts)

Performance analysis (PA)
conventional DEA based methods, 196,

204–205
density estimates of profit and return

Kernel density estimate, 201
multivariate normal distribution,

200–201
parametric distribution, 202–203

economic foundation, 198
estimating prices, 198–199
financial accounting, 196
PA vs. EA methods, 206, 207
personnel economics research, 196–197
price computations, 203–204
productivity, 196
return and value performance scores,

199–200
Permutation tests, 6, 336, 345–347
Precision agriculture (PrecAg)

data sources, 352–354
variable construction, 352–354

VRT, 351
yield-by-location data, 351

Production analysis, 72
Production possibility sets (PPS), 4, 196–199,

204
Production set, 73, 140, 237, 241, 244, 245,

251, 258, 260, 291
Production theory

economic, 45, 58, 60, 62–64
efficiency, 26
neoclassical, 140, 158
normalized quadratic functional form, 32

Productivity
accumulation, 86–90
behavioral

economics, 84–86
model building, 84–86

doubly conditional performance model,
80–83

and efficiency measurement, 72–75
growth, 1
literature

comparative institutional analysis, 94,
95

complementarity, 93–94
control systems, 95
design of evaluation, 95
economic theory, 93–94
evolutionary theory of the firm, 91–92
innovation production, 93–94
varieties of governance, 96
X-(in)efficiency theory, 92–93

measurement (see Productivity
measurement)

need
developing models, 77–79
implementation problem, 79–80

objective, 76
representation, 83–84
stylized facts, 70–72

Productivity measurement
business accounting practices, 10
exact indicator approach, 32–36
first order approximation approach, 11–17
individual price, 17–22
inflation, 22–24
nonparametric cost constrained value added

function, 24–32
quantity indicators, 17–22
TFP, 10
theoretical indicators decomposing, 17–22
value added

change, 32–36
decomposition, 10
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R
Radial models, 4, 213, 227
Random effects (RE)

FE framework, 150
inefficiencies, 144
linear xorcist, 152
omitted variable, 143
panel model, 142

Reservation price, 10, 173–175
Returns to scale

constant, 24
CRS hypothesis, 205
FDH estimator, 243
land size, 119
multiplicative index number theory, 24
nonparametric representation, 27
production possibilities, 11

Robustness checks, 274, 289, 297–299

Q
Quantity indicators, 17–22, 28, 31, 32

S
Sample selection, 184, 277, 294–296
Scale

DEA formulation, 51
dispersion, 280
economic growth, 5
elasticity, 113
firm-level economies, 268, 310–312
hypothesis, 205

Scaling property, 186
Semi-gamma 2TSF specification, 180–182,

190
Semi-parametric process, 73, 75
Simulation

analytical, 49
modeling approach, 64
Monte Carlo, 149–154
traffic, 54
transportation, 46, 53, 60

Social service provision
approach, 51
determinants, 46
feedback to theory/open modeling issues,

52
research constraints/considerations, 50
societal/socio-technical system

impact, 52
need, 50

stakeholders, 51
synergies and learning, 51

Socio-technical systems
asset management, 55–58
and complexity, 43–44
disaster management, 58–61
efficiency measurement, 42, 48–49
five illustrations, 49
social service provision, 50–52
supervision of autonomous systems, 61–63
traffic congestion, 52–55

Spatial optimization
irrigation absence, 120
problem, 106–111
return flows, 118
water quality dimension, 115

Stochastic frontier (SF)
copulas (see Copulas)
determinants of inefficiency and firm

effects
fixed, 143, 146–147
random, 142–143, 147–148

determinants of persistent, transient
inefficiency and firm effects

fixed, 145, 148
random, 144–145, 148–149

dogmatic neoclassical economists, 140
firm and iid transient inefficiency effects

fixed, 142
random, 141–142

iid persistent, transient inefficiency and
firm effects

fixed, 144
random, 144

inefficiency, 140
models, 3
production model, 291–293
state-of-the-art panel data, 140

