
Valia Allori
Angelo Bassi
Detlef Dürr
Nino Zanghi Editors

Fundamental Theories of Physics   198

Do Wave 
Functions Jump? 
Perspectives of the Work 
of GianCarlo Ghirardi



Fundamental Theories of Physics

Volume 198

Series Editors

Henk van Beijeren, Utrecht, The Netherlands

Philippe Blanchard, Bielefeld, Germany

Bob Coecke, Oxford, UK

Dennis Dieks, Utrecht, The Netherlands

Bianca Dittrich, Waterloo, ON, Canada

Detlef Dürr, Munich, Germany

Ruth Durrer, Geneva, Switzerland

Roman Frigg, London, UK

Christopher Fuchs, Boston, MA, USA

Domenico J. W. Giulini, Hanover, Germany

Gregg Jaeger, Boston, MA, USA

Claus Kiefer, Cologne, Germany

Nicolaas P. Landsman, Nijmegen, The Netherlands

Christian Maes, Leuven, Belgium

Mio Murao, Tokyo, Japan

Hermann Nicolai, Potsdam, Germany

Vesselin Petkov, Montreal, QC, Canada

Laura Ruetsche, Ann Arbor, MI, USA

Mairi Sakellariadou, London, UK

Alwyn van der Merwe, Greenwood Village, CO, USA

Rainer Verch, Leipzig, Germany

Reinhard F. Werner, Hanover, Germany

Christian Wüthrich, Geneva, Switzerland

Lai-Sang Young, New York City, NY, USA



The international monograph series “Fundamental Theories of Physics” aims to
stretch the boundaries of mainstream physics by clarifying and developing the
theoretical and conceptual framework of physics and by applying it to a wide range
of interdisciplinary scientific fields. Original contributions in well-established fields
such as Quantum Physics, Relativity Theory, Cosmology, Quantum Field Theory,
Statistical Mechanics and Nonlinear Dynamics are welcome. The series also
provides a forum for non-conventional approaches to these fields. Publications
should present new and promising ideas, with prospects for their further
development, and carefully show how they connect to conventional views of the
topic. Although the aim of this series is to go beyond established mainstream
physics, a high profile and open-minded Editorial Board will evaluate all
contributions carefully to ensure a high scientific standard.

More information about this series at http://www.springer.com/series/6001

http://www.springer.com/series/6001


Valia Allori • Angelo Bassi • Detlef Dürr •

Nino Zanghi
Editors

Do Wave Functions Jump?
Perspectives of the Work of GianCarlo
Ghirardi

123



Editors
Valia Allori
Department of Philosophy
Northern Illinois University
Naperville, IL, USA

Detlef Dürr
Mathematisches Institut
LMU
Munich, Germany

Angelo Bassi
Department of Physics
University of Trieste
Trieste, Italy

Nino Zanghi
Dipartimento di Fisica INFN-Sezion
Universitá di Genova
Genoa, Italy

ISSN 0168-1222 ISSN 2365-6425 (electronic)
Fundamental Theories of Physics
ISBN 978-3-030-46776-0 ISBN 978-3-030-46777-7 (eBook)
https://doi.org/10.1007/978-3-030-46777-7

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-46777-7


Preface

On 1 June 2018, GianCarlo Ghirardi died unexpectedly in his summer resort home
in Grado, Italy. He was born in Milan on 28 October 1935. He had maintained
lifelong loyalty to Trieste where he became professor in 1959. Trieste was also
home to the internationally renowned ICTP—a centre of science and education
which allowed him to host many scientists in his field of research. Many of the
contributors to this volume came to visit him and the beautiful coastal landscape
which he treasured so much.

His contributions to the foundations of quantum physics gave him a worldwide
reputation of excellence. He maintained a close and mutually enriching friendship
with John Stewart Bell which ended with Bell’s death in 1990. It was Bell who
coined the acronym “GRW theory” for the theory which Ghirardi had invented with
his long time collaborators Alberto Rimini and Tullio Weber: a theory of physically
induced wave function collapse—of wave function jumps—and John Bell was the
first to catch on.

This book in honour of the philosopher-physicist GianCarlo Ghirardi is not a
“that was your life” review. We, the editors, who were among GianCarlo’s closest
friends and collaborators, felt that GianCarlo would have much preferred a col-
lection of contributions by leading scientists and “youngsters” whose research has
been influenced or in some way triggered by his own writings. Since we mention
“youngsters”, GianCarlo spent much of his time teaching young researchers what
quantum theory ought not to be about, namely “observers”. GRW theory is a
“quantum theory without observers”, a notion also coined by John Bell. The
conferences and workshops organized with GianCarlo were always structured as
platforms for young researchers to meet, learn about, and discuss the modern
foundations of quantum physics. It is therefore no surprise that the contributors to
this volume range from young researchers to established senior scientists.

When we learned of GianCarlo’s death, we suggested to Springer editor Angela
Lahee, who was well acquainted with GianCarlo, that it would be interesting to
publish an honorary volume with hand-selected original contributions, spanning
a wide range of topics, including philosophy, physics, and mathematical physics,
and of a rigorous, speculative, or prospective nature. She agreed at once. The
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overwhelming response to our invitations for contributions was, however, unex-
pected. For easier access, we decided on a rough categorization of the contributions,
although we were well aware that no categorization would ever be perfect: Part I
History and Honour, Part II Philosophy, Part III Mathematical Physics, Part IV
Theoretical Physics, and Part V Experimental Physics.

Let us say a few words about each of the chapters in each part. The order is
always alphabetical.

Part I: History and Honour

In “GianCarlo Ghirardi: Passing the Torch on Collapse Models”, Stephen L. Adler
(IAS Princeton) briefly reviews his acquaintance with GianCarlo, which led to a
fruitful collaboration with Angelo Bassi, a former Ph.D. student of GianCarlo.

The nonlocality of nature, discovered by John Bell (it’s not so easy to get that
discovery across to people), was always one of GianCarlo’s concerns, because
of the tension it creates with relativity. In “EPR–Bell–Schrödinger Proof of
Nonlocality Using Position and Momentum”, Jean Bricmont (Louvain la Neuve)
and Sheldon Goldstein (Rutgers, NJ.) deliver a new and surprising proof of
nonlocality using the original variables considered by Einstein, Podolsky, and
Rosen in their seminal paper.

GianCarlo had an excellent understanding of the nature of statistical reasoning in
physics, based on Ludwig Boltzmann’s insights. Actually on my (D.D.’s) first visit
to the ICTP, GianCarlo informed me that, Boltzmann had committed suicide
nearby, in Duino, in 1906. Even now, Boltzmann’s statistical reasoning is some-
times questioned. In “Typicality in the Foundations of Statistical Physics and
Born’s rule”, Detlef Dürr (LMU) and Ward Struyve (KU-Leuven) repeat once
again the essential insights of that reasoning, which go hand in hand with the role of
chance in physics and in particular in quantum physics.

GRW theory is but one of many possible collapse theories which were invented
in parallel, for example by Lajos Diosi. While GRW theory localizes the wave
function in a discrete time jump process, other models, including Diosi’s, involve
continuous localization. In “Presentation of Collapse Models”, Luca Ferialdi
(University of Trieste) gives an expert up-to-date overview of collapse models.

GRW theory is a quantum theory without observers. The collapse of the wave
function just happens by dictate of the theory. That’s easily said, but was it
understood? In “Appreciating What He Did”, Tim Maudlin (NYU) describes the
true physical depth of GRW theory in his inimitable and precise way.

Part II: Philosophy

In his chapter “The GRW Theory and the Foundations of Statistical Mechanics”,
David Albert (Columbia University) wishes to explore how the GRW theory
contributed to the foundations of statistical mechanics. In Albert’s reconstruction
of the Boltzmann explanatory schema of statistical mechanics, in order to derive the
macroscopic laws which govern thermodynamic phenomena from the microscopic
Newtonian dynamics, one would also need a statistical postulate, to ground the
meaning of the probabilities arising from the statistical derivation of the laws
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of thermodynamics (in addition to the assumption that the universe started out with
a low entropy to guarantee that entropy will likely increase in the future but not in
the past). Albert argues that for the GRW theory there would be no need for such an
additional postulate because this theory can provide a dynamical explanation of
probabilities. If so, the statistical mechanical probabilities would just be the
quantum mechanical probabilities. The idea is that entropy-decreasing (abnormal)
microstates are very unstable, since they are almost always surrounded by normal
entropy-increasing (normal) microstates. So, a wave function collapse in the GRW
theory, with overwhelming likelihood, will make an abnormal microstate “jump”
into a normal one. As a consequence, Albert argues, one can account for the second
law of thermodynamics entirely in terms of the microscopic constituents and the
dynamics, without postulating anything else.

Aside from the chapters by Albert and Laudisa (see below), the other chapters in
this part discuss the implications of the GRW theory for the foundations of quantum
theory. In particular, they engage with the issue of whether or not the wave function
can be associated with a suitable material ontology, and if this is not the case, which
of the alternative possibilities is to be preferred. GianCarlo never thought of
quantum theory in instrumentalist terms, merely as a tool for predicting measure-
ment results. It is clear from the title of the 1986 paper, in which he (with his
colleagues and friends Alberto Rimini and Tullio Weber) introduced his theory of
spontaneous collapse, that he wanted to provide a dynamics which could unify the
macroscopic and the microscopic world, without ever resorting to the notion of
measurement in the formulation of the theory. Later, however, he became sceptical
of the idea that the wave function could describe physical objects, and he
accordingly postulated that matter is described by a continuous matter field in
three-dimensional space, defined in terms of the wave function. The GRW theory
with GianCarlo’s matter density ontology, in the literature dubbed GRWm, is an
example of a theory with a primitive ontology, in which matter is not described by
the wave function but rather by some other entity in three-dimensional space or
four-dimensional space-time. GRWm is compared with other proposals for the
ontology of matter. One now famous theory called GRWf was put forward by
John S. Bell, who suggested that the world might be a collection of instantaneous
“flashes”. Another alternative is a particle ontology for the GRW theory, dubbed
GRWp.

The idea of a particle GRW theory is taken up by Valia Allori (Northern Illinois
University). In her “Spontaneous Localization Theories with a Particle Ontology”,
she first argues that a primitive ontology is needed because a satisfactory realist
theory should provide a microscopic, dynamical explanation of the phenomena
(rather than “closing the circle” from experience and back), and that can only be
accomplished in terms of a three-dimensional ontology. She then explores the
possibility of having a particle GRW theory, starting by pointing out the advantages
of such a theory in terms of super-empirical virtues (simplicity, explanatory power,
compatibility with scientific realism). In addition, she uses the same criteria to rank
the various particle GRW theories proposed in the literature, after having analysed
their tenability on the basis of criteria such as empirical adequacy, equivariance, and

Preface vii



empirical coherence. Finally, she compares the best particle GRW theory with
GRWm and GRWf, pointing out that considerations of relativistic invariance will
determine the final ranking, and sketching ways in which a relativistic particle
GRW could be constructed.

In his “From the Measurement Problem to the Primitive Ontology Programme”,
Michael Esfeld (University of Lausanne) also argues that one needs some primitive
ontology and discusses the advantages and disadvantages of GRWf over GRWm
and GRWp. He argues that the flash ontology is the most desirable for GRW
because the problems of GRWm and GRWp do not appear in GRWf, while
objections to GRWf are generally less severe than the problems with GRWm.

On a different front, in his “Might Laws of Nature ‘Ground’ Phenomena?”,
Federico Laudisa (University of Trento) takes up the issue of the nature of laws in
the GRW framework. In more detail, the GRW theory allows for a realist inter-
pretation of quantum theory, and this raises two broad sets of questions: what is
matter according to the theory, and what laws are there to govern the behaviour of
such matter. While the first question leads to discussions about the nature of the
wave function, the second question requires us to investigate the nature of these
laws. Laudisa argues against the Humean view, according to which laws of nature
are mere regularities, and defends a primitivist account, in which laws are
unanalysed primitives. Then he uses the metaphysical notion of grounding to
provide a new characterization of the idea of a governing law, proposing that a law
grounds its instances.

In his “On Closing the Circle”, Peter J. Lewis (Dartmouth College) goes back to
the issue of the ontology of matter, and disputes the necessity of a primitive
ontology for the GRW theory. He argues that the theory can satisfactorily “close the
circle” from human experiences and back, provided that one thinks of the wave
function structurally. However, Lewis concludes that there is another problem,
namely that the GRW theory cannot account for the concept of particle we use in
microscopic quantum mechanical explanations. One could bypass this problem
with a particle GRW theory, but Lewis concludes that would give rise to other,
more serious, problems.

Part III: Mathematical Physics

Completely positive master equations guarantee full consistency of quantum
dynamics. After showing that the master equation associated with the GRW model
is Markovian and completely positive, F. Benatti and F. Gebbia (University of
Trieste) consider a generalization of the GRW model that leads to a non-Markovian
master equation. Since general considerations on complete positivity of such
extended GRW models are extremely difficult, the authors focus on specific
examples to shed light on the complexity of the problem.

One of GianCarlo’s early studies concerned the decay of unstable systems. This
inspired young researchers to delve into the mathematical physics of the expo-
nential decay of nuclei. A short discussion of the modern state of the art is given by
Robert Grummt and Nicola Vona (LMU) in “Energy–Lifetime Relations”.
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According to the original GRW theory, wave functions jump. In other collapse
models the jumps are smoothed out and the change is continuous. In “On the
Continuum Limit of the GRW Model”, Günter Hinrichs (University of Augsburg)
explains a strategy for making the transition from jumps to continuous change
of the wave function.

For collapse models to be of physical relevance, in any measurement situation
they must provide a transition of an initial wave function to a final one according to
Born’s rule. When the transition is examined with mathematical rigour, the
dynamical behaviour in continuous collapse processes is found to be surprisingly
complex, and one must ask whether signals of that complexity are experimentally
verifiable. In “Continuous Collapse Models on Finite Dimensional Hilbert Spaces”,
Antoine Tilloy (MPI for quantum optics Munich) explains in a didactic manner
how complexity is accompanied in his models by the appearance of “spikes” (very
sharp transition peaks).

Part IV: Theoretical Physics

The collapse mechanism (narrowing the wave function) results in an energy
increase which in the case of relativistic models leads to yet another divergence. In
“Collapse Models, Relativity, and Discrete Spacetime”, Daniel J. Bedingham
(University of London) shows how the divergent behaviour can be regularized by a
strategy discretising relativistic space-time.

Continuous spontaneous collapse models offer predictions that are experimen-
tally distinguishable from standard quantum mechanics. In “Opto-Mechanical Test
of Collapse Models”, Matteo Carlesso (University of Trieste) and Mauro
Paternostro (Queen’s University Belfast) discuss current and proposed experi-
mental tests of spontaneous collapse models, focusing on non-interferometric tests.
An opto-mechanical set-up for testing collapse models is reviewed in detail and it is
shown how the sensitivity of the experiment is affected by system size, properties
of the mechanical system, and the surrounding environment.

Recent experimental tests of the Continuous Spontaneous Localisation
(CSL) model involve the use of opto-mechanical systems, such as cantilevers. This
class of experiments exploits the dependence of extra CSL-induced noise on the
specific geometry of the test particle, by using probes with cavities or a layered
structure. Lajos Diósi (Winger Center) provides a more robust mathematical
description of the phenomenon in his “Two Invariant Surface-Tensors
Determine CSL of Massive Body Wave Function”. In particular, the author
shows that, under certain regimes of approximation, the effect of CSL on
opto-mechanical probes is a surface effect, and can be fully characterized in terms
of the body’s surface tensors and the mass density.

One of the characteristic traits of collapse models is radiation emission from any
charged particle, induced by the noise causing the collapse of the wave function. It
is important to analyse this process to analyse because it sets strong bounds on the
collapse parameters. Sandro Donadi (IAS Frankfurt) gives a historical overview
of the problem, summarizing the main theoretical results for the CSL model, as well
as for the non-Markovian QMUPL model.
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A different approach, yet close to GRW ideas, in that the collapse of the state is
part of the theory, is presented in a very accessible manner by Jürg Fröhlich
(ETH). In his chapter “Relativistic Quantum Theory”, reality is to be read off from a
Tree of Histories of Events (this is one interpretation of the acronym “ETH theory”
which Jürg gave to his theory). This presentation could also have been categorized
under Mathematical Physics, as it draws substantially from results on operator
algebras.

The intersection between quantum mechanics and gravity is still not well
understood by physicists. In the chapter “Classically Gravitating Quantum
Systems” André Großardt (University of Jena) reviews experiments that are
designed to see whether gravity is a fundamentally classical force. This chapter
discusses how spontaneous collapse models coupled to gravity predict that gravity
is classical and how they might give a solution to the problem of causality with
classical gravity.

The modified Schrödinger equation of collapse models does not rely on the
presence of an observer, and the predictions of these theories are falsifiable.
Motivated by these facts, in “Collapse Models and Cosmology”, Jérôme Martin
and Vincent Vennin (IAP, Paris), inspired by the CSL model, implement a
dynamical collapse model in a cosmological setting. They calculate the associated
inflationary power spectrum, and compare their results with those coming from
CMB measurements, constraining the two parameters of the model. They stress the
importance of considering a cosmological setting as an arena to test collapse
models.

In cosmology, the emergence of the primordial seeds of structure in the Universe
as a result of quantum fluctuations during the inflationary epoch has become the
accepted idea within the community. However, in “Spontaneous Collapse Theories
and Cosmology”, Daniel Sudarsky (ICN-UNAM) points out some conceptual
difficulties in the standard approach. In the framework of semiclassical general
relativity, he incorporates spontaneous collapse theories as a possible solution to
these difficulties. In particular, his model can account for the lack of detection of
primordial tensor modes at the level predicted by the standard approach.

The tension between Lorentz invariance and wave function collapse (or more
generally between nonlocality and relativity) was always GianCarlo’s main con-
cern. His hope was to find a gratifying solution to this problem, following John
Bell’s remarks about the GRW invention: It takes away the ground of my fear that
any exact formulation of quantum mechanics must conflict with fundamental
Lorentz invariance. In 2004, Roderich Tumulka (University of Tübingen) devised
a much acclaimed Lorentz invariant collapse model—albeit a non-interacting one.
In this model, reality is imagined to be constituted by the formation of collapse
centres called “flashes”. In “A Relativistic GRW Flash Process with Interaction”, he
presents the generalization to an interacting collapse theory.

Dynamical reduction models and the theory of open quantum systems share the
same mathematical structure in their description of the dynamics of the density
matrix. Bassano Vacchini (University of Milan) reviews this link in “Non-Markov
Processes in Quantum Theory”. The author pays particular attention to
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non-Markovian processes because they are the most general class of non-unitary
dynamics, and can, therefore, describe a broader spectrum of collapse models.

Part V: Experimental Physics

Technological advancement is bringing experimental tests of alternative quantum
theories closer and closer. In this context, N. Ares, A. N. Pearson, and G. A. D.
Briggs (University of Oxford) provide an account of the future prospects for
addressing fundamental questions in quantum theory. They do so by proposing a
manifesto of eight questions that addresses the interplay between theories and
experiment, as well as the various open questions in quantum mechanics, such as
the role of gravity.

The creation of a superposition and the measurement of its interference fringes in
a matter-wave experiment is the most natural way to test spontaneous collapse
models. In “Interferometric Tests of Wave-Function Collapse”, Stefan Gerlich,
Yaakov Y. Fein, and Markus Arndt (University of Vienna) present a compre-
hensive overview of these experiments, with special reference to collapse model
testing.

Space offers a unique environment for testing spontaneous collapse models and
the limits of the quantum theory. In “Tests in Space”, Rainer Kaltenbaek
(University of Ljubljana) describes the state of the art of Earth-based experiments
and the advances that could be made by bringing them into space.

Collapse models predict that charged particles should radiate when interacting
with collapse noise. In “Sneaking a Look at Ghirardi’s Cards: Collapse Models
Mapped with the Spontaneous Radiation”, K. Piscicchia (Centro Fermi & INFN),
R. Del Grande, M. Laubenstein, and C. Curceanu (INFN) analyse X-ray spectra
measured in high precision low-background experiments and compare their results
with the predictions of the CSL and DP models.

A plethora of different interferometric and non-interferometric experiments are
potentially able to test spontaneous collapse models. In “New Avenues for Testing
Collapse Models”, Andrea Vinante and Hendrik Ulbricht (University of
Southampton) provide a survey of such experimental efforts and offer a panorama
for possible future research.

Naperville, USA Valia Allori
Trieste, Italy Angelo Bassi
Landsberg, Germany Detlef Dürr
Genoa, Italy
March 2020

Nino Zanghì
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GianCarlo Ghirardi: Passing the Torch
on Collapse Models

Stephen L. Adler

Abstract I describe how I became interested in the quantummeasurement problem,
and how I learned about the important work of Ghirardi, Rimini, and Weber and of
Pearle. I first met Ghirardi in Trieste in 1999, and through him met Angelo Bassi,
with whom I have had a long and fruitful friendship and collaboration focusing on
the phenomenology and experimental tests of collapse models.

My interest in collapsemodels began in the late 1990s. For several years I had been
working on ideas stemming from the paper “Generalized quantum dynamics as pre-
quantummechanics”which Iwrotewithmygraduate studentAndrewMillard in 1996
[1]. This work, which suggested a pre-quantum theory based on a non-commutative
extension of classical mechanics, later became the basis for the “trace dynamics” on
which I wrote my 2004 book “Quantum Theory as an Emergent Phenomenon” [2].
Ever since an anonymous reviewer’s report for my earlier book on “Quaternionic
Quantum Mechanics and Quantum Fields” [3] asked whether quaternionic quantum
theory solves the quantum measurement problem, I had started to read the quantum
measurement literature. I soon became convinced that the old advice “shut up and
calculate” wasn’t good enough; there really is a problem, and any linear quantum
dynamics, whether complex linear or quaternion linear, cannot resolve it. So along
with thinking about technicalities of the trace dynamics program, I also started to
think about how a pre-quantum theory could lead to a phenomenology for explaining
how measurements take place in standard quantum theory.

I first became aware of the work of Ghirardi, Rimini, and Weber, and of Pearle,
through coming across papers by Fivel [4] on dynamical reduction andwave function
collapse. Reading the GRW and Pearle papers, I was struck with how the idea of a
stochastic reduction mechanism fits neatly into my basic idea of the trace dynamics
program, that quantum theory is the thermodynamics of an underlying pre-quantum
dynamics. Classical thermodynamics has an underlying statistical mechanics, which
leads to fluctuation or Brownian motion effects. Similarly, a thermodynamics giv-

S. L. Adler (B)
Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
e-mail: adler@ias.edu
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4 S. L. Adler

ing rise to quantum theory should also have stochastic corrections, and the objec-
tive reduction model ideas fit this framework: thermodynamics of trace dynamics
gives linear quantum dynamics; fluctuation corrections lead to the phenomenology
of reduction models, and an explanation of quantum measurements.

Around the same time I came across a paper by Hughston [5] giving a geometric
reformulation of stochastic state vector reduction, and the sketch of a proof, miss-
ing one key identity in the general case, of reduction leading to the Born rule. In
collaboration with Horwitz [6], I derived additional needed identities and wrote a
paper giving a general proof of state vector collapse with probabilities obeying the
Born rule. We also showed that the proof could be simply cast in terms of the density
matrix evolution, avoiding the complicated geometric structure on which Hughston’s
approach is based.

My paper with Horwitz came to the attention of Ghirardi, with the effect that when
I came to Trieste in June, 1999 to give my Dirac Medal lecture, Ghirardi came to talk
tome. He pointed out that in the original Continuous Spontaneous Localization paper
of Ghirardi et al. [7], there is a section which I had not appreciated proving that CSL
implies reduction to the Born Rule. Ghirardi also made a point of introducing me to
his then graduate student Angelo Bassi. This led to what is now a 20year friendship,
and collaboration, with Angelo on phenomenology of reduction models. I have been
particularly interested in turning reduction models from a subject of philosophical
discussion to a subject of active experimentation, with the ultimate aim of verifying,
or falsifying, these models as an explanation of how quantum measurements occur.
Angelo has enthusiastically embraced this approach, and has a large group in Trieste
working on aspects of the theory and experimental tests of models for wave function
collapse.

Looking back, I seemy first meetingwithGianCarlo Ghirardi and his introduction
of me to Angelo Bassi as a symbolic “passing of the torch”. As the years have gone
by the main work on collapse models in Trieste has passed to the Bassi group, which
is now at the forefront of efforts to assess whether collapse models, which I find to
be theoretically beautiful and compelling as a phenomenology of measurement, are
in fact Nature’s choice.
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EPR-Bell-Schrödinger Proof
of Nonlocality Using Position
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Abstract Based on his extension of the classical argument of Einstein, Podolsky and
Rosen, Schrödinger observed that, in certain quantum states associated with pairs of
particles that can be far away from one another, the result of the measurement of an
observable associated with one particle is perfectly correlated with the result of the
measurement of another observable associated with the other particle. Combining
this with the assumption of locality and some “no hidden variables” theorems, we
showed in a previous paper [11] that this yields a contradiction. This means that
the assumption of locality is false, and thus provides us with another demonstration
of quantum nonlocality that does not involve Bell’s (or any other) inequalities. In
[11] we introduced only “spin-like” observables acting on finite dimensional Hilbert
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spaces. Here we will give a similar argument using the variables originally used by
Einstein, Podolsky and Rosen, namely position and momentum.

1 Introduction

In 1935, Einstein, Podolsky and Rosen (EPR) argued that quantum mechanics is
incomplete by considering two particles in one dimension moving in opposite direc-
tions and whose joint wave function (see (3.2.1) below) was such that the measure-
ment of the position of one of the particles immediately determined the position of
the other particle and, similarly, the measurement of the momentum of one of the
particles immediately determined the momentum of the other one.

Since, saidEPR, ameasurementmade onone particle obviously could not possibly
influence the physical state of the other particle, situated far away from the first
particle, and since the wave function of both particles specifies neither the position
nor the momentum of those particles, this quantum mechanical description of the
state of both particles provided by this wave function must be incomplete in the
sense that other variables, such as the values of the positions and momenta of both
particles, must be included in a complete description of that physical system.

EPR’s argument had been widely misunderstood and misrepresented or ignored
by almost everybody at that time. But not by Schrödinger, who, in his “cat paper,”
originally published in German [34], as well as in the papers [35, 36], understood
the “paradox” raised by EPR and deepened the perplexity that it causes.

Schrödinger showed that for certain states, called now maximally entangled (see
Sect. 2.1), it is not just that the positions and themomenta of the particles are perfectly
correlated. He showed that, for every observable associated with the first particle,
there is another observable associated with the second particle such that the results
of the measurements of both observables are perfectly correlated.

In [11], following [24, 25], we explained that, if one assumes locality, mean-
ing that there is no effect whatsoever on the state of the second particle due to a
measurement carried out on the first particle (when both particles are sufficiently
spatially separated), there must exist what we call a “non-contextual value map” v

which assigns to each observable A a value v(A) that pre-exists its measurement and
is simply revealed by it. The word “non-contextual” refers to the fact that, since it
pre-exists the measurement, the value v(A) does not depend on the procedure used
to measure A.

However several theorems, originally due to Bell [3] and to Kochen and Specker
[27], preclude the possibility of a non-contextual value map.1 Since the existence of
this map is a logical consequence of the assumption of locality and of the perfect
correlations, the assumption of locality is false.

1In the literature on quantum mechanics, these theorems are often called “no hidden variables”
theorems. But we prefer the expression “inexistence of a non-contextual value map” because, as
we will discuss in Sect. 5, the expression “hidden variables” is really a misnomer.
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In this paper,wefirst summarize the arguments of our previous paper [11] (Sect. 2).
We then turn to the EPR paper as well as related work by Einstein alone and
Schrödinger (Sect. 3). Next, we provide a proof of nonlocality similar to the one of
Sect. 2, but using only functions of the EPR variables, namely positions andmomenta
(Sect. 4). This argument relies on a theorem of Clifton [14].

We then consider what happens in Bohmian mechanics (Sect. 5): in that theory,
particles have, at all times, both a position and a momentum and one might therefore
think that this would imply the existence of a non-contextual value-map for functions
of those variables. We explain however, through an analysis of what a measurement
of momentummeans in that theory, that this is not the case. Finally we briefly discuss
how nonlocality manifests itself in Bohmian mechanics.

For a discussion of the relationship between thiswork andprevious ones, including
[1, 12, 13, 20, 26, 37], see Sect. 7 of [11].

2 Proof of Nonlocality Based on Perfect Correlations

Wewill first discuss special quantum states, called maximally entangled, for pairs of
physical systems that can possibly be located far apart, and having the property that,
for each quantum observable of one of the systems, there is an associated observable
of the other one such that the result of the measurement of that observable is perfectly
correlated with the result of the measurement on the first one.

2.1 Maximally Entangled States

Consider a finite dimensional (complex) Hilbert space H, of dimension N , and
orthonormal bases ψn and φn inH (we will assume below that all bases are orthonor-
mal). A unit vector � inH ⊗ H is maximally entangled if it is of the form

� = 1√
N

N∑

n=1

ψn ⊗ φn. (2.1.1)

Since we are interested in quantum mechanics, we will refer to those vectors as
maximally entangled states and we will associate, by convention, each space in the
tensor product with a “physical system,” namely we will consider the set {φn}N

n=1
as a basis of states for physical system 1 and the set {ψn}N

n=1 as a basis of states for
physical system 2.

Now, given a maximally entangled state, one can associate to each operator of the
form 1 ⊗ O (meaning that it acts non-trivially only on particle 1) an operator of the
form Õ ⊗ 1 (meaning that it acts non-trivially only on particle 2). Here 1 denotes
the identity operator on H.
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Define the operator U mapping H toH by setting

Uφn = ψn, (2.1.2)

∀n = 1, . . . , N , and extending U to an anti-linear operator on all of H:

U

(
N∑

n=1

cnφn

)
=

N∑

n=1

c∗
nUφn =

N∑

n=1

c∗
nψn (2.1.3)

where ∗ denotes the complex conjugate.
Using the operator U , the state � in (2.1.1) can be written as:

� = 1√
N

N∑

n=1

Uφn ⊗ φn. (2.1.4)

It is easy to check that this formula is the same for any basis, see [11, Eq.3.1.8].
U thus determines, and is uniquely determined by, a maximally entangled state�.
Given such a state �, and hence U , we may associate to every operator of the

form 1 ⊗ O an operator of the form Õ ⊗ 1 by setting

Õ = UOU−1. (2.1.5)

Suppose φn are eigenstates of O, with eigenvalues λn,

Oφn = λnφn. (2.1.6)

Then, the states ψn = Uφn are eigenstates of Õ, also with eigenvalues λn:

Õψn = λnψn. (2.1.7)

This implies and is in fact equivalent to the following relationship between the oper-
ators O and Õ:

(O ⊗ 1 − 1 ⊗ Õ)� = 0, (2.1.8)

directly expressing the fact that, in the state �, O ⊗ 1 and 1 ⊗ Õ are perfectly
correlated.

We may summarize this as follows:

Theorem 2.1 Consider a finite dimensional Hilbert space H, of dimension N, and a
maximally entangled state � ∈ H ⊗ H. Then, for any self-adjoint operator O acting
on H, there exists a self-adjoint operator Õ acting on H such that (2.1.8) holds.

Remarks

1. A simple example of a maximally entangled state is:
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|�〉 = 1√
2

(| ↑〉| ↓〉 − | ↓〉| ↑〉), (2.1.9)

where the right factors refer to system 1 and left ones to system 2. That state,
according to ordinary quantum mechanics, means that the spin measured on
system 1 will have equal probability to be up or down, but is perfectly anti-
correlated with the spin measured on system 2.
In the notation of (2.1.1), one has:

φ1 = | ↑>, φ2 = | ↓>, ψ1 = −| ↓>, ψ2 = | ↑>,

and therefore,

U | ↑> = −| ↓>,

U | ↓> = | ↑> .

If one takes

O =
(
1 0
0 −1

)
(2.1.10)

which corresponds to the spin operator for system 1 and has eigenvectors φ1

with eigenvalue 1 and φ2 with eigenvalue −1, one computes that

Õ = UOU−1 =
(−1 0

0 1

)
= −O, (2.1.11)

which means that the spin operator for systems 1 and 2 are perfectly anti-
correlated, since Õ is minus the spin operator for system 2.
We will use later the following:

2. Products of maximally entangled states are maximally entangled states: If one
has two Hilbert spacesH1,H2, and two maximally entangled states �i ∈ Hi ⊗
Hi, i = 1, 2, then it is easy to check that the state � = �1 ⊗ �2 is maximally
entangled in H ⊗ H, where H = H1 ⊗ H2 (under the canonical identification
of (H1 ⊗ H1) ⊗ (H2 ⊗ H2) withH ⊗ H).

Let us now see what this notion of maximally entangled state implies for quantum
measurements.

Suppose that we have a pair of physical systems, whose states belong to the same
finite dimensional Hilbert spaceH. And suppose that the quantum state� of the pair
is maximally entangled, i.e. of the form (2.1.1).

Any observable acting on system 1 is represented by a self-adjoint operator O,
which has therefore a basis of eigenvectors. Since the representation (2.1.4) of the
state � is valid in any basis, we may choose, without loss of generality, as the set



10 J. Bricmont et al.

{φn}N
n=1 in (2.1.1) the eigenstates of O. Let λn be the corresponding eigenvalues, see

(2.1.6).
If one measures that observable O, the result will be one of the eigenvalues λn,

each having equal probability 1
N . If the result is λk , the (collapsed) state of the system

after the measurement, will be ψk ⊗ φk . Then, the measurement of observable Õ,
defined by (2.1.5), (2.1.2), on system 2, will necessarily yield the value λk .

Reciprocally, if one measures an observable Õ on system 2 and the result is λl ,
the (collapsed) state of the system after the measurement, will be ψl ⊗ ψl , and the
measurement of observable O on system 1 will necessarily yield the value λl .

To summarize, we have derived the following consequence of the quantum for-
malism:

Principle of Perfect Correlations. In any maximally entangled quantum state,
of the form (2.1.1), there is, for each operator O acting on system 1, an operator Õ
acting on system 2 (defined by (2.1.5), (2.1.2)), such that, if one measures the physical
quantity represented by operator Õ on system 2 and the result is the eigenvalue λl

of Õ, then, measuring the physical quantity represented by operator O on system 1
will yield with certainty the same eigenvalue λl , and vice-versa.2

2.2 Schrödinger’s “Theorem”

The following property will be crucial in the rest of the paper.
Locality. If systems 1 and 2 are spatially separated from each other, then mea-

suring an observable on system 1 has no instantaneous effect whatsoever on system
2 and measuring an observable on system 2 has no instantaneous effect whatsoever
on system 1.

Finally, we must also define:
Non-contextual value-maps. LetH be a finite dimensional Hilbert space and let

A be the set of self-adjoint operators on H. Suppose H is the quantum state space
for a physical system and A is the set of quantum observables. Suppose there are
situations in which there are observables A for which the result of measuring A is
determined already, before the measurement. Suppose, that is, that A has, in these
situations, a pre-existing value v(A) revealed bymeasurement and notmerely created
by measurement. Of course, this implies that for every experiment EA measuring A,
the result v(EA) of that experiment, in the situation under consideration, must be
v(A). And suppose finally that the situation is such that we have a pre-exiting value
v(A) for every A ∈ A.

We would then have a non-contextual value-map, namely a map v : A → R that
assigns the value v(A) to any experiment associated with what is called in quantum
mechanics a measurement of an observable A. There can be different ways to mea-
sure the same observable. The value-map is called non-contextual because all such

2The correlations mentioned here are often called anti-correlations, for example when Õ = −O, as
in the example of the spin in remark 1 above.
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experiments, associated with the same quantum observable A, are assigned the same
value.

This notion of value-map is not a purely mathematical one, since it involves the
notion of an experiment that measures a quantum observable A, which we have
not mathematically formalized. However, we shall need only the following obvious
purely mathematical consequence of non-contextuality.

A non-contextual value-map has the fundamental property that, ifAi , i = 1, . . . , n,
are mutually commuting self-adjoint operators onH, [Ai, Aj] = 0,∀i, j = 1, . . . , n,
then, if f is a function of n variables and B = f (A1, . . . , An), then

v(B) = f (v(A1), . . . , v(An)). (2.2.1)

It is a well-known property of quantum mechanics that, since all the operators
A1, . . . , An, B commute, they are simultaneously measurable and the result of those
measurements must satisfy (2.2.1).

But, and this is what we emphasized in [11], (2.2.1) follows trivially from the non-
contextuality of the value-map. Indeed, a valid quantum mechanical way to measure
the operator B = f (A1, . . . , An) is to measure A1, . . . , An and, denoting the results
λ1, . . . ,λn, to regard λB = f (λ1, . . . ,λn) as the result of a measurement of B. Since,
by the non-contextuality of the map v, all the possible measurements of B must yield
the same results, (2.2.1) holds.

Thus, once one has a non-contextual value-map, one does not even need to check
(2.2.1).

Now we will use the perfect correlations and locality to establish the existence
of a non-contextual value-map v, for a maximally entangled quantum state of the
form (2.1.1) or, equivalently, (2.1.4). By the principle of perfect correlations, or any
operatorO on system 1, there is an operator Õ on system 2, defined by (2.1.5), (2.1.2),
which is perfectly correlated with O through (2.1.8).

Thus, if we were to measure Õ, obtaining λl , we would know that

v(O) = λl (2.2.2)

concerning the result of then measuring O. Therefore, v(O)would pre-exist the mea-
surement of O. But, by the assumption of locality, the measurement of Õ, associated
with the second system, could not have had any effect on the first system, and thus,
this value v(O)would pre-exist also themeasurement of Õ and this would not depend
upon whether Õ had been measured. Letting O range over all operators on system 1,
we see that there must be a non-contextual value-map O → v(O).

To summarize, we have shown:

Schrödinger’s “Theorem”. Let A be the set of self-adjoint operators on the com-
ponent Hilbert spaceH of a physical system in a maximally entangled state (2.1.1).
Then, assuming locality and the principle of perfect correlations, there exists a non-
contextual value-map v : A → R.

Remark
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We put “Theorem” in quotation marks because the statement concerns physics
and not just mathematics. Its conclusions are nevertheless inescapable assuming
the hypothesis of locality and the empirical validity of the principle of perfect
correlations, a principle which is, as we showed, a consequence of the quantum
formalism.

2.3 The Non-existence of Non-contextual Value-Maps

The problem posed by the non-contextual value-map v whose existence is implied by
Schrödinger’s “theorem” is that such maps simply do not exist (and that is a purely
mathematical result). Indeed, one has the:
“Theorem”: Non-existence of non-contextual value-maps. Let A be the set of
self-adjoint operators on the Hilbert spaceH of a physical system. Then there exists
no non-contextual value-map v : A → R.

This “theorem” is an immediate consequence of the following theorem, since
(2.3.1), (2.3.2) are consequences of (2.2.1).3

Theorem 2.2 Let H be a finite dimensional Hilbert space of dimension at least
three, and let A be the set of self-adjoint operators on H. There does not exist a map
v : A → R such that:

(1) ∀O ∈ A,
v(O) is an eigenvalue of O (2.3.1)

(2) ∀O, O′ ∈ A with [O, O′] = OO′ − O′O = 0, and for any real valued function
f of two real variables,

v(f (O, O′)) = f (v(O), v(O′)). (2.3.2)

See [11] for a discussion of the proof of the theorem, which is a consequence of
stronger theorems, originally due to Bell [3] and to Kochen and Specker [27], with
simplified proofs of Theorem2.2 due to Mermin [28], and to Peres [31, 32].

2.4 Nonlocality

The conclusion of Schrödinger’s “theorem” and of the “Theorem” on the non-
existence of non-contextual value-maps plainly contradict each other. So, the assump-

3This is obvious for (2.3.2), a special case of (2.2.1). For (2.3.1) we observe that, since O is self-
adjoint, we can write O = ∑

i λiPλi where Pλi is the projector on the subspace of eigenvectors of
eigenvalue λi of O and thus we have that f (O) = ∑

i f (λi)Pλi . If we choose any f whose range is
the set of eigenvalues of O and is such that f (λi) = λi ∀i, we have that O = f (O) and, by (2.2.1),
we obtain that v(O) = v(f (O)) = f (v(O)) and thus v(O) is an eigenvalue of O.
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tions of at least one of them must be false. Moreover, the stronger Theorem2.2 is
a purely mathematical result. To derive Schrödinger’s “theorem,” we assume only
the perfect correlations and locality. The perfect correlations are an immediate con-
sequence of quantum mechanics. The only remaining assumption is locality. Hence
we can deduce:

Nonlocality “Theorem”. The locality assumption is false.
See [11, Sects. 5, 7] for a discussion of the relation between this proof and other

proofs of nonlocality.

3 The Original EPR Argument

Let us now turn to the original EPR argument [18] and explain its connection to the
notion of locality. EPR gave both a general argument and a specific example.

3.1 EPR’s General Setup

For their general argument, EPR considered a system of two particles, 1 and 2, in one
dimension, that may be far apart and a physical quantity represented by a self-adjoint
operator O that acts on system 1. We shall assume that O has an orthonormal basis
of eigenvectors φn(x1) with eigenvalues λn.

One can then write the joint state of both particles as:

�(x1, x2) =
∞∑

n=1

ψn(x2)φn(x1), (3.1.1)

where ψn(x2) are the (x2 dependent) coefficients of that expansion.4

After a measurement of O on system 1, if the result is λl , then the state collapses
to ψl(x2)φl(x1), i.e. φl(x1) for the first particle and ψl(x2) for the second.

If, on the other hand, one considers a physical quantity represented by an operator
O′ that acts on system 1, and one assumes that O′ has eigenvectors φ′

s(x1) and
eigenvalues μs, one can write the joint state as:

�(x1, x2) =
∞∑

s=1

ψ′
s(x2)φ

′
s(x1) (3.1.2)

4This resembles a maximally entangled state, like (2.1.1), but it is not one because the sum in
(3.1.1) extends to infinity and, for (3.1.1) to be a maximally entangled state, the set {ψn}∞n=1 should
be orthonormal. But then the norm of (3.1.1) would be infinite and thus (3.1.1) would not belong
the Hilbert space.
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After a measurement of O′ on system 1, if the result is μk , then the state collapses
to ψ′

k(x2)φ
′
k(x1), i.e. φ

′
k(x1) for the first particle and ψ′

k(x2) for the second.
We will discuss the implications of that observation after giving the concrete

examples of the operators considered by EPR.

3.2 The Example of Position and Momentum

For their specific example, EPR introduced a two particle wave function5:

�EPR(x1, x2) =
∫ ∞

−∞
exp(i(x1 − x2 + x0)p)dp (3.2.1)

(putting � = 1). This can be written, by analogy with (3.1.1), i.e. with sums replaced
by integrals, as:

�EPR(x1, x2) =
∫ ∞

−∞
ψp(x2)φp(x1)dp (3.2.2)

with: φp(x1) = exp(ix1p), and ψp(x2) = exp(−i(x2 − x0)p).
It will be useful to introduce the Fourier transform of a wave function �:

�̂(p1, p2) = 1

2π

∫
exp(−i(p1x1 + p2x2))�(x1, x2)dx1dx2, (3.2.3)

whose inverse is:

�(x1, x2) = 1

2π

∫
exp(i(p1x1 + p2x2))�̂(p1, p2)dp1dp2. (3.2.4)

EPR took the operator O to be the momentum operator

P1 = −i
d

dx1

acting on the first particle and on a suitable set of functions (see [33, Chap.VIII] for
precise definitions).

5This is a generalized wave function, which means that it is not an element of the Hilbert space
L2(R2), but rather a distribution, namely a linear function acting on a space of smooth functions
that decay rapidly at infinity (see [33, Sect. 5.3] for a short introduction to distributions). We will
not try to be rigorous about these generalized functions here, but we will give a regularized version
of the same wave function in Sect. 3.6.



EPR-Bell-Schrödinger Proof of Nonlocality Using Position and Momentum 15

We know that φp(x1) = exp(ix1p) is a (generalized) eigenstate of P1 of eigenvalue
p, and ψp(x2) = exp(−i(x2 − x0)p) is a (generalized) eigenstate of eigenvalue −p of
the momentum operator

P2 = −i
d

dx2

acting on the second particle.
Alternatively, Pj, j = 1, 2, can be defined by its action on �̂(p1, p2):

Pj�(x1, x2) = 1

2π

∫
exp(i(p1x1 + p2x2))pj�̂(p1, p2)dp1dp2 , j = 1, 2 . (3.2.5)

EPR took the operator O′ to be the position operator Q1 = x1 acting on the first
particle.

Using a standard identity for distributions (
∫ ∞
−∞ exp(ixp)dp = 2πδ(x)) one can

write the state (3.2.1), as:

�EPR(x1, x2) = 2πδ(x1 − x2 + x0)

= 2π
∫ ∞

−∞
δ(x − x2 + x0)δ(x1 − x)dx

=
∫ ∞

−∞
ψ′

x(x2)φ
′
x(x1)dx, (3.2.6)

with ψ′
x(x2) = √

2πδ(x − x2 + x0) and φ′
x(x1) = √

2πδ(x1 − x). The last formula is
analogous to (3.1.2).

The (generalized) eigenfunctions of the operator Q1 = x1 are φ′
x(x1) =√

2πδ(x1 − x), with eigenvalue x, and ψ′
x(x2) = √

2πδ(x − x2 + x0) is a (general-
ized) eigenvector of the operator Q2 = x2, with eigenvalue x + x0.

Therefore, depending on whether we choose to measure the operator O or O′ on
the first particle, one can produce two different states, ψp(x2) = exp(−i(x2 − x0)p)

andψ′
x(x2) = √

2πδ(x − x2 + x0), for the second particle, which can be, in principle,
as far as one wants from the first one.

Moreover, the states ψp(x2) = exp(−i(x2 − x0)p) and ψ′
x(x2) = √

2πδ(x − x2 +
x0) are (generalized) eigenfunctions of two non-commuting operators, P2 and Q2.

3.3 The Conclusions of the EPR Paper by EPR

SinceEPR assumed no actions at a distance, they concluded that the values of two non
commuting observables, like P2 and Q2, for the second particle, far away fromwhere
the measurements on the first particle take place, must have “simultaneous reality”
when the system is in the quantum state (3.2.1). Thus, say EPR, quantummechanics,
i.e., the description provided by the state (3.2.1), is an incomplete description of
physical reality.
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But they could have made a simpler argument: considering only one variable
is enough to show that quantum mechanics is incomplete. Indeed, I can know the
position of the second particle by measuring the position of the first one. If that
measurement, being made far away from the second particle, does not affect the
state of the second particle, then the position of that second particle (which is left
undetermined by the state (3.2.1)) must exist independently of any measurement on
the first particle.

And, since one can reason by exchanging the two particles, one can also know
the position of the first particle by measuring the one of the second particle, so that
the position of the first particle must also exist independently of any measurements.

Of course, they could have made the same argument about the momentum of
either particle, but there was no need to bring in both quantities.

3.4 The Conclusions of the EPR Paper by Einstein

In a June 19, 1935 letter to Schrödinger, Einstein complained that the EPR paper had
been written by Podolsky “for reasons of language” and that the main point “was
buried, so to speak, by erudition” [19].

Then Einstein explains what is, for him, the main point: in the notation used here,
see (3.1.1), if one measures quantity O on system 1, the state collapses to some state
ψl(x2) for the second particle. Similarly, if one measures a quantity O′ on system 1,
see (3.1.2), the state collapses to some different state ψ′

k(x2) for the second particle.
For the state �EPR, (3.2.2), (3.2.6) one obtains either a state of the form ψp(x2) =

exp(−i(x2 − x0)p), if one measures the momentum of the first particle or a state
of the form ψ′

x(x2) = √
2πδ(x − x2 + x0), if one measures the position of the first

particle.
The fact that one can obtain two different states for the second particle by acting

on the first particle, far away from the second one, proves that the wave function
description in quantum mechanics is incomplete (assuming of course locality) since
a more complete description would be provided by both states together.

Einstein said that “he could not care less” [21, p. 38] about the fact that those
states, ψp(x2) = exp(−i(x2 − x0)p) and ψ′

x(x2) = √
2πδ(x − x2 + x0), are or are not

eigenstates of some observable (related to the second particle).
This is indeed different, and simpler, than the conclusion of the EPR paper, but it

is still more complicated than the argument that we gave in Sect. 3.3.
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3.5 Schrödinger’s Extension of EPR

What Schrödinger did in his 1935 paper6 [34] and in [35, 36], was to reflect on the
EPR paper [18]. He introduced what we call here maximally entangled states and
concluded that the value of every observable O for the first system can be determined
by the measurement of the corresponding observable Õ on the second system, distant
from the first one. That puzzled him a lot. Of course, like EPR, Schrödinger always
assumed locality.

To illustrate his puzzlement, Schrödinger used the following example. LetO be the
energy of the harmonic oscillator,O = 1

2 (p
2 + ω2x2)with p = −i d

dx . It is well known
that the eigenvalues of the operator O are of the form ω(n + 1

2 ), n = 0, 1, 2, . . . .
But, argued Schrödinger, if those values can be determined by measuring a similar
operator Õ acting on a distant system, they must pre-exist the measurement of O,
and that should hold true for every value of ω. But, by the EPR reasoning, the values
of the position x and the momentum p of the first system can also be determined
by measuring either the operator x̃ or the operator p̃ on the second system, so the
values of x and p must also pre-exist their measurements. But it is impossible for the
quantity 1

2 (p
2 + ω2x2) to belong to the set {ω(n + 1

2 )|n = 0, 1, 2, . . . }, for arbitrary
values of ω and any given values of x and p.

It is interesting to compare Schrödinger’s attitude to that of von Neumann a
little before 1935 [39] (von Neumann’s book was published in German in 1932 but
translated into English only in 1955); von Neumann proved a “no hidden variable
theorem” similar in its conclusion to our Theorem2.2, but by making the much
stronger assumption that (2.3.2) holds even for non-commuting operators O and
O′, at least for the function f (x, y) = x + y, and he concluded that the “value-map”
cannot exist. If one assumes that (2.3.2) holds for non-commuting operators, then it is
very simple to prove the non-existence of a value-map. Take O = 1√

2
σx, O′ = 1√

2
σy,

where σx and σy are the Pauli matrices corresponding to the spin along the x and y
axes. Then O + O′ = σx+σy√

2
corresponds to the spin at an angle of 45◦ between the x

and y axes. All the Pauli matrices have eigenvalues equal to ±1 and so does O + O′.
Thus v(O) = v(O′) = ± 1√

2
, and we have v(O) + v(O′) = ±√

2 or 0. But we also

have v(O + O′) = v
(
(σx + σy)/

√
2
) = ±1. Thus (2.3.2) cannot hold for this choice

of O and O′ and f (x, y) = x + y.
If Schrödinger had reasoned like von Neumann he would also have derived a

“no hidden variable theorem,” using his example of the harmonic oscillator: Indeed,
if O = 1

2 (p
2 + ω2x2), and one applies (2.3.2) even to non-commuting operators,

one gets v(O) = 1
2 (v(p)2 + ω2v(x)2) = ω(n + 1

2 ) for some n = 0, 1, 2, . . . , which,
as Schrödinger observed, would be impossible for arbitrary v(p), v(x) and ω. But
Schrödinger’s goal was not to prove that a value-map was impossible, since the
point of his “theorem” was to show that it existed (assuming locality of course). He
was just baffled by the situation: recognizing that this relationship between values

6This paper remained famous for his example of the cat that is “both dead and alive”, but that
example will not concerned us here.
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suggested by the form of O = 1
2 (p

2 + ω2x2) could not always hold, he wondered
what relationship, if any, might exist among the relevant values. Of course, had
Schrödingermade the (unwarranted) assumption of vonNeumann and applied (2.3.2)
to non-commuting operators, he would have been even more baffled, since he would
probably have been led to question the locality assumption.

Finally, note that in 1966, much later than 1935, John Bell constructed in [3] an
explicit counter-example to von Neumann’s conclusions, by giving a simple example
of a “hidden variables theory” that reproduces the quantum mechanical results for
a single spin operator (but, of course, without satisfying (2.3.2) for non-commuting
operators). Bohmian mechanics (see Sect. 5) also provides a counter-example to von
Neumann’s conclusions, but a more comprehensive one.

3.6 A Regularized EPR State

A way to avoid dealing with generalized functions or distributions such as (3.2.1),
(3.2.6) is to put a cutoff both in the spatial and the momentum variables, x and p. A
convenient way to do that is to require that x take values in a finite (but arbitrarily
large) box on a lattice of (arbitrarily small) spacing a, which amounts to putting a
cutoff in the momentum variable p.

So, let x ∈ �a = [−L, L] ∩ aZ, or x = na, n ∈ Z, |n| ≤ M ,withM = [ L
a ], and [·]

denoting the integer part.
Let �̂a be the dual of �a:

�̂a =
{

p = 2πk

a(2M + 1)
, k ∈ Z, |k| ≤ M

}
.

Then, one has the orthogonality relation: ∀x ∈ �a

∑

p∈�̂a

exp(±ixp) = √
2M + 1δa,L(x) ≡ (2M + 1)δx,0, (3.6.1)

where δx,0 is the Kronecker delta.
And, ∀p ∈ �̂a,

∑

x∈�a

exp(±ixp) = √
2M + 1δa,L(p) ≡ (2M + 1)δp,0. (3.6.2)

Let, ∀x1, x2, x0 ∈ �a,

�
a,L
EPR(x1, x2) =

∑

p∈�̂a

exp(i(x1 − x2 + x0)p), (3.6.3)

where the sum x1 − x2 + x0 is modulo 2aM .
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Using (3.6.1),

�
a,L
EPR(x1, x2) = √

2M + 1δa,L(x1 − x2 + x0) (3.6.4)

can be written as:

�
a,L
EPR(x1, x2) =

∑

x∈�a

δa,L(x − x2 + x0)δa,L(x1 − x). (3.6.5)

One can also introduce the finite Fourier transform:

�̂(p1, p2) = 1

2M + 1

∑

x1,x2∈�a

exp(−i(x1p1 + x2p2))�(x1, x2) (3.6.6)

whose inverse is:

�(x1, x2) = 1

2M + 1

∑

p1,p2∈�̂a

exp(i(x1p1 + x2p2))�̂(p1, p2). (3.6.7)

The analogues of the operators P1, P2, Q1, Q2 of Sect. 3.2 are:

Pj�(x1, x2) =
∑

p1,p2∈�̂a

exp(i(x1p1 + x2p2))pj�̂(p1, p2), j = 1, 2, (3.6.8)

and
Qj�(x1, x2) = xj�(x1, x2), j = 1, 2. (3.6.9)

These operators have proper (not generalized) eigenvectors:

Pj exp(−i(x1p1 + x2p2)) = pj exp(−i(x1p1 + x2p2)) (3.6.10)

and

Qjδa,L(x1 − x0,1)δa,L(x2 − x0,2) = x0,jδa,L(x1 − x0,1)δa,L(x2 − x0,2). (3.6.11)

Thus, if one applies the collapse rule for the measurement of the observable P1

to �
a,L
EPR(x1, x2), when the observed value is p, the resulting state will be propor-

tional to exp(i(x1 − x2 + x0)p), meaning that the state of the second particle will
be proportional to exp(−i(x2 − x0)p). And, if one applies the collapse rule for the
measurement of the observable Q1 to�

a,L
EPR(x1, x2), when the observed value is x, the

resulting state will be proportional to δa,L(x − x2 + x0)δa,L(x1 − x), meaning that the
state of the second particle will be proportional to δa,L(x − x2 + x0).



20 J. Bricmont et al.

4 Proof of Nonlocality Using the EPR Variables

Given a state like (3.2.1), (3.2.6), we can almost repeat the arguments of Sect. 2 in
order to prove nonlocality. First observe that one has an analogue of a Schrödinger
theorem. Consider a generalized state for four particles in one dimension:

δ(x1 − x3 + x0)δ(x2 − x4 + x0), (4.1)

which is just the product of two copies of the EPR state (up to a 4π2 factor, see
(3.2.6)), one for the pair of particles (1, 3), the other for the pair of particles (2, 4).
Alternatively, one may regard this as a state of two particles in two dimensions, with
coordinates (x1, x2) and (x3, x4). In our previous notation, system 1 will consist of
particles 1 and 2 and system 2 will consist of particles 3 and 4.7

One may also replace that state by its regularized version, see (3.6.4):

δa,L(x1 − x3 + x0)δa,L(x2 − x4 + x0). (4.2)

By Remark 2 in Sect. 2.1, the state (4.2) is maximally entangled and so the state
(4.1) is also (formally) maximally entangled.8

We need to introduce standard operators Q1, Q2, Q3, Q4, that act as multiplication
on a suitable set of functions in L2(R4):

Qj�(x1, x2, x3, x4) = xj�(x1, x2, x3, x4) , j = 1, 2, 3, 4 , (4.3)

and operators P1, P2, P3, P4 that act by differentiation on a suitable set of functions
in L2(R4):

Pj�(x1, x2, x3, x4) = −i
∂

∂xj
�(x1, x2, x3, x4) , j = 1, 2, 3, 4 . (4.4)

Or, using the Fourier transform (3.2.3) of � (for four variables):

Pj�(x1, x2, x3, x4) =
1

(2π)2

∫
exp(i(p1x1 + p2x2 + p3x3 + p4x4))pj�̂(p1, p2, p3, p4)dp1dp2, dp3dp4, (4.5)

for j = 1, 2, 3, 4.
Consider the eight operator Q1, Q2, Q3, Q4, P1, P2, P3, P4, defined by (4.3) and

(4.4), (4.5).
Let B be the set of products of analytic functions of one of the operators Q1,

Q2, P1, P2 defining a self-adjoint operator, and let B̃ be the set of sums of products

7We need two copies of the EPR state only in order to prove Theorem4.1 below.
8Formally, since the state itself is not a vector in a finite dimensional Hilbert space. But, since we
are not concerned here with mathematical rigor, we will put aside that issue.
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of analytic functions of one of the operators Q3, Q4, P3, P4 defining a self-adjoint
operator.

Given the maximally entangled state (4.1), for every operator Õ ∈ B̃, there is a
corresponding (in the sense of the Principle of Perfect Correlations) operator O ∈ B,
and vice-versa. (For x0 = 0, O is obtained by changing in Õ the index 3 to 1 and
the index 4 to 2). And, by Schrödinger’s theorem, assuming locality, there is a non-
contextual value-map v : B → R that satisfies (2.2.1) and therefore also the property
(2.3.2).

However this is contradicted by a theorem of Clifton [14], proven in the appendix.

Theorem 4.1 Non-existence of pre-existing values for positions and momenta.
Consider the set of analytic functions of one of the operators Q1, Q2, P1, P2. And

let B be the set of products of such functions defining a self-adjoint operator. Then,
there does not exist a map

v : B → R (4.6)

such that:

(1)

v(f (O)) = f (v(O)), (4.7)

for any real valued function f of a real variable.
(2) ∀O, O′ ∈ B with [O, O′] = OO′ − O′O = 0, (2.3.2) for f (x, y) = xy holds:

v(OO′) = v(O)v(O′). (4.8)

In particular, there cannot exist a non-contextual value-map.

So, combining the EPR argument with the previous theorem, we again establish
nonlocality, without using Bell’s inequalities.

The logic is the same as in Sect. 2:

1. EPR show that the perfect correlations plus locality imply that the values of some
physical quantities (the values v(O) of the operators O ∈ A in Sect. 2.3 or the
operators O ∈ B here), must exist independently of whether one measures them
or not, and that defines a non-contextual value-map.

2. Theorems2.2 or 4.1 show that merely assuming the existence of such a map
leads to a contradiction.

Therefore the locality assumption is false!
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5 What Happens in Bohmian Mechanics?

In Bohmian mechanics, or pilot-wave theory, the complete state of a closed physi-
cal system composed of N particles is a pair (|quantum state>, X), where |quantum
state> is the usual quantum state (given by the tensor product of wave functions with
some possible internal states), and X = (X1, . . . , XN ) is the configuration represent-
ing the positions of the particles (that exist, independently of whether one “looks” at
them or one measures them; each Xi ∈ R

3).9

These positions are the “hidden variables” of the theory, in the sense that they are
not included in the purely quantumdescription |quantum state>, but they are not at all
hidden: it is only the particles’ positions that one detects directly, in any experiment
(think, for example, of the impacts on the screen in the two-slit experiment). So the
expression “hidden variables” is really amisnomer, at least in the context of Bohmian
mechanics.

Both objects, the quantum state and the particles’ positions, evolve according to
deterministic laws, the quantum state guiding the motion of the particles. Indeed, the
time evolution of the complete physical state is composed of two laws (we consider,
for simplicity, spinless particles):

1. The wave function evolves according to the usual Schrödinger’s equation.
2. The particle positions X = X(t) evolve in time according to a guiding equation

determined by the quantum state: their velocity is a function of the wave function.
If one writes10:

�(x1, . . . , xN ) = R(x1, . . . , xN )eiS(x1,...,xN ),

then:

dXk(t)

dt
= ∇kS(X1(t), . . . , XN (t)), (5.1)

where ∇k is the gradient with respect the coordinates of the kth particle.

In order to understand why Bohmian mechanics reproduces the usual quantum
predictions, onemust use a fundamental consequenceof that dynamics, equivariance:
If the probability density ρt0(x) for the initial configuration Xt0 is given by ρt0(x) =
|�(x, t0)|2, then the probability density for the configurationXt at any time t is given
by

ρt(x) = |�(x, t)|2, (5.2)

9For elementary introductions to this theory, see [10, 38] and for more advanced ones, see [5, 7–9,
15–17, 23, 30]. There are also pedagogical videos made by students inMunich, available at: https://
cast.itunes.uni-muenchen.de/vod/playlists/URqb5J7RBr.html.
10We use lower case letters for the generic arguments of the wave function and upper case ones for
the actual positions of the particles.

https://cast.itunes.uni-muenchen.de/vod/playlists/URqb5J7RBr.html
https://cast.itunes.uni-muenchen.de/vod/playlists/URqb5J7RBr.html
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where�(x, t) is a solution to Schrödinger’s equation. This follows easily from equa-
tion (5.1).

Because of equivariance, the quantum predictions for the results of measurements
of any quantumobservable are obtained if one assumes that the initial density satisfies
ρt0(x) = |�(x, t0)|2. The assertion that configurational probabilities at any time t0
are given by this “Born rule” is called the quantum equilibrium hypothesis. The
justification of the quantum equilibrium hypothesis—and, indeed, a clear statement
of what it actually means—is a long story, too long to be discussed here (see [15]).

In Bohmian mechanics, particles have a velocity at all times and therefore they
have what wewould be inclined to call a momentum (mass× velocity). So onemight
ask, what sort of probability does Bohmian mechanics supply for the latter: will it
agree with the quantum mechanical probability for momentum? The answer, as we
will see in the next subsection, is no!

One may also ask: isn’t having both a position and a velocity at the same time
contradicted by Heisenberg’s inequalities? Moreover, since Bohmian mechanics is
deterministic, the result of any quantum experiment must be pre-determined by the
initial conditions of the system being measured and of the measuring device. But
whydoesn’t that provide a non-contextual value-mapwhose existence is precludedby
Theorem4.1? We will discuss these issues in the following subsections and this will
also provide an example of how nonlocality manifests itself in Bohmian mechanics.

5.1 The Measurement of Momentum in Bohmian Mechanics

To understand what is going on, we should analyze “momentummeasurements,” i.e.,
what are called momentummeasurements in standard quantummechanics. Consider
a simple example, namely a particle in one space dimensionwith initial wave function
�(x, 0) = π−1/4 exp(−x2/2). Since this function is real, its phase S = 0 and the
particle is at rest (by equation (5.1): dX (t)

dt = ∂S(X (t),t)
∂x ).Nevertheless, themeasurement

of momentum p must have, according to the usual quantum predictions, a probability
distribution whose density is given by the square of the Fourier transform of�(x, 0),
i.e. by |�̂(p)|2 = π−1/2 exp(−p2). Isn’t there a contradiction here? Isn’t there a clear
disagreement with the quantum predictions?

In order to answer this question, one must focus on the quantum mechanical
measurement of momentum. One way to do this is to let the particle move freely

and to detect its asymptotic position X (t) as t → ∞. Then, one sets p = lim
t→∞

X (t)

t
(putting the mass m = 1).

Consider the free evolution of the initial wave function at t0 = 0, �(x, 0) =
π−1/4 exp(−x2/2). The solution of Schrödinger’s equation with that initial condi-
tion is:

�(x, t) = 1

(1 + it)1/2
1

π1/4
exp

[
− x2

2(1 + it)

]
, (5.1.1)
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and thus

|�(x, t)|2 = 1√
π
[
1 + t2

] exp
[
− x2

1 + t2

]
. (5.1.2)

If one writes �(x, t) = R(x, t) exp
[
iS(x, t)

]
, one gets (up to a t-dependent con-

stant):

S(x, t) = tx2

2(1 + t2)
, (5.1.3)

and the guiding equation (5.1) becomes:

d

dt
X (t) = tX (t)

1 + t2
, (5.1.4)

whose solution is:
X (t) = X (0)

√
1 + t2. (5.1.5)

This gives the explicit dependence of the position of the particle as a function of
time. If the particle is initially at X (0) = 0, it does not move; otherwise, it moves
asymptotically, when t → ∞, as X (t) ∼ X (0)t. Thus, p = limt→∞ X (t)/t = X (0).

Now, assume that we start with the quantum equilibrium distribution:

ρ0(x) = |�(x, 0)|2 = π−1/2 exp(−x2).

This is the distribution of X (0). Thus, the distribution of p = limt→∞ X (t)/t = X (0)
will be π−1/2 exp(−p2) = |�̂(p, 0)|2. This is the quantum prediction! But the detec-
tion procedure (measurement ofX (t) for large t) does not measure the initial velocity
(which is zero with probability 1).

Remarks

1. Although the particles do have, at all times, a position and a velocity, there is no
contradiction between Bohmian mechanics and the quantum predictions and, in
particular, with Heisenberg’s uncertainty principle. The latter is simply a relation
between variances of results of measurements. It implies nothing whatsoever
about what exists or does not exist outside ofmeasurements, since those relations
are simplymathematical consequences of the quantum formalismwhich, strictly
speaking, dictates only what takes place during a measurement.

2. Bohmian mechanics shows that what are called measurements of quantum
observables other than positions are typically merely interactions between a
microscopic physical system and a macroscopic measuring device whose statis-
tical results coincide with the quantum predictions.
To use a fashionable expression, one might say for both Bohmian mechanics and
standard quantum mechanics, values of most observables are emergent. But it is
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only in Bohmian mechanics that one can understand how that emergence comes
about.

5.2 The Contextuality of the Momentum Measurements
in Bohmian Mechanics

The reader might nevertheless worry that there is in fact an intrinsic property of
the particle that is revealed in a momentum measurement, for example its original
position, since, aswe showed in the previous subsection, p = limt→∞ X (t)/t = X (0)
in the simple case considered there. Of course, if one were to measure the position
one would also find an intrinsic property of the particle (namely its position!).11 But
doesn’t that contradict our Theorem4.1 (our example could of course be formulated
in two dimensions by taking a product of wave functions of the form (5.1.1))? After
all, the latter theorem asserts that there does not exist a value-map that assigns to a
quantum system pre-existing values that are revealed by quantummeasurements and
here we seem to have just defined such a map.

However, as we shall explicitly show, the map provided by Bohmian mechan-
ics would be contextual (see the Appendix for the concrete operators that we use
in the proof of Theorem 4.1). In particular the value v(O) will depend on which
other operators O′, O′′, . . . , one measures together with O. Hence relations like (4.8)
that are needed to prove Theorem 4.1 will not be valid: for example, if one writes
v(OO′) = v(O)v(O′) and v(OO′′) = v(O)v(O′′), the value v(O) will in general be
different in the two relations.

We will now show in particular that the measurement of momentum is contextual,
using a modified version of the example given by (5.1.1).

