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Abstract. For most genetic diseases, a wide gap exists between the
heritability estimated from familial data and the heritability explained
through standard genome-wide association studies. One of the incentive
lines of research is epistasis - or gene-gene interaction -. However, epista-
sis detection poses computational challenges. This paper presents three
contributions. Our first contribution aims at filling the lack of feedback on
the behaviors of published methods dedicated to epistasis, when applied
on real-world genetic data. We designed experiments to compare four
published approaches encompassing random forests, Bayesian inference,
optimization techniques and Markov blanket learning. We included in
the comparison the recently developed approach SMMB-ACO (Stochas-
tic Multiple Markov Blankets with Ant Colony Optimization). We used
a published dataset related to Crohn’s disease. We compared the meth-
ods in all aspects: running times and memory requirements, numbers
of interactions of interest (statistically significant 2-way interactions),
p-value distributions, numbers of interaction networks and structure of
these networks. Our second contribution assesses whether there is an
impact of feature selection, performed upstream epistasis detection, on
the previous statistics and distributions. Our third contribution con-
sists in the characterization of SMMB-ACO’s behavior on large-scale real
data. We report a great heterogeneity across methods, in all aspects, and
highlight weaknesses and strengths for these approaches. Moreover, we
conclude that in the case of the Crohn’s disease dataset, feature selection
implemented through a random forest-based technique does not allow to
increase the proportion of interactions of interest in the outputs.
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1 Introduction

Within two decades, genome-wide association studies (GWASs) have introduced
a new paradigm in the field of complex disease genetics. GWASs’ purpose is to
detect statistical dependences, also called associations, that exist between genetic
variants and some phenotype of interest, in a population under study. For exam-
ple, in case-control studies, the phenotype of interest is the affected/unaffected
status. Typically, a GWAS considers between a few thousand to ten thousand
individuals in a population, for which high-throughput technologies allow to
measure DNA variation at characterized loci distributed over the whole genome.
Single nucleotide polymorphism (SNP) is a type of DNA variation widely-used in
GWASs. Hereafter, we will only consider SNP-based association studies. Depend-
ing on the genotyping microarray used, GWASs analyze between a few hundred
thousand to a few million SNPs. Standard GWASs test each of the SNPs one at
a time, to identify a difference between case and control cohorts.

GWASs have allowed a greater understanding of the genetic architecture
underlying complex phenotypes [38]. By fostering prevention and design of more
efficient drug therapies depending on the genetic profiles of patients, GWASs
have contributed to pave the way to personalized medicine. However, despite
GWASs’ successes, a wide gap exists between the heritability estimated from
familial data and the heritability explained by genetic variants via standard
GWASs, for most phenotypes investigated so far. To close this so-called ‘miss-
ing heritability’ gap [37], complementary venues of research actively investi-
gate alternative heritable components of complex phenotypes. These alternatives
encompass additivity of small effects from myriads of common variants, rare vari-
ants, structural variants, epigenetics, gene-environment interactions and genetic
interactions [44].

This paper focuses on computational approaches designed to detect genetic
interactions, also named epistasis. Nowadays, the term “epistasis” is widely used
to refer to the situation in which genes interact together to determine some
phenotype, whereas each of them alone is not influential on this phenotype: the
contribution of one gene to a phenotype depends on the genetic profile of the
organism under study. To note, the latter phenotype is not directly observed in
case-control studies, in which a physiological quantitative phenotype underlies
the unaffected/affected phenotypic status expressed. Epistasis can be seen as
the result of physical interactions among biomolecules involved in biochemical
pathways and gene regulatory networks, in an organism [29].

To illuminate where part of the missing heritability lies, the role of gene
interactions is substanciated by a persuasive body of evidence: biomolecular
interactions are omnipresent in gene regulation, signal transduction, biochem-
ical networks and physiological pathways [9,12]. These interactions play a key
role in transcriptional and post-translational regulations, interplay between pro-
teins as well as intercellular signaling. Biological evidence for epistasis has been
documented in the literature (e.g., [10,11,18,27]). In regard of the ubiquitous
character of gene-gene interactions, the relatively limited number of findings
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published is arguably explained by the computational issue raised by epistasis
detection.

In the remainder of this article, a combination of SNPs that interact to deter-
mine a phenotype is called an interaction. A k-way interaction is a combination
of k interacting SNPs. A 2-way interaction will also be called a gene-gene inter-
action (with SNPs either in exons or introns).

A key motivation for the large-scale comparative study reported in this paper
lies in the following observation: we miss feedback about the respective behaviors
of methods designed to implement GWASs on real-world data. This observation
extends to Genetic Association Interaction Studies (GAISs), and a fortiori to
genome-wide AISs (GWAISs). This paper contributes to fill this lack. Besides, we
recently extended our work to assess the impact of feature selection, when applied
upstream epistasis detection. Another strong motivation for our work was to
analyze how SMMB-ACO [32], a method proposed most recently, compares with
other approaches, on real GWAIS data. The remainder of the paper is organized
as follows. Section 2 presents a succinct overview of the recent state-of-the-art of
the domain. Section 3 provides the motivations for our study and sketches our
main contributions. Section 4 depicts the five methods involved in our study, in
a broad-brush way for the four reference methods chosen, and in more details for
the recently developed SMMB-ACO. Section 5 focuses on the two experimental
protocols involved, the real-world datasets analyzed, the implementation and
parameter adjustment of the five methods. The experimental results, discussion
and feedback gained are presented in the last section.

2 A Brief State-of-the-Art in the Computational
Landscape of Gene-gene Interactions

This section provides an overview of the various categories of methods designed
to address epistasis detection issues.

2.1 Exhaustive Approaches

The detection of gene-gene interactions is no easy task, especially for large
datasets. High level interactions, which involve more than two loci, pose a
formidable computational challenge. For instance, the number of potential pair-
wise interactions in a dataset of 500,000 SNPs amounts to 12.5 × 1011; in the
same dataset, the number of potential 3-way interactions rises to 2.08 × 1016,
Hereafter, we will describe the main classes of methods and provide an illus-
tration for each, with a highlight on the scalabilities of the methods cited as
illustrations.

In the class of statistical approaches, linear generalized regression
(LGR) offers a framework to model the relationship between an outcome variable
y and multiple interacting predictors x1, x2, ..., xq (continuous or categorical),
such as in f(y) ∼ β0+β1 x1+β2 x2+β12 x1x2, with q = 2. In this framework, two
ingredients allow to escape from the pure linear scheme (y ∼ β0+β1 x1+β2 x2),
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in the case of two predictors). On the one hand, interaction terms βij capture
potential interplay between predictors. On the other hand, the link function f is
used to transform the outcome y, to match the real distribution of y. Obviously,
LGR cannot be used straightforwardly to analyze data on the genome scale: the
exhaustive enumeration and test of potential q-way interactions is prohibitive,
and this task should be performed for q comprised between 2 and r, where r is an
upper bound arbitrarily set by the user. Furthermore, identifying an appropriate
link function f may not be trivial. Nevertheless, logistic regression (LR) is a
widely-used specific case of LGR in which the link function is known, to model
a binary outcome: in case control studies, with p representing the probability
to be affected by the pathology of interest, the LR model with two interacting
predictors writes: logit(p) = ln( p

1−p ) = β0 + β1 x1 + β2 x2 + β12 x1x2. We
will further specify to which aim and how LR is used in the comparative study
reported here.

Penalized regression (PR) implemented through Lasso, Ridge or Elastic Net
regression can be used for the purpose of epistasis detection [2]. The computa-
tional burden of these methods is particularly heavy. The approach described
in [5] attempts to palliate this issue through a two-stage procedure. First, pair-
wise interactions are searched for within each gene, using Randomized Lasso and
penalized Logistic Regression (RLLR). Second, pairwise interactions across genes
are assessed considering the SNPs obtained in the first stage. RLLR is again used
in this second stage. In [33], interactions are searched for each pair of genes. A
Group Lasso approach is employed, in which groups comprise either the SNPs
of a given gene, or interaction terms relative to a given pair of genes. Though
such approaches seem appealing to capture cross-gene epistasis, they each fea-
ture a major drawback. In [5], the biological motivation for the data dimension
reduction performed via the first stage is questionable since 2-way interactions
within genes are not necessarily connected to cross-gene interactions. On the
other hand, the approach in [33] could only be run on a pre-selected set of a few
dozen genes, for each of three real GWAS datasets. These genes were pre-selected
based on an univariate analysis, which introduces a bias.

A step further, model-free data mining methods in the line of multifactor-
dimensionality reduction (MDR) categorize the observed genotypes into
high-risk and low-risk groups, for each q-way potential interaction [13]. Since
enumerating all potential q-way interactions is required, MDR-based approaches
fail to handle large-scale data. An exception is the case when GPU calculation
is used [43].