Stochastic frontier analysis (SFA), 153, 154,
163, 169, 173, 276, 327

Stylized facts
accumulation, 86–90
assessment, 80
productivity/efficiency, 70–72, 76

T
Technical and allocative efficiency, 37
Technical efficiency, 117–118, 196, 227, 238,

244, 260, 356, 359
FDH, 251–254
firm-level economies, 268
hyperbolic, 249
and scale, 5
socio-technical systems, 64

Theoretical indicators decomposing, 17–22
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Total factor productivity (TFP)
agricultural water contribution, 111–114
biased estimators, 106
defined, 10
growth, 26, 31
indicator, 31
spatial total factor productivity

decomposition, 114
water

quality, 117
use over space, 112

Trade barriers, 5, 266, 267, 272, 289, 291
Trade openness

comparative advantage, 271
endogeneity, 291
industry-level

integration, 291
natural, 287–290

intra-industry reallocation process, 267
labor productivity, 281
manufacturing industries, 274
openness-driven-specialization, 284
trade-specialization nexus, 269

Trade-specialization nexus, 266–268, 278–283
actual and predicted industry shares,

284–286
data, 273–277
economic literature, 266
empirical framework, 268–270
identification

endogeneity, 272–273
three-dimensional panel, 271–272

industrial, 265
reallocation, 278
slow-down, 283–284

Traffic congestion
approach, 53–54
feedback to theory/open modeling issues,

55
research constraints/considerations, 53
societal/socio-technical system

impact, 55
need, 52

stakeholders, 53
synergies and learning, 54

Trans-disciplinary application research, 45–46,
61, 65

Truncated normal specification, 180
Two-tier stochastic frontier model (2TSF), 4

analogous thoughts, 190

DEA connection, 170–171
distributional specifications

exponential, 177–178
GE, 182–183
half-normal, 178–179
one-sided error components, 183–184
semi-gamma, 180–181
truncated normal, 180

estimation methods
corrected OLS/method of moments,

185–186
maximum likelihood, 184–185
NLS, 186–187

generating mechanism, 164
health services market, 167
labor market, 165–166
methodological approach, 163
other markets, 167–170
panel data, 187–188
single-tier SF models, 164
structural foundations

hedonic price, 174–175
incomplete information, 171–173
Nash bargaining, 175–177
reservation price, 173–174

wrong skewness, 189

U
U.S. banking, post-crisis era

cash smoothing, 235
data and variable specification, 244–248
empirical results, 248–259
estimation, 240–244
financial crises, 234, 236
housing mortgage markets, 233
inference, 240–244
regulatory response, 236
statistical model, 237–240
technical details, 260–262

V
Value added change, 15, 16, 32–36
Value added decomposition, 2, 10, 25
Value (or profit) efficiency analysis (VEA),

204–207
Variable

capital stock, 328
complementary choice variable, 93
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Variable (cont.)
data

sources, 352–354
specification, 244–248

definitions, 296, 353
economic, 77
exogenous, 142
geographical, 272
input/output, 56
partial factor productivity, 118

sets, 27
workload modeling, 47
zero-one indicator, 149

Variable rate technology (VRT), 350–352, 362

W
Water productivity, 104–107, 111, 117–118
Water quality adjustments, 114–117
Wrong skewness, 189


	Contents
	Editors' Introduction
	1 Measurement
	2 Econometrics
	3 Applications
	References

	The Difference Approach to Productivity Measurement and Exact Indicators
	1 Introduction
	2 The First Order Approximation Approach
	3 Decomposing the Theoretical Indicators of Overall Output Price and Input Quantity Change into Individual Price and Quantity Indicators
	4 The Problem of Adjusting the Measures for General Inflation
	5 The Difference Approach to Productivity Measurement Using the Nonparametric Cost Constrained Value Added Function
	6 An Exact Indicator Approach to the Decomposition of Value Added Change
	7 Conclusion
	References

