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Abstract Attempts to apply quantum collapse theories to Cosmology and cosmic
inflation are reviewed. These attempts aremotivated by the fact that the theory of cos-
mological perturbations of quantum-mechanical origin suffers from the single out-
come problem, which is amodern incarnation of the quantummeasurement problem,
and that collapse models can provide a solution to these issues. Since inflationary
predictions can be very accurately tested by cosmological data, this also leads to con-
straints on collapse models. These constraints are derived in the case of Continuous
Spontaneous Localization (CSL) and are shown to be of unprecedented efficiency.

1 Introduction

Quantum Mechanics finds itself in a somehow paradoxical situation. On one hand,
it is an extremely efficient and well-tested theory whose experimental successes are
impressive and unquestioned. On the other hand, understanding and interpreting the
formalism on which it rests is still a matter of debates. This on-going discussion has
led to a variety of points of view ranging from challenging that there is an actual
problem, to developing different ways of understanding the theory or, in other words,
different “interpretations” [1].
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Giancarlo Ghirardi, to whom this book and chapter are dedicated, has made fun-
damental contributions to this question. In fact, the approach proposed by Ghirardi
(together with his collaborators, Rimini and Weber and, independently, Pearle), the
so-called collapse models [2–5], unlike the other interpretations, goes beyond simply
advocating for a different scheme to capture the meaning of the QuantumMechanics
formalism. It is actually an alternative to QuantumMechanics and, as such, it should
not be considered as an interpretation but rather as another, rival, theory. In some
sense, collapse models enlarge Quantum Mechanics, which becomes only one par-
ticular theory in a larger parameter space, in the same way that, for instance, General
Relativity is only one point in the parameter space of scalar-tensor theories [6]. As a
consequence, the great advantage of collapse theories is that they make predictions
that are different from those of Quantum Mechanics and that can thus be falsified.
This was of course realized from the very beginning by Ghirardi and, nowadays,
there exists a long list of experiments aiming at constraining collapse models [1].

These experiments, however, are all performed in the lab. In the present article, it is
pointed out that using QuantumMechanics and/or collapse models in a cosmological
context can shed new light on those theories.

One of themost important insights inCosmology is the realization that galaxies are
of quantum-mechanical origin [7]. They are indeed nothing but quantumfluctuations,
stretched to very large distances by cosmic expansion during a phase of inflation [8–
12] and amplified by gravitational instability. This discovery has clearly far-reaching
implications for Cosmology but also for foundational issues in QuantumMechanics.
Indeed, in Cosmology, Quantum Mechanics is pushed to new territories not only
in terms of scales (the typical energy, length or time scales relevant for Cosmology
are very different from those characterizing lab experiments) but also in terms of
concepts: applyingQuantumMechanics to a single systemwith no exterior, classical,
domain is not trivial [13, 14].

Among the first physicistswho realized thatCosmology can be an interesting play-
ground for QuantumMechanics was John Bell, see for instance his article “Quantum
mechanics for cosmologists” [15]. As Ghirardi recalled and discussed in detail dur-
ing the colloquium he gave at the Institut d’Astrophysique de Paris (IAP) on March
22nd, 2012, he and John Bell were good friends and enjoyed interacting together.
In his talk,1 Ghirardi mentioned that Bell emphasized the importance of develop-
ing a relativistic, Lorentz invariant, version of collapse models which is of course a
prerequisite for Cosmology. He also stressed that one important feature of collapse
models is that there is “nomention ofmeasurements, observers and so on”, a property
that is clearly relevant for Cosmology. Therefore, even if Ghirardi never explicitly
worked at the interface between Cosmology and Quantum Foundations, he clearly
considered this subject as a promising direction of research.

Recently, the collapse models have started to be considered in Cosmology [16–
24], in particular in the context of cosmic inflation, with two essential motivations:
to avoid conceptual problems related to the absence of an observer in the very early

1The slides of his talk can be found at this http://www.iap.fr/vie_scientifique/seminaires/
Seminaire_GReCO/2012/presentations/ghirardi.pdf.

http://www.iap.fr/vie_scientifique/seminaires/Seminaire_GReCO/2012/presentations/ghirardi.pdf
http://www.iap.fr/vie_scientifique/seminaires/Seminaire_GReCO/2012/presentations/ghirardi.pdf
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universe; and to use the high-accuracy cosmological data constraining inflation as a
probe of the free parameters characterizing collapse models [24]. The goal of this
paper is to briefly review these recent works. It is organized as follows. In the next
section, Sect. 2, we briefly review cosmic inflation and the theory of cosmological
perturbations of quantum-mechanical origin. Then, in Sect. 3, we explain why col-
lapse theories can be useful in Cosmology. In Sect. 4, we discuss how these theories
can be implemented concretely and, in Sect. 5, we use cosmological observations to
put constraints on the parameters characterizing collapse models. Finally, in Sect. 6,
we present our conclusions.

2 Cosmic Inflation and Cosmological Perturbations

In Cosmology, the theory of inflation is a description of the physics of the very early
universe [8–12]. It is a phase of exponential, accelerated, expansion [meaning that
ä > 0 where a(t) is the scale factor describing how cosmic expansion proceeds and
t is the cosmic time] first introduced to fix some undesirable features of the standard
model of Cosmology [25]. Since it occurs in the early universe, it is characterized
by a very high energy scale, that could be as large as 1015 GeV. Soon after infla-
tion was proposed, in the late seventies and early eighties, it was also realized that
it provides an efficient mechanism for structure formation. In the present context,
“structures” refer to the small inhomogeneities that are the seeds of the Cosmic
Microwave Background (CMB) anisotropies and of the galaxies. They can be repre-
sented by an inhomogeneous scalar field called the “curvature perturbation” [7, 26],
and denoted ζ(t, x). It represents small ripples propagating on top of an homoge-
neous and isotropic background. The idea is then to promote this scalar field to a
quantum scalar field, which thus undergoes unavoidable quantum fluctuations. These
quantum fluctuations are then amplified during inflation and, later on in the history
of the universe, give rise to galaxies.

