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Abstract Based on his extension of the classical argument of Einstein, Podolsky and
Rosen, Schrödinger observed that, in certain quantum states associated with pairs of
particles that can be far away from one another, the result of the measurement of an
observable associated with one particle is perfectly correlated with the result of the
measurement of another observable associated with the other particle. Combining
this with the assumption of locality and some “no hidden variables” theorems, we
showed in a previous paper [11] that this yields a contradiction. This means that
the assumption of locality is false, and thus provides us with another demonstration
of quantum nonlocality that does not involve Bell’s (or any other) inequalities. In
[11] we introduced only “spin-like” observables acting on finite dimensional Hilbert
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spaces. Here we will give a similar argument using the variables originally used by
Einstein, Podolsky and Rosen, namely position and momentum.

1 Introduction

In 1935, Einstein, Podolsky and Rosen (EPR) argued that quantum mechanics is
incomplete by considering two particles in one dimension moving in opposite direc-
tions and whose joint wave function (see (3.2.1) below) was such that the measure-
ment of the position of one of the particles immediately determined the position of
the other particle and, similarly, the measurement of the momentum of one of the
particles immediately determined the momentum of the other one.

Since, saidEPR, ameasurementmade onone particle obviously could not possibly
influence the physical state of the other particle, situated far away from the first
particle, and since the wave function of both particles specifies neither the position
nor the momentum of those particles, this quantum mechanical description of the
state of both particles provided by this wave function must be incomplete in the
sense that other variables, such as the values of the positions and momenta of both
particles, must be included in a complete description of that physical system.

EPR’s argument had been widely misunderstood and misrepresented or ignored
by almost everybody at that time. But not by Schrödinger, who, in his “cat paper,”
originally published in German [34], as well as in the papers [35, 36], understood
the “paradox” raised by EPR and deepened the perplexity that it causes.

Schrödinger showed that for certain states, called now maximally entangled (see
Sect. 2.1), it is not just that the positions and themomenta of the particles are perfectly
correlated. He showed that, for every observable associated with the first particle,
there is another observable associated with the second particle such that the results
of the measurements of both observables are perfectly correlated.

In [11], following [24, 25], we explained that, if one assumes locality, mean-
ing that there is no effect whatsoever on the state of the second particle due to a
measurement carried out on the first particle (when both particles are sufficiently
spatially separated), there must exist what we call a “non-contextual value map” v

which assigns to each observable A a value v(A) that pre-exists its measurement and
is simply revealed by it. The word “non-contextual” refers to the fact that, since it
pre-exists the measurement, the value v(A) does not depend on the procedure used
to measure A.

However several theorems, originally due to Bell [3] and to Kochen and Specker
[27], preclude the possibility of a non-contextual value map.1 Since the existence of
this map is a logical consequence of the assumption of locality and of the perfect
correlations, the assumption of locality is false.

1In the literature on quantum mechanics, these theorems are often called “no hidden variables”
theorems. But we prefer the expression “inexistence of a non-contextual value map” because, as
we will discuss in Sect. 5, the expression “hidden variables” is really a misnomer.
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In this paper,wefirst summarize the arguments of our previous paper [11] (Sect. 2).
We then turn to the EPR paper as well as related work by Einstein alone and
Schrödinger (Sect. 3). Next, we provide a proof of nonlocality similar to the one of
Sect. 2, but using only functions of the EPR variables, namely positions andmomenta
(Sect. 4). This argument relies on a theorem of Clifton [14].

We then consider what happens in Bohmian mechanics (Sect. 5): in that theory,
particles have, at all times, both a position and a momentum and one might therefore
think that this would imply the existence of a non-contextual value-map for functions
of those variables. We explain however, through an analysis of what a measurement
of momentummeans in that theory, that this is not the case. Finally we briefly discuss
how nonlocality manifests itself in Bohmian mechanics.

For a discussion of the relationship between thiswork andprevious ones, including
[1, 12, 13, 20, 26, 37], see Sect. 7 of [11].

2 Proof of Nonlocality Based on Perfect Correlations

Wewill first discuss special quantum states, called maximally entangled, for pairs of
physical systems that can possibly be located far apart, and having the property that,
for each quantum observable of one of the systems, there is an associated observable
of the other one such that the result of the measurement of that observable is perfectly
correlated with the result of the measurement on the first one.

2.1 Maximally Entangled States

Consider a finite dimensional (complex) Hilbert space H, of dimension N , and
orthonormal bases ψn and φn inH (we will assume below that all bases are orthonor-
mal). A unit vector � inH ⊗ H is maximally entangled if it is of the form

� = 1√
N

N∑

n=1

ψn ⊗ φn. (2.1.1)

Since we are interested in quantum mechanics, we will refer to those vectors as
maximally entangled states and we will associate, by convention, each space in the
tensor product with a “physical system,” namely we will consider the set {φn}N

n=1
as a basis of states for physical system 1 and the set {ψn}N

n=1 as a basis of states for
physical system 2.

Now, given a maximally entangled state, one can associate to each operator of the
form 1 ⊗ O (meaning that it acts non-trivially only on particle 1) an operator of the
form Õ ⊗ 1 (meaning that it acts non-trivially only on particle 2). Here 1 denotes
the identity operator on H.
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Define the operator U mapping H toH by setting

Uφn = ψn, (2.1.2)

∀n = 1, . . . , N , and extending U to an anti-linear operator on all of H:

U

(
N∑

n=1

cnφn

)
=

N∑

n=1

c∗
nUφn =

N∑

n=1

c∗
nψn (2.1.3)

where ∗ denotes the complex conjugate.
Using the operator U , the state � in (2.1.1) can be written as:

� = 1√
N

N∑

n=1

Uφn ⊗ φn. (2.1.4)

It is easy to check that this formula is the same for any basis, see [11, Eq.3.1.8].
U thus determines, and is uniquely determined by, a maximally entangled state�.
Given such a state �, and hence U , we may associate to every operator of the

form 1 ⊗ O an operator of the form Õ ⊗ 1 by setting

Õ = UOU−1. (2.1.5)

Suppose φn are eigenstates of O, with eigenvalues λn,

Oφn = λnφn. (2.1.6)

Then, the states ψn = Uφn are eigenstates of Õ, also with eigenvalues λn:

Õψn = λnψn. (2.1.7)

This implies and is in fact equivalent to the following relationship between the oper-
ators O and Õ:

(O ⊗ 1 − 1 ⊗ Õ)� = 0, (2.1.8)

directly expressing the fact that, in the state �, O ⊗ 1 and 1 ⊗ Õ are perfectly
correlated.

We may summarize this as follows:

Theorem 2.1 Consider a finite dimensional Hilbert space H, of dimension N, and a
maximally entangled state � ∈ H ⊗ H. Then, for any self-adjoint operator O acting
on H, there exists a self-adjoint operator Õ acting on H such that (2.1.8) holds.

Remarks

1. A simple example of a maximally entangled state is:
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|�〉 = 1√
2

(| ↑〉| ↓〉 − | ↓〉| ↑〉), (2.1.9)

where the right factors refer to system 1 and left ones to system 2. That state,
according to ordinary quantum mechanics, means that the spin measured on
system 1 will have equal probability to be up or down, but is perfectly anti-
correlated with the spin measured on system 2.
In the notation of (2.1.1), one has:

φ1 = | ↑>, φ2 = | ↓>, ψ1 = −| ↓>, ψ2 = | ↑>,

and therefore,

U | ↑> = −| ↓>,

U | ↓> = | ↑> .