	Efficiency Driven Socio-Technical System Design
	1 Introduction and Context
	1.1 Systems and System Design
	1.2 Socio-Technical Systems and Complexity
	1.3 Trans-disciplinary, Multi-disciplinary, and Inter-disciplinary Research
	1.4 Application Research and Application Issues

	2 Efficiency Measurement and Socio-Technical System Design
	3 Efficiency Driven Socio-Technical System Design: Five Illustrations
	3.1 Social Service Provision: The American Red Cross (Medina-Borja et al. 2007; Medina-Borja and Triantis 2011; ARC Grant)
	3.1.1 Societal/Socio-Technical System Need
	3.1.2 Research Constraints/Considerations
	3.1.3 Stakeholders
	3.1.4 Approach
	3.1.5 Synergies and Learning from Other Projects
	3.1.6 Feedback to Theory/Open Modeling Issues
	3.1.7 Societal/Socio-Technical System Impact

	3.2 Traffic Congestion: The Downtown Space Reservation System (Zhao et al. 2010a, b, 2011; NSF Grant # 0527252)
	3.2.1 Societal/Socio-Technical System Need
	3.2.2 Research Constraints/Considerations
	3.2.3 Stakeholders
	3.2.4 Approach
	3.2.5 Synergies and Learning from Other Projects
	3.2.6 Feedback to Theory/Open Modeling Issues
	3.2.7 Societal/Socio-Technical System Impact

	3.3 Asset Management: Highway Maintenance (Fallah-Fini et al. 2010, 2012, 2014, 2017; NSF Grant # 0726789)
	3.3.1 Societal/Socio-Technical System Need
	3.3.2 Research Constraints/Considerations
	3.3.3 Stakeholders
	3.3.4 Approach
	3.3.5 Synergies and Learning from Other Projects
	3.3.6 Feedback to Theory/Open Modeling Issues
	3.3.7 Societal/Socio-Technical System Impact

	3.4 Disaster Management: Evacuation Planning (Herrera-Restrepo et al. 2016; NSF Grant # 1536808 (Ongoing))
	3.4.1 Societal/Socio-Technical System Need
	3.4.2 Research Constraints/Considerations
	3.4.3 Stakeholders
	3.4.4 Approach
	3.4.5 Synergies and Learning from Other Projects
	3.4.6 Feedback to Theory/Open Modeling Issues
	3.4.7 Societal/Socio-Technical System Impact

	3.5 Supervision of Autonomous Systems: Railway Traffic Control Centers (Topcu et al. 2019) (Ongoing)
	3.5.1 Societal/Socio-Technical System Need
	3.5.2 Research Constraints/Considerations
	3.5.3 Stakeholders
	3.5.4 Approach
	3.5.5 Synergies and Learning from Other Projects
	3.5.6 Feedback to Theory/Open Modeling Issues
	3.5.7 Societal/Socio-Technical System Impact


	4 Complex Adaptive Systems and Efficiency Measurement
	5 Conclusions and Future Directions
	 References

	A Framework for the Assessment and Consolidation of Productivity Stylized Facts
	1 Introduction
	1.1 Stylized Facts and Productivity/Efficiency Stylized Facts
	1.2 Productivity and Efficiency Measurement
	1.3 Main Aim and Organization of the Paper

	2 The Need for a Framework to Assess Productivity
	2.1 Developing Models
	2.2 The Implementation Problem

	3 A Doubly Conditional Performance Model
	4 The Representation of the Production Process
	5 Behavioral Economics and Behavioral Model Building
	6 The Accumulation of Productivity Stylized Facts
	7 A Unifying Leading-Thread for Different Streams of Literature
	7.1 Evolutionary Theory of the Firm
	7.2 X-Inefficiency and Resource-Based View of the Firm
	7.3 Economic Theory, Complementarity, and Innovation in Production
	7.4 Comparative Institutional Analysis
	7.5 Design of Evaluation and Control Systems
	7.6 Varieties of Governance

