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Abstract. In this article, we describe a static program analysis to
determine the lowest floating-point precisions on inputs and interme-
diate results that guarantees a desired accuracy of the output values.
A common practice used by developers without advanced training in
computer arithmetic consists in using the highest precision available in
hardware (double precision on most CPU’s) which can be exorbitant in
terms of energy consumption, memory traffic, and bandwidth capacity.
To overcome this difficulty, we propose a new precision tuning tool for the
floating-point programs integrating a static forward and backward anal-
ysis, done by abstract interpretation. Next, our analysis will be expressed
as a set of linear constraints easily checked by an SMT solver.

Keywords: Floating-point arithmetic · Mixed precision · Forward and
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1 Introduction

With the wide availability of processors with hardware floating-point units, many
current critical applications, such as the critical control command systems for
automotive, aeronautic, space, etc., which have stringent correctness require-
ments and whose failures have catastrophic consequences that endanger human
life [1,9], rely heavily on floating-point operations. Without any extensive back-
ground in numerical accuracy and computer arithmetic, developers tend to use
the highest precision available in hardware (usually double precision). Despite
the fact that the results will be more accurate, this increases significantly the
application runtime, bandwidth capacity and the memory and energy consump-
tion of the system. In fact, we denote by the term precision the amount of
information used to represent a value while the term accuracy denotes how
close a floating-point computation comes to the real value. The challenge is
to use no more precision than needed wherever possible without compromising
overall accuracy (using a too low precision for a given algorithm and data set
leads to inaccurate results). To overcome the problem of determining the accu-
racy of floating-point computations, many efforts have been done in automating
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the choice of the best precision by dynamic or static methods [5,10,15,16] but
they differ strongly in their way of accuracy determination. In this article, we are
interested in the problem of determining the minimal precision on the inputs and
the intermediary results of a program performing floating-point computations in
order to get a desired accuracy on the outputs. Often in these programs, it is pos-
sible to reduce the floating-point precision of certain variables in order to increase
performance, for example, the throughput of single-precision floating-point oper-
ations is twice that of double-precision operations. Also, the proposed tool in this
article aims to apply the mixed-precision on the floating-point programs formats.
Mixed-precision computing [10] is an approach to combine different precisions
for different floating-point variables (contrarily to the uniform precision). Our
approach combines a forward and a backward error analysis which are two pop-
ular paradigms of error analysis, done by abstract interpretations [3]. In fact,
the forward analysis is classical. It examines how errors are magnified by each
operation aiming to determine the accuracy on the results [11]. Next, a user
requirement is given denoting the final accuracy wanted on some control points
of the outputs. By taking in consideration the user assertions and the results of
the forward analysis, the backward analysis is a complementary approach that
starts with the computed answer to determine the exact floating-point input that
would produce it in order to satisfy the desired accuracy. As could be expected,
the forward and backward analysis can be handled iteratively to refine the results
until a fixed-point is reached. Next, these forward and backward transfer func-
tions are expressed as a set of linear constraints made of propositional logic
formulas and relations between integer elements only. After, these constraints
will be easily checked by an SMT solver (Z3 is used in practice [7]).

The main contributions of this article are the following. First, we introduce
refinements of the automated approach based on a static forward and backward
analysis done in [11]. This approach will be explained in details specially for the
cases of addition, the multiplication and the subtraction arithmetic expressions.
Furthermore, our contribution revolves around the definition of the function ι,
defined in [11] and redefined further in this work (see Fig. 2). The function ι
is equivalent to the carry bit that can occur throughout floating-point compu-
tations (generally ι = 1). Intuitively, a too conservative static analysis would
consider that a carry can be propagated at each operation, which corresponds
to ι = 1. This function becomes very costly if we perform several computations
at a time and therefore the errors would be considerable. It is then crucial to use
the most precise function ι. This is why, we reexamine in this work this function
by sorting out the different cases where this function might be equal to 1 or 0:
difference in magnitude of two floating-point numbers and the superposition of
the ulp and the ufp, defined in Sect. 3.1, of these two numbers relative to each
other. After that, the previous analysis will be expressed as a set of propositional
formulas on linear constraints between integer variables only (checked by Z3).
The transformed program is guaranteed to use variables of lower precision with
a minimal number of bits than the original program. Second, we present the
steps of construction of our new tool, POP, which executes and evaluates any
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kind of programs with respect to our grammar of a simple imperative language
and including the implementation of the proposed approach. Also, we present
some experimental results showing the efficiency of our mixed-precision tool in
determining the minimal precision required.

The rest of this article is organized as follows. Section 2 introduces briefly
some basic concepts related to the floating-point arithmetic and the related
work of some existing precision tuning tools and we finish by introducing the
overview of our approach. Section 3 deals with the forward and backward static
error analysis by constraints generation with some examples. The implementa-
tion of our tool and the constraints resolution are presented in Sect. 4 and an
experimental results are given in Sect. 5 before concluding in Sect. 6.