2.2 Dimension Reduction Upstream of Epistasis Detection

A direct way to reduce the search space is to decrease the dataset size. Filter-
ing based on extrinsic biological knowledge is expected to yield meaning-
ful and biologically relevant results. However, exploiting additional knowledge
such as protein-protein interaction networks or pathways is questionable. Online
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databases are incomplete and our understanding of biological pathways is lim-
ited. Therefore, relying on such knowledge for data dimension purpose would
result in a biased analysis in the majority of cases.

In the category of machine learning and data mining approaches, feature
selection techniques rely on properties intrinsic to the data, to select SNPs poten-
tially relevant for epistasis detection.

A number of variants were proposed around Relief [36]. The first step in
Relief-based approaches (RBAs) is to compute pairwise (genetical) similari-
ties between subjects. A nearest neighbor technique is further applied, to assess
importances for SNPs with respect to the phenotype of interest. Basically, the
method identifies SNPs not sharing the same values between a subject and its
nearest neighbors. If this situation arises when the subject and its nearest neigh-
bors neither share the same phenotype, the SNPs’ importances are increased;
otherwise, the importances are decreased. This step is only repeated over a user-
defined number of subjects, which nonetheless requires the costly computation of
pairwise similarities. Moreover, Relief-based approaches are prone to pre-select
SNPs marginally associated with the phenotype.

Random forest (RF) approaches implement high-dimensional non-
parametric predictive models relying on ensemble features. In RFs, bootstrap
aggregating [4] allows to convert a collection of weak learners (decision trees in
this case) into a strong learner. The decision trees (classification trees for a cate-
gorical outcome, regression trees for a continuous outcome) are grown recursively
from bootstrap samples of observations. At each node in each tree, the observa-
tions (e.g., individuals) that have percolated down this node are splitted relying
on an optimal cut-point. A cut-point is a pair involving one of the available
variables (e.g., SNPs) and a value in the variable’s domain. Over all available
variables, the optimal cut-point best discriminates the observations with respect
to the outcome of interest (e.g., phenotype). In RFs, the optimal cut-point is
determined using a random subset of the initial variables. RFs produce a rank-
ing of the variables, by decreasing importance measure. This measure quantifies
the impact of a variable in predicting the outcome and thus potentially reflects
a causal effect. RF-based approaches were shown efficient in ranking simulated
disease-associated SNPs, to detect gene-gene interactions [24,25]. Computational
cost and memory inefficiency were severe impediments to RF learning in high-
dimensional settings. In this respect, the advances reported in [30] and [40] render
RF-based feature selection practicable for epistasis detection at large scale.

In association studies, feature selection yields a ranking for the SNPs in the
initial available dataset. A procedure is required downstream such methods as
Relief-based approaches and Random Forests, to generate gene-gene interactions
from the top ranking SNPs. Such procedure may boil down to assessing potential
interactions through statistical tests. In contrast, a specific approach designed to
detect epistasis may be used. We explored both modalities in the work reported
here.
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2.3 Sampling from Probability Distributions

The popular BEAM algorithm (Bayesian Epistasis Association Mapping) [42]
relies on a Markov Chain Monte Carlo (MCMC) process to test iteratively
each SNP, conditional on the current status of other SNPs. For each SNP, the
algorithm outputs its posterior probability of association with disease. BEAM
then partitions the SNPs into three categories. One category contains SNPs
with no impact on the disease. A second category contains SNPs that contribute
independently to the disease. The third category highlights SNPs assumed to
jointly influence the disease given particular variant combinations of some other
SNPs. BEAM was reported to handle datasets with half a million of SNPs, at
the cost of high running times (up to a week and even more).

2.4 Machine Learning Techniques

To detect epistasis, machine learning approaches represent appealing alternatives
to parametric statistical methods. Such approaches build non-parametric models
to compile information further used for gene-gene interaction detection.

Standard supervised machine learning and data mining techniques can be
employed directly for the purpose of epistasis detection. Support vector
machines (SVMs) separate interacting and non-interacting groups of SNPs
using a hyperplane in multi-dimensional space. The work in [31] reports an SVM-
based study of 2-way interactions conducted at the genome scale. On the other
hand, artificial neural networks (ANNs) allow to model non-linear feature
interactions. To this aim, non-linear activation functions are used, in conjunc-
tion with a sufficient number of hidden layers. Advanced stochastic gradient
descent techniques brought a remarkable breakthrough in training feedforward
networks with many hidden layers, thereby paving the way to deep neural net-
works (DNNs). However, so far, DNNs were confined to process small datasets.
In [35], a DNN was learned from small datasets (no more than 1,600 subjects, a
few dozen SNPs). The DNN used in [8] was learned from around 1,500 subjects
and 5,000 SNPs, downstream a filtering stage consisting in logistic regression.

Bayesian Networks (BNs) allow to model patterns of probabilistic depen-
dences between variables represented as nodes in a directed acyclic graph. In the
context of epistasis detection, BNs offer an incentive framework to discover the
best scoring graph structure connecting SNPs to the disease variable. In [15],
a branch and bound heuristic allowed to handle a relatively limited dataset, a
published AMD (Age Macular Degenerated) dataset (150 individuals, around
110,000 SNPs). In [19], a greedy search implements a forward phase consist-
ing in edge addition followed by a backward phase orchestrating edge removal.
The tractability issue is addressed by starting the greedy search with one pair
of interacting SNPs which are each influential on the disease status. This app-
roach is therefore limited to the detection of a specific case of epistasis, named
embedded epistasis.

In Bayesian networks, the concept of Markov blanket [28] offers an appealing
line of investigation for epistasis detection. Given a BN built over the variables of
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a dataset V , the Markov Blanket (MB) of a target variable T , MB(T ), is defined
as a minimal set of variables that renders any variable outside MB(T ) proba-
bilistically independent of T , conditional on MB(T ). Otherwise stated, MB(T )
is theoretically the optimal set of variables to predict the value of T [22]. In the
GAIS context, the purpose is to build a MB for the variable representing the
affected/unaffected status. Feature subset selection stated as Markov blanket
learning was thus explored and produced FEPI-MB (Fast epistatic interactions
detection using Markov blanket) [16] and DASSO-MB (Detection of ASSOci-
ations using Markov Blanket) [17]. Both approaches were able to process the
above mentioned AMD dataset.

2.5 Combinatorial Optimization Approaches

In the optimization field, techniques dedicated to AISs browse through the
search space of solutions (combinations of potentially interacting SNPs). Various
heuristics were proposed, to identify the more relevant combinations of SNPs.
In the line of genetic algorithms, the approach described in [1] relies on an
evolutionary-based heuristic. This method allowed to process around 1,400
subjects and 300,000 SNPs. Ant colony optimization (ACO) was exploited
by several proposals such as AntEpiSeeker [39], MACOED [20] and EpiACO
[34]. The widely cited reference AntEpiSeeker consists in the straightforward
adaptation of classical ACO to epistasis detection and is tractable on the genome
scale. MACOED, a multi-objective approach employing the Akaike information
criterion (AIC) score and a BN-based score, was able to process 1,411 individuals
described by 312,316 SNPs (late-onset Alzheimer’s disease (LOAD) dataset).
Since MACOED needs unaffordable running times to obtain results, the analysis
focused on separate chromosome datasets. The unique objective function used
in EpiACO combines a mutual information measure with a BN-based score.
EpiACO was able to handle the above cited AMD dataset.

3 Motivations and Contributions of Our Study

The critical analysis of the specialized literature led us to draw several remarks
about the evaluation and comparison of computational approaches dedicated to
epistasis detection.

First, evaluating the effectiveness of a method requires the generation of
multiple synthetic datasets, for instance 100, under some controlled assumption.
The points to control are the number of interacting SNPs and the strength
of the joint effect of simulated influential SNPs on the disease status. When
evaluating a non-deterministic method, we have to compute a performance for
each synthetic dataset, which is a function of the numbers of true positives, false
positives and false negatives recorded through multiple runs of the same method
on the same dataset (e.g., power, F-measure). Unfortunately, tractability reasons
compell methods’ authors to generate simulated datasets whose size remains
compatible with the computing and storage resources available to these authors.
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Thus, an overwhelming majority of publications rely on synthetic datasets that
describe 100 SNPs, a few thousand SNPs at best, for a few thousand subjects. A
notable exception is the study reported in [6]. This practical limitation renders
questionable the significance of the evaluation and comparison of methods on
such small simulated datasets: in no way do such experimentations reflect real-
world GWAIS analyses.