This may seem a rather drastic idea, but one can show that all the predictions
of this theory are in perfect agreement with astrophysical observations [27–33].
In particular, the statistics of ζ are quasi Gaussian (no deviation from Gaussianity
has been detected so far [34]), and can thus be fully characterized in terms of its
power spectrum Pζ(k), which is the square of its Fourier amplitude. It represents
the “amount” of inhomogeneities at a given scale. It was known as an empirical
fact, well before the advent of inflation, that cosmological data are consistent with
a primordial scale-invariant power spectrum, that is to say with a function Pζ(k)
that is k-independent. But the theoretical origin of this scale-invariance was not
known. Inflation definitively gained respectability when it was realized that it leads
to this type of power spectrum for the quantum fluctuations mentioned before. Its
convincing power is even higher today because, in fact, inflation does not predict
an exact scale-invariant power spectrum, but rather an almost scale-invariant power
spectrum: if one writes the power spectrum as Pζ(k) ∼ knS−1, where nS is the so-
called spectral index, exact scale-invariance corresponds to nS = 1 while inflation
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leads to nS �= 1 but |nS − 1| � 1. As a consequence, if inflation is correct, then one
should observe a small deviation from nS = 1. In 2013, the European Space Agency
(ESA) satellite Planck measured the CMB anisotropies with exquisite precision and
found [27] nS = 0.9603 ± 0.0073, thus establishing that, if nS is indeed close to one,
it differs fromone at a (5σ) significant level. Themost recent release [32, 33], in 2018,
has confirmed this measurement with nS = 0.9649 ± 0.0042. This confirmation of
a crucial inflationary prediction has given a strong support to the idea that galaxies
are of quantum-mechanical origin.

At the technical level, it is well known that a field in flat space-time can be inter-
preted as an infinite collection of harmonic oscillators, each oscillator corresponding
to a given Fourier mode. Likewise, a scalar field living in a cosmological, curved,
space-time can be viewed as an infinite collection of parametric oscillators, the fun-
damental frequency of each oscillator becoming a time-dependent function because
of cosmic expansion (for a review, see Ref. [35]). Upon quantization, harmonic oscil-
lators naturally lead to the concept of coherent states while parametric oscillators
lead to the concept of squeezed states [36]. In the Heisenberg picture, the curvature
perturbation operator can be expanded as

ζ̂(η, x) = 1

(2π)3/2

1

z(η)

∫
dk√
2k

[
ĉk(η)eik·x + ĉ†k(η)e−ik·x

]
, (1)

where ĉk(η) and ĉ†k(η) are the annihilation and creation operators satisfying the usual
equal-time commutation relations, [ĉk(η), ĉ†p(η)] = δ(k − p), z(η) is a function that
depends on the scale factor and its derivatives only, and η denotes the conformal time,
related to cosmic time via dt = adη. The dynamics of ζ̂(η, x) is controlled by the fol-
lowing Hamiltonian, which is directly obtained from expanding the Einstein-Hilbert
action plus the action of a scalar field at second order2 in perturbation theory [35],

Ĥ =
∫
R3

d3k Ĥfree(k) + g(η)

∫
R3

d3k Hint(k). (2)

In this expression, g(η) = z′/(2z) is a time-dependent “coupling constant”, and

Ĥfree(k) = k

2

(
ĉk ĉ

†
k + ĉ†−k ĉ−k

)
, Ĥint(k) = −i

(
ĉk ĉ−k − ĉ†−kc

†
k

)
. (3)

The first term, Ĥfree, is the Hamiltonian of a collection of harmonic oscillators and
the second one, Ĥint, represents the interaction of the quantum perturbations with the
classical background. If space-time is not dynamical (Minkowski), then g(η) = 0.

2This second-order expansion of the action is valid at linear order in perturbation theory, which is
known to provide an excellent description of primordial fluctuations, given their small amplitude.
This is the order at which the calculation is performed in this work, as in the standard treatment.
At higher order, mode coupling effects are expected, which would made the use of the CSL theory
technically more challenging (as for the case of standard quantum mechanics) but these effects are
clearly suppressed by the amplitude of perturbations, hence they cannot change our conclusions.



Collapse Models and Cosmology 273

In the inflationary paradigm, a crucial assumption, without which the theory would
not be empirically successful, is that the initial state of the system is the so-called
“Bunch-Davies” or “adiabatic” vacuum state [37], which can be written as

|0〉 =
⊗
k

|0k〉, (4)

with ĉk(ηini)|0k〉 = 0, ηini being the conformal time at which the initial state is cho-
sen. The time evolution of the curvature perturbation ζ̂(η, x) is then given by the
Heisenberg equation dĉk/dη = −i[ĉk, Ĥ ]. This equation can be solved by means
of a Bogoliubov transformation, ĉk(η) = uk(η)ĉk(ηini) + vk(η)ĉ†−k(ηini), where the
functions uk(η) and vk(η) obey

i
duk
dη

= kuk(η) + i
z′

z
v∗
k (η), i

dvk
dη

= kvk(η) + i
z′

z
u∗
k(η). (5)

These functions must satisfy |uk(η)|2 − |vk(η)|2 = 1 in order for the commutation
relation between ĉk and ĉ†p to be satisfied. If one introduces the Bogoliubov trans-
formation into the expression (1) for the curvature operator, one obtains

ζ̂(η, x) = 1

(2π)3/2

1

z(η)

∫
dk√
2k

[
(uk + v∗

k )(η)ĉk(ηini)e
ik·x + (u∗

k + vk)(η)ĉ†k(ηini)e
−ik·x] . (6)

From Eqs. (5), it is easy to establish that the quantity uk + v∗
k obeys the equation

(uk + v∗
k )

′′ + ω2(uk + v∗
k ) = 0 with ω2 = k2 − z′′/z. This is the equation of a para-

metric oscillator, namely a harmonic oscillator with time-dependent fundamental
frequency, and, here, this time dependence is entirely controlled by the dynamics
of the underlying background space-time. Let us notice that the initial conditions
are given by uk(ηini) = 1 and vk(ηini) = 0, which implies that (uk + v∗

k )(ηini) = 1.
Having solved the time evolution of the system, one can then calculate the two-point
correlation function of the curvature perturbation. It needs to be evaluated in the state
|0〉 since, in the Heisenberg picture, states do not evolve in time, and one has

〈
0
∣∣ζ2 (η, x)

∣∣ 0〉 ≡
∫ +∞

0

dk

k
Pζ(k) =

∫ ∞

0

dk

k
k2
∣∣∣∣uk + v∗

k

z

∣∣∣∣
2

. (7)

This shows how the power spectrum Pζ(k) mentioned above can be determined
explicitly once the differential equation for uk + v∗

k has been solved. Notice that it
is, a priori, a function of time. However, on large scales, uk + v∗

k ∝ z, and this time
dependence disappears.