Take that quantum state (5.1.1) and write �0(x) for �(x, 0). Consider the corre-
sponding Gaussian wave functions:

�+k(x) = �0(x)e
ikx (5.2.1)

and
�−k(x) = �0(x)e

−ikx (5.2.2)

where k > 0. We will assume below that k is large.
Consider first the initialwave function�+k(x) = �0(x)eikx. This is a right-moving

Gaussian wave packet moving with speed k. Thus at time t it will be centered at kt.
Explicitly, the solution of Schrödinger’s equation is:

11The fact that the measurements of both the momentum and the position reveal the same intrinsic
property may sound strange but that is just a peculiarity of the example considered here.
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�+k(x, t) = 1

(1 + it)1/2
1

π1/4
exp

(
ikx − ik2t

2
− (x − kt)2

2(1 + it)

)
, (5.2.3)

which can also been seen immediately from (5.1.1) using Galilean invariance. For
this wave packet we have that p = limt→∞ X (t)

t ≈ k for k � 1.
Now form an N = 2 entangled state � from the wave functions (5.2.1), (5.2.2)12:

�(x, y) = A[�+k(x)�+k(y) + �−k(x)�−k(y)], (5.2.4)

with A the normalization constant. Let O = Px. Consider two different experiments
that measure O:

Experiment1(O): measure O alone by the procedure described in Sect. 5.1, with
result corresponding to the solution to the guiding equation (5.1) associated with the
solution of Schrödinger’s equation.

Experiment2(O): first measure at time 0 the position Qy of the second particle,
then measure O by the above procedure.

For Experiment1(O), we claim that the result is

v(Experiment1(O)) ≈ sgn (X (0) + Y (0))k (5.2.5)

for k large.
To prove (5.2.5), introduce the variables:

w = x + y√
2

, (5.2.6)

z = x − y√
2

.

In terms of these variables, we can rewrite (5.2.4) as

�(w, z) = A(�+k ′(w) + �−k ′(w))�0(z). (5.2.7)

with k ′ = √
2k.

So the solution of Schrödinger’s equation factorizes into a function �(w, t) of
(w, t) and a function �̃(z, t) of (z, t). We have that �̃(z, t) is given by (5.1.1) with
x replaced by z, while for �(w, t) we get a sum of two wave functions like (5.2.3),
one with k replaced by k ′, the other with k replaced by −k ′:

�(w, t) = A(�+k ′(w, t) + �−k ′(w, t)) (5.2.8)

with �±k ′(w, t) of the form (5.2.3).

12This state ressembles a maximally entangled one, but it does not fit the definition of maximally
entangled, since the Hilbert space here in infinite dimensional.
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For large t, |�(w, t)|2 is a sum of two more or less non-overlapping terms, one
corresponding to the part of the wave function with k ′ (whose support is around k ′t),
the other one corresponding to the part of the wave function with−k ′ (whose support
is around −k ′t):

|�(w, t)|2 ≈ A2(|�+k ′(w, t)|2 + |�−k ′(w, t)|2). (5.2.9)

Since the solution of Schrödinger’s equation factorizes into a function of (w, t)
and one of (z, t), the guiding equations (5.1) for W (t) and Z(t) are decoupled. For
Z(t) we obtain a solution like (5.1.5) (Z(t) ≈ Z(0)t as t → ∞).

To analyze W (t), note that one property of the dynamics (5.1) is that, in one
dimension, trajectories cannot cross.13 Since there is a symmetry between the two
parts of the wave function (5.2.8) (upon reflection,�+k ′ becomes�−k ′ ), if the initial
condition W (0) > 0, the particle must stay on the right, while if W (0) < 0, the
particle must stay on the left. Moreover, by equivariance, the particle evolves so as
to be in the support of |�(w, t)|2, which, by (5.2.9), consists of two non-overlapping
terms supported around ±k ′t for large t. So, for large k and large times, we get that
W (t) ≈ sgn W (0)k ′t = sgn W (0)

√
2kt.

Rewriting what we’ve found in terms of the X (t) and Y (t) variables, we get that
X (t) = W (t)+Z(t)√

2
≈ 1√

2
(sgn W (0)

√
2kt + Z(0)t) and thus, v(Experiment1(O)) =

limt→∞ X (t)
t ≈ sgn (X (0) + Y (0))k, for k large, which is (5.2.5).

For Experiment2(O), ifY is the result of themeasurement ofQy, thewave function
(5.2.4) collapses, yielding for the wave function of the x system14:

�(x) = A(Y )(c+(Y )�+k(x) + c−(Y )�−k(x)). (5.2.10)

with c±(Y ) = �±k(Y ) and A(Y ) the normalization coefficient.
The solution of Schrödinger’s equation with this initial condition is again a sum

of two wave functions like (5.2.3), one with +k, the other with −k, multiplied by
coefficients c±(Y ):

�(x, t) = A(Y )(c+(Y )�+k(x, t) + c−(Y )�−k(x, t)), (5.2.11)

where �±k(x, t) of the form (5.2.3).
We can now more or less reason as we just did for the �(w, t) given by (5.2.8),

except that because of the coefficients c±(Y ) there is no symmetry here between
the two parts of the wave function—unless the complex exponentials in c±(Y ) are
real (i.e. eikY = ±1). Nonetheless, the effect of the coefficients in (5.2.11) is merely
to replace the cos kx, which would arise there if c±(Y ) > 0 (i.e. eikY = 1), by its
translate cos(kx + kY ). Thus the |�|2 probability of the interval [Xm,∞) will be 1/2

13That is because there is a unique solution of the first order equation (5.1) if the position is fixed
at a given time.
14In Bohmian mechanics, in fact, there is an actual collapse of the (conditional) wave function of
a system upon measurement; see [8, Sect. 6.1], [4].
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for some Xm with |Xm| < π
2k .

15 Thus, by no-crossing and equivariance, we get that
for large times X (t) ≈ sgn (X (0))kt for k � 1, and thus

v(Experiment2(O)) = lim
t→∞

X (t)

t
≈ sgn (X (0))k. (5.2.12)

Comparing (5.2.5) and (5.2.12), we see that the measurement of momentum is
contextual, since it may depend on whether or not one measures another operator Qy

together with O = Px.

5.3 An Example of Nonlocality in Bohmian Mechanics

It would go far beyond the scope of this paper to really explain how nonlocality
appears in Bohmian mechanics in general, but we saw an example of nonlocality in
Bohmian mechanics in the previous subsection: the particles with coordinates x and
y having the entangled quantum state (5.2.4), can be (in principle) as far apart as one
wants and the result of the measurement of O = Px will depend on whether or not
one measures Qy before measuring Px, and, since the time interval between these
two measurements can be arbitrarily small, we have indeed here an example of an
instantaneous action at a distance. Here we should regard the measurement of Px as
taking a (large but) finite time, and x and y as referring to different (distant) origins.

The fact that Bohmian mechanics is nonlocal is obviously a merit rather than a
defect, since we know that any theory accounting for the quantum phenomena must
be nonlocal, as shown in Sects. 2–4 (and many other places).

6 Summary and Conclusions

Both EPR and Schrödinger argued that the quantum mechanical description of a
system by its wave function is incomplete in the sense that other variables must
be introduced in order to obtain a complete description. Their argument was very
simple: if I can determine the result of a measurement carried at one place by doing
another measurement far away from that place, then that result must pre-exist its
measurement. The wave function alone does not tell us what that result is. Therefore,
the quantum mechanical description of a system by its wave function is incomplete.

However, therewas a crucial assumption in the reasoning of EPR and Schrödinger,
which was too obvious for them to question it: that doing a measurement at one place
cannot possibly affect instantaneously the physical situation far away, or what is now
called the assumption of locality.

15In fact, Xm must lie between 0 and the nearest maximum of cos2(kx + kY ).
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The history of the EPR-Schrödinger argument is complicated, because although
their conclusion about incompleteness of quantum mechanics was right, their
assumption of locality was not. The completion of quantum mechanics was found
by de Broglie in 1927 and developed by Bohm in 1952. Bohm showed that one may
consistently assume that particles have trajectories and explained on that basis how
to understand measurements as consequences of the theory and not, as they are in
ordinary quantum mechanics, as a deus ex machina [7].

The falsity of the locality assumption was shown by John Bell in 1964 [2] and by
subsequent experiments. Bell first recalled that, if one assumes locality, then, as the
EPR argument correctly showed, there must exist other variables than the quantum
state to characterize a physical system. But then Bell showed that the distribution of
those variables must satisfy some constraints that are violated by quantum predic-
tions, predictions that were later verified experimentally (see [22] for a survey).

Here and in [11] we give a simpler argument, but using the maximally entangled
states introduced by Schrödinger: for those states, one can, for each observable
associated to one system, construct another observable associated to the second
system, possibly far away from the first one, such that the results of the measurement
of both observables are perfectly correlated. Then, assuming locality, those results
must pre-exist their measurement. But assuming that, in general, observables have
values before their measurement leads to a contradiction. Hence, the assumption of
locality is false.

The difference between this paper and [11] is that here we use the position and
momentum variables used by EPR, while in [11] we used spin variables, such as
those in terms of which the EPR argument was reformulated by Bohm [6].

Next one might ask how Bohmian mechanics deals with this impossibility of the
pre-existenceofmeasurement results prior tomeasurements, since it is a deterministic
theory, and in such a theory everything is pre-determined by the initial condition.
In [11] we reviewed that the measurements of spin variables are contextual, in fact
should not properly be calledmeasurements at all. Herewe illustrate the contextuality
of momentum. In both cases, the contextuality is linked to nonlocality, as it must be,
since as explained here and in [11], if locality were true, then measurements must
(sometimes) be non-contextual. Bohmian mechanics is an extremely natural version
of quantum mechanics, involving the obvious ontology evolving the obvious way.
A proper appreciation of the role of contextuality in Bohmian mechanics can help
dispel the widespread uneasy feeling that somehow there must be something amiss
in that theory.

Appendix 1: Proof of Clifton’s Theorem4.1

The proof we give here is taken from a paper by Myrvold [29], which is a simplified
version of the result of Clifton [14] and is similar to proofs of Mermin [28], and to
Peres [31, 32] in the case of spins. We note that the same proof would apply to the
regularized EPR state of Sect. 3.6.
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Proof of Theorem4.1
We will need the operators Uj(b) = exp(−ibQj), Vj(c) = exp(−icPj), j = 1, 2, with
Qj, Pj defined by formulas (4.3), (4.4), but acting in L2(R2) instead of L2(R4), and
b, c ∈ R. They act as

Uj(b)�(x1, x2) = exp(−ibxj)�(x1, x2) , j = 1, 2 , (A.1)

which follows trivially from (4.3), and

V1(c)�(x1, x2) = �(x1 − c, x2) , (A.2)

and similarly for V2(c). Equation (A.2) follows from (4.4) by expanding both sides
in a Taylor series, for functions � such that the series converges, and by extending
the unitary operator V2(b) to more general functions � (see, e.g., [33, Chap.8] for
an explanation of that extension).

We choose now the following functions of the operators Qi, Pi :

A1 = cos(aQ1) , A2 = cos(aQ2) , B1 = cos
πP1

a
, B2 = cos

πP2

a
, (A.3)

where a is an arbitrary constant, and the functions are defined by (A.1), (A.2), and
the Euler relations:

cos(aQj) = exp(iaQj) + exp(−iaQj)

2
,

cos
πPj

a
= exp(iπPj/a) + exp(−iπPj/a)

2
,

(A.4)

for j = 1, 2. Note that A1, A2, B1, B2 are self-adjoint. By applying (4.8) several times
to pairs of commuting operators made of products of such operators, we will derive
a contradiction.

We have the relations

[A1, A2] = [B1, B2] = [A1, B2] = [A2, B1] = 0 , (A.5)

since the relevant operators act on different variables.
We can also prove:

A1B1 = −B1A1 , A2B2 = −B2A2 . (A.6)

To show (A.6), note that, from (A.1) and (A.2), one gets

Uj(b)Vj(c) = exp(−ibc)Vj(c)Uj(b) , (A.7)

for j = 1, 2, which, for bc = ±π, means
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Uj(b)Vj(c) = −Vj(c)Uj(b) . (A.8)

Now use (A.4) to expand the product cos(aQj) cos(πPj/a), for j = 1, 2, into a sum of
four terms; each term will have the form of the left-hand side of (A.7) with b = ±a,
c = ±π/a, whence bc = ±π. Then applying (A.8) to each term proves (A.6).

The relations (A.5) and (A.6) imply that

[A1A2, B2B1] = 0 (A.9)

since two anticommutations (A.6) suffice to move the B’s to the left of the A’s.
Similarly we have that

[A1B2, A2B1] = 0. (A.10)

We also have, using (A.6) once, that

A1A2B2B1 = −A1B2A2B1. (A.11)

Thus, with C = (A1A2)(B2B1) and D = (A1B2)(A2B1), we have that

C = −D. (A.12)

Now suppose there is a value map v as described in Theorem4.1. Then, from (4.7)
with f (x) = −x, we have that

v(C) = −v(D). (A.13)

But by (A.5), (A.9) and (A.10), we also have, by (4.8), that

v(C) = v(A1A2)v(B2B1) = v(A1)v(A2)v(B2)v(B1) (A.14)

and

v(D) = v(A1B2)v(A2B1) = v(A1)v(B2)v(A2)v(B1). (A.15)

Thus v(C) = v(D). This is a contradiction unless v(C) = 0, i.e. unless at least one
of v(Ai), v(Bi), i = 1, 2 vanishes. But, by (4.7),

v(Ai) = cos(av(Qi))

and

v(Bi) = cos
(π

a
v(Pi)

)
,

and thus a can be so chosen that v(Ai) and v(Bi) are all nonvanishing. �
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Typicality in the Foundations
of Statistical Physics and Born’s Rule

Detlef Dürr and Ward Struyve

Abstract Typicality has always been in the minds of the founding fathers of proba-
bility theory when probabilistic reasoning is applied to the real world. However, the
role of typicality is not always appreciated. An example is the article “Foundations
of statistical mechanics and the status of Born’s rule in de Broglie-Bohm pilot-
wave theory” by Antony Valentini (Valentini in Statistical Mechanics and Scientific
Explanation. World Scientific, [1]), where he presents typicality and relaxation to
equilibrium as distinct approaches to the proof of Born’s rule, while typicality is in
fact an overriding necessity. Moreover the “typicality approach” to Born’s rule of
“the Bohmian mechanics school” is claimed to be inherently circular. We wish to
explain once more in very simple terms why the accusation is off target and why
“relaxation to equilibrium” is neither necessary nor sufficient to justify Born’s rule.

Nino Zanghì and D.D. remember vividly the discussions with GianCarlo Ghirardi
on Boltzmann’s insights into statistical physics and its relation to the random theory
he himself had proposed (with his coworkers) and had worked on for many decades
until his untimely death. Not only was GianCarlo an admirer of Boltzmann, he also
had a full grasp of Boltzmann’s ideas and on the role of typicality. The GRW theory
is intrinsically random and the |ψ|2-distribution arises from the collapse mechanism
built into the theory and he understood that the appeal to typicality, for empirical
assertions, cannot be avoided. We miss GianCarlo Ghirardi, our invaluable friend,
coworker and colleague and we dedicate this work in memoriam to him.
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1 Why “Most” Cannot Be Avoided

Typicality has always been in the minds of the founding fathers of probability theory
when probabilistic reasoning is applied to the real world. Nevertheless, still it’s role
is often not understood. An example is [1], where Valentini presents typicality and
relaxation to equilibrium as distinct approaches to the proof of Born’s rule, while
typicality is in fact an overriding necessity. Valentini writes in the abstract of his
article:

We compare and contrast two distinct approaches to understanding the Born rule in de
Broglie-Bohm pilot-wave theory, one based on dynamical relaxation over time (advocated
by this author and collaborators) and the other based on typicality of initial conditions
(advocated by the ‘Bohmian mechanics’ school). It is argued that the latter approach is
inherently circular and physically misguided.

The accusation of circularity concerns the proof of Born’s rule in de Broglie-Bohm
pilot-wave theory, or “Bohmian mechanics” for short, given in [3]. It is an important
proof, as it explains the observed regularity concerning the outcomes of measure-
ments on ensembles of identically prepared systems. As such, Valentini’s accusation
is at the same time an onslaught to the ideas underlying statistical physics. We wish
to explain once more in very simple terms why the accusation is off target and why
“relaxation to equilibrium” is neither necessary nor sufficient to justify Born’s rule.

In the history of mathematics pointing out circularities in important proofs have
been sometimes pathbreaking. An example is provided by what we would call now
the “PhD thesis” of Georg Simon Klügel (1739–1812), who showed that all existing
proofs (about 27of them) of the 11thPostulate ofEuclid on the uniqueness of parallels
were circular in that they used in the proofs equivalents of the postulate as (hidden)
assumptions. That thesis has led to the discovery of non-Euclidean geometry!

The accusation of circularity in the derivation of Born’s rule is however less
breathtaking; it is simply off target. The criticism misses the point of statistical
physics entirely. That may be partly due to the loose manner of speaking about prob-
ability and distributions which is common in statistical physics and which clouds the
meaning of these objects. Instead, the notion of typicality is necessary to understand
what the statistical predictions of a physical theory really mean. In fact, typicality
(though the word may not have been directly used) has always been in the minds of
probabilists and physicists (from Jacob Bernoulli ∼ 1700 over Ludwig Boltzmann
∼ 1850 to Kolmogorov’s axiomatics of probability ∼ 1930) when probabilistic rea-
soning is applied to the real world [2]. We try to explain once more in simplest terms
why this need be.

Let’s start with a simple example: A (fair) coin is thrown, say, a thousand times
(the number thousand is chosen only because it is kind of large).We obtain a head-tail
sequence of length 1000 and ask prior to inspection of the sequence: Roughly how
many heads are there in the sequence? Some would perhaps prefer to be agnostic
about the answer but most would say—perhaps after some time of reflection—that
the number will be roughly 500. Actually theywill find out by counting the heads that
they were right. Why roughly 500? Well, the relative frequency of heads (or tails) is
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then 1/2, the probability1 whichwe naturally assign for the sides of a (fair) coin.What
matters here is that there is obviously some relation between the factual occurrence
of the relative frequency of heads and the number 1/2. That needs to be explained.
Why? Because other sequences are possible as well, for example sequences which
show less than 300 heads. The question which needs to be answered is: Why don’t
they show up in practice? The (mathematical) way that the regularity of roughly
500 heads is explained is by the law of large numbers (LLN), which establishes the
closeness of the empirical distribution of heads, i.e., the distribution which counts
the relative frequency of heads in the sequence of length 1000 (which is the large
number in the LLN) and the number 1/2.

How does the LLN explain that? By counting sequences! Here are some telling
numbers: There are about 10300 sequences with about 500 heads. There are about
10260 sequences with about 300 heads. So the proportion of sequences with 500
heads versus 300 heads is about 1040. For sharpening our intuition about the power
of such numbers note that the age of the universe in seconds is about 1017. Thusmost2

sequences show a law-like regularity, namely that the relative number of heads is
roughly 1/2. Wouldn’t that suggest that it is most likely that the observed sequence
has roughly equal numbers of heads and tails? Well, most likely is just another way
of saying “with high probability”. But then, what does probability mean here? It is
better and simpler to say that the typical sequences will have roughly 500 heads.
The LLN says nothing more than that. It is a typicality statement. We remark for
later that in introductory courses to probability theory the counting is introduced as
Laplace probability which is then a normalized quantity by dividing the numbers of
sequences of interest by the total number of sequences and which we better refer to
by the role it plays in our example as Laplace-typicality. The point of this example
is that mere counting of head-tail sequences (or 0 − 1 sequences if one wants) gives
two insights (where the second one we take it as being intuitively clear without going
into details):

1. Most sequences show the law-like regularity that the empirical distribution of
heads (the relative frequency of heads) is near 1/2.

2. The succession of heads and tails (or 1′s and 0′s) in a typical sequence looks
random, unpredictable, while randomness never entered. It’s just the way typical
sequences look like.

Agnostics may still complain that explains nothing: What needs to be explained is
why we only see typical sequences! That’s actually the deep question underlying the
meaning of probability theory from its very beginning andAntoine-AugustinCournot
(1801–1877) coined once what became known as Cournot’s principle, which in our
own rough words just says that we should only be concerned with typical events. The
point we wish to make with the simple example is that appeal to typicality cannot be
avoided. Sequences with drastically unequal number of heads and tails are physically

1Luckily, for what we have to say here, we can ignore the issues related to the question what the
notion of “probability 1/2” really means. It does not matter.
2“Most” should be understood as “overwhelmingly many”.
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possible. The reason they do not appear in practice is because there are much too few
of them, they are atypical. There is no way around that. That is what the founders
of probability theory understood and had to swallow. Note that typicality, through
Cournot’s principle, only tells us what to expect or not. It does not allow to associate
a probability to, say, the sequence with 300 heads: In terms of the Laplace-typicality
only values near zero or one matter—atypical or typical. The notion of typicality is
distinct from the notion of probability.

Let’s go a step further and consider the coin tossing as a physical process, because
that is what it is after all: There is a hand which tosses the coin, thereby providing
the coin with an initial momentum and position which determine its flight through
the air. The trajectory of the coin is determined, given the initial conditions, by the
laws of physics (here Newtonian) and hence it defines a function which maps initial
conditions to head or tail (0 or 1). But the hand is just a physical system itself—a
coin tossing machine so to say. The machine picks up the coin, throws it, and after
the landing the machine notes down head or tail, picks the coin up again, throws
it and so on and so forth. Thus the resulting sequence of heads and tails depends
only on the initial conditions, i.e., on the phase space point which determines the
whole process of the coin tossing machine. The physical description and analysis
may not be that easy, but at least the principle is clear3: It shows that the head-tail-
sequences are the images of a function F = (F1, . . . , FN ) of the high dimensional
phase space4 variables q—the initial conditions. Here the component Fk maps to the
outcome δ ∈ {0, 1} of the kth tossing of the machine. Such a function F (a coarse-
graining function by the way) is usually called a random variable. The point is that
in this description where phase space variables play the decisive role, counting is
not anymore possible, as classical phase space is a continuum. What then replaces
the counting? That is a measure—a typicality measure. In classical physics, which
would be appropriate for studying coin tossing as a physical process, the measure
commonly used is the “Liouville-measure”—the volume measure in phase space. It
recommends itself by the property of being stationary,5 an observation which was
promoted in the works of Ludwig Boltzmann. It is a measure which is suggested by
the physical law itself and not by an arbitrary human choice. The fact that, with this
measure, typicality is a timeless notion is of great help for proving the LLN.

The role of the Liouville-measure is to define the notion of “most” for the phase
space of classical mechanics. In mathematical terms, the above mentioned Laplace-
typicality emerges then ideally as the image measure of the more fundamental
Liouville-measure defined by the function F . To express the LLN in this more fun-
damental setting, it is useful to introduce the empirical distribution ρN

emp(q, δ), the
function which counts the relative number of heads and tails and which is a function
of the phase space variables q and the image variables δ ∈ {0, 1}.

3For more on this, see the chapter “Chance in Physics” in [4].
4Dimension of the size of Avogadro’s number perhaps.
5In classical mechanics, there are many more measures which share this property, but that does not
matter for our concerns here.
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ρN
emp(q, δ) = 1

N

N∑

k=1

1{δ}(Fk(q)) .

Here 1{δ}(Fk(q)) = 1 if Fk(q) = δ and 0 otherwise. The LLN (if it would be proven
for a physically realistic coin tossing machine) would then say something like6:
For most phase points q (w.r.t. the Liouville-measure) and for large enough N the
empirical distribution ρN

emp ≈ 1/2, or, Liouville-measure typically ρN
emp ≈ 1/2.

The reference to typicality cannot be avoided, as there are phase points which are
mapped to sequences with, say, 300 heads, i.e., “most” cannot be replaced by “all”.

One further point should be noted which is often used to actually justify the use of
statistical methods in physics: It is almost impossible to know in a realistic physical
system exactly which initial conditions lead to which outcomes (as for example in the
case of the coin tossing machine). The power of typicality is that exact details are not
needed. It suffices that for most initial conditions the observed statistical regularities
obtain.

Coin tossing is not a process which happens only here and now but which happens
at arbitrary locations and times. To explain the statistical regularities in such gener-
ality, we still need to lift the whole discussion to a universal level. The universally
relevant LLN would then have to say (very) roughly something like:

For most universes in which coin tossing experiments are done, i.e., for Liouville
measure-typical such universes, it is the case that the empirical distribution of heads
in long enough sequences in coin tossing experiments is approximately 1/2.

The typicality assertion concerning Born’s law is very analogous to this and has
been proven in [3]. Before we turn to that we shortly look at another rather simple
classical system. Everything that will be said for this example can be carried over to
the case of Bohmian mechanics.

Consider an ideal gas of point particles in a rectangular box, lets say with elas-
tic collisions of the particles at the walls. The gas is in equilibrium when the gas
molecules fill the box approximately homogeneously. Most configurations (with
respect to the Liouville-typicality measure) are like that, like most 0, 1-sequences
have about equal numbers of heads and tails. In the course of time, there will be
fluctuations of the number of molecules in a given region in the box, but those will
escape our gross senses. Most configurations will stay in equilibrium over time. Now
suppose we start with a gas that is occupying only one half of the box, the other half
being empty. This would count as a non-equilibrium configuration.What will happen
in the course of time? Well, eventually the gas molecules will fill the box approxi-
mately homogeneously. Will this relaxation happen for any possible configuration of
gas that starts in one half of the box? The answer is no. For our simple example one

6A technical remark on the side: To model the coin tossing experiment in which the coin is thrown
a great number of times in a physically realistic way is not so easy and to prove the LLN may turn
out hard: The stochastic independence of the different tosses of the coin is easily said, but to prove
that in a physically realistic model is far from being easy (see [4], chapter “Chance in Physics” for
an elaboration on that).
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can easily construct configurations which will never look like the equilibrium ones.
There will be configurations for which it takes an enormous amount of time to evolve
into ones which look like equilibrium. And some never will. Why is that important to
observe? Because if one wants to make predictions about the possible behavior non-
equilibrium configurations one needs to invoke typically. Namely, the idea (which is
Boltzmann’s insight) is that typical, i.e., most, non-equilibrium configurations will
evolve to configurations which macroscopically look like equilibrium ones. (“Most”
is again with respect to the Liouville-typicality measure, concentrated initially on the
very small subset of configurations which are such that the box is only half filled.)
Why? Because the equilibrium set in phase space, is so overwhelmingly larger then
the tiny non-equilibrium set, so that typically trajectories will wander around and
will end up in the overwhelmingly large set and stay there for a very large time. And,
as we said, there exist also atypical configurations which will not at all behave like
that. That is, without typicality, we have no explanation why to expect equilibration.
Having said this, we should warn the reader that this just is the physical idea behind
the equilibration. To turn this into a rigorous argument is famously hard, as hard as
to justify the Boltzmann equation from first principles.

The warning in mind, we can think of describing the transition from non-
equilibrium to equilibrium also in terms of coarse-graining densities ρ(x, t), which
are more or less smooth functions (macro-variables) on the three-dimensional physi-
cal space with variables x and which should be pictured as approximations of empiri-
cal densities.7 Theuniformdensity i.e.,ρeq(x) = const.would thenbe the equilibrium
density. Hence, starting with a non-equilibrium density ρneq , it is perhaps reason-
able to assume, that ρneq(t) → ρeq as t gets large. This convergence of densities is
sometimes referred to as “mixing property” and we shall refer to this notion to mean
just that: convergence of densities without reference to typicality. There have been
attempts to show this. The mixing idea is presumably due to Willard Gibbs who
had introduced the so-called ensemble view into statistical physics. An idea for a
strategy for a “convergence to equilibrium proof” was suggested by Paul Ehrenfest
as is recalled on page 85 by Kac in [5] and where he refers to Ehrenfest’s attempt as
an “amusing” theorem, since convergence to equilibrium in time does not follow at
all from what Ehrenfest had shown.

But even when the mixing property, i.e., convergence of densities, were shown
to be of physical relevance, the connection with the actual configuration (i.e., the
empirical distribution)would still have to be established.After all,Newtonian physics
is about configurations and not densities. In addition, by our arguments above, some
non-equilibrium densities will never show themixing property, for example densities
which are concentrated on “bad” configurations, i.e., atypical ones.

7The empirical density is in this case given by ρN
emp(q, x) = 1

N

∑N
k=1 δ(x − xi ), where xi is the

position of the i th particle. Note the analogy with the definition in the case of the coin tossing.
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2 Born’s Rule

What we have said about the statistical analysis in classical physics carries over to
the statistical analysis of Bohmianmechanics, where the phase space is now replaced
by configuration space. Born’s rule ρ = |ψ|2 is a short hand for the universal LLN
for the empirical distribution ρN

emp of the coordinates of the particles of subsystems
in an ensemble (defined similarly as in Footnote7). Roughly speaking, the universal
LLN in the context of Born’s rule says the following (for the precise formulation,
see e.g. [3]):

For typical Bohmian universes hold: In an ensemble of (identical) subsystems of
a universe, where each subsystem has effective wave function8 ψ, the empirical
distribution ρN

emp of the particles coordinates of the subsystems are |ψ|2 distributed.
For this to hold sufficiently well, the number N of subsystems in the ensemble

should be large. Note that in analogy with the coin tossing, the number 1/2 is here
replaced by |ψ|2 and the sequence of length 1000 is here the number of subsystems in
the ensemble. But instead of the Liouville-measure, the typicalitymeasure used in [3]
is the measure P�(A) = ∫

A |�|2(q)dq (q is a generic configuration space variable),
where A is a subset of the configuration space of the Bohmian universe and � is the
universal wave function on that space.9 What is special about the typicality measure
P

�? It is a measure which is transported equivariantly by the Bohmian flow. This
means that it is a typicality measure which like the stationary Liouville measure is
independent of time.10

The very nice property of the universal quantum equilibrium LLN is that it is
empirically adequate. Up to date all tests affirm the empirical validity of Born’s law.

3 Dynamical Relaxation?

Valentini dislikes the use of typicality. Instead, he proposes “dynamical relaxation” to
equilibrium to explain Born’s rule in the realm of Bohmian mechanics. It is however
not at all clearwhat ismeant by “dynamical relaxation” and inwhichway reference to
typicality can be overcome.On the configurational level, i.e., on the level of empirical
densities, starting in non-equilibrium our discussion of the gas in the box applies
verbatim. There will always exist initial configurations of particles for which the
empirical distribution will never become close to |ψ|2—the equilibrium distribution.
So why should we expect equilibrium then? Appealing to Boltzmann’s idea, one
could invoke typicality as in the case of the gas example. But as soon as one invokes
typicality, there is no longer any need to invoke relaxation to begin with to explain

8Think of this wave function as the usual wave function of a system as it is used in physics courses.
9As an aside, note that the typicality measure which is used in the LLN is really a member of an
equivalence set of measures. That is, all measures which are absolutely continuous with respect to
P

� yield a LLN for Born’s law.
10It has been proven under very reasonable conditions in [7] that this measure is unique.
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equilibrium!Namely, most configurations will be in equilibriummost of the time and
hence non-equilibrium just doesn’t occur–for all practical purposes—as established
in [3].

Valentini also follows theGibbs-Ehrenfest idea ofmixing and provides an analytic
argument for the convergence of densities. But the argument is the direct analogue
of the “amusing” theorem proven by Ehrenfest, which “tells us nothing about the
behavior of the non-equilibrium density ρ in time” [5]. Not to say that the connection
to empirical densities needs to be established on top of that.

Hence the “dynamical relaxation” approach turns out be neither necessary nor
sufficient.

4 Physically Misguided?

All of the quantum formalism follows from Born’s rule [6].11 There is no dispute
about that. Heisenberg’s uncertainty follows from Born’s rule. No dispute about that
either. There is actually no dispute about any of the consequences which arise from
or in quantum equilibrium. So what is the dispute about then? If it is about the needed
reference to typicality, then that can’t be because both “approaches” need reference
to typicality anyhow for physically meaningful assertions.

What thenmakes the use of typicality physicallymisguided? Because the physical
law allows for atypical universes? Because a coin tossing sequence of only heads is
possible by the physical law? No argument, other than denying the physical law, can
make those possibilities impossible. Why then, don’t we deny the law to make them
go away? Because by humbly looking at the facts in our world we understand that
the law-like regularities in apparently random events are in surprising harmony with
the physical law: They are typical.
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Presentation of Collapse Models

Luca Ferialdi

The Ghirardi-Rimini-Weber (GRW)model of wave function collapse was successful
in giving a solution to the measurement problem in quantum mechanics. Despite
this, it lacked two desirable features—one mathematical and one physical—for a
collapse model. The mathematical aspect of the GRW model that one would like
to improve is its lacking of a unified description in terms of an equation for the
wave function. On the physical side, the GRW model uses the first quantization
language, and does not preserve the symmetry properties of indentical particles wave
functions [1]. In 1990 Ghirardi, Rimini and Pearle took the desired step forward
devising theContinuos SpontaneousLocalisations (CSL)model [2]. They considered
collapses to be driven by continuous stochastic processes (instead of having discrete
collapses like inGRW), that allowed to describe the collapse dynamics by a stochastic
Schrödinger equation. Moreover, the CSL model relies on the second quantization
formalism, and correctly describes ensembles of identical particles. In the following
years, collapse models attracted the interest of many scientists, their properties were
deeply investigated and different collapse models were proposed [3–10]. The CSL
model however is still the reference model in the field, and is the one against which
experimental results are used to bound the collapse parameters. In this chapter we
review theCSLmodel—focusingon itsmass-dependent version—and itsmore recent
extension to colored stochastic processes and dissipative dynamics. We also briefly
review the Diósi-Penrose model, that links the wave function collapse to gravity, and
the Quantum Mechanics with Universal Position Localizations (QMUPL) model,
that well approximates the CSL model under certain circumstances, and has the
advantage of being mathematically easier to handle.
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1 Modified Schrödinger Dynamics

Providing a unified description of the Schrödinger evolution and the measurement
process at thewave function level, implies amodificationof theSchrödinger equation.
Besides being careful to the fact that one needs to recover quantum mechanical
predictions for microscopic objects and classical ones for macroscopic objects, one
also needs to pay attention to other technical details. The starting point is that, since
onewants to kill linear superpositions ofmacroscopic objects, themodificationsmade
have to be non-linear. Nonetheless, the density matrix dynamics has to be linear, in
order to avoid faster-than-light signalling, i.e. to avoid instantaneous communication
at arbitrary distances [11]. Since non-linear and deterministic modifications at the
wave funciton level would lead to a non-linear density matrix dynamics, in order
to avoid a contraddiciton with relativity, one thus has to consider non-linear and
stochastic modifications of the Schrödinger equation. These requirements, together
with the one that the norm of the wave function has to be preserved, essentially fix
the structure of a consistent stochastic Schrödinger equation:

d|ψt 〉 =
[
− i

�
Ĥdt + √

γ
(
Â − 〈 Â〉t

)
dWt − γ

2

(
Â − 〈 Â〉t

)2
dt

]
|ψt 〉, (1)

where the Itô formalism is assumed (see [12] for mathematical details). Ĥ is the
standard quantum Hamiltonian, Â is the hermitian operator on whose basis the wave
function collapses, γ is the collapse strength, and 〈A〉t is the expectation value of Â
(whichmakes the equation non-linear). The second term of this equation is stochastic
due to the Wiener process dWt , while the third term guarantees the average norm
conservation of the state vector. It is useful to introduce the linear equation corre-
sponding to Eq. (1):

d|φt 〉
dt

=
[
− i

�
Ĥ + √

γ Âwt − γ

2
Â2

]
|φt 〉, (2)

where wt = dWt/dt is a white noise: E[wt ] = 0, E[wtws] = δ(t − s). We remark
that this equation does not preserve the norm of the state vectors, thus to obtain
physical states one needs to normalize |φt 〉: |ψt 〉 = |φt 〉/|||φt 〉||.

2 The Continuos Spontaneous Localisations Model

The CSL model is still considered the collapse model par excellence, and it is cur-
rently the onemost exploited for phenomenological analysis of collapsemodels [13].
This model has been devised is such a way that dynamics of microscopic objects only
slightly differs from the Schrödinger evolution, while it guarantees that macroscopic
objects are well localized in space.We introduce the creation (annihilation) operators



Presentation of Collapse Models 47

of a particle of type i and mass mi at the space position x: Â†
i (x) ( Âi (x)), and the

local mass density operator

M̂(x) =
∑
i

mi Â
†
i (x) Âi (x) , (3)

(bold symbols denote three dimensional vectors). By replacing the collapse operator
Â in Eq. (1) with the local mass density operator, one obtains a model describing
a collapse process that is more likely to happen where the particles mass density is
higher. This is the (mass proportional) CSL model, whose stochastic Schrödinger
equation reads:

d|ψt 〉 =
[
− i

�
Ĥ dt +

√
γ

m0

∫
d3x

(
M̂(x) − 〈M̂(x)〉t

)
dWt (x) (4)

− γ

2m2
0

∫∫
d3x d3yG(x − y)

(
M̂(x) − 〈M̂(x)〉t

) (
M̂(y) − 〈M̂(y)〉t

)
dt

]
|ψt 〉,

where m0 is a nucleon reference mass, and γ is a new parameter of the model that
sets the collapse strength, whose value will be discussed later. dWt (x) is a family of
Wiener processes such that

E[dWt (x)] = 0, E[dWt (x) dWt (y)] = dt G(x − y) , (5)

where the spatial correlation function is chosen to be

G(x − y) = 1

(4πrc)3/2
exp

(
− (x − y)2

4r2c

)
, (6)

Such a choice establishes a connection with the GRW model, both for the shape of
the correlator, that recalls the GRW collapse operator, and for the correlation length
rC , the second free parameter of themodel. The correlation length is set to rC = 10−7

m: this is a mesoscopic distance that guarantees that the structure of matter is not
affected by the collapse, while macroscopic objects are. Notice that in recent years
the value of rC has been relaxed, and the range of values it can take is bounded by
experiments (see contribution from Carlesso and Paternostro for details).

In order to compute expectation values of physical quantities, it is convenient to
introduce the master equation for the statistical operator ρ̂(t) = E[|ψt 〉〈ψt |]. This
can be easily calculated from Eq. (4), and reads:

d

dt
ρ̂(t) = − i

�

[
Ĥ , ρ̂(t)

]
+ γ

m2
0

∫∫
d3x d3yG(x − y) [M̂(x), [M̂(y), ρ̂(t)]] .

(7)
This master equation can also be rewritten in the first quantization formalism as
follows [14]:
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d

dt
ρ̂(t) = − i

�

[
Ĥ , ρ̂(t)

]
+ m2

m2
0

γ

(2π�)3

N∑
j,l=1

∫
dQe

−Q2r2C
�2

(
e
i
�
Q·x̂ j ρ̂(t)e−

i
�
Q·x̂l − ρ̂(t)

)
. (8)

2.1 Localisation of Macroscopic Objects

One of the crucial properties of collapse models is their ability to suppress macro-
scopic superpositions without affecting microscopic ones. Let us see what are the
CSL predictions in these regards.

We introduce the “position” states

|x1, . . . xN〉 = a†(x1), . . . a†(xN)|0〉 , (9)

describing N particles at positions x1, . . . xN. We first consider a single particle, and
we represent the master equation (7) on the position states obtaining:

d

dt
〈x|ρ̂(t)|y〉 = − i

�
〈x|

[
Ĥ , ρ̂(t)

]
|y〉

− γ(√
4πrC

)3

(
1 − e−(1/4r2C )(x−y)2

)
〈x|ρ̂(t)|y〉 (10)

One finds that this equation is the same as the one for the GRW model, provided
that γ = (

√
4πrC)3λ, where λ is the rate for the latter model. The value originally

proposed by GRW for the collapse rate was λGRW = 10−16 s−1, that correspond to
a coupling constant γ ≈ 10−30 cm3 s −1 [1, 2]. GRW’s choice is motivated by the
requirement that superpositions of 6.02 × 1023 nucleons, displaced by a distance of
at least rC , be suppressed within 10−3 s. Later Adler proposed the value λ = 10−8

s−1 (with an uncertainty of two orders of magnitude), motivated by the requirement
that the collapse occurs already at the level of process of latent image formation in
photography [15]. Accordingly, for such a choice of the CSL parameter γ, a single
particle is almost never localized.

Let us nowconsider amacroscopic rigid body that consists of N identical particles,
with position operators x̂i , and let us call X̂ the center of mass position operator:

X̂ = 1

N

N∑
i=1

x̂i , (11)

Under the assumption that the center ofmassHamiltonian factorizes from the relative
one, one finds that the center of mass density matrix ρ̂CM evolves according to the
following master equation:
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d

dt
ρ̂CM(t) = − i

�

[
ĤCM, ρ̂CM(t)

]

+λ

(
rC√
π�

)3 m2

m2
0

∫
dQR(Q)e− Q2r2C

�2 (e
i
�
Q·X̂ρ̂CM(t)e− i

�
Q·X̂ − ρ̂CM(t)), (12)

where

R(Q) =
N∑

j,l=1

e
i
�
Q·(rj−rl) (13)

depends on the specific distribution of the particles around the center of mass of
the considered object. We can however estimate the magnitude of R(Q) as follows
(see [14, 15] for details). Let us ideally divide the object in N spheres of radius rC ,
and let us call n the number of particles in each sphere. Since the Gaussian factor

e− Q2r2C
�2 selects the values of Q such that |Q| < �/rC , one finds that the particles

contained in each sphere contribute as follows

R(Q) ≈
n∑

j=1,l=1

1 = n2. (14)

On the other hand, when the particles are distant more than rC (contribution of each
sphere), the phases oscillations are such that only the terms with i = j survive, thus
leading to the following estimate:

R(Q) ≈
N∑
j=1

1 = N . (15)

By replacing these estimates in Eq. (12), one finds that the center of mass density
matrix ρ̂CM evolves according to the one particle master equation (8) where λ is
replaced by the enhanced factor

Λ = n2Nλ . (16)

This is the so called “amplification mechanism”: the effective collapse rate for a
macroscopic object is amplified with respect to the single particle one, by a factor
proportional to the number of its constituents. Accordingly, although the collapse
rate is very small, in such a way that one particle is almost never localized, the
amplification mechanism guarantees that a macroscopic object collapses instantly,
thus recovering a classical behaviour.



50 L. Ferialdi

2.2 Extensions of the CSL Model

The CSL model shares with most collapse models two undesirable features: the
increase of the system average energy, and the absence of a high frequency cutoff
for the noise. In order to solve these issues, two extensions of the CSL model have
been proposed: the dissipative CSL (dCSL) [16], and the colored CSL (cCSL) [17,
18].

dCSL: In the CSLmodel, the average energy of the system steadily increases, diverg-
ing asymptotically. This is a consequence of the fact that the collapse noise constantly
kicks the system, acting like an infinite temperature reservoir. Since there is no dis-
sipation mechanism in the model, such an interaction leads to a linear increase of the
energy in time, that for a free particle of mass m is

〈Ĥ〉t = λ
3�

2m

4r2Cm
2
0

t . (17)

This issue was solved by extending the CSL model to dissipative dynamics
(dCSL) [16], i.e. by modifying the collapse operator in order to account for dissipa-
tive effects. The dCSL model is described by the following stochastic Schrödinger
equation

d|ψt 〉 =
[
− i

�
Ĥdt +

√
γ

m0

∫
d3x [L̂(x) − lt (x)]dWt (x) (18)

− γ

2m2
0

∫
d3x [L̂†(x)L̂(x) + l2t (x) − 2lt (x)L̂(x)]dt

]
|ψt 〉,

with lt (x) ≡ 〈ψt |(L̂†(x) + L̂(x))ψt/2. The collapse operator L̂ now depends not
only on position, but also on momentum, thus inducing dissipation:

L̂(x) =
∑
j

m j

(2π�)3

∫
dPdQ â†j (P + Q) e− i

�
Q·x

× exp

(
− r2C
2�2

∣∣(1 + k j )Q + 2k jP
∣∣2) â j (P) , (19)

where

k j ≡ �

2m jvηrC
, (20)

and vη is a new parameter the sets the strength of the dissipative effects. One can
easily check that in the limit vη → 0 themodel recovers theCSL.Themaster equation
associated to Eq. (18) is
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d

dt
ρ̂(t) = − i

�

[
Ĥ , ρ̂(t)

]
+ γ

2m2
0

∫
d3x

[
L̂(x)ρ̂(t)L̂†(x) − 1

2

{
L̂†(x)L̂(x), ρ̂(t)

}]
.

(21)
By exploiting this master equation one can show that the dCSL model predicts the
following evolution for the average energy of a free particle of mass m:

〈H(t)〉 = e−χt (〈H(0)〉 − H∞) + H∞, (22)

where the relaxation rate χ reads

χ = 4kλm2

(1 + k)5m2
0

, (23)

and H∞ is the asymptotic value of the kinetic energy:

H∞ = 3�
2

16kmr2C
. (24)

We thus see that the dissipative terms have the effect of making the system reach a
finite asymptotic value. We can interpret this fact as if the system thermalizes at the
noise temperature. While in the CSL model such a temperature is infinite, for the
dCSL one finds that the noise temperature is

T = �vη

4kBrC
, (25)

where kB is the Boltzmann constant. Although the system energy is not conserved,
one can restore energy conservation by considering an energy exchange between
the system and the noise. Furthermore, the asymptotic value is very small, and not
detectable with present day technology [16].

cCSL: The collgapse noise in the CSLmodel is white, i.e. it has no frequency cutoff.
This is an undesirable feature if one thinks about such a noise as physical field (e.g.
with cosmological origin [24]), because a noise of this kind is unphysical. One thus
needs to consider a colored noise, i.e. a noise with a frequency cutoff that is not delta
correlated in time. The extension to the cCSLmodel can be obtained by generalizing
equation (2) to Gaussian stochastic processes wt (x) such that

E[wt(x)] = 0 , E[wt (x)ws(y)] = G(x − y) D(t − s) , (26)

where we have implicitly assumed that spatial and temporal correlations factorize.
The linear stochastic Schrödinger equation describing the cCSL model thus reads
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d|φt 〉
dt

=
[
− i

�
Ĥ +

√
γ

m0

∫
d3x M̂(x) wt (x) (27)

− γ

m2
0

∫∫
d3x d3yG(x − y)M̂(x)

∫ t

0
ds D(t − s)

δ

δws(y)

]
|φt 〉,

where δ/δws(y) denotes a functional derivative. We remind that physical states are
obtained by normalizing |φt 〉. The presence of the integral term and of the functional
derivative makes it extremely difficult to investigate the features of the cCSL model.
Nonetheless, a perturbative expansion allows to grasp the main properties of the
model [17, 18].

3 Other Collapse Models

In this section we briefly describe two particularly relevant collapse models: the
Diósi-Penrose model [3], that links the collapse of the wave function to gravity, and
Quantum Mechanics with Universal Position Localization (QMUPL) [4], that is a
very good compromise between mathematical simplicity and physical adequacy.

Diósi-Penrose: This model was first proposed by Diósi [3, 19–21], and has the
particularly appealing feature of connecting the wave function collapse to gravity.
The model has the same structure as the CSL, provided that the noise correlator is
proportional to the gravitational potential:

G(x) = G

�

1

|x| , (28)

where G(x) is the gravitational constant. With this definition of G, γ is a dimension-
less constant that one can set to one. One of the advantages of this choice is that the
model has no free parameters (unlike CSL). The model however needs to be regu-
larized, because the 1/|x| potential is divergent for small distances. One thus has to
introduce an effective radius R0 below which particles are considered point-like. A
natural choice for R0 is the nucleon radius R0 = 10−15 m. However, also the Diósi-
Penrose model is affected by a steady energy increase, and for the proposed value
of cutoff, such a rate is very high (10−4 K/s for a proton). This issue can be avoided
by choosing a larger cutoff R0 = 10−7 m, that gives a more reasonable rate of 10−28

K/s [22]. Such a cutoff is more difficult to justify on physical grounds, and the model
loses its appeal of being a phenomenological model without free parameters. The
introduction of dissipative effects in the model cannot be exploited because doing so
one should keep the cutoff very large, or limit the validity of the model [23].

QMUPL: This model has the merit of being mathematically easier to handle com-
pared to CSL, still providing a reliable physical description of the collapse dynamics.
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This allowed to investigate thismodel thoroughly both under themathematical aswell
as physical points of view [3, 25], and extend it to dissipative [8], or non-Markovian
(colored noise) [9, 26] dynamics. Moreover, we stress that this is the only collapse
model for which a dissipative and non-Markovian [10, 27] extension exists, and
that exact solutions for initial Gaussian wave packets exist for all of its extensions.
In this model, the stochastic field is linearly coupled to the particle position, and
is described by Eq. (1) with Â replaced by x̂ . The wave function dynamics of one
particle is equivalently described by the following one dimensional linear equation:

d|φt 〉
dt

=
[
− i

�
Ĥ + √

γ x̂ wt − γ

2
x̂2

]
|φt 〉 . (29)

Essentially, the QMUPL model is CSL in the limit of short superposition distances
with respect to rC . This equation predicts that, for a Gaussian wave packet, the aver-
age position and momentum evolve stochastically, while the spread evolves deter-
ministically, guaranteeing the collapse of the wave function. The non-Markovian
and dissipative QMUPL model is described by the following stochastic Schrödinger
equation:

d|φt 〉
dt

=
[
− i

�

(
Ĥ + γμ

2
{x̂, p̂}

)
+ √

γ
(
x̂ + i

μ

�
p̂
)

wt

−2
√

γ x̂
∫ t

0
dsD(t, s)

δ

δws

]
|φt 〉 , (30)

where μ is a parameter that sets the strength of dissipative effects, and D(t, s) is
the time noise correlation function: D(t, s) = E[wt ws]. One can easily check that
by setting μ = 0 (no dissipation), and D(t, s) = δ(t − s) (white noise), Eq (29) is
recovered. It has been showed that, in principle, both non-Markovian and dissipative
effects make the collapse process weaker. However, even at very low temperatures
and with a strong frequency cutoff, the collapse remains as effective as in the non-
dissipative white-noise cases [10].

While the master equation for the white-noise dissipative and non-dissipative
QMUPL models is of the Lindblad type and can be readily obtained from from the
respective stochastic Schrödinger equations, the master equations for the colored
extensions require more elaborate calculations [28, 29].

Themodel simplicity allowed tofind the analytical solution for all these extensions
of the model (which was not possible for the CSL model), providing great insight in
collapse models in general. It was shown that dissipative contributions allow to reach
an asymptotic value for the energy, whose value depends on the dissipation strength.
The presence of a colored noise (non-Markovian) makes the collapse less effective,
depending on how much the noise correlation function departs from a Dirac delta.
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Appreciating What He Did

Tim Maudlin

In 1989, a NATO summer school organized by Arthur Miller was held in Erice,
Sicily. By a rather unexpected set of circumstances I managed to horn my way into
attending that conference, and therein lies a tale I have often told. It bears repeating
here.

The highlight of the conference was John Bell’s presentation of his classic paper
“Against ‘Measurement’”. That was the first time I had heard of the GRW theory,
and I was extremely puzzled by what Bell had to say. As was common at the time,
I had grown up hearing about quantum theory from an exclusively Copenhagen
perspective, the same approach enshrined in von Neumann’s Mathematical Foun-
dations of Quantum Mechanics. Apparently, the physical world obeyed two quite
different dynamical laws, one which obtained when nothing was being “measured”
or “observed” and quite another when a measurement happened. The former was
always smooth, continuous, deterministic, predictable Schrödinger evolution, and
the latter was discrete, jumpy, indeterministic and unpredictable collapse. Given this
setting, the natural question cannot be avoided: What triggers the collapse? Under
what conditions does the one equation take over from the other? It seems as though
the trigger must be something of a very unique and profound nature, something able
to switch the entire mode of physical evolution from one character to an entirely
different character. Add on top of this Wigner’s suggestion that the key ingredient
is consciousness—the same profoundly puzzling aspect of reality that drives the
mind/body problem—and the result is a heady mix of suggestion and speculation.
Approached in this way, the mysteries of quantum theory become the mystery of
collapse, which intimates possible connections to the biggest metaphysical enigma
there is.

SowhenBell turned from the conceptually inadequate accounts of quantum theory
that he unearthed from physics textbooks to the possible solutions thatmet his criteria
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for professional clarity and mathematical precision I brought all my attention and
concentration to bear. And when he further turned to the possibility of a precise
collapse theory, I was riven by anticipation. Finally, a clear and exact proposal for
the magical trigger of collapse would be presented. What really are the conditions
that occasion such a profound alteration in the ways of nature herself?

And when the answer was revealed I was overwhelmed by a sense of
profound……disappointment. You mean that the collapses just happen at random?
There is no trigger, nothing about consciousness, no mystical key? I could hardly
believe my ears.

After the lecture I went to Bell overcome by this sense of deflation. I asked him
how he could be so interested in such a disenchanting resolution to the great mystery.
I asked him, with evident distress, “You mean it just happens?”.

And I can report the precise words Bell used in response. He looked at me in his
usual calm and kindly way, and said “You don’t appreciate what they have done”.

And of course he was right.
This volume offers an opportunity to remind ourselves what GianCarlo—both

in collaboration with Rimini and Weber and also on his own—achieved. There is a
technical side and a conceptual side to this story, and both are important, but I will
dwell on the conceptual side. One of the main contributions of the objective collapse
theories that GianCarlo developed, in both discrete and continuous forms, is how they
force us to directly confront the question of what the measurement problem really
is, and what a conceptually acceptable sort of solution to it might possibly look
like. Shaking the physics community from its blasé and dismissive attitude towards
foundational questions requires overcoming the claim (much inculcated byBohr) that
a clear and comprehensible account of quantum phenomena simply cannot be had.
The view that even two-slit interference (leave aside violations of Bell’s inequality)
cannot be understood but only described was advocated by Feynman in his Lectures
on Physics, and Feynman’s pronouncements cannot be taken lightly. So—at least
at that time—one had the unmistakable sense of the scales falling from one’s eyes
when presented with a conceptually clear and clean physical account of what at least
might be going on. Bell himself had had the same reaction to reading Bohm’s 1952
papers on the pilot wave theory, but as a non-collapse theory that provided no obvious
insight into the usual way of thinking about things. GRW did.

There are two quite different aspects of the measurement problem, and Gian-
Carlo’s work reflects his appreciation of each. Let’s start with the first.

When Schrödinger presented his example of the cat in 1935, the main conceptual
issue he confrontedwaswhatwemight call smeariness. Bohr had denied the accuracy
of the naïve planetary model of the atom: electrons are not, according to Bohr,
little (possibly point-like) bodies that orbit the nucleus as the old quantum theory
suggested. Bohr had come to insist that the wavefunction of an electron is complete,
so the electron itself could have no physical characteristics not recoverable from the
wavefunction.Hence, if thewavefunction is—in some sense—spherically symmetric
and spread out in all directions around the nucleus, then the electron itself must be
spread out in exactly the same way. The electron, on this view, is more like a cloud
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or a mist than a billiard ball. It is denser some places than others, but not paticularly
located in any one place.

Schrödinger had no objection to electrons being smeared out in such a way in an
atom. After all, we have no direct empirical access to individual electrons in atoms.
If they are smeared out, so be it.

But as Schrödinger recognized, the mathematical character of his own dynam-
ical equation for the wavefunction, and in particular its linearity, could not confine
the smeariness to microscopic scale. In experimental conditions such he described
the linear evolution would of necessity amplify the smeariness from microscopic to
macroscopic magnitude. Absent any non-linear collapse, the dynamics would smear
out the cat itself between a state in which it is alive and one in which it is dead. The
smeariness would—according to Bohr and von Neumann—persist until a “measure-
ment” or “observation” is carried out on the cat. And that, Schrödinger opined, is
simply ridiculous. No one in their right mind could believe that.

Put in this way, the challenge is to get the collapse, but to get it somehow earlier
than the moment when the experimentalist checks on the cat. That is certainly not an
impossible task: one needs to identify a collapse trigger that goes off much earlier in
the process than the ultimate observation. And the collapse must also be late enough
that the observed interference effects (like two-slit interference) are not suppressed.
But there is a wide range of Goldilocks locations for the collapse: not too early and
not too late. One obvious way to proceed, from Schrödinger’s perspective, is to find
the right trigger. That done, the completeness of the wavefunction can bemaintained.

The genius of the GRW theory was to cut the Gordian knot of the trigger: don’t tie
it to anything at all. By having the collapse rate low enough, the observed interference
effects are safe. And the brilliant observation was that entanglement of positions in
solid macroscopic objects (such as needles on apparatuses) ensured definite enough
positions for the macroworld with no further ado. The relatively low collapse rate
is overmatched by the tremendously large number of particles in familiar macro-
scopic objects. This is what Bell appreciated and I did not: how such a simple and
small and mathematically precise change in the dynamics can get all of the collapse
characteristics one wants or needs.

1 The Second Innovation

At a highly abstract level, the GRW spontaneous collapse solves one aspect of
the measurement problem cleanly and precisely, with a mathematically specified
dynamical law. That gives the Born rule something to be about: the probabilities are
probabilities for the collapse to happen one way rather than another. It breaks the
symmetry that creates a measurement problem in any theory according to which the
wavefunction is complete. So it is tempting to say that the GRW collapses solve the
measurement problem tout court. And for a while I certainly thought it did. But, as
Bell pointed out and GianCarlo acknowledged, there is more to the story.
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The illusion that the collapses alone solve all the issues arises from a misleading
way of labelling quantum states. The aspect of the Measurement Problem that rests
on the completeness of the wavefunction and the linearity of the dynamics goes like
this:

In an experimental situation where, for example,
|z-spin-up > |Device-in-ready-state > ⇒ |Cat-alive>
and
|z-spin-down > |Device-in-ready-state > ⇒ |Cat-dead >,
(with the arrow representing the Schrödinger evolution), linearity implies that
|x-spin-up > |Device-in-ready-state > ⇒ 1√

2
|Cat-alive > + 1√

2
|Cat-dead >.

If the wavefunction is complete, and|Cat-alive > represents a state in which the
cat it alive while |Cat-dead > represents a state in which the cat is dead, then the final
state is a problematic superposition of macroscopically different states. The collapse,
of course, prevents it from forming.

But note that the argument just given takes for granted that |Cat-alive > represents
a physical situation with a live cat and |Cat-dead > represents a situation with a dead
cat. There is no attempt at all to explain just how that could be the case. All of the
burden of making the connection between these particular wavefunctions and the
conditions of real, physical cats is carried simply by the labelling “Cat-alive” and
“Cat-dead”. If ever Russell’s quip about theft over honest toil were called for, it is
here.

One might try to argue that we know that the transition
|z-spin-up > |Device-in-ready-state > ⇒ |Cat-alive>
yields a final state with a live cat by simple empirical observation: the apparatus

just does yield a live cat whenever a z-spin-up particle is fed in. But this observation is
neither here nor there: itmakes the presupposition that wavefunction never collapses
in this case, which is part of what is at issue. And itmakes the presupposition that the
wavefunction is complete, which is also at issue. So we can’t turn to the experimental
records to bridge this gap in the argument.

Bohr insisted that experimental conditions and outcomes must be provided in
“classical terms”, but he never explained how they can be provided in classical terms.
The “classical terms” have nothing to do with the details of classical dynamics as
enshrined, say, in Newton’s Laws of Motion. “Classical terms” just means a descrip-
tion in terms of the macroscopic characteristics (including position and motion) of
macroscopic objects like knobs and needles and cats. And we can see why Bohr
insisted on this: experimental procedures and outcomes are described in precisely
terms like these. In particular, one positively wants to keep theoretical terms out of
the description of the experiment and its outcome since the experiment is being used
to test the theory, and so should not tacitly presuppose it.

In Copenhagen, the exact conceptual and physical relation between the “classical”
language of the experimentalist and the mathematical formalism of the quantum
theorist is left extremely hazy and puzzling. As Bell says:

“The kinematics of the world, in this orthodox [Copenhagen] picture, is given by a
wavefunction (maybemore than one?) for the quantumpart, and classical variables—
variables which have values—for the classical part: (Ψ (t, q, . . .), X(t), . . .). The Xs
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are somehowmacroscopic. This is not spelled out very explicitly. The dynamics is not
formulated very precisely either. It includes a Schrödinger equation for the quantum
part, and some sort of classical mechanics for the classical part, and ‘collapse’ recipes
for their interaction.

It seems to me that the only hope for precision with the dual (Ψ , x) kinematics is
to eliminate completely the shifty split, and let both Ψ and x refer to the world as a
whole. Then the xs must not be confined to some vague macroscopic scale, but must
extend to all scales”.1

In Bell’s taxonomy, the xs include the local beables of the theory: they must
becauseΨ is not a local object. So this point of Bell’s connects directly to his second
main conceptual issue with standard quantum theory: the issue of local beables.

Somehow or other, a theoretical picture of physical realitymust make contact with
experimental data in order to be an empirical theory. And since the empirical data is
ultimately taken to be recorded in the structure of localized macroscopic objects, the
physical theorymust somehowmake contact with those. That requires the theoretical
picture to have some local beables, which ought to be defined at microscopic scale.
Then the “classical” world gets built up, just as we have always assumed, from
large collections of microscopic entities. The theory dictates the behavior of the
microscopic local beables, which in turn determine the macroscopic local objects by
simple aggregation.

The programmatic necessity for local beables has been widely overlooked in
foundational investigations. The duel (Ψ , X) ontology with only macroscopic Xs,
Bell’s presentation of Copenhagen, does not have trouble making contact with expe-
rience, but rather problems making the contact between the observable objects and
the thing actually governed by quantum theory. And it suffers the severe conceptual
problem of denying that macroscopic objects are nothing more than large collections
of microscopic parts. It is very hard to see how to maintain the Copenhagen approach
in any rigorous way, and nowadays no one even tries. But it has not generally been
appreciated what sort of problems a defensible view of the relation between macro
and micro must face. Bell showed us the way.

For the sake of contrast, the Many Worlds interpretation has never been provided
with a clear account of either what the local beables of the theory are, or of how to
understand the empirical consequences of the theory without them. There have been
attempts to somehow interpret the reduced density matrix of quantum field theory
as a representation of some local beable, and also attempts to have space-time itself
along with some local beables in it “emerge” via functional considerations from a
non-spatial-temporal foundation. This is not the place to review these efforts, but it is
fair to say that there is no consensus about whether they can be made to work. With
respect to GRW theory, though, Bell provided a clear ontology of local beables—
the flash ontology—in his exposition. In order to appreciate Bell’s point, I think it is
important to note that he uses the phrase “in the theory” tomean “in themathematical
apparatus” rather than “according to the theory”. For his own ontological proposal

1J. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press,
Cambridge, 2004, p. 228.
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here is that the world would be composed of a quantum state (directly represented
by the wavefunction), a space-time, and a collection of local physical point-events
in the space-time:

“There is nothing in this theory but the wavefunction. It is in the wavefunction
that we must find the physical world, and in particular the arrangement of things
in ordinary three-dimensional space. But the wavefunction as a whole lives in a
much larger space, of 3 N-dimensions. It makes no sense to ask for the amplitude
or phase or whatever of the wavefunction at a point in ordinary space. It has neither
amplitude nor phase nor anything else until a multitude of points in ordinary three-
space are specified. However, the GRW jumps (which are part of the wavefunction,
not something else) are well localized in ordinary space. Indeed, each is centered on
a particular space-time point (x, t). So we can propose these events as the basis of the
‘local beables’ of the theory. These are the mathematical counterparts in the theory
to real events in definite places and times in the real world….A piece of matter is
then a galaxy of such events”.2

Although the original GRW paper did not suggest such an ontology of local
beables, GianCarlo understood the point Bell was making and embraced the require-
ment that an acceptable theory specify some local beables. But along with the artic-
ulation of the original GRW proposal in that direction, different considerations arose
from a different origin.

Adopting a flash ontology comports well with the discrete character of the GRW
collapses. But there was also some desire to eliminate the jumpy two-different-
evolutions dynamics in favor of a uniform continuous stochastic process. Together
with Philip Pearle, that avenue of research yielded the Continuous Spontaneous
Localization (CSL) model. CSL not only eliminated the discontinuous dynamics of
GRW, it also seemed better situated for generalization to field theory.

Unlike a classical particle ontology, a classical field ontology postulates a spatially
continuous local beable. Together with the continuous stochastic CSL dynamics, this
yields a picture that is the polar opposite of the flash ontology: space-time now plays
host to a continuously evolving continuous distribution of local matter-density. The
formal problem is to define such a matter-density on physical space-time in a way
determined by the wavefunction. This can be done in many ways, each with its own
virtues and defects. (For example, seeking a fully Relativistic theory one can commit
to using only the light-cone structure of the space-time in the specification of the
matter-density field.3)

2Bell 2004, pp. 204-5. Note: the points (x, t) are mathematical items. The values of the variable t,
for example, are real numbers. They come to represent point of ordinary space-time via a coordinate
map.
3For a general overview of the menu of options for collapse theories, see G. Ghirardi, “Collapse
Theories” in the Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/qm-col
lapse/. For a discussion of using light-cones to specify a Lorentz-invariant theory of amatter-density
field, see D. Bedingham, D. Dürr, G. Ghirardi, S. Goldstein, R. Tumulka and N. Zanghì, “Matter
Density and Relativistic Models of Wave Function Collapse”, Journal of Statistical Physics 154,
623-631 (2014), https://doi.org/10.1007/s10955-013-0814-9.

https://plato.stanford.edu/entries/qm-collapse/
https://doi.org/10.1007/s10955-013-0814-9
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So alongside Bell’s flash ontology, GianCarlo and others have proposed local
matter-density ontologies. And one of the upshots of all of this productive theoretical
activity has been the realization that a properly and completely formulated GRW-like
“collapse” theory shares a tremendous amount of abstract structure in common with
the non-collapse pilot wave approach.4 Perhaps this lesson has now been learned,
but it has been a long trek of slow progress. And it is clear in retrospect why: at
first glance, the collapse approach and the pilot-wave approach appear diametrically
opposed. One has stochastic collapse and the other only deterministic evolution of
the quantum state. In one the quantum state dynamics is linear and in the other it is
not. In the GRW approach the wavefunction remains complete in Einstein’s sense:
given the postulates of the theory (including what the local beables are) the entire
physical description of a system can be recovered from the wavefunction, while in
the pilot-wave picture this is never true. Even when the need for local beables has
been acknowledged, the collapse theories postulate flashes or matter densities and
the pilot-wave theories generally posit particles. One could easily be forgiven for
thinking that the two approaches are radically unlike each other in every respect.

But over the course of decades, with GianCarlo always leading the exploration
of new possibilities, we have come to understand the various related forms that a
serious, exact and defensible theory of quantum phenomena can take. As he saw
from the beginning, if you want to have collapses they should be handled using
precise mathematics not vague gestures. And as he came to see, along with the
discussion of the wavefunction and the quantum state, there must be consideration
of the local beables of the theory and the connection to empirical data. There are a
plethora of ways that this can be accomplished, and they are all worthy of careful
consideration and elaboration.

In sum, there are many different dimensions of appreciation for what GianCarlo
Ghirardi did. Everyone knows of his seminal contribution to pioneering mathemati-
cally precise collapse dynamics. But in addition, he made equally important contri-
butions to the development of empirically adequate theories of local beables, and
played an indispensable role in the formation of a broad and unified community
working in the foundations of physics, open to discussion and collaboration across
a wide variety of theoretical approaches. He will always hold a place of both admi-
ration and affection in the hearts of those of us lucky enough to have called him a
friend.

4See V. Allori, S. Goldstein, R. Tumulka, and N. Zanghì, “On the Common Structure of Bohmian
Mechanics and the Ghirardi-ARimini-Weber Theory”, British Journal for the Philosophy of
Science 59, 353–389, https://doi.org/10.1093/bjps/axn012 (2008).
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The GRW Theory and the Foundations
of Statistical Mechanics

David Albert

Abstract Giancarlo Ghirardi, along with Alberto Rimini and Tullio Weber, first
showed theworld that there could be a scientifically respectable theory of the collapse
of the quantum–mechanical wave-function. It is primarily and rightfully for that, that
theywill always be remembered. In this paper Imean to point to a small and somewhat
neglected side-effect of that achievement which has perhaps received less attention
than it deserves: if anything along the lines of the GRW theory should turn out to be
true, then the probabilities of universal statistical mechanics are nothing other than
the familiar probabilities of quantum mechanics.

ItwasGiancarloGhirardi, alongwith his colleaguesAlbertoRimini andTullioWeber,
who first showed the world that there could be a beautiful and simple and explicit
and precise and quantitative and scientifically respectable theory of the collapse
of the quantum–mechanical wave-function. For something on the order of a half a
century, prior to their seminal paper of 1986 [1], talk of collapses was hopelessly
mired in talk of ‘measurement’ and of ‘macroscopicness’, and of ‘irreversibility’,
and of ‘indelible recordings’, and of ‘consciousness’ and of ‘the distinction between
subject and object’ and of ‘the inescapability of classical language’ and (to make
a long story short) of every other imaginable variety of nonsense—nonsense that
(mind you) many of us who lived through it can now only vaguely remember, and
that the young physicists and philosophers of today can barely imagine—and it was
Ghirardi and Rimini and Weber who, with a single brilliant stroke, swept all of that
finally and decisively away, and showed us how, at long last, and for ever after, to
talk about these matters seriously.