If one takes

O =
(
1 0
0 −1

)
(2.1.10)

which corresponds to the spin operator for system 1 and has eigenvectors φ1

with eigenvalue 1 and φ2 with eigenvalue −1, one computes that

Õ = UOU−1 =
(−1 0

0 1

)
= −O, (2.1.11)

which means that the spin operator for systems 1 and 2 are perfectly anti-
correlated, since Õ is minus the spin operator for system 2.
We will use later the following:

2. Products of maximally entangled states are maximally entangled states: If one
has two Hilbert spacesH1,H2, and two maximally entangled states �i ∈ Hi ⊗
Hi, i = 1, 2, then it is easy to check that the state � = �1 ⊗ �2 is maximally
entangled in H ⊗ H, where H = H1 ⊗ H2 (under the canonical identification
of (H1 ⊗ H1) ⊗ (H2 ⊗ H2) withH ⊗ H).

Let us now see what this notion of maximally entangled state implies for quantum
measurements.

Suppose that we have a pair of physical systems, whose states belong to the same
finite dimensional Hilbert spaceH. And suppose that the quantum state� of the pair
is maximally entangled, i.e. of the form (2.1.1).

Any observable acting on system 1 is represented by a self-adjoint operator O,
which has therefore a basis of eigenvectors. Since the representation (2.1.4) of the
state � is valid in any basis, we may choose, without loss of generality, as the set
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{φn}N
n=1 in (2.1.1) the eigenstates of O. Let λn be the corresponding eigenvalues, see

(2.1.6).
If one measures that observable O, the result will be one of the eigenvalues λn,

each having equal probability 1
N . If the result is λk , the (collapsed) state of the system

after the measurement, will be ψk ⊗ φk . Then, the measurement of observable Õ,
defined by (2.1.5), (2.1.2), on system 2, will necessarily yield the value λk .

Reciprocally, if one measures an observable Õ on system 2 and the result is λl ,
the (collapsed) state of the system after the measurement, will be ψl ⊗ ψl , and the
measurement of observable O on system 1 will necessarily yield the value λl .

To summarize, we have derived the following consequence of the quantum for-
malism:

Principle of Perfect Correlations. In any maximally entangled quantum state,
of the form (2.1.1), there is, for each operator O acting on system 1, an operator Õ
acting on system 2 (defined by (2.1.5), (2.1.2)), such that, if one measures the physical
quantity represented by operator Õ on system 2 and the result is the eigenvalue λl

of Õ, then, measuring the physical quantity represented by operator O on system 1
will yield with certainty the same eigenvalue λl , and vice-versa.2

2.2 Schrödinger’s “Theorem”

The following property will be crucial in the rest of the paper.
Locality. If systems 1 and 2 are spatially separated from each other, then mea-

suring an observable on system 1 has no instantaneous effect whatsoever on system
2 and measuring an observable on system 2 has no instantaneous effect whatsoever
on system 1.

Finally, we must also define:
Non-contextual value-maps. LetH be a finite dimensional Hilbert space and let

A be the set of self-adjoint operators on H. Suppose H is the quantum state space
for a physical system and A is the set of quantum observables. Suppose there are
situations in which there are observables A for which the result of measuring A is
determined already, before the measurement. Suppose, that is, that A has, in these
situations, a pre-existing value v(A) revealed bymeasurement and notmerely created
by measurement. Of course, this implies that for every experiment EA measuring A,
the result v(EA) of that experiment, in the situation under consideration, must be
v(A). And suppose finally that the situation is such that we have a pre-exiting value
v(A) for every A ∈ A.

We would then have a non-contextual value-map, namely a map v : A → R that
assigns the value v(A) to any experiment associated with what is called in quantum
mechanics a measurement of an observable A. There can be different ways to mea-
sure the same observable. The value-map is called non-contextual because all such

2The correlations mentioned here are often called anti-correlations, for example when Õ = −O, as
in the example of the spin in remark 1 above.
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experiments, associated with the same quantum observable A, are assigned the same
value.

This notion of value-map is not a purely mathematical one, since it involves the
notion of an experiment that measures a quantum observable A, which we have
not mathematically formalized. However, we shall need only the following obvious
purely mathematical consequence of non-contextuality.

A non-contextual value-map has the fundamental property that, ifAi , i = 1, . . . , n,
are mutually commuting self-adjoint operators onH, [Ai, Aj] = 0,∀i, j = 1, . . . , n,
then, if f is a function of n variables and B = f (A1, . . . , An), then

v(B) = f (v(A1), . . . , v(An)). (2.2.1)

It is a well-known property of quantum mechanics that, since all the operators
A1, . . . , An, B commute, they are simultaneously measurable and the result of those
measurements must satisfy (2.2.1).

But, and this is what we emphasized in [11], (2.2.1) follows trivially from the non-
contextuality of the value-map. Indeed, a valid quantum mechanical way to measure
the operator B = f (A1, . . . , An) is to measure A1, . . . , An and, denoting the results
λ1, . . . ,λn, to regard λB = f (λ1, . . . ,λn) as the result of a measurement of B. Since,
by the non-contextuality of the map v, all the possible measurements of B must yield
the same results, (2.2.1) holds.

Thus, once one has a non-contextual value-map, one does not even need to check
(2.2.1).

Now we will use the perfect correlations and locality to establish the existence
of a non-contextual value-map v, for a maximally entangled quantum state of the
form (2.1.1) or, equivalently, (2.1.4). By the principle of perfect correlations, or any
operatorO on system 1, there is an operator Õ on system 2, defined by (2.1.5), (2.1.2),
which is perfectly correlated with O through (2.1.8).

Thus, if we were to measure Õ, obtaining λl , we would know that

v(O) = λl (2.2.2)

concerning the result of then measuring O. Therefore, v(O)would pre-exist the mea-
surement of O. But, by the assumption of locality, the measurement of Õ, associated
with the second system, could not have had any effect on the first system, and thus,
this value v(O)would pre-exist also themeasurement of Õ and this would not depend
upon whether Õ had been measured. Letting O range over all operators on system 1,
we see that there must be a non-contextual value-map O → v(O).

To summarize, we have shown:

Schrödinger’s “Theorem”. Let A be the set of self-adjoint operators on the com-
ponent Hilbert spaceH of a physical system in a maximally entangled state (2.1.1).
Then, assuming locality and the principle of perfect correlations, there exists a non-
contextual value-map v : A → R.

Remark
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We put “Theorem” in quotation marks because the statement concerns physics
and not just mathematics. Its conclusions are nevertheless inescapable assuming
the hypothesis of locality and the empirical validity of the principle of perfect
correlations, a principle which is, as we showed, a consequence of the quantum
formalism.

2.3 The Non-existence of Non-contextual Value-Maps

The problem posed by the non-contextual value-map v whose existence is implied by
Schrödinger’s “theorem” is that such maps simply do not exist (and that is a purely
mathematical result). Indeed, one has the:
“Theorem”: Non-existence of non-contextual value-maps. Let A be the set of
self-adjoint operators on the Hilbert spaceH of a physical system. Then there exists
no non-contextual value-map v : A → R.

