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Optimal Forecast Models for Clean
Energy Stock Returns

Victor Troster, Muhammad Shahbaz, and Demian Nicolás Macedo

Abstract This chapter searches for optimal models for forecasting the Wilder Hill
Clean Energy Index (ECO), the Standard and Poor’s Global Clean Energy Index
(SPCLE), the MAC Global Solar Energy Index (SUN), and the European Renew-
able Energy Index (EURIX). These indices measure the stock market performance
of renewable energy companies. We employ fat-tailed distributed models, and we
analyze their in-sample and out-of-sample performance for the returns and the 1%-
Value-at-Risk (VaR) of renewable energy indices. Heavy-tailed distributed GARCH
and GAS are optimal for all renewable energy returns. They also have the lowest
out-of-sample mean-squared error and the best coverage for 1%-VaR of renewable
energy returns. These findings highlight the relevance of modeling the kurtosis for
renewable energy returns, and they are relevant for policymakers and investors who
invest in the renewable energy sector.
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4.1 Introduction

Renewable energy assets have gained consideration among investors in recent years.
Several studies document a growing demand for renewable energies and an increment
in clean energy investments in emerging and developed economies (Kaldellis and
Zafirakis 2011;Teske et al. 2011; IRENA2017;REN212017).The increasing interest
in clean energy equities by investors may be explained by the growth prospects of the
sector, which in turn are based on three reasons. First, there is an increasing concern
about the natural environment and decarbonizing the energy system, reflected in the
Kyoto protocol and the Paris agreement (Schellnhuber et al. 2016; Klein et al. 2017;
Grubb et al. 2018). Moreover, there is a need for mitigating energy security issues
such as political instability in oil supplying countries or unexpected increments in the
oil demand (Lieb-Dóczy et al. 2003; Ang et al. 2015; Bondia et al. 2016). According
to the International Energy Agency, energy security is defined as “the uninterrupted
availability of energy sources at an affordable price.” Finally, it is important to invest
in technological innovation and developing new energy storage technologies to attain
a clean energy system (Sagar and van der Zwaan 2006; Wilson and Grubler 2011;
Kittner et al. 2017).

Clean energy indices, such as wind and solar energy, are sold in financial markets
that share the same dynamics of highly volatile assets. Besides, clean energy returns
may exhibit heavy-tailed distributions since financial returns follow fat-tailed distri-
butions (Gabaix 2009). It is important to model the volatility of renewable energy
returns for investors since it affects the performance of their portfolios on renew-
able energy.Many research papers employed generalized auto-regressive conditional
heteroskedasticity (GARCH) models of Bollerslev (1986) to model the volatility of
renewable energy data (Henriques and Sadorsky 2008; Kumar et al. 2012; Sadorsky
2012;Wang andWu2012;Managi andOkimoto 2013;Ahmadet al. 2018;Kocaarslan
and Soytas 2019). Nevertheless, to the best of our knowledge, no study has applied
generalized auto-regressive score (GAS) models to model renewable energy returns.
GASmodels are flexiblemodels that are robust tomisspecifications of the conditional
density (Creal et al. 2013; Harvey 2013).

This chapter contributes to the literature on clean energy returns as follows. First,
it searches for optimal models for forecasting the Wilder Hill Clean Energy Index
(ECO), the Standard and Poor’s Global Clean Energy Index (SPCLE), the MAC
Global Solar Energy Index (SUN), and the European Renewable Energy Index
(EURIX). These indices measure the stock market performance of clean energy
companies in the world and Europe. This chapter employs 37 flexible and fat-tailed
GAS and GARCHmodels for modeling clean energy returns. No previous study has
used GAS models to forecast clean energy returns and risk. Besides, it compares
the out-of-sample performance of all models to find the optimal forecast model for
clean energy returns. Finally, this chapter performs several backtesting approaches
for daily 1%-Value-at-Risk (VaR) forecasts of clean energy returns. It is important to
measure correctly VaR to fulfill market risk capital reserves of the Basel Agreements.
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Our findings suggest that heavy-tailed distributed GARCH and GAS models are
optimal for all renewable energy returns considered. They also have the best out-of-
sample forecast performance and the best coverage for 1%-VaR of renewable energy
returns. Therefore, fat-tailed distributed models enhance both in-sample and out-of-
sample performance of renewable energy returns and risk. These findings illustrate
the relevance of modeling the kurtosis for renewable energy returns.

The rest of the chapter proceeds as follows. Section 4.2 outlines the data and
the methodology. Section 4.3 presents the empirical results and discussion. Finally,
Sect. 4.4 concludes.

4.2 Data and Econometric Methodology

We employ data on 1458 daily observations of the Wilder Hill Clean Energy Index
(ECO), the Standard and Poor’s Global Clean Energy Index (SPCLE), the MAC
Global Solar Energy Index (SUN), and the European Renewable Energy Index
(EURIX). The ECO index is based on US stocks that operate in the promotion
and preservation of clean energy. The SPCLE index comprises 30 companies from
around the world operating in clean energy-related businesses. The MAC index is
made up of US companies involved in the solar energy industry, and the EURIX
is built on the largest European renewable energy companies. Our sample period
spans from November 14, 2013, to September 18, 2019. We selected this period
because of the data availability. We obtained all series from DataStream. Given the
closing price Pt of a renewable index at time t, we calculate its logarithm returns as
rt = 100 × ln(Pt/Pt−1).

Table 4.1 reports descriptive statistics (in percentages) for the daily returns on
the renewable energy indices. The clean energy indices are nonstationary at the 5%
level, whereas the log-returns are stationary. Besides, all returns are non-normally
distributed and volatile, with a standard deviation greater than the mean. All returns
are negatively skewed, illustrating the usefulness of heavy-tailed distributed models
for the conditional volatility of clean energy returns.

We estimateAR(1)-GARCH(1,1)models ofBollerslev (1986) for the daily returns
on renewable energy indices as:

rt = c + ϕ1rt−1 + ut , ut = σtεt , (4.1)

σ 2
t = ω + αu2t−1 + βσ 2

t−1, (4.2)

where |ϕ1| < 1 and εt follow a white noise process. Let zt−1 = ut−1σ
−1
t−1 and 1(·) be

an indicator function. We model different GARCH specifications for the conditional
volatility of ut :
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Table 4.1 Summary statistics: Clean energy returns (in %)