And it is primarily for that, and it is rightfully for that, that they will always be
revered. And all I mean to do here is to point to a small and somewhat neglected
side-effect of that achievement—something not about the foundations of quantum
mechanics but about the foundations of statisticalmechanics, and about the way that
probabilities enter into our fundamental description of the world—which we owe
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to that same paper of 1986, and which has perhaps received less attention than it
deserves.

Think (to begin with) of two macroscopic bodies whose temperatures initially
differ. And suppose that those two bodies are brought into thermal contact with
each other. And suppose that they are not subsequently disturbed. Over the next ten
minutes, then, the temperature difference between those two bodies will decrease.
And the traditional statistical-mechanical explanation of that decrease, both in the
classical and in the quantum case, runs (roughly) as follows. The initial macrocondi-
tion of this two-body system—the one in which the two bodies are in thermal contact
with each other and their temperatures are different—is compatible with a contin-
uously infinite collection (call it {C}) of that system’s possible microconditions.
And the microconditions in {C} come in two different varieties: the normal ones
(which are the ones that happen to be sitting on trajectories which pass—ten minutes
hence—through a macrocondition of the two-body system in which the temperature
difference between the two bodies is lower, and lower by the right amount) and the
abnormal ones (which are all the rest, the ones associated with un-thermodynamic or
with anti-thermodynamic sorts of behaviors, the ones inwhich the temperature differ-
ence will subsequently rise, or not change at all, or oscillate, or whatever). And there
happens to be a very simple and straightforward measure on the set of the possible
microconditions of a system like this one which is preserved by the equations of
motion,1 and which our experience of the world seems to suggest is something along
the lines of ameasure of non-dynamical probability. And it happens that this measure
counts the collection of normal points in {C} as vastly larger than the collection of
abnormal points in {C}.

And that (according to the usual story) is that.
But consider at this. It happens (to begin with) that the collection of normal

microconditions is vastly larger than the collection of abnormal ones—on the above-
mentioned standard measure—not only over the entirety of {C}, but over every indi-
vidual not-unimaginably-small microscopic neighborhood of {C}, and (more partic-
ularly) over every individual not-unimaginably-small microscopic neighborhood of
every individual abnormal microcondition of {C}, as well!

And what that means (or at any rate, one of the things it means) is that the property
of being a normal microcondition is extraordinarily stable under small perturbations
of those two bodies, and that the property of being an abnormal microcondition is
extraordinarily unstable under small perturbations of those two bodies.

And what that means is that if the two bodies we’ve been talking about here were
in fact somehow being frequently andmicroscopically and randomly perturbed, then
the temperatures of those two bodies would be overwhelmingly likely to approach
each other no matter which one of the microconditions in {C} actually initially
obtained.

The question, of course, is about where perturbations like that might imagin-
ably come from. And the wonderful thing—and this is the main punch-line of this

1The sort of “preservation” I have in mind here is the one connected with Liouville’s theorem, or
(in the quantum–mechanical case) with unitarity.
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paper—is that the quantum jumps in the GRW theory turn out to be just the sorts
of perturbations we need. The idea (more particularly) is that it’s going to turn out
to be a consequence of the full stochastic dynamics of the GRW theory2 that every
single individual one of the microconditions in {C} will be overwhelmingly likely
to evolve, over the subsequent ten minutes, into other microconditions in which the
temperature difference between the two bodies is smaller, and (moreover) smaller
by precisely the right amount.

And so if this thought is correct, and if anything along the lines of the GRW theory
should turn out to be true (which will, of course, be a matter for future experiments
to determine) then the probabilities of universal statistical mechanics are (as a matter
of fact, when you come right down to it) nothing other than the familiar probabilities
of quantum mechanics. And if this thought is correct, and if anything along the lines
of the GRW theory should turn out to be true, then the tendency of the temperatures
of the two bodies we’ve been talking about here to approach each other over time
amounts to a genuine (albeit statistical) dynamical law. And if this suggestion is
correct, and if anything along the lines of the GRW theory should turn out to be
true, then the tendency of the temperatures of the two bodies we’ve been talking
about here to approach each other over time can be understood entirely in terms
of readily observable characteristics of the elementary microscopic constituents of
those bodies—in precisely the same way that (say) the functioning of a mechanical
clock can be understood entirely in terms of the material characteristics, and the
spatial arrangements, of its parts.

And it happens that none of the other attempts to solve the quantum–mechanical
measurement problem that are currently on the table—and (as a matter of fact)
nothing else that has ever seriously been put forward as a fundamental dynamical
theory of the world— can do anything like that.

And this will be worth going into in some detail, as it seems to have had a way
(here and there) of uncannily escaping people’s attention.

It has often been suggested in the literature (for example) that nothing even
remotely as up-to-date as quantum mechanics is going to be required here—that
(more particularly) the sorts of perturbations wewere talking about above are already
all over the place, if one simply stops and looks, in (say) the Newtonian picture of
the world. The idea is that since none of the macroscopic two-body systems of
which we have ever had any experience, and none of the macroscopic two-body
systems of which we ever will have any experience, are genuinely isolated ones, the
perturbations in question can be seen as arising simply from the interactions of the
two-body systemwe’ve been talking about here with its environment. But if (as these
authors always suppose) whatever constitutes the environment of these two bodies
evolves in accordwith precisely the same sorts of deterministic dynamical laws as the
constituents of the bodies themselves do, then whatever “randomness” there is in the
perturbations arising from interactions with that environment can only have gotten

2Which is to say, it is going to be a consequence of that dynamics alone; it is going to be a
consequence of that dynamics without any non-dynamical addenda whatsoever.
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there in virtue of precisely the same sort of probability-distribution over that envi-
ronment’s initial conditions that is the bread and butter of traditional formulations of
statistical mechanics. And so the whole exercise gets us nowhere.

What about something like Bohm’s theory? Bohm’s theory has probabilities in it.
The trouble is that those probabilities don’t get inserted into the world in the right
place to do the sort of job we have in mind for probabilities here. The only sorts of
things that turn out to be probabilistic, according toBohm’s theory are the positions of
the particles. The only sorts of fundamental probabilities there are in Bohm’s theory
are (more particularly) probabilities that such-and-such a collection of particles has
such-and-such a spatial configuration at such-and-such a temporal instant, given that
the particles’wave-functions have such-and-such an overall shape at that instant. And
it happens that those parts of the laws of physics which govern the time-evolutions of
the shapes of wave-functions, on Bohm’s theory, are completely deterministic; and
it turns out that there are wave-functions compatible with the initial macrocondition
of (say) the two-body system I talked about before which (if those laws are right)
will with certainty evolve, with the passage of time, into ones which determine that
the temperature-difference between the two bodies will very likely have increased.

And there are even collapse theories on offer nowadays, theories on which the
time-evolution of the wave-function itself is genuinely (and dynamically) proba-
bilistic, which are nonetheless incapable of underwriting the foundations of statis-
tical mechanics in the way that the GRW theory can. These sorts of theories (which
have been defended in recent years by Roger Penrose, among others) stipulate that
departures from the deterministic equations of motion require a “trigger”; that only
certain particular sorts of wave-functions, the ones corresponding to superpositions
of “macroscopically different states,” ever undergo “collapses.” And the trouble with
that (insofar as the question of statisticalmechanics is concerned) is that one can cook
up (or at any rate one fears that one can cook up) initial wave-functions of thermo-
dynamic systems which pick out perfectly deterministic entropy-decreasing future
trajectories which entirely avoid those triggers.

Andof course there are no real probabilities at all—ornone (at any rate) of the kind
we are in need of here—in Everettian proposals for solving the quantum–mechanical
measurement problem.

And so the business of underwriting the thermodynamic regularities of the world,
on any of the proposals for making sense of quantum mechanics I know of, with
the sole exception (of course) of the GRW theory, is going to call for a story about
why it is that the above-mentioned sorts of initial wave-functions—notwithstanding
that they surely exist—need not worry us too much; which is to say that the business
of underwriting the thermodynamic regularities of the world on any of those other
theories is going to call for something along the lines of a probability-distribution over
initial wave-functions, a probability-distribution which (note) is altogether unrelated
and in addition to the probabilitieswithwhich those theories underwrite the statistical
regularities of quantum mechanics.

Now, the business of deciding whether or not to take a GRW-based statistical
mechanics seriously (if that turns out to be a project worth undertaking at all; if, that
is, there should turn out to be experimental evidence that there are such things in the
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world as collapses of wave-functions) will presumably involve detailed quantitative
examinations of a host of particular cases; but there are reasons for being optimistic
(and the sort of thing I have in mind here, of which more in a minute, is the very
same radical instability of the condition of abnormality by which all of this was first
suggested) about how those examinations will ultimately come out.

Here’s the idea.
Think (to begin with) of some particular individual GRW jump. And call the

microcondition of the system in question just prior to that jump A, and call the
microcondition of the system in question just after that jump B.

And note that the laws of jumps like thatwill straightforwardly entail an infinite set
of probability-distributions PA(B) over all the possible destinations of any particular
such jump, given the point at which that jump starts out.

And there are two particular features of the PA(B)’s of the GRW theory (and of
any theory more or less in the neighborhood of the GRW theory) that it will be well
(for the purposes of the next paragraph or so) to bear in mind: one is that every
particular one of the PA(B)’s of the GRW theory turns out to be more or less centered
on its own particular A, and the other is that the volume of the space of possible
microconditions over which any particular one of the PA(B)’s of the GRW theory
has non-negligible values will typically be far smaller than the volume of any one of
the macroconditions of anything that deserves the name of a thermodynamic system.

Now the sort of thing we need from these jumps—in order to get the statistical-
mechanical job done—is (of course) for them to be very good at getting us from
abnormal microconditions to normal ones. The sort of thing we need (that is) is for
it to be the case that the scales over which the tiny individual clots of abnormal
microconditions typically extend are vastly smaller than the scales over which the
values of the PA(B) appreciably vary. The sort of thing we need (more particularly)
is for it to be the case that the probability of abnormality that follows from every
single individual one of the PA(B)’s (no matter what A may happen to be) is roughly
equal to the probability of abnormality that follows from the standard statistical-
mechanical measure over the entirety of the macrocondition within which the A in
question happens to fall.3

And it would seem to be an eminently plausible proposition—given the radical
unimaginable submicroscopic tinyness of the clots, and given the two particular

3Actually, we don’t need quite that, and probably can’t quite have it. The trouble is that abnormal
quantum states have got to be more or less orthogonal (if you think about it) to normal ones, and
that no single GRW collapse can ever (in and of itself) bring about transitions between states that
are (perfectly) orthogonal to one another, and that (as a matter of fact) no single GRW collapse is
ever going to be able to do much of anything (in and of itself) about the abnormality of a quantum
state if that state should happen to be anything along the lines of an eigenstate of the positions of the
particles that make the system in question up. But none of that turns out to matter much. Let the A
andBwe have just now been discussing represent (instead) the before and after states of a dynamical
process involving (say) two GRW collapses, or three, or twenty, with the appropriate deterministic
dynamical evolutions between them (all of which is still going to be overwhelmingly likely to take
place, on the GRW theory, over time-intervals which are negligibly short compared—say—with
times over which the temperatures of the two bodies we were talking about before ever undergo
any significant change)—and everything will come out fine.
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characteristics of the jumps in the GRW theory that we took note of in the paragraph
before last—that there are any number of different sorts of GRW-like perturbations
that are perfectly capable of getting all that accomplished.

Nonetheless, there are hard cases, or apparently hard ones (and I am thankful to
Larry Sklar and Phillip Pearle, among others, for bringing these to my attention);
and there turn out to be interesting lessons in them; and it will be worth taking the
trouble to think through two or three of them in some detail.

Consider (for example) an extraordinarily tiny gas, one which consists of some-
thing on the order of 105 molecules. Even gasses as tiny as that are known to be
very likely to spread out (if space is available) over reasonable intervals of time,
and yet gasses as tiny as that are very unlikely to suffer even a single GRW-type
collapse over such an interval, and so an explanation of the tendencies of gasses like
that to evolve like that over intervals like that in terms of GRW-type collapses of the
wave-functions of their constituents is apparently out of the question.

Or consider the collection of dazzling and beautiful experiments which have
actually been performed over the past forty years or so, and which are referred to
in the scientific literature as “spin-echo” experiments, in which it has turned out to
be possible to isolate some very large array of interacting microscopic systems from
the relevant sorts of external influences—and (moreover) to replace the dynamical
condition of that array, at a certain particular instant, as the array is in the midst
of some entropy-increasing transformation, with its time-reverse—and (thereafter)
merely to watch, in astonishment, as the array traces its previous trajectory out,
dutifully, backward.

Themicroscopic systems in question are typically atomic nuclei. And these nuclei
are typically being held at fixed spatial positions—but in such a way that the orienta-
tions of their nuclear magnetic fields are free to rotate— by intermolecular forces in a
crystal.And the sort of thing that happens in these experiments is (very schematically)
that the nuclei are all initially arrangedwith their magnetic fields pointing in the same
direction—and then they’re left (as it were) to their own devices, and they magneti-
cally interact with one another, and their magnetic fields begin to pivot around, and
in time the directions in which those individual fields are pointing become more and
more disorganized and uncorrelated. Eventually a state of equilibrium is arrived at,
in which the arrangement of the individual fields is random, in which (that is) the
cumulative macroscopic magnetic field of the entire array is zero, and then (and this
is the cool part) a very intense external magnetic field is turned on for a very short
time, which has the effect (for reasons that need not concern us here) of turning all
those tiny individual fields exactly around—and then the system is left again to its
own devices, and in time, and (more particularly) in precisely the same amount of
time as had elapsed between the array’s first having been left to its own devices and
the moment when the external field was turned on, the fields spontaneously re-align
themselves!

It would seem (on the face of it) that GRW collapses can play no role whatsoever
in any explanation of the initial approach to equilibrium here. The trouble is that the
atomic nuclei in these experiments are very rigidly held in place—which is to say
that the wave-functions of those atomic nuclei are permanently localized—which is
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to say that the wave-functions of those atomic nuclei are permanently frozen into that
particular mathematical form which is (if you think about it) altogether impervious
to the effects of GRW collapses—by the powerful intermolecular forces I mentioned
above. Moreover (and this is the particularly astonishing business—and this seems
powerfully confirmatory of the doubts expressed in the previous two sentences),
it turns out that the approach to equilibrium can be reversed—it turns out that the
original alignment of the fields can be reinstated—simply by flipping the nuclei
around!

Or consider what it is, on a statistical mechanics of the sort that we have been
imagining here, that guarantees that a regular-sized gas in equilibrium at t will not
spontaneously explode or condense or turn into an elephant between t and t and t +
ε, where ε is so short an interval that even a regular-sized gas is unlikely to suffer a
GRW-type collapse in it.

Let’s think through these three cases one at a time.
Take the case of a small gas. We might appeal, there, to the fact that we have no

empirical experience whatsoever, that (come to think of it) we can have no empirical
experience whatsoever, of a small gas which is genuinely isolated from all external
influences. And so for all we now empirically know or ever will empirically know,
it might not be a law of nature that gasses like that tend to spread out at all! And the
behaviors of the sorts of small gasses that can actually be looked at can very plausibly
be accounted for by GRW-type collapses of the wave-functions of particles in (say)
their containers.

Or we could appeal to the fact that such gasses, even if they are isolated, have
pasts. This will take a bit more setting up. What we will want to show, in this case, is
that the GRW theory will entail that a small isolated gas which is condensed at t, and
which is around for a while, is likely to be more dispersed at t+@, even if the gas in
question is unlikely to undergo a single collapse in the interval between t and t+@.
Good. Here’s how to do it: call the average time between GRW collapses in the gas in
question i, and call the gas’s macrocondition at t C, and call the gas’s macrocondition
at (say) t – i(100,000) S. And consider the probability, on the GRW theory, given that
the macrocondition at t – i(100,000) is S and that the macrocondition at t is C, that
the microcondition of the gas at t will be one of the “normal” ones. And note that the
instability of the property of being abnormal will entail, completely independent of
what state S is, that that probability is high.

What about the case of the spin-echo experiments? Collapses in the environment
will patently get us nowhere with that. The realignability of the fields, after all,
amounts to a direct empirical proof that those collapses (just like the ones that hit the
nuclei themselves) produce no significant short-term disruptions of the trajectories
along which this system evolves. But the longer term is (of course) another matter.
Given sufficient time, even in systems like this, GRW collapses will move us relent-
lessly away from abnormality. And so there would seem to be every reason in the
world to believe that the previous history of the array of nuclei in question, whatever
that history may have been, will give us just what we need.

What about large gasses over the very short term? The environment will be of
no avail there either; but histories still will. And here a third strategy suggests itself.
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The macroconditions of thermodynamic systems never get measured at instants. The
thermodynamical regularities of our actual experience, if you stop and think about it,
are relations between the physical situations of systems not at different instants but
around different instants. And so maybe the right way to think of propositions like
“this is a gas with such-and-such a volume and a temperature and a pressure” is to see
them as asserting that certain physical properties of a certain collection of particles
have persisted over a certain short interval. And if we read such propositions that
way, they will entail (in conjunction with the GRW theory) that the probability that
the microcondition of the gas in question is a normal one is high.

You get the idea. The crux of thematter is that the job of statisticalmechanics is not
(after all) to underwrite the letter of the laws of thermodynamics, but to underwrite
the actual content of our thermodynamic experience. And I know of no compelling
argument, at present, why a statistical mechanics based on GRW collapses should
be incapable of doing that.

One can go further. If the GRW theory should turn out to be true— and this, of
course, is a very big if—it may turn out (as I mentioned earlier on) that there is at
bottom only a single kind of probability in nature. It may turn out (that is) that all the
robust lawlike statistical regularities there are, not only in thermodynamics but (one
can even imagine) in biology, and in psychology, and in sociology, and God knows
where else, are at bottom nothing other than the probabilities of certain particular
GRW collapses’ hitting certain particular sub-atomic particles.
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Abstract Spontaneous localization theory is a quantum theory proposed by Gian-
Carlo Ghirardi, together with Alberto Rimini and Tullio Weber in 1986. However,
soon it became clear to Ghirardi that his work was more than just one theory: he
actually developed a framework, a family of theories in which the wavefunction
jumps, but where the ontology of the theory is underdetermined. After acknowl-
edging that the wavefunction did not provide a satisfactory ontology, he assumed
that matter was described by a continuous matter density field in three-dimensional
space, whose evolution is governed by a stochastic wavefunction evolution. Alter-
natively, Bell assumed that the wavefunction would govern a spatiotemporal event
ontology, dubbed ‘flashes.’ However, not much work has been done with the perhaps
most obvious possibility, namely that physical objects are made of particles. This
paper has two aims. First to explain the reasonwhy people require spontaneous local-
ization theory to be more than just a theory about the wavefunction. This is done by
showing how the problem everyone in the foundation of quantum mechanics take
to be the fundamental problem of quantum mechanics, namely the measurement
problem, is a red herring. Then, the paper explores the possibility of spontaneous
localization theories of particles. I argue that this discussion is not a mere exercise,
as spontaneous localization theories of particles may be amenable to a relativistic
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on the nature of the tension between quantum theory and relativity.
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1 Introduction

In this paper I wish to discuss spontaneous localization theories of particles within
the primitive ontology framework. In the first part of the paper, I argue in favor of
spontaneous localization theories with a primitive ontology, while in the second part I
discuss the tenability and the superiority of a particle primitive ontology for this kind
of theories. First, I discuss how the origin of the interpretational problems of quantum
theory is not, as commonly maintained and as explained in Sect. 2, the measurement
problem. Indeed, the measurement problem is a red herring: even if one solves the
measurement problem the theories so obtained are still problematical. I discuss in
Sect. 3 how the real problem stems from thinking of the wavefunction as describing
physical objects. In line with the primitive ontology approach (POA), in Sect. 4 I
present the various proposals for spontaneous localization theories understood as
theories about some microscopic ontology in three-dimensional space, in terms of a
matter density field, or four-dimensional spacetime, in terms of flashes. In Sect. 5,
instead I move to possible spontaneous localization particle theories, and show how
only one of the alternatives is worth pursuing. In Sect. 6 I compare this theory with
spontaneous localization matter density and flash theories, and finally I propose an
approach that could lead to a relativistic spontaneous localization particle theory. I
conclude arguing that the value of considering any of these theories does not reside
in the simplicity of their ontology or law (as they are not simple when compared to
alternatives such as the pilot-wave theory) but rather it lies in the lesson they may
teach us about the compatibility between quantum theory and relativity.

2 The Traditional Problem of Realism and Quantum
Mechanics

Since its birth quantum theory has been such an interpretative nightmare that many
felt the lesson to be learned was to embrace instrumentalism. However, many
others still searched for a realist interpretation of quantum mechanics, starting most
famously Albert Einstein, Louis de Broglie and Erwin Schrödinger, continuing with
David Bohm, High Everett, GianCarlo Ghirardi and John Stuart Bell. Most often
than not, the problem of reconciling quantum theory with a realist description of the
world is summarized mentioning the so-called measurement problem. This problem
has been around since Schrödinger [1] criticized the reading of standard quantum
mechanics (the one of Bohr and Heisenberg) according to which the microscopic
world has a ‘blurred reality,’ to be contrasted with the ‘definite reality’ one observes
macroscopically. If the microscopic world is ‘blurred’ but completely described by
the specification of a linearly evolving wavefunction, then this ‘blurriness’ would
immediately spread to themacroscopic scalewhenwe couple themicroscopic system
(in Schrödinger’s example a radioactive source) to amacroscopic one (a cat). In other
words, granting that radioactive nuclei can be ‘blurred’, we can measure whether a
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nucleus has decayed or not by hooking it up to a device which would kill a cat in case
of decay. Since someone’s death cannot be ‘blurred,’ one immediately sees that this
interpretation is untenable. This conclusion is often reformulated as a problem for
the view that a Schrödinger evolving wavefunction provides the complete descrip-
tion of a physical system: if every physical system is completely described such
an object, because of the linearity of the Schrödinger equation we should observe
macroscopic superpositions such as a cat which is in a superposition of being both
alive and dead. Since we do not observe them, this reading is empirically inadequate.
Traditionally, three ways to get around the problem have been identified:1 (1) deny
that the wavefunction provides the complete description of each physical system; (2)
deny that macroscopic superpositions are a problem; and (3) deny that the wavefunc-
tion evolves according to the Schrödinger equation. In the 1950s, building on some
groundbreaking work done by de Broglie [3], Bohm [4] proposed a solution of this
problem along route 1. In fact his theory, which many dub the pilot-wave theory or
Bohmian mechanics, is often taken to be one in which there are particles and waves,
and the particles’ behavior is determined by the wave’s behavior. Few years later,
Everett [5] proposed his ‘relative state formulation’ of quantum theory, which goes
along route 2. Everett’s theory later was developed into the so-called many-worlds
theory, often characterized as accepting the macroscopic superpositions as real but
suitably existing in other, undetectable, worlds which do not interact with the one we
are in. In the 1980s, Ghirardi et al. [6] added their solution going along the lines of
route 3. In their theory, called among other names spontaneous localization theory or
GRW theory, the wavefunction does not evolve according to the Schrödinger equa-
tion but it suitably collapses at random into one of the terms of the superposition,
localizing in a small region of space in the case of macroscopic objects. All these
theories are generally taken to be quantum theories that are amenable to a realist
interpretation. The reason which is given for this is that they do not suffer from the
measurement problem. In fact in the pilot-wave theory, we do not observe macro-
scopic superpositions because the complete description of the system is given by
the specification of particles and wavefunction, and particles are always localized,
just like cats, whether they are dead or alive. In the many-world theory the various
terms of the superpositions ‘live’ in other worlds which are inaccessible to us and
do not interact with us, and this explains why we do not encounter the alive coun-
terpart of a dead cat. Finally, in the spontaneous localization theory the facts that
the wavefunction localizes very fast for macroscopic objects explains why we never
see macroscopic objects in superposition states, and why dead cates remain, perhaps
unfortunately, dead.

1See e.g. Bell [2].
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3 The Real Trouble for the Quantum Realist

In the previous Sect. I kept using the locutions ‘traditionally,’ ‘often,’ or ‘gener-
ally.’ Recently, a new approach to quantum theories, the so-called primitive ontology
approach (POA), has been proposed,2 and while this has not been explicitly stated
anywhere, I think that the main lesson from it is that the tension between realism and
quantum mechanics is not captured by the measurement problem. This implies that
the pilot-wave theory is not a theory of waves and particles; the many-world theory
and the spontaneous localization theories are not theories ‘about’ the behavior of the
wavefunction. The main lesson of the POA, I argue, is that the measurement problem
is a red herring. That is, even if we solve the measurement problem, the tension
between realism and quantum mechanics remains open. The real issue is instead
the so-called configuration space problem: the wavefunction, whether it provides
the complete description of a system or not, is not an object which is defined in
three-dimensional space. Instead it is a function whose domain is the space of the
configuration of particles, if there are particles as in the pilot-wave theory, or of
‘particles’ in the case of the other theories.3

The proponents of the POA have given several argument against the tenability
or desirability of a non-three dimensional ontology such as the wavefunction, but
I am not going to reproduce them here.4 Rather, let me focus on the reason why I
think this approach implies that the measurement problem is not the real problem
for the quantum realist. This problem is created by the existence of macroscopic
superpositions, which arise from a linearly evolving entity, namely the wavefunction,
which is taken to represent all physical objects.However, there is nothing intrinsically
strange in superpositions, either microscopic or macroscopic: they are natural for
waves, and the wave ontology has been successfully used in physics before, as in the
case of light, for instance. Superpositions are a problem only if we try to describe
all physical objects as wave-like, because in many occasions they show a localized,
particle-like behavior. So, one obvious solution would be to deny that the theory
entails that all matter is described by a wave-like ontology. However, historically,
this is not what has been done. Instead, the theories presented in the previous section
all maintain the wavefunction as part of the ontology.5 This is so even in the case of
the pilot-wave theory, in which it is granted that the wavefunction does not provide
the complete description of physical systems. However, the problems are not over. In
fact, the view that the pilot-wave theory is a theory in which the wave is material, just

2See Dürr et al. [7], Allori et al. [8–10], Allori [11–15].
3That is, regardless of whether some coordinates r1, r2, . . . , rN , where N is the number of particles
thought to exist in the universe (roughly of the order of 1090) can be interpreted as the position of real
particles or not, the wavefunction is a function of a high-dimensional variable q = (r1, r2, . . . , rN ).
4Se Allori [11–16] and references therein for an exposition of these arguments.
5The reason for this is unclear, and I cannot fully explore this issue in this paper. Presumably
however one could say that historically the theory developed and flourished after the proposal of
the Schrödinger’s equation, and so from that moment on it seemed unthinkable to not consider it as
part of the theory.
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like the particles, is a theory of N particles in three-dimensional space, and a wave in
3N dimensional (configuration) space. And this is still problematical: what is the cat
currently on my lap made of, particles of waves? One could say that matter has a dual
ontology: on the one hand, physical objects like cats aremade of particles; on the other
hand here is also another physical entity represented by the wavefunction, which is
understood to be similar to electromagnetic fields, as another ‘kind’ of constituent of
the world. Despite this, unlike electromagnetic fields the wavefunction is not defined
in three-dimensional space, and this created another problem: how is this wave in
configuration space supposed to interact with particles in three-dimensional space?
Moreover, consider now the spontaneous localization theory. Before it localizes, for a
brief but finite instant, the wavefunction is spread out in configuration space. That is,
the cat on my lap this wavefunction describes is, for a brief but finite instant, spread
out configuration space, where the emphasis is not so much on ‘spread out’ but on
‘configuration space.’ It seems only slightly counterintuitive to think that cats have
infinite three-dimensional tails: we think that cats have a matter distribution that do
not extend in space to infinity, but we are wrong. This is not a big problem, however,
as these tails are undetectable. 6 Instead, it seems much more troublesome to think
that the cat, before the wavefunction collapse, was not in three-dimensional space but
rather she was in the high dimensional configuration space. That is, the cat, which we
would normally think of being described by a (soft) lump of matter now localized
here on my lap, before localizing here was instead in another space with a large
number of dimensions. Now consider themany-worlds theory. In this theory physical
objects are ‘made of’ wavefunctions, which suitably ‘splits’ into ‘different worlds’
thus avoiding the macroscopic superpositions. However, in each world the object is
described by a component of the superposition, which is something in configuration
space, while the physical objects we experience are not in this space. Whatever we
devise to account for why we perceive what we perceive will however not remove
the fact that there is another space involved before this perception happens.

If one wants to stick to the idea that the wavefunction represents physical objects,
after having solved the measurement problem, one has also to answer all these ques-
tion.7 In contrast, the POA takes a completely different route. Instead of trying to
explain the connection between configuration space and three-dimensional space in
the various theories, I take it, the proponents of the POA deny that the wavefunction
is material to start with. What represents material objects, the so-called primitive
ontology (PO), is instead something else. It’s not important exactly what it is (a
field, a particle, a string, a spatiotemporal event) aside from the fact that it is in
three-dimensional space (or four-dimensional spacetime). In this way, there is no
configuration space problem, as everything is in the same space. Moreover, there
is no measurement problem, because either the PO does not superimpose, or the
macroscopic superpositions are short lived. The former situation happens when one
has a PO of particles, as in the pilot-wave theory, or, as wewill see in the next section,

6However, see Sect. 4 for more on this.
7See Albert [17], Ney [18, 19] and references therein for proposals to make sense of this.
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a PO of flashes, as in some version of the spontaneous localization theory, while the
latter happens in some version of the spontaneous localization theory.

Before moving on, let me pause for a second. To reject the wavefunction as
material may seem like an outrageous proposal: abandon the very object that is taken
to define quantum mechanics seems to be to deny realism about quantum mechanics
itself. That may be so: perhaps just to ditch quantum mechanics as we know it is
the right thing to do. However, I think this is the wrong way of thinking about this
move: the POA is thinking of quantummechanics as an effective theory, which can be
understood in terms of a more fundamental theory, just like thermodynamics can be
understood in terms of statistical mechanics. As in thermodynamics one understand
temperature and heat in terms of molecular motion, in the POA one understands the
quantum behavior in terms of motion of objects in three-dimensional world. It just so
happens that in doing that we use the wavefunction, but the rest is very much in line
with the practice and the spirit of physics before the advent of quantum mechanics.

Open questions in this approach are connected to the nature of the wavefunction.
The wavefunction does not represent physical objects but rather is used to ‘generate’
the trajectories of the PO. Because of this, in the POA the wavefunction is usually
taken to have a nomological role, even if it is debatable what is the best way of
capturing this idea.8

4 Different Ontologies for Different Theories

The POA is a natural framework for the pilot-wave theory, as this theory has an
obvious interpretation as a theory with a PO of particles. However, the POA general-
izes to the other theories as well by specifying a PO for each of them. So, in the POA
the spontaneous localization theory and themanyworlds theory are theories in which
matter ismade ofwhatever the PO is, and inwhich the evolution of the PO is governed

8See Dürr et al. [7], Goldstein and Teufel [20], Goldstein and Zanghí [21], Allori [16] for a defense
of the nomological approach. Since the wavefunction is part of the axioms of quantum theory, it can
be naturally regarded as a Humean law (see [22–25]). There are other ways in which someone could
think of the wavefunction, broadly speaking, as nomological. One can think of the wavefunction as a
propertywhich expresses somenon-material aspect of the particles [26]. Similarly, one can endorse a
dispositional accountwhere laws are understood in terms of dispositions, which in turn are described
by the wave-function [27, 28]. Arguably, since dispositions can be time dependent, the objection to
the nomological view that laws of nature are time independent while the wavefunction evolves in
time seems less compelling here. Having said that, I think these proposals are not very promising
in that they rely on the notion of properties which are notoriously a rough nut to crack. As Esfeld
[24] has pointed out, there are several severe problems in trying to spell out what fundamental
properties are, both in the classical and the quantum domain. On a different tone, let me notice
that the objection that in theories with the wavefunction only there are two spaces involved and
the relationship between these spaces is a mystery closely resembles one of the objection against
Cartesian dualism: if mental states are not in three-dimensional space, how are they interacting
with physical states? With this analogy in mind, one can argue that the answer of the proponents
of the POA will be similar to the one of the reductive physicalist, presumably a functionalist: the
wavefunction is whatever function it plays to generate the empirical data (see [15] for more on this).
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respectively by a spontaneously localizingwavefunction, and a Schrödinger evolving
one. In contrast with the pilot-wave theory, however, it is not obvious what the PO
of these theories is supposed to be. Indeed, one can chose as one wishes: particles,
fields, events. In fact, the PO, like particles in classical mechanics, is postulated
beforehand as the best compromise between simplicity and explanatory power. The
theory is then constructed around it, adding various elements to it including thewave-
function, to successfully reproduce the empirical data, just like forces and potentials
are added to Newtonian mechanics. This is clearly not what historically happened
in the quantum domain, in which we got ‘stuck’ with the wavefunction. So, the PO
for the various quantum theories have been developed ‘backwards,’ by keeping the
wavefunction and its evolution, and then trying to figure out what the PO should be.
This of course means that the choice of the PO is underdetermined. However, this is
not surprising, as it is merely a restatement of the well-known fact that there aremany
theories that fit the data. As a consequence, the spontaneous localization theory, as
well as the many-worlds theory, are better seen as families of theories, rather than
one single definite theory: there is one theory for each choice of PO.

So, what is the ‘best’ choice of PO for spontaneous collapse theories and many-
worlds theories? The answer is not straightforward for a variety of reasons. In this
paper Iwill not discuss themany-world theorybut only spontaneous collapse theories,
even if presumably some of the considerations will also apply in that framework.9 If
onehadn’t followed the literature, onemight think that the natural PO for anyquantum
theory would be the one of particles. In fact, a particle ontology seems to be the
simplest, as it only takes a point to define a particle. Instead, the two formulations
of the spontaneous localization theory with a PO which were historically considered
are not particle theories. The first of these theories was proposed by John Stuart Bell
[2]. In this theory the PO is directly into spacetime: matter is made of those events
in spacetime in which the wavefunction happens to spatiotemporally localize. Thus,
matter is spatially discontinuous, like the case of particles, but also temporally so
that one can say that matter is made of flashes. The flashes are divided into families,
with each family corresponding, intuitively, to a single ‘particle’. The wavefunction
provides the conditional probability measure over the flashes, namely the probability
that the next flash in a given familywill be in a given spatiotemporal point. This theory
is therefore known in the literature as GRWf, with an obvious notation. Bell chose
this unfamiliar ontology not because it is the simples but because he noticed might
help finding a relativistic invariant theory (see Sect. 6 for more on this).

The other (prominent) spontaneous localization PO theory has been proposed by
Ghirardi and collaborators [29], who took matter to be described by a continuous
three-dimensional matter field (which is defined in terms of the wavefunction). It
is the most natural PO in the following sense: assuming that the problem with the
original theory was not the wave part but the configuration space part, this theory
solves the problem by putting the wave (and thus matter) in three-dimensional space.

However, these theories are very peculiar, as discussed byPeter Lewis andMichael
Esfeld (this volume) among others. Lewis reminds us that the flash ontology is

9For more, see Allori [15].
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extremely counterintuitive, given that according to this theorymatter ismostly empty:
for a small macroscopic object made of roughly 1019 ‘particles,’ if each particle
undergoes a collapse every 1016 s, there is a flash roughly once every 10−3 s, and
nothing in between. Nevertheless, the gravitational and electromagnetic forces the
object is subject to will be continuous in time. Moreover the matter density, being
defined in terms of the wavefunction, inherits its tails. Because of this, macroscopic
solid objects will have low-matter density tails which othermacroscopic solid objects
could cross without being subject to any actual interaction, contrary to expectations.
In addition, asEsfeld points out, there is a tensionbetween thematter density ontology
and the quantum formalism, which is in terms of a finite number of particles. Also,
the account of nonlocality may seem more mysterious in this theory than in others,
as it implies that the matter density is instantaneously displaced across arbitrary
distances.10

Regardless of whether or not it is possible to find satisfactory solutions to these
challenges,11 it is interesting to see whether other ontologies could do better. In
this regard, the obvious choice would be to try with an ontology of particles. First,
as already noticed, there is a sense in which particles are the simplest ontology.
Moreover, a particle ontology would increase the explanatory power of the theory:
as underlined by Allori [12], Richard Healey [33], and Lewis [34], explanation in
the quantum domain is parasitic on classical explanation. Since classical mechanics
is about particles, and arguably we can explain the macroscopic feature of matter in
terms of such an ontology, there is no in principle reason why this cannot be done
also in the quantum domain, if the theory is a particle theory. Finally, as argued
in Allori [16] and as discussed in Sect. 6, a particle ontology would also help in

10See Egg and Esfeld [30], Esfeld and Deckert [31].
11Here’s a sketch of some possible responses. To the objection that flashes are counterintuitive one
could reply that a satisfactory explanation can lead us far from common sense, so sometimes getting
away from commonsensical explanation may be the right thing to do. For instance, while common
sense suggests that matter is continuous, atomic theory has shown us that it is not the case: atomic
theory, with its in-breath and in-depth explanatory power, is a better explanation of the behavior of
matter than our common sense. So, we are justified in accepting atomic theory even if it pictures
a world which is distant from what we initially thought. Moreover, the reply goes, in the case of
GRWf abandoning common sense for an unfamiliar ontology makes the theory more compatible
with relativity, as suggested by Bell (however, see Sect. 6). Also, one could question the fact that the
ontology and the explanation is really counterintuitive in a negative sense. It is true that the action
of fields is continuous even if there are no flashes. However, this is a problem only if the field are
intended as material, which in the POA is not necessarily the case: they could be taken to be not
generated by the particles, but rather alike to nomological entities, similarly to what happens for the
wavefunction in quantum theory (see Allori [14] for a discussion of this). Also, see Esfeld [32] for a
defense of GRWf. To the objection that the matter density has tails which could be crossed by other
objects without any visible interaction, one could arguably maintain that this is counterintuitive
merely when we look at things from a classical perspective: only because classically matter which
encounters other matter interacts with it, it does not mean that it has to be the case in the quantum
domain. Moreover, the fact that the quantum formalism is in terms of particles does not seem to
force us to interpret it as a theory of particles, as one could presumably endorse the formalism of
a continuous localization theories (CSL) which does not require particles [32]. Finally nonlocality
is a puzzle for all theories, not merely GRWm, so that it is unclear how serious the last objection
actually is.
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Fig. 1 GRWp3

solving the pessimistic meta-induction argument against scientific realism, since it
would provide with an ontological continuity between the classical and the quantum
domain.

5 A Particle Ontology for Spontaneous Localization
Theories

What would a spontaneous localization theory of particles look like? The possibility
of a particle ontology guided by a GRW-evolving wavefunction has been explored
in the literature, however never in an exhausting and comprehensive way.12 Among
all the possibilities, I argue that only one survives scrutiny. Let us discuss them in
turns.

Daniel Bedingham [35] was the first to propose a particle ontology for a GRW-
evolving wave function. This theory has been later dubbed GRWp3 in Allori et al.
[10] andAllori [15], given that it is the thirdGRWparticle theory they analyze. In this
theory both the particles and the wavefunction evolve stochastically. In particular, the
wavefunction evolves in a GRW-fashion while the particles are guided by the same
guidance equation of the pilot-wave theory. However, the wavefunction localizes into
the actual position of the particle at that time (the localization time) but ‘displaced’
at random (Fig. 1).

Two things need to be noticed. First, the localization of the collapse needs to be
anchored to the evolution of the particles appropriately, and that is why it is in the
particles configuration at the time of collapse. If one did not require this, the evolution

12See Allori et al. [8, 10], Bedingham [35], Allori [15].



82 V. Allori

Fig. 2 GRWp1

of the wavefunction and the one of the particles would be uncorrelated. This would
lead to a non-empirically adequate theory. In fact, in the POA the status and the
behavior of a physical object is determined by the status and the behavior of the PO.
The wavefunction is instead part of the dynamical law governing such behavior, so
it should determine it appropriately. If the evolution of the PO and the wavefunction
are not correlated, as in a theory dubbed GRWp1 in Allori et al. [10], this does not
happen (Fig. 2). In fact this could imply, somewhat dramatically, that a cat which has
died, and was supposed to stay dead, could come back to life. To see this, assume the
configuration of the cat’s particles is under the ‘dead’ support of the wavefunction
before the collapse. If so, the cat is, unfortunately, dead, and there’s nothing that
can be done about it. However, if we do not correlate the two evolutions, then it is
possible that the wavefunction collapses into its ‘alive’ part. For that moment on,
therefore it would be this part of the wavefunction which would guide the particles’
motion, and this means that the cat could actually come back to life. While this may
give some comfort to those who loved the cat, it is not what empirically happens.
Instead, if one allows the center the localization of the wavefunction to be the actual
position of the corresponding particle at the time of the collapse, then there is the
right correlation between the two evolutions. In this way, if the cat is dead before
the collapse (that is, the positions of its particles are under the dead support of the
wavefunction), then the wavefunction collapses ‘around’ it, and a dead cat remains
dead.

Secondly, it is interesting to notice that the stochastic evolution of the wavefunc-
tion does not combine with a deterministic evolution for the particles: in order to
have an empirically adequate spontaneous localization particle theory, the particles
have to evolve indeterministically as well in order to ensure the equivariance of the
theory. In fact a random delocalization of the localization position is required in order
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Fig. 3 GRWp2

to ‘compensate’ the wavefunction collapse so that the empirical distribution remains
the one predicted by quantum theory, namely |ψ |2.

This theory, with a deterministic evolution of the particles, was originally13

proposed by Allori et al. [8], and they called it, rather obviously, GRWp. However, it
is empirically inadequate and it was later dubbedGRWp2 inAllori et al. [10] (Fig. 3).
The empirical inadequacy of this theory can be seen by noticing that without the
displacement, the situation would be almost the same as in the case of the pilot-wave
theory, where the wavefunction does not collapse but the particle position is effec-
tively guided only by one of the terms of the superposition, namely the one under
which the particles are (Fig. 4).

Thus, there is a sense in which the hallmark of being a GRW-type particle theory
is to have both particles and the wavefunction jump.14

Onemay think that another possible implementation of this double indeterminism
could be accomplished doing the opposite: instead of the wavefunction ‘following’
the particles and localize where the particles are, one can have the particles ‘follow’
the wavefunction and jump where the wavefunction localizes. That is, one takes the
particles to move as in the pilot-wave theory between localizations, and at the time
of collapse all particles jump in the point the wavefunction has collapsed (Fig. 5).

In this theory, dubbed GRWp6 in Allori et al. [10] and Allori [15], the wavefunc-
tion takes precedence on the particles. This may already suggest it is going to be a
problem, as in the POA the PO is, indeed, primitive. However, before explaining the

13However, see Bohm and Hiley [36], p. 346.
14Other particle theories, aside from the pilot-wave theory, are stochastic mechanics [37], and Bell-
type quantum field theories [38–40]. In both theories the wavefunction evolves deterministically, in
contrast with GRW-type particle theories. In the former the particles evolve according to a stochastic
Markov process,while in the latter the evolution is also stochastic but the particles can also be created
and destroyed.
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Fig. 4 The pilot-wave theory

Fig. 5 GRWp6

major drawback of this move, let me first notice that, in order for this theory to get
off the ground, one would need all particle to jump together. This is to guarantee
that, again, a dead cat would stay dead. In fact if only one particle were to jump,
then something similar to what described above is likely to happen again. Consider a
situation where the cat is initially dead, and assume that the wavefunction collapses
into the ‘alive’ portion of the wavefunction just after few collapses connected to a few
particles. As a consequence, even if the wavefunction indicates ‘alive,’ most particles
would still be ‘under’ the dead sector of the wavefunction. The ‘alive’ portion of the
wavefunction will soon be dominant over the other part in guiding the evolution of
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Fig. 6 GRWp5

the particles, therefore opening up for the possibility that the cat will end up alive
again. This is what happens in a theory dubbed GRWp5 in Allori et al. [10] (Fig. 6).

In any case, there is another problem: GRWp6 closely resemble a (problematic)
many-world theory. In fact this theory can be taken to represent a situation in which
there is a world for each term of the superposition of the wavefunction. The problem
is that, since all particles jump at the same time when the wavefunction gets localized
from one term of the superposition to another, one effectively and instantaneously
moves from one world to another. So, GRWp6 is a theory in which many worlds
exist, even if not at the same time but one after the other. This makes the theory
empirically incoherent, namely its truth undermines our empirical justification for
believing it to be true.15 In fact we could instantaneously move from one world in
which there are dinosaurs to one in which there aren’t any. This implies that our
records of the past, including evidence to support the theory, are most likely false:
we remember dinosaurs at time t , when we were in world 1, but at time t + dt when
we are in world 2 they have disappeared. Similarly, assumewe gather some empirical
evidence that justifies us in believing in GRWp6 at one time, when we are in world 1;
but when we jump into world 2 a second later our memories of that very evidence is
most likely false because the two terms of the superpositions describing world 1 and
2 are separated in configuration space and thus describe microscopically different
state of affairs. Because of this, presumably, GRWp6 is not a viable theory. This does
not happen in GRWp3 because in this theory the particles are ‘in charge’ and the
wavefunction localizes where they actually are located.

Another GRW-like particle theory has been explored by Shan Gao [43]. In his
theory particles evolve in random discontinuous motion (RDM) guided by a GRW-
evolving wavefunction (Fig. 7). Gao’s idea is that the particles spend only an instant
at each location, and jump between the different terms of the superposition of the

15For more on empirical coherence, see Barrett [41], Huggett and Wüthrich [42].
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Fig. 7 RDM

wavefunction. This theory is different from GRWp3: in GRWp3 the evolution of
the particles is deterministic before and after the localization of the wavefunction
around the particles’ configuration, while here the particles keep jumping between
the different terms of the superpositions before the wavefunction localization. It is
perhaps more similar to GRWp6, in that in both theories the wavefunction takes
precedence over the PO. However, in GRWp6 the particles jump where the wave-
function localizes but they evolve deterministically before and after, while in RDM
the particles keep jumping. Anyway, the collapse of the wavefunction is needed to
guarantee that amacroscopic object, say a cat,would not be in amacroscopic superpo-
sition of, say, being alive and being dead. After the localization of the wavefunction
the particles are confined to move only within the one term of the superposition
remaining. Notice that, in order to avoid problems similar to the ones discussed
above for GRWp3, one would need all particles to jump together. In any case, the
theory seems to suffer from a severe form of empirical incoherence: in GRWp6 the
particles were jumping between different words in between collapses; here instead
the particles keep jumping between different words at every single instant, before
‘setting’ for one after the wavefunction collapse.

Interestingly, one may instead read RDM as a theory of flashes, namely of
spatiotemporal events, given that particles are usually taken to have a continuous
trajectories, unlikewhat happens inRDM. In any case, it seems interesting to compare
RDM with GRWf (Fig. 8). As we said, in RDM the particles keep jumping at every
instant, not only at localization times. In contrast, in GRWf each flash corresponds to
one of the collapses of the wavefunction, and its space-time location is just the space-
time location of that collapse. So, as anticipated, in GRWf matter is mostly empty,
because matter exists only at the points of collapse and at the instants of collapse.
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Fig. 8 GRWf

However, it is this feature which allows GRWf to avoid empirical incoherence: in
between collapses we are not oscillating between two different words because in
between collapses nothing exists.

6 Comparison Among GRW-like Theories: Relativistic
GRWp?

In the last section I have discussed how one can construct an empirically adequate
theory of particles with a GRW-evolving wavefunction: its name in the literature is
GRWp3. However, since this is the only particle theory which survives among the
alternatives, I think it is more appropriate to just call it GRWp. As we have seen, this
combination requires a stochastic evolution of the particles as well as one for the
wavefunction. In this section, I will compare the various GRW-theories with different
ontologies: GRWm, GRWp, GRWf. After having done that, I will sketch a proposal
for a relativistic particle GRW theory.

When dealing with incompatible alternatives which are empirically equivalent,
namely that cannot be set apart by empirical evidence, one usually invokes super-
empirical virtues to select one over the other. For instance one could consider parsi-
mony, and argue that the theory which is most parsimonious is the most likely to
be true. Assuming that parsimony is indeed a guide to truth, there is however the
question of how to define parsimony univocally and objectively. Be that as it may,
the matter density seems to score poorly on this criterion when compared with the
alternative ontologies. In fact one could argue, as I hinted previously in the text, that
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the most parsimonious ontology is the one of particles. After all, they need merely
a point to be specified, in contrast with the matter density, which is a continuous
function. However, one could instead maintain that the flash ontology is the most
parsimonious: the flashes are like particles, without trajectories [32]. Nevertheless,
as also pointed out in the last section, the flash ontology is more counterintuitive than
the particle ontology. As a consequence, the explanatory power of the theory could
suffer. Even if explanatory power, like parsimony, is not easy to define univocally,
one could maintain that the needed to account for our mistaken intuitions (matter
being discontinuous not only in space, like in the case of particles, but also in time in
the case of flashes) is a burden for the flashy theory. So, parsimony and explanatory
power seem to pull in different directions, and arguably cannot help breaking the tie
between GRWf and GRWp, assuming we agree that GRWm scores poorly on these
criteria.

Presumably, there are two other considerations that could help in theory selection.
One has to do with scientific realism, and the other with relativity. Let us start with
the former. As it was clear since the beginning, we are assuming scientific realism,
namely we are assuming that these theories can tell us about the nature of reality.
However, there is one serious objection to scientific realism: the pessimistic meta-
induction argument. This argument goes against the no-miracle argument, which is
the main argument for realism: the empirical success of a theory can, and should,
be taken as evidence of its truth. The idea behind the pessimistic meta-induction
argument is that the conclusion of the no-miracle argument does not follow: since
past successful theories turned out to be false, it is unwarranted to believe that our
current theories are true simply because they are successful [44]. Since past theories
were empirically successful but turned out to be false, it follows that our current
theories, even if successful, are more likely to be false than true. One way to respond
to the pessimisticmeta-induction challenge is to argue that one should be realist about
a restricted set of entities, not about the whole theory. Then, if one can show that the
entities that are retained in moving from one theory to the next are the ones that are
responsible for the empirical success of the theory, the pessimistic meta-induction
argument is blocked. In this context, thus, since classically the ontology was the one
of particles, a quantum theory with a particle ontology could solve the pessimistic
meta-induction argument. Because of this, therefore, one should prefer GRWp over
the alternatives GRWm and GRWf: it is the theory that makes scientific realismmore
plausible in the GRW framework. I have argued [16] that flashes and matter density,
in a suitable way, could defeat the pessimistic meta-induction as well, in contrast
with GRW0, namely the GRW theory read as a theory about the wavefunction.
However, one could maintain that the explanation for how GRWm and GRWf solve
this problem diminish their simplicity and explanatory power when compared to
GRWp: in GRWp it is obvious that the ontology is preserved from the classical to
the quantum domain; this is not so in the case of GRWf and GRWm. So whatever
story one has to tell to explain their solution of the pessimistic meta-induction will
make the theory not as simple and as explanatory as GRWp.

Finally, another important criterion that could help break the tie between empir-
ically equivalent theories is connected with relativistic invariance. All the GRW
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theories discussed so far are nonrelativistic, so a natural thought is that if one could
extend one of them to the relativistic domain but not the others then that theory
should be preferred. For a brief period of time this was indeed the case, as GRWf
was the only one of themwhich had a relativistic extension. This theory, rGRWf, was
proposed by Tumulka [45] and provides the probability distribution of the flashes
just like GRWf but now it does that with a Dirac evolving wavefunction. Funda-
mental is the fact that in the construction of the theory no mention of a preferred
slicing of spacetime is mentioned, making the theory manifestly Lorentz covariant.
This is contrast with relativistic invariant extensions of the pilot-wave theory, which
requires a preferred foliation.16 Arguably, since in the traditional reading of relativity
such a preferred foliation does not exist, people have been looking at rGRWf with
great interest, as it avoids it entirely. However more recently a relativistic version of
GRWm has been proposed by Bedingham et al. [48]. In this theory a Dirac evolving
wavefunction defines the matter density field in a Lorentz covariant way, as it only
depends on the metric structure, namely the past light-cone in every point. If this
is the right way to think about relativistic invariance,17 then relativistic invariance
cannot be used to break the tie between GRWm and GRWf, as both rGRWm and
rGRWm exist. However, one may wonder about GRWp: is it possible to construct a
relativistic GRWp without the need of a foliation? One may think that the existence
of rGRWm, in which there are trajectories for the matter density defined in terms of
the wavefunction on the past light-cone, leaves open to the possibility of constructing
a relativistic GRWp. One may instead think that this is not possible because just like
in the pilot-wave theory in order to define the trajectories, even if discontinuous, one
would need a preferred temporal frame. In this regard, it is interesting to consider the
attempt by Goldstein and Tumulka [51] to build a pilot-wave theory without a folia-
tion.18 This theory, let’s dub it GT from the names of the authors, specifies covariant
particles trajectories with an equation which uses as surfaces of simultaneity the
future light cones. In this way, no foliation is needed. The theory is strange, given
that it has a microscopic arrow of time pointing towards the past, and also it is not
empirically adequate, as it does not have any equivariant measure. However, one
could observe the following. In Sect. 5, we dismissed GRWp2, the theory in which
the wavefunction jumps where the particles are, because it was not equivariant, while
GRWp (in the text previously dubbed GRWp3), in which the particle position was
randomly displaced, instead ‘regained’ equivariance. Perhaps, one could explore the
possibility that the lack of equivariance of GT could be ‘cured’ as we did for GRWp2,
and thus define a relativistic particle GRW theory as follows:

16See Dürr et al. [46, 47].
17For a criticism, see Barret [49] and Esfeld and Gisin [50], who argue that these theories, even if
they are Lorentz invariant in terms of the overall histories of their PO, are unable to describe single
events in a relativistic invariant way.
18Another interesting attempt of a relativistic pilot-wave theory without a foliation has been
proposed by Sutherland [52, 53], which however involves retrocausation.
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1. There are particles evolving according to a suitable pilot-wave-like guidance
equation defined with future (or perhaps past) light-cones as simultaneity slices
(as in GT),

2. There is a Dirac evolving wavefunction (as in rGRWf and GT),
3. The wavefunction collapses around where the particles are at the time of collapse

displaced at random (as in GRWp).

Steps 1 and 2 would guarantee Lorentz covariance without a foliation, Step 3 would
instead make the theory equivariant. If this proposal could be made rigorous, then
we could have a relativistic GRW theory of particles.

If so, then one could break the tie and select the preferred ontology for GRW-like
theories as the one of particles: they are sufficiently simple, they imply less coun-
terintuitive consequences than the alternatives, they help defeating the pessimistic
meta-induction argument, and one (presumably) can construct a relativistic GRW
theory without a foliation.19

7 Conclusion

In the first part of the paper (Sects. 2, 3 and 4) I have argued that the lesson of the
POA is that the real problem with quantum theory is not the problem of superposi-
tions, but rather the problem of considering the wavefunction in configuration space
as representing physical objects. If so, one should always ‘add’ something to the
wavefunction, regardless of whether one is considering the pilot-wave theory of the
spontaneous localization theory. Then in the last part of the paper (Sects. 5 and 6) I
have discussed GRW theories of particles, and I have compared them with the other
spontaneous localization theories with different ontologies. I finally have argued that,
if one were to successfully construct a relativistic spontaneous localization of parti-
cles along the lines I have sketched, then this theory would score as the best among
the alternatives.

However, if the argument I have advanced in the first part of the paper is sound,
then one could wonder: what is the point of considering particle GRW (or many
-worlds!) theories at all, in this framework? In fact, if one grants that solving the
measurement problem is not sufficient to dissolve the tension between realism and
quantum theory, and that one also needs to solve the configuration space problem
by postulating some PO in three-dimensional space, then one could also argue that
solutions of themeasurement problemwhich take route 2 and 3 (namelymany-worlds
and spontaneous localization as originally intended) have few chances of being taken
seriously. One can turn them into PO theories, but they are doomed to fail because the
pilot-wave-theory is already the simplest alternative. In other words, let us assume

19Of course, if the rGRWp proposed above requires a microscopic inverse arrow of time, then this
may be taken to diminish the explanatory power of the theory. However, since the theory has yet to
be constructed this kind of considerations seem premature.
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that one faces the configuration space problem before the measurement problem,
rather than after, which one solves by postulating a given PO,may that be of particles,
or fields, or strings, or spatiotemporal events. Then the measurement problem does
not even arise, as particles never superimpose. If so,onewould hardly think of theories
like the spontaneous localization theory as serious option: the wavefunction solely
appears in the lawwhich governs the POevolution, sowhy have a stochastic evolution
for it if one can obtain perfectly experimentally adequate results with a deterministic
one?

My proposal is that looking at theories like the spontaneous localization theory is
valuable for a different reason. As we have seen in Sect. 6, theories like rGRWf and
rGRWm show genuine relativistic invariance, namely relativistic invariance without
a foliation. This is not something that the pilot-wave theory possesses. So, as a matter
of an historical accident, namely that people were led to (mistakenly) think that the
measurement problemwas the one to solve to make quantum theory compatible with
scientific realism, they started to develop theories that they otherwise would not have
even considered. That is, if the real problem were recognized by everyone to be the
configuration space problem, then everyone would also agree that its simplest solu-
tion is given by the pilot-wave theory,with an ontology of particles and a deterministic
evolution for the wavefunction. However, without the other solutions of the measure-
ment problem, presumably people would have just focused on trying to make the
pilot-wave theory relativistic invariant, and they perhaps would not have developed
theories such as rGRWf or rGRWm which, in contrast with the pilot-wave-theory,
are genuinely relativistic. So, this historical accident led us astray in one sense but
set us straight in another. That is, on the one hand the measurement problem led us
astray because it made us consider theories which are, from the perspective of the
solution of the configuration space problem, more complicated than needed. On the
other hand it set us straight, because these more complicated theories also show some
unique features that make them more amenable to a relativistic extension. In other
words, it is valuable to look at these theories even if they are not the simplest solution
of the configuration space problem because their stochastic laws may be helpful in
solving the tension between quantum theory and relativity.
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From the Measurement Problem
to the Primitive Ontology Programme

Michael Esfeld

Abstract The paper retraces the development from the measurement problem to the
primitive ontology programme. It assesses the contribution of the GRW theory to this
programme and discusses the pros and cons of the GRWm matter density ontology
and the GRWf flash ontology in comparison to the Bohmian particle ontology. It
thereby pursues the evaluation of the proposals for a primitive ontology of quantum
physics.

1 The Measurement Problem and the Ontology
of Quantum Physics

This paper retraces the development from the measurement problem to the primitive
ontology programme in quantum physics and assesses the contribution of the GRW
theory to this programme. This section recalls this development. Section 2 discusses
the GRWmmatter density field ontology, Sect. 3 the GRWf flash ontology, taking the
latter—with Bell [1, ch. 22] and pace Ghirardi et al. [2]—to be the most important
contribution of the GRW theory to the ontology of quantum physics. Section 4
considers the status of the wave function in this context, advocating a wave function
realism that does not amount to a dualism of primitive ontology and wave function.

The measurement problem is the central motivation for collapse theories. As set
out by Maudlin [3] in what has since become the standard formulation, the measure-
ment problem is the fact that the conjunction of the following three propositions is
a contradiction:

1A The wave-function of a system is complete, i.e. the wave-function specifies
(directly or indirectly) all of the physical properties of a system.

1B The wave-function always evolves in accord with a linear dynamical equation
(e.g. the Schrödinger equation).
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1C Measurements of, e.g., the spin of an electron always (or at least usually) have
determinate outcomes, i.e., at the end of the measurement the measuring device
is either in a state which indicates spin up (and not down) or spin down (and
not up). [3, p. 7]

Accordingly, there are three possiblities to solve the measurement problem:

(1) One can reject (1.A). There is more to the physical systems than what is repre-
sented by the wave function. This “more” is traditionally known as “hidden
variables” because we do not have experimental access to more than what is
extracted from the wave function by means of Born’s rule in terms of predic-
tions of measurement outcome statistics. The most prominent theory in this
vein is the one going back to de Broglie [4] and Bohm [5]. It was supported by
Bell from the 1960s to the 1980s1 and is today known as Bohmian mechanics.2

According to this theory, quantum systems always have a determinate value of
position, which is not tracked by the wave function. It is, however, misleading
to call position a “hidden variable”, since all that is ever revealed in measure-
ment outcomes are positions and not wave functions, as pointed out by Bell [1]
among others.

(2) One can reject (1.B). In this case, one replaces the Schrödinger dynamics with
a dynamics that includes the collapse of the wave function. In the textbook
presentations of quantum mechanics, going back to von Neumann [6], this is
done in an ad hoc manner, with the wave function being supposed to collapse
upon measurement. However, neither are measurements a particular type of
interaction—over and above gravitation, electromagnetism and the weak and
the strong interaction—that requires a specific law, nor aremeasurement devices
natural kinds on a par with electrons, chemical elements, biological species, etc.
The theory of Ghirardi et al. [7] (GRW) improves on this situation by turning
the Schrödinger equation into a law for wave function collapse independently
of observers, measurements and the like.3

(3) One can reject (1.C). In this case, one denies that measurements have outcomes.
More precisely, all possible outcomes of any measurement are in fact realized,
albeit in different branches of the universe, which do not interfere with one
another. This solution goes back to Everett [9]. Consequently, every possible
future of a person becomes real in the sense that for every possible future of
a person, there is a future self that experiences that future. Hence, there is an
obvious problem how to account for probabilities in such a theory, and be it
subjective probabilities.

However, at the latest since the seminal paper by Allori et al. [10], it has become
clear that describing the situation that we face when it comes to understanding
quantum mechanics in terms of these three possibilities to solve the measurement

1See in particular Bell [1, chs. 4, 7, 17 and 19].
2See Dürr et al. [14].
3See also Gisin [8] for a forerunner in that vein.
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problem is not the whole story. The reason is that these three possible solutions, thus
formulated, are concerned only with the dynamics of the wave function—whether
the Schrödinger dynamics is complete so that measurements have no outcomes (not
1.C), whether it has to be amended by wave function collapse (not 1.B) or whether
there are additional variables that require an additional dynamics (not 1.A). Insofar
as they are only concerned with the dynamics, these solutions do not answer the
question of ontology, that is, the question of what the wave function refers to—in
other words, the question of what the objects in nature are to which the wave function
dynamics relates. This is particularly evident in the case of the collapse dynamics:
What are the objects that are subject to this dynamics and what does the collapse of
the wave function mean for their behaviour?

When considering the possible answers to the question of the ontology of quantum
physics, we are confronted with a division into two principled answers. The one
possible answer is what is known as wave function monism. In brief, this is the view
that the wave function, conceived as physical object, is the physical reality. The most
outspoken advocate of this view is Albert [11, 12, chs. 6–7]. The wave function
is defined on configuration space by contrast to three-dimensional space or four-
dimensional space-time. For N particles, configuration space has 3 N dimensions
such that eachpoint of configuration space represents a possible configurationof theN
particles in three-dimensional space. However, if the wave function on configuration
space is the physical reality, there is no configuration of anything in another, physical
space. Consequently, it is misleading to call this space “configuration space”.

Be that as it may, the idea of Albert’s wave function monism is, in brief, that the
wave function undergoes in the space on which it is defined an evolution such that
objects that are functionally equivalent to objects in three-dimensional space or four-
dimensional space-time come into existence during this evolution. In order to achieve
this aim, Albert is sympathetic to the idea that the wave function undergoes collapse
in this space. This shows that the GRW dynamics can go together with an ontology
that admits only the wave function of the universe on a very high-dimensional space
(known as GRW0). Moreover, in general, the solution that rejects 1.C is associated
with wave function monism: the idea then is that the wave function of the universe
undergoes an evolution of a division into many branches of the universe through
decoherence; objects that realize a functional definition of ordinary physical objects
come into existence during this evolution, even if configuration space monism is
rejected.4

The other possible answer is the primitive ontology programme. According to
this answer, the wave function does not provide the ontology of quantummechanics.
It plays only a dynamical role. The ontology consists in a configuration of matter in
three-dimensional space or four-dimensional space-time. In order to represent this
configuration, one has to add a variable to the wave function, namely a variable for
the (primitive) ontology. This stance is associated with the solutions that reject 1.B
or 1.A (although the rejection of 1.B can, as mentioned, also go together with a wave
function only ontology).

4See Wallace [13] for a prominent contemporary defense of Everettian quantum mechanics.
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Since Bohm’s theory has been cast in its contemporary formulation as Bohmian
mechanics (BM) by Dürr et al. ([14], ch. 2, originally published 1992), it has been
set out as a primitive ontology theory. Indeed, Dürr et al. introduce this term in
their 1992 paper (p. 29 in the reprint [14]). BM then is based on four postulates: (i)
the primitive ontology of point particles in physical space; (ii) a law that describes
the evolution of the configuration of point particles of the universe in which the
universal wave function figures, known as guiding equation; (iii) the Schrödinger
equation as the law that describes the evolution of the wave function; (iv) a typicality
or probability measure in terms of the |� |2 density on the level of the universal
wave function; from this measure then follows Born’s rule for the prediction of
measurement outcome statistics for sub-systems described by their own conditional
or effective wave-function.

This structure of a physical theory consisting in a primitive ontology, a law for
its evolution, a law for the wave function and a procedure to derive probabilities for
measurement outcome statistics applies to any quantum theory that admits a config-
uration of matter in three-dimensional space or four-dimensional space-time and that
assigns to the wave function a dynamical role for the evolution of that configuration.
Hence, this structure applies independently of what entities the distribution of matter
is taken to consist in (particles or something else) and independently of whether
the dynamics for the evolution of the wave function is linear or includes collapse.
That is why when taking the ontology of quantum physics into account, the available
solutions to the measurement problem come down to two ones: either wave function
monism or a primitive ontology of a configuration of matter in ordinary space.

2 The Ontology of GRW I: Matter Density Field

Ghirardi et al. [2] answer the question of ontology by postulating a continuous matter
density field that stretches all over space. This theory is known as GRWm, with “m”
standing for the matter density variable that is added to the wave function in order
to describe the distribution of matter in physical space. Allori et al. characterize the
ontology of GRWm in the following manner:

We have a variable m(x,t) for every point x ∈ R
3 in space and every time t, defined by

In words, one starts with the |ψ|2-distribution in configuration space R3N , then obtains the
marginal distribution of the ith degree of freedom qi ∈ R

3 by integrating out all other
variables qj , j �= i, multiplies by the mass associated with qi, and sums over i…. The field
m(x, t) is supposed to be understood as the density of matter in space at time t. [10, p. 359]
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Matter is a continuous, primitive stuff on this view, stretching all over space, in
contrast to discrete and thus countable particles. The variable “m” designates matter
qua primitive stuff, as again Allori and co-authors make clear:

Moreover, the matter that we postulate in GRWm and whose density is given by the m
function does not ipso facto have any such properties as mass or charge; it can only assume
various levels of density. [15, pp. 331–332]

As in BM, mass, charge, etc. are dynamical variables situated on the level of
the wave function that come in through their dynamical role for the evolution of
matter; they do not designate intrinsic, essential properties of matter.5 In both BM
and GRWm, matter is characterized by position only. In GRWm, matter is primitive
stuff that, moreover, admits of different degrees of density at different points or
regions of space, with these degrees of density changing in time. Countenancing a
variety of degrees of density as a primitive matter of fact is indispensable in GRWm
to account for variation: there is matter all over space with its different degrees of
density constituting the variation of matter that we perceive. Thus, for instance, a
macroscopic object such as rock or a tree is a concentration of the density of matter
in a certain region of space at a time.

Hence, the matter density m(x,t) is an additional variable with respect to the wave
function. Consequently, an additional law over and above the collapse law for the
evolution of the wave function is needed to establish the link between the wave
function and its evolution in configuration space on the one hand and the matter
density distribution and its evolution in physical space on the other hand. However,
in contrast to the particle positions in BM, the matter density variable is fixed by the
wave function. Hence, the dynamics of the wave function keeps track of its evolution.
Nonetheless, the matter density variable is “hidden” as well in the sense that it is not
fully accessible to an observer. Cowan and Tumulka [19] show that there are facts
about the matter density distribution that an observer cannot know. In particular,
there are facts about wave function collapse and hence concentration of the matter
density in certain points or regions of space that observers cannot measure.