This “theorem” is an immediate consequence of the following theorem, since
(2.3.1), (2.3.2) are consequences of (2.2.1).3

Theorem 2.2 Let H be a finite dimensional Hilbert space of dimension at least
three, and let A be the set of self-adjoint operators on H. There does not exist a map
v : A → R such that:

(1) ∀O ∈ A,
v(O) is an eigenvalue of O (2.3.1)

(2) ∀O, O′ ∈ A with [O, O′] = OO′ − O′O = 0, and for any real valued function
f of two real variables,

v(f (O, O′)) = f (v(O), v(O′)). (2.3.2)

See [11] for a discussion of the proof of the theorem, which is a consequence of
stronger theorems, originally due to Bell [3] and to Kochen and Specker [27], with
simplified proofs of Theorem2.2 due to Mermin [28], and to Peres [31, 32].

2.4 Nonlocality

The conclusion of Schrödinger’s “theorem” and of the “Theorem” on the non-
existence of non-contextual value-maps plainly contradict each other. So, the assump-

3This is obvious for (2.3.2), a special case of (2.2.1). For (2.3.1) we observe that, since O is self-
adjoint, we can write O = ∑

i λiPλi where Pλi is the projector on the subspace of eigenvectors of
eigenvalue λi of O and thus we have that f (O) = ∑

i f (λi)Pλi . If we choose any f whose range is
the set of eigenvalues of O and is such that f (λi) = λi ∀i, we have that O = f (O) and, by (2.2.1),
we obtain that v(O) = v(f (O)) = f (v(O)) and thus v(O) is an eigenvalue of O.
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tions of at least one of them must be false. Moreover, the stronger Theorem2.2 is
a purely mathematical result. To derive Schrödinger’s “theorem,” we assume only
the perfect correlations and locality. The perfect correlations are an immediate con-
sequence of quantum mechanics. The only remaining assumption is locality. Hence
we can deduce:

Nonlocality “Theorem”. The locality assumption is false.
See [11, Sects. 5, 7] for a discussion of the relation between this proof and other

proofs of nonlocality.

3 The Original EPR Argument

Let us now turn to the original EPR argument [18] and explain its connection to the
notion of locality. EPR gave both a general argument and a specific example.

3.1 EPR’s General Setup

For their general argument, EPR considered a system of two particles, 1 and 2, in one
dimension, that may be far apart and a physical quantity represented by a self-adjoint
operator O that acts on system 1. We shall assume that O has an orthonormal basis
of eigenvectors φn(x1) with eigenvalues λn.

One can then write the joint state of both particles as:

�(x1, x2) =
∞∑

n=1

ψn(x2)φn(x1), (3.1.1)

where ψn(x2) are the (x2 dependent) coefficients of that expansion.4

After a measurement of O on system 1, if the result is λl , then the state collapses
to ψl(x2)φl(x1), i.e. φl(x1) for the first particle and ψl(x2) for the second.

If, on the other hand, one considers a physical quantity represented by an operator
O′ that acts on system 1, and one assumes that O′ has eigenvectors φ′

s(x1) and
eigenvalues μs, one can write the joint state as:

�(x1, x2) =
∞∑

s=1

ψ′
s(x2)φ

′
s(x1) (3.1.2)

4This resembles a maximally entangled state, like (2.1.1), but it is not one because the sum in
(3.1.1) extends to infinity and, for (3.1.1) to be a maximally entangled state, the set {ψn}∞n=1 should
be orthonormal. But then the norm of (3.1.1) would be infinite and thus (3.1.1) would not belong
the Hilbert space.
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After a measurement of O′ on system 1, if the result is μk , then the state collapses
to ψ′

k(x2)φ
′
k(x1), i.e. φ

′
k(x1) for the first particle and ψ′

k(x2) for the second.
We will discuss the implications of that observation after giving the concrete

examples of the operators considered by EPR.

3.2 The Example of Position and Momentum

For their specific example, EPR introduced a two particle wave function5:

�EPR(x1, x2) =
∫ ∞

−∞
exp(i(x1 − x2 + x0)p)dp (3.2.1)

(putting � = 1). This can be written, by analogy with (3.1.1), i.e. with sums replaced
by integrals, as:

�EPR(x1, x2) =
∫ ∞

−∞
ψp(x2)φp(x1)dp (3.2.2)

with: φp(x1) = exp(ix1p), and ψp(x2) = exp(−i(x2 − x0)p).
It will be useful to introduce the Fourier transform of a wave function �:

�̂(p1, p2) = 1

2π

∫
exp(−i(p1x1 + p2x2))�(x1, x2)dx1dx2, (3.2.3)

whose inverse is:

�(x1, x2) = 1

2π

∫
exp(i(p1x1 + p2x2))�̂(p1, p2)dp1dp2. (3.2.4)

EPR took the operator O to be the momentum operator

P1 = −i
d

dx1

acting on the first particle and on a suitable set of functions (see [33, Chap.VIII] for
precise definitions).

5This is a generalized wave function, which means that it is not an element of the Hilbert space
L2(R2), but rather a distribution, namely a linear function acting on a space of smooth functions
that decay rapidly at infinity (see [33, Sect. 5.3] for a short introduction to distributions). We will
not try to be rigorous about these generalized functions here, but we will give a regularized version
of the same wave function in Sect. 3.6.
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We know that φp(x1) = exp(ix1p) is a (generalized) eigenstate of P1 of eigenvalue
p, and ψp(x2) = exp(−i(x2 − x0)p) is a (generalized) eigenstate of eigenvalue −p of
the momentum operator

P2 = −i
d

dx2

acting on the second particle.
Alternatively, Pj, j = 1, 2, can be defined by its action on �̂(p1, p2):

Pj�(x1, x2) = 1

2π

∫
exp(i(p1x1 + p2x2))pj�̂(p1, p2)dp1dp2 , j = 1, 2 . (3.2.5)

EPR took the operator O′ to be the position operator Q1 = x1 acting on the first
particle.

Using a standard identity for distributions (
∫ ∞
−∞ exp(ixp)dp = 2πδ(x)) one can

write the state (3.2.1), as:

�EPR(x1, x2) = 2πδ(x1 − x2 + x0)

= 2π
∫ ∞

−∞
δ(x − x2 + x0)δ(x1 − x)dx

=
∫ ∞

−∞
ψ′

x(x2)φ
′
x(x1)dx, (3.2.6)

with ψ′
x(x2) = √

2πδ(x − x2 + x0) and φ′
x(x1) = √

2πδ(x1 − x). The last formula is
analogous to (3.1.2).

The (generalized) eigenfunctions of the operator Q1 = x1 are φ′
x(x1) =√

2πδ(x1 − x), with eigenvalue x, and ψ′
x(x2) = √

2πδ(x − x2 + x0) is a (general-
ized) eigenvector of the operator Q2 = x2, with eigenvalue x + x0.

Therefore, depending on whether we choose to measure the operator O or O′ on
the first particle, one can produce two different states, ψp(x2) = exp(−i(x2 − x0)p)

andψ′
x(x2) = √

2πδ(x − x2 + x0), for the second particle, which can be, in principle,
as far as one wants from the first one.

Moreover, the states ψp(x2) = exp(−i(x2 − x0)p) and ψ′
x(x2) = √

2πδ(x − x2 +
x0) are (generalized) eigenfunctions of two non-commuting operators, P2 and Q2.