Let us now describe the same phenomenon but in the Schrödinger picture. We
first notice that the Bogoliubov transformation introduced above can be written

ĉk(η) = R̂†
k Ŝ

†
k ĉk(ηini)Ŝk R̂k, (8)
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where the operators R̂k and Ŝk , called the rotation and squeezing operators respec-
tively, are defined by R̂k = eD̂k and Ŝk = eB̂k , with

B̂k = rke
−2iϕk ĉ−k(ηini)ĉk(ηini) − rke

2iϕk ĉ†−k(ηini)ĉ
†
k(ηini),

D̂k = −iθk,1ĉ
†
k(ηini)ĉk(ηini) − iθk,2ĉ

†
−k(ηini)ĉ−k(ηini). (9)

They are expressed in terms of the squeezing parameter rk(η), the squeezing angle
ϕk(η) and the rotation angle θk(η) ≡ θk,1(η) = θk,2(η), which are related to the
functions uk(η) and vk(η) via uk(η) = e−iθk cosh rk and vk(η) = −ieiθk+2iϕk sinh rk .
In the Schrödinger picture, the state evolves with time into a two-mode squeezed
state [38]

|0〉 → |�2sq〉 =
⊗
k

Ŝk R̂k |0k, 0−k〉 =
⊗
k

1

cosh rk(η)

∞∑
n=0

e−2inϕk (η) tanhn rk(η)|nk, n−k〉,

(10)

where |nk〉 is an eigenvector of the particle number operator in the mode k. In
Cosmology, the value of the squeezing parameter, for the modes k probed in the
CMB, is rk 
 102 towards the end of inflation, which is much larger than what can
be achieved in the lab. Moreover, this state is, as apparent on the previous expression,
entangled. It is therefore reasonable to conclude that the quantum state |�2sq〉 is a
highly non-classical state.

The above squeezed state can also be written in terms of a wave-functional, which
usually corresponds to writing the state in the “position” basis. This, however, is not
as straightforward as it might seem in the present context. Indeed, the curvature
perturbation and its conjugate momentum are related to the creation and annihilation
operators through

z(η)ζ̂k = 1√
2k

(
ĉk + ĉ†−k

)
, z(η)ζ̂ ′

k = −i

√
k

2

(
ĉk − ĉ†−k

)
. (11)

We notice that the curvature perturbation and its conjugatemomentum are notHermi-
tian operators since the above relations imply that ζ̂†k = ζ̂−k, which simply translates
the fact that the curvature perturbation is a real field. As a consequence, ζ̂k cannot
play the role of the position operator. Moreover, these expressions mix creation and
annihilation operators of momentum k and−k, while it seems more natural to define
a position operator for each mode k. This, however, can be done if one introduces
the operators q̂k and π̂k defined by [39]

z(η)ζ̂k = 1

2

[
q̂k + q̂−k + i

k

(
π̂k − π̂−k

)]
, z(η)ζ̂ ′

k = 1

2i

[
k
(
q̂k − q̂−k

)+ i
(
π̂k + π̂−k

)]
.

(12)

From those relations, it is easy to establish that
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q̂k = 1√
2k

(
ĉk + ĉ†k

)
, π̂k = −i

√
k

2

(
ĉk − ĉ†k

)
, (13)

so that q̂k and π̂k involve only creation and annihilation operators for a fixed mode
k. It is also easy to check that [q̂k, π̂k] = i , such that q̂k and π̂k are the proper
generalization of “position” and “momentum” for field theory. Then, it follows that
the total wave-functional of the system can be written as a product of wave-functions
for each mode, namely �2sq[η; q] = ∏

k �k(qk, q−k), with

�k (qk, q−k) = 〈qk, q−k|�k〉 = eA(rk ,ϕk )(q2
k+q2

−k)−B(rk ,ϕk )qkq−k

cosh rk
√

π
√
1 − e−4iϕk tanh2 rk

, (14)

where the functions A(rk,ϕk) and B(rk,ϕk) are defined by

A (rk,ϕk) = e−4iϕk tanh2 rk + 1

2(e−4iϕk tanh2 rk − 1)
, B (rk,ϕk) = 2e−2iϕk tanh rk

e−4iϕk tanh2 rk − 1
. (15)

Initially rk = 0, so A = −1/2 and B = 0, and �k(qk, q−k) ∝ e−q2
k/2e−q2

−k/2. Each
mode k and −k is decoupled and placed in their ground state (namely, the Bunch-
Davies vacuummentioned above). Then, the state evolves, rk becomes non-vanishing
and�k(qk, q−k) can no longer bewritten as a product�(qk)�(q−k). This is of course
another manifestation of the fact that the state becomes entangled.

The wave-functional �2sq can also be written in the basis |ζR
k , ζ

I
k〉, where one

defines ζ̂k ≡ (ζ̂R
k + i ζ̂ I

k)/
√
2, which implies that

zζ̂R
k = 1√

2

(
q̂k + q̂−k

)
, zζ̂ I

k = 1

k
√
2

(
π̂k − π̂−k

)
. (16)

In that case, �2sq[η, ζ] = ∏
k �k(ζ

R
k )�k(ζ

I
k), where the individual wave-functions

can be expressed as�k(ζ
s
k) ≡ �s

k = Nke−�k(aζsk)
2
, where |Nk| = (2�e�k/π)1/4 and

s = R, I. The behavior of �k(η) is determined by the Schrödinger equation, which
leads to �′

k = −2i�2
k + iω2(k, η)/2, where we remind that ω2(k, η) is the time-

dependent fundamental frequency of each oscillator. Several remarks are in order
at this point. First, the wave-functional �2sq[η, ζ] can be obtained from �2sq[η, q]
by canonical transformation [35, 40]. Second, finding the time dependence of the
function �k(η) is clearly equivalent to solving the equation of motion (5). Third,
given the previous considerations about entanglement, it may seem surprising that
�k(ζ

R
k , ζ

I
k) can be written in a separable form, as a product of �k(ζ

R
k ) and �k(ζ

I
k).

But, in fact, entanglement depends on how a system is divided into two bipartite
sub-systems. This is confirmed by a calculation of the quantum discord which may
be vanishing for a partition and non-vanishing for another [39]. Finally, in the wave-
functional approach, the two-point correlation function that was calculated in Eq. (7)
in the Heisenberg picture can be obtained with the following formula
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〈
0
∣∣ζ2 (η, x)

∣∣ 0〉 =
∫ ∏

k

dζR
k dζ

I
k �∗

k(ζ
R
k , ζ

I
k) ζ2 (η, x) �k(ζ

R
k , ζ

I
k). (17)