ECO SPCLE SUN ERIX

Mean 0.01 0.01 -0.03 0.04

Median 0.10 0.03 0.02 0.08

Minimum −6.46 −5.10 −8.78 −8.05

Maximum 6.34 4.94 8.19 5.72

Standard dev. 1.46 1.10 1.74 1.41

Skewness −0.24 −0.21 −0.30 −0.38

Kurtosis 1.06 1.80 1.95 2.63

Jarque–Bera 0.00 0.00 0.00 0.00

ADF level −1.35 −1.69 −1.18 −3.08

ADF first diff. −25.21 −24.86 −23.77 −26.26

Notes: We report summary statistics (in %) for the daily returns on the closing price of the Wilder
Hill Clean Energy Index (ECO), the Standard and Poor’s Global Clean Energy Index (SPCLE), the
MACGlobal Solar Energy Index (SUN), and the European Renewable Energy Index (EURIX). Our
sample period spans from November 14, 2013, to September 18, 2019. Jarque–Bera is the p-value
of the normality test of Jarque and Bera (1980), where the returns are normally distributed under
H0. ADF level and first diff. are the augmented unit root test of Dickey and Fuller (1979) on the
level and on the log-returns of the renewable energy indices, respectively. Boldface values of the
ADF test statistic indicate the rejection of the null hypothesis of a unit root at the 5% significance
level

ALL-GARCH(1, 1) : σ δ
t = ω + αδσ δ

t−1

[|zt−1 − b| − γ (zt−1 − b)
]δ + βσ δ

t−1,

(4.3)

APARCH(1, 1) : σ δ
t = ω + α(|ut−1| − γ ut−1)

δ + βσ δ
t−1, (4.4.)

CGARCH(1, 1) :σ 2
t = ξt + α

(
u2t−1 − ξt−1

) + β
(
σ 2
t−1 − ξt−1

)
,

ξt = ω + ρξt−1 + η
(
u2t−1 − σ 2

t−1

)
, (4.5)

E-GARCH(1, 1) : log
(
σ 2
t

) = ω + [
αzt−1 + γ (|zt−1| − E |zt−1|)

] + βlog
(
σ 2
t−1

)
,

(4.6)

GJRGARCH(1, 1) : σ 2
t = ω + αu2t−1 + γ u2t−11(ut−1 < 0) + βσ 2

t−1, (4.7)

I-GARCH(1, 1) : σ 2
t = ω + σ 2

t−1 + α
(
u2t−1 − σ 2

t−1

)
, 0 < α ≤ 1, (4.8)

NGARCH(1, 1) : σ δ
t = ω + α|ut−1|δ + βσ δ

t−1, (4.9)

T-GARCH(1, 1) : σt = ω + α|ut−1| + γ |ut−1|1(ut−1 < 0) + βσt−1, (4.10)
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where ξt is a permanent component of σ 2
t . Equation (4.3) displays the ALL-GARCH

model proposed by Hentschel (1995) that encompasses the most important GARCH
models. Equation (4.4) describes theAsymmetric PowerARCH(APARCH)model of
Ding et al. (1993) that considers longmemory for absolute returns, and it estimates the
power of heteroscedasticity (δ) from the data. Equation (4.5) displays the Component
GARCH(CGARCH)model ofEngle andLee (1999) that decomposes the conditional
variance of the returns into a permanent and a short-run component. Equation (4.6)
shows the Exponential GARCH (E-GARCH) model of Nelson (1991) that specifies
an asymmetric impact of negative shocks to σ 2

t . Equation (4.7) presents the Glosten–
Jagannathan–Runkle (GJRGARCH) model of Glosten et al. (1993) that represents
asymmetric shocks to σ 2

t by applying an indicator function to negative shocks.
Equation (4.8) illustrates the integrated GARCH (I-GARCH) model of Engle and

Bollerslev (1986) that assumes persistency in GARCHmodels. Equation (4.9) shows
the nonlinear GARCH (NGARCH) model of Higgins and Bera (1992) that estimates
the power of heteroscedasticity (δ) from the data. Finally, Eq. (4.10) displays the
threshold GARCH (T-GARCH) model of Zakoian (1994), in which σt (instead of
σ 2
t ) reacts differently to negative and positive shocks. For each model in Eqs. (4.2)–

(4.10), the innovations εt followGaussian (N), t-Student (t), or skewed t-Student (St)
distributions.

We employGASmodels based on time-varying parameters, which are flexible and
avoid the problem of incorrect specification. We define the conditional distribution
of the returns at time t as P(rt ; θ t ), given a time-varying vector of parameters θt ∈
Θ ⊆ R

N that fully characterizes P(·; ·) as follows:

θ t+1 = A0 + A1St (θ t )
∂ log P(rt ; θ t )

∂θ t
+ A2θ t , (4.11)

where A0,A1,and A2 are matrices of coefficients, and St (θ t ) is a positive-definite
scaling matrix. Following Creal et al. (2013), we specify St (θ t ) as

St (θ t ) = I, (4.12)

St (θ t ) = Et−1

[
∂ log P(rt ; θ t )

∂θ t

∂ log P(rt ; θ t )

∂θ t

′]− 1
2

, (4.13)

where I is the identity matrix. We denote the specifications for St (θ t ) of Eqs. (4.12)
and (4.13) as Identity (Id) and Inverse Squared (InvSq), respectively. We employ the
following conditional distributions for calculating the score function: asymmetric t-
Student with a left-tail (AST1) or two decay parameters (AST), Gaussian, t-Student,
and skewed-t-Student.

We estimate all GARCH and GAS models for all renewable energy returns, and
we evaluate their Akaike information criterion (AIC), Bayesian information criterion
(BIC), and the maximum value of the log-likelihood (LogLik) function. We test for
serial correlation on the GARCH residuals by applying the Ljung–Box test on the
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standardized squared residuals. To test for correct specification of GAS models, we
employ the probability integral transform (PIT) test proposed byDiebold et al. (1998)
on the estimated conditional distribution of GAS models. We also run 500 one-step-
ahead rolling out-of-sample forecasts to analyze the out-of-sample performance of
all models. The out-of-sample period spans from September 22, 2017, to September
18, 2019. We compare the root-mean-squared error (RMSE) of the out-of-sample
forecasts of all models.

Further, we apply backtests on 1%-Value-at-Risk (VaR) forecasts for each renew-
able energy index return. We employ the conditional coverage (CC) test of Christof-
fersen (1998) on the conditional density of the returns f (rt |rt−1, rt−2, . . . , r1) and
the dynamic quantile (DQ) test of Engle and Manganelli (2004). We apply the quan-
tile loss measure developed by González-Rivera et al. (2004) to evaluate 1%-VaR
forecasts as follows:

QLt+1(1%) = (1% − et+1)(rt+1 − VaRt+1(1%)),

where et+1 = 1(rt+1 < VaRt+1(1%)) is aVaR exceedance for aVaRt+1(1%) forecast
at t + 1.We also calculate the ratio betweenVaR exceedances and the expected values
a priori, the Actual over Expected ratio (AE), AE = ∑500

j et+ j/(1% × 500). VaR
forecasts with anAE ratio equal to one are optimal. In addition, we compare themean
and maximum Absolute Deviation (ADmean and ADmax) of the 1%-VaR forecasts
among all models, which deliver the expected loss given aVaR exceedance (McAleer
and Da Veiga 2008). VaR forecasts with lower ADmean and ADmax are preferred.