Indeed, Cowan and Tumulka [19] establish that in any primitive ontology theory,
the primitive ontology cannot be fully accessible to an observer, whatever it may be
(particles, a matter density field, or something else) and independently of whether or
not the primitive ontology and its evolution is specified and kept track of by the wave
function and its evolution. The reason is the no-signalling theorem: if the primitive
ontology were fully accessible, superluminal signalling would be possible in Bell-
type experiments. This fact confirms the conclusion of the previous section, namely
that the possible stances in the ontology of quantum physics fall into two camps only,
that is, either the primitive ontology camp or the wave function monism camp.

The GRWm ontology of a matter density field in physical space is a primitive
ontology that is modelled on the wave function. It goes as far as possible in reading
the primitive ontology of matter in physical space off from the wave function in
configuration space. Of course, there are no superpositions in the sense of any inde-
terminacy in physical space. The variable m(x,t) always has one definite value. But it

5See Brown et al. [16], Pylkkänen et al. [17] and Esfeld et al. [18] for BM.
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is modelled on the wave function in the sense that it is a continuous field in physical
space as the wave function is a field in configuration space. This close connection
raises a number of issues that make it doubtful whether the matter density field is the
most convincing proposal for an ontology for the GRW dynamics.

On the one hand, the primitive ontology is one of a field in physical space as
the wave function is a field in configuration space. On the other hand, the GRW
formalism, as any formalism for quantum mechanics, is a formalism in terms of
a finite, determinate and thus countable number of discrete particles, providing a
dynamics for these particles, in this case in terms of a collapse or spontaneous
localization of the wave function of the ith particle. This problem can be remediated
by switching to a formalism of a continuous spontaneous localization of the wave
function as set out in Ghirardi et al. [20] with the particle labels disappearing.6 In
any case, the fact that a quantum formalism works with a determinate number of
particles is no conclusive argument in favour of an ontology of particles.

The more serious problems for the GRWm theory stem from the dynamics. In the
first place, the collapse or spontaneous localization of the wave function is achieved
mathematically by multiplying the wave function with a Gaussian. Consequently,
the collapsed wave function is sharply peaked in a small region of configuration
space, but it does not vanish outside that region; it has tails that spread to infinity.
This is therefore known as the problem of the tails of the wave function. On its basis,
one can object that the GRWm theory does not solve the measurement problem: for
instance, in the Schrödinger cat experiment, when the wave function collapses to
the outcome dead cat, there then is a high-density dead cat and a low-density live
cat. It seems that the low-density cat is just as cat-like (in terms of shape, behaviour,
etc.) as the high-density cat, so that there are in fact two cat-shapes in the matter
density field, one with a high and another one with a low density. However, one can
give arguments against drawing this conclusion so that it is in dispute whether the
tails problem implies that the GRWm theory is in trouble solving the measurement
problem.7

More importantly, quantum non-locality has unpalatable consequences for the
GRWm theory. This is already evident from a simple example that involves only a
position superposition, but no entanglement. Consider the thought experiment of one
particle in a box that Einstein raised at the Solvay conference in 1927:8 the box is
split in two halves that are sent in opposite directions, say from Brussels to Paris and
Tokyo. When the half-box arriving in Tokyo is opened and found to be empty, the
particle is in the half-box in Paris.

The GRWm account of this experiment is this one: the particle is a matter density
field that is split in two halves of equal density when the box is divided; these matter
densities travel in opposite directions. Upon interaction with a measurement device,
one of thesematter densities (say the one in Tokyo) vanishes, while thematter density

6See Egg and Esfeld ([21], Sect. 3).
7Maudlin [22] argues that it fails to do so. See by contrast Wallace [23], Albert [12] and Egg and
Esfeld [21], Sect. 3.
8See the account of de Broglie [24, pp. 28–29] and Norsen [25].



From the Measurement Problem to the Primitive Ontology Programme 101

in the other half-box (the one inParis) increases; thewholematter then is concentrated
in one of the half-boxes (in Paris in this case). This is to say that the matter density
in one of the half-boxes is delocated instantaneously across an arbitrary distance in
physical space upon collapse of the wave function in configuration space. It does not
travel with any velocity.9 Even if the collapse of the wave function is conceived as a
continuous process, the time it takes for the matter density to disappear in one place
and to reappear in another place does not depend on the distance between the two
places.

This delocation of matter can with good reason be considered as mysterious,
as argued in Esfeld and Deckert [27, pp. 80–81]. Such an account is by no means
imposed upon us by quantum non-locality (which can in any case be taken to be
counter-intuitive). On BM, for instance, the particles always move on continuous
trajectories with a finite velocity. The particle trajectories may be correlated with
each other independently of their distance in physical space, thus accounting for
quantum non-locality; but nothing is ever delocated spontaneously over arbitrary
distances in space.

3 The Ontology of GRW II: Flashes

The problems for the GRWm theory stem from modelling the primitive ontology
of matter in physical space on the wave function. However, there is no compelling
reason to seek to infer that ontology from thewave function.All that is ever accessible
to us in experiments is what is described in terms of the collapse of the wave function
in the GRW formalism. This fact suggests the option to consider only the collapses
of the wave function as referring to the empirical reality. The resulting primitive
ontology then is one of events occurring at space-time points, which are known as
flashes, and the theory is known as GRWf.

Such an ontology was proposed by Bell [1, ch. 22] immediately after the publica-
tion of the GRW dynamics [7]; the term “flashes” was later coined by Tumulka [28].
The point-events (flashes) are ephemeral. There are no continuous sequences of them,
since they occur only when the wave function collapses. Accordingly, this proposal
goes together with the original GRW dynamics of an instantaneous collapse of the
wave function. Hence, there is no underdetermination of the primitive ontology of the
GRW dynamics: the flash ontology is tied to the formalism of a spontaneous local-
ization of the wave function that occurs instantaneously, whereas the matter density
ontology goes with the formalism of a continuous spontaneous localization of the
wave function. Again, the distribution of flashes (the collapses) is not entirely acces-
sible to an observer and in that sense “hidden”, although the flashes are determined
by the dynamics of the wave function.10

9See Egg and Esfeld [26].
10See Cowan and Tumulka [19].
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The flash ontology completes the proposals for a primitive ontology of quantum
physics. All the central metaphysical conceptions of objects are realized in these
proposals: substances as in Bohmian particles, stuff as in the GRWm matter density
field and single events has in the GRWf flashes. Nonetheless, there are further
proposals for a primitive ontology of quantum mechanics conceivable, notably
also proposals for a primitive particle ontology linked with the GRW dynamics.11

That notwithstanding, the Bohmian particle ontology, the GRW matter density field
ontology and the GRW flash ontology are the only worked out proposals for a prim-
itive ontology of quantum physics that are actually defended in the literature. There
is a good reason for this situation: if one starts from the fact that any formulation
of non-relativistic quantum mechanics works with a definite number of permanent
point particles in its formalism, then BM arguably is the clearest and most simple
proposal for a particle ontology and dynamics. If one endorses a collapse dynamics
and takes the wave function in that dynamics as guide to the primitive ontology, then
one gets to the GRWm ontology. If one lays stress on the fact that only the collapses
of the wave function represent observable events, one gets to the GRWf ontology.

TheGRWfontology is not hit by thementioned objections to theGRWmontology:
there is no problem of particle numbers or discrete objects in the formalism versus
a wave function field, since the particle number indicates the number of flashes that
can possibly occur at a time, and nothing more than the events described as wave
function collapse is empirically accessible anyway. There is no problem of the tails of
the wave function, since only the wave function as sharply peaked around a point in
configuration space refers to matter in physical space, namely point-events (flashes).
And there is nothing mysterious in the account of quantum non-locality, since there
are only flashes whose occurrences are correlated with one another in the case of
entanglement; but nothing is ever delocated across space.

This latter fact can be taken to suggest thatGRWf lends itself to a relativistic exten-
sion. Indeed, already Bell [1, pp. 206–212] explored this suggestion and Tumulka
[28] worked out a proposal for a relativistic GRWf theory. However, today, it is
clear that a simliar result can be achieved in GRWm, as shown by Bedingham et al.
[30]. In any case, there are well-grounded doubts voiced notably by Barrett [31] and
Esfeld and Gisin [32] whether these models are fully relativistic: in brief, what they
describe in a Lorentz-invariant manner are entire possible histories of, in GRWf, flash
distributions with probabilities assigned to each such possible entire distribution in
space-time. But they are not able to describe the occurrence of individual flashes or
contractions of the matter density field in a Lorentz-invariant manner. In other words,
they are not able to describe in a relativistic manner how determinate measurement
outcomes occur in space-time.

The flash ontology certainly is counter-intuitive, because it refuses to recognize
any permanent or persisting material objects. There are only ephemeral flashes with
a space-time gap between any two of them.12 However, these gaps may be so tiny that
they cannot be perceived. In other words, the flash ontology is a serious candidate for

11See Allori et al. [15] and Allori [29].
12Cf. the objection of Maudlin [33].
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the correct ontology of our empirical world, as argued, for instance, by Arntzenius
[34, ch. 3.15]. The initial conditions and the subsequent development of the real
world can be such that the flashes occur in such a dense manner that our experience
of a macroscopic world of permanent objects is accounted for. Bell [1, p. 205]
regards macroscopic objects as galaxies of flashes. By the same token, an ontology
of permanent particles as in BM has to make sure that there are enough particles to
account for macroscopic objects that appear as continuous, although there is empty
space in the sense of a non-vanishing distance between any two particles.

The flash ontology seems to be distinguished as the most parsimonious one. The
reason is that all that to which we have experimental access are the events that are
represented by (effective) wave function collapse. The flashes can be conceived as
the Bohmian particles deprived of their trajectories or thematter density fieldwith the
expansions of the field between the collapse-concentrations deleted. In its light, the
Bohmianparticle trajectories and the continuousGRWmmatter densityfield look like
a surplus structure: they are there, but inaccessible in observation or measurement.
However, on closer inspection, it turns out to be questionable how parsimonious
the flash ontology really is. The reason is that the flash ontology is committed to a
substantival space or space-time in which the flashes occur. Indeed, one can tie the
flash ontology to super-substantivalism, that is, the view that an absolute space-time
is all there is: space-time flashes occasionally. Again, the flashes are primitive matter,
in this case bare particulars: apart from their spatio-temporal location, they do not
have any properties. As in the case of the Bohmian particles and the matter density
field,mass, charge, etc. are variables that are situated on the level of thewave function
and that consist in playing a dynamical role for the evolution of matter instead of
being intrinsic, essential properties of material objects.

The commitment to a substantival space-time in the GRWf ontology is a conse-
quence of the fact that there is a gap between any two flashes, while there still is
exactly one universe described by exactly one universal wave function and its evolu-
tion (instead of each flash being a universe of its own, like a Leibnizean monad).
What holds this universe together then is the space-time in which the flashes occur.
There may even be times with no flashes at all. Space-time thus takes the position of
the substance in which change occurs, in this case change in the number of flashes
and the distances between them. This dualism of absolute space-time and matter qua
flashes (or qua the flashing versus the empty space-time) has the consequence that
this ontology is not so parsimonious, simple or minimal after all, as argued by Esfeld
and Deckert [27, pp. 83–84]. The same holds if one were to replace space-time with
the wave function, then conceiving the wave function as a sort of substantival stuff
in which the flashes occur.

By contrast, neither GRWm nor BM are committed to a substantival space-time,
although both are conveniently formulated in terms of a configuration ofmatter that is
inserted into an absolute space and evolving in an absolute time. The GRWmmatter
density field can be conceived as a substance that stands on its own, without requiring
an underlying space or space-time. For instance, Rovelli [35] sets out a proposal for
an ontology of fields only without a substantival space-time in the context of the
general theory of relativity. By the same token, the permanent Bohmian particles
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can be conceived as being characterized by their relative distances and their change
only instead of positions and trajectories in an absolute space. Indeed, a relationalist
formulation of BM has been worked out recently by Dürr et al. [36].13

Moreover, the Bohmian particles can be construed as being individuated by the
distance relations in which they stand. This is an important advantage of the Bohmian
particle ontology when it comes to the metaphysics of matter: no commitment to a
primitive stuff with different degrees of density as a primitive matter of fact or bare
particulars (as in the case of the GRWf flashes) is called for, since there are relations
available that individuate the particles. Consequently, BM turns out to be in fact
close to the stance that is known as ontic structural realism in the metaphysics of
science according to which there are no objects with intrinsic essences, a primitive
stuff substratum or bare particulars (see [27], ch. 2.1).

In any case, we obtain again the result that the dynamical differences—wave
function collapse or not—are not central. The central issue is the evaluation of
the proposals for a primitive ontology according to criteria such as parsimony or
simplicity, coherence and explanatory value.14

4 The Status of the Wave Function: Dynamics,
not Ontology

“Primitive ontology” does not signify that there also is a non-primitive or secondary
ontology (which would in this case apply to the wave function). “Primitive” signifies
that the configuration ofmatter simply exists. It cannot be derived from anything else,
notably not from the wave function. Quite to the contrary, if one admits a primitive
ontology of a configuration of matter, the wave function then enters the theory only
through its dynamical role, namely its role for the evolution of the configuration of
matter. In that sense, it is nomological.

An ontological dualism of a primitive ontology of matter on the one hand and a
wave function on the other hand would fall victim to the objection of Brown and
Wallace [41] according to which the primitive ontology would be superfluous in this
case, for everything that is empirically accessible is obtained by applying Born’s rule
to the wave function. Hence, if the wave function exists as an object of its own, it
then contains everything to account for the empirical reality—assuming that wave
function monism provides indeed a solution to the measurement problem. However,
if one denies this, what accounts for measurement outcomes then is the configuration
of the primitive ontology. Consequently, the wave function plays only a dynamical
role. There is no reason to admit it to the ontology as an object in addition to the
configuration of matter.

If the wave function is nomological in the sense that it plays only a dynamical role,
one can adopt with respect to it any one of the three main stances that are available in

13See also Vassallo [37], Vassallo and Ip [38] and Koslowski [39].
14See Esfeld [40].
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the metaphysics of laws of nature. By the same token as with respect to laws, one can
maintain that the wave function is a primitive entity of its own (see [42]) or that it is
derived from dispositions, powers or structures that are primitive modal entities over
and above the primitive ontology (see e.g. [43]). However, the explanatory value of
both these stances is doubtful: they reify the wave function without thereby making
progress in the explanation of the evolution of the configuration of matter, because
the wave function is defined in terms of its dynamical role for the primitive ontology.
Furthermore, since they reify the wave function, these stances are not immune to the
objection from Brown and Wallace [41].

Given that the wave function enters the theory through its dynamical role for the
evolution of the configuration of matter, one can adopt the stance that is known as
quantum Humeanism: the wave function is reduced to the evolution of the config-
uration of matter in the sense that the universal wave function is determined by
the overall evolution of the configuration of matter of the universe. Given that entire
evolution, the universal wave function is fixed. Tomy knowledge, the first expression
of this stance comes from Bell in “The theory of local beables” (1975):

One of the apparent non-localities of quantummechanics is the instantaneous, over all space,
‘collapse of the wave function’ on ‘measurement’. But this does not bother us if we do not
grant beable status to the wave function.We can regard it simply as a convenient but inessen-
tial mathematical device for formulating correlations between experimental procedures and
experimental results, i.e., between one set of beables and another. (Quoted from the reprint
in Bell [1, p. 53]

“Beable” is Bell’s neo-logism for what exists. His words here have an unneces-
sarily instrumentalistic tone. The decisive point is that the wave function can be seen
as being fixed by correlations between sets of beables—that is, the evolution of the
configuration of matter (the “local beables” in Bell’s sense). Dowker and Herbauts
[44] provide a concrete model of how this can be so in the framework of GRWflashes
on a lattice. In recent years, this view has been worked out as a philosophical stance
that is inspired byHumean reductionism about laws of nature and therefore known as
quantumHumeanism.15 On the one hand, this stance avoids at its roots any objection
against an ontological dualism of a primitive ontology and a wave function. On the
other hand, this stance still is a scientific realism with respect to the wave function,
since the wave function is anchored in, more precisely determined by what exists,
namely the primitive ontology of a configuration of matter and its evolution.16

In this context, the seminal contribution of the GRW theory is to make clear that
the primitive ontology programme is not limited to Bohmian mechanics. In other
words, the alternative to wave function monism going back to Everett [9] is not only
Bohm’s [5] theory. There is a spectrum of primitive ontology theories that covers
all the traditional metaphysical positions about objects and in which there is a lively
debate about the best proposal for a primitive ontology and corresponding dynamics.
In particular, the GRWflash theory is a serious contender that enters into competition

15See Miller [45], Esfeld [46], Callender [47] and Bhogal and Perry [48].
16See Esfeld and Deckert [27, ch. 2.3] for a detailed argument. See also Allori [29] for scientific
realism without ontological commitment to the wave function.
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with the Bohmian particle ontology—although, to my mind, at the end of the day,
the arguments for a primitive Bohmian particle ontology remain compelling.17

Acknowledgments I’m grateful to Valia Allori and Dustin Lazarovici for helpful comments on
the draft of this paper.
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Might Laws of Nature ‘Ground’
Phenomena?

Federico Laudisa

Abstract The present paper focuses on the connection between grounding and laws
of nature or, better, on the meaning that the grounding relation might assume if
considered by a nomological point of view. In particular, the working hypothesis is
that the grounding relation might used to implement the relation between a law of
nature and its possible instances. The grounding relation can be distinguished from
other modally-loaded relations and thus it might avoid the criticisms of those who
are suspicious about the intuition according to which a law somehow ‘necessitates’
the phenomena falling within its scope. Moreover, if we adopt the above mentioned
working hypothesis according to which a law ultimately ‘grounds’ its instances,
then we are more likely to provide the idea of a governing law with a more definite
meaning: that is, a law of nature would be a ‘governing’ process with respect a class
of given phenomena whenever we are entitled to say that the latter are grounded in
the former.

1 Introduction

The theory proposed in 1986 by Ghirardi, Rimini and Weber (GRW henceforth)
introduced a quantitatively detailed model of how a state reduction process can be
incorporated into quantummechanics, such that typically quantumphenomena on the
microscale coexist with what GRW used to call themacro-objectification of physical
properties pertaining to apparatuses in measurement interactions. As is well known,
the heart of the formulation lies in a nonlinear stochasticmodification of the evolution
law forwavefunctions, amodification that is supposed to induce spontaneous collapse
processes for the wavefunctions themselves [1]. The impressive work developed by
Ghirardi and his co-workers along these lines in many years has been accompanied
by an increasing awareness concerning the key role that a philosophical reflection
should play in the debates on the foundations of quantum mechanics. In particular
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this led the GRW research program in more recent times to take seriously what has
been called the primitive ontology approach: in this vein, the original GRW model
is supposed to evolve into a class of theories endowed with a clear and well-defined
ontology (a structure of fundamental physical ‘entities’—whatever they are—the
theory is supposed to be about), into which the state reduction is to be framed. Two
different proposals have been introduced as to the sort of ontology GRWmodels are
held to deal with, the matter density ontology and the flash ontology. In the former
the theory assumes a continuous ontology, consisting essentially in a field on three-
dimensional space that, for a given t, is to be understood as the density of matter in
space at time t [2, 3], in the latter the theory assumes a discrete ontology, in which
matter is made up by discrete points (‘flashes’) in spacetime such that to each of
these flashes there correspond one of the spontaneous collapses of the wavefunction,
and the spacetime location of the flashes is the spacetime location of the collapses.
In the flash ontology—whose original proposal is due to J.S. Bell—flashes are the
so-called local beables of the theory [4].

These more recent years of activity testify then a deep concern for the prospects of
a coherent worldview that might be somehow ‘extracted’ from a suitably interpreted
version of quantummechanics. This worldview aspires to be a metaphysically robust
representation of the natural world at the microscale, under the assumption that the
above mentioned version of quantum mechanics is held true (in a decent meaning
of ‘true’) and in which we hope to achieve a reasonably clear sense of the basic
furniture of the physical world quantum mechanics is supposed to be about. It is to
this concern that the present paper is inspired: it is focused on a specific aspect of
the notion of natural law—a notion that in a metaphysically-loaded worldview is
obviously supposed to play a crucial role. I will explore in particular the potential
relevance that the metaphysical notion of grounding might have for the status of
laws, on the background of the debate concerning the ‘governing’ or ‘non-governing’
intuition about laws themselves.

2 Grounding: A Nomological Reading?

Within the revival that metaphysics experienced in the last years, grounding has
received a considerable attention. Intuitively such attention is very plausible since,
when we say in general terms that x ‘grounds’ y, we point implicitly to a conceptual
region that seems to intersect related, relevant notions both of an ontological and
epistemological character—such as causation, explanation, determination, constitu-
tion, dependence and so on—without reducing to any of those notions. This kind
of interconnection plays also the role of justifying somehow the appeal itself of the
notion of grounding. The consideration of how frequently we may find ourselves
arguing that y occurs—or is what it is—‘in virtue of’ x (one of many possible formu-
lations of a grounding relation) may suggest that such frequency, far from accidental,
might have a deeper meaning in a metaphysical context: in fact, a common strategy
for defending grounding as an object of investigation takes on the form of a review
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of cases in which, with different conceptual tools and frameworks, we rely on a
grounding intuition (see for instance [5, pp. 812–813]).

Given the several perspectives from which to look at the notion of grounding, in
the present paper Iwill focus on the connection between grounding and laws of nature
or, better, on the meaning that the grounding relation might assume if considered by
a nomological point of view. By the viewpoint of the relation of metaphysics with
science, this focus on laws appears to be well justified, given the role that laws play in
specific scientific theories. In particular, the working hypothesis is that the grounding
relationmight used to implement the relation between a law of nature and its possible
instances. The grounding relation can be distinguished from other modally-loaded
relations and thus it might avoid the criticisms of those who are suspicious about the
intuition according to which a law somehow ‘necessitates’ the phenomena falling
within its scope. Moreover, if we adopt the above mentioned working hypothesis
according to which a law ultimately ‘grounds’ its instances, then we are more likely
to provide the idea of a governing law with a more definite meaning: that is, a law
of nature would be a ‘governing’ process with respect a class of given phenomena
whenever we are entitled to say that the latter are grounded in the former.

The plausibility of thewhole project relies on two general assumptions.According
to the first the notion of grounding is a fruitful one, so that a possible transla-
tion of the intuition of law as a governing process in terms of grounding is not
an attempt to explain obscurum per obscurius. According to the second—and taking
the first assumption for granted—the conceptual option that best suits the governing-
grounding translation is primitivism on laws, namely the theory in which laws
are basic constituents of the fundamental inventory of the world. Admittedly, both
assumptions are strong and engaging. I will return to this point later, but few words
of justification are in order. The first assumption undoubtedly presupposes a confi-
dence in the virtues of grounding in metaphysical terms, but it is also true that the
whole debate on the status of laws of nature (including the best-system analysis,
namely the option which is the most hostile to any kind of governing view of laws)
is firmly located within the boundaries of metaphysics: thus if we decide to argue
in favour of grounding we do not trivially violate any rule of the game. The second
assumption, on the other hand, implies a defence of the primitivist model of law as a
plausible model in itself, otherwise it could not play the role that is functional to the
first assumption. Now, it is certainly true that the idea of laws as primitives is not the
most popular view on laws that I might think of; but, as Tim Maudlin persuasively
argued

Taking laws as primitives may appear to be simple surrender in the face of a philosophical
puzzle. But every account must have primitives. The account must be judged on the clarity
of the inferences that the primitives warrant and on the degree of systematization they reveal
among our pre-analytic inferences [6, p. 15].

My discussion is organized then in the following order. I will first argue in Sect. 3
that the governing intuition about laws is worth defending. I will then argue that
primitivism on laws is a viable option in terms of consistency with the governing
intuition Sect. 4. Finally in Sect. 5, in response of the alleged vagueness of what
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it should mean for a type-theory kind of entity such as a primitive law to ‘govern’
token-type of events, I will propose that the governing intuition might be cashed out
in terms of a grounding relation.

3 Laws of Nature: Governing Versus Non-Governing
Answers

The debate on the nature of lawhood is a complex, intertwined network of issues.
Starting from a very general dichotomy, according to which either laws are somehow
a part of nature or they pertain only to scientific theories (hence—lastly—to us as
knowing subjects), the controversy proceeds toward further, more specific issues:
regularity vs. necessity, the role of Humean supervenience, the relation with the use
of laws in scientific practice, the governing vs. the non-governing status of laws, and
so on. Let us suppose as a working hypothesis the existence of ‘law-like’ items in
the inventory of the world; a major issue is then of course in what terms should we
conceive the relation between such items and the particular phenomena that in some
way or another ‘fall under’ them. It is at this stage that the controversy ‘governing
versus non-governing’ arises.

[The] Governing answer… insists that there are genuine laws of nature and furthermore that
these laws govern or even produce the events of the world’ whereas ‘the Non-Governing
answer… has it that there are genuine laws of nature, but that they do not govern or produce
the events of the world. Themosaic of events displays certain patterns, and it is in the features
of some of these patterns that we find laws.’ [7, p. 2].

In a Humean, reductionist perspective, we should be careful in admitting suspect
versions of necessity in nature so that, as a consequence, we should not require from
laws any ‘governing’ role as a constitutive feature. In the global metaphysical view
of the world that is in the background of (any version of) views like this, any modal,
governing feature in mentioning laws must be traced back to us as subjects, not to the
world, that in itself is nothing but a collection of sparse entities, usually conceived
as discrete. In a regularist brand of a reductionist perspective, what is admitted is
just the existence of a(n astronomical) number of matters of fact and the existence
of a certain number of regularities connecting them [8, p. 32]: although it is far from
trivial to specify what a regularity exactly is in non-modal terms, a (naïve) regularity
view denies the existence of necessary connections or laws whose role in some way
or other would be to ground the regularities. The more sophisticated versions of a
regularity view, summarized in the so-called Mill–Ramsey–Lewis best-system view,
turn out to be an elaboration of how we as subjects should organize regularities, if
we want them to play the role that non-Humean views usually associate to the notion
of law. The now classic formulation of David Lewis [9, p. 73] makes explicit the
disregard for what is often interpreted as the instrinsically modal character of natural
laws.
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Although according to several philosophers, the failure to capture the modal char-
acter of laws of nature is exactly the defect of all regularity, best-system approaches
to laws (see for instance [10]), objections by Menzies look like a petitio principii,
since whether laws of nature should be conceived modally or not is just the point
under discussion. Moreover, a regularist may well resist the claim that the notion of
law is to be defined in governing terms: she will try to claim that such move is far
from unavoidable and that, as a consequence, a non-governing conception of laws is
perfectly consistent. This is what Helen Beebee, for example, tries to accomplish by
claiming that one can define law as governing only by assuming an analogy between
laws in nature and laws in other domains such as theology, politics, ethics, and so
on: but if this assumption is rejected (and it can be rejected), the governing feature
of laws fails to be a conceptual truth [11].

Now even if we assume the plausibility of these arguments and concede that the
analogy between natural laws and other sorts of law does not work, the question
remains: what exactly does the regularist view imply about the very notion of law?
Beebee characterizes the divide between Humean and anti-Humean stances in these
terms:

For the anti-Humean, laws (unlike accidentally true generalizations) do something—they
govern what goes on in the universe—and they therefore require some sort of ontological
basis … that gives them this ability. Humeans, on the other hand, do not require laws to ‘do’
anything: like accidentally true generalizations, laws are at bottom merely true descriptions
ofwhat goes on. Thus for theHumean there is no need for any ontological distinction between
laws and accidents [11, p. 580].

Under this linguistic stipulation concerning laws, then, let us focus on what in a
Humean framework a purely descriptive view of laws might entail. Humeans deny
the need for a search for something that might ‘ground’ a regularity:

For the Humean, since the laws are descriptive, what the laws are depends on what
the facts are…. Humeans … do not require laws to ‘do’ anything: like accidentally
true generalizations, laws are at bottom merely true descriptions of what goes on [11,
pp. 579–580].

To be true, the expression ‘laws are at bottommerely true descriptions ofwhat goes
on’ is rather vague and, at first sight, it might lend support for the idea that a lawmight
be literally nothing but a mere collection of facts, with a possibly paradoxical, set-
theoretical kindof consequence.Let us suppose thatwehave the following collections
of states S at their respective times t:

Fn = {. . . , S(tn−1), S(tn)}

Fn+m = {. . . , S(tn), . . . , S(tn+m−1), S(tn+m)}

If we assume that each of these states is a collection of values of a set of relevant
physical quantities, each state may well represent a ‘fact’ in the regularist vein, since
each state works as a sort of snapshot at its time t(*) of the physical situation at stake.
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Now, intuition tells us that we have here the same law accounting for the evolution
of our system at two different times (we can safely assume that the states both in
Fn and Fn + m are obtained as the computational output of the algorithm implicit in
one and the same deterministic dynamical law). But, should a law be nothing but a
collection of facts, in the present case we seem to deal with two sort-of-laws, since
we have two different collections! Even worse: at any successive instant of time a
new law-as-a-collection is generated. But, then, being parsimonious on any alleged
modal features of the world seems paradoxically to imply a wild and uncontrollable
generation of laws-as-collections over time, a phenomenon in strong tension with an
aspiration to a metaphysical economy. On the other hand, if we suppose that there
is a unifying principle according to which Fn and Fn + m might be shown to be just
two instances of one and the same law, this principle could not simply supervene
on the states and because of this non-supervenience this account would immediately
become a non-Humean one.

The counterintuitive character of this objection might simply show that we are
not entitled to attack a ‘descriptive’ or ‘Humean’ stance by ascribing to it such a thin
notion of law in terms ofmere collection. For instance, a best-system implementation
of the descriptive view can manage the set-theoretic objections, exactly because the
‘best’ choice in singling out the axioms that are suitable candidates for performing
as laws can be done over different sets, that appear as merely different descriptions
among which the optimal combination of simplicity and strength is recovered. But in
exactly what terms is the notion of law more than a collection of non-nomic facts on
one hand, but without a governing character on the other? According to Beebee, the
non-governing relation that by a Humean standpoint is supposed to hold between the
law and the facts that intuitively are accounted for by the law is expressed concisely
and usefully by determinism:

We can characterize determinism in the following rough and ready way: the state of the
universe at any given time together with the laws of nature determines what the state of the
universe will be at any future time. But what does ‘determines’ mean here? For the Humean,
the laws and current facts determine the future facts in a purely logical way: you can deduce
facts from current facts plus the laws. And this is just because laws are, in part, facts about
the future [11, p. 578].

Now one might object to this Humean understanding of determinism that it
overlooks what the specific mathematical formulation of a dynamical law implies
concerning the ‘determining’ capability of the law itself. Take for instance Newton’s
second law. The general form of this dynamical law states a proportionality between
force and acceleration: when a specific formulation for a kind of force is inserted into
the general schema of the second law, we obtain a mathematical equation that, under
non-trivial conditions, turns out to be integrable. This is what justifies us to assume
that the knowledge of a given (initial) state and of what is the force (if any) acting
on the system makes it possible to determine future states of the system (and also
past states, if the evolution satisfies time reversal invariance). So the crucial point
is that the determination is possible due to the functional relations among physical
quantities, relations that are encoded into the mathematical formulation of Newton’s
law. This encoding does not seem to me easily accounted for in a purely descriptive
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view of laws, whatever ‘purely descriptive’ might mean: how can a law play its truly
nomic role by being—as a Humean might say—a ‘simple, strong summary of the
totality of non-nomic facts’?

4 Laws as Primitives

In the above section we have referred just to few of the several reservations that
can be made concerning the Humean stance on laws of nature. In more general
terms, from the Humean viewpoint it turns out to be far from easy to cope with that
seemingly irreducibly modal aspect that informs our explicit and implicit way of
employing or referring to laws: for instance, the demand according to which laws
must cover possibilities, and not just actualities, and the demand according to which,
when we ask a law to explain facts, we search after what is in virtue of which facts
obtain. Moreover, a look at the actual scientific practice when analysing how laws
work does nothing but increase the dissatisfaction: one of the most perplexing points
of the above discussed features of a Humean stance on laws of nature is that of
implying a truly structureless world, an implication that seems hard to reconcile
with a scientific image of the natural world, even broadly construed.

These criticisms of theHumean stance, albeit not ultimate, look sufficiently plau-
sible to suggest an alternative, the so-called primitivist approach,1 under the assump-
tion that such approach is hospitable to the view of laws as governing items.2 Basi-
cally, primitivism about laws can come in two varieties: in its metaphysical dimen-
sion, laws belong to the fundamental inventory of theworld, whereas in its conceptual
dimension, laws are not to be reduced to more primitive notions: in the words of a
notable primitivist, “My analysis of laws is no analysis at all. Rather, I suggest we
accept laws as fundamental entities in our ontology. Or, speaking at the concep-
tual level, the notion of a law cannot be reduced to other more primitive notions.”
[6, p. 18]. The choice of laws as primitive may have at least two significant strong
points. First, the primitive status of laws allows one to have a more effective and
stimulating confrontation with the role of laws within specific scientific theories: the
above reference to actual scientific practice should be read in this sense. Second, the
primitive status of laws promises to plausibly accommodate interrelated notions—
causation, explanation, counterfactuals—that, together with lawhood, appear to form
a true conceptual network. In fact, laws as primitives can be reasonably seen as able
to translate causal relations into nomic ones, as grounding counterfactuals if simi-
larity of possible worlds is formulated in terms of compatibility with given laws and,

1Under the assumption according to which a descriptive view of laws is a reductionist view in
a serious sense, the primitivist approach is an anti-reductionist view which includes similar, but
mutually non-equivalent positions such as Carroll [12, 13], Lange [14, 15], and Maudlin [6]: in the
present paper we will focus on the Maudlin version.
2This clearly need not imply that primitivism is the only approach that complieswith the assumption.
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finally, they can preserve their role in explanation. Let us briefly focus on the two
last points.

The connection between laws and counterfactuals is obviously deep, due to the
issue of whether modality is intrinsic to the very notion of law or not. As we recalled
earlier, laws are intuitively supposed to account not only for the actual phenomena
but also for possible ones, and are supposed to account for the uniformity of the
natural world in terms of non-contingent, law-governed processes. In the Maudlin
version of primitivism, laws as primitives can handle this modal core of the lawhood
intuition through their capacity of generating (classes of) models. A given law gives
rise to possible worlds to the extent that it sets boundaries to the occurrence of
phenomena. All that according to precise prescriptions fixed by the law remains
within the boundaries is ‘possible’: ‘the possible worlds consistent with a set of laws
are described by the models of a theory that formulates those laws’ [6, p. 18]. If
setting the boundaries for the validity of a law is what allows for possibility in the
primitivist framework, necessity is obtained at a very low cost: since it is the very
compatibility with laws that generates a set of models, the laws themselves must hold
in all models of the set and therefore display a nomic necessity (in the usual, possible-
world language, [6, p. 21]). As to the connectionwith explanation, the primitive status
of laws allows us to select any account of explanation we like in which laws play
a sufficiently crucial role, without worrying whether the plausibility of the model
of explanation we selected is threatened or not by some more fundamental notion
in terms of which the notion of law is reduced: we have explanation of an event f
whenever we have a nomic subsumption of f under the relevant set of laws L, namely
whenever we may show that, given L, the event f is what we should expect [6, 34ff].

Since no wide-ranging philosophical view concerning such a deep issue as the
issue of laws on nature can go unchallenged, let us take into consideration some
possible objections to the primitivist account. A first point concerns the status of
laws in terms of their alleged ‘fundamentality’. At a given stage of development of
a scientific theory, we may have reasons to think that a given law is fundamental,
a circumstance that seems to go along well with the claim that laws are primitive
endowments of the natural world’s ontology. History of science, however, has taught
us that laws that were supposed to be fundamental turned out to be only special
cases of more general laws and still history of science, jointly with philosophy of
science, suggests that there are no reasons to think that there is a foreseeable end to
this process of ever-increasing generality. How are we to cope with this problem?
It hardly looks reasonable to assume that the whole network of laws is primitive
from the start: would not it be awkward to suppose that, for instance, Kepler’s laws
are as primitive as Newton’s laws, and these in turn as primitive as the Einstein’s
field equations of general relativity?3 Although clearly primitive and fundamental
are not equivalent concepts, one might think that the conventionality inherent in

3Here Kepler’s and Newton’s laws are just examples of what might happen to laws that at a certain
stage are taken to be fundamental and that, at a later stage, change this status. The charge that some
might raise—Kepler’s and Newton’s laws are not plausible candidates for lawhood anyway because
they are in a certain sense ‘false’—is irrelevant here: the focus here is on how we should assess the
level of fundamentality of certain laws with respect to others, not on their actual truth or falsity.
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selecting which laws are supposed to be fundamental and which derivative might be
at least disturbing for primitivism. On the other hand, in different areas of science
results have been obtained that prove in principle our inability to grasp some kind
of knowledge—from the undecidability theorems to the black hole information loss
theorems—so that the idea that we might be unable to access part or the totality of
the really fundamental laws need not contradict the possibly primitive ontological
status of some of these laws.

5 Laws as Grounding Items?

On the basis of the arguments defended in previous sections, the proposal I would like
to discuss is that a plausible way to implement the intuition that a law is something
that ‘governs’ the phenomena it allegedly covers is in terms of a grounding relation
holding between the laws and those phenomena. In this respect, I would like to
address two main points, that are both relevant on the background of the Humean
versus non-Humean confrontation about laws of nature: the first concerns modality,
whereas the second concerns the problem that the difference in ontological category
between the law and the law-governed phenomena might represent. As to the first,
since it is possible to defend a categorically neutral formulation of grounding, and
hence it is also possible to keep separate grounding and modal entailment [16]),
a reading of the nomic, governing import of the law in grounding terms need not
imply in itself any modal commitment. In any case, even if we opt for the thesis
that grounding implies some sort of necessaritarianism [17], the rather innocent
sense of necessity implicit in the Maudlin strand of primitivism on laws makes that
option more digestible. As to the second, the debate about ‘flat’ versus ‘ordered’
conceptions of structures as “target of metaphysical inquiry’ [16] might suggest a
useful application of an ‘ordered’ approach to the law-phenomena relation in terms
of grounding. Let me elaborate a bit on both.

As to the first point, it is well known that a major issue concerning laws of nature
is the status of modality. According to Humeans, as we said, a law is a coincise and
balanced summary of local facts whereas for non-Humeans a law is more than that.
For the latter camp, the more-than part is usually cashed out in modal terms, namely
the nomological relation between a law and the phenomena that are supposed to fall
under the law is supposed to be a kind of intrinsically modal relation, over and above
the ‘summary’ and some non-Humeans are even prepared to accept nomological
modality as itself primitive. Here, however, I would like to recall a serious objections
that has been raised to modality (necessity in particular) by Kit Fine. He argues that
necessity is unfit to support the metaphysical idea of essence on the basis of claims
like the following: While all essential truths about x are necessary truths about x, the
converse need not hold, namely not all necessary truths about x need be essential
about x. In this sense, Fine argues, modality is too ‘coarse-grained’ to do a good
work in characterizing a metaphysically serious form of dependence [18, 19].
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Now, can grounding do better than modality in characterize dependencies that we
might find metaphysically relevant, like the nomological ones? If the answer is yes,
this can be good news for a non-Humean view of laws. As stated above, the non-
Humean view expresses its dissatisfaction toward an anti-necessitarian view of laws
bydefending the idea that a law ismore than a coincise and balanced summary of local
facts: in doing this, however, it must solve the problem of somehow regimenting that
extra-relation between laws and facts, a problem that non-Humeans usually address
by assuming nomicity as a primitive modal kind of relation. But if we suppose that
grounding improves over modality in characterizing a metaphysical dependence,
a non-Humean might exploit such improvement in favour of her stance, since the
recourse to groundingmight help to bypass the ordinary anti-modal objections toward
a non-Humean view of laws: just like in Fine’s view a property may be essential to x
(i.e. it may ‘ground’ x in the sense of being constitutive of x) without having modal
connotations, similarly a law might ‘ground’ some phenomena without involving
any modal relation between law and phenomena themselves.

Let us see how this suggestion might work with respect to an instance of modal
primitivism on laws that, in other respects, seems useful [6, pp. 18–21]. Laws are
intuitively supposed to account not only for the actual phenomenabut also for possible
ones, and are supposed to account for the uniformity of the natural world in terms of
non-contingent, law-governed processes: laws as primitives can handle this modal
core of the lawhood intuition through their capacity of generating (classes of)models.
An additional advantage of the Maudlin version of primitivism seems to be that, if
we assume laws as primitives, the principle according to which we generate models
only in terms of their compatibility with laws requires – so to speak – a ‘minimum’
of modality: possibility is exactly law-compatibility, whereas necessity is obtained
simply from ranging over the worlds so generated. In a Finean perspective, however,
this ‘minimum’ is exactly what is perplexing: a given law L might be ‘necessary’ in
the above sense even if it might have no relevant connection with large classes of
phenomena in those worlds. In other words, the bare compatibility with L that in the
model-theoretical sense generates the possible-worlds structure is ‘insensitive’ to the
relation between the law L and the events in the worlds that belong to the structure.
It is here that the Finean criticism toward modality comes in, and suggests that
the assumption of a grounding relation between L and the phenomena supposedly
covered by it might justify the relevance of the law for the phenomena: L can be
plausibly said ‘to govern’ those phenomena, since the latter are grounded in the
former.

A last remark concerns the second point raised above, namely the difference in
ontological category between the law and the law-governed phenomena. In the debate
on grounding, this relation is usually assumed to hold within a selected category—
facts or propositions inmost cases (see e.g. [20]). Since inmy proposal the grounding
relation connects a law with phenomena, one may ask whether grounding can be
‘cross-categorical’, in fact, there seem to be no really compelling reason to prevent
in principle the possibility that there might be such cross-categorical grounding
relation (see e.g. [16]): on the contrary, in view of the above mentioned possibility of
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applying these suggestions to issues in foundations of physics, the cross-categoricity
appears to be a highly desirable property.
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On Closing the Circle

Peter J. Lewis

Abstract Ghirardi sought to “close the circle”—to find a place for human experi-
ence of measurement outcomes within quantum mechanics. I argue that Ghirardi’s
spontaneous collapse approach succeeds at this task, and in fact does so even without
the postulation of a particular account of “primitive ontology”, such as amass density
distribution or a discrete “flashes”. Nevertheless, I suggest that there is a remaining
ontological problem facing spontaneous collapse theories concerning the use of clas-
sical concepts like “particle” in quantum mechanical explanation at the micro-level.
Neither the mass density nor the flash ontology is any help with this problem.

1 Introduction

I remember the first time I came across Gian Carlo Ghirardi’s work. I was a graduate
student at U. C. Irvine, andmy advisor, Jeff Barrett, sent me to read the original GRW
paper [11]. When I was done, I thought to myself “Well, that’s it. The physicists have
solved the measurement problem, and there’s nothing left for us philosophers to do”.
Fortunately (for me), my initial thought was premature; there was plenty of work
left, for both physicists and philosophers, both refining the various spontaneous
collapse models, and clarifying the surrounding concepts. Indeed, Ghirardi himself
was deeply involved in both sides of this work.

One of the conceptual projects involves what Shimony [15] calls “closing the
circle”. Physics begins with human experience: we postulate physical theories to
explain what we observe. Physical theories, insofar as they are successful, tell us
what the world is like. But that world, of course, includes human beings and their
experiences. So, for consistency, we need to be able to locate human beings and
human experiences within the world-view provided by our physical theories.

Ghirardi recognized the importance of closing the circle in physics, and proposed
a particular strategy for doing so in the context of his spontaneous collapse approach
to quantum mechanics [9]. What I want to do in this paper is to locate Ghirardi’s
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proposal within a broader discussion of what it takes to close the circle. In particular,
I will argue that, while some proposals in the foundations of quantum mechanics fail
to adequately close the circle, Ghirardi’s proposal succeeds; however, it does so by
making more physical commitments than are strictly necessary. I advocate a strategy
for closing the circle very like Ghirardi’s but pared of excess physical structure.
Finally, I argue that the more pressing problem for spontaneous collapse theories
concerns explanation at the microscopic level, and that here Ghirardi’s proposal is
little help.

2 How not to Close the Circle

Closing the circle might seem like a trivial exercise. After all, if our physical theories
describe the behavior of matter at the smallest scales, and if human beings are just
complicated chunks of matter, then our physical theories automatically describe the
behavior of human beings, including their eyes and their brains. How, then could a
physical theory fail to find a place for human experience?

Closing the circle does indeed look trivial from a classical perspective, but
quantum mechanics challenges much that we thought we could take for granted.
The basic difficulty is just the measurement problem. Take a spin-1/2 particle, and
prepare it in a superposition of two z-spin eigenstates: 2−1/2(|↑〉z + |↓〉z). Now
measure the spin of the particle along the z-axis. In the spirit of closing the circle,
take the measuring device to be described by quantum mechanics, where |up〉m)

is an eigenstate in which the measuring device reads “spin-up”, and |down〉m)

is an eigenstate in which it reads “spin-down”. Quantum mechanics entails that
after applying the measuring device to the particle and allowing their states to
become correlated, the final state of the particle plus the measuring device is
2−1/2(|↑〉z|up〉m + |↓〉z|down〉m). It looks like there is nothing in this final state
that represents the (unique) outcome of this measurement. And since the measuring
device m could include a human observer, there is nothing in the final state that
represents the (unique) experience of the observer. So it looks like there is nowhere
to locate human experience within the quantum formalism, and closing the circle
becomes a problem.

Closing the circle is related to von Neumann’s psychophysical parallelism [16,
p. 419], and indeed discussions of closing the circle are often couched in terms of
postulating a psychophysical parallelism [14, p. 45], [9, p. 33]. But it important to
distinguish psychophysical parallelism from closing the circle, in particular because
von Neumann’s account of psychophysical parallelism fails to close the circle.

Von Neumann notes that there is at best a vague distinction between measured
systems and measuring devices, and hence that it is arbitrary where physical analysis
stops. When measuring temperature, for example, one can count the thermometer
as external to the system, or as part of the system and hence subject to physical
modelling. The same goes for human observers: one can treat the eye or the brain
as external to the physical system, or as part of the physical system. Given this
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arbitrariness, it shouldn’t matter to the predicted outcome of an experiment where
we place this “cut”. Von Neumann calls the principle that “the boundary between the
observed system and the observer can be displaced arbitrarily” the “principle of the
psycho-physical parallelism” [16, p. 421].

This is a perfectly good methodological principle, and von Neumann’s proof that
his “collapse on measurement” formulation of quantum mechanics satisfies it is an
important demonstration that it exhibits a particular kind of self-consistency. But it
isn’t the same as closing the circle. Note in particular his insistence that “we must
always divide the world into two parts, the one being the observed system, the other
being the observer” [16, p. 420]. The observed part is subject to physical modelling
by quantum mechanics; for the observer, physical modelling “is meaningless” [16,
p. 420]. This division crucial to his formulation: when the observed part does not
interact with the observing part, we should model the observed part using the linear
Schrödinger dynamics, but when the two portions interact, we should model the
observed part using the non-linear collapse dynamics. In other words, the expla-
nation for the collapse, and thereby for our experience of measurement outcomes,
necessarily lies outside the systemmodelled by quantummechanics. VonNeumann’s
approach blocks the possibility of closing the circle by design.

One might think that this barrier to closing the circle is inevitable. In introducing
the concept, Shimony notes that “the greatest obstacle to “closing the circle” is the
ancient one which haunted Descartes and Locke—the mind–body problem,” and
conjectures that quantum mechanics may be “hospitable to a dualism of mind and
body” [15, p. 37]. If the experiencing mind is non-physical, then of course it always
lies beyond physical analysis, however far that analysis penetrates the workings of
the brain. But positing dualism essentially just amounts to an admission that the
circle can’t be closed. And it is a peculiarly unmotivated admission: our increasing
knowledge of the brain strongly suggests that the varieties of human experience have
a physical origin. The possibility of a “hard problem” of consciousness is irrelevant
here: we know empirically that various experiential states are grounded in particular
brain states, even if there is a residual explanatory gap concerning the phenomenal
nature of those experiential states. The problem of “closing the circle”, then, is the
problem of finding a way to explain those brain states quantum mechanically. It is
here that von Neumann fails, since the quantum mechanical explanation of deter-
minate post-measurement brain states appeals to the deus ex machina of interaction
with an “observer”.

3 Closing the Circle with Quantum Jumps

So Shimony’s concern about the mind-body problem is a red herring. Setting this
concern aside, Shimony gives an indication of his preferred method for closing
the circle, citing the GRW approach as the “most promising to date” [15, p. 35].
By adding a stochastic “collapse” term to the Schrödinger dynamics, the GRW
approach can apparently explain measurement outcomes, including human brain
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states, without appeal to an extra-physical “observer”. The collapses ensure that for a
system consisting of a large number of well-correlated particles, the wave function is,
with high probability, well-localized around one point in configuration space. Since
measuring devices and brains consist of large numbers of well-correlated particles,
it looks like this is enough to close the circle.

However, there is a remaining gap in the circle, described here by Bell [5, p. 44]:

There is nothing in this theory but the wavefunction. It is in the wavefunction that we must
find an image of the physical world, and in particular of the arrangement of things in ordinary
three-dimensional space. But the wavefunction as a whole lives in a much bigger space, of
3N-dimensions. It makes no sense to ask for the amplitude or phase or whatever of the
wavefunction at a point in ordinary space. It has neither amplitude nor phase nor anything
else until a multitude of points in ordinary three-space are specified.

The GRW dynamics governs the evolution of the wave function in 3N-dimensional
space; on the face of it, it says nothing about a three-dimensional space inhabited
by measuring instruments and brains. Certainly it can’t be the wave function that is
well-localized in three-space—that would be a mathematical category mistake. But
if the GRW theory says nothing about the contents of three-space, obviously it can’t
close the circle.

Bell [5, p. 45] proposes a way to plug the gap:

However, the GRW jumps (which are part of the wavefunction, not something else) are well-
localized in ordinary space. Indeed, each is centred on a particular spacetime point (x, t) …
A piece of matter then is a galaxy of such events. As a schematic psychophysical parallelism
we can suppose that our personal experience is more or less directly of events in particular
pieces of matter, our brains, which events are in turn correlated with events in our bodies as
a whole, and they in turn with events in the outer world.

The idea is that the GRW theory does, after all, describe the contents of three-space:
it describes discrete, point-like events in three-space, with one such event corre-
sponding to the center-point of each GRW collapse. The GRW collapse dynamics
ensures that these point-like “flashes” will pick out a unique reading on the measure-
ment apparatus or a unique brain state for an observer. Note that Bell’s invocation
of “psycho-physical parallelism” isn’t a reference to von Neumann’s principle about
arbitrarily moving the observer-observed boundary. Bell simply means to point out
that experience covaries with a person’s brain state, so if the GRW dynamics can
ensure determinate brain states, it can ensure determinate experience, and thus close
the circle.

Ghirardi sees the same problem, but proposes a different solution. Rather than
point-like events, Ghirardi proposes that the GRW theory describes a mass density
distribution in three-dimensional space, defined in terms of the configuration-space
wave function �(t) by

M(r, t) = 〈�(t)|M(r)|�(t)〉,
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where M(r) is the mass density operator for location r in three-space [9, p. 16].
This proposal has the advantage over Bell’s that it is adaptable to continuous variants
of the GRW theory (e.g. [10]), in which there are no discrete collapse events. As
far as closing the circle goes, though, it proceeds very much like Bell’s version: the
GRWdynamics (discrete or continuous)makes sure that themass density distribution
picks out a unique reading of the measurement apparatus or a unique brain state of
the observer [9, p. 36].

4 Primitive Ontology

Hence we have two distinct proposals for closing the circle within the GRW model,
one “flashy” and one “massy”. These have been described as distinct primitive ontolo-
gies for the GRW theory [3, p. 359]. A primitive ontology plays a dual role: it is that
which the theory is about, and it is that which explains the properties of everyday
macroscopic objects [1, p. 60]. That is, the existence of a primitive ontology allows
for the possibility of “closing the circle”, as it is in terms of the primitive ontology
that the connection between the scientific image and the manifest image is spelled
out. Indeed, Allori [1, pp. 66–69] takes the problematic nature of quantummechanics
to stem in part from the fact that it was developedwithout a primitive ontology, either
because of the conviction that a realist understanding of the theory is impossible, or
because of the conviction that it describes the wave function, which because of its
high-dimensional nature is ill-suited to play the role of primitive ontology. Hence
Allori [1, pp. 69–70] concludes that we should supply quantum mechanics with a
primitive ontology after the fact—and in the case of the GRW theory, that means
either flashes or a mass density distribution.

I do not dispute the need for a theory to “close the circle”, and if primitive
ontology is ontology such that the circle can be closed, I do not dispute the need
for that either. But I have some qualms about the particular proposals on offer. My
initial worry is methodological: How do you find out what the primitive ontology
of a theory is? Allori [1, p. 63] is surely right that the primitive ontology of a
theory can’t simply be read off its mathematical formulation. Since the dynamical
law of quantum mechanics governs the evolution of the wave function over time,
much as Newton’s laws govern particle positions, one might think that the ontology
of quantum mechanics directly corresponds to the wave function—that quantum
mechanics is about a wave-like entity inhabiting a high-dimensional configuration
space. Allori points out that this is not howwe identify primitive ontology. In the case
of Newtonian mechanics, an ontology of point masses is presupposed as the starting
point for physical theory construction, not read off the theory after the fact. Indeed,
given that many disparate physical systems can be modelled using the same mathe-
matics, reading the ontology off the mathematics seems doomed to failure. Think of
the variety of applications of the mathematics of the simple harmonic oscillator!

So if we can’t read the ontology off the theory, how should we proceed? Allori
[1, p. 69] suggests that primitive ontologies are “proposals” about how to understand
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quantum mechanics. That is, we use our ingenuity to come up with an ontology that
quantum mechanics could be about. This seems very much in the spirit of Ghirardi’s
proposal of a mass density ontology, and perhaps also in the spirit of Bell’s proposal
of a flash ontology—although noteBell’s [5, p. 45] insistence that the flashes are “part
of thewavefunction, not something else”. The basic idea is that the primitive ontology
of quantum mechanics is a separate hypothesis, a hypothesis that is supported to the
extent that it can explain the properties of macroscopic objects, including measuring
devices and human brains.

Certainly one can postulate a primitive ontology for quantum mechanics. But I
see danger in this approach. The most obvious danger is underdetermination: there
are too many competing proposals, and no way to decide between them. In addition
to a mass density ontology and a flash ontology, one might propose that the quantum
state describes properties of spacetime regions [17], or a collective property of a set
of particles [14]. There are doubtlessmany other possibilities. How canwe determine
which is correct? Since each ontology is constructed to be fully consistent with the
predictions of quantum mechanics, there is no possibility of an empirical answer.
Perhaps extra-empirical virtues like explanatory power can come to the rescue here,
but the historical track-record of this approach is debatable.

Furthermore, the explanatory power of the mass density and flash ontologies
can be called into question. Consider, for example, a solid object whose quantum
wave function is well localized in a particular region of configuration space, with
“tails” extending elsewhere. The corresponding mass density distribution is large in
the relevant region of 3-space, and small elsewhere. Now consider a second object
passing through the region where the mass density of the first is small. How should
we expect it to behave? The mass density picture suggests that the second object
moves through a “sea” of rarefied matter, resulting in a small but constant force. But
spontaneous collapse quantummechanics tells us that there is no such force; instead,
the small “tails” on the wave function tell us the probability of a collapse in which
the first object moves discontinuously, say into the path of the second object. Rather
than a small constant force, there is zero force, with a small probability of a large
force.

The problem, then, is that the mass density ontology suggests a continuous effect
where the reality is discontinuous. The flash ontology suffers from the opposite
problem: it suggests discontinuity even in continuous cases. Consider, for example,
a small object consisting of around 1019 particles. If each particle suffers a GRW
collapse every 1016 s, there is a flash along the trajectory of the object roughly once
every millisecond. Between these times, there is no ontology corresponding to the
object whatsoever. Nevertheless, despite the discontinuity of the primitive ontology,
the gravitational and electromagnetic forces exerted by the object on surrounding
objects will be continuous in time.

One might object to both these examples that they ignore the full explanatory
apparatus of quantum mechanics: quantum mechanics can explain both the discon-
tinuous behavior in the first case and the continuous behavior in the second. That
is correct, but the point is that the explanation in each case is given by the wave
function and the Born rule, not the primitive ontology. The wave function may be
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explanatorily suspect because it inhabits a high-dimensional space [1, p. 59], but if
the idea is that the primitive ontology can “provide an explanatory scheme derived
along the lines of the classical one” [1, p. 70], neither the mass density ontology nor
the flash ontology clearly meets the classical explanatory standard.

5 Wave Function as Structure

I have argued that simply positing a primitive ontology for quantum mechanics is a
risky business, both because of the potential of radical ontological underdetermina-
tion, and because the proposed ontologies may fail to do the requisite explanatory
work. How should we identify the appropriate primitive ontology, then? Allori [1,
p. 63] suggests a historical approach:

The mathematical formalism of a theory has a history that constrains the interpretation of
its formalism: the theory started with a metaphysical position and its appropriate mathemat-
ical representation, and it continued with the implementation of the suitable mathematical
apparatus necessary to determine how the primitive ontology evolves.

So, for example, Newton begins with an ontological posit—that there are massive
objects moving in a three-dimensional space—and then constructs the relevant math-
ematical tools to represent the ontology and its temporal evolution. Rather than trying
to divine the appropriate ontology by gazing at the mathematics of the final theory,
we should look to the interpretation intended by the developers of that theory.

Unfortunately, though, as Allori [1, p. 67] is keenly aware, the development of
quantum mechanics doesn’t seem to fit this model. Although Schrödinger began
with a particular interpretation of the wave function in mind—a three-dimensional
field—he abandoned this interpretation when he realized that the wave function
for multi-particle systems is defined on configuration space, not 3-space. With the
blessing of Bohr and Heisenberg, quantum mechanics forged ahead without any
conception of the ontology described by the mathematics.

Does this mean that we are forced to posit a primitive ontology for quantum
mechanics after the fact, to remedy the oversight of its developers? Perhaps not: I
think we can make some progress by considering other historical precedents. While
quantum mechanics may be unique in being a theory developed in the absence of a
primitive ontology, there are a number of historical examples of theories developed
on the basis of amistaken primitive ontology. Consider, for example, Fresnel’s wave
theory of light. Fresnel begins with an ontological posit—an all-pervasive elastic
solid—and constructs a mathematical theory of transverse waves in this medium.
We think Fresnel’s mathematical theory was essentially correct, even though we
now think there is no such elastic solid.

What should we make of cases like this? Worrall [18] takes them as evidence
for structural realism: scientific theories tell us about the structure of the world, but
not in general about what instantiates that structure. This view has a good deal of
plausibility. What do we know about the ontological nature of mass or charge or
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spin, over and above the mathematical structures of the physical theories containing
those terms? “Nothing” seems like an appropriate answer.

Suppose, then, that we take a structural approach to the wave function. What
would that mean? It wouldmean endorsing the claim that the wave function correctly
describes the structure of physical systems in certain contexts, but without endorsing
any particular account of the kind of thing that instantiates this structure. This is not
the same as wave function realism—the position that the wave function describes a
fundamental entity in a high-dimensional space. Rather, the wave function describes
the structure instantiated by whatever fundamental entities there may be in ordinary
three-dimensional space: particles, fields, flashes, mass density, or something else
entirely. A structure is not in itself an object, but rather a way that objects relate to
each other.

Of course, “structure” is a rather vague term, and it is reasonable to ask for more
details about the sense of the term “structure” as it is used here. I wish I had more to
say, but for now I only have a negative characterization to give. One kind of structure
the world exhibits is nomological structure: events exhibit regularities, and those
regularities are (or are produced by) laws. Dürr et al. [8] suggest that wave function
structure is nomological structure. But the main motivation for taking wave function
structure as nomological is that there is a sense in which it can be taken to govern the
dynamical evolution of the primitive ontology. The wave function fixes the motion
of the particles in Bohm’s theory, the evolution of the mass density distribution in
mass-density GRW, and the probability distribution of flashes in flashy GRW. If
one withholds from endorsing any particular primitive ontology, then there is no
particular reason to think that the relationship between the wave function and the
ontology is best characterized as nomological.

Furthermore, even ifwe endorse oneof the existingproposals concerningprimitive
ontology, there are well-known reasons to resist thinking of the wave function as
nomological: the form of the wave function depends on the nature of the system
under consideration, and it changes over time [6, p. 533]. We don’t usually conceive
of laws this way. Of course, we can always extend our conception of law to include
contingent, time-evolving laws [7, p. 3157], but such a move threatens to elide an
important distinction. Suppose we apply quantum mechanics to the motion of a
set of charged particles. These particles exert forces on each other according to an
inverse square law, and this law is reflected in the Hamiltonian term appearing in
the Schrödinger equation. The inverse square law is neither contingent nor time-
evolving. One could always propose that there are two basic kinds of law, but it
does less damage to standard physical thought to conceive of the wave function as a
summary of the relations between the three-dimensional entities involved (whatever
they may be), rather than a law governing those entities.

6 Closing the Circle—and Opening Another

My proposal, then, is that we should think of the wave function as a structure, but
withhold commitment to any particular account of the ontology that instantiates this
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structure. And my claim is that this is enough to close the circle, at least for a sponta-
neous collapse theory. To appreciate what it takes to close the circle, consider again
the case of Fresnel’s wave theory of light. Poisson famously derived from this theory
the existence of a bright spot in the center of a circular shadow. Mathematically
speaking, what he actually derived was a region of high-amplitude wave structure
surrounded by a region of low-amplitude wave structure. This was enough to under-
write the existence of the bright spot, even without any hypothesis concerning the
nature of the ontology that instantiates the wave structure. That is, Fresnel’s wave
theory closes the circle: it enables us to locate observable experimental outcomes
within the framework of the theory.

We can do the same with a spontaneous collapse theory. Consider a measurement
of the spin of a spin-1/2 particle in which it is deflected by a magnetic field and
then to one of a pair of suitably-positioned detectors, each of which responds to
detection by raising a flag. If the particle is initially in a symmetric superposition of
spins along the measurement direction, then the wave function of the particle plus
detection apparatus evolves to a symmetric superposition in configuration space, but
one term in this superposition is rapidly made many orders of magnitude larger than
the other by the spontaneous collapse mechanism. That is, the vast majority of the
wave function amplitude at the end of the measurement is concentrated around a
particular small region of configuration space. Even in the absence of a preferred
account of the underlying ontology, we know how to interpret this structure: it is the
structure of things in three-space, whatever their underlying ontology may turn out
to be. Ordinary objects like flags are made out of this three-dimensional ontology.
That is, the high-amplitude region of configuration space tells us the locations of the
two flags in three-space: it is either a structure in which the “up” flag is raised or a
structure in which the “down” flag is raised.

Hence there is no need to endorse any particular account of primitive ontology
so that a spontaneous collapse theory can close the circle. For macroscopic systems,
spontaneous collapse picks out a particular small region of configuration space, and
that region specifies the locations of ordinary objects in 3-space. Thus we can find
the unique observed outcome of a measurement within the theory. More directly,
since neuroscience suggests that our experience supervenes on the electrochemical
configuration of our brains, the specification of a small region of configuration space
also specifies human experiences.

Canwe remain agnostic about primitive ontology then? I amnot sure. I suspect that
spontaneous collapse theories do face an explanatory problem, but that it concerns the
micro-world rather than human experience. We have no serious difficulty locating
measurement results and our experience of them within the structural framework
of spontaneous collapse theories. The things that are more difficult to locate are
the explanatory entities of classical physics—particles and fields. As Healey [12]
has forcefully argued, quantum explanation is parasitic on classical concepts. We
measure the spin of a spin-1/2 particle by passing it through a magnetic field. The
Hamiltonian term in the Schrödinger equation contains a term corresponding to the
interaction of this point-particle with the field. But how do we find these particles
and fields in the wave function structure?
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One might think that it is here that the proposals for primitive ontology might do
some work. The flash ontology, though, is clearly of no use: microscopic systems
produce no flashes over reasonable time-scales, and hence correspond to no ontology
whatsoever according to the flash proposal. The mass density ontology is more
promising, the obvious approach being to treat a particle as a localized region of
high mass density. Ghirardi cautions against such an interpretation, though. Essen-
tially, the problem is the microscopic analog of the explanatory worry for the mass
density ontology explained in Sect. 4. When the mass density for a particle is spread
out over a large region, a second particle passing through the region won’t experience
a continuous, small force, as the spread-out mass density would lead you to expect,
but rather zero force, with a small probability of a large force (“collision”). Hence
Ghirardi et al. [9, p. 18] construct a criterion for deciding when the mass density
distribution is “objective”, one that typically applies to macroscopic objects but not
to single particles.

One could reject this latter move, and hold that microscopic systems have an
associated mass density that is just as objective as that of macroscopic systems [13].
On this account, a single “particle” is really a localized region of high mass density,
albeit one that can split in two or spread out. One might quite reasonably think that
this is just how quantum “particles” behave: sometimes they spread out, and act
more like waves. Concerning Ghirardi’s worry about the behavior of regions of low
mass density,Monton responds that the anomalous behavior is explained by the wave
function alone, not the mass density. Monton is happy to concede that “mass density
is epiphenomenal” [13, p. 419]. But while this may be acceptable for Monton’s
purposes, clearly mass density is not functioning as primitive ontology here.

So neither the mass density ontology nor the flash ontology adequately explains
the role of particles in quantum mechanics. One possible move at this point would
be to insist that the primitive ontology is just particles in three-dimensional space.
The primitive ontology approach is flexible: in addition to the obvious particle-based
quantum theory (Bohm’s theory), versions of theGRW theory can be constructed that
have a primitive ontology of particles [2, 4]. The challenges facing this approach are
well known—most notably that it is hard to square the law governing the evolution
of the particles with relativity. But this looks to me like the direction to take. That is, I
submit that the real ontological puzzle of the quantum world doesn’t concern human
experience, but rather concerns how our physical theories—quantum, relativistic,
and classical—hang together.

7 Conclusion

Ghirardi’s physical and philosophical insight ran deep. He realized the need for an
account of the quantum world in which it is possible to locate our experience of
measurement outcomes, and unlike von Neumann, he succeeded at producing one.
In fact, matters are simpler than he realized: there is no need for a mass density
distribution, or any other particular account of primitive ontology, in order to close
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the circle, since the wave function, understood as a structure of three-dimensional
things, can do the job by itself.

However, this doesn’t mean that there is no further work to be done. Quantum
mechanics does not only have to be hospitable to human experience; it also needs
to be hospitable to classical explanation, since quantum explanation is parasitic on
classical. Ghirardi’s mass density ontology is of little help here. Unless, with Healey
[12, p. 11], we give up thinking of quantum mechanics as descriptive at all, we need
to look elsewhere for an understanding of the ontology of the quantum world.
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On the Complete Positivity of the
Ghirardi-Rimini-Weber Model

F. Benatti and F. Gebbia

Abstract We study the complete positivity of the standard, Markovian Ghirardi-
Rimini-Weber model, propose an explicitly time-dependent generalization and show
that in some cases one can have complete positivity even in presence of negative-rates.