	References

	Water's Contribution to Agricultural Productivity over Space
	1 Introduction to the Theoretical Framework
	2 Model Specification
	2.1 Spatial Optimization Problem
	2.2 Contribution of Agricultural Water to Total Factor Productivity

	3 Accounting for Water Quality Adjustments over Space
	4 Discussion and Further Remarks
	4.1 Irrigation Efficiency, Technical Efficiency, and Water Productivity
	4.2 Future Outlook

	5 Conclusion
	References

	A Survey of the Use of Copulas in Stochastic Frontier Models
	1 Introduction
	2 Copula Basics
	3 Allowing Dependence Between Noise and Inefficiency
	4 Allowing Dependence Between Different Composed Errors or Composed Errors and Other Errors
	4.1 Panel Data
	4.2 Correlation of Errors Across Equations

	5 Copulas Designed to Handle Specific Non-Standard Types of Dependence
	6 Choosing the Copula
	6.1 Information Criteria
	6.2 Goodness-of-Fit Tests

	7 Concluding Remarks
	References

	Does Xistence of Inefficiency Matter to a Neoclassical Xorcist? Some Econometric Issues in Panel Stochastic Frontier Models
	1 Introduction
	2 Model Specification
	2.1 The Model with Firm Effects and iid Transient Inefficiency
	2.1.1 Random Firm Effects
	2.1.2 Fixed Firm Effects

	2.2 The Model with Determinants of Inefficiency and Firm Effects
	2.2.1 Random Firm Effects
	2.2.2 Fixed Firm Effects

	2.3 The Model with iid Persistent and Transient Inefficiency and Firm Effects
	2.3.1 Random Firm Effects
	2.3.2 Fixed Firm Effects

	2.4 The Model with Determinants of Persistent and Transient Inefficiency and Firm Effects
	2.4.1 Random Firm Effects
	2.4.2 Fixed Firm Effects


	3 Estimation
	3.1 Models with Determinants of Inefficiency and Firm Effects 
	3.1.1 Fixed Firm Effects
	3.1.2 Random Firm Effects

	3.2 Models with Determinants of Persistent and Transient Inefficiency and Firm Effects 
	3.2.1 Fixed Firm Effects
	3.2.2 Random Firm Effects


	4 Monte Carlo Simulations 
	4.1 Specific Equation 
	4.2 Estimation and Results  
	4.3 State-of-the-art Methods 

	5 Conclusion
	References

	The Two-Tier Stochastic Frontier Framework (2TSF): Measuring Frontiers Wherever They May Exist
	1 Introduction
	2 Roads Taken: Applications of the 2TSF Framework
	2.1 Labor Market
	2.2 Health Services Market
	2.3 A Lot of Other Markets (And Not Only Markets)
	2.4 The DEA Connection

	3 Structural Foundations
	3.1 The “Incomplete Information” Framework of Polachek and Yoon (1987)
	3.2 The “Reservation Price” Framework of Gaynor and Polachek (1994)
	3.3 The “Hedonic Price” Framework of Kumbhakar and Parmeter (2010)
	3.4 The Nash Bargaining 2TSF Framework

	4 Tools of the Trade
	4.1 Distributional Specifications
	4.1.1 The Exponential 2TSF Specification
	4.1.2 The Half-Normal 2TSF Specification
	4.1.3 The Truncated Normal 2TSF Specification
	4.1.4 The Semi-Gamma 2TSF Specification
	4.1.5 The Generalized Exponential 2TSF Specification
	4.1.6 Dependence Between the One-Sided Error Components: The 2TSF Correlated Exponential Specification