Besides, as regards real-world GWAIS analyses, the overwhelming trend in
publications is to submit a unique genome-wide dataset to the proposed method.
No comparison is performed with other methods. Again, the reason lies in
tractability. Comparing several methods at this scale requires authors to adjust
a list of parameters for each method. Ideally, adjusting parameters for any app-
roach resorting to supervised machine learning would need running ten times a
GWAIS (in a 10-fold cross-validation procedure) in each of the parameter instan-
tiations of a parameter grid. Optimizing the parameters for any heuristics in the
field of combinatorial optimization also requires unaffordable running times in
general.

A third remark is that running times are but exceptionally reported in pub-
lications describing a novel method. If so, they are only reported for small sim-
ulated datasets. Instead, assessing orders of magnitude for running times across
methods would be far more informative (e.g., for practitioners), if the methods
were applied on datasets of realistic scale.

A fourth remark arises from the observed lack of comparative studies focused
on epistasis detection methods applied at the genome scale: it is questionable
whether the lists of gene-gene interactions output by these methods overlap, and
if so, by which overlapping rate.

The works presented in this paper were designed with the four previous points
in mind and with the five following related objectives: (i) perform an unprece-
dented comparative analysis on real-world GWAS data, for a selection of methods
dedicated to GWAIS, (ii) assess the respective requirements of these methods,
in terms of running times and memory resources, (iii) characterize the solutions
respectively output by these methods, (iv) examine the pairwise intersections of
solutions output by these methods and possible intersections between more than
two methods. A first presentation of these works was published in [3], of which
the present paper is an extended version. In addition to the extensive compar-
ative study reported in [3], we have started afresh a novel comparative study.
This time, we have run each method compared, after a common feature selec-
tion procedure was applied on each of the chromosome-wide datasets considered.
The additional three contributions highlighted in this extended version are the
following: (v) include additional criteria to characterize the solutions output by
the methods compared, namely around the connectivity between SNPs involved
in multiple interactions, (vi) characterize the solutions respectively output by
the methods in previous and novel experimental conditions, that is without and
with the filtering stage, (vii) provide an illustration focused on a network of
interactions, and give corresponding biological insights.
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4 The Approaches Selected for the Extensive Comparison

To analyze the epistasis detection task in real-world conditions, we selected five
approaches illustrating various techniques.

Data dimension reduction upstream of epistasis detection is illustrated
through ranger [40] coupled with logistic regression. The reference ranger soft-
ware is a fast implementation for random forest-based feature selection; it was
specifically designed to cope with high-dimensional data. A further argument for
including ranger in our comparative study is that, so far, any novel method pro-
posed was generally compared to Random Jungle [30], the precursor of ranger.

BEAM3 [41], the successor of the reference software BEAM [42], implements
Bayesian inference via the sampling of probability distributions. An MCMC
simulation allows to assign a statistical significance to each SNP, thus avoiding
expensive permutation-based tests.

In the field of machine learning, feature subset selection stated as Markov
blanket learning is implemented through DASSO-MB [17]. For didactical rea-
sons, the sketch of DASSO-MB will be provided together with that of the fifth
approach selected.

The reference method AntEpiSeeker [39] was incorporated in our study to
represent combinatorial optimization heuristics. The ant colony optimization
(ACO) technique behind AntEpiSeeker is as follows: in each iteration, the ants
each sample a SNP set of user-defined size from the initial dataset, based on a
probability distribution P; each ant then assesses the dependence of the SNP set
S sampled with the affected/unaffected status through a statistical test (χ2).
The SNP sets showing the highest dependence scores are kept. The pheromone
level of each SNP s thus highlighted is computed based on the dependence of
the set S that contains s. A standard ACO scheme uses the pheromone levels to
update the probability distribution P of each SNP. At the end of a user-defined
number of ACO iterations, a pre-specified number of best SNP sets is available,
together with a list L of SNPs characterized by the highest pheromone levels.
The final step of AntEpiSeeker then examines each best SNP set S as follows:
given q, the size of the epistatic interactions to be uncovered, each subset of S
of size q is kept as an epistatic interaction, provided all its SNPs belong to L.
It may happen that two interactions overlap, in which case the one with the
smallest p-value is kept.

The selection of DASSO-MB and AntEpiSeeker was no innocent choice.
Indeed, the fifth approach included in our comparative study, SMMB-ACO
(Stochastic Multiple Markov Blankets with Ant Colony Optimization) [32], is
a recent method that borrows from Markov blanket learning and ant colony
optimization techniques. In the previous paragraph, we have explained the ACO
mechanism behind AntEpiSeeker.

We now highlight the differences between the deterministic DASSO-MB app-
roach and the stochastic and ensemble feature-based SMMB-ACO approach.
DASSO-MB chains a forward phase and a backward phase. Starting from an
empty Markov blanket (MB), the forward phase adds a SNP to the growing MB
based on two conditions: (i) the dependence between this SNP and the target
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variable (affected/unaffected status in our case) is the highest, conditional on
the MB, when compared to all other SNPs; (ii) this dependence is statistically
significant. The backward phase successively examines the SNPs belonging to
the current MB; a SNP is removed from the MB based on (statistically signif-
icant) conditional independence. To discard false positives as soon as possible,
DASSO-MB triggers a full backward phase after a SNP has been added dur-
ing the forward phase. In each iteration of SMMB-ACO, the ants each learn a
suboptimal Markov blanket from a subset of SNPs sampled from the initial set.
The MB learning scheme in SMMB-ACO relies on a forward phase intertwined
with backward phases. In this respect, MB learning in SMMB-ACO is quite sim-
ilar to that in DASSO-MB. However, SMMB-ACO and DASSO-MB’s forward
steps fundamentally differ: DASSO-MB attempts to add the SNP showing the
strongest dependence with the target variable; in contrast, SMMB-ACO seeks to
stochastically add a group of SNPs highly dependent with the target variable.
The stochastic feature of SMMB-ACO is implemented through the sampling
of groups of SNPs, and relies on a probability distribution P updated based
on pheromone levels. To note, a specific operating mode may be specified for
SMMB-ACO, to handle high-dimensional data: a two-pass procedure is then
triggered. DASSO-MB and SMMB-ACO are sketched and commented in Fig. 1.

5 Extensive Experimentation Framework

This section starts with the presentation of the experimental road map designed.
Second, the real-world datasets used are briefly depicted. Finally, the section
focuses on implementation aspects, including parameter adjustment of the
approaches compared.

5.1 Experimental Road Map

In the so-called additive model, the SNPs are coded with 0, 1 and 2, which
respectively denote major homozygous, heterozygous and minor homozygous.
The allele with minor frequency is the disease susceptibility allele. The notion
of interaction of interest (IoI) is central to our study. An IoI is a 2-way inter-
action for which logistic regression (y ∼ β0 + β1 x1 + β2 x2 + β12 x1x2) provides
a significant p-value for the interaction coefficient β12, given some specific sig-
nificance threshold, whereas no significant p-value is obtained for the regression
of the target variable on each individual SNP. Our experimental protocol was
two-fold.

To use the random forest-based approach ranger for epistatic detection
purpose, we generated 2-way interactions from the top most important SNPs
returned by ranger. For tractability reasons, the 2-way interaction candidates
were generated from the 20 most important SNPs selected. Thus, C2

20 2-way
interactions were submitted to logistic regression. To characterize IoIs, the sig-
nificance threshold 5 × 10−4 was chosen. In our comparative study, we put all
approaches on an equitable basis. Therefore, we filtered the interactions obtained
from BEAM3, AntEpiSeeker, and DASSO-MB as well as the results obtained
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Fig. 1. Sketches of the DASSO-MB and SMMB-ACO algorithms. (Figure published
in [3]). (a) DASSO-MB. (b) SMMB-ACO stochastic procedure to learn a suboptimal
Markov blanket. (c) SMMB-ACO top-level algorithm. (d) Two-pass SMMB-ACO pro-
cedure adapted to high-dimensional data. MB: Markov blanket. V is the initial set of
SNPs. (a) DASSO-MB adds SNPs one at a time, which hinders the epistasis detection
task: since the dependence test achieved at first iteration is conditioned on the empty
Markov blanket, this test is indeed a marginal test of dependence; therefore, a SNP
marginally dependent with the target variable is added at the outset, which skews the
whole MB learning. (b) SMMB-ACO addresses this issue by adding groups of SNPs.
For this purpose, each forward step starts with the sampling of a set S of k SNPs,
from the subset Sa of size Ka that was assigned to the ant in charge of the suboptimal
MB learning. For each non-empty subset S′ of S, a score is computed, which mea-
sures the association strength between S′ and the target variable, conditional on the
MB under construction. The subset S′ with the highest association score is added to
the MB if the association is statistically significant. (c) SMMB-ACO returns the set of
SNPs obtained as the union of all suboptimal MBs generated throughout all iterations.
(d) In the two-pass procedure adapted to high-dimensional data, SMMB-ACO is first
applied on the initial set of SNPs V , which produces the set of SNPs U1. In the second
pass, SMMB-ACO is applied on U1. This time, the resulting set U2 is submitted to a
backward phase, to yield U3, a set of SNPs.

from the modified post-processing phase of SMMB-ACO (Details about this
modification will be provided in Sect. 5.3). This filtering stage kept the IoIs with
significance threshold 5×10−2. The use of two significance thresholds will be sub-
stantially justified further (see Subsect. 5.3). For now, the reader needs only keep
in mind that AntEpiSeeker, DASSO-MB and SMMB-AC0 already intrinsically
rely on a significance threshold.