3.3 The Conclusions of the EPR Paper by EPR

SinceEPR assumed no actions at a distance, they concluded that the values of two non
commuting observables, like P2 and Q2, for the second particle, far away fromwhere
the measurements on the first particle take place, must have “simultaneous reality”
when the system is in the quantum state (3.2.1). Thus, say EPR, quantummechanics,
i.e., the description provided by the state (3.2.1), is an incomplete description of
physical reality.
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But they could have made a simpler argument: considering only one variable
is enough to show that quantum mechanics is incomplete. Indeed, I can know the
position of the second particle by measuring the position of the first one. If that
measurement, being made far away from the second particle, does not affect the
state of the second particle, then the position of that second particle (which is left
undetermined by the state (3.2.1)) must exist independently of any measurement on
the first particle.

And, since one can reason by exchanging the two particles, one can also know
the position of the first particle by measuring the one of the second particle, so that
the position of the first particle must also exist independently of any measurements.

Of course, they could have made the same argument about the momentum of
either particle, but there was no need to bring in both quantities.

3.4 The Conclusions of the EPR Paper by Einstein

In a June 19, 1935 letter to Schrödinger, Einstein complained that the EPR paper had
been written by Podolsky “for reasons of language” and that the main point “was
buried, so to speak, by erudition” [19].

Then Einstein explains what is, for him, the main point: in the notation used here,
see (3.1.1), if one measures quantity O on system 1, the state collapses to some state
ψl(x2) for the second particle. Similarly, if one measures a quantity O′ on system 1,
see (3.1.2), the state collapses to some different state ψ′

k(x2) for the second particle.
For the state �EPR, (3.2.2), (3.2.6) one obtains either a state of the form ψp(x2) =

exp(−i(x2 − x0)p), if one measures the momentum of the first particle or a state
of the form ψ′

x(x2) = √
2πδ(x − x2 + x0), if one measures the position of the first

particle.
The fact that one can obtain two different states for the second particle by acting

on the first particle, far away from the second one, proves that the wave function
description in quantum mechanics is incomplete (assuming of course locality) since
a more complete description would be provided by both states together.

Einstein said that “he could not care less” [21, p. 38] about the fact that those
states, ψp(x2) = exp(−i(x2 − x0)p) and ψ′

x(x2) = √
2πδ(x − x2 + x0), are or are not

eigenstates of some observable (related to the second particle).
This is indeed different, and simpler, than the conclusion of the EPR paper, but it

is still more complicated than the argument that we gave in Sect. 3.3.
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3.5 Schrödinger’s Extension of EPR

What Schrödinger did in his 1935 paper6 [34] and in [35, 36], was to reflect on the
EPR paper [18]. He introduced what we call here maximally entangled states and
concluded that the value of every observable O for the first system can be determined
by the measurement of the corresponding observable Õ on the second system, distant
from the first one. That puzzled him a lot. Of course, like EPR, Schrödinger always
assumed locality.

To illustrate his puzzlement, Schrödinger used the following example. LetO be the
energy of the harmonic oscillator,O = 1

2 (p
2 + ω2x2)with p = −i d

dx . It is well known
that the eigenvalues of the operator O are of the form ω(n + 1

2 ), n = 0, 1, 2, . . . .
But, argued Schrödinger, if those values can be determined by measuring a similar
operator Õ acting on a distant system, they must pre-exist the measurement of O,
and that should hold true for every value of ω. But, by the EPR reasoning, the values
of the position x and the momentum p of the first system can also be determined
by measuring either the operator x̃ or the operator p̃ on the second system, so the
values of x and p must also pre-exist their measurements. But it is impossible for the
quantity 1

2 (p
2 + ω2x2) to belong to the set {ω(n + 1

2 )|n = 0, 1, 2, . . . }, for arbitrary
values of ω and any given values of x and p.

It is interesting to compare Schrödinger’s attitude to that of von Neumann a
little before 1935 [39] (von Neumann’s book was published in German in 1932 but
translated into English only in 1955); von Neumann proved a “no hidden variable
theorem” similar in its conclusion to our Theorem2.2, but by making the much
stronger assumption that (2.3.2) holds even for non-commuting operators O and
O′, at least for the function f (x, y) = x + y, and he concluded that the “value-map”
cannot exist. If one assumes that (2.3.2) holds for non-commuting operators, then it is
very simple to prove the non-existence of a value-map. Take O = 1√

2
σx, O′ = 1√

2
σy,

where σx and σy are the Pauli matrices corresponding to the spin along the x and y
axes. Then O + O′ = σx+σy√

2
corresponds to the spin at an angle of 45◦ between the x

and y axes. All the Pauli matrices have eigenvalues equal to ±1 and so does O + O′.
Thus v(O) = v(O′) = ± 1√

2
, and we have v(O) + v(O′) = ±√

2 or 0. But we also

have v(O + O′) = v
(
(σx + σy)/

√
2
) = ±1. Thus (2.3.2) cannot hold for this choice

of O and O′ and f (x, y) = x + y.
If Schrödinger had reasoned like von Neumann he would also have derived a

“no hidden variable theorem,” using his example of the harmonic oscillator: Indeed,
if O = 1

2 (p
2 + ω2x2), and one applies (2.3.2) even to non-commuting operators,

one gets v(O) = 1
2 (v(p)2 + ω2v(x)2) = ω(n + 1

2 ) for some n = 0, 1, 2, . . . , which,
as Schrödinger observed, would be impossible for arbitrary v(p), v(x) and ω. But
Schrödinger’s goal was not to prove that a value-map was impossible, since the
point of his “theorem” was to show that it existed (assuming locality of course). He
was just baffled by the situation: recognizing that this relationship between values

6This paper remained famous for his example of the cat that is “both dead and alive”, but that
example will not concerned us here.
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suggested by the form of O = 1
2 (p

2 + ω2x2) could not always hold, he wondered
what relationship, if any, might exist among the relevant values. Of course, had
Schrödingermade the (unwarranted) assumption of vonNeumann and applied (2.3.2)
to non-commuting operators, he would have been even more baffled, since he would
probably have been led to question the locality assumption.

Finally, note that in 1966, much later than 1935, John Bell constructed in [3] an
explicit counter-example to von Neumann’s conclusions, by giving a simple example
of a “hidden variables theory” that reproduces the quantum mechanical results for
a single spin operator (but, of course, without satisfying (2.3.2) for non-commuting
operators). Bohmian mechanics (see Sect. 5) also provides a counter-example to von
Neumann’s conclusions, but a more comprehensive one.

3.6 A Regularized EPR State

A way to avoid dealing with generalized functions or distributions such as (3.2.1),
(3.2.6) is to put a cutoff both in the spatial and the momentum variables, x and p. A
convenient way to do that is to require that x take values in a finite (but arbitrarily
large) box on a lattice of (arbitrarily small) spacing a, which amounts to putting a
cutoff in the momentum variable p.

So, let x ∈ �a = [−L, L] ∩ aZ, or x = na, n ∈ Z, |n| ≤ M ,withM = [ L
a ], and [·]

denoting the integer part.
Let �̂a be the dual of �a:

�̂a =
{

p = 2πk

a(2M + 1)
, k ∈ Z, |k| ≤ M

}
.