2 Overview

To better explain what POP does, a motivating example of a floating-point pro-
gram is given in Fig. 1 which implements a simple scalar product of two vectors
x and y presented with different magnitude of small and large floating-point val-
ues. For the vectors x and y, the variable values belong to [1.0, 2.0], [10.0, 15.0]
and [100.0, 110.0] for vector x and [100.0, 110.0], [5.0, 10.0] and [450.0, 500.0] for
vector y, respectively. In this example, we suppose that all variables are in dou-
ble precision before analysis (original program in the left hand side of Fig. 1) and
that a range determination is performed by dynamic analysis on these variables
to make sure that no overflow can arise. We generate at each node of our pro-
gram syntactic tree a unique control point in order to determine easily the final
accuracy, after the forward and backward analysis, as shown on the left side of
Fig. 1. It is conceivable that our program contains several annotations. First, for
example on the left hand side of Fig. 1, the variables x1 and y1 are initialized to
the abstract values [1.0, 2.0] and [10.0, 15.0] (in double precision) respectively,
annotated with their control points thanks to the following annotations x

|1|
1 =

[1.0, 2.0]|0| and y
|3|
1 = [10.0, 15.0]|2|. As well, we have the statement

require accuracy(v, 23)|40|

which informs the system that the user wants to turn on variable v to the simple
precision at this control point. As a consequence, the minimal precision needed
for the inputs and intermediary results satisfying the user assertion is observed
on the right side of Fig. 1. For example, the variables x1 passed from the double
into float precision thanks to the annotation x�21

1 = [1.0, 2.0]�22 (a floating-
point number in single precision has 22 accurate digits). The results obtained
show that POP, for present, automates precision tuning and propagates the user
requirement along the program inputs and intermediary results.

3 Preliminary Notions

This section provides some background on the IEEE754 Standard of floating-
point arithmetic, formats, rounding modes, errors and the ufp and ulp functions.
Noting that several definitions of ulp exist in literature [12].
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x
|1|
1 = [1.0, 2.0]|0|;

y
|3|
1 = [10.0, 15.0]|2|;

z
|5|
1 = [100.0, 110.0]|4|;

x
|7|
2 = [100.0, 110.0]|6|;

y
|9|
2 = [5.0, 10.0]|8|;

z
|11|
2 = [450.0, 500.0]|10|;

v
|17|
1 = x

|13|
1 ∗|16| x|15|2 ;

v
|23|
2 = y

|19|
1 ∗|22| y|21|2 ;

v
|29|
3 = z

|25|
1 ∗|28| z|27|2 ;

v|38| = v
|31|
1 +|37| v|33|2 +|36| v|35|3 ;

require accuracy(v, 23)|40|

POP−−−→
Tool

x
#21
1 = [1.0, 2.0]#22;

y
#14
1 = [10, 15]#12;

z
#4
1 = [100.0, 110.0]#3;

x
#21
2 = [100.0, 110.0]#22;

y
#14
2 = [5.0, 10.0]#12;

z
#4
2 = [450.0, 500.0]#3;

v
#23
1 = x1 ∗#23 x2;

v
#15
2 = y1 ∗#14 y2;

v
#6
3 = z1 ∗#5 z2;

v#23 = v1 +#23 v2 +#14 v3;
require accuracy(v, 23)#23

Fig. 1. Simple scalar product of two vectors program. The program on the left designs
the initial program in double precision annotated with labels. On the right, the program
after analysis annotated with the final accuracies at each label referring to the user
requirement.

3.1 Basics on Floating-Point Arithmetic

The IEEE754 Standard formalizes a binary floating-point number x in base
β (generally β = 2) as a triplet made of a sign, a mantissa and an exponent
as shown in Eq. (1), where s ∈ {-1,1} is the sign, m represents the mantissa,
m = d0.d1...dp−1, with the digits 0 ≤ di < β, 0 ≤ i ≤ p − 1, p is the precision
(length of the mantissa) and the exponent e ∈ [emin, emax].

x = s.m.βe−p+1 (1)

Table 1. Parameters defining basic format floating-point numbers

Format Name Mantissa size (p - 1) Size of e emin emax

Binary16 Half precision 10 5 −14 +15

Binary32 Single precision 23 8 −126 +127

Binary64 Double precision 52 11 −1122 +1223

Binary128 Quadruple precision 112 15 −16382 +16383

The IEEE754 Standard specifies some particular values for p, emin and emax

[4]. Also, this standard defines binary formats (with β = 2) which are described
in Table 1. Hence, the IEEE754 standard distinguishes between normalized and
denormalized numbers. Indeed, the normalization of a floating-point number
ensuring d0 �= 0 guarantees the uniqueness of its representation. Denormalized
numbers make underflow gradual [13]. The IEEE754 standard defines also some
special numbers. All these numbers are summarized in Table 2 (in Binary64).
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Moreover, the IEEE754 Standard defines four rounding modes for elementary
operations over floating-point numbers which are: towards +∞, towards −∞,
towards zero and towards the nearest denoted by ↑+∞, ↑−∞, ↑0 and ↑∼, respec-
tively. Henceforth, we present the ufp (unit in the first place) and ulp (unit in the
last place) functions which express the weight of the most significant bit and the
weight of the least significant bit, respectively. In practice, these functions will
be used further in this article to describe the error propagation across the com-
putations. The definition of these functions is given in Eqs. (2) and (3) defined
in [11].