In addition to the experimental protocol just described, we designed afresh
novel experimentations. This time, a feature selection procedure was first run
on the datasets considered. The second experimental protocol started with fea-
ture selection carried out through ranger. For each of the 50 runs of ranger on
a given chromosome dataset, the 5,000 SNPs with the highest importances were
memorized. The set of 25,000 SNPs thus obtained was then processed to discard
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duplicate SNPs. The first protocol described in previous paragraph was then
applied on the reduced set of SNPs. Lessons learned from our first experimenta-
tions [3] motivated the modification of the significance threshold used to identify
IoIs with ranger (see Subsect. 5.3). From now on, we will use the symbol “*” to
refer to the protocol with feature selection. For instance, the use of BEAM3 in
the two frameworks will be referred to by BEAM3 and BEAM3*. A recapitula-
tion is provided in Fig. 2. Given the poor results of DASSO-MB obtained when
applying the first protocol, we discarded this method from the second protocol.

To be clear, in the second protocol, ranger* stands for the following process:
(i) off-line feature selection by ranger applied 50 times on a chromosome-wide
dataset, to provide 50 × 5, 000 SNPs from which the resulting set of nfs SNPs
with no duplicates is kept, (ii) run of ranger on the reduced dataset of nfs SNPs
thus obtained, (iii) generation of C2

nr
2-way interactions from the nr SNPs with

highest importances output through the second run of ranger, (iv) identification
of the IoIs in the C2

nr
2-way interactions using logistic regression. We highlight

here that we set nr to 20, for consistency with the first protocol.

Fig. 2. Flow diagram for the two extensive comparative analyses performed. The data
flows relative to first and second experimental protocols respectively appear in black
and blue arrows. (Color figure online)

Table 1. Implementations for the five software programs used in the two comparative
studies. (Table published in [3]).

Ranger http://dx.doi.org/10.18637/jss.v077.i01

BEAM3 http://www.mybiosoftware.com/beam-3-disease-association-mapping.html

AntEpiSeeker http://nce.ads.uga.edu/∼romdhane/AntEpiSeeker/index.html

DASSO-MB Not distributed by its authors, reimplemented

SMMB-ACO https://ls2n.fr/listelogicielsequipe/DUKe/130/SMMB-ACO

http://dx.doi.org/10.18637/jss.v077.i01
http://www.mybiosoftware.com/beam-3-disease-association-mapping.html
http://nce.ads.uga.edu/~romdhane/AntEpiSeeker/index.html
https://ls2n.fr/listelogicielsequipe/DUKe/130/SMMB-ACO
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5.2 Real-World Datasets

We applied the two experimental protocols above described to a Crohn’s disease
(CD) dataset. This data was made available by the Wellcome Trust Case Control
Consortium (WTCCC, https://www.wtccc.org.uk/). The choice of this dataset
was motivated by the insights generated by advancements in human genetics
into the mechanisms driving inflammatory conditions of the colon and small
intestine. Notably, major pathways involved in Crohn’s disease and ulcerative
colitis have emerged from standard single-SNP GWASs [14]. We relied on the
cohort of cases affected by CD and two cohorts of unaffected (controls) provided
by the WTCCC, to generate 23 datasets related to the 23 human chromosomes.
We followed the quality control protocol specified by the WTCCC. In particular,
we excluded subjects having more than 5% of missing data together with SNPs
having more than 1% of missing data and excessive Hardy-Weinberg disequilib-
rium (5.7 × 10−7 threshold). After quality control, we obtained a population of
4, 686 subjects composed of 1, 748 affected and 2, 938 unaffected. We imputed
data using a k-nearest neighbor procedure, in which the missing variant of sub-
ject s is assigned the variant most frequent in the nearest neighbors of s. The
average number of SNPs per chromosome is 20, 236; the minimum and maximum
numbers are 5, 707 and 38, 730, respectively.

5.3 Implementation of the Two Comparative Analyses

This subsection first focuses on the intensive computing aspects. Then it
describes parameter adjustment for the five methods involved in the experi-
mentations.

Intensive Computing. Except for DASSO-MB, all software programs are
available on the Internet (Table 1); they are coded in C++. We recoded DASSO-
MB in C++. As mentioned in Sect. 5.1, to include SMMB-ACO in our exper-
imental protocol, we modified the post-processing phase of the native SMMB-
ACO algorithm [32]. The native algorithm outputs as an interaction any subop-
timal Markov blanket generated (via procedure learnSubOPtMB, see Fig. 1 (b))
if all its SNPs belong to the set U3 (see Fig. 1 (d)) obtained as the final result of
the two-pass modality. The adapted post-processing phase of SMMB-ACO con-
sists in the generation of interactions of interest (IoIs), as defined in Subsect. 5.1,
from the set U3.

DASSO-MB is the only deterministic approach of our selection of methods.
Each other (stochastic) method was run several times on each dataset. In the
first experimental protocol, this number was set to 10 for tractability reasons. For
a fair comparison, this number was kept to 10 in the second protocol involving
data dimension reduction.

The extensiveness of our two comparative studies required intensive com-
puting resources from a Tier 2 data centre (Intel 2630v4, 2 × 10 cores 2,2 Ghz,
20× 6 GB). On the one hand, we benefitted from the OpenMP intrinsical paral-
lelization of the C++ implementations of ranger, BEAM3 and SMMB-ACO. In

https://www.wtccc.org.uk/
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addition, we exploited data-driven parallelization to run each stochastic method
10 times on each dataset. To cope with running time heterogeneity across the
methods, together with the occurrence of memory shortages, we had to balance
the workload distribution between two strategies. One strategy was to sequen-
tially process the 23 chromosome datasets for one method on one node, and to
repeat this task 9 times on other nodes. The alternative strategy was to pro-
cess a single chromosome dataset 10 times for one method on one node, and to
repeat this task for the remaining chromosomes (on other nodes). We managed
the workload using the three following modalities: short, medium and long, for
expected calculation durations respectively below 1, 5 and 30 days. When a time-
out or shortage event occurred in a node, depending on the degree of completion
of the task, we either switched to the first strategy with higher time limit or to
a chromosome by chromosome management.

The first batch of experimentations involved 943 chromosome-wide associa-
tion studies. The second batch involved as many analyses, together with the prior
feature selection performed chromosome by chromosome. This pre-processing
step involved 50 runs of ranger for each of the 23 chromosome datasets. In total,
we run 3,036 chromosome-wide analyses.

Finally, it is important to note that generating all 2-way interactions from a
set of t SNPs (as is done when ranger is used for epistasis detection) may be com-
putationally expensive. For example, the exhaustive generation and assessment
of dependence with the disease status through logistic regression takes around
30 h for t = 20 SNPs.

Parameter Adjustment. In the machine learning and combinatorial opti-
mization fields, adjusting methods’ parameters is a recurring issue. Table 7 in
Appendix recapitulates the main parameters of the software programs used in
the two batches of experimentations.

The software program ranger is a fast implementation of the random forest
technique, to cope with high-dimensional data. We therefore left unchanged the
default value of 500 for the number of trees in the forest. In a preliminary
study (results not shown), we tried various values of mtry between

√
n and n,

the total number of SNPs. On the datasets considered, the optimal value was
shown to be 5

8n. This setting was adopted for ranger used in the first protocol,
ranger employed for feature selection in the second protocol as well as for ranger
run downstream feature selection in the second protocol. Importantly, a greater
computational effort was devoted to the feature selection task carried out by
ranger in the second protocol: the number of trees was set to 1, 000 instead of
500.

To attempt to diminish the large number of interactions output by
AntEpiSeeker, we conducted a preliminary study. The product “number of ACO
iterations × number of ants” impacts this number of interactions. In the prelim-
inary study, the number of ACO iterations was kept to AntEpiSeeker’s default
value (450); the number of ants was varied between 500 and 5,000 (step 500).
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Using 1,000 ants still allows to control the number of interactions output below
15,000, while still guaranteeing a coverage of 10 for each SNP in the largest
chromosome-wide dataset. For a fair comparison, this parameter setting was
kept in the second experimental protocol.

To set the numbers of iterations of the burn-in and stationary phases of
BEAM3, we followed the recommendation of its author. This setting was made
in adequacy with the dimension of the data handled in the first protocol. For an
unbiased comparison, this setting was also applied to the second protocol.