Then, one has the orthogonality relation: ∀x ∈ �a

∑

p∈�̂a

exp(±ixp) = √
2M + 1δa,L(x) ≡ (2M + 1)δx,0, (3.6.1)

where δx,0 is the Kronecker delta.
And, ∀p ∈ �̂a,

∑

x∈�a

exp(±ixp) = √
2M + 1δa,L(p) ≡ (2M + 1)δp,0. (3.6.2)

Let, ∀x1, x2, x0 ∈ �a,

�
a,L
EPR(x1, x2) =

∑

p∈�̂a

exp(i(x1 − x2 + x0)p), (3.6.3)

where the sum x1 − x2 + x0 is modulo 2aM .
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Using (3.6.1),

�
a,L
EPR(x1, x2) = √

2M + 1δa,L(x1 − x2 + x0) (3.6.4)

can be written as:

�
a,L
EPR(x1, x2) =

∑

x∈�a

δa,L(x − x2 + x0)δa,L(x1 − x). (3.6.5)

One can also introduce the finite Fourier transform:

�̂(p1, p2) = 1

2M + 1

∑

x1,x2∈�a

exp(−i(x1p1 + x2p2))�(x1, x2) (3.6.6)

whose inverse is:

�(x1, x2) = 1

2M + 1

∑

p1,p2∈�̂a

exp(i(x1p1 + x2p2))�̂(p1, p2). (3.6.7)

The analogues of the operators P1, P2, Q1, Q2 of Sect. 3.2 are:

Pj�(x1, x2) =
∑

p1,p2∈�̂a

exp(i(x1p1 + x2p2))pj�̂(p1, p2), j = 1, 2, (3.6.8)

and
Qj�(x1, x2) = xj�(x1, x2), j = 1, 2. (3.6.9)

These operators have proper (not generalized) eigenvectors:

Pj exp(−i(x1p1 + x2p2)) = pj exp(−i(x1p1 + x2p2)) (3.6.10)

and

Qjδa,L(x1 − x0,1)δa,L(x2 − x0,2) = x0,jδa,L(x1 − x0,1)δa,L(x2 − x0,2). (3.6.11)

Thus, if one applies the collapse rule for the measurement of the observable P1

to �
a,L
EPR(x1, x2), when the observed value is p, the resulting state will be propor-

tional to exp(i(x1 − x2 + x0)p), meaning that the state of the second particle will
be proportional to exp(−i(x2 − x0)p). And, if one applies the collapse rule for the
measurement of the observable Q1 to�

a,L
EPR(x1, x2), when the observed value is x, the

resulting state will be proportional to δa,L(x − x2 + x0)δa,L(x1 − x), meaning that the
state of the second particle will be proportional to δa,L(x − x2 + x0).
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4 Proof of Nonlocality Using the EPR Variables

Given a state like (3.2.1), (3.2.6), we can almost repeat the arguments of Sect. 2 in
order to prove nonlocality. First observe that one has an analogue of a Schrödinger
theorem. Consider a generalized state for four particles in one dimension:

δ(x1 − x3 + x0)δ(x2 − x4 + x0), (4.1)

which is just the product of two copies of the EPR state (up to a 4π2 factor, see
(3.2.6)), one for the pair of particles (1, 3), the other for the pair of particles (2, 4).
Alternatively, one may regard this as a state of two particles in two dimensions, with
coordinates (x1, x2) and (x3, x4). In our previous notation, system 1 will consist of
particles 1 and 2 and system 2 will consist of particles 3 and 4.7

One may also replace that state by its regularized version, see (3.6.4):

δa,L(x1 − x3 + x0)δa,L(x2 − x4 + x0). (4.2)

By Remark 2 in Sect. 2.1, the state (4.2) is maximally entangled and so the state
(4.1) is also (formally) maximally entangled.8

We need to introduce standard operators Q1, Q2, Q3, Q4, that act as multiplication
on a suitable set of functions in L2(R4):

Qj�(x1, x2, x3, x4) = xj�(x1, x2, x3, x4) , j = 1, 2, 3, 4 , (4.3)

and operators P1, P2, P3, P4 that act by differentiation on a suitable set of functions
in L2(R4):

Pj�(x1, x2, x3, x4) = −i
∂

∂xj
�(x1, x2, x3, x4) , j = 1, 2, 3, 4 . (4.4)

Or, using the Fourier transform (3.2.3) of � (for four variables):

Pj�(x1, x2, x3, x4) =
1

(2π)2

∫
exp(i(p1x1 + p2x2 + p3x3 + p4x4))pj�̂(p1, p2, p3, p4)dp1dp2, dp3dp4, (4.5)

for j = 1, 2, 3, 4.
Consider the eight operator Q1, Q2, Q3, Q4, P1, P2, P3, P4, defined by (4.3) and

(4.4), (4.5).
Let B be the set of products of analytic functions of one of the operators Q1,

Q2, P1, P2 defining a self-adjoint operator, and let B̃ be the set of sums of products

7We need two copies of the EPR state only in order to prove Theorem4.1 below.
8Formally, since the state itself is not a vector in a finite dimensional Hilbert space. But, since we
are not concerned here with mathematical rigor, we will put aside that issue.
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of analytic functions of one of the operators Q3, Q4, P3, P4 defining a self-adjoint
operator.

Given the maximally entangled state (4.1), for every operator Õ ∈ B̃, there is a
corresponding (in the sense of the Principle of Perfect Correlations) operator O ∈ B,
and vice-versa. (For x0 = 0, O is obtained by changing in Õ the index 3 to 1 and
the index 4 to 2). And, by Schrödinger’s theorem, assuming locality, there is a non-
contextual value-map v : B → R that satisfies (2.2.1) and therefore also the property
(2.3.2).

However this is contradicted by a theorem of Clifton [14], proven in the appendix.

Theorem 4.1 Non-existence of pre-existing values for positions and momenta.
Consider the set of analytic functions of one of the operators Q1, Q2, P1, P2. And

let B be the set of products of such functions defining a self-adjoint operator. Then,
there does not exist a map

v : B → R (4.6)

such that:

(1)

v(f (O)) = f (v(O)), (4.7)

for any real valued function f of a real variable.
(2) ∀O, O′ ∈ B with [O, O′] = OO′ − O′O = 0, (2.3.2) for f (x, y) = xy holds:

v(OO′) = v(O)v(O′). (4.8)

In particular, there cannot exist a non-contextual value-map.

So, combining the EPR argument with the previous theorem, we again establish
nonlocality, without using Bell’s inequalities.

The logic is the same as in Sect. 2:

1. EPR show that the perfect correlations plus locality imply that the values of some
physical quantities (the values v(O) of the operators O ∈ A in Sect. 2.3 or the
operators O ∈ B here), must exist independently of whether one measures them
or not, and that defines a non-contextual value-map.

2. Theorems2.2 or 4.1 show that merely assuming the existence of such a map
leads to a contradiction.

Therefore the locality assumption is false!
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5 What Happens in Bohmian Mechanics?

In Bohmian mechanics, or pilot-wave theory, the complete state of a closed physi-
cal system composed of N particles is a pair (|quantum state>, X), where |quantum
state> is the usual quantum state (given by the tensor product of wave functions with
some possible internal states), and X = (X1, . . . , XN ) is the configuration represent-
ing the positions of the particles (that exist, independently of whether one “looks” at
them or one measures them; each Xi ∈ R

3).9

These positions are the “hidden variables” of the theory, in the sense that they are
not included in the purely quantumdescription |quantum state>, but they are not at all
hidden: it is only the particles’ positions that one detects directly, in any experiment
(think, for example, of the impacts on the screen in the two-slit experiment). So the
expression “hidden variables” is really amisnomer, at least in the context of Bohmian
mechanics.