ufp(x) = min{i ∈ Z : 2i+1 > x} = �log2(x)� (2)

Let p be the size of the significand, the ulp of a floating-point number can be
expressed as shown:

ulp(x) = ufp(x) − p + 1. (3)

Table 2. Numbers in double precision

x Exponent e Mantissa m

x = 0 (if s = 0)
x = − 0 (if s = 1)

e = 0 m = 0

Normalized numbers
x = ( −1)s × 2e−1023 × 1.m

0 < e < 2047 any

Denormalized numbers
x = ( −1)s × 2e−1022 × 0.m

e = 0 m �= 0

x = +∞ (if s = 0)
x = −∞ (if s=0)

e = 2047 m = 0

x = NaN (Not a Number) e = 2047 m �= 0

3.2 Related Work

There have been many efforts to automate the process of determining the
best floating-point formats. Darulova and Kuncak [5] proposed a static analysis
method to compute errors propagation. If their computed bound on the accu-
racy satisfies the post-conditions then the analysis is run again with a smaller
format and it stops until finding the best format. Contrarily to our proposed
tool, all their values have the same format (uniform-precision). Other methods
rely on dynamic analysis. By way of illustration, Precimonious is considered as
a dynamic automated search based tool that evaluates and executes different
mixed-precision configurations of the program to identify the best configuration
that satisfies the error threshold [15]. Also, we mention the Blame Analysis [16],
a novel dynamic method that speeds up precision tuning by combining con-
crete and shadow program execution. The analysis determines the precision of
all operands such that a given precision is achieved in the final result. So as to
be more efficient with significant reduction in analysis time than used by itself,
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Blame Analysis and Precimonious has been consolidated together and this com-
bined approach has shown better results in term of program speedup compared
to using Blame Analysis alone. Nonetheless, floating-point tuning of entire appli-
cations is not feasible yet, in this moment, by this method. Moreover, Lam et al.
[10] instrument binary codes aiming to modify their precision without modifying
the source codes. They also propose a dynamic search method to identify the
parts of code where the precision should be modified. The major drawback of
this tools is that the state space is exponential in the number of variables and
exploring even a subset is very time-intensive.

Finally, there are various rigorous static analysis approaches that use interval
and affine arithmetic or Taylor series approximations to analyze stability and to
provide rigorous bounds on rounding errors. However, they do not scale very
well and therefore have not been applied to high precision computing workloads.
In this context, Chiang et al. [2] has proposed an approach which allocate a pre-
cision to the terms of only arithmetic expressions. Whereas they need to solve a
quadratically constrained quadratic program to obtain their annotations. Also,
Solovyev et al. [17] have proposed the FP-Taylor tool that implements a method
to estimate round-off errors of floating-point computations called Symbolic Tay-
lor Expansions.

4 Static Analysis by Constraints Generation

In this section, we refine the computations of the forward and backward transfer
functions used by the POP tool for the cases of addition, product and subtraction
done in [11]. These functions are defined using the unit in the first and last places
introduced in Eqs. (2) and (3). Next, these functions will be formalized as a set
of constraints made of propositional logic formulas and affine expressions among
integers.

4.1 Forward and Backward Error Analysis

Forward Addition, Multiplication and Subtraction. Consequently, we
introduce the forward transfer functions corresponding to the addition −→⊕ , prod-
uct −→⊗ and subtraction −→� of two floating-point numbers x ∈ Fp and y ∈ Fq

where Fp and Fq denote two sets of floating-point numbers in accuracy p and
q, respectively. In Eq. (4), the operands xpp′ and yqq′ and their results zrr′ have
respectively two parameters p, p′, q, q′ and r, r′ which denote the correct preci-
sion of the result and of the error, respectively. Other than that, in distinction
to [11], we introduce the truncation errors in order to be more precise through
our computations. We denote the truncation errors by ε+, ε× and ε− for the
addition, product and subtraction operations respectively.