4.3 Empirical Analysis

Tables 4.2 and 4.3 report the estimation results of the GARCHmodels of Eqs. (4.2)–
(4.10) and the GAS models of Eqs. (4.11)–(4.13) for ECO returns. The Ljung–Box
test shows that all GARCH residuals are serially uncorrelated at the 5% level. On the
other hand, the PIT test rejects the correct specification of the GAS-N-Id, GAS-N-
InvSq, and GAS-t-InvSq at the 5% level (Table 4.3). The AR(1)-ALLGARCH(1,1),
AR(1)-E-GARCH(1,1), and AR(1)-T-GARCH(1,1) with a skewed t-Student distri-
bution have the lowest AIC and BIC for the ECO returns (Table 4.2). The GAS
model with a skewed t-Student together with an inverted square score displays
the lowest AIC and BIC among all GAS models. Therefore, fat-tailed distributed
models display a better in-sample fit for ECO returns. Further, the GAS-t-Id has
the lowest out-of-sample RMSE, followed by the AR(1)-CGARCH(1,1)-t and the
AR(1)-I-GARCH(1,1)-t.

Table 4.4 presents backtesting measures for daily 1%-VaR forecasts of ECO
returns. None of the GARCH models with the lowest AIC and BIC are opti-
mal for 1%-VaR forecasts. For instance, the DQ test rejects that the AR(1)-
ALLGARCH(1,1)-St model has a correct specification for 1%-VaR forecasts at the
1% level, although this model has the lowest AIC among all models. Nevertheless,
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Table 4.2 GARCH models for ECO returns

GARCH model AIC BIC LogLik Q2(10) RMSE

ALLGARCH(1,1)-N 3.512 3.541 −2552.56 0.79 1.3418

ALLGARCH(1,1)-St 3.487 3.523 −2531.99 0.88 1.3419

ALLGARCH(1,1)-t 3.500 3.533 −2542.83 0.87 1.3401

APARCH(1,1)-N 3.517 3.542 −2556.81 0.93 1.3421

APARCH(1,1)-St 3.488 3.521 −2533.66 0.94 1.3419

APARCH(1,1)-t 3.503 3.532 −2545.44 0.94 1.3401

CGARCH(1,1)-N 3.527 3.552 −2564.20 0.71 1.3400

CGARCH(1,1)-St 3.503 3.535 −2544.48 0.71 1.3395

CGARCH(1,1)-t 3.515 3.544 −2554.31 0.71 1.3390

E-GARCH(1,1)-N 3.515 3.537 −2556.75 0.90 1.3420

E-GARCH(1,1)-St 3.487 3.516 −2533.91 0.91 1.3411

E-GARCH(1,1)-t 3.501 3.527 −2545.56 0.91 1.3401

GJRGARCH(1,1)-N 3.516 3.538 −2557.48 0.92 1.3417

GJRGARCH(1,1)-St 3.488 3.517 −2534.39 0.93 1.3416

GJRGARCH(1,1)-t 3.502 3.527 −2545.98 0.94 1.3399

I-GARCH(1,1)-N 3.531 3.545 −2570.02 0.26 1.3404

I-GARCH(1,1)-St 3.504 3.526 −2548.32 0.35 1.3399

I-GARCH(1,1)-t 3.516 3.534 −2558.31 0.34 1.3390

NGARCH(1,1)-N 3.527 3.549 −2565.31 0.50 1.3404

NGARCH(1,1)-St 3.502 3.531 −2545.24 0.57 1.3397

NGARCH(1,1)-t 3.514 3.540 −2555.06 0.56 1.3391

GARCH(1,1)-N 3.527 3.545 −2566.17 0.52 1.3404

GARCH(1,1)-St 3.501 3.527 −2545.46 0.60 1.3397

GARCH(1,1)-t 3.514 3.536 −2555.61 0.59 1.3391

T-GARCH(1,1)-N 3.516 3.538 −2557.50 0.92 1.3421

T-GARCH(1,1)-St 3.487 3.516 −2534.38 0.92 1.3419

T-GARCH(1,1)-t 3.502 3.528 −2546.13 0.92 1.3401

Notes: Q2(10) is the p-value of the Ljung–Box test on the standardized squared residuals. RMSE
is the root-mean-squared error for 500 one-day-ahead rolling forecasts. The out-of-sample period
spans from September 22, 2017, to September 18, 2019. The best model for each criterion is in
boldface

the AR(1)-NGARCH(1,1)-St is the optimal model for 1%-VaR forecasts of ECO
returns since it has the best AE and AD mean ratios together with the highest condi-
tional coverage (CC) of 1%-VaR forecasts. The GAS-St-Id and GAS-St-InvSq also
display an AE close to the unity and the highest CC of 1%-VaR forecasts. Overall,
both the AE and AD mean ratios enhance when we employ fat-tailed distributed
modelsfor 1%-VaR forecasts of ECO returns.



96 V. Troster et al.

Table 4.3 GAS models for ECO returns

GAS model AIC BIC LogLik NP PIT RMSE

GAS-AST-Id 5119.75 5188.45 −2546.87 13 0.44 1.3710

GAS-AST1-Id 5121.13 5173.97 −2550.56 10 0.26 1.3611

GAS-N-Id 5147.43 5179.14 −2567.71 6 0.01 1.3398

GAS-St-Id 5120.38 5162.66 −2552.19 8 0.10 1.3396

GAS-t-Id 5131.87 5168.87 −2558.94 7 0.07 1.3384

GAS-AST-InvSq 5165.67 5234.37 −2569.83 13 0.30 1.3666

GAS-AST1-InvSq 5107.94 5160.79 −2543.97 10 0.48 1.3571

GAS-N-InvSq 5150.19 5181.89 −2569.09 6 0.01 1.3396

GAS-St-InvSq 5120.38 5162.66 −2552.19 8 0.10 1.3396

GAS-t-InvSq 5133.81 5170.80 −2559.90 7 0.02 1.3393

Notes: NP is the number of parameters. PIT is the p-value of the PIT test of Diebold et al. (1998).
We calculate the RMSE as in Table 4.2. The best model for each criterion is in boldface