The first reflex would be to set the product nit ×nants (number of ACO iter-
ations × number of ants) in SMMB-ACO to the value chosen for AntEpiSeeker.
However, two points must be emphasized. On the one hand, AntEpiSeeker soft-
ware program is not parallelized, whereas SMMB-ACO is: during each of the nit

SMMB-ACO iterations, nants Markov blankets are learned in parallel. On the
other hand, an iteration in AntEpiSeeker is far less complex than an iteration in
SMMB-ACO: in AntEpiSeeker, each ant samples a set of SNPs and computes
the corresponding χ2 statistic; in SMMB-ACO, each ant grows a Markov blanket
via a forward phase intertwined with full backward phases. We adjusted SMMB-
ACO parameters nit, nants and Ka (number of SNPs drawn by each ant), to
expect that each SNP of the initial dataset would be drawn a sufficient number
of times during a single run of SMMB-ACO. The parameter setting adopted
(nit, nants,Ka) = (360, 20, 160) guarantees in theory a coverage of 30 for the
largest datasets, in a single run. We recall that 10 runs are performed for each
stochastic method.

A type I error threshold is required for the statistical independence tests
triggered by AntEpiSeeker and the statistical conditional independence tests
run in DASSO-MB and SMMB-ACO. We set a common threshold value of 5 ×
10−4 for these three methods. Consistently, in the first protocol implemented
in [3], we fixed the same threshold for the logistic regression used downstream
ranger execution. On the other hand, we recall that logistic regression is used to
identify IoIs from the results output by BEAM3, DASSO-MB, AntEpiSeeker and
SMMB-ACO. A less stringent threshold of 5×10−2 was chosen for this purpose.
Importantly, one of the conclusions of the work reported in [3] highlighted the
necessity to relax the threshold of 5× 10−4 used downstream a run of ranger, to
identify more IoIs. Therefore, in the second protocol, the second pass of ranger is
followed by IoI identification at 5×10−2 significance threshold. This information
about the various thresholds used in the two protocols is provided in Fig. 2.

6 Results and Discussion

We first compare the five approaches with respect to running times and memory
occupancies. Second, we compare the numbers of interactions of interest (IoIs)
identified by these approaches, and we thoroughly analyze the distributions of
p-values obtained. Third, we provide insights regarding whether some IoIs were
jointly detected by several approaches. A fourth subsection is devoted to the
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analysis of the networks of IoIs that could be identified by the methods. A fifth
subsection provides an illustration focused on a network of 19 IoIs detected via
SMMB-ACO, and gives corresponding biological insights. This section ends with
a discussion.

6.1 Computational Running Times and Memory Occupancies

Table 2 highlights a great heterogeneity between the methods compared.
We first comment the complexities observed when chromosome-wide datasets

are input to the methods (first protocol). DASSO-MB is both much faster and
far less greedy in memory than its competitors. A salient feature of AntEpiSeeker
is that it shows low running times across all chromosomes. The software pro-
gram ranger is fast (around 14 mn for the 10 runs on a chromosome). However,
this quickness is hindered by the exhaustive generation of C2

20 2-way interactions
further submitted to logistic regression (between 40 and 80 mn cumulated over
the 10 runs on a chromosome). The trends observed for BEAM3 and SMMB-
ACO are respectively extremely disparate across the datasets. When processing
the largest chromosomes with BEAM3, we first experienced timeouts. We there-
fore specified the highest timeouts possible (30 days), with the consequence of
longer waiting times in job queues. Indeed, in BEAM3, the cumulative run-
ning time may exceed 8 days for the largest chromosomes, which is over the
“medium” timeout of 5 days. Besides prohibitive running times, BEAM3 si also
the approach most greedy in memory on average for the datasets considered.
Nonetheless, BEAM3 never ran out of memory.

As regards SMMB-ACO, a great heterogeneity in running times was also
observed across the chromosome-wide datasets. SMMB-ACO is faster than
BEAM3. However, the stochastic feature of SMMB-ACO translates into an
extreme heterogeneity of memory occupancies across the chromosomes, even
across the 10 executions on a given chromosome. In particular, we observed
memory shortages, even for short chromosomes (for a limitation of 120 GB per
node). Because of these shortages, for around the third of the datasets, we had
to launch additional runs (up to 5), to obtain the 10 runs required by our pro-
tocol. Nevertheless, the processing of all chromosomes by SMMB-ACO remains
feasible within 5 days, on 10 nodes.

We recall that a crucial step in the second protocol is the dimensionality
reduction task: an off-line feature selection driven by ranger is applied 50 times
on each chromosome-wide dataset, to provide 50 × 5, 000 SNPs from which the
resulting set of nfs SNPs with no duplicates is kept. We emphasize that for
each chromosome, the 5, 000 top ranked SNPs were remarkably well conserved
throughout the 50 executions of ranger. Namely, nfs varied between 5,000 and
5,150.
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Table 2. Trends observed for the running times and memory occupancies for the
methods compared, in the two protocols. Otherwise stated, the average running time
indicated is computed over the 23 chromosome-wide datasets (it measures the average
for the running time cumulated over 10 executions, for a chromosome-wide dataset).
FS: off-line feature selection driven by ranger.

Method First protocol Second protocol

Average running
time

Memory
occupancy

Average
running time

Memory
occupancy

ranger FS: 11 h ± 5.5 4 GB

1.3 h ± 27 mn 2GB ± 0.6 19.6 mn ± 7 120 MB ± 20

BEAM3 Chr7 to Chr23:
54 s ± 66

79GB ± 46 Chr7 to Chr23:
24.1 h ± 0.1

800 MB ± 200

Chr6: 22.4 h Chr6: 38.9 h

Chr1 to Chr5:
above 8 days

Chr1 to Chr5:
below 5 days

AntEpiSeeker 16 mn ± 3 0.5 GB ± 0.2 15 mn ± 4 70 MB ± 5

DASSO-MB 82 s ± 22 1.5 GB ± 0.7 — —

SMMB-ACO Chr7 to Chr23:
30 mn ± 17

43GB ± 17 17.3 h ± 3.3 700 MB ± 150

Chr1 to Chr6:
up to 3 days

Many
execution
abortions

The running times obtained in the second protocol, in which reduced sets of
nfs SNPs are processed, give rise to several comments.

As expected, the cumulative running time for ranger diminishes with the size
of the dataset (at most one hour an a half for a chromosome-wide dataset versus
half an hour at most for a reduced dataset). The renown scalability of ranger is
confirmed by our study [40].

In the MCMC-based software BEAM3, the cumulative running time shows an
unexpected trend, on average, for chromosomes 7 to 23: the average was around
one minute on a chromosome-wide dataset; it is around one day after dimension
reduction. For chromosome 6, for instance, we still observe a higher running time
for the reduced dataset than for the chromosome-wide dataset (38.9 h versus
22.4 h), but this time, the orders of magnitude are quite similar. In contrast, the
expected ratio is observed for chromosomes 1 to 5 (above 8 days versus 5 days).
For instance, the cumulative running time over 10 BEAM3 runs took 2 days and
18 h for chromosome 4, in the second protocol, whereas this cumulative time
was above a week in the first protocol. To explain the unexpected high running
times likely to be observed on the reduced datasets, we contacted BEAM3’s
author. The slowdown observed can be explained by BEAM3 having to deal
with a lot of dependences, in order to find independent signals. This becomes
particularly acute when SNP selection is applied. In contrast, if the SNP pool is
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relatively large, the program may converge faster because many more SNPs are
independent.

For the same parameterization of AntEpiSeeker, the respective running times
relative to two datasets of different sizes are not expected to differ. This fact is
confirmed in Table 2.

In the first protocol applied to SMMB-ACO, we highlighted a great hetero-
geneity across chromosomes, with cumulative running times frequently reaching
3 days. In contrast, on the reduced datasets, a series of 10 SMMB-ACO runs
can be processed at ease within a day.

Finally, BEAM3 remained the most greedy algorithm in the second protocol,
closely followed by SMMB-ACO.

6.2 Interactions of Interest

Number of Interactions of Interest and Spatial Distribution over the
Chromosomes. Table 3 highlights contrasts between the approaches. First,
with only 18 interactions obtained via the first protocol, DASSO-MB was not
expected to output IoIs, which is confirmed. We therefore excluded DASSO-MB
from the second protocol. In the remainder of this article, we will not mention
this method anymore. Second, a salient feature is the great heterogeneity in the
numbers of IoIs detected by the four other methods. In the first protocol, these
numbers scale in a ten thousands, a thousand, a hundred and a few tens for
AntEpiSeeker, SMMB-ACO, BEAM3 and ranger respectively.

Table 3. Comparison of the numbers of interactions detected by ranger, BEAM3,
AntEpiSeeker and SMMB-ACO, in the two protocols. Nt: total number of interactions
identified by a method; NIoIs: number of interactions of interest identified from the Nt

previous interactions.