This leads to the power spectrum

Pζ(k) = k3

2π2

1

4�e�k
, (18)

which can be checked to match the one obtained in Eq. (7).
Having explained how the theory of quantum-mechanical inflationary perturba-

tions can be used to calculate the power spectrum Pζ(k) of the fluctuations, let us
now briefly describe how this power spectrum can be related to astrophysical obser-
vations. In modern Cosmology, there exist many different observables that probe
various properties of the universe. Among the most important ones is clearly the
CMB temperature anisotropy mentioned before. It is the earliest probe, that is to say
the closest to the inflationary epoch, that we have at our disposal. The CMB radiation
is a relic thermal radiation emitted in the early universe at a redshift of zlss 
 1100.
Since the early universe is extremely homogeneous and isotropic, the temperature of
this radiation (namely ∼2.7K) is almost independent of the direction towards which
we observe it. In fact, the early universe is not exactly homogeneous and isotropic,
precisely because of the presence of the curvature perturbations discussed before.
They manifest themselves by tiny variations of the CMB temperature, at the level
δT/T 
 10−5. The CMB anisotropy is thus the earliest observational evidence of
curvature perturbations. More explicitly, the Sachs-Wolfe effect [41] relates the cur-
vature perturbation ζ̂k to the temperature anisotropy δ̂T /T through the following
formula

δ̂T

T
(e) =

∫
dk

(2π)3/2
[F(k) + ik · eG(k)] ζ̂k(ηend)e−ik·e(ηlss−η0)+ik·x0 , (19)

where e is a unit vector that indicates the direction on the celestial sphere towards
which the observation is performed. The conformal times ηlss and η0 are the last
scattering surface (lss) and present day (0) conformal times, respectively. The vector
x0 represents the Earth’s location. The quantities F(k) and G(k) are the so-called
form factors, which encode the evolution of the perturbations after they have crossed
in the Hubble radius after inflation. In practice, the temperature anisotropy given by
Eq. (19) can be Fourier expanded in terms of the spherical harmonics Y�m , namely

δ̂T

T
(e) =

+∞∑
�=2

�=m∑
�=−m

â�mY�m(e). (20)

Using the completeness of the spherical harmonics basis and Eq. (19), it is easy to
establish that, on large scales, namely in the limit F(k) → 1 and G(k) → 0, one has
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â�m = 4π

(2π)3/2
eiπ�/2

∫
R3

dk ζ̂k(ηlss) j�[k(ηlss − η0)] Y ∗
�m(k), (21)

where j� is a spherical Bessel function. A CMB map is nothing but a collection
of numbers a�m . The statistical properties of a map is characterized by its powers
spectrum, which can be written as

〈
0

∣∣∣∣∣
δ̂T

T
(e1)

δ̂T

T
(e2)

∣∣∣∣∣ 0
〉

=
+∞∑
�=2

2� + 1

4π
C�P� (cos δ) , (22)

where P� is a Legendre polynomial and δ the angle between the direction e1 and e2.
The coefficients C� are the so-called multipole moments and are related to the â�m

by 〈0|â�mâ
†
�′m ′ |0〉 = C�δ��′δmm ′ . From Eq. (21), one can also write

C� =
+∞∫

0

dk

k
Pζ(k) j

2
� [k(ηlss − η0)], (23)

thus establishing the relation between the power spectrum Pζ and a CMB map. Let
us emphasize again that this relation is in fact oversimplified since it is obtained
in the large-scale limit. In order to be realistic, one should take into account the
behavior of the perturbations once they re-enter the Hubble radius after inflation
which, technically, implies to consider the full form factors F(k) and G(k). This is
a non-trivial task, which requires numerical calculations. It leads to a modulation of
the signal and to the appearance of oscillations or peaks in the multipole moments,
the so-called Doppler or acoustic peaks.

3 Motivations

The previous framework is usually viewed as very efficient. In particular, the mul-
tipole moments (23) calculated with the inflationary power spectrum fit very well
the CMB maps obtained by the Planck satellite. Why, then, is the theory of quantum
perturbations still considered by some as unsatisfactory or incomplete? The main
reason is related to foundational issues in Quantum Mechanics, more precisely to
the so-called measurement problem. In the context of inflation, this discussion is
especially subtle and, hence, interesting for the following reasons.

On one hand, the inflationary perturbations are placed in a Gaussian state, which
means that the corresponding Wigner function is also a Gaussian and, therefore, is
positive-definite [42]. The Wigner function can thus be used and interpreted as a
classical stochastic distribution [39, 43, 44], in the sense that any two-point Her-
mitian correlation function can always be reproduced with this Gaussian classical
stochastic distribution [39]. This is also the case for any higher-order correlation
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function involving position only, in particular, any function of the curvature pertur-
bation. It is sometimes argued that these properties require large quantum squeezing
but, in fact, a large value of r is needed only for those higher correlation functions
mixing position and momentum (which are, in any case, not observable since they
involve the momentum, that is to say the decaying mode of the perturbations [39]).
Nevertheless, the fact that all observable correlation functions can be reproduced by
stochastic averages is often interpreted as the signature that a quantum-to-classical
transition has taken place.

On the other hand, we have argued before that the perturbations are very “quan-
tum”. They are placed in a very strongly squeezed state, which is a highly entangled
state. Indeed, in the limit of infinite squeezing, a squeezed state tends to an Ein-
stein Podolski Rosen state, which was used in the EPR argument to discuss the
“weird” (namely non-classical) features of Quantum Mechanics. It is hard to think
about a system that would be more “quantum” than this one! As a consequence, the
statement that the system has become classical should, at least, require some clar-
ification. In fact, characterizing the system as “classical” because some correlation
functions can be mimicked with a stochastic Gaussian process suffers from a number
of problems. First, even in the large-squeezing limit, there are so-called “improper
operators”, for which the Weyl transform takes some values outside the spectrum
of the operator. The measurement of these operators can never be described with a
classical stochastic distribution [45]. This, for instance, leads to the possibility to
violate Bell inequalities even if theWigner function always remains positive, a prop-
erty which clearly signals departure from classicality [46–48]. In fact, the question
of whether Bell’s inequality can be violated in a situation where the Wigner function
is positive-definite has been a concern for a long time and was discussed by John Bell
himself [49]. The corresponding history, told in Ref. [50], is a chapter of the history
of QuantumMechanics and is associated to the difficulties to define a classical limit.
Second, there is the definite outcome question. With the theory of decoherence [51,
52], it is possible to understand why we never observe a superposition of states cor-
responding to macroscopic configurations but this is not sufficient to explain why
a specific state is singled out in the measurement process. In some sense, with the
help of quantum decoherence, the quantum measurement problem has been reduced
to the definite outcome problem, which is at the core of the foundational issues of
QuantumMechanics. In a cosmological context, let us mention that decoherence has
been studied and it has been suggested that it is likely to be at play during infla-
tion [53–55]. But the definite outcome problem is still there and is neither solved by
decoherence (as already mentioned), nor by the emergence of “classical” stochastic
properties as described above.