Table 4.4 Backtesting measures for daily 1%-VaR forecasts: ECO returns

Model AE AD mean AD max DQ CC

ALLGARCH(1,1)-N 0.8 0.52 1.29 0.997 0.869

ALLGARCH(1,1)-St 1.0 0.57 1.40 0.003 0.951

ALLGARCH(1,1)-t 0.8 0.54 1.31 0.973 0.869

APARCH(1,1)-N 1.8 0.58 1.63 0.062 0.230

APARCH(1,1)-St 1.8 0.52 1.67 0.064 0.230

APARCH(1,1)-t 1.6 0.61 1.61 0.038 0.407

CGARCH(1,1)-N 1.0 0.59 1.45 0.002 0.951

CGARCH(1,1)-St 1.0 0.55 1.41 0.002 0.951

CGARCH(1,1)-t 1.0 0.63 1.43 0.002 0.951

E-GARCH(1,1)-N 1.8 0.66 1.76 0.064 0.230

E-GARCH(1,1)-St 1.6 0.57 1.69 0.053 0.407

E-GARCH(1,1)-t 1.8 0.63 1.77 0.066 0.230

GARCH(1,1)-N 1.8 0.64 1.77 0.063 0.230

GARCH(1,1)-St 2.0 0.67 1.74 0.059 0.115

GARCH(1,1)-t 1.8 0.65 1.73 0.072 0.230

GAS-AST1-Id 1.2 0.49 1.50 0.013 0.845

GAS-AST1-InvSq 1.0 0.66 1.47 0.003 0.951

GAS-AST-Id 1.4 0.54 1.56 0.020 0.632

GAS-AST-InvSq 0.4 0.51 0.77 0.930 0.306

GAS-N-Id 1.8 0.65 1.82 0.059 0.230

(continued)
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Table 4.4 (continued)

Model AE AD mean AD max DQ CC

GAS-N-InvSq 2.0 0.65 1.68 0.002 0.115

GAS-St-Id 1.0 0.57 1.59 0.967 0.951

GAS-St-InvSq 1.0 0.57 1.59 0.967 0.951

GAS-t-Id 1.6 0.65 1.79 0.036 0.407

GAS-t-InvSq 1.6 0.71 1.71 0.045 0.407

GJRGARCH(1,1)-N 1.0 0.60 1.46 0.002 0.951

GJRGARCH(1,1)-St 1.0 0.53 1.34 0.988 0.951

GJRGARCH(1,1)-t 1.2 0.59 1.33 1.000 0.845

I-GARCH(1,1)-N 1.0 0.49 1.30 0.986 0.951

I-GARCH(1,1)-St 1.0 0.54 1.41 0.002 0.951

I-GARCH(1,1)-t 1.0 0.49 1.29 0.985 0.951

NGARCH(1,1)-N 1.0 0.87 1.65 0.003 0.951

NGARCH(1,1)-St 1.0 0.47 1.35 0.981 0.951

NGARCH(1,1)-t 1.4 0.58 1.58 0.981 0.632

T-GARCH(1,1)-N 1.8 0.62 1.76 0.070 0.230

T-GARCH(1,1)-St 1.8 0.62 1.68 0.090 0.230

T-GARCH(1,1)-t 2.0 0.56 1.74 0.070 0.115

Notes: We report the Actual over Expected ratio (AE), the mean Absolute Deviation (AD mean),
and the maximum Absolute Deviation (AD max) of 1%-VaR forecasts of ECO returns. CC and DQ
are the p-values of the tests of Christoffersen (1998) and Engle andManganelli (2004), respectively,
where the model is correctly specified for 1%-VaR forecasts under H0. We perform 500 one-day-
ahead rolling forecasts. The forecasting period spans from September 22, 2017, to September 18,
2019. We denote the best models (for each criterion) in boldface

Tables 4.5 and 4.6 show the estimation results of the GARCH and GAS models
for SPCLE returns. The Ljung–Box test results indicate the residuals are serially
correlated for the AR(1)-ALLGARCH(1,1)-St, AR(1)-ALLGARCH(1,1)-t, AR(1)-
T-GARCH(1,1)-St, and AR(1)-T-GARCH(1,1)-t at the 5% level. Conversely, all
GAS models are correctly specified at the 5% level. The AR(1)-GJRGARCH(1,1)
with a skewed t-Student distribution and with a t-Student distribution have the best
in-sample fit for the SPCLE returns (Table 4.5). The GAS-t-Id and the GAS-AST1-
InvSq present the lowest AIC and BIC among all GAS models. Consistent with the
results for ECO returns, fat-tailed distributed models provide a better in-sample fit
for SPCLE returns. Further, the AR(1)-CGARCH(1,1)-N, AR(1)-CGARCH(1,1)-t,
AR(1)-NGARCH(1,1)-t, and AR(1)-GARCH(1,1)-t have the lowest out-of-sample
RMSE.

Table 4.7 displays backtesting results for one-day-ahead 1%-VaR forecasts of
SPCLE returns. Consistent with the backtesting results for ECO returns in Table 4.4,
none of the GARCH models with the best in-sample fit is optimal for 1%-VaR
forecasts of SPCLE returns. The AR(1)-APARCH(1,1)-St is the optimal model for
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Table 4.5 GARCH models for SPCLE returns

GARCH model AIC BIC LogLik Q2(10) RMSE

ALLGARCH(1,1)-N 2.925 2.954 −2124.47 0.13 0.9255

ALLGARCH(1,1)-St 2.903 2.939 −2106.25 0.03 0.9247

ALLGARCH(1,1)-t 2.902 2.935 −2106.72 0.03 0.9239

APARCH(1,1)-N 2.935 2.960 −2132.65 0.54 0.9246

APARCH(1,1)-St 2.909 2.941 −2111.49 0.42 0.9249

APARCH(1,1)-t 2.909 2.938 −2112.31 0.40 0.9242

CGARCH(1,1)-N 2.936 2.961 −2133.30 0.89 0.9236

CGARCH(1,1)-St 2.912 2.945 −2113.84 0.88 0.9240

CGARCH(1,1)-t 2.911 2.940 −2114.33 0.88 0.9236

E-GARCH(1,1)-N 2.938 2.960 −2136.16 0.24 0.9245

E-GARCH(1,1)-St 2.911 2.940 −2114.31 0.07 0.9249

E-GARCH(1,1)-t 2.911 2.936 −2115.00 0.06 0.9242

GJRGARCH(1,1)-N 2.934 2.956 −2133.07 0.62 0.9245

GJRGARCH(1,1)-St 2.908 2.937 −2111.74 0.54 0.9248

GJRGARCH(1,1)-t 2.908 2.933 −2112.58 0.54 0.9241

I-GARCH(1,1)-N 2.950 2.965 −2146.84 0.43 0.9239

I-GARCH(1,1)-St 2.917 2.939 −2120.49 0.45 0.9242

I-GARCH(1,1)-t 2.916 2.935 −2121.10 0.44 0.9237

NGARCH(1,1)-N 2.941 2.963 −2138.01 0.81 0.9237

NGARCH(1,1)-St 2.914 2.943 −2116.04 0.77 0.9241

NGARCH(1,1)-t 2.913 2.939 −2116.73 0.76 0.9236

GARCH(1,1)-N 2.940 2.958 −2138.03 0.81 0.9237

GARCH(1,1)-St 2.912 2.938 −2116.15 0.77 0.9241

GARCH(1,1)-t 2.912 2.934 −2116.83 0.76 0.9236

T-GARCH(1,1)-N 2.936 2.957 −2134.12 0.19 0.9246

T-GARCH(1,1)-St 2.909 2.938 −2112.71 0.05 0.9249

T-GARCH(1,1)-t 2.909 2.934 −2113.42 0.04 0.9243

Notes: Q2(10) is the p-value of the Ljung–Box test on the standardized squared residuals. We
calculate the RMSE as in Table 4.2. The best model for each criterion is in boldface