First protocol Second protocol

Nt NIoIs Nt NIoIs

ranger 34 (34) (100%) 180 180 (100%)

BEAM3 1,082 131 (12.1%) 130 11 (8.5%)

AntEpiSeeker 14,670 13,062 (89.0%) 8,647 7,633 (88.7%)

DASSO-MB 18 0 — —

SMMB-ACO 6,346 1,142 (18.0%) 498 88 (17.7%)

Table 3 shows an impact of dimension reduction in the decrease of the total
number of interactions output, Nt: the ratio of Nt measured for the first pro-
tocol to Nt observed for the second protocol is around 8 for BEAM3, close to
1.5 for AntEpiSeeker, and nearly 13 for SMMB-ACO. In the second protocol,
AntEpiSeeker still outputs over 7,000 IoIs, whereas BEAM3 and SMMB-ACO
respectively generate a dozen and less than a hundred IoIs. The situation of ranger
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Fig. 3. Distributions of interactions of interest detected by ranger, BEAM3,
AntEpiSeeker and SMMB-ACO, in the two protocols. “method*” denotes an app-
roach with feature selection. AntEpiSeeker detected 13,062 IoIs which are spread over
the 23 chromosomes (smallest number of IoIs for a chromosome: 202; median num-
ber: 380). Moreover, IoIs are overly abundant in chromosome X, whose presence is not
known to bias Crohn’s disease onset (4,427 IoIs representing 34.9% of AntEpiSeeker’s
IoIs; the corresponding bar is truncated in subfigure (a)). These observations comfort
the hypothesis of a high rate of false positives. AntEpiSeeker* detected 7,633 IoIs dis-
tributed over all chromosomes but Chr1. An excess of IoIs in chromosome X is still
observed for AntEpiSeeker* (35.2% of AntEpiSeeker’s IoIs). SMMB-ACO identified
1,142 IoIs distributed across all chromosomes except chromosome X (smallest number
of IoIs for a chromosome: 8; median number: 38; largest number: 251; the corresponding
bar (Chr10) is truncated in subfigure (b)). SMMB-ACO* highlighted 88 IoIs spread
over all chromosomes except Chr11, Chr12 and ChrX (smallest number of IoIs for
a chromosome: 1; median number: 3; largest number: 19). The 131 IoIs detected by
BEAM3 are located within 5 chromosomes only: Chr1, Chr6, Chr7, Chr8 and Chr14
respectively harbour 13, 83, 2, 18 and 15 IoIs. The 11 IoIs detected by BEAM3* are
confined to Chr3 (2 IoIs), Chr6 (1 IoI) and Chr19 (8 IoIs). The 34 IoIs identified by
ranger are distributed across 10 chromosomes: Chr2 to Chr7, Chr9, Chr19, Chr22 and
Chr23 (minimum number of IoIs for these 10 chromosomes: 1; maximum number: 6). In
contrast, the 180 IoIs highlighted by ranger* are spread over all chromosomes (smallest
number of IoIs for a chromosome: 2; largest number: 19; median: 8).

is specific (five-fold increase): indeed, the relaxation of the significance threshold,
from 5 × 10−4 (first protocol) to 5 × 10−2 (second protocol) was intended to put
ranger on equal footing with the other methods’ post-processings.

By construction of the protocols, the ratio of the number of IoIs to the total
number of interactions is 100% for ranger. For the other methods, the feature
selection does not allow to densify the number of IoIs in the outputs generated:
the above ratio is constant through the two protocols, for each of the other meth-
ods: around 10% for BEAM3, close to 20% for SMMB-ACO and around 90% for
AntEpiSeeker. This conclusion, which holds for three methods, is an important
contribution of our study: it was not foreseeable that the much-vaunted creden-
tials of feature selection for highlighting SNPs in epistasis detection would be
undermined.
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Table 4. Comparison of the distributions of p-values for the interactions of interest
detected with the five approaches, in the two protocols. Four significance intervals
are shown for −log10(p-value). −log10(5 × 10−2) = 1.5. The top section of the Table
presents counts. The bottom section shows the corresponding percentages.

First protocol Second protocol

≥20 [10, 20[ [5, 10[ [1.5, 5[ ≥20 [10, 20[ [5, 10[ [1.5, 5[

ranger 10 12 6 6 ranger* 3 3 1 173

BEAM3 0 0 0 131 BEAM3* 0 0 0 11

AntEpiSeeker 13 13 458 12,578 AntEpiSeeker* 10 8 315 7300

SMMB-ACO 0 0 6 1,136 SMMB-ACO* 0 0 2 86

ranger 29.40% 35.30% 17.65% 17.65% ranger* 1.67% 1.67% 0.56% 96.10%

BEAM3 0% 0% 0% 100% BEAM3* 0% 0% 0% 100%

AntEpiSeeker 0.10% 0.10% 3.51% 96.29% AntEpiSeeker* 0.13% 0.11% 4.13% 95.63%

SMMB-ACO 0% 0% 0.53% 99.47% SMMB-ACO* 0% 0% 2.27% 97.73%

Fig. 4. Distributions of p-values for the interactions of interest detected by ranger,
BEAM3, AntEpiSeeker and SMMB-ACO, in the two protocols. IoIs: interactions of
interest. R: ranger. B: BEAM3. A: AntEpiSeeker. S: SMMB-ACO. −log10(5× 10−2) =
1.5.

Figure 3 focuses on the distribution of IoIs across the chromosomes. In the
first protocol, a sharp contrast exists between AntEpiSeeker and SMMB-ACO,
whose IoIs are abundantly present in nearly all chromosomes, and BEAM3 and
ranger, whose IoIs are confined to ten and five chromosomes respectively. Besides,
the number of IoIs in BEAM3, around four times higher than in ranger, is circum-
scribed to a number of chromosomes that is two times less than for ranger. In the
second protocol, the IoIs respectively detected by SMMB-ACO, AntEpiSeeker
and ranger are present in nearly all chromosomes. The relaxation of the signifi-
cance threshold explains the increase of IoIs in ranger. Again, the IoIs detected
by BEAM3 are located in a few chromosomes (three chromosomes in the second
protocol versus ten chromosomes in the first protocol).
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Distributions of P-Values. Figure 4 and Table 4 allow to compare the dis-
tributions of IoI p-values obtained across ranger, BEAM3, AntEpiSeeker and
SMMB-ACO, in the two protocols. We consider four intervals for the p-values.

We observe great discrepancies between the methods. A first remark is that
AntEpiSeeker and ranger are the only two methods for which the p-values spread
over the four intervals, for the two protocols: in contrast to the two other meth-
ods, AntEpiSeeker and ranger show p-values within the two first intervals (i.e.,
below 10−10) (subfigures (a), (b), (e) and (f)). A second observation is that
BEAM3 is the only method whose 131 p-values (first protocol) and 11 p-values
(second protocol) are all contained in the fourth interval (and are even confined
to [10−3.5, 5×10−2] (subfigure (d)) and [10−2.5, 5×10−2] (subfigure (h)) for first
and second protocols respectively. The overwhelming majority of IoIs detected
by SMMB-ACO are also confined in the fourth interval. However, SMMB-ACO
is able to highlight more significant IoIs than BEAM3: the SMMB-ACO p-values
fall within ranges [10−5, 5 × 10−2] and [10−4.4, 5 × 10−2], respectively for the
first and second protocols.

Besides, we already observed in Subsect. 6.2 that for each method except
ranger, the percentages of IoIs (in the total set of interactions generated by the
method) are identical for the two protocols. Again, the two protocols applied on
the same method output close p-value distributions. The second conclusion to
draw here is as follows: not only does feature selection not increase the rate of
IoIs in the interactions generated by a method, feature selection does not enrich
the IoIs generated with still more statistically significant IoIs.

6.3 Interactions of Interest Jointly Identified by Several Approaches

None of the 131 IoIs identified by BEAM3 is detected by another method.
On the contrary, 32 of the 34 IoIs detected by ranger were also detected
by AntEpiSeeker. AntEpiSeeker and SMMB-ACO detected 16 common IoIs.
SMMB-ACO and ranger have only 3 IoIs in common. One IoI was jointly iden-
tified by AntEpiSeeker, ranger and SMMB-ACO. Under the second protocol, 4
IoIs were jointly identified by ranger* and AntEpiSeeker*.