Definition 1. The forward addition −→⊕ is given as shown in Eq. (4):

−→⊕(xpp′ , yqq′ ) = zrr′ where r = ufp(xpp′ + yqq′ ) − ufp(2ufp(xp
p′ )−p+1+

2ufp(yq
q′ )−q+1 + 2ufp(zr

r′ )−σ+)
(4)
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In the sequel, we assume xpp′ = x, yqq′ = y and zrr′ = z. Let v be an exact
value computed in infinite precision and the floating-point value is such that
v̂ = d0.d1...dp−1.2e of Fp. The comparison of these two values is |v− v̂| ≤ 2e−p+1.
So, taking into account the definition of the function ufp in Eq. 2, we have for
any x ∈ Fp and y ∈ Fq the error εx on x is bounded by:

εx < 2ulp(x) = 2ufp(x)−p+1 and εy < 2ulp(y) = 2ufp(y)−q+1 (5)

The truncation error for the rounding mode towards the nearest ↑∼ defined by
the IEEE754 Standard for the addition of x and y whose result is z is given
by ε+ ≤ 2

1
2ulp(z) and we have ulp(z) = ufp(z) − σ+ + 1 where σ+ presents the

precision of the operator +. Thus, the truncation error is shown in Eq. 6:

ε+ ≤ 2ufp(z)−σ+ (6)

Definition 2. The forward product −→⊗ is given as shown in Eq. (7):

−→⊗(xpp′ , yqq′ ) = zrr′ where r = ufp(xpp′ × yqq′ ) − ufp(2ufp(x)+1.2ufp(y)−q+1+

2ufp(y)+1.2ufp(x)−p+1 + 2ufp(x)−p+1.2ufp(y)−q+1 + 2ufp(z)−σ×)
(7)

We assume that the error εz× of the multiplication of two floating-point numbers
x and y whose result is z is εz× = y . εx + x . εy + εx . εy + ε× where ε×
is the truncation error for the product and is equal to ε× ≤ 2ufp(z)−σ× (for
the rounding mode towards ↑∼) and where σ× represents the precision of the
operator ×. So, the error εz× could be bounded as shown in Eq. 8:

2ufp(x) ≤ x < 2ufp(x)+1 and 2ufp(y) ≤ y < 2ufp(y)+1

and consequently,

εz× < 2ufp(x)+1.2ufp(y)−q+1 + 2ufp(y+1.2ufp(x)−p+1 + 2ufp(x)−p+1.2ufp(y)−q+1 + 2ufp(z)−σ×

< 2ufp(x)+ufp(y)−q+2 + 2ufp(x)+ufp(y)−p+2 + 2ufp(x)+ufp(y)−p−q+2 + 2ufp(z)−σ×

thus,

εz× ≤ 2ufp(x)+ufp(y)−q+1 + 2ufp(x)+ufp(y)−p+1 + 2ufp(x)+ufp(y)−p−q+1 + 2ufp(z)−σ× .
(8)

Definition 3. The forward subtraction −→� is given as shown in Eq. (9):

−→�(xpp′ , yqq′ ) = zrr′ where r = ufp(xpp′ − yqq′ ) − ufp(2ufp(x)−p+1 − 2ufp(y)−q+1−
2ufp(z)−σ−)

(9)
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Using the same approach in the addition case, we have 2ufp(x) ≤ x < 2ufp(x)+1

and 2ufp(y) ≤ y < 2ufp(y)+1 and the truncation error ε− ≤ 2ufp(z)−σ− where
σ− is the precision of the operator -. The subtraction error between x and y is
bounded as mentioned in Eq. (9).

Backward Addition, Subtraction and Multiplication. Equivalently, we
introduce the backward transfer functions ←−⊕ , ←−⊗ and ←−� which take advantage
of the forward transfer functions and of the accuracy requirement on the results
and by combining these two findings it is then possible to lower the number of
bits needed for one of the operands. We consider that x is unknown where the
result z and the operand y are known. The backward functions for the proposed
arithmetic functions are given in the following properties.

Definition 4. The backward transfer function for the addition ←−⊕ is given as
shown:
←−⊕(z, y) = (z−y)pp′ with p = ufp(z−y)−ufp(2ufp(z)−r+1 −2ufp(y)−q+1 −2ufp(x)−σ+)

(10)

To apply the backward analysis, we assume that one of the operands is unknown
(x in our case) while the result z is known. Then, we compute the precision p
of the operand x with respect to the user accuracy requirement and the forward
analysis result. As we said, the result and the operand errors can be bounded
by εz+ < 2ufp(z)−r+1 and εy < 2ufp(y)−q+1 and for the truncation error is given
as ε+ ≤ 2ufp(x)−σ+ .

Definition 5. We present the backward transfer function for the multiplication←−⊗ as shown:

←−⊗(z, y) = (z ÷ y)pp′ with

p = ufp(z ÷ y) − ufp
(2ufp(y)+1.2ufp(z)−r+1 − 2ufp(z)+1.2ufp(y)−q+1

2ufp(y)+1(2ufp(y)+1 + 2ufp(y)−q+1
− 2ufp(x)−σ×

)

(11)

In the case of product, we know that ←−⊗(z, y) = (z ÷ y)pp′ with p = ufp(z ÷ y) −
ufp(εz×) and where the truncation error ε× ≤ 2ufp(x)−σ− and the error εz× is
bounded as it is shown in Eq. (11).