1%-VaR forecasts of SPCLE returns since it has the best AE and the highest p-values
of the DQ and CC tests. The AR(1)-ALLGARCH(1,1)-N also displays an AE close
to the unity and the lowest AD mean ratio. Moreover, the AR(1)-GARCH(1,1)-St,
AR(1)-GARCH(1,1)-t, GAS-AST1-Id, GAS-N-Id, and the AR(1)-T-GARCH(1,1)-
N also exhibit the optimal AE ratio and the highest conditional coverage for risk
forecasts of SPCLE returns.
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Table 4.6 GAS models for SPCLE returns

GAS model AIC BIC LogLik NP PIT RMSE

GAS-AST-Id 4259.56 4328.26 −2116.78 13 0.95 0.9285

GAS-AST1-Id 4254.58 4307.43 −2117.29 10 0.92 0.9287

GAS-N-Id 4293.59 4325.30 −2140.79 6 0.11 0.9289

GAS-St-Id 4265.89 4308.17 −2124.94 8 0.95 0.9281

GAS-t-Id 4259.17 4296.16 −2122.58 7 0.93 0.9260

GAS-AST-InvSq 4383.11 4451.81 −2178.55 13 0.16 0.9282

GAS-AST1-InvSq 4254.35 4307.20 −2117.17 10 0.89 0.9287

GAS-N-InvSq 4292.26 4323.97 −2140.13 6 0.07 0.9253

GAS-St-InvSq 4265.89 4308.17 −2124.94 8 0.95 0.9281

GAS-t-InvSq 4262.19 4299.18 −2124.10 7 0.97 0.9277

Notes: NP is the number of parameters. PIT is the p-value of the PIT test of Diebold et al. (1998).
We calculate the RMSE as in Table 4.2. The best model for each criterion is in boldface

Table 4.7 Backtesting measures for daily 1%-VaR forecasts: SPCLE returns

Model AE AD mean AD max DQ test CC test

ALLGARCH(1,1)-N 1.0 0.19 0.55 0.750 0.951

ALLGARCH(1,1)-St 0.6 0.34 0.45 0.923 0.613

ALLGARCH(1,1)-t 0.8 0.27 0.60 0.629 0.869

APARCH(1,1)-N 0.8 0.35 0.63 0.667 0.869

APARCH(1,1)-St 1.0 0.32 0.50 0.995 0.951

APARCH(1,1)-t 0.8 0.32 0.59 0.711 0.869

CGARCH(1,1)-N 0.8 0.34 0.44 0.964 0.869

CGARCH(1,1)-St 0.6 0.34 0.45 0.924 0.613

CGARCH(1,1)-t 0.8 0.34 0.59 0.368 0.869

E-GARCH(1,1)-N 1.6 0.34 0.72 0.002 0.128

E-GARCH(1,1)-St 0.8 0.33 0.55 0.564 0.869

E-GARCH(1,1)-t 1.4 0.41 0.90 0.135 0.632

GARCH(1,1)-N 1.2 0.33 0.68 0.251 0.845

GARCH(1,1)-St 1.0 0.41 0.73 0.306 0.951

GARCH(1,1)-t 1.0 0.45 0.84 0.224 0.951

GAS-AST1-Id 1.0 0.28 0.52 0.194 0.951

GAS-AST1-InvSq 0.6 0.34 0.54 0.937 0.613

GAS-AST-Id 0.8 0.45 0.64 0.258 0.869

GAS-AST-InvSq 0.4 0.33 0.42 0.933 0.306

GAS-N-Id 1.0 0.44 0.73 0.127 0.951

(continued)
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Table 4.7 (continued)

Model AE AD mean AD max DQ test CC test

GAS-N-InvSq 1.2 0.41 0.92 0.057 0.845

GAS-St-Id 0.6 0.54 0.69 0.787 0.613

GAS-St-InvSq 0.6 0.54 0.69 0.787 0.613

GAS-t-Id 0.6 0.57 0.75 0.826 0.613

GAS-t-InvSq 0.6 0.57 0.81 0.819 0.613

GJRGARCH(1,1)-N 0.6 0.37 0.49 0.924 0.613

GJRGARCH(1,1)-St 0.8 0.28 0.56 0.629 0.869

GJRGARCH(1,1)-t 0.8 0.33 0.68 0.557 0.869

I-GARCH(1,1)-N 0.8 0.25 0.52 0.625 0.869

I-GARCH(1,1)-St 0.8 0.31 0.41 0.962 0.869

I-GARCH(1,1)-t 0.6 0.30 0.49 0.964 0.613

NGARCH(1,1)-N 0.8 0.33 0.54 0.567 0.869

NGARCH(1,1)-St 0.8 0.30 0.63 0.639 0.869

NGARCH(1,1)-t 1.2 0.19 0.61 0.814 0.845

T-GARCH(1,1)-N 1.0 0.42 0.78 0.289 0.951

T-GARCH(1,1)-St 1.4 0.38 1.00 0.318 0.632

T-GARCH(1,1)-t 1.2 0.33 0.68 0.239 0.845

Notes:We report theActual over Expected ratio (AE), themeanAbsolute Deviation (ADmean), and
the maximum Absolute Deviation (AD max) of 1%-VaR forecasts of SPCLE returns. CC and DQ
are the p-values of the tests of Christoffersen (1998) and Engle andManganelli (2004), respectively,
where the model is correctly specified for 1%-VaR forecasts under H0. The best models for each
criterion are in boldface. We perform 500 one-day-ahead rolling forecasts as in Table 4.4

Tables 4.8 and 4.9 present the estimation results for SUN returns. The Ljung–
Box test results indicate the residuals are serially correlated for the AR(1)-E-
GARCH(1,1)-N and AR(1)-T-GARCH(1,1)-N models at the 5% level. The PIT test
rejects the correct specification of the GAS-t-Id andGAS-AST-InvSq at the 5% level.
The AR(1)-CGARCH(1,1)-St and AR(1)-NGARCH(1,1)-t have the lowest AIC and
BIC, respectively, for the SUN returns (Table 4.8). In addition, the GAS-AST-Id dis-
plays the best AIC and BIC among the GAS models. In line with the results for ECO
and SPCLE returns, fat-tailed distributed models for the residuals have an optimal
in-sample fit for SPCLE returns. Further, the AR(1)-E-GARCH(1,1)-St displays the
lowest out-of-sample RMSE among all models.