1 Introduction

From a mathematical physics point of view, the master equation associated to the
so-called Ghirardi-Rimini-Weber (GRW) [1] model falls within the family of master
equations that generate semigroups of completely positive and trace-preservingmaps
on the state space of density matrices of open quantum systems. These master equa-
tions are characterised by generators of Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) form [2–5] . The main feature of the GRW model is that the noise con-
tribution to its generator implements Gaussian spatial localizations. Far from being
a simplifying mathematical nicety, the property of complete positivity, ensured by
GKSL generators, is necessary for the full physical consistency of any open quantum
dynamics. Indeed, it is imposed by the existence of entangled states describing phys-
ically plausible contexts where the open quantum system comes together with an
arbitrary ancillary system [6, 7]. There, the request that the open system dynamics,
let it be denoted by�t , preserves the positivity of all time-evolving open system states
(density matrices) ρ is not enough. Indeed, dynamical maps of the form �t ⊗ Idn
must also preserve the positivity of all entangled states of the open system statisti-
cally coupled to any ancillary n-level system, the latter being unaffected by the trivial
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dynamics Idn [4, 6]. This request amounts to asking that, for all n ≥ 1,�t ⊗ Idn map
any positive operator-valued matrix of the form

[
X†
i X j

]n
i, j=1

=
n∑

i, j=1

X†
i X j ⊗ |i〉〈 j | (1)

into a positive operator-valued matrix

[
�t

[
X†
i X j

]]n
i, j=1

=
n∑

i, j=1

�t

[
X†
i X j

]
⊗ |i〉〈 j | , (2)

where Xi are any choice of n operators acting on the Hilbert space H of the open
quantum system and {|i〉}ni=1 is a suitably chosen orthonormal basis in the n-level
ancilla Hilbert space C

n [8]. By Kraus-Stinespring theorem, this property is fulfilled
if and only the map �t can be represented as

�t [X ] =
∑
�∈L

L�(t) X L†
�(t) , (3)

with operators L�(t) onH such that
∑

� L†
�(t) L�(t) converges in a suitably chosen

operator topology. When the master equation satisfied by the open system states is

∂tρt = L[ρt ] , (4)

with time-independent generator L, then the generated dynamical maps, formally
�t = exp(tL), compose as a forward-in-timeMarkovian semigroup. If the generator
is norm-bounded when acting on the algebra of bounded operators on H, then the
GKSL theorem states that the complete positivity of �t is ensured if and only if the
generator has the GKSL form [2, 3, 8]

L[ρt ] = − i

�

[
Ĥ , ρt

]
+

∑
θ∈�

(
Kθ ρt K

†
θ − 1

2

{
K †

θ Kθ , ρt

})
, (5)

for suitably chosen Kraus Kθ on H.
Interestingly, for time-dependent generatorsLt , the theory of non-Markovian open

dynamics [10–13] has taught that one may get completely positive solutions of

∂tρt = Lt [ρt ] (6)

even when the generator, besides the “positive” dissipative, time-dependent contri-
bution

+
∑
θ∈�

(
Kθ (t) ρt K

†
θ (t) − 1

2

{
K †

θ (t) Kθ (t) , ρt

})
(7)
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also contains a “negative” contribution of the form

−
∑
ξ∈	

(
K̃ξ (t) ρt K̃

†
ξ (t) − 1

2

{
K̃ †

ξ (t) K̃ξ (t) , ρt

})
. (8)

Unfortunately no general constraints on the time-dependent Kraus operators Kθ (t)
in the “positive” dissipative contribution and K̃ξ (t) in the “negative” one are known
that ensure the complete positivity of �t . At present, only sufficient conditions are
available that stem from concrete examples.

In the following, we first generalize the GRW model inserting a particular time-
dependence in its dissipative term that introduces “negative” contributions and explic-
itly solve it in the case of a particle in one-dimension characterized by a time-
independent quadratic Hamiltonian. Then, we discuss the complete positivity of the
solutions by addressing the standard, strictly Markovian, GRW model case and a
time-dependent version with particularly chosen “negative” contributions.

2 GRW-Model

The so-called GRW model for one quantum particle in one spatial dimension
described by position and momentum operators q̂ , p̂ with [q̂ , p̂] = i�, corresponds
to the master equation

∂tρt = − i

�

[
Ĥ , ρt

]
+ λ

√
α

π

∫ +∞

−∞
dx e− α

2 (q̂−x)
2

ρt e
− α

2 (q̂−x)
2 − λρt . (9)

The generator on the right hand side consists of the usual commutator of the open
quantum system density matrix ρt with the Hamiltonian Ĥ plus a noise term

N (ρt ) ≡ λ

√
α

π

∫ +∞

−∞
dx e− α

2 (q̂−x)
2

ρt e
− α

2 (q̂−x)
2

, (10)

and a damping term −λρt which ensures the preservation of the overall probability:
∂t tr(ρt ) = 0. In the master equation there appear two phenomenological parameters:
α−1/2 ≥ 0, a typical localisation length and λ ≥ 0, the frequency of occurrence of
the localisation processes N [ρt ]; indeed, the spatial matrix elements

〈q1|N (ρt )|q2〉 = λ e− α
4 (q1−q2)

2 〈q1|ρt |q2〉 , (11)

where q̂|q1,2〉 = q1,2|q1,2〉, are strongly suppressed when |q1 − q2| ≥ 1/
√

α.
Notice that the above expression is a continuous form of the GKSL equations (5)

where the index set � and the running index θ ∈ � have become R and x ∈ R while
the sum has turned into an integral with Kθ = e−α(q̂−x)2/2.
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Before seeking explicitly the dynamical maps �t solutions to (9), let us observe
that, by Fourier transforming,

e− α
4 (q1−q2)

2 = 1√
π

∫ +∞

−∞
du ei u

√
α(q1−q2) e−u2 ,

one rewrites the noise term as

N (ρt ) = λ√
π

∫ +∞

−∞
du e−u2 ei

√
α u q̂ρt e

− i
√

α u q̂ . (12)

The spatial localization can then be interpreted as the effect ofmomentum translations
by a normally distributed random momentum �

√
α u. Such an expression of N [ρt ]

suggests a possible generalization of the GRW model that may account for non-

Markovian, memory effects. Indeed, by substituting λ
1√
π
e−u2 with a real function

λt (u) explicitly depending on both time t and u such that λt := ∫ +∞
−∞ du λt (u) exists,

the GRW master equation becomes

∂tρt = − i

�

[
Ĥ , ρt

]
+

∫ +∞

−∞
du λt (u) ei

√
α u q̂ ρt e

−i
√

α u q̂ − λtρt . (13)

In order to preserve hermiticity, one has to impose the condition

λt (u) = λt (−u) ∀ t ≥ 0 . (14)

In order to keep the analytical difficulties to a minimum, we shall also ask λt (u) to
possess a well-defined Fourier transform

λ̃t (v) :=
∫ +∞

−∞
du ei u v λt (u) , (15)

which is then real for all t ≥ 0. Of course, one recovers the standard Markovian
GRW model (9) by eliminating the explicit time-dependence and setting

λt (u) = λ√
π
e−u2 . (16)

In the generalized GRW model, λt (u) need not in principle be a positive definite
function of t and u; however, one has to check that the maps �t solutions to (13)
are positive and also, as briefly sketched in the Introduction, completely positive.
Already the first request limits the choice of possible non-positive frequency-like
functions λt (u) as indicated by the following finite-dimensional example.

Example 1 (Non-Markovian Interlude) Consider the one-qubit, purely dissipative
master equation
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∂tρt = λ(t) (σz ρt σz − ρt ) ρt = 1

2

(
Î + r t · σ̂

)
(17)

where λ(t) is a smooth function of time and r t is the Block vector representing the
qubit density matrix ρt by a point within the unit sphere inR

3, while σ = (σ1, σ2, σ3)

is the vector of Pauli matrices. The time dependence of r t follows from the equations

ṙ1,2(t) = − 2 λ(t) r1,2(t) , ṙ3(t) = 0 , (18)

by insertion of the Block form of ρt into the master equation. They are readily solved
by

r1,2(t) = r1,2 e
− 2 L(t) , r3(t) = r3 , L(t) :=

∫ t

0
ds λ(s) , (19)

so that

ρ �→ ρt = �t [ρ] = 1

2

(
Î + e−2L(t)(r1 σ̂1 + r2 σ̂2) + r3 σ̂3

)
. (20)

Since the Block vector must remain of norm ≤ 1, one must impose L(t) ≥ 0 for all
t ≥ 0, whereas the function λ(t)may also be negative. By inspecting the eigenvalues
of the Choi-Jamiolkowski matrix [14]

Mt := �t ⊗ Id[Psym] = 1

2

⎛
⎜⎜⎝

1 0 0 e−2L(t)

0 0 0 0
0 0 0 0

e−2L(t) 0 0 1

⎞
⎟⎟⎠ , (21)

where

Psym = 1

2

(
Î ⊗ Î + σ̂1 ⊗ σ̂1 − σ̂2 ⊗ σ̂2 + σ̂3 ⊗ σ̂3

)
,

one sees that Mt is positive semi-definite and thus �t completely positive. In the
standard semigroup setting of the GKSL theorem, λ(t) = λ ≥ 0 is necessary and
sufficient for �t being completely positive, in the non-Markovian setting, λ(t) can
be negative and yet �t may be completely positive.

In the example above, the positive rates λ(t) are interpreted as the (time-
dependent) frequencies at which the system loses coherence because of the presence
of the environment. Such loss of coherence corresponds to information about the
open system which is lost into the environment; therefore, negative λ(t) are asso-
ciated to a gain in coherence which is due to information back-flowing from the
environment into the open system [15–17]. A similar interpretation is applicable to
the “positive” and “negative” contributions to the generators in (7), respectively (8).
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3 Explicit Solution to the Generalized GRW Model

In order to solve explicitly the generalized GRWmodel (13), we restrict to quadratic
Hamiltonians,

Ĥ = A p̂2 + B p̂q̂ + B∗ q̂ p̂ + Cq̂2 ; A,C ∈ R , B ∈ C . (22)

They generate unitary Heisenberg time-evolutions Ût = e− i Ĥ t/� such that

{
q̂t = Û †

t q̂ Ût = at q̂ + bt p̂

p̂t = Û †
t p̂ Ût = ct q̂ + dt p̂

with initial conditions

{
a0 = 1, b0 = 0

c0 = 0, d0 = 1
(23)

and atdt − btct = 1.We remove the Hamiltonian contribution to the GRW generator
by defining

ρ̃t = Û †
t ρt Ût , (24)

whence the GRW equation (13) becomes:

∂t ρ̃t = −λt ρ̃t +
∫ +∞
−∞

du λt (u) Ŵ (�
√

α u bt , − �
√

α u at ) ρ̃t Ŵ
†(�

√
α u bt , − �

√
α u at ) ,

(25)
where we have introduced the Weyl operators

Ŵ (x, y) = e
i
� (x p̂−yq̂) , x , y ∈ R , (26)

and used that the quadratic Hamiltonian is such that

Û †
t Ŵ (x, y) Ût = Ŵ (xdt − ybt , yat − xct ) , (27)

namely, such that the unitary dynamics maps Weyl operators into Weyl operators.

3.1 Solution in the Heisenberg Picture

Under the generalized GRW model (13), a generic initial Weyl operator Ŵ (x, y)
evolves in time into W̃t (x, y), in general not a Weyl operator, by means of the dual
version of (25) which is obtained from the duality relation

tr
(
ρ̃t Ŵ (x, y)

)
= tr

(
ρ W̃t (x, y)

)
, (28)

Notice that (24) gives ρ̃t=0 = ρ and that the dynamics Ŵ (x, y) �→ Ŵt (x, y) of the
Weyl operators under the dual of the master equation (13) follows from
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Ŵt (x, y) = Û †
t W̃t (x, y) Ût , (29)

where W̃t (x, y) is solution to the master equation

∂t W̃t (x, y) = −λt W̃t (x, y) +
∫ +∞

−∞
du λt (u) Ŵ (− �

√
α u bt , �

√
α u at ) W̃t (x, y) Ŵ

†(− �
√

α u bt , �
√

α u at ) .

(30)
In the Appendix we show that the solution W̃t (x, y) is given by

W̃t (x, y) = exp
(

− κt +
∫ t

0
ds λ̃s(bs y + as x)

)
Ŵ (x, y) where (31)

κt =
∫ t

0
ds λs =

∫ t

0
ds

∫ +∞

−∞
du λs (u) , λ̃s (bs y + as x) :=

∫ +∞

−∞
du λs (u) ei

√
α u (bs y+as x) , (32)

or, equivalently,

W̃t (x, y) =
∫

R2

dx dy

(2π�)2
G̃t (x, y) Ŵ

†(x, y) Ŵ (x, y) Ŵ (x, y) where (33)

G̃t (x, y) :=
∫

R2

du dv

(2π�)2
e

i
�

(yu−xv) Gt (u, v) . (34)

It thus follows from (29) that the full GRW dynamics of Weyl operators reads

Ŵ (x, y) �−→ Ŵt (x, y) = exp
(

− κt +
∫ t

0
ds λ̃S(bs y + asx)

)
Û †

t Ŵ (x, y) Ût .

(35)
Together with (27), the expression (35) shows that Weyl operators are transformed
into Weyl operators multiplied by the exponential function

Gt (x, y) := exp
(

− κt +
∫ t

0
ds λ̃s(bs y + asx)

)
. (36)

Notice that, given the Heisenberg dynamics ofWeyl operators, the Schrödinger time-
evolution of density matrices solution to (9) is given, via (28), by

ρt =
∫

R2

dx dy

(2π�)2
G̃t (x, y) Ŵ (x, y) Ût ρ Û †

t Ŵ
†(x, y) . (37)

Since the unitary maps Ŵ (x, y) �→ Û †
t Ŵ (x, y) Ût are completely positive and

any composition of completely positive maps is completely positive, from now on
we focus the attention on the maps

�t : Ŵ (x, y) �→ �t [Ŵ (x, y)] := W̃t (x, y) = Gt (x, y) Ŵ (x, y) . (38)
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4 Complete Positivity of the Generalized GRWModel

As much as (33), expression (37) is a continuous version of the Kraus-Stinespring
decomposition of completely positive maps as in (3) only if the function G̃t (x, y)
is non-negative almost everywhere so that one can absorb

√
G̃t (x, y) into the Weyl

operators and thus get a “positive” continuous diagonal expression similar to (7).
Furthermore, Gt (x, y) goes into e−κt when x, y → ∞; therefore, its Fourier trans-
form G̃t (x, y) does not exist as a function, but has a meaning as a distribution. It
is then the integral of G̃t (x, y) over suitable positive test functions that must return
non negative values.

Before explicitly checking whether �t is completely positive or not, one first
ascertains that �t is unital as it indeed should be: namely, �t [Î] = Î. Also, like in
the qubit case of Example 1, the function κt in (32) must satisfy κt ≥ 0 for all t ≥ 0.
Indeed, in order to be completely positive, themaps�t must beSchwartz-positive [8];
namely, for all X̂ in the Weyl algebra, it must hold that

�t

[
X̂† X̂

]
≥ �t

[
X̂†

]
�

[
X̂
]

. (39)

With X̂ = Ŵ (x, y), from (38) one gets

�t

[
Ŵ †(x, y) Ŵ (x, y)

]
= �t

[
Î

]
= Î ≥ �t

[
Ŵ †(x, y)

]
�t

[
Ŵ (x, y)

]
= G2

t (x, y) Î .

(40)
Hence Gt (x, y) must satisfy Gt (x, y) ≤ 1 whence

κt ≥
∫ t

0
ds λ̃s

(
asx + bs y

)
∀x, y ∈ R . (41)

If κt is allowed to become negative, then, because of the Riemann-Lebesgue
lemma [18] (λt(u) has indeed been assumed to be square-integrable),
limx→±∞ λ̃t (x) = 0, whence the inequality above can be violated for suitably large
x or y or both.

According to Eq. (2) in the Introduction and using the fact that any operator on
H can be written as a linear combination of Weyl operators, complete positivity can
be reduced to asking that for all n ≥ 1 and all choices of (xi , yi ) ∈ R

2,

�t ⊗ Idn [Wn] with Wn =
[
Ŵ †(xi , yi )Ŵ (x j , y j )

]n
i, j=1

(42)

be a positive matrix. Notice that the entries of Wn are elements of the Weyl algebra
and act on vectors |�〉 ∈ H ⊗ C

n with n components |ψi 〉 ∈ H, the Hilbert space of
square integrable functions on R. Explicitly, the entries of �t ⊗ Idn [Wn] have the
form
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�t

[
Ŵ †(xi , yi )Ŵ (x j , y j )

]
= e

i
2�

(xi y j−x j yi ) �t

[
Ŵ (x j − xi , y j − yi )

]

= Gt (x j − xi , y j − yi ) Ŵ
†(xi , yi )Ŵ (x j , y j ) . (43)

Taking the expectation of �t ⊗ Idn [Wn] with respect to any |�〉 ∈ H ⊗ C
n , com-

plete positivity entails

∑
i, j

Gt (x j − xi , y j − yi ) 〈ψi |Ŵ †(xi , yi )Ŵ (x j , y j )|ψ j 〉 ≥ 0 (44)

for any number and choice of |ψ j 〉 ∈ H and (x j , y j ) ∈ R
2. Inserting the explicit

expression of Gt (x, y) into (44), we have thus to check whether

�ψ(t) :=
∑
i, j

exp

(∫ t

0
ds λ̃s

(
as(x j − xi ) + bs(y j − yi )

))
〈ψi |Ŵ †(xi , yi )Ŵ (x j , y j )|ψ j 〉 ≥ 0 .

(45)
By means of the exponential series and by making explicit the Fourier transforms

λ̃s

(
as(x j − xi ) + bs(y j − yi )

)
, one rewrites

�ψ(t) =
∞∑
k=0

1

k!
k∏

�=1

∫ t

0
ds�

∫

R

du� λs� (u�) H(xn , yn , sk ,uk , �n) (46)

H(xn , yn , sk ,uk , �n) :=
∥∥∥∥∥∥
∑
j

exp

⎛
⎝i

√
α

⎛
⎝y j

k∑
p=1

u pbsp + x j

k∑
p=1

u pasp

⎞
⎠
⎞
⎠ Ŵ (x j , y j )|ψ j

∥∥∥∥∥∥

2

≥ 0 , (47)

where xn := (x1, x2, . . . , xn) and analogously for yn , sk := (s1, s2, . . . , sk) and anal-
ogously for uk , while �n stands for the vector |�〉 ∈ H ⊗ C

n .
Because of the integration of the multiple products of the “non-positive” rate

functions λs� (u�), controlling the sign of the series in (46) is an extremely difficult
task: in the following we consider a few cases that, besides allowing for definite
answers, permit to shed light on some salient features of the problem.

4.1 Standard GRW Model for a Free Particle

We restrict to the free Hamiltonian Ĥ = p̂2

2m
; then, in (23), at = dt = 1, bt = t

m
,

ct = 0 and

W̃t (x, y) = Gt (x, y) Ŵ (x, y) , Gt (x, y) = exp
(

− κt +
∫ t

0
ds λ̃s

(
x + y

m
s
) )

.

(48)
First, we focus upon the standard GRWmodel by choosing λt (u) as in (16), whence
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Gt (x, y) = exp

(
−λt + λ

∫ t

0
ds e− α

4 (x+ y
m s)

2
)

. (49)

It follows that Schwartz positivity (40) is fulfilled; indeed, κt = λ t ≥ 0 for all t ≥ 0
and

t −
∫ t

0
ds e− α

4 (x+ y
m s)

2 ≥ 0 ∀x, y ∈ R . (50)

On the other hand,

�ψ(t) =
∞∑
k=0

λk

k!

(
k∏

�=1

∫

R

du�

e−u2�√
π

) ∫ t

0
ds1 · · ·

∫ t

0
dsk H(xn, yn, sk,uk, �n) ,

(51)
is positive for all |ψi 〉, |ψ j 〉 ∈ H and (xi , yi ), (x j , y j ) ∈ R

2 since H(xn, yn, sk,
uk, �n) ≥ 0, whence the GRW dynamics of a free particle is explicitly completely
positive.

4.2 Generalized GRW Model for a Free Particle: Singular
Rate Function

The existing literature on non-Markovian dynamics makes it clear how difficult it
is to arrive at general prescriptions for negative rates in master equations as (13)
that nevertheless ensure the complete positivity of the generated maps �t . In this
section we content ourselves with applying the approach developed in the previous
section for particular functions λt (u) that however illustrate some of the features of
the problem.

In order to appreciate the main changes with respect to the argument developed
for the Markovian case above when negative rates are present, we stay with the free
Hamiltonian and choose

λt (u) = λt
e− u2

α�2

√
πα�2

, (52)

with rate function consisting of one positive spike of strength �1 followed by a
negative one of strength �2:

λt = λ �1 δ(t − T1) − λ �2 δ(t − T2) , T2 > T1 , �1,2 > 0 , λ > 0 . (53)

Then, κt = λ(�1 − �2) and the function Gt (x, y) in (49) reads

Gt (x, y) = exp

(
−λ(�1 − �2) + λ �1 exp

(
e

−α

4(x+yT1/m)2
)

− λ �2 exp

(
e

−α

4(x+yT2/m)2
))

.

(54)
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Certainly, in order to fulfill κt ≥ 0 for large x and y, one has to choose �1 ≥ �2.
However, despite of this constraint, choosing x = −yT1/m yields

Gt (−yT1/m, y) = exp
(
λ �2

(
1 − e−α y2(T2−T1)2/(4m2)

))
≥ 1 , (55)

thus contradicting condition (41)which necessarily follows from complete positivity.
In fact, the generated dynamical maps �t are not even positive. Indeed, positivity of
�t requires that

A := 〈ψ | �t

[(
1 + eiφ Ŵ (x, y)

)† (
1 + eiφ Ŵ (x, y)

)]
|ψ〉

= 2
(
1 + Gt (x, y)Re

{
eiφ 〈ψ | Ŵ (x, y) |ψ〉 }

)
≥ 0 (56)

for all Hilbert space vectors |ψ〉 and for all choices of φ ∈ [0, 2π ] and (x, y) ∈ R
2.

With x = −yT1/m,

A = 2

(
1 + e

λ�2

(
1−e

− α

4m2 y2(T2−T1)
2)

Re
{
eiφ 〈ψ | Ŵ (−yT/m, y) |ψ〉

})
. (57)

Finally, choosing |ψ〉 corresponding to the standard Gaussian ψ(x) = e−x2/2/ 4
√

π

and suitably setting φ, one derives the necessary condition

A = 2

(
1 − e

λ �2

(
1−e

− α

4m2 y2(T2−T1)2
)

e−y2
T 21 �

2+m2

4m2�2

)
≥ 0 . (58)

Choosing y very small and expanding to first order in y2, we obtain the approximation

A � (y1 − y2)2

2m2�2

(
T 2
1 �

2 + m2 − λ�2α�
2 (T2 − T1)

2) , (59)

whose right-hand side can bemade negative by choosing either T2 or�2 large enough
(and accordingly setting y in order to perform the expansion). This example shows
how delicate is the trade-off between the time-integral of the time-dependent spatial
Gaussian localisations and the width of the time-intervals where the rate function
becomes negative together with the amount of such negativity.
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4.3 Generalized GRW Model for a Free Particle: Small α
Limit

The second example uses again (52) but with the following rate function:

λt =
⎧⎨
⎩

λ ≥ 0 : 0 ≤ t < T − �

−λ ≤ 0 : T − � ≤ t ≤ T + �

λ ≥ 0 : t > T + �

. (60)

Namely, according to the comment after Example 1, the localisation processes always
dissipate information about the system into the environment responsible for them,
apart from an interval of time [T − �, T + �] when information comes back from
the environment into the system. In order to make the complete positivity issue
addressable, we consider the approximation to the the generalised GRW-model that
followsby considering a very large localization length, namely a very small parameter
α which yields

Gt (x, y) = exp

(
−α

4

∫ t

0
ds λs

(
x + y

m
s
)2

)
. (61)

Notice that the small α expansion of the generalised GRW model (12) yields

∂tρt = − i

�

[
Ĥ , ρt

]
− λt α

4
[q̂ , [ q̂ , ρt ]] . (62)

Then, inserting the expression for Gt (x, y) in (61) into (37), �ψ(t) in (45) relative
to the solution of the above master equation reduces to

�ψ(t) :=
∫

R4

dx dy du dv

(2π�)2
ei/�(yu−xv) e−α/4 g0,t (u,v)

∥∥∥∥∥∥
∑
j

e−i/�(yx j−xy j ) Ŵ (x j , y j )|ψ j 〉
∥∥∥∥∥∥

2

,

(63)
whence no series expansion is necessary and one can directly focus on the quadratic
form

g0,t (u, v) := A0,t u
2 + C0,t v

2 + 2 B0,t u v , (64)

where, with λt as in (60),

A0,t :=
∫ t

0
ds λs = λ t , B0,t := 1

m

∫ t

0
ds s λs = λ t2

2m
, C0,t := 1

m2

∫ t

0
ds s2 λs = λ t3

3m2 . (65)

Observe that integrating over intervals 0 ≤ t1 ≤ t2 where λ does not change sign
yields

At1,t2 = λ (t2 − t1) , Bt1,t2 = λ (t22 − t21 )

2m
, Ct1,t2 = λ(t32 − t31 )

3m2
. (66)
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Then, the determinant of the quadratic form

gt1,t2(u, v) := At1,t2 u
2 + Ct1,t2 v2 + 2 Bt1,t2 u v (67)

is always positive, while the trace has the sign of λ. It thus follows that g0,t(u, v) is
positive semi-definite for 0 ≤ t ≤ T − �, while it decreases in the interval T − � ≤
t ≤ T + � where λ < 0 and increases again for t > T + �. Therefore, g0,t (u, v) ≥
0 at all t ≥ 0 if g0,T+�(u, v) ≥ 0. One computes

A0,T+� = λ (T − 3�) , B0,T+� = λ

m

(
T 2 + �2 − 6T�

)
, C0,T+� = λ

3m2

(
T 3 − 3�3 + 3T�2 − 9T 2�

)
.

(68)
Clearly, for sufficiently far away negativity interval (T � 1) or sufficiently low neg-
ativity (� � 1), trace and determinant become positive. Then, g0,T+�(u, v) and thus
all g0,t (u, v), t ≥ 0, are positive semi-definite with positive Gaussian Fourier trans-
forms yielding �ψ(t) ≥ 0 for all t ≥ 0 and thus entailing the complete positivity of
all generated maps �t .

5 Conclusions

In the spirit of non-Markovian open quantum systems that evolve according to phys-
ically consistent completely positive maps and, at the same time, show negative
rates and back-flow of information from environment to system, we have proposed
a time-dependent generalisation of the Ghirardi-Rimini-Weber model and set the
technical framework for discussing the complete positivity of the dynamical maps
it generates. After explicitly proving the latter property in the case of the standard,
Markovian GRW model, we have presented an example of a singular negative rate
consisting of one positive spike and a subsequent negative one that does not allow
either for completely positive or positive solutions. Instead, we considered the small
α expansion of the generalised GRWmodel that yields completely positive solutions,
thus providing a scenario where to study a bona fide back-flow of information in the
context of spatial localisations.

Acknowledgments The author F.B. acknowledges that his research has been conducted within the
framework of the Trieste Institute for Theoretical Quantum Technologies.

Appendix

Products of Weyl operators are proportional to Weyl operators,

Ŵ (x1, y1)Ŵ (x2, y2) = e− i
2�

(x1 y2−x2 y1)Ŵ (x1 + x2, y1 + y2) . (69)
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Thus, they span linearly the so-called Weyl algebra whose closure in the strong-
operator topology yields the algebra of bounded operators on the Hilbert space H
of square-integrable functions [19]. We shall then seek the solution W̃t (x, y) to the
master equation (30) as a linear combination of Weyl operators,

W̃t (x, y) =
∫ +∞

−∞
dx dy Fxy

t (x, y)Ŵ (x, y) , (70)

where the scalar function Fxy
t (x, y) becomes the unknown to be found. Insertion of

such an expression into the left and right hand sides of (30) yields

∫ +∞
−∞

dx dy
(
∂t F

xy
t (x, y) + λt F

xy
t (x, y) − λ̃t (bt y + at x) F

xy
t (x, y)

)
Ŵ (x, y) = 0 ,

where we have used the fact that (69) implies

Ŵ (x1, y1)Ŵ (x, y)Ŵ †(x1, y1) = e
i
�

(xy1−yx1)Ŵ (x, y) , (71)

and we have set (see (15))

λ̃t (bt y + at x) :=
∫ +∞

−∞
du λt (u) ei

√
α u (bt y+at x) .

Finally, using that tr
(
Ŵ (x, y)Ŵ (−x,−y)

)
= 2π� δ(x − x)δ(y − y), one gets the

following differential equation for the unknown function Ft (x, y),

∂t F
xy
t (x, y) = − λt F

xy
t (x, y) + λ̃t (bt y + at x) F

xy
t (x, y) ,

with initial condition Fxy
t=0(x, y) = δ(x − x)δ(y − y). Then,

Fxy
t (x, y) = exp

(
−

∫ t

0
ds

(
λs − λ̃s(bs y + asx)

))
Fxy
0 (x, y) .

Once the previous expression is substituted into (70), one finally finds

W̃t (x, y) = exp
(

− κt +
∫ t

0
ds λ̃s(bs y + asx)

)
Ŵ (x, y) ,

with κt =
∫ t

0
ds λs =

∫ t

0
ds

∫ +∞

−∞
du λs(u) . Further, using (71) again and bymeans

of two Dirac deltas, one rewrites
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W̃t (x, y) =
∫

R2
du dv δ(u − x)δ(v − y)Gt (u, v) Ŵ (x, y)

=
∫

R4

du dv dx dy

(2π�)2
e

i
�

(y(u−x)−x(v−y)) Gt (u, v) Ŵ (x, y)

=
∫

R2

dx dy

(2π�)2
G̃t (x, y)) Ŵ

†(x, y) Ŵ (x, y) Ŵ (x, y) where

G̃t (x, y) :=
∫

R2

du dv

(2π�)2
e

i
�

(yu−xv) Gt (u, v) .

References

1. G. C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)
2. A. Gorini, A. Kossakowski, and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)
3. G. Lindblad, Comm. Math. Phys. 48, 119 (1976)
4. R.Alicki,K. Lendi,QuantumDynamical Semigroups andApplications (Springer, Berlin, 1987)
5. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press,

Oxford, 2007)
6. F. Benatti, R. Floreanini, Int. J. Mod. Phys. B 19, 3063 (2005)
7. F. Benatti, R. Floreanini, R. Romano, J. Phys. A: Math. Gen. 35, L351 (2002)
8. R. Alicki, M. Fannes, Quantum Dynamical Systems (Oxford University Press, Oxford, 2001).
9. H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Rev. Mod.Phys. 88, 021002 (2016).
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Energy-Lifetime Relations

Robert Grummt and Nicola Vona

Abstract We studied an explicit model of alpha decay, for which we could calcu-
late all quantities involved in the linewidthlifetime relation and in the energy-time
uncertainty relation. The former is often regarded as a consequence of the latter, but
we show that it cannot be the case, as it is possible to adjust the potential and the
initial state in such a way that the linewidth-lifetime product gets arbitrarily close to
1, while at the same time the energy-time uncertainty product gets arbitrarily large.
Additionally, this implies that Var E is a physically irrelevant quantity: Wave func-
tions that differ only minimally in the tails are physically indistinguishable and can
be produced by the same experiment, yet they can have radically different values of
Var E , that therefore cannot be considered as a characteristic quantity of the physical
system.

1 Introduction

Wewrite these lines in honour ofGian-CarloGhirardi, whoworked on the description
of unstable systems from early on in his career [1]. Prof. Ghirardi made it a priority
to create possibilities for people to meet, discuss and collaborate: To him the people
behind theworkweremost important. The Summer School he co-organized regularly
in Sesto, Italy, has contributed greatly to our education, and we have wonderful
memories of it. He was also a very active member of the European COST project
on “Fundamental Problems in Quantum Physics," whose sole purpose was to bring
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together physicists, mathematicians and philosophers of all generations. Thank you
for all the moments you have shared with us.

For an unstable nucleus undergoing exponential decay, the linewidth-lifetime
relation

Γ τ = 1 (1)

connects the lifetime τ of the nucleus to the spread of the energyof the decayproducts,
expressed as the full width at half maximum Γ of the probability density function
of the energy.

Since τ expresses an uncertainty on time and Γ one on energy, this relation
is often presented as an instance of the energy-time uncertainty relation (see for
example [6]). Nevertheless, Fock and Krylov [4] argued that these two relations
are indeed independent. They observed that many initial states differing only for
the tails of the energy density can exhibit similar values of Γ , τ , and Var T , still
having completely different values of Var E . The latter is very sensitive to the tails
of the energy density, while Γ is related to the shape of the energy density around its
maximum; The lifetime τ depends mostly on the maximum of the energy density,
and in an exponential distribution the mean is directly related to the variance, so also
Var T depends mostly on the maximum of the energy density. Therefore, for a fixed
shape of the energy distribution around its maximum, Γ , τ , and Var T are fixed,
while Var E can be changed at will by modifying the tails of the distribution, so
that the product in (1) stays constant and the product Var EVar T can have arbitrary
values.

Here we present a rigorous proof of the arguments by Fock and Krylov. We con-
sidered an explicit model of alpha decay, for which we could calculate all implicated
quantities. We show that it is possible to adjust the potential and the initial state in
such a way that the product Γ τ gets arbitrarily close to 1, while at the same time the
product Var E Var T gets arbitrarily large. Therefore, the linewidth-lifetime relation
cannot be a consequence of the time-energy uncertainty relation.

2 Gamow’s Model of Alpha Decay and Skibsted’s Variation
of It

The theoretical study of exponential decay, and in particular of alpha decay, goes
back to Gamow [2]. We will summarize his key insight for the three dimensional
Schrödinger equation with rotationally symmetric potential V , having compact sup-
port in [0, RV ]. This model can be analyzed mathematically with reasonably simple
tools as shown by Skibsted in [7]. We will only be concerned with the case of zero
angular momentum to avoid the angular momentum barrier potential, which would
not have compact support. In this case the Schrödinger equation is equivalent to the
one dimensional problem
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i∂tψ = (−∂2
r + V (r)

)
ψ =: Hψ (2)

Gamow’s key insight was to consider eigenfunctions f (k0, r) of the stationary
Schrödinger equation

(−∂2
r + V (r)

)
f (k, r) = k2 f (k, r) (3)

that satisfy the boundary conditions f (k0, r) = eik0r for r ≥ RV and f (k0, 0) = 0,
and have complex eigenvalue k0 such that

k0 = α − iβ, (4)

for some α, β > 0. The function f (k0, r) yields a solution

ft (k0, r) := e−ik20 t f (k0, r) (5)

to the time-dependent Schrödinger equation

i∂t ft (k0, r) = (−∂2
r + V (r)

)
ft (k0, r) = k20 ft (k0, r). (6)

Letting

E − i
γ

2
:= k20 = α2 − β2 − i2αβ, (7)

with E, γ > 0, we see that

| ft (k0, r)|2 = e−γ t | f (k0, r)|2, (8)

i.e. ft (k0, r) decays exponentially in time with lifetime 1/γ .
In the sequelwewill refer to f (k0, r) asGamow function.Note that both boundary

conditions on the Gamow function are natural: the condition f (k0, r) = eik0r for r ≥
RV means that f (k0, r) is purely outgoing, which is reasonable for states describing
decay, while the condition f (k0, 0) = 0 means that no probability should enter the
region r < 0,which is the standard condition on physical states expressed in spherical
coordinates.

Clearly, Gamow’s description does not immediately connect with quantum
mechanics because it contains complex eigenvalues and exponentially increasing
eigenfunctions, that are not square integrable. Skibsted analyzed in [7] the sense in
which Gamow’s model of alpha decay carries over to quantum mechanics. There,
the meta-stable state is modelled via the truncated Gamow function

fR := 1R f (k0, ·) (9)
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For rotationally symmetric potentials V that are compactly supported in [0, RV ],
with ‖rV (r)‖1 < ∞ and R2(t) := 2αt + R he has shown that

e−i Ht fR ≈ e−ik20 t fR2(t) (10)

if β � 1 is small enough. He also assumed that the potential has neither bound nor
virtual states, that irrelevant for studying exponential decay for long lived particles.
Skibsted essentially showed in [7] that the velocity with which the alpha-particle
escapes the nucleus is 2α, while the lifetime of the meta-stable state is (4αβ)−1.
Comparison with empirical data shows that α ≈ 1, while the lifetime is very large
and therefore β � 1.

To show the above result, he expressed the solution of the time dependent
Schrödinger equation in terms of generalized eigenfunctions ψ+(k, r), like

e−i Htψ(r) =
∫ ∞

0
ψ̂(k)ψ+(k, r)e−ik2t dk, with ψ̂(k) =

∫ ∞

0
ψ(r)ψ̄+(k, r) dr.

(11)

For a good introduction into generalized eigenfunctionsψ+, especially for the poten-
tials under consideration, see Chap.12 of [5]. We will also use the generalized eigen-
functions in the next section.

3 The Energy Time Uncertainty Relation and the
Linewidth-Lifetime Relation Are Different

In [3, 8] we used Skibsted’s model to show that the product Γ τ and the product
Var EVar T behave very differently for meta-stable states with large enough lifetime
(see Theorem 4.2 in [3]). This section summarises the line of argumentation.

Skibsted calculated the energy distribution of the truncated Gamow fR in
Lemma 3.2 of [7], and found that it is approximately a Breit-Wigner distribution
with linewidth 4αβ. Unfortunately, the Breit-Wigner distribution has fat tails that
result in infinite energy variance, so we can not look at Var E right away. The modi-
fication applied by Skibsted to the Gamowwave function is enough to recover square
integrability in space and produce a physical state, but it is not enough to regularise
the energy tails. The energy tails are strongly influenced by the hard cut-off in space
in eq. (9), therefore in [3, 8] we considered a Gaussian cut-off with width σ in space,
that regularises the energy tails and results in a finite energy variance. To reduce the
number of free parameters, we set σ = β, knowing that we are interested in the limit
β → 0. With this choice, we find that

Var E = O(β−2), for β → 0 (12)
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(see Lemmas 4.4 and 4.9 in [3]). The energy variance grows when the cut-off gets
steeper, getting infinite for the sharp cut-off.

For σ = β small enough the time evolved wave function with Gaussian cut-off
stays close to the one of Skibsted, that satisfies eq. (10), therefore τ ≈ 1/4αβ.

For Γ , consider that the generalised Fourier transform ψ̂ of the wave function
is the sum of the one of the Skibsted wave function and the one of the Gaussian
tails; the tails amount for a small proportion of the L2 norm of the wave function,
therefore they cannot change the overall shape of ψ̂ . Along these lines, Lemma 4.11
of [3] shows that for β small enough Γ ≈ 4αβ, from which follows that Γ τ ≈ 1
(Theorem 4.2 of [3]).

We are now left with calculating Var T , but to do so we first need to specify how
we model the time measurement. To this end, we used the flux of the probability
current through a far away detecting surface as probability density function for the
arrival time of the alpha particle at the detector. The flux of the probability current
in general does not have the properties needed to be a probability density function;
Nevertheless, its use in this case is justified by the fact that the distance between the
detector and the decaying nucleus is much bigger than the nucleus itself, therefore
the measurement is practically performed under scattering conditions.1 We consider
the detector to be a sphere of radius R around the origin. Note that the position of
the cut-off in eq. (9) is equal to the detector radius R, that is appropriate to model
all experiments that start with a bulk of material, and the only information available
is that the decay products did not hit the detector yet. The probability current is
non-zero only in the radial direction, and letting

ψt (r) := e−i Htψ(r), (13)

one readily finds that its flux 
 through the detector is


(t) = 2

‖ψ‖22
Im

[
ψ̄t (R) (∂rψt ) (R)

]
. (14)

To define the arrival time probability density�T , we normalise the flux (14) through
the detector surface to one on the time interval (0,∞), getting

�T (t) = 
(R, t)
∫ ∞
0 
(R, t ′)dt ′

. (15)

Now, we can calculate the mean arrival time as

〈t〉 :=
∫ ∞

0
t �T (t) dt (16)

1For a general discussion of the role of the probability current in the description of time measure-
ments see [9, 10].
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and similarly the time variance. To calculate such integrals, we have to get a handle on
the time evolved wave function for all times. For this purpose, in [3, 8] we divided
the time evolution in two parts: the exponential decay regime and the scattering
regime. Skibsted’s results, summarised in eq. (10), yield the necessary control over
the exponential decay regime. To treat the scattering regime, we used the stationary
phase argument, that in essence is based on the following partial integration trick,
that starts from eq. (11)

e−i Htψ(r) =
∫ ∞

0
ψ̂(k)ψ+(k, r)e−ik2t dk (17)

=
[
iψ̂(k)ψ+(k, r)

2kt
e−ik2t

]∞

0

−
∫ ∞

0
∂k

[
iψ̂(k)ψ+(k, r)

2kt

]
e−ik2t dk.

(18)

The generalized eigenfunctions ψ+ are well understood for the potentials under
consideration, and Chap.12 of [5] provides the relation

ψ+(k, r) = 1

2i
(S(k) f (k, r) − f (−k, r)), (19)

where S(k) denotes the S-matrix element for zero angular momentum. We see that
we can get bounds on the scattering regime by means of bounds on the derivatives of
the S-Matrix. Following this route, in [3, 8] we found explicit bounds on the overall
time evolution (see Corollary 4.1 in [3]), from which we proved that

Var T = (4αβ)−2 · (1 + ε) , (20)

where ε → 0 for β → 0. (see Lemma 4.9 in [3], and Lemma 4.3 for an explicit
bound).

Summarising, we found that when β → 0 then

Var E = O(β−2) Γ ≈ 4αβ (21)

Var T ≈ (1/4αβ)2 τ ≈ 1/4αβ (22)

Var EVar T = O(β−4) Γ τ ≈ 1 (23)

from which follows

Var EVar T → ∞ (24)

while

Γ τ → 1, (25)
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that shows that the linewidth-lifetime relation cannot be an instance of the energy-
time uncertainty relation.

4 Conclusion

We considered a variation of Skibsted’s model of a long lived meta-stable state, for
which we could calculate explicitly all quantities involved in the linewidth-lifetime
relation and in the energy-time uncertainty relation, proving that the former cannot
be a consequence of the latter.

Notice also that the behaviour ofVar E is not only incompatiblewith the linewidth-
lifetime relation, it also means that Var E is a physically irrelevant quantity: Wave
functions with very similar cut-off σ are physically indistinguishable and can be
produced by the same experiment, yet they can have radically different values of
Var E , that therefore cannot be considered as a characteristic quantity of the physical
system.
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On the Continuum Limit of the GRW
Model

Günter Hinrichs

Abstract We consider the relation between time-discrete and continuous models
for wave function collapse. In the special case of the original GRW model and the
Diósi model, it can be made mathematically precise how the latter arises as a scaling
limit of the former.

1 Discrete and Continuous Collapse Models

The Ghirardi-Rimini-Weber theory (shortly GRW, see [7], [3] and, for a mathemati-
cally rigorous treatment, [11]) is the earliest prominent attempt to solve the so-called
measurement problem in quantum mechanics by including a well-defined random
collapse mechanism in the Schrödinger evolution of the wavefunction. More pre-
cisely, the wavefunction undergoes the usual Schrödinger evolution, but in addition,
at random times given by a Poisson process, it is multiplied by a suitably localized
Gaussian function (“collapsed”). Such an evolution is clearly well-defined whenever
the Schrödinger evolution is. Apart from being nonrelativistic, a physical deficiency
that limits the possible range of validity of GRW considerably is the fact that sym-
metry of the wavefunction is not preserved. Nevertheless, it is still of interest e.g. in
the discussion of conceptual questions due to its transparency. In the physically more
refined (but still nonrelativistic) CSLmodel [8], aGaussian field in three-dimensional
space couples to the wavefunction, effecting a collapse continuously in time. In this
way, symmetry can naturally be preserved, but the mathematics becomes much more
involved and not even the existence of solutions seems to have been worked out.

Although they share some formal structures, CSL is not a continuous version
of GRW, but a new model. In addition, GRW has a continuum limit, namely the
QMUPL model [4, 5] (going back to Diósi). It does not preserve symmetry, but
is mathematically much better understood than CSL because it is described by a
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stochastic differential equation driven by a finite number of Wiener processes. The
limit fromGRWtoQMUPL is performed by increasing the frequency of the collapses
and diminishing their strengh (making the Gaussians broader), keeping the order of
magnitude of the total effect constant, and has been derived rigorously in [6]. Apart
from clarifying the relation between the twomodels GRWandQMUPL, the structure
of the proof might also be interesting in dealing with CSL because attempts to
solve the equation would probably most straightforwardly start with similar discrete
approximations. In the passage from GRW to QMUPL, use was made of the linear
structure behind the models and a Trotter-like product formula for linear stochstic
differential equations. In the following, the approach from [6] will be reformulated
in a way that makes this clearer and some central steps will be recalled.

2 The Linear Structure Behind the GRW Model

For simplicity, we consider a one-particle wavefunction ϕ0 ∈ L2(R3,C) (with L2-
norm ‖ · ‖) without physical constants, of which the pure Schrödinger evolution
would be e−i t Hϕ0 with some self-adjoint Hamiltonian. We collect the randomness
in a sample space � := R

N × (R3)N with coordinate projections X = (X1, X2, . . . )

on the first factor (which is to desribe the times between two collapses) and Y =
(Y1,Y2, . . . ) on the second factor (describing the collapse centers). We define P(X ∈
·) to be a countable product of standard exponential distributions. The evolution of
ϕ0 collapsing at times Tn,μ := ∑n

k=1
Xk
μ

(n ∈ N), where the model constant μ > 0
is a frequency parameter, is defined recursively by

ψ
α,μ
Tn,μ

(Y1, . . . ,Yn, X, x) :=
(α

π

) 3
4
e− α

2 |x−Yn |2e− i
μ XnHϕ

α,μ
Tn−1,μ

(Y1, . . . ,Yn−1, X, x) ,

ϕ
α,μ
Tn,μ

:= ψ
α,μ
Tn,μ

‖ψα,μ
Tn,μ

‖

and

Pα,μ(Yn ∈ A | Y1, . . . , Yn−1, X) :=
∫

A

(α

π

) 3
2

∫

e−α|x−y|2 |(e− i
μ Xn Hϕ

α,μ
Tn−1,μ

)(Y, X, x)|2dxdy

=
∫

A
‖ψα,μ

Tn,μ
(Y1, . . . , Yn−1, y, X, ·)‖2dy ,

(2.1)
i. e. at each collapse time, the wavefunction is multiplied by a Gaussian with some
prescribed inverse variance α, the center of which is a random variable distributed
according to |ϕ|2 convoluted with the normalized squared Gaussian. The sequence
of wavefunctions is extended continuously according to

ϕ
μ
Tn,μ+s := e−isHϕ

α,μ
Tn,μ

for 0 < s < Xn+1
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between the collapse times. By this and the preceding equations, the stochastic pro-
cess (ϕ

α,μ
t )t≥0 is specified.

Explicitely, one calculates

Pα,μ(Y1 ∈ A1,Y2 ∈ A2 | X) =
∫

{Y1∈A1}
Pα,μ(Y2 ∈ A2 | Y1, X)dPα,μ(· | X)

=
∫

{Y1∈A1}

∫

A2

(α

π

) 3
2

∫

e−α|x−y2|2 |(e− i
μ X2H

ψ
α,μ
T1,μ

‖ψα,μ
T1,μ

‖ )(Y1, X, x)|2dxdy2dPα,μ(· | X)

=
∫

A1

∫

A2

(α

π

) 3
2

∫

e−α|x−y2|2 |(e− i
μ X2Hψ

α,μ
T1,μ

)(y1, X, x)|2dxdy2 1

‖ψα,μ
T1,μ

(y1, X, ·)‖2
× ‖ψα,μ

T1,μ
(y1, X, ·)‖2dy1

=
∫

A1

∫

A2

(α

π

)3
∫

e−α|x−y2|2 |(e− i
μ X2He− α

2 |·−y1|2e− i
μ X1Hϕ0)(x)|2dxdy2dy1 .

One observes that the norm term cancels. (The analogous effect arises in deriving
the equation for the statistical operator ρ

α,μ
t (x, y) := Eα,μϕ

α,μ
t (x)ϕα,μ

t (y), resulting
in a simple closed equation for ρt in so-called Lindblad form. One chooses in (2.1)
the convolution instead of the exact |ϕ|2 distribution in order to achieve precisely
this.) Inductively,

Pα,μ(Y1 ∈ A1, . . . , Yn ∈ An | X)

=
∫

A1×···×An

(α

π

) 3n
2

∫

|(e− α
2 |·−yn |2e−

i
μ Xn H · · · e− α

2 |·−y1|2e−
i
μ X1Hϕ0)(x)|2dxd(y1, . . . , yn)

=
∫

A1×···×An

(α

π

) 3n
2

∫

|eαx ·yn− α
2 |x |2e−

i
μ Xn H · · · eαx ·y1− α

2 |x |2e−
i
μ X1Hϕ0(x)|2dx

× e−α(|y1|2+···+|yn |2)d(y1, . . . , yn)

The last step is convenient because now the y-integral can be read as a mean value
w. r. t. independent Gaussian random variables. We thus arrive at the following
equivalent formulation of GRW, in which an auxiliary wavefunction ψ

α,μ
t , starting

from ψ
α,μ
0 = ϕ0, undergoes a random linear evolution w. r. t. an auxiliary probability

measure Q for all t ∈ R and is then subject to nonlinear modifications in order
to get the physically relevant process (ϕ

α,μ
t ) and the physically relevant measure

Pα,μ. (It corresponds to what Giancarlo Ghirardi used to call “linear plus cooking
formulation” in the context of CSL.)

Given parameters α,μ > 0, let (Xn)n∈N be random variables and (Yn)n∈N three-
dimensional randomvectors on someprobability space (�,A,Q)which are indepen-
dent of each other, all Xn having standard exponential distributions, all Yn N (0, 1

2α1)

normal distributions. Take the Poisson process
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Nμ(t) := max

⎧
⎨

⎩
k ∈ N :

k∑

j=1

X j

μ
≤ t

⎫
⎬

⎭

and its jump times

Tn,μ :=
n∑

k=1

Xk

μ
(n ∈ N)

and set

ψ
α,μ
t (x) := ei(t−TNμ(t),μ)H

κμ(t)∏

n=1

eαx ·Yn− α
2 |x |2ei Xn Hϕ0(x) (2.2)

where the factors have to be arranged from right to left. Then

Pα,μ(Y1 ∈ A1, . . . ,Yn ∈ An | X) := EQ(1{Y1∈A1,...,Yn∈An}‖ψα,μ
Tn,μ

‖2 | X) (2.3)

together with the prescription Pα,μ(X ∈ ·) := Q(X ∈ ·) defines a new measure on
F := σ((Xn), (Yn)).

ϕ
α,μ
t := ψ

α,μ
t

‖ψα,μ
t ‖

as a stochastic process w. r. t . Pα,μ is the GRW process (coinciding in distribution
with the one from the first definition).

3 The Continuum Limit of GRW and the Stochastic
Trotter Formula

From time 0 to sufficiently large t , there are on average tμ collapses. If H = 0,
they result in the multiplication of ϕ0 with a single Gaussian function with inverse
variance 1

2 tμα. Therefore, one might guess that also in the case H �= 0 the order of
magnitude of the total effect of the collapses up to a fixed time t should only depend
on λ := αμ

2 . For a continuum limit, it is therefore natural to prescribe a λ > 0, set
α = 2λ

μ
– this will be done from now on – and let the mean frequency μ of collapses

go to ∞.
On the technical side, one should first observe that, if (�,A,Q) is chosen such

that it admits a three-dimensional standard Wiener process (ξt )t≥0, then, for any
choice of λ and μ, independent Yn with N (0, 1

2α1) = N (0, μ
4λ ) distribution can be

realized via its increments e. g. as

Yn := μ

2
√

λ

(
ξ n

μ
− ξ n−1

μ

)
. (3.1)
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Consequently, the collapse part of the evolution ofψt can be viewed as a discretization
of the continuous evolution ϕ0 	→ ψt = A0,tϕ0 with

As,tψ(x) := e
√

λx ·(ξt−ξs )−λ|x |2(t−s)ψ(x)

for 0 ≤ s ≤ t < ∞. Namely, (2.2) becomes

ψ
α,μ
t = ei(t−TNμ(t),μ)H

Nμ(t)∏

n=1

A n−1
μ , nμ

ei Xn Hϕ0 . (3.2)

The constants in (3.1) could have been put in different ways in front of the brackets
and in the indices. Our choice is convenient because the indices of As,t appear fron
a technical point of view on the same level as a “time parameter” Xn in (3.2), even
if they do not have such a physical meaning. Consequently, the difference of two
successive indices is chosen as 1

μ
, which is the mean time between two successive

collapses.
(3.2) recalls the Trotter product formula: Two different evolutions alternate with

increasing frequency. Ito calculus shows that ψt := A0,tϕ0 satisfies the stochastic
differential equation

dψt = √
λψt x · dξt − λ

2
|x |2ψtdt ,

so the Trotter product formula suggests that ψ
2λ
μ ,μ converges for μ → ∞ in some

sense to a solution of a combination of the latter and the Schrödinger equation,
namely of

dψt (x) = −i Hψtdt + √
λψt (x)x · dξt − λ

2
|x |2ψt (x)dt with ψ0 = ϕ0 . (3.3)

In [6], this has been worked out. If one uses this equation for a similar change of
measure as (2.3), namely

Pλ(A) := EQ(1A‖ψt‖2) for all A ∈ σ({ξs | s ≤ t}) (3.4)

(which can be shown to be a consistent definition of a measure), then, considering the
stochastic process given by ϕt := ψt

‖ψt‖ under Pλ, one arrives at the QMUPL model
announced in the introduction. The measure changes (2.3) and (3.4) fit well together
with each other and with the product formula and one finally arrives at the following
result from [6]:

Theorem 1 Let H = − 1
2� + V with a bounded potential V having bounded first

and second derivatives. Then, for all t1, . . . , tn ≥ 0, in the sense of weak convergence
of measures,
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lim
μ→∞P 2λ

μ ,μ ◦ (ϕ
2λ
μ ,μ

t1 , . . . ,ϕ
2λ
μ ,μ

tn )−1 = Pλ ◦ (ϕt1 , . . . ,ϕtn )
−1.

In the proof of the product formula, one first shows that (ψ
2λ
μ ,μ

t ) forms a Cauchy
sequence in μ in a suitable sense. This part of the proof, in which one only needs
to work with the “simple” discrete model, could potentially be transferred e. g. to
suitable approximations of CSL and, if this turned out to be successful, could even
be used as the mathematical definition of such a model. The next part of the proof,

showing that ψ
2λ
μ ,μ

t → ψt in a suitable sense, makes use of specific mathematical
results for the QMUPL model (to be found e. g. in [1, 2, 9, 10]), whereas the last
step, the “nonlinear part”, is quite straightforward once the previous work is done.

4 Giancarlo Ghirardi

Do wavefunctions jump? I have never been quite convinced of that, at present find
it not fruitful to pursue this question further and tend to be tired of being confronted
again and againwith this subject just because I happened to deal with collapsemodels
in my diploma thesis... The more I would like to emphasize that this feeling does not
in the least refer to Prof. Ghirardi or his work in collapse theory. In conferences, I
found it very pleasant to see his modest and winning way of presenting things. He
used to emphasize that what he said might be wrong, should not be overestimated
and anyway, (according to John Bell,) he gained his living most importantly with his
teaching and not his research. A conference in which everyone takes such an attitude
towards his positions is still to be held... In this way, he brought people together and,
even being sceptic, one was more induced to take into account that he might be right
than to stick to his admissions of maybe being wrong. And, after all, he might be
right...

Requiescat in pace!
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Continuous Collapse Models on Finite
Dimensional Hilbert Spaces

Antoine Tilloy

Collapse models come in many flavors, with varying levels of complexity. Yet even
the simplest physically realistic models have a phenomenology that is non-trivial to
study rigorously, if only because continuous space imposes an infinite dimensional
Hilbert space. Here, we would like to focus on toy models, that apply to finite
dimensional Hilbert spaces, that can be efficiently simulated, and are amenable to a
precise and to some extent rigorous study. We shall mostly be interested in collapse
models for qubits, i.e. with H = C2, that is for the simplest quantum mechanical
system one can think of.

The prototypical equation we will discuss gives the dynamics of a probability (or
population) pt = |〈ψt |+〉z|2 ∈ [0, 1] for a qubit to be in one state (say its ground
state, or spin-up state |+〉z) which is a fixed point of the collapse process. It is an Itô
stochastic differential equation that reads:

dpt = λ (peq − pt ) dt
︸ ︷︷ ︸

“regular” dynamics

+ √
γ pt (1 − pt ) dWt

︸ ︷︷ ︸

collapse dynamics

, (1)

where peq ∈]0, 1[ is a constant equilibrium probability in the absence of collapse, Wt

is a Wiener process (Brownian motion), λ is the rate or frequency associated to the
dynamics in absence of collapse and γ is the rate1 associated to collapse dynamics.
We shall explain later how this equation is obtained, but let us briefly give an intuition
for its phenomenology.

1Note that the inverse time scale γ appears with a square root, intuitively because dW scales like√
dt .
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Fig. 1 Trajectories pt from dpt = λ (peq − pt ) dt + √
γ pt (1 − pt ) dWt for increasing values

of γ—Typical trajectories are shown for λ = 1, peq = 0.5, and γ = {0.01, 1, 25, 400}. They are
obtained through a naive Euler discretization of (1) with dt = 5.10−4. Far smarter discretization
schemes can be used for this particular type of stochastic differential equations (see e.g. [1]), and
they confirm this qualitative behavior. In particular, the sharp, almost punctual excursions decorating
the jump process in the last plot are not numerical artifacts

The dynamics in absence of collapse, if taken alone, yields an exponential con-
vergence (controlled by the rate λ) to the equilibrium probability peq. It is typically
the dynamics one obtains by coupling a qubit to a thermal bath. On the other hand,
the collapse term induces an inhomogeneous diffusion with a coefficient that van-
ishes in p = 0 and p = 1. Hence, under this dynamics, the probability wanders in
an unbiased way until it reaches one of these two fixed points where the dynamics
freezes. In brief, thermalization dynamics deterministically drives the probability to
p = peq ∈]0, 1[, while collapse stochastically drives it to p = 0 or p = 1. It is from
this competition that rich dynamics can emerge.

Before saying more, it is instructive to look at a typical trajectory of the stochastic
process as the collapse rate γ is progressively increased. The results are shown in
Fig. 1. One sees that upon increasing the value of γ, there is a crossover from a
continuous diffusion to a jump dynamics (up to some subtleties). Interestingly, the
solutions of (1) seem to converge, in some non-trivial sense, when γ → +∞. It is
this limit we shall be mostly interested in understanding precisely here.
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1 Setup

1.1 The Stochastic Schrödinger Equation and Its Origin

We consider a spontaneous collapse model for a quantum state |ψ〉 ∈ H = CD with
D < +∞. The dynamics is postulated to be given by the stochastic Schrödinger
equation (SSE):

d|ψt 〉 =
{

−i Hdt + √
γ (O − 〈O〉t ) dWt − γ

2

[

O†O − 2 〈O†〉tO + 〈O†〉t 〈O〉t

]

dt
}

|ψt 〉 , (2)

where O is a generic operator,2 〈O〉t = 〈ψt |O|ψt 〉, Wt is a Wiener process (Brow-
nian motion), γ is the collapse strength (or rate), and H is the system Hamiltonian
independent of the collapse process. This stochastic differential equation with multi-
plicative noise is to be understood in the Itô convention [2]. As an illustration, taking
D large andO to be a discretized version of the position operator X , (2) would yield
an approximation of the “Quantum Mechanics with Universal Position Localization”
(QMUPL) model [3, 4] in one space dimension. More complicated setups can easily
be considered, where many operators (possibly non-commuting) are being continu-
ously collapsed simultaneously, but we will stick to this simple dynamics (2) in what
follows.

Where is such a stochastic differential equation coming from? There are at least
3 ways to motivate it:

1. From collapse models in continuous space—Starting from a collapse model in
continuous space like the continuous spontaneous localization model (CSL),
one may derive an effective collapse equation on a smaller Hilbert space. This
happens if one considers degrees of freedom that are intrinsically discrete (for
example spin in a Bell or EPR experiment), or if only a few states can be reached
by the dynamics (for example if the potential V (X̂) appearing in the Schrödinger
equation has a few deep minima).

2. From consistency requirements—Onemay ask what is the most general collapse
equation that (i) yields a linear evolution for the density matrix averaged over
the noise ρ̄ = E[|ψ〉〈ψ|] (ii) is Markovian (iii) preserves state purity. It turns
out that all equations with these properties essentially have the same form as (2)
up to some additional phase factors (see [5, 6] and references therein).

3. From continuous measurement theory—Since their inception in the eighties, col-
lapse models have been developed alongside the theory of continuous measure-
ment [7, 8]. The latter aims to describes the continuous monitoring of quantum
systems within orthodox quantum theory. In this context, one simply pushes
the use of the collapse postulate sufficiently far away from the system studied
to avoid problems or ambiguities for all practical purposes. A continuous mea-
surement or monitoring is then obtained in a proper limit where infinitely weak

2A non-Hermitian O can be used to obtain a so called “dissipative” collapse model, but we will
focus here mostly on the Hermitian case which already yields rich dynamics.
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Fig. 2 Quantum trajectory of a continuously monitored transmon qubit (from real exper-
imental data). In blue, pt is the population in the z basis, and in light orange ut = u∗

t is the
non-diagonal coefficient of ρ in the z basis (see (8)). The stochastic master equation (see 1.2)
describing the evolution is slightly more complicated than the idealized ones we consider in subse-
quent examples and reads [9]: dρt = −i[�σy, ρt ]dt + ∑

j D[L j ](ρt )dt + √
ηd

�d
2 H[σz](ρt )dWt ,

with j = {u, v, w,ϕ}, Lu = √
�1/2σ−, Lv = i

√
�1/2 σ−, Lw = √

�d/2 σz , Lϕ = √

�ϕ/2 σz ,
�d = (0.9μs)−1, �ϕ = (17.9μs)−1, � = 2π/(5.2μs), �1 = (765.3μs)−1 and ηd = 34%. Exper-
imental data courtesy of Benjamin Huard and Quentin Ficheux of École Normale Supérieure. For
more detail, see Ficheux’s thesis [10]

measurements are carried infinitely frequently. It turns out that the equations
one obtains in this context are exactly the same as those of continuous collapse
models.3 The interpretation is of course different, but the formalism is identical
(Fig. 2).

This latter motivation from continuous measurement theory is crucial for us, as it
providesmost of the intuition for the results. Furthermore, considering a finite dimen-
sional Hilbert space is more common and natural on the continuous measurement
side, where the systemsmonitored are typically effective qubits or few level systems,
not fundamental constituents of nature. Finally, whilst the stochastic trajectories of
(2) are not observable in the collapse context, they can be reconstructed in the contin-
uousmeasurement context where the noise is knowable a posteriori, as it is a function
of the (random) measurement results.

1.2 The Stochastic Master Equation

In practice it is more convenient to work with the equation for ρt = |ψt 〉〈ψt |, which
makes the general structuremoremanifest.Using the Itô formula,4 weget the stochas-
tic master equation (SME):

3This equivalence holds only for Markovian collapse models. For colored noise (or non-Markovian
collapse models), there is no longer a simple continuous measurement interpretation.
4In this context, “using the Itô formula” simply means writing

dρt = d|ψt 〉 〈ψt | + |ψt 〉 d〈ψt | + d|ψt 〉 d〈ψt |,
using the formal rule dWtdWt = dt and keeping terms of order one in dt and dWt .
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dρt = L (ρt ) dt + γD[O](ρt ) dt + √
γ H[O](ρt ) dWt (3)

whereL (ρ) = −i[H, ρ] andwe have used the continuousmeasurement theory nota-
tions:

D[O](ρ) = OρO† − 1

2
{O†O, ρ} (4)

H[O](ρ) = Oρ + ρO − tr
[

(O + O†)ρ
]

ρ. (5)

This SME (3) is equivalentwith the SSE (2) if the initial state ρt is pure (= rank 1), but
it is more flexible, allowing L that are not Hamiltonian flows and do not preserve
purity. Its first term D[O] is linear and is simply a Lindblad operator: it encodes
the decoherence associated with the collapse process and remains upon averaging
over the noise. The second term H is a non-linear map on ρ. It is responsible for
the collapse5 and it would disappear upon noise averaging. Indeed, ρ̄t = E[ρt ] is
straightforward to compute because Itô integrals against the Wiener process have
zero average. The average density matrix ρ̄ ve rifies the master equation (ME):

d

dt
ρ̄t = L (ρ̄t ) + γD[O](ρ̄t ). (6)

The fact that it is linear is fundamental and insures the consistency of the collapse
model and prevents problems with signalling or the probabilistic interpretation of
the quantum state [11, 12]. This linearity is very natural in the measurement context,
where averaging over the randomness of the measurement results is equivalent to
tracing over an environment and thus preserves linearity.

2 Pure Collapse

Let us first consider (3) in the limit when there is no additional dynamics (i.e.L = 0)
and for a qubit (i.e. H = C2):

dρt = γD[O](ρt ) dt + √
γ H[O](ρt) dWt . (7)

Tomake things specific, we takeO = σz/2 where σx ,σy,σz are the 3 Pauli matrices.
We introduce a parameterization of the qubit density matrix:

ρt =
(

pt ut

u∗
t 1 − pt

)

, (8)

5In the context of continuous measurement theory, it encodes the progressive acquisition of infor-
mation and is sometimes called the “stochastic innovation” term.
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Fig. 3 A few realizations of the stochastic process [dpt = √
γ pt (1 − pt ) dWt ] – for γ = 1 and

p0 = 0.3. Trajectories converge to p = 1 or p = 0 exponentially fast on average, with characteristic
timescale τ ∝ γ−1

where pt ∈ [0, 1] is the probability to be in (or population in) the state |+〉z , i.e.
pt = 〈+|ρt |+〉z , and ut is a complex phase. We can expand (7) to obtain an equation
for p and u. The one for the phase is

dut = −γ

8
ut dt +

√
γ

2
(2pt − 1)ut dWt . (9)

The stochastic trajectory of the phase depends on the population, but its average obeys
an autonomous equation: writing ūt = E[ut ] we have d

dt ūt = −(γ/8)ūt , and ūt =
ū0e−γt/8. Hence, on average, collapse dynamics induces exponential decoherence in
the eigenbasis of the collapse operator. This is expected. The equation for pt is more
interesting:

dpt = √
γ pt (1 − pt ) dWt . (10)

It contains no deterministic part and is a pure “martingale” (i.e. unbiased on average).
A few realizations of this stochastic process are plotted in Fig. 3. The diffusion is
inhomogeneous and makes pt converge exponentially fast6 (on average) to 0 or 1.
This is easily seen by considering �t = √

pt (1 − pt ) which measures the distance
from the final state. Using the Itô formula, one obtains:

6The probability pt never touches 0 or 1 exactly. This behavior is to be contrasted from that of the
Wright-Fisher equation encountered in population dynamics. The latter is similar but for a crucial
square root:

dxt = √

xt (1 − xt ) dWt , (11)

and with this modification the boundaries x = 0 or x = 1 are reached almost surely in finite time.
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d�t = −γ

8
�t dt +

√
γ�t

2
(1 − 2pt ) dWt . (12)

Hence, d
dt �̄t = −(γ/8)�̄t , and �̄t = �̄0 e−γt/8.

Now we may wonder if the collapse towards p = 1 or p = 0 is done according
to the Born rule. This is indeed the case:

P

[

|ψt 〉 −→
t→+∞ |+〉z

]

= |〈ψ0|+〉z|2 or, equivalently P

[

pt −→
t→+∞ 1

]

= p0. (13)

This is seen easily by exploiting the fact that pt is a martingale, a property which
explains most of the features of the collapse process (see e.g. [13, 14]). Using (10),
we have simply that d p̄t

dt = 0, hence p̄t ≡ p0, and limt→+∞ p̄t = p0. The later limit
is:

lim
t→+∞ p̄t = P

[

pt −→
t→+∞ 1

]

× 1 + P

[

pt −→
t→+∞ 0

]

× 0 = P

[

pt −→
t→+∞ 1

]

, (14)

where we have used the fact that pt converges almost surely to 0 or 1.
Hence the effect of our stochastic process is (i) to shrink the non-diagonal coeffi-

cients in the basis ofO, i.e. decohere (ii) make the diagonal coefficients all converge
towards one, i.e. on has a collapse as expected. Both happen exponentially fast, with
a rate controlled by γ, and with the expected probability. This generalizes trivially
fromH = C2 to CD for D < ∞.

3 Jumps

Now that we understand the dynamics induced by a continuous collapse process, we
can add intrinsic dynamics of the system. In the limit where this dynamics is slow
compared to the continuous collapse process, we will see the emergence of quantum
jumps. This may be understood as a form of semiclassical limit: how does a quantum
system behave when collapse is so fast that the state is almost always well localized?

3.1 Qubit with Dissipative Dynamics

The simplest setup we can consider is that of a qubit coupled to a thermal bath which
induces a relaxation in the energy basis. Namely, we consider the evolution:

dρt = Lthermal(ρt ) dt + γD[O](ρt ) dt + √
γ H[O](ρt ) dWt . (15)

with the Lindblad operator:
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Lthermal(ρ) = λ↑D[σ+](ρ) + λ↓D[σ−](ρ), (16)

where σ+ = |+〉〈−|z = σ†
− and λ↑/↓ represent the excitation and de-excitation

induced by the bath. The complete evolution preserves diagonal density matrices: as
in the pure collapse case, the non-diagonal coefficients shrink exponentially without
any feedback on the diagonal ones. As a result, we consider only the evolution of pt .
Expanding (15) yields:

dpt = λ (peq − pt ) dt + √
γ pt (1 − pt ) dWt , (17)

with λ = λ↓ + λ↑ and peq = λ↓/λ. This is the equation we advertised in the intro-
duction with its non-trivial competition between collapse driving pt to 0 or 1 and
relaxation driving it to peq.