Both objects, the quantum state and the particles’ positions, evolve according to
deterministic laws, the quantum state guiding the motion of the particles. Indeed, the
time evolution of the complete physical state is composed of two laws (we consider,
for simplicity, spinless particles):

1. The wave function evolves according to the usual Schrödinger’s equation.
2. The particle positions X = X(t) evolve in time according to a guiding equation

determined by the quantum state: their velocity is a function of the wave function.
If one writes10:

�(x1, . . . , xN ) = R(x1, . . . , xN )eiS(x1,...,xN ),

then:

dXk(t)

dt
= ∇kS(X1(t), . . . , XN (t)), (5.1)

where ∇k is the gradient with respect the coordinates of the kth particle.

In order to understand why Bohmian mechanics reproduces the usual quantum
predictions, onemust use a fundamental consequenceof that dynamics, equivariance:
If the probability density ρt0(x) for the initial configuration Xt0 is given by ρt0(x) =
|�(x, t0)|2, then the probability density for the configurationXt at any time t is given
by

ρt(x) = |�(x, t)|2, (5.2)

9For elementary introductions to this theory, see [10, 38] and for more advanced ones, see [5, 7–9,
15–17, 23, 30]. There are also pedagogical videos made by students inMunich, available at: https://
cast.itunes.uni-muenchen.de/vod/playlists/URqb5J7RBr.html.
10We use lower case letters for the generic arguments of the wave function and upper case ones for
the actual positions of the particles.

https://cast.itunes.uni-muenchen.de/vod/playlists/URqb5J7RBr.html
https://cast.itunes.uni-muenchen.de/vod/playlists/URqb5J7RBr.html
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where�(x, t) is a solution to Schrödinger’s equation. This follows easily from equa-
tion (5.1).

Because of equivariance, the quantum predictions for the results of measurements
of any quantumobservable are obtained if one assumes that the initial density satisfies
ρt0(x) = |�(x, t0)|2. The assertion that configurational probabilities at any time t0
are given by this “Born rule” is called the quantum equilibrium hypothesis. The
justification of the quantum equilibrium hypothesis—and, indeed, a clear statement
of what it actually means—is a long story, too long to be discussed here (see [15]).

In Bohmian mechanics, particles have a velocity at all times and therefore they
have what wewould be inclined to call a momentum (mass× velocity). So onemight
ask, what sort of probability does Bohmian mechanics supply for the latter: will it
agree with the quantum mechanical probability for momentum? The answer, as we
will see in the next subsection, is no!

One may also ask: isn’t having both a position and a velocity at the same time
contradicted by Heisenberg’s inequalities? Moreover, since Bohmian mechanics is
deterministic, the result of any quantum experiment must be pre-determined by the
initial conditions of the system being measured and of the measuring device. But
whydoesn’t that provide a non-contextual value-mapwhose existence is precludedby
Theorem4.1? We will discuss these issues in the following subsections and this will
also provide an example of how nonlocality manifests itself in Bohmian mechanics.

5.1 The Measurement of Momentum in Bohmian Mechanics

To understand what is going on, we should analyze “momentummeasurements,” i.e.,
what are called momentummeasurements in standard quantummechanics. Consider
a simple example, namely a particle in one space dimensionwith initial wave function
�(x, 0) = π−1/4 exp(−x2/2). Since this function is real, its phase S = 0 and the
particle is at rest (by equation (5.1): dX (t)

dt = ∂S(X (t),t)
∂x ).Nevertheless, themeasurement

of momentum p must have, according to the usual quantum predictions, a probability
distribution whose density is given by the square of the Fourier transform of�(x, 0),
i.e. by |�̂(p)|2 = π−1/2 exp(−p2). Isn’t there a contradiction here? Isn’t there a clear
disagreement with the quantum predictions?

In order to answer this question, one must focus on the quantum mechanical
measurement of momentum. One way to do this is to let the particle move freely

and to detect its asymptotic position X (t) as t → ∞. Then, one sets p = lim
t→∞

X (t)

t
(putting the mass m = 1).

Consider the free evolution of the initial wave function at t0 = 0, �(x, 0) =
π−1/4 exp(−x2/2). The solution of Schrödinger’s equation with that initial condi-
tion is:

�(x, t) = 1

(1 + it)1/2
1

π1/4
exp

[
− x2

2(1 + it)

]
, (5.1.1)
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and thus

|�(x, t)|2 = 1√
π
[
1 + t2

] exp
[
− x2

1 + t2

]
. (5.1.2)

If one writes �(x, t) = R(x, t) exp
[
iS(x, t)

]
, one gets (up to a t-dependent con-

stant):

S(x, t) = tx2

2(1 + t2)
, (5.1.3)

and the guiding equation (5.1) becomes:

d

dt
X (t) = tX (t)

1 + t2
, (5.1.4)

whose solution is:
X (t) = X (0)

√
1 + t2. (5.1.5)

This gives the explicit dependence of the position of the particle as a function of
time. If the particle is initially at X (0) = 0, it does not move; otherwise, it moves
asymptotically, when t → ∞, as X (t) ∼ X (0)t. Thus, p = limt→∞ X (t)/t = X (0).

Now, assume that we start with the quantum equilibrium distribution:

ρ0(x) = |�(x, 0)|2 = π−1/2 exp(−x2).

This is the distribution of X (0). Thus, the distribution of p = limt→∞ X (t)/t = X (0)
will be π−1/2 exp(−p2) = |�̂(p, 0)|2. This is the quantum prediction! But the detec-
tion procedure (measurement ofX (t) for large t) does not measure the initial velocity
(which is zero with probability 1).

Remarks

1. Although the particles do have, at all times, a position and a velocity, there is no
contradiction between Bohmian mechanics and the quantum predictions and, in
particular, with Heisenberg’s uncertainty principle. The latter is simply a relation
between variances of results of measurements. It implies nothing whatsoever
about what exists or does not exist outside ofmeasurements, since those relations
are simplymathematical consequences of the quantum formalismwhich, strictly
speaking, dictates only what takes place during a measurement.

2. Bohmian mechanics shows that what are called measurements of quantum
observables other than positions are typically merely interactions between a
microscopic physical system and a macroscopic measuring device whose statis-
tical results coincide with the quantum predictions.
To use a fashionable expression, one might say for both Bohmian mechanics and
standard quantum mechanics, values of most observables are emergent. But it is
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only in Bohmian mechanics that one can understand how that emergence comes
about.

5.2 The Contextuality of the Momentum Measurements
in Bohmian Mechanics

The reader might nevertheless worry that there is in fact an intrinsic property of
the particle that is revealed in a momentum measurement, for example its original
position, since, aswe showed in the previous subsection, p = limt→∞ X (t)/t = X (0)
in the simple case considered there. Of course, if one were to measure the position
one would also find an intrinsic property of the particle (namely its position!).11 But
doesn’t that contradict our Theorem4.1 (our example could of course be formulated
in two dimensions by taking a product of wave functions of the form (5.1.1))? After
all, the latter theorem asserts that there does not exist a value-map that assigns to a
quantum system pre-existing values that are revealed by quantummeasurements and
here we seem to have just defined such a map.