In fact, one could even argue that this question, in the context of inflation and
Cosmology, is worst than in the lab for the following reasons. We have seen that
the operators δ̂T /T (e) (one for each direction e) are observable quantities. Since a
measurement of these observables has been performed by the COBE, WMAP and
Planck satellites, according to the basic postulates ofQuantumMechanics, the system
must be placed in one of the eigenstates of δ̂T /T (e), that we denote | 〉Planck(e),
and that satisfies
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δ̂T

T
(e)| 〉Planck(e) =

δT

T
(e)| 〉Planck(e).

However, the state |�2 sq〉 [recall that this state is defined in Eq. (10)] is not an
eigenstate of the temperature anisotropy operator. This can be established with a
direct and explicit calculation, but a physically more intuitive method is based on
the concept of symmetry [56]. In order to simplify the discussion, let us first use the
fact that the curvature perturbation can be viewed as a massless scalar field living in
a Friedmann-Lemaître-Robertson-Walker (FLRW) universe with an action given by
S = −1/2

∫
d4x

√−g gμν ∂μζ ∂νζ. Then, let us define the 4-momentum operator by

P̂μ = −
∫

d3x
√

(3)g T̂ 0
μ, (24)

where T̂μν is the stress energy tensor that can be calculated from the action given
above, T̂μν = ∂μζ̂∂ν ζ̂ − gμνgαβ∂αζ̂∂βζ̂/2 and (3)g the determinant of the three-
dimensional spatial metric. In cosmic time, one can check that P̂0 exactly corre-
sponds to the generator of the time evolution of the system, namely the Hamilto-
nian. On the other hand, the generator of the space translation along xi is given by

P̂i = a
∫
d3x ˙̂

ζ ∂i ζ̂. Expressed in terms of creation and annihilation operators, one
obtains P̂i ∝ ∫

dk ki ĉ
†
k ĉk. It follows immediately from this expression that P̂i |0〉 = 0

and the same conclusion would be obtained by applying the generator of rotations
(angular momentum operator). This expresses the fact that the vacuum state is
homogeneous and isotropic, i.e. it possesses the symmetries of the FLRW back-
ground. Moreover, one has [Ĥfree, P̂i ] = 0 and [Ĥint, P̂i ] = 0, hence [Ĥ , P̂i ] = 0,
which implies that the homogeneity and isotropy of the state is preserved during
cosmic expansion. As a result, one has P̂i |�2 sq〉 = 0, and |�2 sq〉 still represents a
universe without any structure. Since P̂i| 〉Planck(e), the transition between the two-

mode squeezed state (10) and a state corresponding to a specific outcome for CMB
anisotropies, namely

|Ψ2 sq〉 =
∑

c( )| 〉 → | 〉Planck(e),

cannot be generated by the Schrödinger equation. This is a concrete manifestation
of the measurement and single outcome problems of Quantum Mechanics, which
appear much more serious in a cosmological context than in standard lab situations,
since the transition (26) seems to have taken place in the absence of any observer.

This leads to a first motivation for considering collapse models in Cosmology.
In this class of theories, the collapse of the wave-function is a dynamical process
controlled by a modified Schrödinger equation, which does not rely on having an
observer. Another motivation is related to the fact that collapse models are falsifi-
able. Indeed, since they are based on a modified Schrödinger equation, they imply
different predictions than standard Quantum Mechanics. Given that the inflation-
ary predictions can be accurately tested with astrophysical data, one can then use
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them in order to test Quantum Mechanics and collapse models in physical regimes
that are completely different from those usually probed in the lab. This also shows
that solving the quantum measurement problem can have concrete implications for
comparing the inflationary paradigm with the data. Therefore, the question of how a
particular realization is produced is not of academic interest only, since it may also
alter the properties of the possible realizations themselves.

4 Inflation and Collapse

There is no unique collapsemodel but different versions that come in different flavors.
They are, however, all based on a modified Schrödinger equation that, for a non-
relativistic system, reads [4]

d�(t, x) =
[
−i Ĥdt +

√
γ

m0

∑
i

(
Ĉi −

〈
�

∣∣∣Ĉi

∣∣∣�
〉)

dWi (t)

− γ

2m2
0

∑
i

(
Ĉi −

〈
�

∣∣∣Ĉi

∣∣∣�
〉)2

dt

]
�(t, x), (25)

where Ĥ is theHamiltonian of the systemand Ĉ a collapse operator to be chosen (with
three components denoted Ĉi , i = x, y, z). The parameter γ is a new fundamental
constant the dimension of which depends on the choice of Ĉ, and m0 is a reference
mass usually taken to be the mass of a nucleon. Finally, dWi (t) is a stochastic noise
with E[dWi (t)dWj (t ′)] = δi jδ(t − t ′) where E[.] denotes the stochastic average.
Notice that the above equation is not sufficient to define the CSL model because we
have not yet specified what the collapse operator is.

Then, let us consider a field ζ̂(t, x) and here, of course, we have in mind curvature
perturbation. Quantum mechanically, it is described by a wave-functional �[ζ(x)]
and we need to know which form the general dynamical collapse equation (25) takes
in this case. A first question that immediately arises is that the above equation (25) is,
in principle, valid in the non-relativistic regime only while one needs to go beyond
since we want to apply collapse models to Cosmology and Field Theory. Attempts
to develop a relativistic version of the collapse models are being carried out, see
e.g. Refs. [4, 57–59] but they are not completed yet. Therefore, either one stops at
this stage andwaits for a fully satisfactory relativistic version to come, or oneproceeds
using reasonable assumptions, at the price of being maybe on shaky grounds. Here,
we use collapse theories in Cosmology where there is a natural notion of time (the
Hubble flow). Technically, this oftenmeans that the relativistic equations describing a
phenomenon are well-approximated by the corresponding non-relativistic equations
only modified by the appearance of the scale factor at some places. The prototypical
example of such an approach is “Newtonian Cosmology” for which the laws that
describe the time evolution of an expanding homogeneous and isotropic universe can
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be deduced fromNewtonian dynamics and gravitation. Although the derivation is not
strictly self-consistent it nevertheless provides some intuitive insights and represents
a valuable first step. In some sense, here, we follow the same logic and, therefore,
we will simply postulate that Eq. (25) can also be used in this context where the
Hamiltonian of the system is simply the Hamiltonian (2) that is obtained from the
theory of relativistic cosmological perturbations.