For large γ, the stochastic process pt seems to converge (in a weak sense) to a
Markovian jump process (see 1). Intuitively, the dominant noise term

√
γ pt (1 −

pt )dWt forces pt to be almost always 0 or 1 and the subleading deterministic term
induces Markovian transitions between these boundary values.

For this simple example, one can easily characterize the emerging jump process
quantitatively provided one accepts that the large γ limit is indeed aMarkov process.
Such a Markov process would be characterized by two jump rates M(+)←(−) and
M(−)←(+). In the large γ limit, pt becomes a Markov chain between 0 and 1 and we
its average value p̄t will thus obey:

d

dt
p̄t = −M(−)←(+) p̄t + M(+)←(−)(1 − p̄t ) (18)

But using (17) we have that for all γ (and not just γ infinite):

d

dt
p̄t = −λ↑ pt + λ↓(1 − p̄t ). (19)

Hence we simply read that M(−)←(+) = λ↑ and M(+)←(−) = λ↓. In this very simple
example, the jump rates can be read straightforwardly from the averaged master
equation and it is only the very emergence of the jump process that is less trivial and
requires the stochastic description.

3.2 Qubit with Coherent Dynamics

We now consider a second example where continuous collapse competes with a
non-commuting unitary evolution. Namely, we choose a Hamitlonian H = (ω/2)σy

while still collapsing with the operator O = σz/2. The SME reads

dρt = −i
ω

2
[σy, ρt ] dt + γD[O](ρt ) dt + √

γ H[O](ρt ) dWt . (20)
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As before, it can be expanded into a pair of stochastic differential equations for pt

and ut which parameterize the density matrix. However, this time the two equations
are coupled, and the non-diagonal coefficient ut does not shrink to zero. In fact, real
and pure density matrices are preserved by the evolution (20) so that there is still only
one dynamical parameter (which is an angle in the Bloch sphere). But the discussion
remains easier with pt and ut .

Intuitively, what do we expect will happen? In the z basis, the unitary evolution
with σx creates Rabi oscillations, hence pt ∼ cos(ωt) in the absence of collapse. On
the other hand, when continuous collapse dominates, we expect pt to spend most of
its time near 0 or 1 as before. There is indeed some non-trivial competition between
the two. Let us just see how the trajectories look in Fig. 4. As before, we observe
an emergent jump behavior in the large γ limit, starting from a completely different
evolution for γ small (Rabi oscillations versus thermal relaxation in the previous
case). However, there an important difference: as γ increases, the jumps get sharper
andmore discontinuous, but at the same time their frequency decreases (in 1/γ). This
is a signature of the Zeno effect: a coherent transition is slowed down by collapse
(or measurement).

Fig. 4 Trajectories pt (dark blue) and ut (light orange) from – Typical trajectories are shown for
ω = 1, peq = 1.0, and γ = {0.1, 1, 5, 30}. They are obtained through a naive Euler discretization
of (1) with dt = 10−4. ut is real. For γ � 100 we would no longer see any jump in the figure and
pt would appear stuck in either 0 or 1
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In this example, one can also prove rigorously the emergence of jumps and com-
pute their rate explicitly. However, it is easier to go directly to the general case, which
makes the perturbative reasoning more transparent.

3.3 General Case

We saw in the two examples before that the emergence of jumps seemed ubiquitous
in the strong measurement limit, but that their rate depends on their origins: jumps
mediated by a bath have afixed rate independent of themeasurement strengthwhereas
“unitary” jumps are Zeno suppressed. For the latter, the jump rates vanish for large
γ, and would thus be zero if the limit were taken too brutally. It means that to obtain
a non-trivial limit, we need to adequately rescale the system dynamics (given by
the Liouvillian L ) while the measurement strength γ is sent to +∞. Up to this
subtlety, we will show, or rather suggest, that the jump limit is ubiquitous, and
there is generically a transition from continuous diffusive dynamics to discrete jump
dynamics in the fast collapse limit (see Fig. 5).

We recall the setup, following the derivation in [15]. We continuously collapse
a certain self-adjoint operator O = ∑

k νk |k〉〈k| at a rate γ, where the νk are real
and, we assume, all different. We have a system evolution in the absence of collapse
given byLγ which depends on γ because we allow ourselves to rescale the part of the
dynamics yielding jumps that would otherwise be Zeno suppressed. The evolution
of the density matrix reads

dρt = Lγ(ρt ) dt + γD[O](ρt ) dt + √
γ H[O](ρt) dWt . (21)

We now need to parameterize the Liouvillian more explicitly. To this end, we write
[L (ρ)]i j = Li j

klρ
kl with summation on repeated indices and postulate the scaling:

Lii
ll = Ai

l + o(1)

Lii
kl = √

γ Bi
kl + o(

√
γ) for k �= l

Li j
ll = √

γ Ci j
l + o(

√
γ) for i �= j

Li j
kl = γ Di j

kl + o(γ) for i �= j and k �= l and Di j
kl = −dklδ

i
kδ

j
l .

(22)

The justification for this scaling comes naturally when calculating the jump rates.
Since we shall not carry the proof here, let us just say that the A term corresponds to
incoherent contributions like those of the first example, and thus has to be taken fixed.
The B and C terms essentially correspond to a Hamiltonian contribution like that
of the second example, and need to be enhanced as γ is increased to get a non-zero
jump rate. Finally, the diagonal part of the D term has an effect similar to that of the
collapse on the average density matrix, and thus needs to be scaling like γ to remain
relevant in the limit.
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Fig. 5 Illustration of the jump theorem – For finite γ, the state ρ diffuses in Hilbert space. When
the collapse rate is sent to infinity, the state spends most of its time near the eigenvectors of the
collapse operator. It becomes a Markov chain, randomly jumping from pointer to pointer with a
rate Mi← j that can be computed explicitly

The jump theorem then gives [15] (see also [16]) that in the large γ limit, ρ
becomes a Markov chain between the projectors |k〉〈k| with jump rates (or Markov
matrix):

Mi← j = Ai
j + 2�e

∑

k<l

Bi
klC

kl
j

�kl
(23)

with �kl = 1
2 |νk − νl |2 + dkl . To give some intuition about the result we consider a

slightly less general situation where L (ρ) = A(ρ) − i[H, ρ] with A acting diago-
nally as in (22). Then the jump rates simplify to:

Mi← j =
“incoherent” contribution

︷︸︸︷

Lii
j j + 4

γ

∣

∣

∣

∣

Hi j

νi − ν j

∣

∣

∣

∣

2

︸ ︷︷ ︸

“coherent” contribution

. (24)

So again, if H is not rescaled ∝ √
γ, the coherent contribution is suppressed in the

limit. Note the interesting form of this coherent term: it depends not only on the
collapse basis but also on the eigenvalues of the collapse operator. This is a very dis-
tinct behavior from the one obtained from a projective measurement or instantaneous
collapse to a pointer, where nothing physical can depend on the eigenvalues.

There are two strategies to derive (23), a quick and dirty method using the master
equation, and a more rigorous one using the evolution for the probability distribution
of ρ:

1. One can accept, from the pure collapse discussion, that the collapse will make
the state stay near the eigenvectors of the collapse operator most of the time,
and further assume the transitions from pointer to pointer will be Markovian.
Then, to compute their rate, one only needs to study the master equation for ρ̄
(averaged over the collapse noise):
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∂t ρ̄t = (

A + √
γ (B + C) + γ (D + D[O])) (ρ̄t ). (25)

On then carries perturbation theory to second order in γ to find a closed master
equation for the diagonal part of ρ: ∂tdiag(ρ̄t ) = M diag(ρ̄t ), where diag(ρ̄t )

is written as a column vector. The matrix M is then identified as the Markov
matrix of (23). This is the strategy followed in [17]: it is simple as one only
needs the master equation (and not the stochastic master equation) but requires
one to assume that the limit is indeed a Markov process between pointers.7

2. A more rigorous method consists in going one step more abstract. The idea
is to study not only the average of the state ρ̄, but rather its full probability
distribution Pt [ρ | ρ0]. From the stochastic master equation (21), one can find
the second order Fokker-Planck operator D such that

∂tPt [ρ | ρ0] = DPt [ρ | ρ0]. (26)

With the scaling we have chosen, this differential operators admits the expansion
D = D0 + γD1, hencePt = exp (tD0 + tγD1)P0.One thennotes that for large
γ, probability distributions which survive are in the kernel ofD1 because it is a
negative operator. One then shows that these probability distributions are Dirac
measures on the eigenvectors of the collapse operator. A perturbative expansion
around these stable points in the space of probability distributions gives the
Markovian transitions between them [15]. Hence this method allows to prove
that the large γ limit is indeed that of aMarkovian jump process between pointers
at the same time as it allows to compute the jump rates.

In what sense do we have convergence towards the jump process in the large γ limit?
Actually, we have no more than a convergence in law, that is, expressions of the form
E[ f (ρt1 , ..., ρtN )] converge to the ones computed with the limiting jump process in
the large γ limit. Could we hope to prove more? No, because a fine grained structure,
that is not captured by the jump process, survives in the limit: the quantum spikes.

4 Spikes

4.1 A First Observation

To understand the phenomenon of spikes, we will restrict our analysis to the simplest
instance in which they appear, in the context of the scalar stochastic differential
equation (17)

dpt = λ (peq − pt ) dt + √
γ pt (1 − pt ) dWt . (27)

7To see that this is not obvious, note that there exist other unravelings of the master equation (25),
i.e. different stochastic master equations giving the same average master equation, that do not give
jumps between pointers in the limit. Hence the jump limit really is a feature of the stochastic
description.
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Fig. 6 Trajectories pt for γ � λ – A typical trajectory for λ = 1, and γ = 400, is visually very
close to what one would get for γ = +∞. Spikes above a certain threshold (here 10%) are marked
with stars. To quantify spikes, one considers a domain A of the plane (t, p) in a region without
jumps. The number of spikes ending in A is a Poisson random variable with an intensity given in
(29)

Already from Fig. 1, the careful reader will have noticed that pt does not quite con-
verge to a jump process. There seem to be sharp excursions decorating the jump
process which one would almost dismiss as numerical artifacts. We call these seem-
ingly instantaneous excursions quantum spikes and highlight them them in Fig. 6.

Quantum spikes are fast in the sense that they take a time ∝ γ−1 and thus appear
discontinuous when γ → +∞. However, their height remains of order 1 in the limit.
Thus, while they disappear in the sense of Lebesguemeasure in the fast collapse limit
(and thus in quantities like E[ f (pt1 , ..., ptN )]), they remain if one considers instead
first passage times or statistics of local extrema.

It is rather obvious to see what a spike is from a plot like that of Fig. 6, but it
is important (and less trivial) to define spikes more precisely. For simplicity, we
consider upward spikes starting from 0 (downward spikes, starting from p = 1 are
treated in the same way). Let us give ourselves two fixed thresholds δ � ε � 1.
We call a spike an excursion, or piece of trajectory, starting from ε and eventually
reaching δ. Because excursions away from 0 become instantaneous in the large γ
limit, the only thing we see from them is a vertical line from ε up to the maximum
value reached during the excursion and down to δ, hence the name spike (see Fig. 7).
Once we have sent γ to +∞ and spikes are effectively instantaneous, we can lower
the thresholds ε and δ arbitrarily close to 0 so that the statistics of spikes do not
depend on them.

With this definition, spikes can be given a precise characterization. Namely, the
number of spikes ending in a finite domain A of the plane (p, t) (see Fig. 6) is a
Poisson process of intensity μ:

P
[

n spikes ending inA
] = e−μμn

n! with μ =
∫

A
dν(p, t) (28)
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Fig. 7 For γ finite, one needs two thresholds 0 < δ < ε � 1 to define a spike (starting from 0).
We consider that an excursion starts when the process reaches ε from below, and then stops when
it hits δ. In the middle, the excursion reached a maximum here written h > ε. When γ → +∞, the
excursion becomes instantaneous, all that remains is a vertical line up to h, which we call a spike.
Once γ has been sent to+∞, the two thresholds ε and δ can be sent to zero, and spikes of arbitrarily
small size may be considered

The density ν is then given by the following (truncated) power laws:

dν0(p, t) = dt dp
λ peq

p2
for spikes starting from 0 (29)

dν1(p, t) = dt dp
λ (1 − peq)

(1 − p)2
for spikes starting from 1. (30)

Importantly, γ appears nowhere, the limiting distribution iswell defined for γ infinite.
Further the integrated density diverges for small spikes

∫

]0,ε]×�t dν0(p, t) = +∞,
and there are thus infinitely many of them.

4.2 Martingale Intuition

The essence of the reason for the existence of spikes is the following:

As the process pt is a martingale away from the boundaries when γ → +∞, if there are
jumps, there must be aborted jumps (or spikes) as well.

Let us make this argument more precise. Away from the boundaries p = 0 or p = 1,
and when γ is large, the collapse term dominates and dpt � √

γ pt (1 − pt ) dWt .
Importantly, this means that pt is approximately a martingale, in particular:

∀T ≥ t, E
[

pT | pt = ε
] � ε. (31)

Let us imagine the process started near 0 at t0 and has increased to a small value
pt0 = ε. What is the probability that the jump completes before p goes below δ?
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Let us write τ ≥ t the time when p hits δ (and the jump is considered aborted) or
hits 1 − δ (and the jump is considered completed). This random variable is a so
called stopping time, which implies that equation (31) holds if T is replaced by τ
[2]. Furthermore, by definition we have:

P[jump completes|pt0 = ε] × (1 − δ) + P[jump aborts|pt0 = ε] × δ = E[pτ |pt0 ].
(32)

The latter term is just pt0 = ε because the process is a martingale. Hence

P[jump completes|pt0 = ε] = ε + negligible corrections O(δ), (33)

i.e. the probability that a jump completes is equal to how far it already went! In turn,
this means there are jumps that do not complete, excursions that reach a certain value
p (for example 1/2), and then go back to their initial value.

4.3 Sketch of a Proof

The previous “martingale” argument for the existence and even necessity of spikes
is almost sufficient to compute their distribution. As before, we look only at spikes
starting near 0, and we neglect subleading terms O(δ). However, instead of looking
at the jump completion, we can look at the stopping time τh for a given fixed height
h such that ε < h < 1. This random variable just gives the time when p reached h
or the δ-neighbourhood of 0 after starting in ε. We have:

P[pτh = h|pt0 = ε] × h + P[pτh = 0|pt0 = ε] × 0 = E[pτh |pt0 = ε] = ε. (34)

Hence,
P[pτh = h|pt0 = ε] = ε

h
. (35)

This probability is also the probability that the maximum p reaches before going
back to the δ-neighbourhood of 0 is superior to h:

P
[

max
u<τ

(pu) ≥ h | pt0 = ε
]

= ε

h
. (36)

Therefore, we have in differential form:

dP

[

max
t0<u<τ

(pu) = h < 1 − δ | pt0 = ε

]

= ε
dh

h2
. (37)
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This explains the 1/p2 in the density of spike maxima (29). Note in passing that
there is an additional term for h = 1 (again, up to a δ neighbourhood), because
P

[

maxu≤τ (pu) = 1 | pt0 = ε
] = ε. Hence

dP

[

max
t0<u≤τ

(pu) = h ≤ 1 | pt0 = ε

]

= ε

[

dh

h2
+ δ(1 − h) dh

]

. (38)

How often do we get to try to jump, i.e. how often does the process reach at least ε in
any small time interval�t? To answer this question, we can use a simple consistency
argument, namely that the probability to reach ε is related to the jump rate which we
know from the previous Sect. 3.

Let us consider a time interval �t such that ελ−1 � �t � γ−1. The probability
that a jump from 0 to 1 occurs during�t is simply λpeq�t . This jump probability can
be decomposed into the probability to reach at least ε and then complete a jump,8

which reads, from the previous discussion P[{pu}t≤u≤t+�t reaches at least ε] × ε.
Hence we have

P[{pu}t≤u≤t+�t reaches at least ε] = λpeq

ε
�t. (39)

As a result, in every small interval�t , the probability density that there is an excursion
reaching a maximum h is

dP

[

max
t<u≤t+�t

(pu) = h < 1 | pt0 = ε

]

= �tλpeq

h2
dh. (40)

Because �t � γ−1, the statistics of spikes from two different intervals are indepen-
dent and we thus get that the maxima of the excursions are given by the Poisson
process we advertised in (29).

This sketch of proof, relying almost only on the martingale property, follows
closely the way spikes were first characterized [18]. This line of argument has been
made rigorous by Kolb & Lisenfeld [19]. Other proof strategies exist, notably one
exploiting a time reparameterization of the dynamics transforming pt into a reflected
Brownian motion (see [20] for a physicist explanation of the argument, and [21,
22] for mathematically rigorous derivations). The case of the qubit with a coherent
evolution discussed in 3.2 can also be treated, and the spikes have the same power law
statistics (up to a different prefactor). However, although spikes show up in numerical
simulations of dynamics in larger Hilbert spaces and seem ubiquitous, no theoretical
characterization is known beyond the qubit case.

8Note that we do not consider the probability that ε is reached more than once during �t and thus
that there could be several jump attempts. This is because the probability to reach ε during �t is
already much smaller than 1 for our choice of �t and thus probabilities of having more than one
attempt per �t are subleading.
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4.4 Are Spikes Real?

Now that we have precisely characterized them and are sure of their mathematical
existence, we should ask ourselves whether spikes are relevant. Are spikes real, out
there in the world, or just a modeling artifact? In fact, this question is far subtler than
it seems, and the answer depends on what ontological commitments one makes.

Classical spikes and hiddenMarkovmodels –Afirst questionwe could ask is to
know if spikes could appear classically, merely as the result of imperfect knowledge
of an underlying (well defined) jump process. This is indeed the case for the equation
we have focused on

dpt = λ (peq − pt ) dt + √
γ pt (1 − pt ) dWt (41)

which can be obtained as the real time probability of a hidden Markov model [18].
More precisely, consider a (classical) Markov process Rt (R for real) that can jump
randomly from the value 0 to the value 1 in such a way that, on average:

d

dt
R̄t = λ(peq − R̄t ) with R̄t = E[Rt ]. (42)

One can construct a model of (classical) continuous imperfect observation of this
process (say with repeated blurry pictures) and consider the filtered probability pf

t =
P[Rt = 1|blurry pictures up to t]. This filteredprobability pf

t encodes the knowledge
we have of the Markov process position Rt at time t using all past blurry pictures.
There exists a particular classical imperfect observation scheme such that pf

t verifies
exactly equation (41) [18]. Hence, in this context, spikes, which are still somehow
unexpected, can be explained as an artifact of our residual ignorance of the underlying
jump process. Even with the optimal filter, we cannot know the system arbitrarily
well because it jumps instantly and we know that it does! At the Bayesian optimum,
provided by the filter, one gets (perhaps surprisingly) a lot of false alerts (the spikes).

More generally, if the densitymatrix remains diagonal in the collapse basis (which
is the case for incoherent transitions), there exists a classical hidden Markov model
whose filtered probability verifies exactly the stochastic master equation we put
forward. In fact, in the continuous measurement context, SMEs can be understood
as the generalization to non-diagonal matrices of the Kushner-Stratonovich filter-
ing equations used in the context of classical estimation. Hence, so long as one
sticks with diagonal density matrices, one can always interpret the collapse as a
Bayesian updating of a state of knowledge about a well defined classical variable
that evolves independently of the collapse/measurement (that is, without mechanical
back-action). Naturally, this equivalence breaks down if the density matrix is not
diagonal during the evolution (for example if it evolves unitarily) as is the case in
the second example we considered in 3.2.

Quantum spikes and hidden variable theories – In the general case, the con-
venient classical interpretation can no longer explain the spikes away. One could
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still construct hidden variables9 doing discrete jumps (without spikes) but then their
jump probabilities would depend on the quantum state [17], and thus the spikes
would appear to be physical. Hence, while there are spikes that can be explained
classically, it seems there exists genuinely quantum spikes as well, which cannot be
dismissed as easily as an artifact of Bayesian updating.

A matter of ontology—In the end, to know if spikes would be real or not in the
context of a given continuous collapse model, one needs to say precisely what is
real in the first place, i.e. what the ontology of the theory is. A popular choice is
to take some expectation value over the state,10 i.e. 〈ψt |O|ψt 〉. For such a choice,
spikes are unequivocally real. But there are other possibilities, for example flashes
(or their continuous equivalent sometimes called “signal” in the continuousmeasure-
ment context). These latter ontologies are convenient in some cases, as they allow
to consistently couple the collapse model describing quantum matter with a classi-
cal sector (for example gravity [23, 24]). Further, for what interests us here, these
ontologies do not have spikes.

Trimming spikes by knowing the future—There is a third option, also inspired
from continuous measurement theory but which, to our knowledge, has never been
considered in the context of collapse models: forward-backward estimates (or rather
their quantum version). In the classical case, we saw that a filtered probability

p f
t := P [Rt = 1|{observations before t}] , (43)

encoding the knowledge one has in real time about a classical Markov process
had spikes. Another quantity, quite natural in the classical context, is the forward-
backward or a smoothed probability:

p f.b.
t := P

[

Rt = 1|{all past and future observations}] . (44)

This quantity can only be computed after all the observations have been carried, and
not in real time. Intuitively, it is easy to know a posteriori that a spike was just a spike
and that no real jumpwas about to happen, and thus the forward-backward probability
p f.b.

t should not have spikes. This intuition is confirmed by numerical simulations:
p f.b.

t is smoother (differentiable) and without spikes [18]. In the quantum context,
there is no unambiguous definition of a density matrix conditioned on the past and
the future. Different notions have been put forward, like the past quantum state [25]
and the smoothed quantum state [25, 26]. For the former, spikes disappear, but the
resulting state generically loses its density operator properties (which does not matter
if one just aims to define an ontology from an expectation value) while in the former
the output is still a bona fide quantum state ρ

f.b.
t but spikes are generically not tamed.

9Such hidden variable theories are easy to construct, and are essentially the discrete version of
Bohmian mechanics introduced by Bell in the context of quantum field theory. Including a contin-
uous collapse/measurement on top of such dynamics is done e.g. in [17].
10In the context of physically realistic collapse models, the operator is typically position dependent
and proportional to the regularized mass density.
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Summary—The reality of spikes depends on the choices we make. One of the
equations we obtained in the quantum context and that shows spikes can be obtained
from a (classical) hidden Markov model. In the latter, spikes live in our minds only:
nothing is spiky inNature, but our best real time knowledge is. Spikes vanish oncewe
look back and are only asked to tell a posteriori where the process was. This makes
it a bit unsatisfying to have the spikes be real in the quantum context, especially if it
implies giving them a reality as well in the cases that could be just as well described
by a classical hidden Markov model. This very minor aesthetic criterion could help
compare different collapse model ontologies.

5 Generalization and Open Problems

Let us summarize what is known on the mathematical front. For a finite dimensional
Hilbert space and a generic continuous collapse process, one can easily prove a
convergence towards pointer states as predicted by the Born rule. When a small
additional dynamics is added, we see the emergence of jumps in the fast collapse
regime. The statistics of these jumps can be computed in full generality. Another
feature, spikes, seem ubiquitous. However, they are quantitatively understood only
in the qubit case.

A first possible generalization is to go from a continuous collapse model to a
discrete one, and replace the diffusive equations we had with jump ones. Note that
there the jumps we would see are not the same as the emerging jumps between
pointers, but could be far smaller jumps in Hilbert space formally equivalent to weak
measurements as in the Ghirardi-Rimini-Weber model [27]. So long as the collapses
are not exactly projective, they introduces a new timescale, just like the γ we had in
the continuous case. When the frequency of discrete collapses is sent to infinity, one
obtains jumps between pointers that can be quantified exactly just as before [16, 17].
However, while spikes are numerically present as well in this context and seem to
have the exact same power law statistics, no proof is known even for the qubit case.

A second generalization would be to characterize spikes precisely for Hilbert
spaces of arbitrary finite dimension. This is a surprisingly non trivial task. One
reason is that in higher dimensions, it is unclear to know on which submanifold of
the Hilbert space the spikes happen, as there is no longer a single path connecting
pointers. In general, knowing on which submanifold the trajectories stay for a given
collapse operator is a hard question, which has been solved only in simple cases [28].

Finally, it would be interesting to rigorously extend the results we presented here
tomore realistic situationswithHilbert spaces of infinite dimension. A lot of progress
was made on the mathematical physics front in the recent years, by Ballesteros et
al. [29] in the pure collapse setup and Bauer et al. [30] in the case where collapse
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competes with other simple dynamics.11 However, the general case and an extension
to the even larger Hilbert spaces of quantum field theories remain an open-problem.

6 Summary and Conclusion

Continuous collapse models on finite dimensional Hilbert spaces give rise to rich
dynamics, already in the simplest case yielding the stochastic differential equation

dpt = λ (peq − pt ) dt + √
γ pt (1 − pt ) dWt . (45)

When pure collapse is considered [λ = 0 in (45)], one obtains a progressive reduction
of the quantum state to one (random) eigenvector (or pointer) of the collapse operator
[p = 0 or 1 in (45)]. This happens because collapse acts as a pure noise term which
vanishes only on these eigenvectors, which are thus fixed points of the dynamics.

The fact that this reduction is progressive and not instantaneous allows to com-
pare its rate γ to other system dynamics (unitary or dissipative). Generically, when
the collapse process is much faster than other dynamics [γ � λ in (45)], we see
the (expected) emergence of quantum jumps between the pointers. The latter are
not strictly instantaneous, and take roughly γ−1 to complete. These jumps can be
characterized precisely and we note two important facts:

1. The jump rates decrease as a function of the collapse rate γ when their origin
is a Hamiltonian coupling (Zeno effect), whereas they do not depend on γ for
dissipative transitions (no Zeno effect), as is the case for (45),

2. The jump rates generically dependon the eigenvalues of the collapse operator and
not just on the eigenvectors as one would expect for projective measurements.

Finally, the jumps are not the whole story. Perhaps surprisingly, they come decorated
with spikes, thin excursions that never complete into jumps. Spikes are power law
distributed and prevent any strong form of convergence towards the jump process.
They seem ubiquitous and the proof of their existence and rigorous characterization
has been done in simple cases. However, their ontological status (are spikes real or
just in our mind?) is subtle, especially when collapse models are compared with
hidden Markov models.

In the end, it is not entirely clear if the fine characterization of collapse models in
the overly simple context we have discussed has any physical relevance. It is possible
that spikes, for example, will remain a mathematical curiosity and nothing more.
Nonetheless, even then, this study will have put into light a stochastic differential
equation (45) with a surprisingly rich behavior, that sparked interest in mathematics
[19, 22], and even finance [33].

11An example of such competition in the continuous case is given by the QMUPL model for a free
particle where H ∝ P̂2 and O ∝ X̂ . For this particular model, a lot is known rigorously (see e.g.
[31, 32] and references therein) and the dynamics is very rich, with behavior already qualitatively
distinct from the simpler discrete setting we considered.
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Collapse Models, Relativity, and Discrete
Spacetime

Daniel J. Bedingham

Abstract In collapse models, the induced narrowing of the wavefunction typically
leads to an increase in energy. For realistic non-relativistic models, the parameters
of the model can be set such that the energy increase is small enough to be within
experimental bounds.However, for relativistic versions of collapsemodels the energy
increase is divergent. Here we show how to regulate this divergent behaviour by
formulating a collapse model on a discrete Lorentzian spacetime. The result is a
relativistic collapse model with finite energy production. This energy increase can
be made sufficiently small with a reasonable choice for the discreteness scale of
spacetime.

1 Introduction

In practical applications of quantum theory there is a quantum state with a rule for
how it changes with time when the system is left alone (unitary dynamics described
by the Schrödinger equation), alongwith a collapse rule to usewhen ameasurement is
made. The collapse rule determines, from the quantum state, the various probabilities
for the possiblemeasurement outcomes, and updates the state according towhich one
was realised. The fundamental problem is that both of these rules involve a change to
the state, but the question ofwhen to use one or the other is determined by a judgement
as to whether the process involved is a measurement or not. This is no good for a
supposedly fundamental theory. Admittedly, for most practical applications, whether
or not something is a quantum measurement is clear, but as we try to make larger
quantum systems (or smaller measuring devices) the distinction will become less
clear.
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There are various responses to themeasurement problem, none ofwhich can claim
general acceptance. Collapse models are one such response [1–5], the aim being to
find a unified dynamical rule which reproduces the usual two rules of standard quan-
tum theory (unitary state dynamics or state collapse during measurement) approx-
imately in situations where they would respectively be expected. This removes the
need to form a view about whether a processes is a measurement in order to explain
what happens.

Collapse models have certain advantages. In the orthodox picture of quantum
theory the state describes the various possibilities and their probabilities of occur-
ring, and measurement outcomes are our direct contact with the quantum world.
Collapse models closely resemble this picture (but without the need to distinguish
measurements), as will be explained in Sect. 2 where we outline the general structure
of collapse models. Also, collapse models can be made to satisfy the principle of
relativity, meaning that they can be expressed in terms of covariant equations with
no dependence on a particular frame of reference. This will be outlined in Sect. 3.

In Sect. 3 it is also shown that basic relativistic collapse models suffer from diver-
gent behaviour. This is addressed in the remainder of the article, Sects. 3 and 4, where
we construct a collapse model on a discrete Lorentzian spacetime. Specifically we
use a scalar quantum field theory defined on a causal set spacetime structure. Causal
sets as a description of spacetime are primarily motivated by attempts to combine
quantum theory with gravity. For us, the discrete spacetime structure regulates the
divergent behaviour of the collapse model.

2 Collapses Are Like Measurements

In a generalised quantum measurement (see Ref. [6]) there are a collection {M̂m}
of measurement operators. The index m refers to the measurement outcome. If the
quantum state is |ψ〉, then the probability of the measurement outcomem is given by

p(m) = 〈ψ|M̂†
m M̂m |ψ〉

〈ψ|ψ〉 , (1)

and the (unnormalised) state of the system after the measurement with outcome m
changes by

|ψ〉 → M̂m |ψ〉. (2)

In order that the probabilities for the different outcomes sum to 1, the measurement
operators must satisfy the completeness relation

∑

m

M̂†
m M̂m = 1. (3)
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This definition encompasses familiar projective measurements (where M̂m = P̂m
with P̂i P̂j = δi j P̂i ), and weak measurements. For example, for a qubit state with
basis vectors |0〉 and |1〉wecan forma set ofmeasurement operators {M̂0 = (|0〉〈0| +
K |1〉〈1|)/(1 + K 2), M̂1 = (K |0〉〈0| + |1〉〈1|)/(1 + K 2)} with 0 < K < 1. Given
an initial state of the form |ψ〉 = a|0〉 + b|1〉, and a measurement outcome m = 0,
the resultant state using Eq. (2), is

|ψ〉 → M̂0|ψ〉 ∝ a|0〉 + Kb|1〉. (4)

This measurement does not precisely determine the basis state to which the qubit
belongs, correspondingly it has a milder impact on the state than a projective mea-
surement. The effect in this case is to enhance the amplitude of |0〉 relative to |1〉.1

The structure of a collapse model generally involves a sequence of operations of
this kind occurring spontaneously. The sense in which this happens is that at certain
times, the state is randomly impacted in the same way as described by Eq. (2) with
probability of the particular outcome m given by Eq. (1). There is no measurement
as such. The times at which these collapses take place may be random and uniformly
distributed in time, or regular and evenly spaced, or various other possibilities.

The well-known Ghirardi-Rimini-Weber (GRW) model [3] takes this form. As
originally presented, the model concerns a set of distinguishable particles, labelled
by i . For each particle there is an independent set of random collapse times with
Poisson (uniform) distribution of rate λ. For particle i the collapse (or measurement)
operator takes the form

L̂ i (zt ) = 1

(2πσ)3/4
e− (x̂i−zt )2

4σ2 . (5)

Here x̂i is the (3-dimensional) position operator for particle i and zt ∈ R3 is a random
variable which plays the role of the measurement outcome. It is easy to check that
this operator satisfies the completeness relation

∫
d3zL̂2

i (z) = 1, (6)

equivalent to Eq. (3), but for a Hermitian operator with a continuously valued random
outcome.

The way the model works is that when the collapse operator spontaneously acts
at time t say, the effect on the state is equivalent to that of performing a weak
measurement of the particle’s position. This has the effect via Eq. (2) of localising
the state of the particle to within a distance σ of the random outcome zt . The variable
zt can, by themeasurement analogy, be thought of as a weak estimate of the particle’s
position as this time.

1Weak measurements such as this can be brought about by the use of a projective measurement on
an auxiliary quantum system which interacts with the system of interest.
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By having a very low rate of collapse for individual particles λ it is possible for
these collapses to have a negligible effect on small quantum systems forwhich unitary
state dynamics already provide an excellent description (the likelihood of a collapse
occurringwhenwe look is negligible). However, for a large scale superposition of the
form ‘all particles close to x1 or all particles close to x2’, the states of the individual
particles are entangled and it only takes the collapse of one constituent particle to
collapse the entire bulk object. If there are a lot of particles, the probability of one
of them experiencing a collapse in a short time can be large. This means that, for
example, a macroscopic pointer in a quantum measurement will rapidly collapse to
one position or another. The GRW model can therefore describe both the unitary
behaviour of small systems and the collapse behaviour of quantum measurement in
a single dynamical framework.

There remains the question of how to make a correspondence between this model
and the physical world of our experience. In order to do this we must be able to deter-
mine definite locally defined quantities from the model which represent observable
features of the world. Although various ways of teasing out a physical world from
this model have been proposed, the most natural one (in my view) takes into account
the analogy between collapses and generalised quantum measurements to treat the
random outcomes zt (which in the generalised quantum measurement case would be
viewed as the weakly measured position outcomes) as representative of the location
of matter. The collection of all these collapse locations {zt } for all particles, each
with an independent Poisson distributed sequence of collapse times, describes the
world: where these collapses are dense there is matter (see Ref. [7]).

To be clear, in this picture the {zt } describe the physical world, and the quantum
state is a means of estimating those {zt } in the future based on what we know about
the past (which means those {zt } in the past).

The GRW model is not the only collapse model. For other models, these same
ideas can be translated.We note in particular that continuous collapse models (which
employ a continuous diffusion process) can be viewed as a limit case of a discrete
collapse process.

3 Constructing a Relativistic Collapse Model

For a relativistic collapse model [8–10] our primary demand is that the description
should be covariant, that is we should be able to write down the equations in a form
that doesn’t depend on the frame of reference (or more generally the coordinates
on a given patch of spacetime). This is more or less guaranteed if we can express
the collapse process in tensor form. Suppose we consider a relativistic quantum field
with state |�〉. In the interaction picture the unitary dynamics of the state is described
by

|�σ′ 〉 = Û (σ′,σ)|�σ〉, (7)
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with

Û (σ′,σ) = T e−i
∫ σ′
σ dV Ĥint(x), (8)

where Ĥint(x) is the interaction Hamiltonian density, dV is the spacetime volume
measure, and T is the time ordering operator. The unitary operator Û (σ′,σ) describes
the change in state from spacelike hypersurface σ to spacelike hypersurface σ′. The
spacelike hypersurface generalises the idea of a timeslice. The state is given with
reference to some σ sincewe are interested in the state at some point in time. It should
be the case that nowhere is σ′ to the past of σ—the unitary dynamics represent a
change of the state as we move forward in time.

Provided that Ĥint(x) is a Lorentz-scalar operator then the equations are covariant.
Furthermore, in order for Eq. (7) to be unambiguously defined, we require that
[Ĥint(x), Ĥint(y)] = 0 for spacelike separated x and y. This ensures that the ordering
of spacelike separated interactions has no effect on the overall outcome and allows
us to combine unitary operators, for example

Û (σ′′,σ) = Û (σ′′,σ′)Û (σ′,σ), (9)

provided σ′ is nowhere to the past of σ and nowhere to the future of σ′′. The result is
that the dynamics is foliation independent, meaning that when we advance the state
from σ to σ′′, the result is independent of any intermediate state σ′ we may choose
to pass through.

In order to construct a satisfactory relativistic model of collapses we first assume
that the collapse events are associated to points in spacetime (rather than just points
in time as with GRW) and that they are distributed uniformly across spacetime
(i.e. Poisson distributed over invariant spacetime volume). This gives an invariant
distribution of collapse events. We assume that if there is a collapse event at point x ,
then when the state advances to a surface σ to which the point x belongs it changes
by

|�σ〉 → Ĵx (zx )|�σ〉, (10)

where Ĵx , the collapse operator at point x , is a Lorentz-scalar operator, and zx is the
random outcome. The outcome should be drawn from a probability distribution

p(zx ) = 〈�σ| Ĵx (zx )† Ĵx (zx)|�σ〉
〈�σ|�σ〉 , (11)

and therefore the collapse operators must satisfy

∫
dz Ĵx (z)

† Ĵx (z) = 1 (12)
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(for continuously-valued z). In addition we must stipulate that

[ Ĵx (zx ), Ĵy(zy)] = 0; [ Ĵx (zx ), Ĥint(y)] = 0, (13)

for spacelike separated x and y. Again this ensures that the ordering of spacelike
separated interactions and collapse events has no effect on the outcome.

Given these rules it can be shown [10] that the joint distribution for the outcomes
of a set of collapses occurring between σ and σ′ (with σ′ nowhere to the past of σ),
is independent of the foliation of spacetime used to pass between these surfaces. In
addition, given the outcomes for this set of collapses, then the final state associated
to the hypersurface σ′ is unambiguously defined.

The construction is therefore independent of frame or foliation apart from the need
to specify initial and final hypersurfaces σ and σ′. However, this is no problem: the
initial surface σ is there to specify the known history that we take to define the initial
state (with our interpretation of the {zx } as determining local physical quantities, by
this we mean that we know {zx } to the past of σ sufficiently well to determine the
state on σ); the final surface σ′ simply sets the region over which collapse outcomes
are of interest.

The challenge is then to find a collapse operator which satisfies these rules. For a
real scalar quantum field with field operator φ̂(x) this is not hard, for example [11]

Ĵx (zx ) =
(

β

π

)1/4

e− β
2 (φ̂(x)−zx )2 , (14)

where β is some fixed parameter which we can call the collapse strength (note that
there is also another fixed parameter representing the density of collapse events in
spacetime, call it μ). With a standard interaction Hamiltonian of the form φ̂4(x), all
commutation properties above follow from the fact that the field operator commutes
with itself at spacelike separation.

The way that this model works is that the {zx } are equivalent to the results of
weak measurements of φ̂(x). This gives a measure of the amount of matter at a given
point in spacetime. The {zx } therefore represent the distribution of matter throughout
spacetime.

The problem ariseswhenwe examine the energy increase caused by these collapse
events [11]. It is a general feature of collapse models that as collapse leads to a
narrowing of the wave function, there is an increase in the average energy of the
state. In the present case, as collapse results in a narrowing of the state of φ̂(x), there
is an increase in the variance of the conjugate momentum and therefore an average
increase in energy. This would all be fine if this energy increase were sufficiently
small to be consistent with experimental bounds, but it turns out that there is an
infinite rate of increase of energy density. To see this calculate the expected change
of energy for a collapse event at point x in the limit that β is small:
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�E =
∫

dz
〈�σ| Ĵx (z)[Ĥ , Ĵx (z)]|�σ〉

〈�σ|�σ〉 = βδ3(x = 0)

4
(15)

where Ĥ is the free field Hamiltonian, and δ3(x = 0) = 1/(2π)3
∫
d3peix·p|x=0.

For the remainder of this article we present a possible solution to this problem
which is to regulate this energy increase by working in a discrete form of Lorentzian
spacetime. The basic argument is that if spacetime is discrete, then there is some
fundamental length scale a which means that δ3(x = 0) ∼ a−3.2 This is potentially
a very large number, yet it leaves the possibility of setting the remaining parameters
of the model (the collapse strength β; and the density of collapse events in spacetime
μ) such that energy increases are small yet collapse effects sufficient to account,
through {zx }, for the macro world of our experience.

4 Discrete Spacetime, Quantum Fields, and Collapses

A causal set [12, 13] is a set of points with a partial order relation	 such that if x 	 y
then the point x is understood to be in the causal past of y (including the possibility
that x = y). That the ordering is partial means that two points x and y do not have
to satisfy either x 	 y or y 	 x . In these cases it is understood that the points are
not causally related. We impose three conditions on the causal set: (i) Reflexivity—
(x 	 x); (ii) Antisymmetry—(x 	 y 	 x =⇒ x = y); and (iii) Transitivity—(x 	
y 	 z =⇒ x 	 z ). These conditions would be satisfied by points on a Lorentzian
manifold with no closed causal curves. Finally, the discreteness of spacetime is
expressed by a further condition that if x 	 y, then there are a finite number of
points z such that x 	 z 	 y. Note that if x 	 y and x �= y we can write x ≺ y.

Comparison between a causal set and a Lorentzian manifold is made using the
idea of a faithful embedding: a causal set can be faithfully embedded in a Lorentzian
manifold if the causal set can be mapped onto points in the manifold in such a way
that the partial order relations match the causal relations between the points on the
manifold and that the points are uniformly distributed on average over spacetime

2This can be motivated by considering a one-dimensional space of length L as a regular array of N
points. The kronecker delta function can be written

δnm = 1

N

N∑

k=1

e2πi
k
N (n−m), (16)

and so if we define xn = Ln/N and pk = 2πk/L so that �x = a = L/N , and �p = 2π/L , then

a−1δnm = 1

2π

N∑

k=1

�peipk (xn−xm ). (17)

This is the discretised version of the Dirac delta function δ(xn − xm) in one dimension. Setting
m = n results in δ(x = 0) ∼ a−1. We also note that, by the same argument δ(p = 0) ∼ L/(2π).
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volume. It is a conjecture of the causal set approach to discrete spacetime that a
given causal set cannot be faithfully embedded in two Lorentzian manifolds that
are dissimilar on scales greater that the discreteness scale (taken from the number
of points per unit volume of spacetime). The idea is that the manifold picture of
spacetime can then be abandoned in favour of the more fundamental casual set
picture. In this new picture, the causal structure of spacetime is determined by the
partial ordering of the causal set, and each point in the causal set can be considered
to contribute a unit spacetime volume element.

The immediate challenge for our purpose is to define a quantum field on a causal
set. In order to do this we follow Ref. [14] (see also Ref. [15]), here providing only
a bare outline. To begin we review some features of scalar quantum field theory in
Minkowski space. For a scalar quantum field with massm, the advanced and retarded
propagators are defined by

iGadv(x − y) = 〈0|
[
φ̂(x), φ̂(y)

]
|0〉�(y0 − x0)

−iGret(x − y) = 〈0|
[
φ̂(x), φ̂(y)

]
|0〉�(x0 − y0), (18)

where |0〉 is the vacuum state and � is the Heaviside step function. The Pauli-Jordan
function is defined by

i�(x − y) = 〈0|
[
φ̂(x), φ̂(y)

]
|0〉, (19)

and so

�(x − y) = Gadv(x − y) − Gret(x − y). (20)

The field operator can be written in terms of creation and annihilation operators
as φ̂(x) = ∫

d3p/[(2π)3
√
2ωp]

[
e−i p·x â(p) + eip·x â†(p)

]
with p · x = ωpx0 − p ·

x, ωp = p2 + m2, [â(p), â†(q)] = (2π)3δ(3)(p − q), [â(p), â(q)] = 0, â(p)|0〉 = 0,
and so the Pauli-Jordan function is

i�(x − y) =
∫

d3p
(2π)32ωp

[
e−i p·(x−y) − eip·(x−y)

]
. (21)

Now
∫

d4yi�(x − y)e±iq·y = ∓2πδ(p0 = 0)

2ωq
e±iq·x , (22)

where δ(p0 = 0) = 1/(2π)
∫
dx0eip0x0 |p0=0 (to make sense of this we can think of

spacetime as a regular lattice of finite size, see footnote[2]). We can therefore regard
the mode functions e±iq·x as the eigenfunctions of the Pauli-Jordan function with
eigenvalue ∓2πδ(p0=0)/2ωq.
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On the other hand, for a causal set with N elements which can be faithfully
embedded into 4DMinkowski space (note that such a set is easily found by sprinkling
points in Minkowski space uniformly over spacetime volume and determining the
partial ordering from the causal relations between points) we can define an N×N
matrix [16]

Kret = aL(I − abL)−1, a =
√

μ

2π
√
6
, b = −m2

μ
, (23)

where μ is the density of points sprinkled in Minkowski space, I is the N × N
identity matrix, and L is the N × N link matrix defined such that

Lxy =
{
1 if x ≺ y and there are no points z such thatx ≺ z ≺ y
0 otherwise.

(24)

The matrix Kret represents a weighted sum over paths through the causal set and with
the given choices of parameters a and b, it is found to closely resemble the retarded
propagator Gret for a scalar field on a 4DMinkowski space [16]. We therefore regard
it as the causal set equivalent of the retarded propagator. We can define an advanced
propagator as the transpose of the retarded propagator

Kadv = KT
ret, (25)

and the causal set analogue of the Pauli-Jordan function

� = Kret − Kadv. (26)

Since the matrix i� is skew-symmetric and Hermitian, then its rank is even and its
non-zero eigenvalues appear in pairs related by a change of sign. We can then divide
the eigenfunctions into pairs ui , vi such that

i�ui = λi ui , i�vi = −λivi , (27)

with eigenvalues λi > 0 and with i = 1, . . . , s where 2s is the rank of i�. We are
free to set ui = v∗

i , u
†
i u j = v

†
i v j = δi j , and u†i v j = 0. Referring to the continuum

case (22) we therefore treat the ui , vi as mode functions. We use them to construct a
field operator as follows: define a vacuum state |0〉; for each mode i define creation
and annihilation operators âi , â

†
i which satisfy [âi , â†j ] = λiδi j , [âi , â j ] = 0; basis

states take the form (â†1)
n1(â†1)

n1 · · · (â†s )ns |0〉; construct a scalar field operator as

φ̂x =
s∑

i=1

[
(ui )x âi + (vi )x â

†
i

]
. (28)

Note that here, (ui )x means the x th element of the N vector ui .
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To see that this construction gives the correct result in the continuum limit we
label the eigenstates by p and set

(up)x = e−i p·x
[(2π)4δ4(p = 0)]1/2 ; λp = 2πδ(p0 = 0)

2ωp
; â(p) = âp

[
(2π)3δ3(p = 0)

λp

]1/2

,

(29)

(the eigenfunction/eigenvalues are taken from (22) with the eigenfunctions now nor-
malised such that u†puq = v†

pvq = δpq). This results in annihilation and creation oper-
ators satisfying [â(p), â†(q)] = (2π)3δ3(p − q), [â(p), â(q)] = 0; and the scalar
field operator becomes

φ̂x =
∑

p

[
(up)x âp + (vp)x â

†
p

]

=
∑

p

[
e−i p·x

[(2π)3δ3(p = 0)
√
2ωp]

â(p) + eip·x

[(2π)3δ3(p = 0)
√
2ωp]

â†(p)

]

=
∫

d3p

[(2π)3
√
2ωp]

[
e−i p·x â(p) + eip·x â†(p)

]
, (30)

where we have used d3p ∼ δ−3(p = 0) (see footnote [2]). The scalar quantum field
constructed on the causal set therefore has the correct continuum limit.

Given a causal set with scalar quantum field operator defined in the way outlined
above we envisage an interaction picture as follows: start with some initial state |�〉;
impose some total ordering on the points of the causal set which respects the partial
ordering (i.e. if we denote the total order relation by <, then x ≺ y =⇒ x < y);
go through the points in order, at point x , for a φ̂4-type interaction, the state changes
according to

|�〉 → Ûx |�〉, Ûx = e−igφ̂4
x , (31)

where g is a coupling constant. The overall outcome will be independent of the total
ordering (provided that partial ordering is maintained) if [φ̂x , φ̂y] = 0 whenever
x ⊀ y and y ⊀ x . To prove this use

[φ̂x , φ̂y] =
∑

i j

{
(ui )x (v j )y[âi , â†j ] + (vi )x (u j )y[â†i , â j ]

}

=
∑

i

{
λi (ui )x (vi )y − λi (vi )x (ui )y

}

=
∑

i

{
λi (ui )x (u

†
i )y − λi (vi )x (v

†
i )y

}
= i�xy = i(Kret)xy − i(Kadv)xy .

(32)
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Now by construction (Kret)xy = 0 if y ⊀ x and (Kadv)xy = 0 if x ⊀ y. This proves
the result.

To make the theory into a collapse theory we use the same idea. As we go through
the totally ordered points, at point x the state changes according to

|�〉 → Ĵx (zx )|�〉, Ĵx (zx ) =
(

β

π

)1/4

e− β
2 (φ̂x−zx )2 , (33)

whereβ is the collapse strength and zx is a randomvariable occurringwith probability

p(zx ) = 〈�| Ĵx (zx )† Ĵx (zx )|�〉
〈�|�〉 . (34)

The variable zx is equivalent to the result of a weak measurement of φ̂x and so
represents the ‘amount of matter’ at point x . It is straightforward to show that the
joint probability for a set of collapses is independent of the total ordering (provided
that the partial ordering ismaintained); and also that for a given sequence of points {x}
with given collapse outcomes {zx }, the final state is independent of the total ordering
(cf. Ref. [10]).When the causal set is faithfully embedded into a Lorentzianmanifold,
these statements translate into the fact that the dynamical process is independent of
frame or foliation.

The total particle number operator is N̂ = ∑
i â

†
i âi/λi . During a collapse event

the change in total particle number is found to be

�N =
∫

dz
〈�| Ĵx (z)[N̂ , Ĵx (z)]|�〉

〈�|�〉 = β

2

s∑

i=1

λi (ui )x (u
†
i )x . (35)

This can be expected to be finite.

5 Discussion

Rewriting physics within this new fundamental picture presents severe challenges.
Ideally one should be able to derive all features starting with only the causal set and
any additional structure that has been added (in our case the scalar quantumfield). Let
us reasonably assume that the picture can be well approximated by a scalar quantum
field theory on a Lorentzian manifold. Let us also reasonably assume that in the non-
relativistic limit, this collapsemodel canbewell approximatedbyoneof the candidate
non-relativistic collapse models: GRW or the Continuous Spontaneous Localisation
(CSL) model. This being the case, we should expect that the collapse lengthscale of
the non-relativistic model, which represents the lengthscale over which the effects
of a collapse event are correlated, should be given by the natural lengthscale of the
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discrete space (this isμ−4 whereμ is the density of causal set points embeddedwithin
the corresponding manifold).

In reference [17] it is argued that in order to be compatible with experimental
evidence (large scale interferometry, spontaneous heating of matter) and to be philo-
sophically reasonable (i.e. to predict collapse of perceptible objects in an imper-
ceptible time scale), the collapse lengthscale in either GRW or CSL models should
be greater than approximately 10−10 metres. For a discreteness scale this seems to
be quite large.3 It is certainly much larger than the expected discreteness scale, the
Planck length, 10−35 m. However, even with a Planck length discreteness scale, it
would be possible to define a field φ̂x on only a uniformly distributed subset of points
from the full causal set (with density < (10−10m)−4). The discreteness scale of this
field would then be > 10−10 m making it viable collapse model.

The general construction is not limited to Minkowski spacetimes. For general
curved spacetimes we could ambitiously envisage that the curvature is sourced by
the matter/energy distribution described by {zx } thereby removing the need for a
quantum gravity [18]. In the context of the causal set construction this would mean
that when adding points to the future frontier of a causal set (this should be done in
such a way that no new point can precede an existing point), the order relations made
with existing points should be dependent in some way (perhaps stochastically) on
{zx }. This is complicated by the fact that in order to determine the state and the φ̂x

operators we should know the full causal set so that we can write down the complete
set of available modes. Therefore, in order to describe the matter content of space,
we must first know the complete structure of spacetime. This may be a problem for
practical determination of the unknown future but is not necessarily a problem for
consistency of the theory:we need only establish a correlation betweenmatter/energy
distribution {zx } and spacetime structure. One might hope that this could be done in
such a way as to correspond to the Einstein equation.
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Opto-Mechanical Test of Collapse Models

Matteo Carlesso and Mauro Paternostro

The gap between the predictions of collapse models and those of standard quantum
mechanics widens with the complexity of the involved systems. Addressing the way
such gap scales with the mass or size of the system being investigated paves the way
to testing the validity of the collapse theory and identify the values of the parameters
that characterize it.

Despite increasing sensitivities are taking experiments closer to working points
where the potential differences between collapse-based formulations and standard
quantum theory should become apparent, the task of finding the precise value of the
parameters of a given collapse models is nevertheless difficult. In fact, environmental
decoherence—having at the statistical level the same signature as collapse models—
could mask any collapse-induced effect, thus biasing the interpretation of related
experimental observations.

The current efforts aimed at the test of collapse models can be notionally split
into two broad classes: interferometric and non-interferometric tests. The former,
which aim at directly probe the validity of the quantum superposition principle, pro-
vide a natural test for any collapse model. They rely on the creation of a spatial
superposition and, after a suitable time of free evolution—necessary for the prop-
agation of the collapse effects—on the subsequent measurement of its interference
contrast. The comparison of such contrast, which is weakened by the environmental
and collapse noises, with the predictions of quantum mechanics provides experi-
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mental upper bounds to the collapse parameters. The most successful experiments in
this context have been performed using matter-wave interferometry and are exten-
sively discussed elsewhere [cf. Chap. 26]. Here we focus on the second class of
experimental assessments, namely the non-interferometric one, with the declared
goal of illustrating their potential for the successful falsification of collapse models
in close-to-state-of-the-art platforms.

The remainder of this Chapter is organised as follows: In Sect. 1 we review the
recently proposed non-interferometric approach to the testing of collapse models.
Sect. 2 specialises our assessment to the opto-mechanical platform. In particular, we
focus on the description of two recent thought experiments, which have paved the
way to the design of experimental routes to the falsification of collapse mechanisms.
In Sect. 3 we assess quantitative bounds provided by a set of experiments that broadly
fall into the category of non-interferometric settings. Finally, Sects. 4 and 5 address
the open questions linked to plausible extensions of standard and nearly canonical
formulations of collapse theories and the use of rotational degrees of freedom of
mechanical rotors as ultra-sensitive tools for the inference of the minuscule effects
of collapse models.

1 Non-interferometric Experiments: A New Perspective in
Collapse Model Testing

Differently from interferometric tests, where a superposition needs to be created,
sustained and finally measured, non-interferometric assessments tests do not rely on
the availability of high-quality non-classical resource states. A plethora of differ-
ent experiments fall in this class, from those involving the x-ray radiation sponta-
neously emitted from Germanium (see Chaps. 18 and 28) to those focussing on the
change of the internal energy of matter-like systems [1–3], from the monitoring of
the free expansion of cold atoms [4] to experiments based on the dynamics of opto-
mechanical systems, which are currently considered to be one of the most promising
platforms for the delicate discrimination between collapse-based models an standard
quantum mechanics.

Here, we review the proposals put forward in Ref. [5–7], which have planted the
seeds for the opto-mechanical exploration of collapsemodels via non-interferometric
approaches. For concreteness, we will focus on the Continuous Spontaneous Local-
ization (CSL) model [8–10], which is characterized by parameters λ and rC: the first
is the collapse rate, while the second is its correlation distance.

To introduce the effects induced by the CSLmodel, we consider a confined system
of mass m whose dimensions are, for the sake of simplicity, point-like. The system
is initially in thermal equilibrium at temperature T , which we shall assume to be
small so as to make thermal fluctuations irrelevant. The confining mechanism is then
switched off and the system is let to freely evolve for a time t , when measurement of

http://dx.doi.org/10.1007/978-3-030-46777-7_26
http://dx.doi.org/10.1007/978-3-030-46777-7_18
http://dx.doi.org/10.1007/978-3-030-46777-7_28
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the position of the system is performed. During the free evolution, the effect of the
CSL mechanism can be read out in the spread of the position, which reads

〈x̂2(t)〉 = 〈x̂2(t)〉QM + λ�
2t3

2m2
0r

2
C

, (1)

where m0 is the mass of a nucleon, 〈x̂2(t)〉QM gives the contribution due to quantum
mechanics, and the last term is due to the CSL effect. There is a qualitative difference
between the evolution of the spread due to quantummechanics (which is∼ t2) and the
contribution arising from the collapse mechanism (∼ t3). The diffusion induced by
the environment has a behaviour similar to the one due the collapse mechanism [11].
On this basis, a way to extrapolate the parameters of CSL would pass through the
observation of the diffusive Brownian process and the consequent establishment of
bounds on the collapse parameters. This idea was put forward in Ref. [12], which
considered a levitated charged nanosphere in a Paul trap supported by an optical
cavity [the latter being needed for passive cooling of the system, cf. Fig. 1a]. Clearly,
the standard decoherence sources, such as thermal photon emission, absorption and
scattering aswell as the collisionwith the residual gas particles, would also contribute
to the diffusive motion of the system. The analysis performed in [12, 13] is, in this
context, particularly useful as reporting a comparison between possible diffusive
contributions from collapse models and analogous terms resulting from standard
decoherence mechanisms. By following ideas akin to those pursued in Ref. [12],
quantitative bounds on theCSLparameterswere derived froma cold atomexperiment

(b)(a)

Fig. 1 Graphical representation of two opto-mechanical setups proposed for testing collapse mod-
els. a: A Paul trap, which provides the mechanism for the levitation of a charged nanoparticle, is
supported by an optical cavity, required for the particle cooling. Picture taken from Ref. [12]. b:
End-cavity opto-mechanical setup as proposed in Refs. [5–7] : the cavity field is sustained by an
external laser at frequency ω0. The end mirror resonates at frequency ωm and is subject to envi-
ronmental noise—described as Brownian motion at non-zero temperature and associated with the
noise operator ξ—and collapse noise (described by the operator λ). Picture taken from Ref. [5].
The detection scheme is the same in both the setups: a quarter-wave-plate (λ/4-plate or QWP) and
a polarizing beam splitter (PBS) are used to redirect the light leaving the cavity to a detector for the
reconstruction of the optical DNS
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Fig. 2 Exclusion plots for the CSL parameters with respect to the GRW’s and Adler’s theoretical
values [10, 20]. Left panel—Excluded regions from interferometric experiments: molecular inter-
ferometry [21, 22] (blue area), atom interferometry [23] (green area) and experiment with entangled
diamonds [24] (orange area). Right panel—Regions of the parameter space of CSL excluded by a
set of non-interferometric experiments: AURIGA, LIGO and LISA Pathfinder [25, 26] (red, blue
and green areas, respectively), cold atoms [27] (orange area), phonon excitations in crystals [1] (red
line), blackbody radiation from the neutron star PSR J 1840-1419 and from Neptune [3] (dashed
and continuous blue lines, respectively), X-ray measurements [14, 28–31] (light blue area) and
nanomechanical cantilever and its improved version [32, 33] (purple areas with dashed and contin-
uous bound). The grey color highlights the region excluded on the basis of theoretical arguments [22]

[4], where the free expansion of the gas cloud was characterized and compared with
the collapse-induced diffusion. The corresponding upper bounds are reported in
Fig. 2.

2 Opto-Mechanical System as a Probe of the Collapse
Mechanism

Let us now turn to the role played by opto-mechanical in the assessment of collapse
models. They focus on an indirect effect provided by the collapse mechanism, which
is an extra Brownian-like motion of the center of mass of the mechanical component
of an opto-mechanical system. Such motion leads to an extra diffusion mechanism
that can be detected through standard experimental techniques and, under suitable
conditions, provide information on the undergoing collapse mechanism. In order to
fix the ideas, we assume a single-sided Fabry-Perot cavity endowed with an end-
cavity mechanical oscillator and driven by an external laser, which also provides the
mechanism for the measurement of the mechanical motion [cf. Fig. 1b]. The latter
is influenced by a phononic environment (at non-zero temperature) and, allegedly,
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the CSL-like collapse noise. The action of the latter can be added to the Langevin
equations governing the opto-mechanical motion, which read [5]

dx̂t
dt

= p̂t
m

, and
d p̂t
dt

= −mω2
m x̂t + �χâ†t ât − γm p̂t + ξ̂t + F̂CSL

t , (2)

where ωm and γm are the harmonic frequency of the mirror and its damping con-
stant, χ denotes the coupling of the mechanical oscillator with the cavity field,
whose creation and annihilation operators are â† and â respectively. Here, ξ̂t and
F̂CSL
t denote the stochastic forces due to the environment and the collapse mech-

anism, respectively. Indeed, the collapse action can be mimicked by adding to the
Schrödinger equation a stochastic potential V̂CSL, whose corresponding force is given
by F̂CSL(t) = i

�
[V̂CSL(t), p̂]. In the case of CSL we have [14]

V̂CSL = −�

∑

j

m j

m0

∫
dx �̂

†
j (x, t)�̂ j (x, t)N (x, t), (3)

where �̂
†
j (x, t) and �̂ j (x, t) are respectively the creation and annihilation operators

of a j-type particle of mass m j , and N (x, t) is the a stochastic noise inducing the
collapse, whose mean and correlator are

E[N (x, t)] = 0, and E[N (x, t)N (y, s)] = λδ(t − s)G(x − y), (4)

with E the stochastic average over the noise and G(x) = e−x2/4r2C . Equation (4) gives
a clear interpretation of λ and rC as, respectively, the collapse rate and the noise
correlation distance.

The signatures of the collapses of the mechanical motion can be tracked through
the density noise spectrum (DNS), whose definition reads

Sxx (ω) =
∫

d�

4π
E

[〈{x̃(ω), x̃(�)}〉] , (5)

where x̃(ω) is the Fourier transform of the fluctuations of x̂t . Following the derivation
in Ref. [15], one finds

Sxx (ω) = 2�
2|α|2κχ2

m2
[
κ2 + (� − ω)2

] |d(ω)|2 +
�mγmω coth

(
�ω
2kBT

)
+ SCSL

m2|d(ω)|2 , (6)

where |α|2 denotes the intensity of the intra-cavity laser, � is the laser-cavity detun-
ing, T is the environmental temperature, andκ is the cavity dissipation rate.Moreover
we have introduced the susceptibility function 1/|d(ω)|2 with

|d(ω)|2 = (ω2
m,eff(ω) − ω2)2 + γ2

m,eff(ω)ω2. (7)
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Here,ωm,eff(ω) and γm,eff(ω) denote the effective mechanical frequency and damping
rate, respectively. Finally, SCSL quantifies the action of CSL noise, which can be
obtained from E[〈F̂CSL(t)F̂CSL(t ′)〉] = SCSLδ(t − t ′) with [16]

SCSL = �
2λr3C

π3/2m2
0

∫
dk |μ̃ (k)|2 e−k2r2Ck2x , (8)

where μ̃(k) is the Fourier transform of the mass density. Here, due to the presence
of the latter, two aspects can be considered. First, SCSL is proportional to the square
of the mass m of the system. Thus, heavier masses can provide a stronger signature
of the collapse mechanism. Second, Eq. (8) strongly depends on the geometry of
the system and in particular on the ratio between its size L and rC. Indeed, in the
limit of rC � L the collapse noise will act incoherently on parts of the system which
are distant more that rC, while for rC ∼ L such action will be coherent. Finally, for
rC � L , the collapse action will be still coherent but unfocused on the system, thus
effectively loosing strength. The dependence of SCSL on the geometry of the system
is clearly visible in the shape of the corresponding upper bounds on the collapse
parameters. Indeed, as it is shown in Fig. 1, once the dimensions L of the system are
fixed, one has the strongest bound on λ for the value of rC ∼ L . This reflects in the
characteristic V -shaped form of the bounds of the CSL parameters.

Equation (6) gives insight in the collapse action on the mechanical oscillator. This
is the change of the equilibrium temperature of the system from the environmental
one T to an enhanced effective one. Indeed, in the limit for high temperatures of the
environment this reads [16]

�mγmω coth
(

�ω
2kBT

)
+ SCSL → 2mγmkB(T + �TCSL) (9)

with

�TCSL = SCSL

2mγmkB
. (10)

One should notice that, here, another parameter of the opto-mechanical setup plays
an important role, namely the damping rate γm that quantifiesmechanical dissipation.
Clearly, the more the system dissipates, the faster the thermalization process to the
environmental temperature, and the smaller the collapse contribution. On the con-
trary, in the limit of no dissipation (i.e. for γm → 0), �TCSL diverges: this is exactly
what should be expected from the model, whose collapse noise can be associated to
an infinite-temperature bath. In passing, we remark that generalizations of collapse
models have been proposed [17–19] where the noise inducing collapse is associated
with a finite temperature TCSL and an ensuing dissipative process. We refer to Sect. 4
for details on such models.

As underlined in Ref. [6], the thermal noise, proportional to coth( �ω
2kBT

), is not the
only limitation in detecting the collapse-induced diffusion. Indeed, also the measure-
ment process contributes to enhancing the noise in the readout signal, thus screening
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the signal from the collapsemechanism.Clearly, a precise characterizationof the ther-
mal effects and the measurement backaction would provide stronger upper bounds
to the collapse parameters.

3 Experimental Bounds

The first application that we consider is the one reported in Ref. [25], where three
experiments—LIGO, AURIGA and LISA Pathfinder—have been considered. The
first two are gravitational wave detectors, while the last one is only a prototype of a
future gravitational wave detector. In all such experiments, a mechanical resonator
is monitored through optical techniques. Due to the mass of the systems (∼2kg for
LISA Pathfinder, ∼40kg for LIGO and ∼2300kg for AURIGA), the back-action of
the optics can be neglected, and one considers only the last term in Eq. (6), which
depends explicitly on the experiment considered. The single arm of LIGO and LISA
Pathfinder consists of two masses, modelled as harmonic oscillators, whose relative
distance is monitored. Conversely, AURIGA is a resonant bar whose elongation
is measured. For the latter, one can model the system as two half-mass harmonic
oscillators oscillating in counterphase. Thus, the modelling is the same for all three
experiments. Equation (8) is consequently modified to read

SCSL = �
2λr3C

2π3/2m2
0

∫
dk |μ̃ (k)|2 e−k2r2Ck2x (1 − eiakx ), (11)

where a is the distance between the two masses. Such systems are well outside the
quantum realm due to their masses, which also prevent their use in interferometric
experiments. However, they set important bounds on the collapse parameters, which
are here reported in Fig. 1.

The second application that we aim at covering is that reported in Refs. [32, 33],
where a heavy micrometrical sphere is attached to a silicon cantilever, which acts as
a mechanical resonator. As the sphere is ferromagnetic, in place of the optics, a low
noise SQUID can be employed to monitor the mechanical motion of the cantilever.
The system is placed in high vacuum and low temperature to minimize the thermal
action of the environment. Moreover, in order to better characterize the thermal
component of the noise, different measurements of the DNS of the system were
performed at different temperatures of the environment, ranging from 11mK to
∼ 1K. Thus, by exploiting Eq. (10), one can determine upper bounds on the collapse
parameters λ and rC, which are reported in Fig. 1.
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4 Testing of the Dissipative and Colored CSL Models

The CSL model have two weaknesses [10]. The first is the steady increase in the
energy of any (free) system in time, e.g. an hydrogen atom is heated by 	 10−14 K
per year taking the values λ = 10−16 s−1 and rC = 10−7 m. Although the increment
is small, it is not realistic feature even for a phenomenological model. On the other
hand, one expects that, through a dissipative mechanisms, the system will eventually
termalize to the finite temperature of the collapse noise. Although there are theoreti-
cal arguments suggesting the value of such a temperature to be TCSL 	 1K [17, 19],
one needs to validate them. While an interferometric investigation was performed in
Ref. [22, 34], and a non-interferometric measurement of the free expansion of a cold-
atom cloud was studied in Ref. [4], the theoretical setting for an opto-mechanical test
of the dissipative extension of the CSL model was proposed in Ref. [18]. Figure3
shows how the experimental bounds change when the dissipation is explicitly con-
sidered in the collapse mechanism for two values of the TCSL.