However, as we shall explicitly show, the map provided by Bohmian mechan-
ics would be contextual (see the Appendix for the concrete operators that we use
in the proof of Theorem 4.1). In particular the value v(O) will depend on which
other operators O′, O′′, . . . , one measures together with O. Hence relations like (4.8)
that are needed to prove Theorem 4.1 will not be valid: for example, if one writes
v(OO′) = v(O)v(O′) and v(OO′′) = v(O)v(O′′), the value v(O) will in general be
different in the two relations.

We will now show in particular that the measurement of momentum is contextual,
using a modified version of the example given by (5.1.1).

Take that quantum state (5.1.1) and write �0(x) for �(x, 0). Consider the corre-
sponding Gaussian wave functions:

�+k(x) = �0(x)e
ikx (5.2.1)

and
�−k(x) = �0(x)e

−ikx (5.2.2)

where k > 0. We will assume below that k is large.
Consider first the initialwave function�+k(x) = �0(x)eikx. This is a right-moving

Gaussian wave packet moving with speed k. Thus at time t it will be centered at kt.
Explicitly, the solution of Schrödinger’s equation is:

11The fact that the measurements of both the momentum and the position reveal the same intrinsic
property may sound strange but that is just a peculiarity of the example considered here.
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�+k(x, t) = 1

(1 + it)1/2
1

π1/4
exp

(
ikx − ik2t

2
− (x − kt)2

2(1 + it)

)
, (5.2.3)

which can also been seen immediately from (5.1.1) using Galilean invariance. For
this wave packet we have that p = limt→∞ X (t)

t ≈ k for k � 1.
Now form an N = 2 entangled state � from the wave functions (5.2.1), (5.2.2)12:

�(x, y) = A[�+k(x)�+k(y) + �−k(x)�−k(y)], (5.2.4)

with A the normalization constant. Let O = Px. Consider two different experiments
that measure O:

Experiment1(O): measure O alone by the procedure described in Sect. 5.1, with
result corresponding to the solution to the guiding equation (5.1) associated with the
solution of Schrödinger’s equation.

Experiment2(O): first measure at time 0 the position Qy of the second particle,
then measure O by the above procedure.

For Experiment1(O), we claim that the result is

v(Experiment1(O)) ≈ sgn (X (0) + Y (0))k (5.2.5)

for k large.
To prove (5.2.5), introduce the variables:

w = x + y√
2

, (5.2.6)

z = x − y√
2

.

In terms of these variables, we can rewrite (5.2.4) as

�(w, z) = A(�+k ′(w) + �−k ′(w))�0(z). (5.2.7)

with k ′ = √
2k.

So the solution of Schrödinger’s equation factorizes into a function �(w, t) of
(w, t) and a function �̃(z, t) of (z, t). We have that �̃(z, t) is given by (5.1.1) with
x replaced by z, while for �(w, t) we get a sum of two wave functions like (5.2.3),
one with k replaced by k ′, the other with k replaced by −k ′:

�(w, t) = A(�+k ′(w, t) + �−k ′(w, t)) (5.2.8)

with �±k ′(w, t) of the form (5.2.3).

12This state ressembles a maximally entangled one, but it does not fit the definition of maximally
entangled, since the Hilbert space here in infinite dimensional.
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For large t, |�(w, t)|2 is a sum of two more or less non-overlapping terms, one
corresponding to the part of the wave function with k ′ (whose support is around k ′t),
the other one corresponding to the part of the wave function with−k ′ (whose support
is around −k ′t):

|�(w, t)|2 ≈ A2(|�+k ′(w, t)|2 + |�−k ′(w, t)|2). (5.2.9)

Since the solution of Schrödinger’s equation factorizes into a function of (w, t)
and one of (z, t), the guiding equations (5.1) for W (t) and Z(t) are decoupled. For
Z(t) we obtain a solution like (5.1.5) (Z(t) ≈ Z(0)t as t → ∞).

To analyze W (t), note that one property of the dynamics (5.1) is that, in one
dimension, trajectories cannot cross.13 Since there is a symmetry between the two
parts of the wave function (5.2.8) (upon reflection,�+k ′ becomes�−k ′ ), if the initial
condition W (0) > 0, the particle must stay on the right, while if W (0) < 0, the
particle must stay on the left. Moreover, by equivariance, the particle evolves so as
to be in the support of |�(w, t)|2, which, by (5.2.9), consists of two non-overlapping
terms supported around ±k ′t for large t. So, for large k and large times, we get that
W (t) ≈ sgn W (0)k ′t = sgn W (0)

√
2kt.

Rewriting what we’ve found in terms of the X (t) and Y (t) variables, we get that
X (t) = W (t)+Z(t)√

2
≈ 1√

2
(sgn W (0)

√
2kt + Z(0)t) and thus, v(Experiment1(O)) =

limt→∞ X (t)
t ≈ sgn (X (0) + Y (0))k, for k large, which is (5.2.5).

For Experiment2(O), ifY is the result of themeasurement ofQy, thewave function
(5.2.4) collapses, yielding for the wave function of the x system14:

�(x) = A(Y )(c+(Y )�+k(x) + c−(Y )�−k(x)). (5.2.10)

with c±(Y ) = �±k(Y ) and A(Y ) the normalization coefficient.
The solution of Schrödinger’s equation with this initial condition is again a sum

of two wave functions like (5.2.3), one with +k, the other with −k, multiplied by
coefficients c±(Y ):

�(x, t) = A(Y )(c+(Y )�+k(x, t) + c−(Y )�−k(x, t)), (5.2.11)

where �±k(x, t) of the form (5.2.3).
We can now more or less reason as we just did for the �(w, t) given by (5.2.8),

except that because of the coefficients c±(Y ) there is no symmetry here between
the two parts of the wave function—unless the complex exponentials in c±(Y ) are
real (i.e. eikY = ±1). Nonetheless, the effect of the coefficients in (5.2.11) is merely
to replace the cos kx, which would arise there if c±(Y ) > 0 (i.e. eikY = 1), by its
translate cos(kx + kY ). Thus the |�|2 probability of the interval [Xm,∞) will be 1/2

13That is because there is a unique solution of the first order equation (5.1) if the position is fixed
at a given time.
14In Bohmian mechanics, in fact, there is an actual collapse of the (conditional) wave function of
a system upon measurement; see [8, Sect. 6.1], [4].
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for some Xm with |Xm| < π
2k .

15 Thus, by no-crossing and equivariance, we get that
for large times X (t) ≈ sgn (X (0))kt for k � 1, and thus

v(Experiment2(O)) = lim
t→∞

X (t)

t
≈ sgn (X (0))k. (5.2.12)

Comparing (5.2.5) and (5.2.12), we see that the measurement of momentum is
contextual, since it may depend on whether or not one measures another operator Qy

together with O = Px.

5.3 An Example of Nonlocality in Bohmian Mechanics

It would go far beyond the scope of this paper to really explain how nonlocality
appears in Bohmian mechanics in general, but we saw an example of nonlocality in
Bohmian mechanics in the previous subsection: the particles with coordinates x and
y having the entangled quantum state (5.2.4), can be (in principle) as far apart as one
wants and the result of the measurement of O = Px will depend on whether or not
one measures Qy before measuring Px, and, since the time interval between these
two measurements can be arbitrarily small, we have indeed here an example of an
instantaneous action at a distance. Here we should regard the measurement of Px as
taking a (large but) finite time, and x and y as referring to different (distant) origins.