In order to see what this implies in practice, it is convenient to view space-like sec-
tions as an infinite grid of discrete points. In this case, the functional can be interpreted
as an ordinary function of an infinite number of variables vi , �(· · · , vi , v j , · · · ),
where vi ≡ v(xi ) is the value of the field at each point of the grid. Therefore, instead
of dealing with a three-dimensional index i as before, we now deal with an infinite-
dimensional one. As a consequence, we can write an equation similar to Eq. (25)
for �(vi ) where, now, the operators Ĥ and Ĉ are functions of the “position” v̂i and
“momentum” p̂i = −i∂/∂vi . Then, taking the continuous limit, “

∑
i → ∫

dxp”, we
arrive at

d
∣∣�[ζ(xp)]

〉=
{
−i Ĥdt +

√
γ

m0

∫
dxp

[
Ĉ
(
xp
)−〈Ĉ(xp)

〉]
dWt

(
xp
)

− γ

2m2
0

∫
dxp

[
Ĉ
(
xp
)−

〈
Ĉ
(
xp
)〉]2

dt

} ∣∣�[ζ(xp)]
〉
. (26)

The quantity dWt (xp) is still a stochastic noise but we now have one for each point in
space. A fundamental aspect of the theory is to specify this noise, and each possibility
corresponds to a different version of the theory. A priori, as already mentioned, the
noise can be white or colored but, so far in the context of Cosmology, only white
noises have been considered. They satisfy E[dWt (xp)dWt ′(x′

p)] = δ(xp − x′
p)δ(t −

t ′). Let us also notice that xp denotes the physical coordinate, as opposed to the
comoving one x (xp = ax) usually employed in Cosmology, and in terms of which
Eq. (26) takes the form [24]

d|�[ζ(x)]〉=
{
−i Ĥdt + 1

m0

√
γ

a3

∫
dx a3

[
Ĉ(x)−

〈
Ĉ(x)

〉]
dWt (x)

− γ

2m2
0

∫
dx a3

[
Ĉ (x) −

〈
Ĉ(x)

〉]2
dt

}
|�[ζ(x)]〉 , (27)

where dWt (xp) = a−3/2dWt (x) so that dWt (x) is still white, namely
E
[
dWt (x)dWt ′(x′)

] = δ(x − x′)δ(t − t ′)dt2.We emphasize that the above stochas-
tic equation is the usual CSL equation: it is just written down in a situation where
the number of variables becomes infinite.

Of course, we are not forced to describe the field ζ̂(x) in real space and we can
also write it in Fourier space. In that case, the wave-functional becomes a function of
all Fourier components of the field,�(· · · , ζk, ζk′ , · · · ), that is to say we deal, again,
with the same situation as described by Eq. (25) but, now, with a continuous index
k instead of i = x, y, z. The advantage of this approach is that, because we work
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in the framework of linear perturbations theory, one can write the wave-function as
�(· · · , ζk, ζk′ , · · · ) = ∏

k �R
k �I

k. As explained before, we have used the notation
s = R, I so that �s

k ≡ �(ζsk). This is the great advantage of going to Fourier space
compared to real space: it drastically simplifies the wave-function. One may, how-
ever, wonder whether the non-linearities necessarily present in the theory (recall that
the new terms in the Schrödinger equation are necessarily stochastic and non-linear)
could bring to naught the technical convenience of using the Fourier transform. Usu-
ally, only when a theory is linear, the Fourier modes evolve independently (no mode
coupling) and it is useful to go to Fourier space. This corresponds to a situation where
the Hamiltonian is quadratic. A point, which is usually not very well appreciated, is
that this does not necessarily imply the absence of interactions. It is true that, in field
theory, interactions are associated with non-quadratic terms in the action but one
exception is the interaction of a quantum field with a classical source. In this case,
the action remains quadratic but the fundamental frequency of the system acquires
a time dependence given by the source. This is typically the case for the Schwinger
effect [35, 60] but also for Cosmology. In this last situation, the source is just the
dynamics of the background space-time itself. In the following, we restrict ourselves
to quadratic Hamiltonians since this is sufficient to describe cosmological pertur-
bations during inflation (of course, if one wants to calculate higher-order statistics,
such as Non-Gaussianities, then non-linear terms in the Hamiltonian must be taken
into account).

However, in the present situation, even if one restricts oneself to quadratic
Hamiltonians, one also has the extra non-linear and stochastic terms in the mod-
ified Schrödinger equation and, as noticed above, there is the concern that they
could be responsible for the appearance of mode couplings. Fortunately, this is
not the case. Indeed, if one recalls that the Hamiltonian of the system reads
Ĥ = ∫

R3+ dk
∑

s=R,I Ĥ
s
k and if one introduces the Fourier transform of the collapse

operator, Ĉ(x) = (2π)−3/2
∫
dk Ĉ(k)e−ik·x (and a similar formula for the noise),

then straightforward calculations lead to [24]

d
∣∣�s

k

〉=
{
−i Ĥ s

kdt +
√

γa3

m0

[
Ĉs(k)−

〈
Ĉs(k)

〉]
dWs

t (k)

− γa3

2m2
0

[
Ĉs (k) −

〈
Ĉs(k)

〉]2
dt

} ∣∣�s
k

〉
. (28)

We see that we can write a CSL equation for each Fourier mode. In other words, it
seems that the presence of the extra stochastic and non-linear terms does not destroy
the property that the modes still evolve separately [24]. In order to better understand
the origin of this property, let us comeback toEq. (25). Let us assume thatwe are in the
particular situation where Ĥ = H(x̂, p̂) = H1(x̂1, p̂1) + H2(x̂2, p̂2) + H3(x̂3, p̂3)
and Ĉi = Ci (x̂, p̂) = Ci (x̂i , p̂i ), namely the component Ĉi only depends on x̂i and
p̂i [in other words, we do not have, for instance, Ĉx = Cx (ŷ, p̂y)]. Then writing
� = ∏

i �i (xi ), it is easy to show that



Collapse Models and Cosmology 283

d�i =
[
−i Ĥidt +

√
γ

m0

(
Ĉi −

〈
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∣∣∣Ĉi

∣∣∣�i

〉)
dWi − γ

2m2
0
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〉)2
dt

]
�i ,

(29)

where we have used the fact that

〈
�

∣∣∣Ĉi

∣∣∣�
〉
=
〈∏

j

� j
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∣∣∣�i

〉
=
〈
�i

∣∣∣Ĉi
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〉
.

(30)

We see that we can write an independent equation for each �i . In inflationary per-
turbations theory, the two properties needed to obtain this independent equation are
also satisfied, namely the Hamiltonian is a sum of the Hamiltonians for each Fourier
mode and Ĉs(k) only depends on k and not on other modes. This is the reason why
one can obtain an equation (28) for each Fourier mode.