Given the number of interactions output by AntEpiSeeker, an overlap was
expected between AntEpiSeeker and some other method. However, an overlap
was only observed between ranger and AntEpiSeeker. On the other hand, our
study indicates that the mechanisms behind BEAM3, AntEpiSeeker and SMMB-
ACO explore different sets of solutions. Finally, we observe that the selection
discarded most of the SNPs that belonged to IoIs jointly identified by ranger
and AntEpiSeeker. We emphasize here this impact of the feature selection: in
the second protocol, ranger was run with a relaxed threshold (5×10−2 instead of
5×10−4); we would therefore expect a larger overlap between AntEpiSeeker and
ranger (which we did not check), but we verified that ranger* and AntEpiseeker*
do not overlap much when the input dataset is reduced by feature selection.
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Table 5. Statistics on the networks of interactions of interest, across all chromosomes,
for ranger, BEAM3, AntEpiSeeker and SMMB-ACO, in the two protocols. “method*”
denotes an approach with feature selection. IoI: interaction of interest. nIoIs: total
number of IoIs detected by a method; nbchr: number of chromosomes in which IoI
networks were found; nbnet: number of such IoI networks; Ni, Ng and Ns: respectively,
number of IoIs, genes and SNPs in a network. Q1, Q2 and Q3 respectively denote the
first quartile, the median and the third quartile.

Method nIoIs nbchr nbnet Ni Ng Ns

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

ranger 34 7 8 2 3.5 4 0 0.5 1 3 4.5 5

ranger* 180 23 25 4 6 8 2 3 6 5 7 9

BEAM3 131 4 4 14.3 16.5 33.8 10 10.5 13.8 12 13 22

BEAM3* 11 1 1 8 8 8 6 6 6 8 8 8

AntEpiSeeker 13,062 23 929 2 3 4 2 3 4 3 4 5

AntEpiSeeker* 7,633 23 611 2 3 4 1 2 4 3 4 5

SMMB-ACO 1,142 22 87 2 4 8.5 2 4 8 3 5 9.5

SMMB-ACO* 88 20 15 2 2 3 1.8 3 4 3 3 4

6.4 Networks of Interactions of Interest

This subsection is devoted to the detection of networks of interactions of interest
(IoIs). Some statistics on the number of networks identified per method are first
provided. Then we focus on the distributions of the networks’ sizes. We end
this subsection by comparing across all methods the spatial distributions of the
networks of IoIs across chromosomes.

Number of Networks Detected and Distribution of Their Sizes. For
each method and for each chromosome, we have identified all pairs of IoIs whose
members share a SNP. This led us to build networks of IoIs. Table 5 allows to
compare the four methods, in the two protocols, with respect to the numbers
of IoIs, genes and SNPs involved in each of the networks identified across all
chromosomes. We used the R package biomaRt to identify the genes associated
with SNPs [7]. We could only identify genes for SNPs whose RefSNP label (e.g.,
rs1996546) is known for the corresponding SNP provided by the WTCCC Con-
sortium. For example, a network involving 6 IoIs and 7 SNPs was identified in
chromosome 5 through ranger; however, none of the corresponding genes could
be retrieved in this case.

We first observe that the number of IoI networks is more or less related to
the total number of IoIs detected by the method considered. This observation
was expected for statistical reasons. The second remark to draw from Table 5
is the existence of a contrast between the networks in ranger*, BEAM3* and
BEAM3, and the networks in the other methods. For the three former methods,
the medians for the number of IoIs in a network are respectively 6, 8 and 16.5.
All the other methods show a median in interval [2, 4]. The maxima observed
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for the 25, 1 and 4 networks respectively identified in ranger*, BEAM3* and
BEAM3 are respectively 18, 8 and 81 IoIs in a network.

The explanation for these high medians lies in the small number of networks
identified, which gives weight to the few networks of large sizes. Indeed, ranger
and SMMB-ACO* only detected 8 and 15 IoI networks respectively, but no
outlier exists for ranger (maximum number of IoIs in a network: 6), or only one
exists for SMMB-ACO* (maximum number of IoIs in a network: 9). On the
other hand, it is remarkable that the median number of IoIs in a network is not
inflated for SMMB-ACO, AntEpiSeeker* and AntEpiSeeker, which yielded over
a thousand IoIs. Therefore, we conclude that the number of IoIs detected by a
method impacts the number of IoI networks identified, but not the size of the
networks identified.

Besides, as highlighted in Sect. 6.2 (caption of Fig. 3), a specific behavior was
shown for AntEpiSeeker and AntEpiSeeker*: they detected a third of their IoIs
in chromosome X. Again, a specific characteristic is shown: the first method
identified a single network containing 4,330 IoIs, whereas the second method
detected a unique network of size 2,575 IoIs. All the remarks provided in this
paragraph hold when we consider Ns, the number of SNPs, to measure the size
of an IoI network. The conclusions are similar if we consider Ng, the number
of genes, except that we could not list genes related to SNPs with unknown
RefSNP labels, on the one hand, and that some SNPs are connected to several
genes, on the other hand.

Spatial Distribution of the Interactions of Interest Detected Across
Chromosomes. Figure 5 allows the visual comparison of the spatial distribu-
tions of IoIs across chromosomes, for ranger, BEAM3, AntEpiSeeker and SMMB-
ACO, in the two protocols. As an illustration, Fig. 6 focuses on SMMB-ACO, for
which a SNP may belong to 10 IoIs and even up to 19 (chromosome 10). These
two latter figures were drawn using the R software package circos dedicated to
data visualization through circular layouts [23].

Illustration with a Network Detected by SMMB-ACO, and Biological
Insights. As an illustration, we show in Table 6 the 19 IoIs constituting one
of the networks identified in chromosome 10 by SMMB-ACO run downstream
feature selection. This network involves 13 SNPs and is related to 6 known genes.
It is beyond the scope of this study focused on methodological and computational
aspects, to bring deeper biological insights on the potential mechanisms involved
in the networks and IoIs.

Besides a number of standard single-SNP GWASs, the few AISs devoted
to Crohn’s disease (CD) focus on genes or pathways already known to con-
tribute to the disease onset, such as NOD on Chr16, CCNY and NKX2-3 on
Chr10, LGALS9 and STAT3 on Chr17, and SBNO2 on Chr19 [21,26]. It is not
a surprise that among the six genes highlighted in the network of Fig. 7, two
genes are already known to impact CD onset: CCNY and NKX2-3. It was also
expected that our protocol designed for AIS investigation without prior biologi-
cal knowledge would detect novel interaction candidates, which it does.
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(a) ranger (b) ranger* (c) BEAM3 (d) BEAM3*

(e) AntEpiSeeker (f) AntEpiSeeker* (g) SMMB-ACO (h) SMMB-ACO*

Fig. 5. Spatial distributions of the interactions of interest detected across the chromo-
somes, for ranger, BEAM3, AntEpiSeeker and SMMB-ACO under the two protocols.
“method*” denotes an approach with feature selection.

Fig. 6. Spatial distribution of the interactions of interest detected across the chromo-
somes, for SMMB-ACO.

6.5 Discussion

We gained considerable and unforeseeable insights from our study. First, on the
CD dataset, DASSO-MB is of no help. The verbose AntEpiSeeker provides a
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Table 6. Network of 19 interactions of interest, 13 SNPs and 6 known genes, identi-
fied by SMMB-ACO* in chromosome 10. “SMMB-ACO*” denotes the approach with
feature selection. A letter in first column and a letter in second column denote an inter-
action (for instance, G-F in first line). iv: intron variant; gutv: genic upstream transcript
variant; utv: upstream transcript variant; gdtv: genic downstream transcript variant;
nctv: non coding transcript variant; 3puv: 3 prime UTR variant. CREM encodes a
transcription factor that binds to the cAMP responsive element found in many cellular
promoters. Alternative promoter and translation initiation site usage enables CREM to
exert spatial and temporal specificity in cAMP-mediated signal transduction. This gene
is broadly expressed (36 tissues including colon, small intestine and appendix). CUL2 is
a major component of multiple cullin-RING-based ECS (ElonginB/C-CUL2/5-SOCS-
box protein) E3 ubiquitin-protein ligase complexes; these complexes mediate the ubiq-
uitination of target proteins. CUL2 is ubiquitous (27 tissues, including colon, small
intestine and appendix). NKX2-3 is a member of the NKX family of homeodomain-
containing transcription factors; the latter are involved in many aspects of cell type
specification and maintenance of differentiated tissue functions. LINC01475 (long inter-
genic non-protein coding RNA 1475) is expressed in 7 tissues including colon, small
intestine, duodenum and appendix. CPXM2, a protein of the carboxypeptidase X, M14
family member 2, is broadly expressed in 21 tissues. CCNY belongs to the cyclins, which
control cell division cycles and regulate cyclin-dependent kinases (27 tissues including
colon, small intestine, duodenum and appendix).