The fact that Bohmian mechanics is nonlocal is obviously a merit rather than a
defect, since we know that any theory accounting for the quantum phenomena must
be nonlocal, as shown in Sects. 2–4 (and many other places).

6 Summary and Conclusions

Both EPR and Schrödinger argued that the quantum mechanical description of a
system by its wave function is incomplete in the sense that other variables must
be introduced in order to obtain a complete description. Their argument was very
simple: if I can determine the result of a measurement carried at one place by doing
another measurement far away from that place, then that result must pre-exist its
measurement. The wave function alone does not tell us what that result is. Therefore,
the quantum mechanical description of a system by its wave function is incomplete.

However, therewas a crucial assumption in the reasoning of EPR and Schrödinger,
which was too obvious for them to question it: that doing a measurement at one place
cannot possibly affect instantaneously the physical situation far away, or what is now
called the assumption of locality.

15In fact, Xm must lie between 0 and the nearest maximum of cos2(kx + kY ).
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The history of the EPR-Schrödinger argument is complicated, because although
their conclusion about incompleteness of quantum mechanics was right, their
assumption of locality was not. The completion of quantum mechanics was found
by de Broglie in 1927 and developed by Bohm in 1952. Bohm showed that one may
consistently assume that particles have trajectories and explained on that basis how
to understand measurements as consequences of the theory and not, as they are in
ordinary quantum mechanics, as a deus ex machina [7].

The falsity of the locality assumption was shown by John Bell in 1964 [2] and by
subsequent experiments. Bell first recalled that, if one assumes locality, then, as the
EPR argument correctly showed, there must exist other variables than the quantum
state to characterize a physical system. But then Bell showed that the distribution of
those variables must satisfy some constraints that are violated by quantum predic-
tions, predictions that were later verified experimentally (see [22] for a survey).

Here and in [11] we give a simpler argument, but using the maximally entangled
states introduced by Schrödinger: for those states, one can, for each observable
associated to one system, construct another observable associated to the second
system, possibly far away from the first one, such that the results of the measurement
of both observables are perfectly correlated. Then, assuming locality, those results
must pre-exist their measurement. But assuming that, in general, observables have
values before their measurement leads to a contradiction. Hence, the assumption of
locality is false.

The difference between this paper and [11] is that here we use the position and
momentum variables used by EPR, while in [11] we used spin variables, such as
those in terms of which the EPR argument was reformulated by Bohm [6].

Next one might ask how Bohmian mechanics deals with this impossibility of the
pre-existenceofmeasurement results prior tomeasurements, since it is a deterministic
theory, and in such a theory everything is pre-determined by the initial condition.
In [11] we reviewed that the measurements of spin variables are contextual, in fact
should not properly be calledmeasurements at all. Herewe illustrate the contextuality
of momentum. In both cases, the contextuality is linked to nonlocality, as it must be,
since as explained here and in [11], if locality were true, then measurements must
(sometimes) be non-contextual. Bohmian mechanics is an extremely natural version
of quantum mechanics, involving the obvious ontology evolving the obvious way.
A proper appreciation of the role of contextuality in Bohmian mechanics can help
dispel the widespread uneasy feeling that somehow there must be something amiss
in that theory.

Appendix 1: Proof of Clifton’s Theorem4.1

The proof we give here is taken from a paper by Myrvold [29], which is a simplified
version of the result of Clifton [14] and is similar to proofs of Mermin [28], and to
Peres [31, 32] in the case of spins. We note that the same proof would apply to the
regularized EPR state of Sect. 3.6.
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Proof of Theorem4.1
We will need the operators Uj(b) = exp(−ibQj), Vj(c) = exp(−icPj), j = 1, 2, with
Qj, Pj defined by formulas (4.3), (4.4), but acting in L2(R2) instead of L2(R4), and
b, c ∈ R. They act as

Uj(b)�(x1, x2) = exp(−ibxj)�(x1, x2) , j = 1, 2 , (A.1)

which follows trivially from (4.3), and

V1(c)�(x1, x2) = �(x1 − c, x2) , (A.2)

and similarly for V2(c). Equation (A.2) follows from (4.4) by expanding both sides
in a Taylor series, for functions � such that the series converges, and by extending
the unitary operator V2(b) to more general functions � (see, e.g., [33, Chap.8] for
an explanation of that extension).

We choose now the following functions of the operators Qi, Pi :

A1 = cos(aQ1) , A2 = cos(aQ2) , B1 = cos
πP1

a
, B2 = cos

πP2

a
, (A.3)

where a is an arbitrary constant, and the functions are defined by (A.1), (A.2), and
the Euler relations:

cos(aQj) = exp(iaQj) + exp(−iaQj)

2
,

cos
πPj

a
= exp(iπPj/a) + exp(−iπPj/a)

2
,

(A.4)

for j = 1, 2. Note that A1, A2, B1, B2 are self-adjoint. By applying (4.8) several times
to pairs of commuting operators made of products of such operators, we will derive
a contradiction.

We have the relations

[A1, A2] = [B1, B2] = [A1, B2] = [A2, B1] = 0 , (A.5)

since the relevant operators act on different variables.
We can also prove:

A1B1 = −B1A1 , A2B2 = −B2A2 . (A.6)

To show (A.6), note that, from (A.1) and (A.2), one gets

Uj(b)Vj(c) = exp(−ibc)Vj(c)Uj(b) , (A.7)

for j = 1, 2, which, for bc = ±π, means
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Uj(b)Vj(c) = −Vj(c)Uj(b) . (A.8)

Now use (A.4) to expand the product cos(aQj) cos(πPj/a), for j = 1, 2, into a sum of
four terms; each term will have the form of the left-hand side of (A.7) with b = ±a,
c = ±π/a, whence bc = ±π. Then applying (A.8) to each term proves (A.6).

The relations (A.5) and (A.6) imply that

[A1A2, B2B1] = 0 (A.9)

since two anticommutations (A.6) suffice to move the B’s to the left of the A’s.
Similarly we have that

[A1B2, A2B1] = 0. (A.10)

We also have, using (A.6) once, that

A1A2B2B1 = −A1B2A2B1. (A.11)

Thus, with C = (A1A2)(B2B1) and D = (A1B2)(A2B1), we have that

C = −D. (A.12)

Now suppose there is a value map v as described in Theorem4.1. Then, from (4.7)
with f (x) = −x, we have that

v(C) = −v(D). (A.13)

But by (A.5), (A.9) and (A.10), we also have, by (4.8), that

v(C) = v(A1A2)v(B2B1) = v(A1)v(A2)v(B2)v(B1) (A.14)

and

v(D) = v(A1B2)v(A2B1) = v(A1)v(B2)v(A2)v(B1). (A.15)

Thus v(C) = v(D). This is a contradiction unless v(C) = 0, i.e. unless at least one
of v(Ai), v(Bi), i = 1, 2 vanishes. But, by (4.7),

v(Ai) = cos(av(Qi))

and

v(Bi) = cos
(π

a
v(Pi)

)
,

and thus a can be so chosen that v(Ai) and v(Bi) are all nonvanishing. �
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