Then comes the choice of the collapse operator Ĉ(xp).Many different possibilities
have been discussed in the literature and each of them correspond to a different
version of the theory. In the context of standard Quantum Mechanics, if Ĉ(xp) is
the position operator, then we have Quantum Mechanics with Universal Position
Localization (QMUPL) while if Ĉ(xp) is the mass density operator, we deal with
the Continuous Spontaneous Localization (CSL) model [4]. In the context of Field
Theory and Cosmology, two choices have been studied. The first one corresponds
to Ĉs(k) ∝ a p ζ̂sk, where p is a free parameter. Since, in some sense, field amplitude
plays the role of position, this case represents the field-theoretic version of QMUPL.
Except for p, this version is characterized by one parameter, γ. The other possibility
is CSL, which relies on coarse-graining the mass density over the distance rc. This
corresponds to

Ĉ(x) =
(
a

rc

)3 1

(2π)3/2

∫
d y δ̂g(x + y)e

− |y|2a2
2r2c , (31)

where δ̂g is the energy density contrast relative to a “Newtonian” time slicing (see
the beginning of the next section for a more complete discussion). At this point,
we meet again the problem that a fully relativistic and covariant collapse model
is not available. Indeed, the definition of energy density is not unique in General
Relativity and an infinite number of other choices could have been contemplated,
by considering the energy density contrast relative to other slicings [24]. Without
additional criterions, there is presently no mean to decide which version makes more
sense. However, what can be done is to constrain these different versions with CMB
data. In fact, and we come back to this question in the next section, Sect. 5, we can
show that the situation is not as problematic as it may seem and that (almost) all
possible choices lead to the same result. In this sense, the results obtained in the
following are rather generic.
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Once the collapse operator and the noise have been chosen, Eq. (28) is entirely
specified and the next step is then to solve it. The solution is given by a wave-function
evolving stochastically in Hilbert space. As discussed above, the initial conditions
are Gaussian and the Hamiltonian being quadratic, the Gaussian character of the
wave-function is preserved in time. Therefore, without loss of generality, one can
write the most general stochastic wave-function as

�s
k

(
ζsk
) = |Nk (η) | exp

{
−�e�k (η) z2

[
ζsk − ζ̄sk (η)

]2

+ iσs
k(η) + i zχs

k(η)ζsk − i z2�m�k(η)
(
ζsk
)2}

, (32)

where the free functions �k(η), ζ̄sk(η), σs
k(η) and χs

k(η) are (a priori) stochastic
quantities.

Let us now discuss how collapse models can be, in the context of Cosmology,
related to observations. This needs to be carefully studied sincewenowhave twoways
to calculate averages, the quantum average and the stochastic average. For instance,
the quantum average of a given observable O(ζ̂sk), 〈O(ζ̂sk)〉 ≡ ∫ |�s

k|2O(ζsk)dζ
s
k,

which, in the standard context, would be a number is, here, a stochastic quantity.
So only E[〈O(ζ̂sk)〉] = ∫

E[|�s
k|2]O(ζsk)dζ

s
k is a number. The quantity

|�s
k(ζ

s
k)|2 = z

√
2�e�k

π
exp

[
−2z2�e�k

(
ζsk − ζ̄sk

)2]
, (33)

which is centered at ζ̄sk and has width (4z2�e�k)
−1, describes a Gaussian wave-

packet whose mean and variance evolve stochastically (in fact, in the particular
case considered here, it turns out that the variance is a deterministic quantity and that
only themean is stochastic). Therefore, for a specific realization, one expects, as time
passes, that |�s

k(ζ
s
k)|2 stochastically shifts its position ζ̄sk(η)while its width decreases

until ζ̄sk settles down to a particular position ζ̄sk(ηcoll), with an (almost) vanishing
width. In this way, the macro-objectification problem of Quantum Mechanics is
solved and a single outcome has been produced. The interest of this approach for
Cosmology is that it does so without invoking the presence of an observer, and only
thanks to the modified dynamics of the wave-function. If one then considers another
realization, a qualitatively similar behavior is observed but, of course, the final value
ζ̄sk(ηcoll) (in fact the whole trajectory) needs not be the same. If we repeat many
times the same experiment and have at our disposal many realizations, one can then
calculate, say, E[〈ζ̂sk〉] = E[ζ̄sk] or E[〈ζ̂sk〉2] = E[ζ̄sk2]. This allows us to calculate the
dispersion of ζ̄sk according to

Pζ(k) = k3

2π2

{
E
[
ζ̄sk

2
]− E

2
[
ζ̄sk
]}

, (34)

which makes the connection with the previous considerations.
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In fact, in Cosmology, a legitimate question is why the above-defined dispersion
Pζ is equivalent to (or, even, has something to do with) the power spectrum of
curvature perturbations. Indeed, in order to give an operational meaning to the above
quantity, one needs to have access to a large number of realizations. This is necessary
if one wants to identify the mathematical object E[.] with the relative frequency of
occurrence. Clearly, in Cosmology, we deal with only one realization (one universe)
and there is no way to repeat the experiment. In fact, this question is by no mean an
issueonly for the collapsemodels since, even in the standard approach, the predictions
are expressed in terms of ensemble averages.

Here, the key idea, admittedly not always explicitly stated in the inflationary liter-
ature, is the use of an ergodic-like principle, which consists in identifying ensemble
averages with spatial averages [61]. A very schematic description of this procedure
is as follows. For a given Fourier mode k, one can divide the celestial sphere into
different patches, and construct an estimate of the amplitude of the curvature per-
turbation at this Fourier mode in each patch. Interpreting each patch as a different
realization, one can then calculate the ensemble average of these “measurements”,
which is thus nothing but a spatial average. In this sense, “repeating the experiment”
is replaced with “looking at different regions on the sky”. Obviously, to be able to
evaluate the Fourier mode k in a certain patch, the size of the patch has to be larger
than the wavelength associated to k. However, the celestial sphere being compact,
only a finite number of patches with a certain minimum size can be drawn on it.
This is why the ensemble average can be calculated only over a finite number of
“realizations”, and the larger the wavelength (i.e. the smaller k) is, the larger the
patches need to be, hence the fewer “realizations” are available. This introduces an
unavoidable error which is called the “cosmic variance” in the Cosmology literature,
see Ref. [61] for more details.

5 Comparison with Observations

In this section, we briefly discuss the observational status of collapse models in
Cosmology. As already mentioned, only few cases have been investigated so far:
QMUPL and CSL, both with a white noise and using a naive generalization of non-
relativistic collapse models to field theory. A discussion of QMUPL in Cosmology
can be found in Refs. [19, 62] and, here, we focus on CSL since this is the model
that has drawn the most attention [24].