Definition 6.
←−�(z, y) = (z+y)pp′ with p = ufp(z+y)−ufp(2ufp(z)−r+1+2ufp(y)−q+1+2ufp(x)−σ−)

(12)

We know that the roundoff errors are bounded as εz < 2ufp(z)−r+1 and εy <
2ufp(y)−q+1 and the truncation error ε− ≤ 2ufp(x)−σ− where σ− denotes the
precision of the operator - and the error in Eq. (12) is given as εz− = εx−εy −ε−.

Obviously, our static analysis does not work on scalar values as in Eqs. (4) to
(12) but on intervals instead. As described in [11], we abstract sets of values of Fp
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using the following connection in Eq. (13) where an element i� ∈ Ip correspond
to i� = [f, f ]p is defined by two floating-point numbers and an accuracy p.

Ip � [f, f ]p = {f ∈ Fp : f ≤ f ≤ f} with I =
⋃

p∈N

Ip. (13)

The operations −→⊕ �, ←−⊕ �, −→⊗ � and ←−⊗ � among values of Ip are defined in [11]
in function of −→⊕ , ←−⊕ , −→⊗ and ←−⊗ . For the rest of the article, we deal with the
generation of constraints only for the addition and the product.

4.2 Constraints Generation

In this section, we describe how to generate constraints to determine the low-
est precision on variables and intermediary values in programs. An important
definition of the function ι, computed on floating-point numbers, is given in
this section. By this definition, we attempt to be far more efficient in the way
we propagate errors across the arithmetic operations. The methodical difference
between the function ι(u, v) proposed in [11] and our new definition ι(t, u, v, w)
is that we take in consideration the ufp and ulp of the two operands in order to
compare the two floating-point number errors α and β and we add an extra bit
only if we are certain that ulp(α) is lesser than the ufp(β) (0 otherwise). Com-
pared to the former definition of [11], our new definition improves significantly
the accuracy of the static analysis by being less pessimistic. As mentioned ear-
lier, the transfer functions previously seen in Sect. 4.1 are not translated directly
into constraints because the resulting system would be too difficult to solve and
contain non-linear constraints. Therefore, we reduce the problem to a constraint
system consisting in propositional formulas on linear relations between integer
elements only. In what follows, we introduce the constraints that we generate
for the arithmetic expressions in which we are interested.

Forward Operations. Back to Eqs. (4) to (12), our goal is to compute the
correct precision r and the precision r′ of the result error (εz+ for the addition
and εz× for the product) for the floating-point number z. Intuitively, we compute
z = x+y with related errors εx and εy and εz+ and we want to compute ufp(εz+)
in function of the errors on the operands.

Proposition 1. Let x in Fp and y in Fq and let z the result of the addition
operation between these two floating-point numbers. We have in the worst case
a carry bit that can occur through this operation as it has been proven in [12].

ufp(z) ≤ max(ufp(x), ufp(y)) + 1 (14)

As a matter of fact, the previous Eq. (14) is considered as correct but pessimistic
(too large over-approximation) due to the fact that adding an extra bit specially
for cases we would not to, becomes very costly if we perform several computa-
tions. In previous work [11], a new function ι was presented in order to refine
Eq. (14): they compare the unit in the first places of the operands and they add
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an extra bit only if they are equal which is correct but it misses exactness. In
this work, we present our new definition of function ι. In fact, let x in Fp and
y in Fq, our strategy is to compare ulp(x) with ufp(y) and conversely (ulp(y)
with ufp(x)). In Definition 7, we present function ι and in Fig. 2 we present an
example of cases of function ι where an extra bit can occur (ι = 1) or not (ι = 0).

Definition 7. We introduce the function ι(t, u, v, w) as the exceeding of 1 bit
that can occur in operations between the floating-point numbers.

ι(t, u, v, w) =

{

0 u > t or w > u,

1 otherwise.
(15)

Proposition 2. In order to compute the function ι, we need to compute the
unit in the last places ulp(α) and ulp(β). Considering p′ the precision of α, from
Eq. (3) we have ulp(α) = ufp(α)−p′+1 where ufp(α) = ufp(x)−p. Consequently,
we obtain that:

ulp(α) = ufp(x) − p − p′ + 1 (16)

We know from Eq. (3) that for x ∈ Fp the unit in the last place is ulp(x) =
ufp(x) − p + 1. This definition is also valid for ulp(εx) with p′ the precision of
εx and also we deduce that if ulp(x) = ufp(x) − p + 1 than ufp(εx) = ufp(x) − p
and than we obtain the result in Eq. (16).