The second weakness of the CSL model is that its noise has a white spectrum.
This is clearly an approximation as no physical noise can be perfectly white. Con-
versely, one expects the existence of a cutoff frequency�C above which the collapse
mechanism is negligible. Theoretical arguments suggest �C ∼ 1012 Hz [35, 36].
The introduction of the cutoff changes the predictions of the model: the correlations
of the noise in Eq. (4) are modified in E[N (x, t)N (y, s)] = λ f (t − s)G(x − y),
where f (t) describes the time correlations of the collapse noise. Correspondingly,
the DNS in an opto-mechanical system becomes ScCSL(ω) = SCSL × f̃ (ω), where
f̃ (ω) is the Fourier transform of f (t) [37]. Bounds on the CSL parameters for col-
ored noise were studied in detail in Ref. [4, 22, 37]. In particular, upper bounds from

Fig. 3 First and second panels: Upper bounds on the dissipative CSL parameters λ and rC for two
values of the CSL noise temperature: TCSL = 1K (first panel) and TCSL = 10−7 K (second panel).
Picture taken from [18]. Third and fourth panels: Upper bounds on the colored CSL parameters
λ and rC for two values of the frequency cutoff: �c = 1015 Hz (third panel) and �c = 1 Hz
(fourth panel). Picture taken from [37]. Red, blue and green lines (and respective shaded regions):
Upper bounds (and exclusion regions) from AURIGA, LIGO and LISA Pathfinder, respectively
[25]. Purple region: Upper bound from cantilever experiment [33]. Orange and grey top regions:
Upper bound from cold atom experiment [4, 27] and from bulk heating experiments [1]. The bottom
area shows the excluded region based on theoretical arguments [22]
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high frequencies experiments (or involving small time scales) are weakened when
moving to small value of �C. Figure3 shows the upper bounds to the colored CSL
extension for two values of �C.

5 Proposals for Future Testing

Opto-mechanical proposals have been put forward aimed at strengthening the current
upper bounds on the collapse parameters. A first one consists in the modification of
the cantilever experiment in Ref. [33], where the homogeneous mass is substituted
with one made of several layers of two different materials [38]. This will increment
the effect of the CSL noise for the values of rC of the order of the thickness of the
layers. The hypothetical upper bounds that can be inferred from such scheme are
shown in Fig. 4.

A second possible test focuses on the rotational degrees of freedom in place of the
vibrational ones [16, 39]. The former can quantify the CSL action in a form similar
to that in Eq. (10), where the collapse-induced contribution to the temperature is that
related to the rotational degrees of freedom and reads �T rot

CSL = S rot
CSL/2kBDφ, where

Dφ is the rotational damping rate and

S rot
CSL = �

2λr3C
π3/2m2

0

∫
dk

∣∣ky∂kz μ̃(k) − kz∂ky μ̃(k)
∣∣2 e−r2Ck

2
. (12)

Fig. 4 Exemplification of two possible experimental tests of collapse models. First panels: Hypo-
thetical upper bounds obtained from substituting the sphere attached to the cantilever used in [33]
with a multilayer cuboid of the same mass for various thickness of the layers [38]. The bounds are
compared with that from the improved cantilever experiment [33] shown in orange. Picture taken
from [38]. Second panel: Same as the first panel, but with a mass ten times larger. Picture taken
from [38].Third panel: Results of the analysis proposed in [16, 39] where the rotational degrees of
freedom of a cylinder are studied. The red line denotes the upper bound that can be obtained from
the constrains given by the rotational motion, compared with those from the translations (blue and
green lines). Picture taken from [16]. Fourth panel: Red shaded area highlights the hypothetical
excluded value of the collapse parameters that could be to derived from the conversion of the trans-
lational noise of LISA Pathfinder to rotational one [16]. This is compared to the new (old) upper
bounds from the translational motion shown with the blue line [16] (grey area [25]). Picture taken
from [16]
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Equation (12) quantifies the stochastic torque induced on the system by the collapse
noise. When such a scheme is applied to macroscopic systems, it can provide a
sensible improvement of the bounds on the collapse parameters, cf. Fig. 4. A direct
application was considered in [16], where the bound from LISA Pathfinder [25] can
be significantly improved by considering also the rotational degrees of freedom.

The above are only two of several proposals [12, 13, 40–42] suggested over the
past few years aimed to push the exploration of the CSL parameter space. More will
be discussed in Chaps. 25, 27 and 29.
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Two Invariant Surface-Tensors
Determine CSL of Massive Body Wave
Function

Lajos Diósi

Abstract Decoherence of massive body wave function under Continuous Sponta-
neous Localization is reconsidered. It is shown for homogeneous probes with wave
functions narrow in position and angle that decoherence is a surface effect. Cor-
responding new surface integrals are derived as the main result. Probe’s constant
density and two completely geometric surface-dependent invariant tensors encode
full dependence of positional and angular decoherence of masses, irrespective of
their microscopic structure. The two surface-tensors offer a new insight into CSL
and a flexible approach to design laboratory test masses.

1 Introduction

Spontaneous decoherence and collapse models, reviewed e.g. by [1, 2] share the
form of modified von Neumann equation of motion for the quantum state ρ̂:

dρ̂

dt
= − i

�
[Ĥ , ρ̂] + Dρ̂, (1)

where Ĥ is themany-bodyHamiltonian ofmassesma with positions x̂a andmomenta
p̂a , resp., for a = 1, 2, . . . . The term of spontaneous decoherence takes this generic
form:

Dρ̂ = −
∫ ∫

D(r − r′)[�̂(r), [�̂(r′), ρ̂]]drdr′, (2)

containing the mass density operator at location r:
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horizontal position
4x stronger

position, angleposition, angle

Fig. 1 For a shape (e.g. a cuboid) lacking rotational symmetry, both position and angle are localized
since both of them alter the surface (left). For a sphere, angle does not alter the surface, hence
position is localized but angle is not (middle). If we carve N transversal gaps into the cuboid
(right), to multiply the surface then we enhance the localization rate by a factor about N + 1 in the
longitudinal direction (horizontal, in our case).

�̂(r) =
∑
a

maδ(r − x̂a). (3)

The non-negative decoherence kernel D(r − r′) is model dependent.
In a conference talk [4], I compared some characteristic features of the two leading

proposals, the Continuous Spontaneous Localization (CSL) of Ghirardi, Pearle, and
Rimini, and the model of Penrose and myself [5, 6] called DP-model after the two
independent proponents. I claimed and gave examples (Fig. 1) for CSL in particular
that the surfaces of homogeneousmassive bodies are the only subjects of localization.
My observation has been waiting for mathematical formulation until now.

In recent literature, the central mathematical object is the geometric factor of
decoherence:

μk =
∑
a

mae
−ikra , (4)

defined in the c.o.m. frame, introduced by [7], also discussed by [8] in this volume.
This object is the Fourier-transform of the classical mass density in the c.o.m. frame:

μ(r) =
∑
a

maδ(r − ra). (5)

Usually, the contribution of the geometric factor is evaluated in the
Fourier-representation. I am going to show that working in the physical space instead
of Fourier’s is not only possible but even desirable.

In Sect. 2 we recapitulate the decoherence of c.o.m. motion in terms of the geo-
metric factor. For constant density probes, Sect. 3 derives a new practical expression
of the decoherence in terms of a simple surface integral, the method is applied for
angular (rotational) decoherence in Sect. 4. Possible generalizations towards probes
with unsharp edges and for wider superpositions are outlined in Sect. 5, while Sect. 6
is for conclusion and outlook.
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2 Center-of-mass Decoherence

The standard CSL model [1] introduces two universal parameters, collapse rate
λ = 10−17s−1, localization σ = 10−5 cm, and it contains the nuclear mass mN . The
decoherence kernel D(r − r′) is a Gaussian whose nonlocal effect can be absorbed
by a Gaussian smoothening of the mass density �̂(r). The key quantity is the
σ-smoothened mass distribution operator:

�̂σ(r) =
∑
a

maGσ(r − x̂a), (6)

where Gσ(r) is the central symmetric Gaussian distribution of width σ. Then the
decoherence term (2) becomes a single-integral:

Dρ̂ = −4π3/2λσ3

m2
N

∫
[�̂σ(r), [�̂σ(r), ρ̂]]dr. (7)

Inserting Eq. (6), Fourier-representation yields this equivalent form:

Dρ̂ = − λσ3

2π3/2m2
N

∫
e−k2σ2

∑
a,b

mamb[eikx̂a , [e−ikx̂b , ρ̂]]dk. (8)

We are interested in the c.o.m. dynamics of the total mass M = ∑
a ma:

dρ̂cm

dt
= − i

�
[Ĥcm, ρ̂cm] + Dcmρ̂cm, (9)

where X̂, P̂ will stand for the c.o.m. coordinate and momentum. To derive the c.o.m.
decoherence term (and also the rotational decoherence term later on in Sect. 4),
substitute

x̂a = X̂ + ra + ϕ̂ϕ × ra (10)

in (8), where ra are the constituent coordinates in the c.o.m. frame in rigid body
approximation; ϕ̂ϕ is the vector of angular rotation, assuming 〈ϕ̂ϕ〉,�ϕϕ � π. ThenEq.
(8), by taking trace over the rotational degrees of freedom, reduces to the following
c.o.m. decoherence term:

Dcmρ̂cm = − λσ3

π3/2m2
N

∫
e−k2σ2 |μk|2

(
eikX̂ρ̂cme

−ikX̂ − ρ̂cm

)
dk, (11)

where we recognize the presence of the geometric factor μk. At small quantum
uncertainties, when �X � σ, we use the momentum-diffusion equation as a good
approximation:
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Dcmρ̂cm = − λσ3

2π3/2m2
N

∫
e−k2σ2 |μk|2[kX̂, [kX̂, ρ̂cm]]dk. (12)

This equation describes position-decoherence, together with momentum-diffusion,
both of them being non-isotropic in the general case. We are going to concentrate on
the evaluation of the tensorial coefficient of decoherence on the r.h.s. of (12).

3 Invariant Surface-Tensor for C.O.M. Decoherence

As we see, the geometric factor μk itself does not matter but its squared modulus
does. We consider the approximation (12) which allows for a spectacular simple
geometric interpretation of the relevant structure:

∫
e−k2σ2 |μk|2(k ◦ k)dk = (2π)3

∫
∇μσ(r) ◦ ∇μσ(r) dr. (13)

We can recognize μσ(r) as the σ-smoothened mass density in the c.o.m. frame.1 This
latter form becomes amazingly useful if the bulk is much larger than σ and possesses
constant density �when averaged over the scale of σ. If, furthermore, we assume the
density drops sharply from � to zero through the surface then ∇μσ(r) is vanishing
everywhere but in about a σ-layer around the surface. Let n stand for the normal
vector of the surface at a given point r and let h be the height above the surface, then

∇μσ(r + hn) = −�ngσ(h), (14)

gσ(h) is the central Gaussian of width σ. The volume integral can be rewritten, with
good approximation, as an integral along h and a subsequent surface integral:

(2π)3
∫

∇μσ(r) ◦ ∇μσ(r)dr = (2π)3�2
∮

n ◦ n
(∫

g2σ(h)dh

)
dS

= (2π)3�2

2π1/2σ

∮
(n ◦ n)dS. (15)

If the prove has cavities in it, and the characteristic sizes of the probe and cavities
keep to be much larger than σ, then the surface integral must be extended for the
surfaces of the cavities as well. Using Eqs. (13) and (15), the decoherence term (12)
obtains the attractive form

1Previous works, like e.g. [10] and Supplemental Material (S11) of [11], used the double-integral :

π3/2σ−3
∫ ∫

exp
(
−|r − r′|2/(4σ2)

)
∇μ(r)◦∇μ(r′)drdr′,

without deriving the equivalent single-integral as of the r.h.s. of Eq. (13).
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Dcmρ̂cm = −2πλσ2�2

m2
N

∮
[nX̂, [nX̂, ρ̂cm]]dS. (16)

This is ourmain result. It shows that the c.o.m. decoherence is completely determined
by the constant density � and the shape of the body, through the surface-tensor

Scm =:
∮

(n ◦ n)dS. (17)

In CSL, at small quantum uncertainties �X � σ, the c.o.m. decoherence of homo-
geneous sharp-edged bulks is a surface effect!

Recall that the main result (16) remains valid if the probe has cavities and we
integrate over the surfaces of the cavities as well. This allows us to multiply the
CSL decoherence by carving cavities inside the otherwise homogeneous probe, CSL
decoherence can be multipled (cf. Fig. 1). This explains the reason of enhanced
decoherence in layered structures, proposed by [9].

The heating rate, coming from the decoherence term in (12), is defined by the
Heisenberg derivative�cm = Dcm(P̂2/2M). Noweasy is towrite it in amore explicite
form than before. Reading D†

cm = Dcm off from (16), one immediately obtains

�cm = 2πλσ2�2

m2
N

S

M
= 2πλσ2�

m2
N

S

V
, (18)

where S is the total surface (including cavities’ internal surfaces) and V is the total
volume. Note that �cm is the same if we start from the general dynamics (11) not
restricted by �X � σ. [It does not matter if we calculate the Heisenberg derivative
of the quadratic P̂2 byDcm in (11) or, alternatively, by the X̂-quadratic approximation
ofDcm in (12).] Interestingly, c.o.m. heating is inverse proportional to the size of the
bulk. Recall the total heating rate

� = D
∑
a

p̂2

2ma
= 3�2λ

2m2
Nσ2

M, (19)

alwaysmuch larger than the c.o.m. heating. For a sphere of radius R we get�cm/� =
3(σ/R)4.
Examples. Consider the longitudinal motion of a cylinder, Eq. (16) reduces to

Dcmρ̂cm = −2πλσ2�2

m2
N

S⊥[x̂, [x̂, ρ̂cm]], (20)

where S⊥ is the total surface perpendicular to the motion (i.e.: the area of both faces
of the cylinder). At a given constant density �, the decoherence is independent of the
length of the cylinder. It can be squeezed to become a plate or elongated to become
a rod. This invariance of the decoherence offers a fair guidance when we design
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laboratory probes. However, the same invariance may raise conceptual questions as
well.With increasing length of the rodwhile decoherence rate remains constant, CSL
might leave the longitudinal superposition of our massive rod with counter-intuitive
long coherence times. An other remarkable feature of the surface-tensor S is that
spontaneous decoherence in one direction can be decreased by tilted edges instead
of perpendicular ones. If the faces of the above cylinder are replaced by cones of
apex angle θ then the two factors nX̂ in Eq. (16) get a factor sin(θ/2) each while
the surface of the cones becomes sin−1(θ/2)-times larger than S⊥. The spontaneous
longitudinal decoherence becomes suppressed by the factor sin(θ/2). E.g.: sharp
pointed needles become extreme insensitive to longitudinal CSL.

4 Rotational Decoherence

Rotational decoherence of objects under CSL has recently been discussed by [12,
13]. Derivation of our main result (16) on decoherence of lateral superpositions tells
us how to express this time the decoherence of angular superpositions in terms of a
surface integral. We outline the steps, without the details. After substituting x̂a by
Eq. (10) into Eq. (8), we trace over the c.o.m. motional d.o.f., yielding

Drotρ̂rot = − λσ3

2π3/2m2
N

∫
e−k2σ2

∑
a,b

mamb[eik(ra+ϕ̂×ra , [e−ik(rb+ϕ̂×rb , ρ̂rot]]dk.

(21)
If �(ϕϕ × ra) � σ for all a, we approximate the integral as follows:

∫
e−k2σ2

∑
a,b

mambe
ik(ra−rb)[ϕ̂ϕkra, [ϕ̂ϕkrb, ρ̂rot]]dk, (22)

where we define the triple scalar product by abc = a(b × c). This integral is equiv-
alent to the following volume integral:

(2π)3
∫

[ϕ̂ϕr∇μσ(r), [ϕ̂ϕr∇μσ(r), ρ̂rot]]dr. (23)

Applying the arguments and approximations as in Sect. 3, we rewrite this volume
integral as a surface integral:

(2π)3�2

2π1/2σ

∮
[ϕ̂ϕrn, [ϕ̂ϕrn, ρ̂rot]]dS. (24)

Using this form for the integral in Eq. (21), the rotational decoherence term takes the
following ultimate form:
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Drotρ̂rot = −2πλσ2�2

m2
N

∮
[ϕ̂ϕrn, [ϕ̂ϕrn, ρ̂rot]]dS. (25)

The rotational decoherence is determined by the constant density � and the rotational
surface-tensor:

Srot =:
∮

(r × n) ◦ (r × n)dS, (26)

where, as before, r is the coordinate of a surface point in the c.o.m. frame and n
is the corresponding normal vector to the surface. Remember, the validity of (25)
was limited by �(ϕϕ × ra) � σ for all a. In terms of the locations r, the condition
becomes �(ϕϕ × r) � σ for all surface points r.

Calculation of the spontaneous heating rate of the rotational degrees of freedom
is straightforward, yielding

�rot = 2πλσ2�

m2
N

Tr(I−1Srot), (27)

where I = ∫
(r ◦ r)dr is the inertia tensor of the probe.

Examples. Consider the rotation of a long cylindric rod of length L and radius R � L ,
around a perpendicular axis nrot through its center. All along the rod —except for its
short middle part of size ∼ R— the expression rnnrot = r sin(�) is a good approxi-
mationwhere r ∈ (−L/2, L/2) is the axial coordinate and� is the azimuthal angle of
the surface position r. Using this approximation, we can easily evaluate the axial ele-
ment of the rotational surface-tensor Srot that controls the angular decoherence (25):

∮
(rnnrot)2dS = πRL3

12
. (28)

As another example, consider our cylinder rotating around its axis of symmetry: CSL
predicts zero decoherence (cf. Fig. 1). But we introduce a small elliptical eccentricity
e � 1of the cross section. In leading order,we have rnnrot = 1

2 Re
2 sin(2�), yielding

the following contribution of the shape to the strength of angular decoherence:

∮
(rnnrot)2dS = e4

4
πR2L , (29)

that is e4/4 times the volume of the cylinder. Recall that e2 = 2�R/R where �R
is the small difference between the main diameters of the elliptic cross section. The
obtained result may raise the same conceptual problem that we mentioned for the
longitudinal superposition of the massive rod/needle: azimuthal superpositions of
massive cylinders of low eccentricity may become practically insensitive to CSL.
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5 Outlines of Generalizations

That in CSL the c.o.m and rotational decoherences are surface effects for homoge-
neous probes has been explicitly shown in Sects. 3 and 4 for ideal sharp edges and
for spatial superpositions much smaller than σ. Both of the latter restrictions can be
relaxed and Dcm still remains a surface integral.

The case of unsharp edges is not much different from the ideal case. Let H(h)�
be the profile of how the density drops from the constant � down to zero through a
thin layer defining the surface where the layer’s thickness is small w.r.t. the sizes of
the probe. Then the following generalization of Eq. (14) helps:

∇μσ(r + hn) = �n
∫

gσ(h − h′)dH(h′). (30)

The rest of constructing the surface integral is the sameas forEq. (14)whichdescribed
the special case where H was the (descending) step function.

The case of not necessarily small quantum positional uncertainties was described
by Eq. (11). It takes an equivalent closed form in coordinate representation:

Dcm ρ̂cm(X,Y) = − λσ3

π3/2m2
N

(2π)3
∫ [

μσ(r + X)μσ(r + Y) − μ2σ(r)
]
dr ρ̂cm(X,Y).

(31)
The relevant structure is the integral, which we write as

(2π)3
∫

[μσ(r + X − Y) − μσ(r)]μσ(r)dr. (32)

As long as the quantum uncertainty |X − Y| is much smaller than the sizes of the
probe, but not necessarily smaller then σ, the integral is vanishing everywhere in the
bulk except for a thin layer of thickness ∼|X − Y| below the surface. Accordingly,
we incline to anticipate CSL decoherence remains a surface effect and, investing
some harder mathematical work, Dcm as well as Drot would take a form of surface
integral, generalizing (16) and (25) beyond their quadratic approximations in X̂
and ϕ̂.

6 Concluding Remarks

We have discussed CSL for constant density test masses and proved that spontaneous
decoherence of both translational and rotational motion is determined by the density
� and by two invariant surface-tensors of the bodies:

Scm =
∮

(n ◦ n)dS,
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Srot =
∮

(r × n) ◦ (r × n)dS.

These two fully encode the relevant features of the probe’s geometry. Previously,
these features were encoded by the so-called geometric factor

μk = �

∫
e−ikrdr,

an integral over the probe’s volume and a function of the wave number k. In case
of general heavily inhomogeneous test masses the necessity of using the geometric
factor is certainly doubtless. But for homogeneous probes, the surface-tensors should
take over the role.

Important is the new insight into the physics of CSL in motion of a general
massive bulk as a whole. First, microscopic structure is totally irrelevant, only the
σ-smoothened densitymatters. Furthermore, displacements of homogeneous regions
are not decohered at all. Only the displacements of inhomogeneities are decohered.
The sharper the inhomogeneity, the stronger the decoherence it induces. In a constant
density probe, the only inhomogeneous part is its surface, hence is CSL decoherence
a surface effect for it—that we have here exploited. The same is true for layered
probes where mass density jumps—through surfaces (walls) between the layers—
contribute to the decoherence tensors. Inhomogeneities other than the said two-
dimensional inhomogeneous regions around surfaces may rarely be sharp and fat
enough to contribute to c.o.m. or rotational decoherence. Decoherence of probes
with smooth material inhomogeneities may remain dominated by the said surfaces,
our method of surface-tensors might extend for them!
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Collapse and Charged Particles

Sandro Donadi

Abstract In this chapter, the radiation emission in collapsemodels is discussed. The
basic idea is that, in thesemodels, the noise responsible for the collapse also randomly
accelerate protons and electrons in matter, inducing an emission of radiation which is
not predicted by standard quantum theory. This offers a way to test collapse models
and set bounds on their free parameters. Herewe focus our attention on the theoretical
calculations required to compute the radiation emission rate from a charged system,
which is the quantity measured in the experiments. As we will discuss, the use of
perturbative techniques requires some care in order to get the correct results.

1 Introduction

Prof. GianCarlo Ghirardi has been a very inspiring figure for my scientific career.
When I was at the 3rd year of my bachelor in physics at Trieste University, he was
teaching the course of Quantum Mechanics, and I really appreciated his classes as
well as his own notes on the topic, which are for me one of the best references
for Quantum Mechanics. Even before being my professor, Prof. Ghirardi inspired
me through his book “Un’occhiata alle carte di Dio” (Sneaking a Look at God’s
Cards) [1], in my opinion the best andmost complete popular book on foundations of
QuantumMechanics. It was by reading this book that I became aware and interested
on foundations of Quantum Mechanics, and led me to choose to purse my research
career on this topic, with special focus on collapse models [2, 3], a line of research
started by Prof. Ghirardi, together with Prof. A. Rimini and Prof. T. Weber in their
seminal paper [4].
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In this chapter, we discuss the calculation of the radiation emission rate in col-
lapse models as a consequence of the interaction between charged particles with the
collapse-inducing noise. This phenomenon have been studied in great details for the
Continuous Spontaneous Localizations (CSL) [5], and the QuantumMechanics with
Universal Position Localizations (QMUPL) collapse models [6, 7]. The goal of this
chapter is to summarize the main theoretical results.

2 First Calculations of the Collapse-Induced Radiation
Emission

The first calculation of the collapse-induced radiation emission in the CSL model
was given by Fu [8]. The starting point, which is also taken in all the subsequent
articles on the topic, is to replace the non-linear dynamics of the CSL model with
the unitary and linear evolution given by the stochastic Schrödinger equation1:

i�
d|φ(t)〉
dt

=
[
H − �

√
γ

∫
dxw(x, t)ψ†(x)ψ(x)

]
|φ(t)〉. (1)

where H describes the standard quantum Hamiltonian, which we write explicitly
below, while the second term describes the effect of the CSL collapse noise. The
coupling constant γ = λ8π3/2r3C depends on the two fundamental free parameters
of the CSL model: λ which sets the strength of the collapse, and rC which gives the
spatial correlation of the noise (see Eq. (2) below). The operators ψ(x) (ψ†(x)) are
the annihilation (creation) operators of a particle in the point “x”,2 and w(x, t) is a
classical noise field with zero average and correlation

E[w(x, t)w(y, s)] = δ(t − s)F(x − y), F(x) = 1

(
√
4πrC)3

e−x2/4r2C . (2)

Equation (1) does not describe a collapse dynamics, being a standard Schrödinger
equation with a random potential. However, it can be easily proved that it leads to
the same master equation as the non-linear CSL equation [9]. Therefore, as far as we
are concerned in computing average values of observables, which is our case, this
dynamics and the true (non-linear) CSL dynamics lead to the same predictions.

We are working with the second quantization formalism, and we want to compute
the emission rate of photons. The Hamiltonian is

1In Eq. (1) we introduce only one matter field ψ(x). The equation can be easily generalized to the
case where different kind of particles are considered, which is however not required for the purposes
of this chapter.
2In principle, in the CSL model there is also a dependence on the particles spins, which however is
irrelevant for the phenomenon we are discussing, so it can be neglected.



Collapse and Charged Particles 229

H =
∫

dx [HS(x) + HR(x) + HINT(x)] (3)

with the first term

HS(x) = �
2

2m
�∇ψ†(x) · �∇ψ(x) + V (x)ψ†(x)ψ(x) (4)

being the Hamiltonian density of the system, with the potential V which in the rest
of the chapter will be taken equal to zero (free particle) or harmonic. The second
term is the Hamiltonian density of the free of the electromagnetic (EM) field:

HR(x) = 1

2

(
ε0E2

⊥(x) + B2(x)
μ0

)
, (5)

where E⊥ is the transverse part of the electric component and B is the magnetic
component. Finally, HINT contains the standard interaction between the quantized
electromagnetic field and the non-relativistic Schrödinger field:

HINT(x) = i
�e

m
ψ†(x)A(x) · �∇ψ(x) + e2

2m
A2(x)ψ†(x)ψ(x). (6)

The electromagnetic potential A(x) takes the form:

A(x) =
∑
k,μ

αk

[
�εk,μ ak,μe

ik·x + �ε∗
k,μ a

†
k,μe

−ik·x
]

(7)

where αk = √
�/2ε0ωk L3 with ωk = kc, �εk,μ are the polarization vectors of the EM

field and ak,μ (a†k,μ) are the annihilation (creation) operators of a photon with wave-
vector k and polarization μ.

The goal of the calculation is to compute the radiation emission rate defined as

d�k

dk
= k2

∫
d�k

∑
μ

d

dt
Pk,μ(t) (8)

with
Pk,μ(t) :=

∑
f

|〈 f,k,μ|U (t)|i, 0ph〉|2 (9)

giving the probability that a photon with wave-vector k and polarization μ is emitted

at time t . In Eq. (9),U (t) = T exp
(

i
�

∫ t
0 dt

′ Htot(t ′)
)
is the time evolution operator,

with “T ” denoting the time ordering and Htot(t ′) the total Hamiltonian in the squared
bracket of Eq. (1), |i, 0ph〉 is the initial state of the system and the EM field in its
vacuum state, while | f,k,μ〉 is the final state of the system and that of an emitted
photonwith wave vector k and polarizationμ. Since we are interested in the emission
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Fig. 1 Lowest order relevant Feynman diagrams describing the emission of a photon (wavy line)
from an electron (continuous lines) induced by the interaction with the collapse noise (dashed line)

rate, a time derivative is taken in Eq. (8), and because the final state of the system is
not measured, as well as the polarization and directions of the emitted photons, the
sum over these degrees of freedoms is taken in Eqs. (8) and (9).

In [8], given the stochastic Schrödinger equation (1) describing the dynamics, the
computation of the emission rate and in particular of the matrix elements in Eq. (9)
was performed using the standard perturbative approach: first, one moves to inter-
action picture with respect to the free Hamiltonian H0 = ∫

dx [HS(x) + HR(x)];
then, the Dyson expansion is done and the relevant contributions are computed. The
perturbative approach is justified by the fact that both the EM interaction and noise
interaction can be treated perturbatively. In terms of Feynman diagrams, the two
relevant contribution considered by Fu are given by the diagrams in Fig. 1.

The calculation, long but straightforward, gives as a result the emission rate for-
mula3:

d�k

dk
= λ�e2

4π2ε0c3m2r2Ck
. (10)

where � and c have the usual meaning, ε0 is the vacuum permittivity, e and m are
respectively the charge and the mass of an electron, and k = ωk/c the module of the
wave vector of the emitted photons.

If a mass proportional version of the CSLmodel is considered, which as discussed
briefly in the next section and more in details in chapter 28 is suggested precisely
by this experiment, the coupling constant has to be replaced as

√
γ → √

γm/m0,
with m0 being a reference mass taken equal to the mass of a nucleon. Then Eq. (10)
becomes

d�k

dk
= λ�e2

4π2ε0c3m2
0r

2
Ck

. (11)

The calculation of Fu was later generalized by Adler and Ramazanoglu in [10]
where, among other results, the analysis was extended to the case of the non-

3Equation (10) appears different to the final result reported in [8] only because here the SI system
of units is used while in [8] the CSG system of units was considered. If one takes Fu’s result and
maps e2 → e2/(4π), Eq. (10) is consistently obtained.

http://dx.doi.org/10.1007/978-3-030-46777-7_28
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Markovian CSL model, and the radiation emitted from an Hydrogen atom was
explicitly computed. Besides recovering Fu result of Eq. (11), they found that when
a non-white noise extension of CSL is considered, i.e. when the noise correlation (2)
is replaced by

E[w(x, t)w(y, s)] = f (t − s)F(x − y), (12)

the emission rate in Eq. (11) gets multiplied by a factor f̃ (ωk) which is the Fourier
transform of the function f (t) in Eq. (12) computed at the frequency of the emitted
photon. Regarding the emission from the hydrogen atom, it was shown that for high
energy photons the emission is the twice that given by Eq. (11) (the electron and the
proton emissions add incoherently), while for small energy photons the emission is
suppressed (the contribution from the electron tends to cancel that from the proton).

3 Comparison with the Experimental Data

The predicted emitted rate in Eq. (10) was compared to data from an experiment
measuring the photons emitted form Germanium in [8]. By considering only the
emission from the 4 outer electrons of Germanium (which were approximated as free
being weakly bounded to the Germanium nucleus), and considering the values rC =
10−7 m and λ = 10−16 s−1, the radiation emitted was lager than that predicted by the
original CSLmodel. However, if the mass proportional CSLmodel is considered, the
emitted rate given now by Eq. (11) is weakened by 6 orders of magnitude, leading
to a bound λ � 10−10 s−1. This proves how efficient the phenomenon of emission of
radiation is in setting constrains to the CSL model.

The same analysis has been carried on more in detail recently in [11], using
data from more recent experiments and a more detailed statistical analysis. This is
discussed in detail in chapter 28, and it leads to the stronger bound λ ≤ 6.8 × 10−12

s−1 for rC = 10−7 m. Letting also the rC as a free parameter, the bounds are reported
in the exclusion plot in Fig. 2 of chapter 28 .

4 A Discrepancy Among Different Calculations of the
Emission Rate

Apuzzling situation appeared in 2009, when the calculation of the radiation emission
was repeated using the QMUPL model by Bassi and Dürr [12]. In the calculation
performed using the QMUPL model, the starting point is the Schrödinger equation

i�
d|φ(t)〉
dt

=
[
H − �

√
λq q · w(t)

]
|φ(t)〉 (13)

http://dx.doi.org/10.1007/978-3-030-46777-7_28
http://dx.doi.org/10.1007/978-3-030-46777-7_28
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where H here is the same as that defined in Section 2 just written in the first
quantization language, λq a free parameter of the model coupling the position
operator q to the noise vector w(t), which has zero average and correlations
E[wi (s)w j (s ′)] = δi jδ(s − s ′) (with i, j labeling the three components of w(t)).
It can be proved that, at the level of the master equation, the QMUPLmodel is a limit
version of the CSLmodel when the number of particles of the system is fixed and the
wave function spread is smaller than rC . In such a case, the coupling constant λq is
related to the CSL parameters by the relation λq = λ/2r2C . Therefore, it is reasonable
to expect the two models to lead to the same predictions. Moreover, in the QMUPL
model the interaction with the noise is linear in the position operator of the system,
and therefore it is possible, under only the dipole approximation, to solve exactly the
model. The result, when expanded to the first perturbative order in the EM and noise
interactions, leads to

d�k

dk
= λ�e2

2π2ε0c3m2
0r

2
Ck

(14)

for a free particle. Compared to Eq. (11), a factor 2 of difference is present. As we
will see, this factor 2 does not arise from a typo or a silly mistake: it is related to the
fact that, for this problem, the correct use of perturbation theory requires some care.

5 Repeating the Perturbative Calculation with the CSL
Model

In order to shed light on this discrepancy, during myMaster thesis andmy PhD under
the guidance of Prof. A. Bassi, I repeated both calculations, the one perturbative done
in [8, 10] and that exact performed in [12]. I found a result in agreement with that
of Bassi and Dürr [12]. The origin of the discrepancy with the previous calculations
done by Fu and Adler was related to the calculation of some time integrals in the
perturbative terms.

While the discrepancy in the case of the white noise models is just a factor 2,
when non-Markovian generalizations of the CSL model are considered it has much
more serious consequences. In fact, the emission rate has the form [13]4:

d�k

dk
= λ�e2

4π2ε0c3m2
0r

2
Ck

(
f̃ (0) + f̃ (ωk)

)
. (15)

The second term in Eq. (15) is the expected contribution, in agreement with the
results of [10], and it is physically meaningful: given a noise with generic spectrum
f̃ (ω), only the frequency of the spectrum resonant with that of the emitted photon
ω = ωk plays a relevant role. On the other hand, the first term proportional to f̃ (0) is

4Note that in the white noise limit, the noise spectrum becomes f̃ (ω) = 1 for all ω, which is the
reason why we get the factor 2.
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problematic: the emission depends on the spectrum calculated in zero, implying that
even a very weak noise may induce the emission of photons with very large energies.
This contribution is clearly nonphysical and a deeper investigation was required to
understand its origin.

6 An Exact Analysis with the Non-Markovian QMUPL

In order to shed light on the issue, and in particular on the origin of the nonphysical
contribution proportional to f̃ (0), we analyzed the radiation emission using the
non-Markovian extension of the QMUPL model. The advantage of this approach
is that, like in the work [12] where the white noise QMUPL model was studied,
all calculations can be performed exactly, apart for the dipole approximation. The
calculation was performed for a free particle and a harmonic oscillator, and the main
conclusions were the following [14]:

1. For a free particle there is always a nonphysical contribution. However, if one
starts from a bounded particle in a harmonic potential with frequencyω0, performs
all the calculations, and only at the end considers the limit ω0 → 0, irrespective
of how weak the bounding potential was taken the final result does not contain
any term proportional to f̃ (0).

2. For a bounded particle, it is fundamental not to treat the EM interaction to the
lowest perturbative order. Indeed, when the analysis is done keeping into account
the EM exactly, exponential damping terms appear which are not present when
calculations are performed to the lowest perturbative order. These damping terms
are responsible for suppressing the nonphysical contributions.

7 Getting the Correct Result in the CSL Model

Since the analysis done in [14], discussed in the previous section, clarified that is
fundamental to have a bounded particle and to not treat the EM interaction perturba-
tively, the calculationwas repeated for theCSLmodel fulfilling these conditions [15].
More precisely, weworked under the dipole approximation and treated only the noise
perturbatively, while the EM radiation was treated exactly. The calculation, long but
straightforward, confirmed all the results found in [14] for the QMUPL model. In
particular, when at the end of the calculation the free particle limit (ω0 → 0) and
lowest order EM interaction are considered β → 0, one gets the result:

d�k

dk
= λ�e2

4π2ε0c3m2
0r

2
Ck

f̃ (ωk), (16)
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with no presence of the nonphysical contribution, and that, in the white noise limit
( f̃ (ω) → 1), it reduces to the result found by Fu in Eq. (11).

However, the approach used in [15], has a fundamental limitation: the calculation
is based on moving to an interaction picture where the operators evolution given by
the Hamiltonian H in Eq. (3) is solved exactly. Even using the dipole approximation,
the evolution of the operators can be solved exactly only for quadratic Hamiltonians,
i.e. the free particle or the harmonic oscillator. For more general systems, H is not
quadratic anymore, the Heisenberg equations of motion cannot be solved exactly
making this approach unfeasible.

This difficulty was overcame in [16], where a more refined perturbative method
was applied. The main idea is to use a perturbative approach where the radiative
corrections to the particle propagators are considered. In terms of Feynman diagrams,
this corresponds to account for the corrections to the propagator due to the emission
and re-absorption of a virtual photon. As discussed also in the literature [17], this
implies a Lamb shift which induces an exponential decay in time of the propagator.
This damping suppresses the terms responsible for the nonphysical contributions
proportional to f̃ (0). When the system considered is an harmonic oscillator, the
decaying exponents coincide with those found in [14, 15], confirming that this is the
appropriate way of introducing these damping in perturbative calculations.

After a long calculation, in [16] it was proved that the emission rate for a system
interacting with a generic family of noises N� is given by:

d�

dk
=

∑
μ

∫
d�k

( γ

�2

)∑
f

∑
�

∣∣∣∣∣
∑
n

〈 f |Rk | n〉 〈n |N�| i〉[
i
(� f n + ωk

) − �n
] − 〈 f |N�| n〉 〈n |Rk | i〉

[i (�ni + ωk) + �n]

∣∣∣∣∣
2

× f̃
(� f i + ωk

)
. (17)

where the matrix elements with Rk are due to the interaction with the EM field,
�ni = (En − Ei )/� with En energy eigenstates of the Hamiltonian of the system
and �n the corresponding damping.

In the case of the CSL model, the discrete index � is replaced by the continu-
ous parameter x labeling each space point, and the noise operator (using the first
quantization language for a particle with position operator q) by:

N� −→ m

m0

1

(
√
2πrC)3

e
− (q−x)2

2r2C . (18)

Then, for a free particle, Eq. (17) reduces to Eq. (16).
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8 Conclusions and Perspectives

We discussed the phenomenon of the collapse-induced radiation emission in the CSL
and the QMUPL models. The calculation for computing the radiation emission rate
presents some non-trivial features when the problem is studied using perturbation
theory: in particular, when the EM interaction is treated to the lowest perturbative
order, nonphysical contributions appear. After clarifying the origin of these non-
physical terms, it was showed in [16] how to properly use perturbation techniques
in order to avoid them. The final result reported in Eq. (17) is quite general and it
will be the starting point for future analysis. We are currently collaborating with the
group of Prof. C. Curceanu on performing a dedicated experiment at the Gran Sasso
Laboratories focused on further improving the bounds on the CSL parameters by
studying the emission of radiation from Germanium.
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Relativistic Quantum Theory

Jürg Fröhlich

Eine neue wissenschaftliche Wahrheit pflegt sich nicht in der
Weise durchzusetzen, dass ihre Gegner überzeugt werden und
sich als belehrt erklären, sondern vielmehr dadurch, dass die
Gegner allmählich aussterben und dass die heranwachsende
Generation von vornherein mit der Wahrheit vetraut ist.

Max Planck

Abstract The purpose of this paper is to sketch an approach towards a reconciliation
of quantum theory with relativity theory. It will actually be argued that these two
theories ultimately rely on one another. A general operator-algebraic framework for
relativistic quantum theory is outlined. Some concepts of space-time structure are
translated into algebra. Following deep results of Buchholz et al., the key role of
massless modes, photons and gravitons, and of Huygens’ Principle in a relativistic
quantum theory well suited to describe “events” and “measurements” is highlighted.
In summary, a relativistic version of the “ET H Approach” to quantum mechanics
is described.

1 Topics to Be Addressed

Anybodywhoattempts toworkon the foundations—or “interpretation”—ofquantum
theory realizes quickly that this field is in a state of utmost confusion. Whether
authorities in this matter or not, Richard Feynman once said: “If someone tells you
they understand quantum mechanics then all you’ve learned is that you’ve met a
liar”; and Sean Carroll, of the California Institute of Technology, in a popular article
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that appeared in the ‘New York Times’ [1], writes: “... quantum mechanics has
a reputation for being especially mysterious. What’s surprising is that physicists
seem to be O.K. with not understanding the most important theory they have. ...
Physicists don’t understand their own theory any better than a typical smartphone user
understands what’s going on inside the device. ... The whole thing is preposterous.
Why are observations special? What counts as an “observation”, anyway? When
exactly does it happen? Does it need to be performed by a person? Is consciousness
somehow involved in the basic rules of reality? Together these questions are known
as the “measurement problem” of quantum theory. ...”—Well, obviously a text like
this leaves the reader in a state of bewilderment and/or anger! In the same article
Caroll also writes: “You would naturally think, then, that understanding quantum
mechanics would be the absolute highest priority among physicists worldwide. ...
Physicists, you might imagine, would stop at nothing until they truly understood
quantum mechanics.”

Quite some time (perhaps thirty years) ago, I arrived at a conclusion similar to the
one Caroll reached in the last two sentences quoted above. In 2012, when I retired
from my position at ET H and did not have to make a career, anymore, I started to
consider it to be one of my obligations to help removing some of the confusion sur-
rounding the foundations of quantummechanics. I do not have any illusions about the
chances of success in pursuing this goal,1 not because it is impossible to understand
quantummechanics—I actually think it is possible—but chiefly because people have
so many prejudices about it.

Here is my credo in this endeavor:

• Talking of the “interpretation” of a physical theory presupposes implicitly that the
theory has reached its final form, but that it is not completely clear, yet, what it
tells us about natural phenomena. Otherwise, we had better speak of the “foun-
dations” of the theory. Quantum Mechanics has apparently not reached its final
form, yet. Thus, it is not really just a matter of interpreting it, but of completing
its foundations.

• The only formof “interpretion” of a physical theory that I find legitimate and useful
is to delineate approximately the ensemble of natural phenomena the theory is sup-
posed to describe and to construct something resembling a “structure-preserving
map” from a subset of mathematical symbols used in the theory that are supposed
to represent physical quantities to concrete physical objects and phenomena (or
events) to be described by the theory. Once these items are clarified the theory
is supposed to provide its own “interpretation”. (A good example is Maxwell’s
electrodynamics, augmented by the special theory of relativity.)

• The ontology a physical theory is supposed to capture lies in sequences of events,
sometimes called “histories”, which form the objects of series of observations

1A recent paper of mine on the foundations of quantummechanics triggered the following comment
from a “colleague”: “Hi, again and again. How many time will you recycle your papers? Cannot
see (you?) that no one is interested in your obscure thinking. Adding ‘ETH’ will not help. You are
old and essentially useless. Go fishing. Best, A.”.
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extending over possibly long stretches of time and which the theory is supposed
to describe.

• In discussing a physical theory and mathematical challenges it raises it is useful
to introduce clear concepts and basic principles to start from and then use precise
and—if necessary—quite sophisticatedmathematical tools to formulate the theory
and to cope with those challenges.

• To emphasize this last point very explicitly, I am against denigrating mathematical
precision and ignoring or neglecting precise mathematical tools in the search for
physical theories and in attempts to understand them, derive consequences from
them and apply them to solve concrete problems.

In this paper I will sketch some ideas about a formulation of local relativistic
quantum theory designed to describe “events” and, ultimately, to solve the “mea-
surement problem”alluded to above. (In doing this I try to follow the credo formulated
above.) I will specifically address the following topics:

1. Why is it fundamentally impossible to use a physical theory to predict the
future?—Sect. 2.

2. Why is quantum theory intrinsically probabilistic?—Sect. 2.
3. How are “locality” and “Einstein causality” expressed in relativistic quantum

theory; what is their meaning?—Sect. 3.
4. What are “events” in quantum theory—Sect. 4—and how does one describe their

recording? What is meant by “measuring a physical quantity”?—Sect. 5.
5. How do states of physical systems evolve in (space-)time, according to quantum

theory? What is the probabilistic law governing their evolution?—Sect. 4.
6. How does quantum theory distinguish between past and future; how does it talk

about space-time? Could it be that a consistent “QuantumTheory of Events”must
necessarily be relativistic and involve massless modes? Could it be that such a
quantum theory could explain why space-time is even-dimensional and that it
might incorporate gravitation as an “emergent phenomenon”?—Sect. 6.

I wish to mention that various ideas related to ones elaborated on in [2, 3] and in
this paper have been described in [4, 5]. In particular, many years ago, the late Rudolf
Haag has emphasized the importance of introducing a clear notion of “events” in
quantum theory and to elucidate their role.

This paper is dedicated to the memory of Gian Carlo Ghirardi. My approach
to the foundations of quantum mechanics (dubbed “ETH Approach”) shares some
general features with GRW [6]; in particular, an important role is played by “state
collapse”. I wish to thank Detlef Dürr for having invited me to present my ideas in
this book.
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Fig. 1 The “observer” sits at
“Present” and is unaware of
the dangers lurking from
outside his past light-cone
(denoted “Past”). He might
get killed at †, a space-time
point in his future light-cone
(denoted “Future”). Events
are numbered in the figure;
events 1 and 2 are space-like
separated, event 3 is in the
future of event 2

2 Why Are We Not Able to Predict the Future by Using
Our Physical Theories, and Why Is Quantum Theory
Intrinsically Probabilistic?

Imagine that the space-time of our Universe has an event horizon that hides what may
happen in causally disconnected regions of space-time. Figure 1, below, illustrates
the claim that, for fundamental reasons, observers are then unable to use relativistic
theories to fully predict their future; for, never do they have access to complete
knowledge of the initial conditions of the Universe that would be necessary (but not
necessarily sufficient) to predict the future.2 This argument applies to both, classical
and quantum theories. But quantum theories have an additional feature that makes
it impossible to use them to predict the future precisely: They are fundamentally
probabilistic.

Figure 1 is supposed to illustrate, furthermore, that the “Past” consists of a “His-
tory of Events” or “Facts”, while the “Future” consists of an ensemble of “Poten-
tialities”. In a proper formulation of Quantum Mechanics this dichotomy should be
retained! In this paper we will try to find out how to implement it in relativistic
quantum theory.

Let S be an “isolated physical system” to be described by a model of relativistic
quantum theory.—Note: An isolated system has the property that, over some period
of time, its evolution does not depend on anything happening in its complement,
i.e., in the rest of the Universe, in the sense that, during a certain period of time,
the Heisenberg-picture dynamics of physical quantities characteristic of S is, for all
practical purposes, independent of the degrees of freedom in the complement of S,

2The same is true if there exist waves propagating at the speed of light along surfaces of light-cones.



Relativistic Quantum Theory 241

(a consequence of cluster properties). It should be noted, however, that the state of
S can be entangled with the state of its complement!.—

The concept of an isolated physical system is important in quantum mechanics,
because, only for such systems, we know how to describe the time evolution of
operators representing physical quantities in the Heisenberg picture (in terms of
conjugation of those operators with the unitary propagator of the system). In order
to describe the quantum dynamics of an isolated physical system S, we will allways
start from the Heisenberg-picture dynamics of “observables” (i.e., of self-adjoint
operators representing physical quantities) referring to S. The dynamics of states of
S is considerably more subtle to understand and is, in a sense, at the core of our
considerations in this paper—as it has been in the work of Ghirardi, Rimini and
Weber.

In this paper we use (for simplicity) the following pedestrian formulation of the
quantummechanics of an isolated physical system S in theHeisenberg picture: States
of S are given by densitymatrices,�, acting on a separable Hilbert space,H, of “pure
state vectors” of S. Let X̂ be a physical quantity of S, and let X (t) = X (t)∗ be the
self-adjoint linear operator on H representing X̂ at time t . Then the operators X (t)
and X (t ′) representing X̂ at two different times t and t ′, respectively, are unitarily
conjugated to one another:

X (t) = U (t ′, t) X (t ′)U (t, t ′) , (1)

where, for each pair of times t, t ′, U (t, t ′) is the propagator (from t ′ to t) of the
system S, which is a unitary operator acting onH, and

{
U (t, t ′)

}
t,t ′∈R satisfy

U (t, t ′) ·U (t ′, t ′′) = U (t, t ′′), ∀t, t ′, t", U (t, t) = 1 , ∀ t .

It is often said that, in the Heisenberg picture, states of S are independent of time;
and that the Heisenberg picture is equivalent to the Schrödinger picture, where phys-
ical quantities are time-independent, but states evolve according to the propagator
U (t, t ′), solving a deterministic Schrödinger equation. Even if quantum mechanics
were put under the auspices of the so-called “Copenhagen interpretation”, this is, of
course, nonsense, as has been amply demonstrated on many examples; (see [8, 10,
11], and refs. given there)! For, whenever a “measurement” is made, at some time t ,
say—wewill later speak, more accurately, of an “event” happening at approximately
time t—the deterministic unitary evolution of the state of S in the Schrödinger picture
is interrupted at this time, and the state “jumps”, or “collapses” into an eigenspace of
the “observable” that is measured—more accurately: the state jumps into the image
of an orthogonal projection representing the “event” that actually happens at time t ,
with jumping probabilities as given byBorn’s Rule; (see also [3, 4]). Expressed in the
Heisenberg picture, one can say that, while operators representing physical quantities
referring to an isolated physical system S evolve in time according to Eq. (1), the state
of S changes randomly whenever an “event” happens; it thus exhibits a non-trivial,
stochastic evolution in time, a kind of stochastic branching process described in [2,
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3, 12, 13] and in Sect. 4 of this paper. In order to avoid paradoxes [7–9], it is crucial
to assume that the occurrence of an event (for example, the successful completion
of a measurement) has an objective meaning independent of the “observer”—and
independent of whether an “observer” is actually present or not.

One should think that, by now, these things are exceedingly well-known and
appreciated, and hence I won’t dwell on them any further.—It might be added,
however, that, in Bohmian mechanics, randomness enters in a way that differs from
the one in other formulations of quantummechanics: Randomness is due, inBohmian
mechanics, to incomplete knowledge of initial conditions; see [14].3

3 The Meaning of “Locality” or “Einstein Causality” in
Relativistic Quantum Theory

In this section, I sketch ideas on “locality” or “Einstein causality”. For, there appears
to exist a certain amount of confusion concerning the question in which sense quan-
tum mechanics is “non-local” and in which sense it is perfectly “local”. Let us
consider an isolated system, S, consisting of two spin- 12 particles, p and p′, and of
equipment serving to measure components of their spins along two directions given
by unit vectors �n and �n′, respectively. We imagine that, after preparation of the initial
state, �, of S, particle p propagates into a cone, C , opening in the direction of the
negative x-axis, while p′ propagates into a cone, C ′, opening in the direction of the
positive x-axis, with only tiny probabilities for sojourn outside C and C ′, respec-
tively. Let us assume that the measurement of the spin of p takes place inside a
region B ⊂ C in an interval [t1, t2] of times, while the measurement of the spin of
p′ takes place in a region B ′ ⊂ C ′ within a time-interval [t ′1, t ′2], and let us imagine
that the space-time regions B × [t1, t2] and B ′ × [t ′1, t ′2] are space-like separated.
The results of the two measurements are described by two orthogonal projection
operators, �

p
�n,σ

, σ = ±, and �
p′
�n′,σ ′ , σ ′ = ±, where “σ = +” means that the spin

of p is aligned with �n after the measurement has been completed, while “σ = −”
means that the spin of p is anti-parallel to �n after its measurement, and similarly for
p′. The operators �

p
�n, σ

, σ = ±, have the following properties:

�
p
�n,+ · �

p
�n,− = 0, �

p
�n,+ + �

p
�n,− = 1 , (2)

and similarly for the operators �
p′
�n′,σ ′ , σ

′ = ±. Moreover, the operators �
p
�n,σ

and

�
p′
�n′,σ ′ are localized in space-like separated regions, B × [t1, t2] and B ′ × [t ′1, t ′2],

respectively, of space-time, for all choices of σ and of σ ′. We would like to make
an educated guess of the state used by a localized observer, O, to predict his future

3The Bohmian point of view cannot be discussed any further in this paper. Suffice it to remark that
BohmianMechanics is not equivalent to the formulation of Quantum Theory proposed in this paper
and in [3].
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if O has the property that the past light-cones of all points inside O contain both
regions, B × [t1, t2] and B ′ × [t ′1, t ′2]. The answer to the question which of the two
spin measurements was initiated or completed first then obviously depends on the
past “world-tube” of the observer O. This is because B × [t1, t2] and B ′ × [t ′1, t ′2]
are space-like separated. Let us suppose that, for an observer O, the spin of p was
measured first, that the state of S before any of these measurements were carried out
was given by a density matirx �, and that between the preparation of the state �

of S and further observations by O only the measurements of the spins of p and of
p′ were made. According to the standard “projection postulate” (of the Copenhagen
interpretation), the state used by O to predict future measurement outcomes is then
given by

�O = [N(�n,σ ),(�n′,σ ′)]−1 �
p′
�n′,σ ′ · �

p
�n,σ

� �
p
�n,σ

· �
p′
�n′,σ ′ , (3)

where N(�n,σ ),(�n′,σ ′):=tr
(
�

p′
�n′,σ ′ · �

p
�n,σ

� �
p
�n,σ

· �
p′
�n′,σ ′

)
is a normalization factor.

Imagine now that O′ is an observer localized in the same space-time region as O,
but for whom the spin of p′ is measured before the spin of p. He then proposes to
use the state �O′ given by a formula arising form (3) by exchanging the order of
�

p
�n,σ

and �
p′
�n′,σ ′ . We want to impose the requirement that the predictions made by O

andO′ concerning future measurements (i.e., ones localized in their common future
light-cone) must be compatible. This implies that the two states �O and �O′ must
agree on the algebra of all “observables” potentially measureable in the future of
O = future of O′. This would be guaranteed if (but does not imply that)

�
p′
�n′,σ ′ · �

p
�n,σ

= �
p
�n,σ

· �
p′
�n′,σ ′ , (4)

for arbitrary choices of (�n, σ ) and (�n′, σ ′), assuming, as stated above, that the local-
ization regions B × [t1, t2] and B ′ × [t ′1, t ′2] are space-like separated. Equation (4) is
what is called “locality” or “Einstein causality” in relativistic quantum field theory.
This is a sufficient (but not necessary) condition to eliminate ambiguities in the pre-
dictions of possible future measurement outcomes made by different observers that
are due to the impossibility of unambiguously ordering measurements according to
the times at which they are initiated (or completed). But Eq. (4) does not imply that
quantum mechanics is “local” in the following sense: Consider the state

�(�n,σ ):=[N(�n,σ )]−1�
p
�n,σ

� �
p
�n,σ

,

where N(�n,σ ) is a normalization factor chosen such that tr(�(�n,σ )) = 1. Let A be an
“observable” localized in a space-time region space-like separated from B × [t1, t2];
(for example A = �

p′
�n′,σ ′). One might expect that

tr
(
� A

) = tr
(
�(�n,σ ) A

)
,
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for any operator A with these properties. But, of course, this equality does not hold!
This fact is what people call the “non-locality” of quantum theory. In quantum field
theory, this kind of “non-locality” is neatly reflected in the Reeh-Schlieder theorem
[15]. It results from entanglement.

One major purpose of this paper is to render the “projection postulate” (or “col-
lapse postulate”—see Eq. (3)) more precise, to explain its origin and to find out
under what conditions it is applicable. In contrast to the ideas described in [6],
we will not invoke any mechanism extraneous to quantum mechanics that produces
“state collapse”.

4 Relativistic Quantum Theory, and the Notion of “events”

In this section we propose an algebraic definition of local relativistic quantum theory
and then introduce a precise notion of “events”.We require some rudimentary knowl-
edge of the theory of operator algebras. In particular, the reader might profit from
knowing what aC∗—and what a von Neumann algebra is and what, for example, the
Gel’fand-Naimark-Segal (GNS) construction is. What will be used from the theory
of operator algebras, in this paper, can be learned in a few hours! A useful reference
may be [16].

For the time being, we will consider space-time, M, to be given; but we do not
equip M with a Lorentzian metric. Later, we will try to clarify how properties of
algebras of operators representing localized potentialities equip M with a causal
structure. But to start with, we assumeM to be given byMinkowski space,Md , with
d = 4.

In relativistic quantum theory, all operators representing physical quantities char-
acteristic of an isolated physical system S can be localized in some space-time
regions. Given a region O ⊂ M, we denote by A(O) the algebra generated by
all bounded operators localized in O that represent physical quantities. The family{A(O)

}
O⊂M is called a “net of local algebras”. For an introduction to these concepts

and to algebraic quantum field theory the reader is advised to consult [17]. In the
following considerations, the regionsO are usually taken to be forward or backward
light-cones with apex in an arbitrary space-time point P ∈ M.

A general formulation of local relativistic quantum theory:

We consider an isolated physical system S to be described with the help of a model
of local relativistic quantum theory.

Definition 1 By FP we denote the ∗algebra generated by all operators representing
physical quantities referring to S (such as potential events) localized in the “future”
of the space-time point P , while PP denotes the algebra generated by all operators
representing physical quantities localized in the “past” of P . �
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We assume that all the algebras FP are contained in a C∗-algebra E , and

E =
∨

P∈M
FP , (5)

where the closure on the right side is taken in the operator norm of E . We assume
that all these algebras are represented on a common separable Hilbert space H and
that all “states of physical interest” of S can be identified with density matrices
(non-negative trace-class operators normalized to have trace = 1) acting on H.4 In
our notation, we will not distinguish between an abstract element of the algebra E
and the linear operator on H representing it.

Definition 2 We define EP to be the von Neumann algebra obtained by closure of
the algebra FP in the weak operator topology of the algebra, B(H), of all bounded
operators on H. �

If S is a physical system in a state of finite energy describing only excitations of
strictly positive rest mass then

EP � B(H) , for any point P ∈ M . (6)

It is expected that this equality always holds in a space-time of odd dimension, even
if massless particles are present. This is because Huygens’ Principle does not hold
in space-times of odd dimension. (It also does not hold in certain even-dimensional
space-times with non-vanishing curvature. But that’s another story, which, for rea-
sons that I will not explain in any detail, is not expected to invalidate the following
considerations.) Theproperty expressed inEq. (6) is onemost people sub-consciously
consider to be always valid. But this is actually not the case! (If it were we would
probably be unable to introduce a reasonable notion of “events” in quantum theory,
and we would never solve the “measurement problem”.)

If there exist massless particles, in particular photons and/or gravitons and Dark-
Energy modes, and if Huygens’ Principle holds in an appropriate sense (M even-
dimensional, specifically M = M

4),5 the algebra EP tends to have an infinite-
dimensional commutant,E ′

P . (The commutant,M′, of an algebraM contained in B(H)

is the algebra of all bounded operators on H commuting with all operators in M.)
More specifically, within an algebraic framework of local relativisitic quantum field
theory over four-dimensional Minkowski space-time, Detlev Buchholz has shown
[18] that, in the presence of massless particles, E ′

Pt
∩ EPt0

is an infinite-dimensional,
non-commutative algebra, whenever Pt0 is a space-time point in the past of the space-
time point Pt , as indicated in Fig. 2.

In his proof, Huygens’ Principle is exploited in the form that asymptotic out-
fields creating on-shell massless particles escaping to infinity do not propagate into

4It is sometimes advantageous to formulate this assumption in a more abstract, algebraic way
involving, among other ingredients, the GNS-construction; see, e.g., [17].
5Or in the presence of blackholes in space-time.
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Fig. 2 The black line is the world-line of an “observer” who, at time t , is localized near Pt .
Operators representing physical quantities potentially observable by the “observer” in the future of
Pt are localized inside the forward light-cone V

+
Pt
. They generate the algebra EPt . Asymptotic out-

field operators describing the emission of (on-shell) photons or gravitons in the regionO propagate
along the light-cones contained in V+

Pt0
but not contained in V+

Pt

the interior of forward light-cones contained in the future of the space-time region
(denoted by O in Fig. 2) where they are localized, but propagate along the surface
of forward light-cones with apices in O. Such asymptotic out-fields are then shown
to commute with all operators in the algebra EPt .

One expects that, if space-time is even-dimensional and in the presence of
massless particles, the algebras EP have the property that all non-zero orthogonal
projections belonging to EP have an infinite-dimensional range. This implies that
there do not exist any normal pure states on these algebras. Furthermore, they are
expected to be isomorphic to a certain “universal” von Neumann algebra, N,6 i.e.,
EP � N, ∀ P ∈ M.

We now use these insights to extract a general algebraic formulation of local
relativistic quantum theory compatible with the appearance of “events” and promis-
ing a solution of the “measurement problem”. We assume that space-time M is a
topological space and that, with every point P ∈ M, one can associate a von Neu-
mann algebras, EP , the “algebra of potential events that might possibly happen in
the future of P ”, with the property that EP is contained in a C∗-algebra E , for all
P ∈ M.

The family of algebras
{EP

}
P∈M equips space-timeMwith the following causal

structure:

6N is expected to be a von Neumann algebra of type I I I1.
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Definition 3 A space-time point P ′ is in the future of a space-time point P , written
as P ′ 
 P , (or, equivalently, P is in the past of P ′, written as P ≺ P ′ ) iff

EP ′ � EP , E ′
P ′ ∩ EP is an ∞ − dim. non-commutative algebra (7)

�

Equation (7) expresses what I call the

“Principle of Diminishing Potentialities” (PDP)

This principle is actually a theorem in an axiomatic formulation of quantum elec-
trodynamics over four-dimensional Minkowski space proposed by D. Buchholz and
the late J. Roberts [20].

Henceforth, the Principle of Diminishing Potentialities will always be assumed
to hold; and, within our formulation of relativistic quantum theories, (a model of) an
isolated physical system S is defined by specifying the following data:

S = {M, E,H,
{EP

}
P∈M satisfying PDP

}
, (8)

whereM is a model of space-time, E is a C∗-algebra represented on a Hilbert space
H, and

{EP
}
P∈M is a family of von Neumann algebras satisfying the “Principle of

Diminishing Potentialities” introduced in Eq. (7).

Definition 4 If a space-time point P ′ is neither in the future of a space-time point
P nor in the past of P we say that P and P ′ are space-like separated, written as
P× P ′. �

Let � be a space-like subset ofM. IfM = M
4 we imagine that � is a subset of

a space-like hypersurface of co-dimension 1 in M. Since all the algebras EP , P ∈
M, are assumed to be contained in the C∗-algebra E , the following definition is
meaningful:

E� :=
∨

P∈�

EP , (9)

where the closure is taken in the weak topology of B(H). A state, ω� , on the algebra
E� is a normalized, positive linear functional on E� .
Remark: At this point we should comment on the question of what the operational
meaning of a “state” of an isolated system S is, and how one can prepare S in a
specific state. Obviously these are important questions, which, however, cannot be
discussed here; but see [21].

Definition 5 Let M be a von Neumann algebra, and let ω be a normal state on M.
For an operator X ∈ M, we define adX (ω) to be the linear functional onM defined
by

adX (ω)(Y ):=ω([Y, X ]), ∀Y ∈ M.
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We define the centralizer, Cω(M), of the state ω by

Cω(M):={
X |X ∈ M, adX (ω) = 0

}
. (10)

It is easy to verify that Cω(M) is a (von Neumann) subalgebra of M, and that ω is a
normalized trace on Cω(M). (This property implies that centralizers are completely
classified!)
Given an algebra N, the center, Z(N), is the abelian subalgebra of N consisting of
all operators in N commuting with all other operators in N. We set

Zω(M):=Z(Cω(M)) (11)

�
Motivation underlying the following notions and definitions is provided in [2, 3,

13].

Definition 6 Given a point P ∈ M, a potential event in the future of P is a family,{
πξ | ξ ∈ X

}
, (X a countable set of indices7), of orthogonal projections belonging to

EP with the properties

πξ · πη = δξηπξ , ∀ ξ, η ∈ X,
∑

ξ∈X
πξ = 1 . (12)

It is expected that events usually have a finite duration. This would imply that oper-
ators

{
πξ |ξ ∈ X

}
representing a potential event in the future of the point P would be

localized in a compact region of space-time contained in the future of P (the future
light-cone with apex in P). �
Definition 7 Given a state ωP on the algebra EP , we say that an event happens in
the future of the space-time point P iff the algebra

ZωP :=Z(CωP (EP)
)

is generated by the projections
{
πξ | ξ ∈ X

} ⊂ ZωP ⊂ EP of a potential event in the
future of P with the properties that the cardinality of X is at least 2 and that there
exist projections πξ1 , . . . , πξn , such that

ωp(πξ j ) > 0, ∀ j = 1, . . . , n, for some n ≥ 2 . (13)

(The quantity ω(πξ ) will turn out to be the Born probability for πξ to occur in the
future of P .) �

7Here it is assumed that potential events can be identifiedwith the spectral projections of self-adjoint
operators with discrete spectrum (� X); more generally, one could identify potential events with
spectral projections of families (abelian algebras) of commuting self-adjoint operators that may
have continuous spectrum.
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LetωP be the state of S on the algebra EP . It is easy to see that if an event described
by the family

{
πξ | ξ ∈ X

} ⊂ ZωP of projections happens in the future of the point P
then

ωP(X) =
∑

ξ∈X
ω

(
πξ X πξ

)
, ∀X ∈ EP , (14)

i.e., the state ωP on the algebra EP is a mixture of the states

ωP,ξ :=
[
ωP(πξ )

]−1
ω

(
πξ (·)πξ

)
(15)

labelled by the points ξ ∈ X.
The following is a crucial axiom.

Axiom 1 (“State-collapse” postulate): If an event happens in the future of a point
P ∈ M, in the sense of Definition 7, then the state to be used to make predictions
of further events possibly happening in the future of P is given by ωP,ξ∗ , for some
ξ∗ ∈ X with ωP(πξ∗) > 0, where ωP,ξ∗ , ξ∗ ∈ X, is defined in Eq. (15).

The probability that ωP,ξ∗ is selected among the states
{
ωP,ξ | ξ ∈ X

}
is given by

Born’s Rule, namely it is given by ωP(πξ∗). The projection πξ∗ is called the “actual
event” happening in the future of P. �

Next, we consider two points, P and P ′, in a subset � ofM, with P×P ′, (i.e.,
P and P ′ are space-like separated), We assume that the state ω� defined in Eq. (9) is
given, so that the states ωP = ω�|EP and ωP ′ = ω�|E ′

P
are known, too. We suppose

that, given ω� , events happen in the future of P and of P ′. Let ZωP denote the
center of the centralizer of the state ωP on the algebra EP , which describes the event{
π P

ξ |ξ ∈ XP
}
happening in the future of P , and let ZωP′ be the algebra describing

the event happening in the future of the point P ′. We require the following axiom.

Axiom 2 (Events in the future of space-like separated points commute): Let
P× P ′. Then all operators in ZωP commute with all operators in ZωP′ . In par-
ticular,

[
π P

ξ , π P ′
η

] = 0, ∀ ξ ∈ XP and all η ∈ XP ′
. �

This axiom may be one reflection of what people sometimes interpret as the fun-
damental non-locality of quantum theory: Projection operators representing events
in the future of two space-like separated points P and P ′ in space-time are con-
strained to commute with each other! Actually, this implies what in quantum field
theory is understood to express locality or Einstein causality.

Next, we assume that some slice, F, in space-time M is foliated by space-like
hypersurfaces, �τ : F:=

{
�τ |τ ∈ [0, 1]}, where τ is a time coordinate in the space-

time region filled by F. Let P be an arbitrary space-time point in the leaf �1, and let
the “recent past” of P , V−

P (F), consist of all points in
⋃

τ<1 �τ that are in the past
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of P , in the sense specified in Definition 3, above. The task we propose to tackle is
the following one: We suppose that we know the state ω�0 on the algebra E�0 , (see
Eq. (9)). Assuming that Axioms 1 and 2 hold, we propose to determine the state ωP

on EP , for the given point P ∈ �1. Let
{
Pι|ι ∈ I(F)

}
denote the subset of points in

V−
P (F) in whose future events happen (see Definition 7), and let

{
π

Pι

ξι
|ι ∈ I(F)

} ⊂ E�0

be the actual events (seeAxiom 1) that happen in the future of the points Pι , ι ∈ I(F);
(here I(F) is a set of indices labelling the points in V−

P (F) in whose future events
happen; it is here assumed to be countable).Wedefine a so-called“HistoryOperator”

H
(
V−
P (F)

):= ��
ι∈I(F)

π
Pι

ξι
, (16)

where the ordering in the product �� is such that a factor π Pκ

ξκ
corresponding to a point

Pκ stands to the right of a factor π
Pι

ξι
corresponding to a point Pι iff Pκ ≺ Pι, (i.e., if

Pκ is in the past of Pι). But if Pι×Pκ , i.e., if Pι and Pκ are space-like separated the
order of the two factors is irrelevant—thanks to Axiom 2!