Table 4.10 shows the results of backtests for daily 1%-VaR forecasts of SUN
returns. Consistent with the backtesting analysis of ECO and SPCLE returns in
Tables 4.4 and 4.7, none of the GARCHmodels with the lowest AIC and BIC is opti-
mal for 1%-VaR forecasts of SUN returns. Nevertheless, the AR(1)-E-GARCH(1,1)-
St is one of the optimal models for both out-of-sample forecasts of SUN returns and
for 1%-VaR forecasts; it has an AE ratio statistically equal to one and the highest
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Table 4.8 GARCH models for SUN returns

GARCH model AIC BIC LogLik Q2(10) RMSE

ALLGARCH(1,1)-N 3.828 3.857 −2782.76 0.11 1.4848

ALLGARCH(1,1)-St 3.799 3.835 −2759.38 0.19 1.4836

ALLGARCH(1,1)-t 3.800 3.833 −2761.55 0.19 1.4831

APARCH(1,1)-N 3.829 3.854 −2784.34 0.11 1.4847

APARCH(1,1)-St 3.800 3.833 −2761.37 0.12 1.4837

APARCH(1,1)-t 3.802 3.831 −2763.47 0.13 1.4832

CGARCH(1,1)-N 3.825 3.851 −2781.56 0.32 1.4843

CGARCH(1,1)-St 3.798 3.831 −2759.96 0.32 1.4829

CGARCH(1,1)-t 3.799 3.828 −2761.34 0.33 1.4828

E-GARCH(1,1)-N 3.830 3.852 −2786.14 0.04 1.4859

E-GARCH(1,1)-St 3.799 3.828 −2761.31 0.07 1.4822

E-GARCH(1,1)-t 3.800 3.826 −2763.31 0.08 1.4827

GJRGARCH(1,1)-N 3.828 3.846 −2785.38 0.11 1.4844

GJRGARCH(1,1)-St 3.800 3.826 −2763.44 0.17 1.4829

GJRGARCH(1,1)-t 3.801 3.823 −2765.21 0.18 1.4828

I-GARCH(1,1)-N 3.828 3.849 −2784.37 0.11 1.4845

I-GARCH(1,1)-St 3.800 3.829 −2762.23 0.15 1.4832

I-GARCH(1,1)-t 3.801 3.826 −2764.02 0.16 1.4829

NGARCH(1,1)-N 3.828 3.842 −2786.29 0.08 1.4843

NGARCH(1,1)-St 3.801 3.823 −2765.29 0.11 1.4830

NGARCH(1,1)-t 3.802 3.820 −2766.72 0.12 1.4828

GARCH(1,1)-N 3.828 3.850 −2784.88 0.11 1.4843

GARCH(1,1)-St 3.802 3.831 −2763.41 0.17 1.4829

GARCH(1,1)-t 3.803 3.828 −2765.21 0.18 1.4828

T-GARCH(1,1)-N 3.833 3.854 −2788.07 0.05 1.4863

T-GARCH(1,1)-St 3.799 3.828 −2761.77 0.10 1.4839

T-GARCH(1,1)-t 3.801 3.827 −2764.08 0.10 1.4833

Notes: Q2(10) is the p-value of the Ljung–Box test on the standardized squared residuals. We
calculate the RMSE as in Table 4.2. The best model for each criterion is in boldface

conditional coverage rate. In addition, the AR(1)-APARCH(1,1) and the GAS-t-
InvSq have the lowest AD mean and AD max ratios for 1%-VaR forecasts, respec-
tively, among the models with an optimal AE ratio. The GAS-t-Id and the AR(1)-
NGARCH(1,1)-N models also have an optimal AE together with good AD mean
and CC ratios for 1%-VaR forecasts of SUN returns. In consonance with the findings
for ECO and SPCLE returns, all backtesting measures enhance when we employ
fat-tailed distributed models for 1%-VaR forecasts of SUN returns.
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Table 4.9 GAS models for SUN returns

GAS model AIC BIC LogLik NP PIT RMSE

GAS-AST-Id 5545.20 5598.04 −2762.60 10 0.23 1.4920

GAS-AST1-Id 5546.99 5599.83 −2763.49 10 0.23 1.4926

GAS-N-Id 5550.41 5619.11 −2762.20 13 0.15 1.4875

GAS-St-Id 5663.12 5731.82 −2818.56 13 0.22 1.4901

GAS-t-Id 5595.26 5626.96 −2791.63 6 0.01 1.4825

GAS-AST-InvSq 5592.90 5624.61 −2790.45 6 0.00 1.4863

GAS-AST1-InvSq 5571.23 5613.51 −2777.61 8 0.22 1.4875

GAS-N-InvSq 5571.23 5613.51 −2777.61 8 0.22 1.4875

GAS-St-InvSq 5573.90 5610.89 −2779.95 7 0.38 1.4866

GAS-t-InvSq 5578.68 5615.67 −2782.34 7 0.23 1.4867

Notes: NP is the number of parameters. PIT is the p-value of the PIT test of Diebold et al. (1998).
We calculate the RMSE as in Table 4.2. The best model for each criterion is in boldface

Table 4.10 Backtesting measures for daily 1%-VaR forecasts: SUN returns

Model AE AD mean AD max DQ test CC test

ALLGARCH(1,1)-N 0.8 0.79 1.44 0.807 0.869

ALLGARCH(1,1)-St 0.8 0.82 1.29 0.785 0.869

ALLGARCH(1,1)-t 0.8 0.71 1.59 0.719 0.869

APARCH(1,1)-N 0.8 1.10 1.77 0.685 0.869

APARCH(1,1)-St 1.0 0.75 1.33 0.837 0.951

APARCH(1,1)-t 0.8 1.05 1.61 0.665 0.869

CGARCH(1,1)-N 0.8 0.72 1.12 0.876 0.869

CGARCH(1,1)-St 0.8 0.77 1.27 0.762 0.869

CGARCH(1,1)-t 0.8 0.81 1.26 0.745 0.869

E-GARCH(1,1)-N 1.4 0.79 1.71 0.305 0.632

E-GARCH(1,1)-St 1.0 0.82 1.47 0.702 0.951

E-GARCH(1,1)-t 1.4 0.81 1.74 0.209 0.632

GARCH(1,1)-N 1.4 0.80 1.70 0.214 0.632

GARCH(1,1)-St 1.6 0.75 1.76 0.055 0.407

GARCH(1,1)-t 1.2 0.88 1.86 0.230 0.845

GAS-AST1-Id 0.8 0.85 1.79 0.792 0.869

GAS-AST1-InvSq 0.8 0.80 1.79 0.837 0.869

GAS-AST-Id 0.8 0.80 1.74 0.801 0.869

GAS-AST-InvSq 0.4 0.75 1.40 0.937 0.306

GAS-N-Id 1.2 0.88 1.77 0.424 0.845

(continued)
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Table 4.10 (continued)