Fig. 2. Definition of function ι. The figure on the left represents the case of ι(α, β) =
1 and so an exceeding bit can occur throughout computations. The figure on the right
is equivalent to ι(α, β) = 0

Forward Addition: From Definition 7, Eq. (5) and Eq. (14), we present Propo-
sition (3). As we said before, if we sum z = x + y the error is equal to
εz+ = εx+εy +ε+. Now, in order to apply the definition of the function ι, we will
disassociate the total error εz+ into two errors: the roundoff error εxy = εx + εy

and the truncation error ε+. Also, we will manage by presenting one case of the
ι function (u > t).
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Proposition 3. Let a = ufp(x), b = ufp(y) and c = ufp(z),

ufp(εxy) < max(a − p + 1, b − q + 1) + ι(a − p − p′ + 1, b − q) (17)

Taking into account Eq. (17) above, ufp(εz+) is then bounded by:

ufp(εz+ ) < max
(
max

(
(a−p+1, b−q+1)+ι(a−p−p

′
+1, b−q), c−σ+

))
+ι(a−p−p

′
+1, b−q) (18)

which implies that the precision of the result z in this addition is

r = ufp(x+y)−max
(
max

(
(a−p+1, b−q+1)+ι(a−p, b−q), c−σ+

))−ι(a−p−p
′
+1, b−q). (19)

Proof. Formally, let α =
n1
∑

i=n0

αi2i and β =
m1
∑

i=m0

βi2i two floating-point numbers.

Let us assume that n1 < m0. From Definition 7, we have ufp(α) = n1 and
ulp(β) = n0 then:

α + β =
m0
∑

i=n1

γi2i where γi =

⎧

⎪

⎨

⎪

⎩

αi if i ∈ [n0, n1],
βi if i ∈ [m0,m1]
0 otherwise.

Finally, we conclude that ufp(εz+) = m1. In the case where n0 > m1, we deduce
that ufp(εz+) = n1. After, from Eq. (18), we substitute the new refinement over-
approximation of the total error εz+ and consequently we deduce the precision
r in Eq. (19).

Now, what remains to be done is to determine the precision of the error r′ of
the addition. That’s why, we need to compute ulp(εz+) as it is shown in Eq. (20).
In the case of addition, we present ulp(εz+) as the smallest ulp between the two
operands errors (ulp(εx) and ulp(εy)) and we conclude finally that the precision
of the error r′ = ufp(εz+) − ulp(εz+).

ulp(εz+) = min
(

ulp(εx), ulp(εy)
)

(20)

Forward Multiplication. For the multiplication case, we apply our new Defi-
nition 7 and Eq. (8) and we present Proposition 4.

Proposition 4. Let a and b and c three integers with a = ufp(x), b = ufp(y)
and c = ufp(z). We apply the same proceeding as in the forward addition, we
dissociate the total error ε× into the roundoff error εxy = εx + εy and the
truncation error ε×. So, we have:

ufp(εxy) < max(a + b − p + 1, a + b − q + 1) + ι(a − p − p′ + 1, b − q) (21)

and then the total error ufp(εz×) is given as

ufp(εz× ) < max
(
max

(
(a − p+1, b − q+1)+ ι(a − p − p

′
+1, b − q), c − σ+

))
+ ι(a − p − p

′
+1, b − q) (22)
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and then we deduce that

r = ufp(x×y)−max
(
max

(
(a−p+1, b−q+1)+ι(a−p, b−q), c−σ+

))−ι(a−p−p′+1, b−q).
(23)

Next, like we have proceed in Eq. (20) in the case of addition we may say that
the unit in the last place of εz× is defined by

ulp(εz×) = ulp(εx) + ulp(εy) (24)

By reasoning in the same way, we linearize the computations for the backward
operations (addition and multiplication).

Backward Addition: We consider now the backward transfer functions,
depending on Eq. (10) for the addition case. We know that p = ufp(z − y) −
ufp(εz − εy − ε+). So, again let c = ufp(z) we can over-approximate εz thanks
to the relations εz < 2c−r+1, εy ≥ 0 and ε+ ≥ 0 and consequently

p = ufp(z − y) − c + r. (25)

Backward Multiplication: Again, we take a = ufp(x), b = ufp(y) and c =
ufp(z). From Eq. (11), we know that 2c ≤ z < 2c+1, 2b ≤ y < 2b+1 and εz× <
2c−r+1, εy < 2b−q+1 which implies that y.εz× − z.εy < 2c+b−r+2 − 2b+c−q+2 and
that

1
y.(y + εy)

< 2−2b.

Consequently,

εz× ≤ 2−2b.(2c+b−r+2 − 2b+c−q+2) − 2a−σ× ≤ 2c−b−r+1 − 2c−b−q+1 − 2a−σ×

and finally,

p = ufp(z ÷ y) − max(max(c − b − r + 1, c − b − q + 1), a − σ×). (26)

5 The POP Tool

In this section, we present our tool, POP: Precision OPtimizer. We present its
architecture, its input including the program file annotated with the developer
accuracy expectation, parameters and its outputs. Also, we illustrate the mech-
anism followed by POP to lower the precision of the floating-point programs.