	4.2 Estimation Methods
	4.2.1 Maximum Likelihood
	4.2.2 Corrected OLS/Method of Moments.
	4.2.3 Non-linear Least Squares

	4.3 Panel Data

	5 Moving Forward
	References

	Individual Efficient Frontiers in Performance Analysis
	1 Introduction
	2 Performance Analysis
	2.1 Economic Foundation
	2.2 Estimating Prices
	2.3 Return and Value Performance Scores
	2.4 Density Estimates of Profit and Return
	2.4.1 Multivariate Normal Distribution of Netput Vectors
	2.4.2 Kernel Density Estimate of ψ(κ;μ)
	2.4.3 Parametric Distribution of Netput Vectors

	2.5 Price Computations

	3 Conventional DEA Based Methods
	4 Comparison of PA and EA Methods
	5 Conclusions
	References

	DEA Models Without Inputs or Outputs: A Tour de Force
	1 Introduction
	2 Models Presentation and Uses
	3 Relations with Other Models
	4 Some Extensions
	4.1 Weak Disposability and Non-isotonic Indicators
	4.2 Intra- and Inter-Group BoD Models
	4.3 Average Cross Efficiency in the BoD Model

	5 Aggregation Across DMUs
	6 Productivity Analysis
	7 Concluding Remarks
	References

	U.S. Banking in the Post-Crisis Era: New Results from New Methods
	1 Introduction
	2 The Statistical Model
	3 Estimation and Inference
	4 Data and Variable Specification
	5 Empirical Results
	6 Summary and Conclusions
	Appendix: Technical Details
	References

	Room to Move: Why Some Industries Drive the Trade-Specialization Nexus and Others Do Not
	1 Introduction
	2 Methodology
	2.1 Empirical Framework
	2.2 Identification
	2.2.1 Benefits of a Three-Dimensional Panel
	2.2.2 Alternative Measures to Control for Endogeneity


	3 Data
	4 Results
	4.1 The Potential for Reallocation and Subsequent Actual Reallocation
	4.2 How Has the Potential for Reallocation Driven the Trade-Specialization Nexus?
	4.3 Can We Explain the Slow-Down in Specialization?
	4.4 Actual and Predicted Industry Shares

	5 Conclusion
	Appendix
	Construction of Alternative Measures for Trade Openness 
	Industry-Level Natural Openness
	Industry-Level Trade Integration

	A Stochastic Frontier Production Model
	Data and Variables
	The AMADEUS Database
	Sample Selection
	Variable Definitions

	Robustness Checks

	References

	Expansionary Investment Activities: Assessing Equipment and Buildings in Productivity
	1 Introduction
	2 Theoretical Grounding
	3 Data Description
	3.1 Identifying Investment Spikes
	3.2 Identifying Firm Scale, Productivity, and Efficiency

	4 Methodology
	5 Empirical Results
	5.1 Changes in Scale: Production and Employment
	5.2 Change of Average Wage and Capital Intensity
	5.3 Changes in Firm Productivity and Efficiency

	6 Industry Cluster Decomposition
	7 Conclusion
	Appendix 1: Construction of Capital Stock Variables
	Appendix 2: Available upon Request: Derivation of Investment Model
	 References

	Applying Statistical Methods to Compare Frontiers: Are Organic Dairy Farms Better Than the Conventional?
	1 Introduction
	2 Methodology
	2.1 Statistical Inference of the Malmquist Index and Its Components

	3 Danish Dairy Farms
	4 Results
	4.1 Frontier Differences
	4.2 Mix Differences
	4.3 Permutation Tests for Productivity Change and Its Components

	5 Final Remarks
	References

	Nutrient Use and Precision Agriculture in Corn Productionin the USA
	1 Introduction
	2 Description of Precision Agricultural Technologies
	2.1 Data Sources and Variable Construction

	3 Input Distance Function Model
	3.1 Metaproduction Technology

	4 Econometric Estimation and Results
	5 Summary of Results and Conclusion
	References

	Index