SNP RefSNP label Location Gene SNP RefSNP label Location Gene

G rs7095491 99514301 — F rs2505639 35185493 CREM (gutv, gdtv,

iv)

H rs11010067 35006503 —

I rs4934709 35050396 CUL2 (iv)

K rs17582416 34998722 —

D rs10761659 62685804 —

D rs10761659 62685804 — E rs7078219 99514608 —

J rs10883371 99532698 NKX2-3, LINC01475

(utv)

L rs1548964 99529896 LINC01475 (iv)

B rs7067790 123917521 CPXM2 (gutv, iv)

M rs3936503 35260329 CCNY (gutv, iv)

L rs1548964 99529896 LINC01475 (iv) F rs2505639 35185493 CREM (gutv, gdtv,

iv)

I rs4934709 35050396 CUL2 (iv)

A rs10995271 62678726 —

B rs7067790 123917521 CPXM2 (gutv,

iv)

A rs10995271 62678726 —

C rs6601764 3820350 —

J rs10883371 99532698 NKX2-3,

LINC01475 (utv)

F rs2505639 35185493 CREM (gutv, gdtv,

iv)

I rs4934709 35050396 CUL2 (iv)

I rs4934709 35050396 CUL2 (iv) A rs10995271 62678726 —

M rs3936503 35260329 CCNY (gutv, iv) E rs7078219 99514608 —

wealth of results, in which we suspect a high rate of false positives. Moreover,
under each protocol, 30% of the IoIs generated by AntEpiSeeker are discovered in
chromosome X, a chromosome not related to Crohn’s disease. Besides, it appears
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Fig. 7. Network of 19 interactions of interest, 13 SNPs and 6 known genes, identified
by SMMB-ACO* in chromosome 10. See Table 6 for complementary information.

that the only way to reduce this verbosity is decreasing the p-value threshold.
The widely cited software BEAM3 cannot pinpoint IoIs with p-values lower than
10−3.5. In this respect, SMMB-ACO seems more promising than the renowned
BEAM3, on the CD dataset. The reason lies in BEAM3’s low number of 2-
way interactions. In contrast, SMMB-ACO notably detects IoIs in chromosome
10, a chromosome which harbours genes connected to CD. Besides, in spite of
dimension reduction, this result holds when feature selection is applied upstream
SMMB-ACO. To note, ranger is the only method in the first protocol to output a
high proportion (around 65%) of IoIs with low p-values (below 10−10). However,
with a relaxed threshold and upstream feature selection, this phenomenon is
marginal.

The case of ranger set apart, feature selection does not help increase the
rate of IoIs (significant 2-way interactions) in the interactions generated by any
method. In BEAM3, AntEpiSeeker and SMMB-ACO, the ratio of the number
of IoIs to the total number of interactions detected remains constant through
the two protocols: around 10% for BEAM3, around 90% for AntEpiSeeker, and
close to 20% for SMMB-ACO. This conclusion is an important contribution of
our study since feature selection is often put forth as a means to not only reduce
the search space, but reduce it to a subspace of interest. In the case of the CD
dataset, feature selection just implemented data dimension reduction. Besides,
the three methods differ in the ratios of IoIs identified, which shows that these
methods do not explore the same solution space. Moreover, feature selection does
not enrich the IoIs generated with still more statistically significant IoIs.

Finally, the number of IoIs detected by a method impacts the number of IoI
networks identified, but not the size of the networks identified.

The two experimental protocols implemented in this extensive analysis allow
us to highlight a great heterogeneity between the methods compared, in all
domains: running times, numbers of IoIs detected, distributions of p-values for
the IoIs identified, numbers of IoI networks and distributions of the sizes of the
latter. Some methods, which fall into the category of widely cited approaches in
the literature, however showed weaknesses. BEAM3 is extremely time consuming
for large chromosome datasets. At the opposite, a flaw was also evidenced since
BEAM3 produced surprisingly high running times for small datasets obtained
via feature selection. The verbosity of AntEpiSeeker, even on reduced datasets
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of around 5,000 SNPs, renders its use questionable for practitioners: it is not
affordable to biologically validate IoIs whose number scales in thousands. Thus,
the quickness of AntEpiSeeker is impeded by this verbosity. The more recent
approach SMMB-ACO, a complex method, is nonetheless faster than the ref-
erence software BEAM3. However, SMMB-ACO still requires memory manage-
ment improvements since it was shown to consume fluctuating memory across
several runs on the same large dataset.

7 Conclusion and Further Work

For computational reasons, in the GWAS field, simulations are performed using
data whose dimension is not comparable with real genome-wide datasets’. Con-
sequently, these simulations reveal nothing about the effectiveness and efficiency
of methods in true conditions. Moreover, the ratio between the number of SNPs
and the number of subjects observed is not comparable between simulated and
real datasets.

This work departs from the standard framework in genetic association studies
as it reports an unprecedented extensive comparative analysis of five approaches
on large-scale real data, following two experimental protocols. In the first pro-
tocol, the native methods are used straightforwardly. In the second proto-
col, feature selection is performed upstream of these methods. Our analysis
rapidly discarded DASSO-MB, to focus on the two remaining state-of-the-art
approaches designed to detect epistasis from scratch, AntEpiSeeker and BEAM3.
An unavoidable reference in GWAS, ranger was used in combination with logis-
tic regression, to detect epistasis. A more recent approach, SMMB-ACO, was
included in the comparison. We designed the two experimental protocols, taking
care to output comparable sets of (2-way) interactions across the approaches.
In the second protocol, ranger was used upstream any of the former methods
(including ranger itself), to implement feature selection. Using 23 chromosome-
wide case control datasets related to Crohn’s disease, we achieved 1,150 fea-
ture selection phases together with 1,886 genetic analyses. We observed a great
heterogeneity across methods in all aspects: running times and memory require-
ments, numbers of interactions of interest (IoIs) output, p-value ranges, numbers
of IoI networks and distributions of the sizes of the latter.

The insights gained in the present work will lead us to discart feature selection
in our future work. We plan to extend the comparative analysis to six additional
genome-wide real datasets. At this scale (10,441 chromosome-wide analyses on
161 datasets), we will be able to confirm or infirm the trends observed for the
CD dataset. We also plan to consider various genetic models.

Acknowledgment. This work was supported by the GRIOTE Research project
funded by the Pays de la Loire Region. In this study, we have processed real-world
data generated by the Wellcome Trust Case Control Consortium. The experiments
reported in this paper were performed at the CCIPL (Centre de Calcul Intensif des
Pays de la Loire).
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Appendix

Table 7. Parameter adjustment for the five methods. (Table published in [3]).

Software Parameter description Value

Ranger num.trees 500

Number of trees

mtry 5/8 n

Number of variables to possibly split at in each node, with n, the total number

of variables

impmeasure Gini

Type of importance measure Index

BEAM3 itburn 50

Number of iterations in burn-in phase

itstat 50

Number of iterations in stationary phase

AntEpiSeeker iAntCount 1000

Number of ants

iItCountLarge 150

Number of iterations for the large haplotypes

iItCountSmall 300

Number of iterations for the small haplotypes

iEpiModel 2

Number of SNPs in an epistatic interaction

pvalue p-value threshold (after Bonferroni correction) 5 × 10−4

alpha 1

Weight given to pheromone deposited by ants

phe 100

Initial pheromone rate for each variable

rou 0.05

Evaporation rate in ant colony optimization

DASSO-MB alpha 5 × 10−4

Global type I error threshold

SMMB-ACO nit 360

Number of ACO iterations

nants 20

Number of ants

Ka 160

Size of the subset of variables sampled by each ant

k 3

Size of a combination of variables sampled amongst the Ka above variables

(k < Ka)

α ′ 5 × 10−4

Global type I error threshold

τ0 100

Constant to initiate pheromone rates

ρ and 0.05

λ 0.1

Two constants used to update pheromone rates

η 1

Vector of weights, to account for prior knowledge on the variables

α and 1

β 1

Two constants used to adjust the relative importance between pheromone rate

and

Prior knowledge on the variables
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Cuckoo search epistasis: a new method for exploring significant genetic interactions.
Heredity 112, 666–764 (2014)

2. Ayers, K., Cordell, H.: SNP selection in genome-wide and candidate gene studies
via penalized logistic regression. Genet. Epidemiol. 34(8), 879–891 (2010)

3. Boisaubert, H., Sinoquet, C.: Detection of gene-gene interactions: methodologi-
cal comparison on real-world data and insights on synergy between methods. In:
Proceedings of the 12th International Joint Conference on Biomedical Engineering
Systems and Technologies (BIOSTEC 2019), vol. 3, pp. 30–42. BIOINFORMAT-
ICS (2019)

4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.
org/10.1023/A:1018054314350

5. Chang, Y.-C., Wu, J.-T., Hong, M.-Y., Tung, Y.-A., Hsieh, P.-H., et al.: GenEpi:
gene-based epistasis discovery using machine learning (2018). bioRXiv, https://
doi.org/10.1101/421719

6. Chatelain, C., Durand, G., Thuillier, V., Augé, F.: Performance of epistasis detec-
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