5.1 Architecture

At this stage, we present the main architecture of POP also described in Fig. 3.
POP is written in JAVA while each expression, boolean and statement presented
in Fig. 4 are represented as packages gathering the different classes of their defi-
nition. We can illustrate the tool hierarchy as follows:
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• Parser: It takes a file of a floating-point program referring to our sim-
ple imperative language. Before evaluating our program, we call the ANTLR:
(ANother Tool for Language Recognition) [14] framework in order to gener-
ate, from a grammar file, a parser that can build and walk parse tree.

• Range determination: Consists in launching the execution of the program
a certain number of times in order to determine dynamically the range of
variables (we plan to use a static analyzer in the future).

• Constraints generation: It implements the forward and backward error
analysis transfer function seen in Sect. 4 where the main semantics are detailed
in [11]. In addition to the variables of accuracy assigned to each label 	 which
are accF (	), accB(	) and acc(	) (defined in Sect. 5.2), we add new constraints
relative to the ulp and the precision of the error in order to compute correctly
the function ι discussed in Sect. 4.2.

• Constraints resolution: Firstly, we call the Z3 SMT solver [6] to find a
solution for our constraints and we implement a cost function (see Sect. 6) to
refine the solutions obtained in term of optimality. In future work, we will
explore a new resolution method based on policy iterations [8]. Concerning
the complexity of the analysis performed by POP, in practice, the analysis is
carried out by the SMT solver which solves the constraints. The number of
variables and constraints is linear in the size of the program. The complexity
to analyze a program of size n is then equivalent to that of solving a system
of n constraints in our language of constraints (by the solver).

5.2 Simple Imperative Language of Constraints

In order to explain the constraints generation, we introduce the following simple
imperative language. As it is mentioned in Fig. 4, we assign to each element of
our language (expression, boolean and statement) a unique label 	 ∈ lab with
the intention of identifying without ambiguity each node of the syntactic tree.
The same strategy as in [11] is adopted, the statement require accuracy(x, n)�

denotes the accuracy that x must have at the control point 	. Therefore, we assign
to each control point 	 three integer variables corresponding to the forward, the
backward and the final accuracies so that the inequality in Eq. (27) is verified.
Hence, we notice that in the forward mode, the accuracy decreases contrarily to
the backward mode when we strengthen the post-conditions (accuracy increases).

0 ≤ accB(	) ≤ acc(	) ≤ accF (	) (27)
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Fig. 3. POP mixed-precision analysis architecture

Fig. 4. Simple imperative language of constraints

6 Experimental Results

In this section, we aim at evaluating the performance of POP which generates the
constraints defined in Sect. 4.2 and calls the Z3 SMT solver in order to obtain a
solution. The solutions returned by Z3 are not unique due to the fact that it is
not an optimizer but a solver. To surpass this limitation, we add to our global
system of constraints an additional constraint related to a cost function φ (we
take the same definition in [11]). The purpose of a cost function φ(c) of a given
program c is to compute the sum of the accuracies of all the variables and the
intermediary values collected in each label of the arithmetic expressions as it is
shown in Eq. (28).

φ(c) =
∑

x∈Id,�∈Lab

acc(x�) +
∑

�∈Lab

acc(	) (28)

After, our tool searches the smallest integer P such that our system of constraints
admits a solution. Consequently, we start the binary search with P ∈ [0,52 × n]
where all the values are in double precision and where n is the number of terms
in Eq. (28). While a solution is found for a given value of P , a new iteration
of the binary search is run with a smaller value of P . When the solver fails for
some P , a new iteration of the binary search is run with a larger P and we
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continue this process until convergence. We ran our precision-tuning analysis on
programs that perform sum and product operations only (for now) to show the
performances of our forward and backward analysis described in Sect. 4.2. Noting
that these operations are widely used in embedded systems, graphic processing,
finance, etc. We take into consideration two examples which consist in a rotation
matrix-vector multiplication and the computation of the determinant of 3 × 3
matrices and we present in Fig. 5 some measures of the efficiency of our analysis
on these two examples. We assume that in the original programs of our examples
all the variables are in double precision.