The CSL theory consists in assuming that the collapse operator is mass or energy
density. In a cosmological context, as already briefly mentioned in the previous
section, this corresponds to Ĉ = ρ + δ̂ρ, where ρ is the energy density stored in the
inflaton field and δ̂ ≡ δ̂ρ/ρ is the density contrast. In fact, only the density contrast
will be playing a role inwhat follows because, in inflationary perturbations theory,ρ is
a classical quantity and, therefore, cancels out in the modified Schrödinger equation.
In General Relativity, however, as already mentioned, there is no unique definition
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for δ. Nevertheless, see Ref. [24], what matters is in fact the scale dependence of
δ, in particular its behavior on large scales. Conveniently, one can show that, for
all reasonable choices, all the δ’s behave similarly (namely, in the same way as the
Newtonian density contrast “δg”) except for one particular case, the so-called “δm”
density contrast. Therefore, even if the choice of δ is ambiguous, the final result turns
out to be (almost) independent of this choice.

Once the collapse operator has been chosen, one can solve the modified
Schrödinger equation and calculate the CSL inflationary power spectrum along the
lines explained in the previous sections. This power spectrum depends on the two
CSL parameters γ and rc. Quite intuitively, one finds that the extra CSL terms oper-
ate only if the physical wavelength of a Fourier mode is larger than the localization
scale rc. In an expanding universe, physical wavelengths increase with time, so this
implies that for any given wavenumber k, there is a time before which its physical
wavelength is smaller than rc, hence the CSL corrections are absent. This is a cru-
cial feature since it guarantees that the usual way of setting initial conditions in the
Bunch-Davies vacuum,which is a very important aspect of the inflationary paradigm,
is still available.

When the physical wavelength of a Fourier mode becomes larger than rc, the CSL
terms become important and collapse occurs. This generates the power spectrum [24]

Pζ(k) = k3

2π2

1

4�e�k|γ=0

[
1 + O(1)
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m2
0

ρ ε1

(
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�H

)a

end

(
k

aH

)b

end

− �e�k|γ=0

�e�k

]
.

(35)

In the limit where γ = 0, one checks that the power spectrum vanishes, since no
perturbation is being produced, in agreement with the discussion presented in Sect. 4.
Let us also recall that the “standard” result, obtained in theCopenhagen interpretation,
is given by Eq. (18), which matches the prefactor in Eq. (35), and that �e�k is
proportional to the inverse variance of the wave-packet. If γ is sufficiently large so
that the collapse occurs, the width of the wave-function is much smaller than what
it would be in the unmodified theory, hence the third term in the square brackets of
Eq. (35) can be neglected when compared to the first term. In that case, the power
spectrum takes the form of the standard result, plus a correction proportional to
γ. This CSL correction is also proportional to ρε1, where ε1 is the first slow-roll
parameter and ρ the energy density at the end of inflation. Let us recall that, during
inflation, ρ is quasi constant and can be as large as

ρ ∼ 1080g × cm−3. (36)

We see herewhyCosmology is a natural place to probe collapse theories: it tests them
in regimes that are completely different, in terms of energy, time or length scales, than
those relevant in the lab. Since the amplitude of the CSL new terms are controlled by
the energy density, it makes sense to constrain them in physical conditions where ρ is
as large as possible. This is why, for instance, the CSL mechanism was also applied
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Fig. 1 Observational
constraints on the two
parameters rc and λ of the
CSL model obtained in Ref.
[24]. The white region is
allowed by laboratory
experiments while the “CMB
map” region is allowed by
CMB measurements. The
green dashed line stands for
the upper bound on λ if
inflation proceeds at the
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to neutron stars in Ref. [63]. Primordial Cosmology is a situation where ρ is even
larger and, therefore, one can expect it to be even more appropriate when it comes
to establishing constraints on CSL.

The second crucial piece of information that comes from Eq. (35) is that the
CSL corrections are not scale invariant. Their scale dependence is ∝ kb where b =
−1 if the scale rc is crossed out during inflation and b = −10 if rc is crossed out
during the subsequent radiation dominated era. In this last case, there is an additional
factor ∝ (rc/�H)

a, where �H is the Hubble radius at the end of inflation, with a =
−9 (if rc is crossed out during inflation, this term is not present and a = 0). In
other words, detectable CSL corrections would be strongly incompatible with CMB
measurements. Since we have seen that they are typically very large, we expect the
constraints that can be inferred from them to be very efficient.

These constraints are represented in Fig. 1 in the space (rc,λ) where λ =
γ/(8π3/2r3c ). In this plot, thewhite region corresponds to the parameter space allowed
by lab experiments while the “CMB map” region corresponds to parameter space
allowed by CMB measurements. Evidently, the most striking feature of the plot is
that the two regions do not overlap. Taken at face value, this implies that CSL is ruled
out! However, this conclusion should be toned down. First, we should notice that if
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the collapse operator is taken to be δm, then the CMB constraints are no longer in
contradiction with the lab ones. Of course, in some sense, δm is “of measure zero”
in the space of density contrasts but, nevertheless, this shows that one can find col-
lapse operators for which CSL is rescued. Second, one has to remember that we used
a naive (too naive?) method to implement the collapse mechanism in field theory.
It could be that, when a truly covariant version of collapse models is available [4,
57–59], the final result will be modified. For instance, the constraints on the CSL
parameters coming from the CMB constraints on one hand, and from lab experiments
on the other hand, operate at very different energy scales. One could imagine that,
in a field-theoretic context, the CSL parameters run with the energy scale at which
the experiment is being performed, and that one cannot simply compare the con-
straints obtained at different energies. Finally, we used a white noise in the modified
Schrödinger equation and it remains to be seen if using a colored noise can modify
the constraints obtained in Fig. 1. For all these reasons, it is necessary to be cautious
and testing the robustness of the conclusions obtained here will certainly be a major
goal in the future.

6 Conclusions

Interestingly enough, collapse models advocated by Giancarlo Ghirardi (and others)
and cosmic inflation have almost the same age. Roughly speaking, they were both
introduced at the endof the seventies andbeginningof the eighties.Nevertheless, until
recently, they had never met. In this article, we have described the recent attempts
to apply collapse models to inflation. We have argued that there is a good scientific
case motivating those attempts. In particular, for collapse models to be interesting
and to insure proper localization, the collapse operators must be related to the energy
density. As a consequence, the most efficient tests of collapse models will be in
physical situations where the energy density is as large as possible. Without any
doubt, this is to be found in the early universe. We have shown that, indeed, the
high-accuracy data now at our disposal leads to extremely competitive constraints,
that anyone interested in collapse theories can no longer ignore. We hope this will
cause further investigations to test the robustness of these results.

Finally, after 40 years, collapse theories and cosmic inflation have met and we are
convinced that Giancarlo Ghirardi would have been fascinated by the fact that his
great insights about Quantum Mechanics can even find applications in Cosmology.
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