Model AE AD mean AD max DQ test CC test

GAS-N-InvSq 1.6 0.67 1.66 0.005 0.407

GAS-St-Id 0.6 0.98 1.37 0.920 0.613

GAS-St-InvSq 0.6 0.98 1.37 0.920 0.613

GAS-t-Id 1.0 0.73 1.58 0.639 0.951

GAS-t-InvSq 1.0 0.69 1.52 0.682 0.951

GJRGARCH(1,1)-N 0.8 0.81 1.31 0.762 0.869

GJRGARCH(1,1)-St 0.8 0.86 1.61 0.658 0.869

GJRGARCH(1,1)-t 0.8 1.56 5.92 0.000 0.000

I-GARCH(1,1)-N 0.8 0.82 1.56 0.660 0.869

I-GARCH(1,1)-St 0.8 0.68 1.08 0.872 0.869

I-GARCH(1,1)-t 0.8 0.82 1.40 0.626 0.869

NGARCH(1,1)-N 1.0 0.84 1.49 0.725 0.951

NGARCH(1,1)-St 0.8 0.75 1.64 0.724 0.869

NGARCH(1,1)-t 0.8 1.03 1.64 0.799 0.869

T-GARCH(1,1)-N 1.2 0.87 1.91 0.245 0.845

T-GARCH(1,1)-St 1.4 0.85 1.84 0.211 0.632

T-GARCH(1,1)-t 1.6 0.74 1.76 0.068 0.407

Notes: We report the Actual over Expected ratio (AE), the mean Absolute Deviation (AD mean),
and the maximum Absolute Deviation (AD max) of 1%-VaR forecasts of SUN returns. CC and DQ
are the p-values of the tests of Christoffersen (1998) and Engle andManganelli (2004), respectively,
where the model is correctly specified for 1%-VaR forecasts under H0. The best models for each
criterion are in boldface. We perform 500 one-day-ahead rolling forecasts as in Table 4.4

Tables 4.11 and 4.12 show the estimation results for ERIX returns. Table 4.11 indi-
cates that all GARCH residuals are serially uncorrelated at the 5% level. Conversely,
the PIT test rejects the correct specification of the GAS-t-Id and GAS-AST-InvSq
at the 5% level. The AR(1)-T-GARCH(1,1)-St and AR(1)-T-GARCH(1,1)-t mod-
els present the best AIC and BIC, respectively, for the ERIX returns (Table 4.11).
Besides, the GAS-AST1-Id and GAS-St-InvSq attain the minimum AIC and BIC
among theGASmodels for the ERIX returns. Consistent with the results for the other
renewable energy returns, fat-tailed distributed models obtain a better in-sample fit
for ERIX returns. Yet, the AR(1)-I-GARCH(1,1)-N attains the lowest out-of-sample
RMSE for ERIX returns among all models.

Table 4.13 shows the results of backtests for daily 1%-VaR forecasts of ERIX
returns. The DQ test rejects the correct specification of almost all models at the 1%
significance level. In line with the backtesting results for the other renewable energy
returns, none of the GARCH models with the lowest AIC and BIC is optimal for
1%-VaR forecasts of ERIX returns. The GAS-N-Id is the optimal model for 1%-
VaR forecasts of ERIX returns since it attains the lowest AD mean and AD max
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Table 4.11 GARCH models for ERIX returns

GARCH model AIC BIC LogLik Q2(10) RMSE

ALLGARCH(1,1)-N 3.428 3.457 −2491.11 0.90 1.3031

ALLGARCH(1,1)-St 3.375 3.411 −2450.04 0.85 1.3033

ALLGARCH(1,1)-t 3.379 3.411 −2454.14 0.84 1.3036

APARCH(1,1)-N 3.427 3.453 −2491.48 0.90 1.3034

APARCH(1,1)-St 3.375 3.408 −2451.35 0.85 1.3032

APARCH(1,1)-t 3.378 3.407 −2454.88 0.85 1.3035

CGARCH(1,1)-N 3.452 3.477 −2509.31 0.96 1.3037

CGARCH(1,1)-St 3.396 3.429 −2466.78 0.97 1.3041

CGARCH(1,1)-t 3.398 3.427 −2469.26 0.96 1.3048

E-GARCH(1,1)-N 3.428 3.450 −2493.21 0.91 1.3033

E-GARCH(1,1)-St 3.375 3.404 −2452.50 0.87 1.3221

E-GARCH(1,1)-t 3.378 3.404 −2455.77 0.87 1.3663

GJRGARCH(1,1)-N 3.433 3.455 −2496.95 0.91 1.3035

GJRGARCH(1,1)-St 3.381 3.410 −2456.94 0.90 1.3039

GJRGARCH(1,1)-t 3.384 3.409 −2459.71 0.90 1.3046

I-GARCH(1,1)-N 3.468 3.483 −2524.21 0.68 1.3030

I-GARCH(1,1)-St 3.401 3.423 −2473.25 0.79 1.3031

I-GARCH(1,1)-t 3.403 3.421 −2475.57 0.76 1.3036

NGARCH(1,1)-N 3.447 3.468 −2506.51 0.97 1.3035

NGARCH(1,1)-St 3.394 3.423 −2466.43 0.93 1.3038

NGARCH(1,1)-t 3.396 3.422 −2468.95 0.93 1.3045

GARCH(1,1)-N 3.448 3.466 −2508.40 0.96 1.3039

GARCH(1,1)-St 3.395 3.420 −2467.66 0.91 1.3041

GARCH(1,1)-t 3.396 3.418 −2470.00 0.91 1.3047

T-GARCH(1,1)-N 3.426 3.448 −2491.48 0.90 1.3034

T-GARCH(1,1)-St 3.374 3.403 −2451.44 0.86 1.3032

T-GARCH(1,1)-t 3.377 3.402 −2454.92 0.86 1.3035

Notes: Q2(10) is the p-value of the Ljung–Box test on the standardized squared residuals. We
calculate the RMSE as in Table 4.2. The best model for each criterion is in boldface

ratios together with the highest p-values of the CC and DQ tests. The AR(1)-E-
GARCH(1,1)-N and AR(1)-GARCH(1,1)-N also have a similar out-of-sample per-
formance for risk forecasts. However, these models exhibit an AE ratio far from the
unity, indicating an excessive number of actual 1%-VaR exceedances over expected
ones. Therefore, normally distributed GAS and GARCH models have good perfor-
mance for 1%-VaR forecasts of ERIX returns, in contrast to our findings for the other
renewable energy returns.
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Table 4.12 GAS models for ERIX returns

GAS model AIC BIC LogLik NP PIT RMSE

GAS-AST-Id 4951.64 5004.49 −2465.82 10 0.88 1.3174

GAS-AST1-Id 4949.51 5002.36 −2464.76 10 0.74 1.3199

GAS-N-Id 4956.62 5025.32 −2465.31 13 0.78 1.3186

GAS-St-Id 4952.40 5021.10 −2463.20 13 0.90 1.3096

GAS-t-Id 5040.02 5071.72 −2514.01 6 0.01 1.3034

GAS-AST-InvSq 5028.71 5060.41 −2508.35 6 0.01 1.3035

GAS-AST1-InvSq 4950.36 4992.64 −2467.18 8 0.72 1.3043

GAS-N-InvSq 4950.36 4992.64 −2467.18 8 0.72 1.3043

GAS-St-InvSq 4949.82 4986.81 −2467.91 7 0.72 1.3047

GAS-t-InvSq 4950.90 4987.90 −2468.45 7 0.66 1.3042

Notes: NP is the number of parameters. PIT is the p-value of the PIT test of Diebold et al. (1998).
We calculate the RMSE as in Table 4.2. The best model for each criterion is in boldface