Rotation Matrix-Vector Multiplication

Our first example consists in a rotation matrix R which is used in the rotation
of vectors and tensors while the coordinate system remains fixed. For instance,
we want to rotate a vector around the z axis by angle θ. The rotation matrix
and the rotated column vectors are given by:

[

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

]

[

x
y
z

]

=

[

x′
y′
z′

]

We aim from this experimentation to compute the performance of our POP tool
from different angles of rotation π

3 , π
4 and π

6 , a variety of input vectors chosen
with difference in magnitude A = [1.0, 2.0, 3.0], B = [10.0, 100.0, 500.0], C =
[100.0, 500.0, 1000.0], D = [−100.0,−10.0, 1000.0], E = [1.0, 2.0, 500.0] and F =
[1.0, 500.0, 10000.0] and for different user accuracy requirements 10, 15, 20, 25,
30 and 35. This example generates 858 constraints and 642 variables which are
very manageable by the Z3 solver. Initially starting with 10335 bits for the
original program (only variables in double precision), Fig. 5c shows that the
improvement, in the number of bits needed to realize the user requirements,
compared to the initial number of bits, ranges from 38 % to 87 % which confirms
the usefulness of our analysis. Also, we can observe in Fig. 5e that the majority of
variables fits in single precision format for an accuracy ≤ 35 and that no double
precision variables are noticed for vectors A, B, C, D and E for an accuracy 15.
For this example, we found that the variation of the angles of rotation do not
have impact on the number of double precision variables after analysis that’s
why we choose only the angle π

4 in Fig. 5e and by modifying the magnitude of
the vectors at every turn. Besides, POP assigns zeros to the accuracies of the
variables that are not used by the program.

Determinant of 3 × 3 Matrices

Our second example computes the determinant det(M) of a 3 × 3 matrices M1,
M2 and M3 as shown:

M =

[

a b c
d e f
g h i

]

→ det(M) = (a.e.i + d.h.c + g.b.f) − (g.e.c + a.h.f + d.b.i)
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analysis for the second example

Fig. 5. Measures of the efficiency of the analysis on the two input examples: the time
execution measure, the optimization of the number of bits of the transformed programs
compared to the original ones and the percentage of the double precision variables after
analysis.

The matrices coefficients belong to multiple magnitude ranges: M1 =
[

[−50.1,50.1] [−50.1,50.1] [−50.1,50.1]

[−10.1,10.1] [−10.1,10.1] [−10.1,10.1]
[−5.1,5.1] [−5.1,5.1] [−5.1,5.1]

]

, M2 =
[

[−100.1,100.1] [−100.1,100.1] [−100.1,100.1]

[−10.1,10.1] [−10.1,10.1] [−10.1,10.1]
[−2.1,2.1] [−2.1,2.1] [−2.1,2.1]

]

and
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M3 =
[

[−10.1,10.1] [−10.1,10.1] [−10.1,10.1]
[−20.1,20.1] [−20.1,20.1] [−20.1,20.1]
[−5.1,5.1] [−5.1,5.1] [−5.1,5.1]

]

. With 686 number of variables and 993

generated constraints, POP finds the minimal precision of the inputs and inter-
mediary results for this example in less than 0.3 s as it is observed in Fig. 5b
(time only for the resolution of the system of constraints and the calls of the Z3
SMT solver done by binary search) for different requirements of accuracy. Hence,
as viewed in our first example, the final number of bits of the transformed pro-
gram compared to 9964 initial bits is considerable as shown in Fig. 5d. Finally,
we notice that our analysis succeeded in turning off almost the double precision
variables to a fairly rounded single precision ones for an accuracy ≤ 20.

7 Conclusions and Future Work

In this article, we have introduced POP, an automated tuning tool for floating-
point precision that computes the minimal number of bits needed for the vari-
ables and intermediary results in order to accomplish the user requirement of
accuracy. Also, we have explained in details our forward and backward static
analysis, done by abstract interpretation. Moreover, we have shown that we can
express our analysis as a set of constraints made of propositional logic formulas
and relations between affine expressions over integers which can be easily checked
by an SMT solver. Obviously, our approach can be extended to other language
structures in particular arrays and functions. Besides, we have considered that
a range determination is performed by dynamic analysis on the variables of our
programs and that no overflow arises during our analysis but from this time on
we would like to adopt a static analyzer in order to infer safe ranges on our
variables.

In future work, we would like to explore the policy iteration method [8] as a
replacement for the non-optimizing solver (Z3) coupled to a binary search used in
this article. In fact, we aim to apply the policy iteration method to improve the
accuracy. The principle consists in transforming all the generated constraints to
the form of min-max of discrete affine maps. Further, it will be interesting to feed
the policy iteration with the Z3 solution as an initial policy and consequently
comparing the solutions of these two methods in term of execution time and
optimality. Nevertheless, our goal is to validate experimentally our tool on codes
from various fields including safety-critical systems such as control systems for
vehicles, medical equipment and industrial plants. Also, we are currently work-
ing on exploring the precision tuning in a new unexplored domain, Internet of
Things. In fact, the type of problems of energy consumption and memory saving
are widespread in this area that is why we are working on tuning the precision of
the basic buildings of common IoT items such as accelerometers and gyroscopes.
Conclusively, comparing our tool to other existing tools in the matter of analy-
sis time and speed and the quality of the solution is a tremendous challenge to
examine.
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