Table 4.13 Backtesting measures for daily 1%-VaR forecasts: ERIX returns

Model AE AD mean AD max DQ test CC test

ALLGARCH(1,1)-N 1.0 1.32 2.75 0.001 0.951

ALLGARCH(1,1)-St 1.0 1.17 2.97 0.001 0.951

ALLGARCH(1,1)-t 1.0 1.22 2.73 0.001 0.951

APARCH(1,1)-N 1.2 1.23 2.95 0.001 0.845

APARCH(1,1)-St 1.4 0.97 3.01 0.009 0.632

APARCH(1,1)-t 1.0 1.27 2.86 0.003 0.951

CGARCH(1,1)-N 1.0 1.27 2.94 0.001 0.951

CGARCH(1,1)-St 0.8 1.41 2.89 0.000 0.869

CGARCH(1,1)-t 1.0 1.16 2.97 0.001 0.951

E-GARCH(1,1)-N 1.8 0.96 3.28 0.014 0.230

E-GARCH(1,1)-St 1.0 1.33 3.05 0.001 0.951

E-GARCH(1,1)-t 1.4 1.28 3.52 0.001 0.632

GARCH(1,1)-N 1.8 0.95 3.28 0.016 0.230

GARCH(1,1)-St 1.2 1.47 3.22 0.001 0.845

GARCH(1,1)-t 1.2 1.41 3.21 0.001 0.845

GAS-AST1-Id 1.0 1.38 3.11 0.001 0.951

GAS-AST1-InvSq 1.0 1.37 3.04 0.002 0.951

GAS-AST-Id 1.0 1.37 3.10 0.001 0.951

GAS-AST-InvSq 0.8 1.55 3.04 0.000 0.869

GAS-N-Id 1.8 0.90 3.20 0.017 0.230

(continued)
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Table 4.13 (continued)

Model AE AD mean AD max DQ test CC test

GAS-N-InvSq 2.0 0.87 3.39 0.007 0.115

GAS-St-Id 1.0 1.39 3.13 0.001 0.951

GAS-St-InvSq 1.0 1.39 3.13 0.001 0.951

GAS-t-Id 1.2 1.22 3.20 0.002 0.845

GAS-t-InvSq 1.2 1.39 3.59 0.002 0.845

GJRGARCH(1,1)-N 0.8 1.47 2.93 0.000 0.869

GJRGARCH(1,1)-St 1.0 1.30 2.79 0.001 0.951

GJRGARCH(1,1)-t 2.0 1.39 7.58 0.000 0.000

I-GARCH(1,1)-N 1.0 1.24 2.75 0.001 0.951

I-GARCH(1,1)-St 0.8 1.51 2.83 0.000 0.869

I-GARCH(1,1)-t 0.8 1.31 2.67 0.000 0.869

NGARCH(1,1)-N 1.2 1.16 3.13 0.001 0.845

NGARCH(1,1)-St 1.0 1.28 2.77 0.001 0.951

NGARCH(1,1)-t 1.2 1.24 2.91 0.001 0.845

T-GARCH(1,1)-N 1.2 1.43 3.21 0.001 0.845

T-GARCH(1,1)-St 1.4 1.27 3.23 0.000 0.632

T-GARCH(1,1)-t 1.4 1.26 3.37 0.003 0.632

Notes: We report the Actual over Expected ratio (AE), the mean Absolute Deviation (AD mean),
and the maximumAbsolute Deviation (ADmax) of 1%-VaR forecasts of ERIX returns. CC and DQ
are the p-values of the tests of Christoffersen (1998) and Engle andManganelli (2004), respectively,
where the model is correctly specified for 1%-VaR forecasts under H0. The best models for each
criterion are in boldface. We perform 500 one-day-ahead rolling forecasts as in Table 4.4

In sum, heavy-tailed distributedGARCHandGASmodels have the best in-sample
fit for all renewable energy returns. They also exhibit the best out-of-sample fore-
cast performance and the best coverage for 1%-VaR of renewable energy returns.
These findings highlight the relevance of modeling the kurtosis for renewable
energy returns. For instance, the GAS-t-Id, AR(1)-CGARCH(1,1)-t, and AR(1)-
E-GARCH(1,1)-St have the lowest out-of-sample RMSE for ECO, SPCLE, and
both SUN and ERIX returns, respectively. In addition, the AR(1)-NGARCH(1,1)-
St, AR(1)-APARCH(1,1)-St, AR(1)-E-GARCH(1,1)-St, and GAS-N-Id models are
optimal models for 1%-VaR of renewable energy returns. Therefore, fat-tailed
GARCHandGAS enhance both in-sample and out-of-sample performance of renew-
able energy returns and risk. These findings are important for policymakers and
investors who invest in the renewable energy sector.



4 Optimal Forecast Models for Clean Energy Stock Returns 107

4.4 Conclusions

Clean energy indices, such as wind and solar energy, are sold in financial markets
that share the same dynamics of highly volatile assets. Clean energy returns may also
exhibit heavy-tailed distributions sincefinancial returns follow fat-tailed distributions
(Gabaix 2009). It is important to model the volatility of renewable energy returns
for investors since it affects the performance of their portfolios on renewable energy.
In this chapter, we search for optimal models for clean energy returns using 37
flexible and fat-tailed GAS and GARCH models. Besides, we compare the out-of-
sample performance of all models to find the optimal forecast model for clean energy
returns. We also conduct several backtesting approaches for daily 1%-Value-at-Risk
(VaR) forecasts of clean energy returns.

Fat-tailed distributed GARCH and GAS models have the best in-sample fit for all
renewable energy returns. They also exhibit the best out-of-sample forecast perfor-
mance and the best coverage for 1%-VaR of renewable energy returns. For instance,
the GAS-t-Id, AR(1)-CGARCH(1,1)-t, AR(1)-E-GARCH(1,1)-St have the lowest
out-of-sample RMSE for ECO, SPCLE, and both SUN and ERIX returns, respec-
tively. In addition, the AR(1)-NGARCH(1,1)-St, AR(1)-APARCH(1,1)-St, AR(1)-
E-GARCH(1,1)-St, andGAS-N-Idmodels are optimalmodels for 1%-VaR of renew-
able energy returns. These findings illustrate the relevance of modeling the kurtosis
for renewable energy returns, which are relevant for policymakers and investors who
invest in the renewable energy sector.
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