The state on the algebra EP relevant to make predictions about events happening
in the future of P , in the sense of Definition 7, is then given by

ωP(X) ≡ ω
F
P

(
X

) = [N F
P

]−1
ω�0

(
H(V−

P (F))∗ X H(V−
P (F))

)
, X ∈ EP , (17)

where the normalization factor N F
P is given by

N F
P = ω�0

(
H(V−

P (F))∗ · H(V−
P (F))

)
. (18)

We recall that, according to Definition 7, an event happens in the future of a
point P ∈ �1 iff the center, ZωP , of the centralizer of the state ωP on the algebra
EP , defined in (17), contains at least two disjoint orthogonal projections of strictly
positive probability, as given by Born’s Rule; (see Axiom 1).

The quantities N F
P can be used to equip the tree-like space (the so-called “non-

commutative spectrum” of S) of all possible histories of events in the future of points
belonging to the foliation F with a probability measure; see [3].

The ideas and results discussed here are illustrated in Fig. 3, above.
To conclude this discussion, in the approach to relativistic quantum theory pre-

sented in this paper (called “ET H Approach”), the evolution (along the foliation
F) of the state of an isolated physical system S, given the initial state ω�0 on the
algebra E�0 defined in Eq. (9),

8 can be viewed as a generalized stochastic branching
process, whose state space is what I have called the “non-commutative spectrum”

8and assuming the axiom of choice.
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Fig. 3 It is tacitly assumed
here that all events that
happened in the past of the
point P have a strictly finite
duration. They are marked
by small “diamonds” and are
numbered from 1 to n.
Notice that 1×2 and 2 ≺ n

of the system S, (see [3], and Eq. (27), Sect. 6, for a definition), and with branching
rules derived from Definition 7, Axioms 1 and 2 and Eqs. (16)–(18).9

Mathematical details can be made precise if space-time is discretized. Additional
information can be found in [3, 23, 24].

5 Monitoring Events by Measuring Physical Quantities

Let S = {M, E,H,
{EP

}
P∈M satisfying PDP

}
be the data defining an isolated

physical system, with the properties specified in Sect. 4, Eq. (8), and assumed
to satisfy Axioms 1 and 2. In Sect. 4, we have introduced a precise notion of
“events” featured by S. In this section, we propose to explain how events can be
recorded/monitored by measuring physical quantities referring to S.

For the purposes of the present exposition it is convenient to define a “physical
quantity” to be an abstract self-adjoint linear operator X̂ with the property that, for
every point P ∈ M, there exists a concrete self-adjoint linear operator X (P) ∈ EP

acting on the Hilbert space H of S and representing the quantity X̂ ; (see [3] for a
somewhat more general and abstract notion of physical quantities).
Remark: If space-time M is given by Minkowski space M

4 the operator X (P)

is conjugated to the operator X (P ′) by a unitary operator on the Hilbert space H

9This picture has reminded my former student P.-F. Rodriguez of the following sentence from the
short story “The Garden of Forking Paths”, by Jorge Luis Borges: “I leave to several futures (not
to all) my garden of forking paths”.
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representing the space-time translation from P to P ′. But on general space-times a
simple relation between X (P) and X (P ′) may not exist.

We define
OS:=

{
X̂ ι = X̂∗

ι | ι ∈ I(S)
}

(19)

to be a list of all physical quantities available, at present, to characterize properties
of S for which there exists a prescription of how they can be measured.10 The list
OS is not intrinsic to the theoretical description of the system S; rather it specifies
those physical quantities referring to S that, during a given era, can be expected to be
measurable in real experiments. In quantum theory, this list is not an algebra (unless
all operators belonging toOS commute with one another), and it is usually not even
a real linear vector space. The question to be addressed in the following is what we
mean by saying that some quantity X̂ ∈ OS is measured in the future of a space-time
point P , and how such a measurement can be used to record an event that happens
in the future of P .

Suppose that, for somepoint P ∈ M, the centerZωP (of the centralizerCωP (EP) ⊂
EP of the state ωP on the algebra EP ) is non-trivial and is generated by a family{
πξ | ξ ∈ X

}
of disjoint orthogonal projections describing an event happening in the

future of P . Let ε be a positive number; (it will turn out to be a measure of the
“resolution” of the recording of this event in a measurement of a physical quantity
X̂ ∈ OS). We let

{
π1, . . . , πN

}
be a finite number of disjoint orthogonal projections

contained in ZωP with the property that

ωP(π j ) ≥ ε, ∀ j = 1, . . . , N , ωP

(
1 −

N∑

i=1

πi

)
< ε . (20)

The projections
{
π1, . . . , πN

}
form the basis of an N -dimensional vector space,V (ε)

ωP
,

equipped with a (positive-definite) scalar product, 〈·, ·〉, given by

〈πi , π j 〉:=ωP(πi · π j ) = ωP(πi ) δi j ≥ ε δi j , for i, j = 1, . . . , N . (21)

Every vector Z ∈ V (ε)
ωP

can be represented as a linear combination,

Z =
N∑

j=1

z jπ j ∈ ZωP , for complex numbers z1, . . . , zN . (22)

Wecan thus identifyV (ε)
ωP

with an N -dimensional subspace, actually an N -dimensional
subalgebra of ZωP .

LetHωP be theHilbert space and�P the cyclic vector inHωP obtained by applying
the Gel’fand-Naimark-Segal (GNS) construction to the pair

(EP , ωP
)
; (see. e.g.,

[16]). There is a bijectionbetween the vector spaceV (ε)
ωP

and the subspaceW (ε)
ωP

⊂ HωP

spanned by the vectors

10For simplicity, we assume that all operators in OS have discrete spectrum.
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{
Z �P | Z ∈ V (ε)

ωP

}
.

By Q(ε) we denote the orthogonal projection onto W (ε)
ωP
.

Let X̂ ∈ OS be a physical quantitiy characteristic of S, and let X (P) ∈ EP denote
the self-adjoint operator representing X̂ . We consider the spectral decomposition of
X (P):

X (P) =
M∑

k=1

xk �k(P) , (23)

where the operators �k(P) ∈ EP , k = 1, . . . , M ≤ ∞, are the spectral projections
of X (P), with

�k(P) = �k(P)∗ , � j (P) · �k(P) = δ jk � j (P), ∀ j, k ,

M∑

k=1

�k(P) = 1,

and x1, . . . , xM are the eigenvalues of X (P) (= eigenvalues of X̂ ), ordered in such
a way that the sequence

(
ωP(�k(P))

)M
k=1 is decreasing. Let L ≤ M be such that

ωP
(
1 −

L∑

k=1

�k(P)
)

< ε .

Given an operator A ∈ EP , we denote by εωP (A) the unique operator in the algebra
V (ε)

ωP
⊂ ZωP given by

Q(ε)A�P =: εωP (A)�P , εωP (A) ∈ V (ε)
ωP

. (24)

The map
εωP : EP → V (ε)

ωP

is called a “conditional expectation”; (see [25] for a systematic theory). Claiming
that a measurement of the physical quantity X̂ can be expected to be possible and to
record the event

{
πξ | ξ ∈ X

}
generating ZωP with a resolution of order ε relies on

the validity of the following

Basic Assumption:

‖�k(P) − εωP

(
�k(P)

)‖ < ε, ∀ k = 1, . . . , L . (25)

It is not hard to verify (but see [3], Eqs. (22), (23), for a proof) that this Assumption
implies that
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ωP(A) =
L∑

k=1

ωP
(
�k(P) A�k(P)

) + O(
L ε ‖A‖) , ∀ A ∈ EP , (26)

i.e., the state ωP is an incoherent superposition of eigenstates of the operator X (P),
up to an error of order ε. In this very precise sense, one can say that Assumption (25)
implies that there is an approximate measurement of the physical quantity X̂ in the
future of the point P .

Using a simple lemma (see [22], Lemma 8 and Appendix C), one can show that if
ε is sufficiently small Assumption (25) implies that there are orthogonal projections
πk(X̂) ∈ ZωP with the property that

‖�k(P) − πk(X̂)‖ < O(ε),

and

ωP(A) =
L∑

k=1

ωP
(
πk(X̂) A πk(X̂)

) + O(
L ε ‖A‖) , ∀ A ∈ EP .

In this precise sense, if L ≥ 2 a measurement of the quantity X̂ in the future of P
yields non-trivial information about the event described by ZωP happening in the
future of P . If L = N the projections

{
πk(X̂)|k = 1, . . . , L

}
must coincide with

the projections
{
π j | j = 1, . . . , N

}
introduced right before (20), provided ε � 1 is

sufficiently small. In this case, a measurement of X̂ yields very precise information
about the event happening in the future of P .

For further discussion of these matters see [3], (Sect. 3, V.).

6 Conclusions and Outlook

In this last section, some scattered remarks and speculations that grow out of the
results sketched in Sects. 4 and 5 are presented.

1. In our attempt to cast local relativistic quantum theory in a form compatible with
the manifestation of what we have defined to be “events” and with a solution
of the “measurement problem”, the “Principle of Diminishing Potentialities”
(PDP), (see Definition 3, Sect. 4, Eq. (7), and [3]), plays a fundamental role.
We have seen that if space-time is even-dimensional (e.g.,M = M

4) and if there
existmassless particles—photons, gravitons and, possibly,Dark-Energymodes—
satisfying some form of Huygens’ Prinicple, (see [18]), then (PDP) holds. One
may argue that (PDP) also holds in space-times containing blackholes. From a
very general point of view, it appears that a quantum theory satisfying (PDP) is
necessarily “relativistic”, and the dimension of its space-time must be even.

2. In Definitions 3 and 4 of Sect. 4, we have seen that there is a purely algebraic way
to equip space-time M with a causal structure: A space-time point P is in the
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past of a space-time point P ′ (written as P ≺ P ′) iff

EP ′ � EP ,

and the relative commutant, E ′
P ′ ∩ EP , of the algebra EP ′ in EP is a non-

commutative algebra. Two points P and P ′ are space-like separated (written
as P×P ′) iff P is not in the past of P ′ and P ′ is not in the past of P . It would be
desirable to further elucidate the relationship of the algebras EP and EP ′ in case
the points P and P ′ are space-like separated.
Ultimately, we would like to reconstruct space-time from purely algebraic data
concerning a family (or families) of operator algebras equipped with certain rela-
tions, in particular inclusions and statements about relative commutants, given
a state on these algebras. A (presumably not entirely successful) attempt in this
direction has been made in [26].

3. In the formalismdescribed in Sect. 4, “events” are localized in the future of certain
space-time points, P; in the sense that they are described in terms of the abelian
algebrasZωP ⊂ EP , where, for a given point P ,ZωP is the center of the centralizer
of the stateωP on the algebra EP , with EP describing all potentialities in the future
of P . The actual event happening in the future of some point P is an orthogonal
projection, π P

ξ , belonging toZωP , for some point ξ in an index set XP , and having
a strictly positive probability as predicted by Born’s Rule. In view of Axiom 2,
Sect. 4, it would be important to have a more precise idea about the space-time
regions where the operators π P

ξ , ξ ∈ XP , are localized. This might actually yield
information about the geometry of space-time and, ultimately, support the view
that gravitation is an “emergent” (or “derived”) phenomenon.
To render these remarks a little more precise, we recall that one expects that all
the algebras EP are isomorphic to a “universal” von Neumann algebra N. One
would like to knowmore about properties of states,ω, onN for which the centers,
Zω(N), of the centralizers Cω(N) of ω are non-trivial, in the sense of Definition
7, Sect. 4. In [3],

ZS:=
⋃

ω

Zω(N), (27)

where ω ranges over all “states of physical interest”, has been dubbed the “non-
commutative spectrum” of the system S. It is the “state space” of the stochastic
branching process defined by Eqs. (16), (17) and (18) of Sect. 4, which describes
the stochastic evolution of states of S. Unfortunately, we have very little insight
into the structure of the non-commutative spectrum ZS .
It would be important to equip the algebra N (and hence EP , for P ∈ M) with a
local structure, (in the sense that N is generated by a net of local sub-algebras),
and to attempt to show that events, i.e., elements of one of the algebras Zω(N),
with ω a “state of physical interest”, are typically contained in sub-algebras of
N corresponding to what can be considered a “bounded region” of space-time.
This would help to introduce a more precise version of Axiom 2. But this topic,
too, remains to be clarified.
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4. One would expect that, for initial conditions given by states, ω�0 , of S of “physi-
cal interest”, (see Eq. (9), Sect. 4), the ensemble of events happening in the future
of the points belonging to a foliation

{
�τ |τ ∈ [0, 1]} of some slab of space-time

(see Sect. 4, after Axiom 2) is countable, and that these events are localizable
in bounded regions of space-time. One would expect, moreover, that the metric
extension of a space-time region within which an event can be localized is con-
strained by space-time uncertainty relations of a kind discussed, e.g., in [27]. This
ought to be a consequence of time-energy uncertainty relations and of the possi-
bility that blackholes form in the aftermath of energetic events, which, afterwards,
would evaporate.
Alas, I don’t know how to even start to derive these expectations from a more
precise formalism of local relativistic quantum theory. Yet, the results reviewed
in this paper and in [24] suggest that, once we truly understand what is meant
by a local relativistic quantum theory of events, we will view events as the basic
building blocksweaving the fabric of space-time and the relations between events
as determining the geometry of space-time.

To conclude, I want to express the hope that the results, problems and speculations
reviewed in this papermight challenge colleagueswithmore technical knowledge and
strength than I am able tomuster to go further towards the goal of truly understanding
the miracles of quantum theory.
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Classically Gravitating Quantum
Systems

André Großardt

Abstract Could gravity be of a fundamentally classical nature? Gravitational col-
lapse models support this idea, which is summarised and whose implications for
quantum experiments are briefly reviewed. We also discuss more recent suggestions
to use spin as an entanglement witness in order to assess the quantumness of the
gravitational force between two masses. Finally, an argument is given why the non-
linear evolution resulting from such a classical treatment of gravity may not lead
to problems with causality if one also invokes some gravity related stochastic wave
function collapse.

1 Introduction

We do not have a complete and consistent theory that describes the gravitational
influence that a quantum system in a spatial superposition state has on the motion of
a test particle. This simple statement sums up the current state of theoretical physics
on scales where both quantum effects and gravity become important.

For some, this assertion comes as a surprise, as it is a widespread belief that quan-
tum gravitational effects become relevant only at the Planck scale and no ambiguities
exist at the scale of low-energy tabletop experiments. This belief, however, is based
on the assumption that gravity must ultimately be described by a quantum theory of
which general relativity is an effective field theory. Low energy gravitational physics
is then simply modelled by the perturbative quantisation of the metric tensor.

The idea that gravity could be fundamentally different from the familiar quantum
field theories for matter fields is supported by collapse models. The mechanisms
proposed by Diósi [1] or Adler [2], for instance, consider gravity as the origin of
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the stochastic, nonlinear terms appearing in the modified dynamical laws for the
collapse. The gravity-related noise in these models, however, must be of classical
rather than quantum nature [2]. In conclusion, if gravity causes a dynamical collapse
of the wave function then the gravitational field cannot possess the typical properties
of quantum matter fields; specifically the gravitational interaction must induce a
nonlinear quantum dynamics in order to account for state reduction [3].

In the limit where a quantum system reaches comparably low energies, we know
that it can be described by quantum fields (or even the nonrelativistic Schrödinger
equation) in a flat spacetime and the system will obey the superposition principle. A
system with a large mass, on the other hand, will not exhibit any quantum effects;
it will, however, source a spacetime curvature which—due to the nonlinearity of
Einstein’s field equations—does not obey the superposition principle [4]. If we care-
fully increase the mass of a quantum system, making sure that its quantum properties
remain observable while simultaneously obtaining a detectable gravitational field,
then the question arises whether the superposition principle will survive, leading to
a gravitational field incompatible with the principles of general relativity, or whether
the classical spacetime structure of general relativity will emerge.

In the latter case, we face the question how quantum matter in a non-classical
state acts as a source for the gravitational field, and whether this classical spacetime
sourced by quantum matter can have observable consequences within the range of
feasible experiments.

2 Semiclassical Gravity in the Nonrelativistic Limit

The basic principle of general relativity is that the curvature of spacetime determines
howmatter is dynamically evolving, and the distribution of matter (or rather the den-
sities and fluxes of energy and momentum) on spacetime determines how spacetime
is curved. The latter part is reflected in Einstein’s field equations,

Rμν − 1

2
gμν R = 8π G

c4
Tμν , (1)

where the left-hand side represents the curvature of spacetime and the right-hand
side the matter distribution.

Matter, however, is quantised, promoting the right-hand side of this equation to a
Hilbert space operator. A consistent model that couples quantised matter to classical
spacetime, therefore, must include some prescription how to derive a classical object
Tμν that has the correct classical limit from quantum matter. An obvious choice is
the expectation value in a given quantum state:

Tμν = 〈� | T̂μν | �〉 . (2)
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Equations (1) with this definition are known as the semiclassical Einstein equations.
In the nonrelativistic limit they result in the Poisson equation [5]

∇2� = 4π G m |�|2 (3)

for the Newtonian gravitational potential � which is sourced by the absolute value
squared of the spatial wave function �; i. e. the probability density |�|2 acts like a
mass density. This state dependent potential renders the evolution of the quantum
state nonlinear, described by the Schrödinger-Newton equation

i�
∂�(t, r)

∂t
=

(
− �

2

2m
∇2 − G m2

∫
d3r′

∣∣�(t, r′)
∣∣2

|r − r′|

)
�(t, r) . (4)

A single quantum particle whose dynamics are described by this equationwill exhibit
a qualitatively different behaviour. Its wave function—which also corresponds to a
gravitational mass distribution—will show a tendency to self-attract, leading to an
inhibition of the usual quantum mechanical spreading which for very large masses
can even surpass the usual spreading and lead to a collapse-like motion towards a
narrower, solitonic solution [6, 7]. For atoms, however, the deviation to the standard
evolution is negligible and one needs to consider composite, mesoscopic systems to
achieve a significant effect.

2.1 Composite Systems

For a system of N particles of equal mass m, the Schrödinger-Newton equation
reads [5, 8]

i�
∂�N (t, r1, . . . , rN )

∂t
=

(
− �

2

2m

N∑
i=1

∇2
i

− G m2
N∑
i=1

N∑
j=1

∫
d3r′1 · · · d3r′N

∣∣�N (t, r′1, . . . , r′N )
∣∣2∣∣∣ri − r′j

∣∣∣
)

�N (t, r1, . . . , rN ) .

(5)

This equation describes both the usual mutual Newtonian gravitational interaction
(terms i �= j) and the gravitational self-interaction (terms i = j) which is character-
istic of the Schrödinger-Newton equation.

Under the assumption that a large number of particles N is held together by (e. g.
electromagnetic) internal forces much stronger than the gravitational interaction, a
centre of mass equation can be derived [9]:

i�
∂ψ(t, r)

∂t
=

(
− �

2

2M
∇2 +

∫
d3r′ ∣∣ψ(t, r′)

∣∣2 Iρ(r − r′)
)

ψ(t, r) , (6)
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where ψ is the centre of mass wave function for the total mass M , r denotes the
centre of mass coordinate, and Iρ(d) is the mutual gravitational potential between
two equal mass distributions given by the mass density ρ and shifted from each other
by a distance d,

Iρ(d) = −G
∫

d3r d3r′ ρ(r) ρ(r′)
|r − r′ + d| , (7)

with ρ(r) being the mass distribution resulting from the internal forces.
For a point-like object whose wave function extends much wider than its mass

distribution, such that ρ can be approximated by a delta distribution, Iρ is simply
the Coulomb-like gravitational potential and the dynamics can be modeled by the
single particle equation (4). The equation also simplifies in the opposite situation
of a very well localised, macroscopic object, i. e. if the size of the object is much
larger than the width of the centre-of-mass wave-function. In this case, significant
contributions to the Schrödinger evolutionwill only occurwhere

∣∣r − r′∣∣ is small, and
Taylor expansion of Iρ to second order yields the approximate nonlinear Schrödinger
equation

i�
∂ψ(t, r)

∂t
=

(
− �

2

2M
∇2 + r − 〈r〉

2
· I ′′ρ (0)r − r

2
· 〈I ′′ρ (0)r〉 + 1

2
〈r · I ′′ρ (0)r〉

)
ψ(t, r) , (8)

where constant terms in the Hamiltonian have been omitted and I ′′
ρ (0) denotes the

Hessian matrix at d = 0 of the mutual gravitational potential defined in Eq. (7).
For a spherically symmetric mass distribution, ρ(r) = ρ(r), the Hessian matrix

is diagonal, I ′′
ρ (0) = k 1, and results in a quadratic nonlinear potential:

i�
∂ψ(t, r)

∂t
=

(
− �

2

2M
∇2 + k

2
(r − 〈r〉)2 + k

2

(〈r2〉 − 〈r〉2)) ψ(t, r) , (9)

with k = GM2/R3 for a solid sphere of radius R [10]. For microgram masses, the
centre of mass wave function is usually narrow in comparison to the picometre scale
localisation length σ of the atoms of mass m within condensed matter, and one finds
k ∼ GMm/σ 3 [11].

Equation (9) can serve as a starting point for experimental tests of the Schrödinger-
Newton equation, for instance through a de-phasing between internal and external
oscillations of a squeezed Gaussian state of a nanomechanical oscillator [12]. Closer
analysis suggests that effects would become observable for particle masses of the
order of nanograms, if such particles can be trapped at a frequency of below 10Hz
with a quality factor of at least 106. Alternative experimental proposals [13] have
similar requirements. Although these parameters are technologically challenging
and, to date, ground state cooling has not been achieved for such systems, there is
no fundamental reason why an experimental test should not be possible within the
next decade.
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Fig. 1 Schematic depiction
of an experiment in which
two Stern-Gerlach devices
prepare spatial superposition
states, the adjacent paths of
which interact
gravitationally. From [14]

3 Entanglement Generation Through Newtonian Gravity

The classical gravitational interaction described in the previous sectionwill not result
in an entanglement of two distant masses. This is different from the expectation one
has for a fully quantum theory of gravity and due to the fact that in the limit of two
well localised particles (i. e. narrow wave functions) with position operators r̂1 and
r̂2, the mutual part of the potential in the two-particle version of Eq. (5) takes the
form

V̂ semicl.
12 = − Gm2∣∣r̂1 − 〈r̂2〉

∣∣ − Gm2∣∣〈r̂1〉 − r̂2
∣∣ . (10)

Quantised gravity, in contrast, if treated in analogy to electrodynamics as a quanti-
sation of linear perturbations of the metric tensor around the flat Minkowski metric,
yields a Coulomb-like potential in terms of the position operators:

V̂ quantum
12 = − Gm2∣∣r̂1 − r̂2

∣∣ . (11)

A concrete proposal to use spin correlations as a witness of the entanglement
generated in the latter case has been put forward [14]. In this scheme, depicted in
Fig. 1, two particles (masses m1 and m2) are sent through adjacent Stern-Gerlach
devices and split in a “left” and “right” path each, resulting in an initial state

| �0〉 = (| L ,↑〉1+ | R,↓〉1) ⊗ (| L ,↑〉2+ | R,↓〉2)
=| L ,↑〉1 | L ,↑〉2+ | L ,↑〉1 | R,↓〉2+ | R,↓〉1 | L ,↑〉2+ | R,↓〉1 | R,↓〉2 .

(12)
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Assuming that the splitting (
x1,
x2 in the figure) is large compared to the distance
δx between | R,↓〉1 and | L ,↑〉2, only the gravitational interaction between those two
parts of the state are significant. In a lowest order WKB approximation, the potential
results in a phase shift

φ ≈ G m1 m2 τ

� δx
(13)

and the state at time t = τ will have evolved to the non-separable

|�quantum
τ 〉 =| L , ↑〉1 | L , ↑〉2+ | L , ↑〉1 | R, ↓〉2 + eiφ | R, ↓〉1 | L , ↑〉2+ | R, ↓〉1 | R, ↓〉2 . (14)

In semiclassical gravity, on the other hand, both particles will sense a gravitational
potential generated by the full superposition state of the respective other particle, i. e.
as if there was half the mass in the “left” and half the mass in the “right” position.
Every term in the state that contains | R,↓〉1 will therefore acquire a phase φ/2
regardless of the state of particle 2, and every term that contains | L ,↑〉2 will acquire
a phase φ/2 regardless of the state of particle 1. The final state is the still separable

| �semicl.
τ 〉 = (| L ,↑〉1 + eiφ/2 | R,↓〉1

) ⊗ (
eiφ/2 | L ,↑〉2+ | R,↓〉2

)
. (15)

After refocusing the two paths, the spin part of the wave function will be

| ψquantum
spin 〉 = 1

2
|↑↑〉 + 1

2
|↑↓〉 + eiφ

2
|↓↑〉 + 1

2
|↓↓〉 (16)

or

| ψ semicl.
spin 〉 = eiφ/2

2
|↑↑〉 + 1

2
|↑↓〉 + eiφ

2
|↓↑〉 + eiφ/2

2
|↓↓〉 (17)

for quantised and semiclassical gravity, respectively.
In order to witness the entanglement present in the former state, the authors of [14]

suggest to measure spin correlations in two complementary bases and to estimate
the value of

W = ∣∣〈σ (1)
x ⊗ σ (2)

z 〉 + 〈σ (1)
y ⊗ σ (2)

y 〉∣∣ . (18)

From the states (16) and (17) one calculates

〈σ (1)
x ⊗ σ (2)

z 〉quantum = 1

2

(
eiφ − 1

)
, 〈σ (1)

y ⊗ σ (2)
y 〉quantum = 1

2

(
eiφ − 1

)
,

(19)

〈σ (1)
x ⊗ σ (2)

z 〉semicl. = eiφ/2

2

(
eiφ − 1

)
, 〈σ (1)

y ⊗ σ (2)
y 〉semicl. = 0 , (20)

and therefore finds that in the case of the quantum potential (11)
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0 ≤ W = ∣∣eiφ − 1
∣∣ ≤ 2 (21)

whereas for the semiclassical potential (10)

0 ≤ W = 1

2

∣∣eiφ − 1
∣∣ ≤ 1 . (22)

Hence, if the value ofW is experimentally confirmed to exceed unity, the semiclas-
sical potential can be ruled out.

For a practical realisation of this idea, Bose et al. [14] suggest a mass of 10−14 kg,
e. g. microdiamonds, with separations of a few hundred micrometres. Unlike the
experiments mentioned in the previous section, where one considers centre-of-mass
wave-functions that are confined well within the extent of the particle, superpositions
must be large compared to the particle size for this type of test; therefore, feasible
masses are significantly lower. The closest possible distance between the twoparticles
is limited by Casimir-Polder forces which need to be smaller than the gravitational
forces. As a result of the relatively small masses and large distances, gravitational
effects are much weaker than in the schemes considered in the previous section.

4 Is Semiclassical Gravity Causally Consistent?

A nonlinearity in the Schrödinger equation, such as the nonlinearity in Eq. (4), can in
principle be exploited to send faster-than-light signals [15]. Take, for instance, two
entangled spin- 12 particles in the superposition state

1√
2

(|↑↓〉+ |↓↑〉) = 1√
2

(| ++〉− | −−〉) , (23)

where we denote the eigenstates of the σz Pauli matrix as |↑〉, |↓〉, and the eigenstates
of σx as

| ±〉 = 1√
2

(|↑〉± |↓〉) . (24)

We use the shorthand notation |↑↓〉 =|↑〉A⊗ |↓〉B and so forth for the two-particle
states.

Now we could choose to perform a measurement on particle B in the σz basis;
then particle A would be in a mixed state, obtained by tracing over the two possible
measurement outcomes |↑〉B and |↓〉B . Alternatively, the measurement could be
performed in the σx basis, resulting in tracing over the possible outcomes | +〉B and
| −〉B to obtain the reduced state for particle A. However, either case would result in
the same density matrix

ρ̂A = 1

2
|↑〉〈↑| +1

2
|↓〉〈↓| = 1

2
| +〉〈+| +1

2
| −〉〈−| , (25)
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belonging to equivalent mixtures. In standard quantum mechanics, the outcome of
anymeasurement on particle A can be derived from this densitymatrix and, therefore,
does not depend on the choice of basis for the measurement on particle B. The linear
evolution of the pure states |↑〉, |↓〉, | +〉, and | −〉 guarantees that the equality in
Eq. (25) holds also at any later time.

This does not apply to the nonlinear Schrödinger-Newton equation (4): Assume
that the spin of particle A becomes entangled with its position, e. g. in a magnetic
field gradient along the z-axis. We do not write the state of particle B explicitly,
which only plays the role of “collapsing” particle A into one of the eigenstates of the
σz and σx bases, respectively. In the “classical” states |↑〉A and |↓〉A, the position
of particle A will simply evolve as z↑(t) and z↓(t) without any self-gravitational
influence:

|↑〉A → |↑〉A⊗ | z↑(t)〉A , |↓〉A → |↓〉A⊗ | z↓(t)〉A . (26)

In the superposition states | +〉 and | −〉, however, each part of the superposition will
be affected by the gravitational potential generated by the respective other part of
the superposition. This implies that the evolution is

| ±〉A = 1√
2

(|↑〉A± |↓〉A) → 1√
2

(|↑〉A⊗ | z̃↑(t)〉A± |↓〉A⊗ | z̃↓(t)〉A
)

,

(27)
with

z̃↑↓(t) ≈ z↑↓(t) ± G m

2

∫ t

0
dt ′

∫ t ′

0
dt ′′

∣∣z↑(t ′′) − z↓(t ′′)
∣∣−2

. (28)

Because of this nonlinear, self-gravitational effect, the equality in Eq. (25) no longer
holds. In order to know which density matrix correctly captures the statistics of
measurements on particle A, it now seems necessary to know the choice of basis
made for particle B and, more dramatically, measurement outcomes for particle A
seem to be usable to determine the choice of basis for B regardless of the distance
between particles A and B—and send a binarily encoded message.

The conclusion that is usually drawn from this is that only such dynamical laws
for the quantum states can be allowed under which the densitymatrix evolves linearly
and the equality (25) holds at all times. This is the justification why collapse models
consider only stochastic nonlinearities that result in a Lindblad structure for the
master equation.

Thismight, however, be a too strict constraint on the possible evolution laws: For a
practical realisation of a faster-than-light signal through the communication channel
outlined above, consider a superposition with approximately constant separation
z.
Let λ be the spatial resolution with which the particle (its centre of mass position,
to be precise) can be detected. If the spatial wave function of the particles can be
approximated by two well-defined delta peaks, the self-gravitational effect results in
a constant Newtonian gravitational acceleration z̈ ≈ Gm/(2
z2).
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Wemust require λ < 
z in order to resolve at least the initial separation of states.
For an order of magnitude estimation, it is then sufficient to assume that 
z does not
vary too much over the time tD required to achieve a separation of λ. This time can
then be estimated as

tD ≈ 2
z

√
λ

G m
. (29)

The resolution λ is limited by the uncertainty principle, δz δpz ≈ �, which implies
that

λ > δz + tD
m

δpz >

√
� tD
m

>

(
�
2 
z2 λ

G m3

)1/4

>

(
�
2 λ3

G m3

)1/4

, (30)

where we use that λ < 
z, and therefore

λ >
�
2

G m3
. (31)

Of course, both a small λ and short time tD can be achieved if one allows for the
mass to become sufficiently large.

However, if gravity is responsible for the collapse of the wave function, a too
large mass can result in a collapse before there is any chance for the self-gravitational
interaction to lead to a significant change in position. Lacking a concrete model for
gravity induced collapse, we may resort to the ideas by Diósi and Penrose accord-
ing to which massive superpositions are reduced with a rate proportional to their
gravitational self-energy, i. e. with collapse time

tC ≈ � R0

G m2
. (32)

R0 is a free parameter which is generally associated with a spatial coarse graining
of the mass density distribution. The condition that there be no collapse before the
separation time tD has passed implies

t2C ≈ �
2 R2

0

G2 m4
> t2D >

λ3

Gm
⇔ �

2

G m3
>

λ3

R2
0

. (33)

Equations (31) and (33) together can only be satisfied if R0 > λ.
In order to effectively make use of the self-gravitational nonlinearity for sending

a faster-than-light signal, the spatial resolution must be better than the spatial coarse
graining length R0. Whether this is possible, even in principle, in all (or any) models
for gravitational state reduction is at least questionable. It seems plausible that an
(unkown) mechanism through which gravity collapses the wave function could at the
same time prevent any possibility to exploit the nonlinear semiclassical gravitational
interaction to violate causality.



268 A. Großardt

Ultimately, the very presence of the dynamical collapse could render the argu-
ment against deterministic nonlinearities in the Schrödinger equation invalid, and
collapse models may include deterministic nonlinear terms alongside the stochastic
ones without permitting faster-than-light signals. Specifically in the case of gravita-
tional collapse, the deterministic nonlinearities present in the Schrödinger-Newton
equation (4) have a very appealing physical motivation. Taking them seriously as a
possible modification of quantum mechanics could turn out to be rewarding.

References

1. L. Diósi.Models for universal reduction ofmacroscopic quantumfluctuations.Physical Review
A, 40 (3): 1165–1174, 1989. https://doi.org/10.1103/PhysRevA.40.1165.

2. S. L. Adler. Gravitation and the noise needed in objective reduction models. In M. Bell and
S. Gao, editors, Quantum Nonlocality and Reality: 50 Years of Bell’s Theorem. Cambridge
University Press, Cambridge, 2016.

3. A. Bassi and G. Ghirardi. A general argument against the universal validity of the superpo-
sition principle. Physics Letters A, 275 (5-6): 373–381, 2000. https://doi.org/10.1016/S0375-
9601(00)00612-5.

4. R. Penrose. On gravity’s role in quantum state reduction. General Relativity and Gravitation,
28 (5): 581–600, 1996. https://doi.org/10.1007/BF02105068.

5. M. Bahrami, A. Großardt, S. Donadi, and A. Bassi. The Schrödinger-Newton equation and its
foundations. New Journal of Physics, 16: 115007, 2014. https://doi.org/10.1088/1367-2630/
16/11/115007.

6. D. Giulini and A. Großardt. Gravitationally induced inhibitions of dispersion according to the
Schrödinger-Newton equation.Classical and QuantumGravity, 28 (19): 195026, 2011. https://
doi.org/10.1088/0264-9381/28/19/195026.

7. J. R. v. Meter. Schrödinger-Newton ’collapse’ of the wavefunction. Classical and Quantum
Gravity, 28 (21): 215013, 2011. https://doi.org/10.1088/0264-9381/28/21/215013.

8. L. Diósi. Gravitation and quantum-mechanical localization of macro-objects. Physics Letters
A, 105 (4-5): 199–202, 1984. https://doi.org/10.1016/0375-9601(84)90397-9.

9. D. Giulini and A. Großardt. Centre-of-mass motion in multi-particle Schrödinger-Newton
dynamics. New Journal of Physics, 16: 075005, 2014. https://doi.org/10.1088/1367-2630/16/
7/075005

10. H. Iwe. Coulomb Potentials Between Spherical Heavy Ions. Zeitschrift für Physik, 304 (4):
347–361, 1982. https://doi.org/10.1007/BF01421517.

11. A. Großardt, J. Bateman, H. Ulbricht, and A. Bassi. Effects of Newtonian gravitational self-
interaction in harmonically trapped quantum systems. Scientific Reports, 6: 30840, 2016.
https://doi.org/10.1038/srep30840.

12. H. Yang, H. Miao, D.-S. Lee, B. Helou, and Y. Chen. Macroscopic Quantum Mechanics in
a Classical Spacetime. Physical Review Letters, 110 (17): 170401, 2013. https://doi.org/10.
1103/PhysRevLett.110.170401.

13. A. Großardt, J. Bateman, H. Ulbricht, and A. Bassi. Optomechanical test of the Schrödinger-
Newton equation. Physical Review D, 93: 096003, 2016b. https://doi.org/10.1103/PhysRevD.
93.096003.

14. S. Bose, A. Mazumdar, G. W. Morley, et al. Spin Entanglement Witness for Quantum Grav-
ity. Physical Review Letters, 119: 240401, 2017. https://doi.org/10.1103/PhysRevLett.119.
240401.

15. N. Gisin. Stochastic quantum dynamics and relativity.Helvetica Physica Acta, 62 (4): 363–371,
1989. https://doi.org/10.5169/seals-116034.

https://doi.org/10.1103/PhysRevA.40.1165
https://doi.org/10.1016/S0375-9601(00)00612-5
https://doi.org/10.1016/S0375-9601(00)00612-5
https://doi.org/10.1007/BF02105068
https://doi.org/10.1088/1367-2630/16/11/115007
https://doi.org/10.1088/1367-2630/16/11/115007
https://doi.org/10.1088/0264-9381/28/19/195026
https://doi.org/10.1088/0264-9381/28/19/195026
https://doi.org/10.1088/0264-9381/28/21/215013
https://doi.org/10.1016/0375-9601(84)90397-9
https://doi.org/10.1088/1367-2630/16/7/075005
https://doi.org/10.1088/1367-2630/16/7/075005
https://doi.org/10.1007/BF01421517
https://doi.org/10.1038/srep30840.
https://doi.org/10.1103/PhysRevLett.110.170401
https://doi.org/10.1103/PhysRevLett.110.170401
https://doi.org/10.1103/PhysRevD.93.09600
https://doi.org/10.1103/PhysRevD.93.09600
https://doi.org/10.1103/PhysRevLett.119.240401
https://doi.org/10.1103/PhysRevLett.119.240401
https://doi.org/10.5169/seals-116034


Collapse Models and Cosmology

Jérôme Martin and Vincent Vennin

Abstract Attempts to apply quantum collapse theories to Cosmology and cosmic
inflation are reviewed. These attempts aremotivated by the fact that the theory of cos-
mological perturbations of quantum-mechanical origin suffers from the single out-
come problem, which is amodern incarnation of the quantummeasurement problem,
and that collapse models can provide a solution to these issues. Since inflationary
predictions can be very accurately tested by cosmological data, this also leads to con-
straints on collapse models. These constraints are derived in the case of Continuous
Spontaneous Localization (CSL) and are shown to be of unprecedented efficiency.

1 Introduction

Quantum Mechanics finds itself in a somehow paradoxical situation. On one hand,
it is an extremely efficient and well-tested theory whose experimental successes are
impressive and unquestioned. On the other hand, understanding and interpreting the
formalism on which it rests is still a matter of debates. This on-going discussion has
led to a variety of points of view ranging from challenging that there is an actual
problem, to developing different ways of understanding the theory or, in other words,
different “interpretations” [1].
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Giancarlo Ghirardi, to whom this book and chapter are dedicated, has made fun-
damental contributions to this question. In fact, the approach proposed by Ghirardi
(together with his collaborators, Rimini and Weber and, independently, Pearle), the
so-called collapse models [2–5], unlike the other interpretations, goes beyond simply
advocating for a different scheme to capture the meaning of the QuantumMechanics
formalism. It is actually an alternative to QuantumMechanics and, as such, it should
not be considered as an interpretation but rather as another, rival, theory. In some
sense, collapse models enlarge Quantum Mechanics, which becomes only one par-
ticular theory in a larger parameter space, in the same way that, for instance, General
Relativity is only one point in the parameter space of scalar-tensor theories [6]. As a
consequence, the great advantage of collapse theories is that they make predictions
that are different from those of Quantum Mechanics and that can thus be falsified.
This was of course realized from the very beginning by Ghirardi and, nowadays,
there exists a long list of experiments aiming at constraining collapse models [1].

These experiments, however, are all performed in the lab. In the present article, it is
pointed out that using QuantumMechanics and/or collapse models in a cosmological
context can shed new light on those theories.

One of themost important insights inCosmology is the realization that galaxies are
of quantum-mechanical origin [7]. They are indeed nothing but quantumfluctuations,
stretched to very large distances by cosmic expansion during a phase of inflation [8–
12] and amplified by gravitational instability. This discovery has clearly far-reaching
implications for Cosmology but also for foundational issues in QuantumMechanics.
Indeed, in Cosmology, Quantum Mechanics is pushed to new territories not only
in terms of scales (the typical energy, length or time scales relevant for Cosmology
are very different from those characterizing lab experiments) but also in terms of
concepts: applyingQuantumMechanics to a single systemwith no exterior, classical,
domain is not trivial [13, 14].

Among the first physicistswho realized thatCosmology can be an interesting play-
ground for QuantumMechanics was John Bell, see for instance his article “Quantum
mechanics for cosmologists” [15]. As Ghirardi recalled and discussed in detail dur-
ing the colloquium he gave at the Institut d’Astrophysique de Paris (IAP) on March
22nd, 2012, he and John Bell were good friends and enjoyed interacting together.
In his talk,1 Ghirardi mentioned that Bell emphasized the importance of develop-
ing a relativistic, Lorentz invariant, version of collapse models which is of course a
prerequisite for Cosmology. He also stressed that one important feature of collapse
models is that there is “nomention ofmeasurements, observers and so on”, a property
that is clearly relevant for Cosmology. Therefore, even if Ghirardi never explicitly
worked at the interface between Cosmology and Quantum Foundations, he clearly
considered this subject as a promising direction of research.

Recently, the collapse models have started to be considered in Cosmology [16–
24], in particular in the context of cosmic inflation, with two essential motivations:
to avoid conceptual problems related to the absence of an observer in the very early

1The slides of his talk can be found at this http://www.iap.fr/vie_scientifique/seminaires/
Seminaire_GReCO/2012/presentations/ghirardi.pdf.

http://www.iap.fr/vie_scientifique/seminaires/Seminaire_GReCO/2012/presentations/ghirardi.pdf
http://www.iap.fr/vie_scientifique/seminaires/Seminaire_GReCO/2012/presentations/ghirardi.pdf
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universe; and to use the high-accuracy cosmological data constraining inflation as a
probe of the free parameters characterizing collapse models [24]. The goal of this
paper is to briefly review these recent works. It is organized as follows. In the next
section, Sect. 2, we briefly review cosmic inflation and the theory of cosmological
perturbations of quantum-mechanical origin. Then, in Sect. 3, we explain why col-
lapse theories can be useful in Cosmology. In Sect. 4, we discuss how these theories
can be implemented concretely and, in Sect. 5, we use cosmological observations to
put constraints on the parameters characterizing collapse models. Finally, in Sect. 6,
we present our conclusions.

2 Cosmic Inflation and Cosmological Perturbations

In Cosmology, the theory of inflation is a description of the physics of the very early
universe [8–12]. It is a phase of exponential, accelerated, expansion [meaning that
ä > 0 where a(t) is the scale factor describing how cosmic expansion proceeds and
t is the cosmic time] first introduced to fix some undesirable features of the standard
model of Cosmology [25]. Since it occurs in the early universe, it is characterized
by a very high energy scale, that could be as large as 1015 GeV. Soon after infla-
tion was proposed, in the late seventies and early eighties, it was also realized that
it provides an efficient mechanism for structure formation. In the present context,
“structures” refer to the small inhomogeneities that are the seeds of the Cosmic
Microwave Background (CMB) anisotropies and of the galaxies. They can be repre-
sented by an inhomogeneous scalar field called the “curvature perturbation” [7, 26],
and denoted ζ(t, x). It represents small ripples propagating on top of an homoge-
neous and isotropic background. The idea is then to promote this scalar field to a
quantum scalar field, which thus undergoes unavoidable quantum fluctuations. These
quantum fluctuations are then amplified during inflation and, later on in the history
of the universe, give rise to galaxies.

This may seem a rather drastic idea, but one can show that all the predictions
of this theory are in perfect agreement with astrophysical observations [27–33].
In particular, the statistics of ζ are quasi Gaussian (no deviation from Gaussianity
has been detected so far [34]), and can thus be fully characterized in terms of its
power spectrum Pζ(k), which is the square of its Fourier amplitude. It represents
the “amount” of inhomogeneities at a given scale. It was known as an empirical
fact, well before the advent of inflation, that cosmological data are consistent with
a primordial scale-invariant power spectrum, that is to say with a function Pζ(k)
that is k-independent. But the theoretical origin of this scale-invariance was not
known. Inflation definitively gained respectability when it was realized that it leads
to this type of power spectrum for the quantum fluctuations mentioned before. Its
convincing power is even higher today because, in fact, inflation does not predict
an exact scale-invariant power spectrum, but rather an almost scale-invariant power
spectrum: if one writes the power spectrum as Pζ(k) ∼ knS−1, where nS is the so-
called spectral index, exact scale-invariance corresponds to nS = 1 while inflation
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leads to nS �= 1 but |nS − 1| � 1. As a consequence, if inflation is correct, then one
should observe a small deviation from nS = 1. In 2013, the European Space Agency
(ESA) satellite Planck measured the CMB anisotropies with exquisite precision and
found [27] nS = 0.9603 ± 0.0073, thus establishing that, if nS is indeed close to one,
it differs fromone at a (5σ) significant level. Themost recent release [32, 33], in 2018,
has confirmed this measurement with nS = 0.9649 ± 0.0042. This confirmation of
a crucial inflationary prediction has given a strong support to the idea that galaxies
are of quantum-mechanical origin.

At the technical level, it is well known that a field in flat space-time can be inter-
preted as an infinite collection of harmonic oscillators, each oscillator corresponding
to a given Fourier mode. Likewise, a scalar field living in a cosmological, curved,
space-time can be viewed as an infinite collection of parametric oscillators, the fun-
damental frequency of each oscillator becoming a time-dependent function because
of cosmic expansion (for a review, see Ref. [35]). Upon quantization, harmonic oscil-
lators naturally lead to the concept of coherent states while parametric oscillators
lead to the concept of squeezed states [36]. In the Heisenberg picture, the curvature
perturbation operator can be expanded as

ζ̂(η, x) = 1

(2π)3/2

1

z(η)

∫
dk√
2k

[
ĉk(η)eik·x + ĉ†k(η)e−ik·x

]
, (1)

where ĉk(η) and ĉ†k(η) are the annihilation and creation operators satisfying the usual
equal-time commutation relations, [ĉk(η), ĉ†p(η)] = δ(k − p), z(η) is a function that
depends on the scale factor and its derivatives only, and η denotes the conformal time,
related to cosmic time via dt = adη. The dynamics of ζ̂(η, x) is controlled by the fol-
lowing Hamiltonian, which is directly obtained from expanding the Einstein-Hilbert
action plus the action of a scalar field at second order2 in perturbation theory [35],

Ĥ =
∫
R3

d3k Ĥfree(k) + g(η)

∫
R3

d3k Hint(k). (2)

In this expression, g(η) = z′/(2z) is a time-dependent “coupling constant”, and

Ĥfree(k) = k

2

(
ĉk ĉ

†
k + ĉ†−k ĉ−k

)
, Ĥint(k) = −i

(
ĉk ĉ−k − ĉ†−kc

†
k

)
. (3)

The first term, Ĥfree, is the Hamiltonian of a collection of harmonic oscillators and
the second one, Ĥint, represents the interaction of the quantum perturbations with the
classical background. If space-time is not dynamical (Minkowski), then g(η) = 0.

2This second-order expansion of the action is valid at linear order in perturbation theory, which is
known to provide an excellent description of primordial fluctuations, given their small amplitude.
This is the order at which the calculation is performed in this work, as in the standard treatment.
At higher order, mode coupling effects are expected, which would made the use of the CSL theory
technically more challenging (as for the case of standard quantum mechanics) but these effects are
clearly suppressed by the amplitude of perturbations, hence they cannot change our conclusions.
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In the inflationary paradigm, a crucial assumption, without which the theory would
not be empirically successful, is that the initial state of the system is the so-called
“Bunch-Davies” or “adiabatic” vacuum state [37], which can be written as

|0〉 =
⊗
k

|0k〉, (4)

with ĉk(ηini)|0k〉 = 0, ηini being the conformal time at which the initial state is cho-
sen. The time evolution of the curvature perturbation ζ̂(η, x) is then given by the
Heisenberg equation dĉk/dη = −i[ĉk, Ĥ ]. This equation can be solved by means
of a Bogoliubov transformation, ĉk(η) = uk(η)ĉk(ηini) + vk(η)ĉ†−k(ηini), where the
functions uk(η) and vk(η) obey

i
duk
dη

= kuk(η) + i
z′

z
v∗
k (η), i

dvk
dη

= kvk(η) + i
z′

z
u∗
k(η). (5)

These functions must satisfy |uk(η)|2 − |vk(η)|2 = 1 in order for the commutation
relation between ĉk and ĉ†p to be satisfied. If one introduces the Bogoliubov trans-
formation into the expression (1) for the curvature operator, one obtains

ζ̂(η, x) = 1

(2π)3/2

1

z(η)

∫
dk√
2k

[
(uk + v∗

k )(η)ĉk(ηini)e
ik·x + (u∗

k + vk)(η)ĉ†k(ηini)e
−ik·x] . (6)

From Eqs. (5), it is easy to establish that the quantity uk + v∗
k obeys the equation

(uk + v∗
k )

′′ + ω2(uk + v∗
k ) = 0 with ω2 = k2 − z′′/z. This is the equation of a para-

metric oscillator, namely a harmonic oscillator with time-dependent fundamental
frequency, and, here, this time dependence is entirely controlled by the dynamics
of the underlying background space-time. Let us notice that the initial conditions
are given by uk(ηini) = 1 and vk(ηini) = 0, which implies that (uk + v∗

k )(ηini) = 1.
Having solved the time evolution of the system, one can then calculate the two-point
correlation function of the curvature perturbation. It needs to be evaluated in the state
|0〉 since, in the Heisenberg picture, states do not evolve in time, and one has

〈
0
∣∣ζ2 (η, x)

∣∣ 0〉 ≡
∫ +∞

0

dk

k
Pζ(k) =

∫ ∞

0

dk

k
k2
∣∣∣∣uk + v∗

k

z

∣∣∣∣
2

. (7)

This shows how the power spectrum Pζ(k) mentioned above can be determined
explicitly once the differential equation for uk + v∗

k has been solved. Notice that it
is, a priori, a function of time. However, on large scales, uk + v∗

k ∝ z, and this time
dependence disappears.

Let us now describe the same phenomenon but in the Schrödinger picture. We
first notice that the Bogoliubov transformation introduced above can be written

ĉk(η) = R̂†
k Ŝ

†
k ĉk(ηini)Ŝk R̂k, (8)
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where the operators R̂k and Ŝk , called the rotation and squeezing operators respec-
tively, are defined by R̂k = eD̂k and Ŝk = eB̂k , with

B̂k = rke
−2iϕk ĉ−k(ηini)ĉk(ηini) − rke

2iϕk ĉ†−k(ηini)ĉ
†
k(ηini),

D̂k = −iθk,1ĉ
†
k(ηini)ĉk(ηini) − iθk,2ĉ

†
−k(ηini)ĉ−k(ηini). (9)

They are expressed in terms of the squeezing parameter rk(η), the squeezing angle
ϕk(η) and the rotation angle θk(η) ≡ θk,1(η) = θk,2(η), which are related to the
functions uk(η) and vk(η) via uk(η) = e−iθk cosh rk and vk(η) = −ieiθk+2iϕk sinh rk .
In the Schrödinger picture, the state evolves with time into a two-mode squeezed
state [38]

|0〉 → |�2sq〉 =
⊗
k

Ŝk R̂k |0k, 0−k〉 =
⊗
k

1

cosh rk(η)

∞∑
n=0

e−2inϕk (η) tanhn rk(η)|nk, n−k〉,

(10)

where |nk〉 is an eigenvector of the particle number operator in the mode k. In
Cosmology, the value of the squeezing parameter, for the modes k probed in the
CMB, is rk  102 towards the end of inflation, which is much larger than what can
be achieved in the lab. Moreover, this state is, as apparent on the previous expression,
entangled. It is therefore reasonable to conclude that the quantum state |�2sq〉 is a
highly non-classical state.

The above squeezed state can also be written in terms of a wave-functional, which
usually corresponds to writing the state in the “position” basis. This, however, is not
as straightforward as it might seem in the present context. Indeed, the curvature
perturbation and its conjugate momentum are related to the creation and annihilation
operators through

z(η)ζ̂k = 1√
2k

(
ĉk + ĉ†−k

)
, z(η)ζ̂ ′

k = −i

√
k

2

(
ĉk − ĉ†−k

)
. (11)

We notice that the curvature perturbation and its conjugatemomentum are notHermi-
tian operators since the above relations imply that ζ̂†k = ζ̂−k, which simply translates
the fact that the curvature perturbation is a real field. As a consequence, ζ̂k cannot
play the role of the position operator. Moreover, these expressions mix creation and
annihilation operators of momentum k and−k, while it seems more natural to define
a position operator for each mode k. This, however, can be done if one introduces
the operators q̂k and π̂k defined by [39]

z(η)ζ̂k = 1

2

[
q̂k + q̂−k + i

k

(
π̂k − π̂−k

)]
, z(η)ζ̂ ′

k = 1

2i

[
k
(
q̂k − q̂−k

)+ i
(
π̂k + π̂−k

)]
.

(12)

From those relations, it is easy to establish that
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q̂k = 1√
2k

(
ĉk + ĉ†k

)
, π̂k = −i

√
k

2

(
ĉk − ĉ†k

)
, (13)

so that q̂k and π̂k involve only creation and annihilation operators for a fixed mode
k. It is also easy to check that [q̂k, π̂k] = i , such that q̂k and π̂k are the proper
generalization of “position” and “momentum” for field theory. Then, it follows that
the total wave-functional of the system can be written as a product of wave-functions
for each mode, namely �2sq[η; q] = ∏

k �k(qk, q−k), with

�k (qk, q−k) = 〈qk, q−k|�k〉 = eA(rk ,ϕk )(q2
k+q2

−k)−B(rk ,ϕk )qkq−k

cosh rk
√

π
√
1 − e−4iϕk tanh2 rk

, (14)

where the functions A(rk,ϕk) and B(rk,ϕk) are defined by

A (rk,ϕk) = e−4iϕk tanh2 rk + 1

2(e−4iϕk tanh2 rk − 1)
, B (rk,ϕk) = 2e−2iϕk tanh rk

e−4iϕk tanh2 rk − 1
. (15)

Initially rk = 0, so A = −1/2 and B = 0, and �k(qk, q−k) ∝ e−q2
k/2e−q2

−k/2. Each
mode k and −k is decoupled and placed in their ground state (namely, the Bunch-
Davies vacuummentioned above). Then, the state evolves, rk becomes non-vanishing
and�k(qk, q−k) can no longer bewritten as a product�(qk)�(q−k). This is of course
another manifestation of the fact that the state becomes entangled.

The wave-functional �2sq can also be written in the basis |ζR
k , ζ

I
k〉, where one

defines ζ̂k ≡ (ζ̂R
k + i ζ̂ I

k)/
√
2, which implies that

zζ̂R
k = 1√

2

(
q̂k + q̂−k

)
, zζ̂ I

k = 1

k
√
2

(
π̂k − π̂−k

)
. (16)

In that case, �2sq[η, ζ] = ∏
k �k(ζ

R
k )�k(ζ

I
k), where the individual wave-functions

can be expressed as�k(ζ
s
k) ≡ �s

k = Nke−�k(aζsk)
2
, where |Nk| = (2�e�k/π)1/4 and

s = R, I. The behavior of �k(η) is determined by the Schrödinger equation, which
leads to �′

k = −2i�2
k + iω2(k, η)/2, where we remind that ω2(k, η) is the time-

dependent fundamental frequency of each oscillator. Several remarks are in order
at this point. First, the wave-functional �2sq[η, ζ] can be obtained from �2sq[η, q]
by canonical transformation [35, 40]. Second, finding the time dependence of the
function �k(η) is clearly equivalent to solving the equation of motion (5). Third,
given the previous considerations about entanglement, it may seem surprising that
�k(ζ

R
k , ζ

I
k) can be written in a separable form, as a product of �k(ζ

R
k ) and �k(ζ

I
k).

But, in fact, entanglement depends on how a system is divided into two bipartite
sub-systems. This is confirmed by a calculation of the quantum discord which may
be vanishing for a partition and non-vanishing for another [39]. Finally, in the wave-
functional approach, the two-point correlation function that was calculated in Eq. (7)
in the Heisenberg picture can be obtained with the following formula



276 J. Martin and V. Vennin

〈
0
∣∣ζ2 (η, x)

∣∣ 0〉 =
∫ ∏

k

dζR
k dζ

I
k �∗

k(ζ
R
k , ζ

I
k) ζ2 (η, x) �k(ζ

R
k , ζ

I
k). (17)

This leads to the power spectrum

Pζ(k) = k3

2π2

1

4�e�k
, (18)

which can be checked to match the one obtained in Eq. (7).
Having explained how the theory of quantum-mechanical inflationary perturba-

tions can be used to calculate the power spectrum Pζ(k) of the fluctuations, let us
now briefly describe how this power spectrum can be related to astrophysical obser-
vations. In modern Cosmology, there exist many different observables that probe
various properties of the universe. Among the most important ones is clearly the
CMB temperature anisotropy mentioned before. It is the earliest probe, that is to say
the closest to the inflationary epoch, that we have at our disposal. The CMB radiation
is a relic thermal radiation emitted in the early universe at a redshift of zlss  1100.
Since the early universe is extremely homogeneous and isotropic, the temperature of
this radiation (namely ∼2.7K) is almost independent of the direction towards which
we observe it. In fact, the early universe is not exactly homogeneous and isotropic,
precisely because of the presence of the curvature perturbations discussed before.
They manifest themselves by tiny variations of the CMB temperature, at the level
δT/T  10−5. The CMB anisotropy is thus the earliest observational evidence of
curvature perturbations. More explicitly, the Sachs-Wolfe effect [41] relates the cur-
vature perturbation ζ̂k to the temperature anisotropy δ̂T /T through the following
formula

δ̂T

T
(e) =

∫
dk

(2π)3/2
[F(k) + ik · eG(k)] ζ̂k(ηend)e−ik·e(ηlss−η0)+ik·x0 , (19)

where e is a unit vector that indicates the direction on the celestial sphere towards
which the observation is performed. The conformal times ηlss and η0 are the last
scattering surface (lss) and present day (0) conformal times, respectively. The vector
x0 represents the Earth’s location. The quantities F(k) and G(k) are the so-called
form factors, which encode the evolution of the perturbations after they have crossed
in the Hubble radius after inflation. In practice, the temperature anisotropy given by
Eq. (19) can be Fourier expanded in terms of the spherical harmonics Y�m , namely

δ̂T

T
(e) =

+∞∑
�=2

�=m∑
�=−m

â�mY�m(e). (20)

Using the completeness of the spherical harmonics basis and Eq. (19), it is easy to
establish that, on large scales, namely in the limit F(k) → 1 and G(k) → 0, one has
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â�m = 4π

(2π)3/2
eiπ�/2

∫
R3

dk ζ̂k(ηlss) j�[k(ηlss − η0)] Y ∗
�m(k), (21)

where j� is a spherical Bessel function. A CMB map is nothing but a collection
of numbers a�m . The statistical properties of a map is characterized by its powers
spectrum, which can be written as

〈
0

∣∣∣∣∣
δ̂T

T
(e1)

δ̂T

T
(e2)

∣∣∣∣∣ 0
〉

=
+∞∑
�=2

2� + 1

4π
C�P� (cos δ) , (22)

where P� is a Legendre polynomial and δ the angle between the direction e1 and e2.
The coefficients C� are the so-called multipole moments and are related to the â�m

by 〈0|â�mâ
†
�′m ′ |0〉 = C�δ��′δmm ′ . From Eq. (21), one can also write

C� =
+∞∫

0

dk

k
Pζ(k) j

2
� [k(ηlss − η0)], (23)

thus establishing the relation between the power spectrum Pζ and a CMB map. Let
us emphasize again that this relation is in fact oversimplified since it is obtained
in the large-scale limit. In order to be realistic, one should take into account the
behavior of the perturbations once they re-enter the Hubble radius after inflation
which, technically, implies to consider the full form factors F(k) and G(k). This is
a non-trivial task, which requires numerical calculations. It leads to a modulation of
the signal and to the appearance of oscillations or peaks in the multipole moments,
the so-called Doppler or acoustic peaks.

3 Motivations

The previous framework is usually viewed as very efficient. In particular, the mul-
tipole moments (23) calculated with the inflationary power spectrum fit very well
the CMB maps obtained by the Planck satellite. Why, then, is the theory of quantum
perturbations still considered by some as unsatisfactory or incomplete? The main
reason is related to foundational issues in Quantum Mechanics, more precisely to
the so-called measurement problem. In the context of inflation, this discussion is
especially subtle and, hence, interesting for the following reasons.

On one hand, the inflationary perturbations are placed in a Gaussian state, which
means that the corresponding Wigner function is also a Gaussian and, therefore, is
positive-definite [42]. The Wigner function can thus be used and interpreted as a
classical stochastic distribution [39, 43, 44], in the sense that any two-point Her-
mitian correlation function can always be reproduced with this Gaussian classical
stochastic distribution [39]. This is also the case for any higher-order correlation
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function involving position only, in particular, any function of the curvature pertur-
bation. It is sometimes argued that these properties require large quantum squeezing
but, in fact, a large value of r is needed only for those higher correlation functions
mixing position and momentum (which are, in any case, not observable since they
involve the momentum, that is to say the decaying mode of the perturbations [39]).
Nevertheless, the fact that all observable correlation functions can be reproduced by
stochastic averages is often interpreted as the signature that a quantum-to-classical
transition has taken place.

On the other hand, we have argued before that the perturbations are very “quan-
tum”. They are placed in a very strongly squeezed state, which is a highly entangled
state. Indeed, in the limit of infinite squeezing, a squeezed state tends to an Ein-
stein Podolski Rosen state, which was used in the EPR argument to discuss the
“weird” (namely non-classical) features of Quantum Mechanics. It is hard to think
about a system that would be more “quantum” than this one! As a consequence, the
statement that the system has become classical should, at least, require some clar-
ification. In fact, characterizing the system as “classical” because some correlation
functions can be mimicked with a stochastic Gaussian process suffers from a number
of problems. First, even in the large-squeezing limit, there are so-called “improper
operators”, for which the Weyl transform takes some values outside the spectrum
of the operator. The measurement of these operators can never be described with a
classical stochastic distribution [45]. This, for instance, leads to the possibility to
violate Bell inequalities even if theWigner function always remains positive, a prop-
erty which clearly signals departure from classicality [46–48]. In fact, the question
of whether Bell’s inequality can be violated in a situation where the Wigner function
is positive-definite has been a concern for a long time and was discussed by John Bell
himself [49]. The corresponding history, told in Ref. [50], is a chapter of the history
of QuantumMechanics and is associated to the difficulties to define a classical limit.
Second, there is the definite outcome question. With the theory of decoherence [51,
52], it is possible to understand why we never observe a superposition of states cor-
responding to macroscopic configurations but this is not sufficient to explain why
a specific state is singled out in the measurement process. In some sense, with the
help of quantum decoherence, the quantum measurement problem has been reduced
to the definite outcome problem, which is at the core of the foundational issues of
QuantumMechanics. In a cosmological context, let us mention that decoherence has
been studied and it has been suggested that it is likely to be at play during infla-
tion [53–55]. But the definite outcome problem is still there and is neither solved by
decoherence (as already mentioned), nor by the emergence of “classical” stochastic
properties as described above.

In fact, one could even argue that this question, in the context of inflation and
Cosmology, is worst than in the lab for the following reasons. We have seen that
the operators δ̂T /T (e) (one for each direction e) are observable quantities. Since a
measurement of these observables has been performed by the COBE, WMAP and
Planck satellites, according to the basic postulates ofQuantumMechanics, the system
must be placed in one of the eigenstates of δ̂T /T (e), that we denote | 〉Planck(e),
and that satisfies
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δ̂T

T
(e)| 〉Planck(e) =

δT

T
(e)| 〉Planck(e).

However, the state |�2 sq〉 [recall that this state is defined in Eq. (10)] is not an
eigenstate of the temperature anisotropy operator. This can be established with a
direct and explicit calculation, but a physically more intuitive method is based on
the concept of symmetry [56]. In order to simplify the discussion, let us first use the
fact that the curvature perturbation can be viewed as a massless scalar field living in
a Friedmann-Lemaître-Robertson-Walker (FLRW) universe with an action given by
S = −1/2

∫
d4x

√−g gμν ∂μζ ∂νζ. Then, let us define the 4-momentum operator by

P̂μ = −
∫

d3x
√

(3)g T̂ 0
μ, (24)

where T̂μν is the stress energy tensor that can be calculated from the action given
above, T̂μν = ∂μζ̂∂ν ζ̂ − gμνgαβ∂αζ̂∂βζ̂/2 and (3)g the determinant of the three-
dimensional spatial metric. In cosmic time, one can check that P̂0 exactly corre-
sponds to the generator of the time evolution of the system, namely the Hamilto-
nian. On the other hand, the generator of the space translation along xi is given by

P̂i = a
∫
d3x ˙̂

ζ ∂i ζ̂. Expressed in terms of creation and annihilation operators, one
obtains P̂i ∝ ∫

dk ki ĉ
†
k ĉk. It follows immediately from this expression that P̂i |0〉 = 0

and the same conclusion would be obtained by applying the generator of rotations
(angular momentum operator). This expresses the fact that the vacuum state is
homogeneous and isotropic, i.e. it possesses the symmetries of the FLRW back-
ground. Moreover, one has [Ĥfree, P̂i ] = 0 and [Ĥint, P̂i ] = 0, hence [Ĥ , P̂i ] = 0,
which implies that the homogeneity and isotropy of the state is preserved during
cosmic expansion. As a result, one has P̂i |�2 sq〉 = 0, and |�2 sq〉 still represents a
universe without any structure. Since P̂i| 〉Planck(e), the transition between the two-

mode squeezed state (10) and a state corresponding to a specific outcome for CMB
anisotropies, namely

|Ψ2 sq〉 =
∑

c( )| 〉 → | 〉Planck(e),

cannot be generated by the Schrödinger equation. This is a concrete manifestation
of the measurement and single outcome problems of Quantum Mechanics, which
appear much more serious in a cosmological context than in standard lab situations,
since the transition (26) seems to have taken place in the absence of any observer.

This leads to a first motivation for considering collapse models in Cosmology.
In this class of theories, the collapse of the wave-function is a dynamical process
controlled by a modified Schrödinger equation, which does not rely on having an
observer. Another motivation is related to the fact that collapse models are falsifi-
able. Indeed, since they are based on a modified Schrödinger equation, they imply
different predictions than standard Quantum Mechanics. Given that the inflation-
ary predictions can be accurately tested with astrophysical data, one can then use
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them in order to test Quantum Mechanics and collapse models in physical regimes
that are completely different from those usually probed in the lab. This also shows
that solving the quantum measurement problem can have concrete implications for
comparing the inflationary paradigm with the data. Therefore, the question of how a
particular realization is produced is not of academic interest only, since it may also
alter the properties of the possible realizations themselves.

4 Inflation and Collapse

There is no unique collapsemodel but different versions that come in different flavors.
They are, however, all based on a modified Schrödinger equation that, for a non-
relativistic system, reads [4]

d�(t, x) =
[
−i Ĥdt +

√
γ

m0

∑
i

(
Ĉi −

〈
�

∣∣∣Ĉi

∣∣∣�
〉)

dWi (t)

− γ

2m2
0

∑
i

(
Ĉi −

〈
�

∣∣∣Ĉi

∣∣∣�
〉)2

dt

]
�(t, x), (25)

where Ĥ is theHamiltonian of the systemand Ĉ a collapse operator to be chosen (with
three components denoted Ĉi , i = x, y, z). The parameter γ is a new fundamental
constant the dimension of which depends on the choice of Ĉ, and m0 is a reference
mass usually taken to be the mass of a nucleon. Finally, dWi (t) is a stochastic noise
with E[dWi (t)dWj (t ′)] = δi jδ(t − t ′) where E[.] denotes the stochastic average.
Notice that the above equation is not sufficient to define the CSL model because we
have not yet specified what the collapse operator is.

Then, let us consider a field ζ̂(t, x) and here, of course, we have in mind curvature
perturbation. Quantum mechanically, it is described by a wave-functional �[ζ(x)]
and we need to know which form the general dynamical collapse equation (25) takes
in this case. A first question that immediately arises is that the above equation (25) is,
in principle, valid in the non-relativistic regime only while one needs to go beyond
since we want to apply collapse models to Cosmology and Field Theory. Attempts
to develop a relativistic version of the collapse models are being carried out, see
e.g. Refs. [4, 57–59] but they are not completed yet. Therefore, either one stops at
this stage andwaits for a fully satisfactory relativistic version to come, or oneproceeds
using reasonable assumptions, at the price of being maybe on shaky grounds. Here,
we use collapse theories in Cosmology where there is a natural notion of time (the
Hubble flow). Technically, this oftenmeans that the relativistic equations describing a
phenomenon are well-approximated by the corresponding non-relativistic equations
only modified by the appearance of the scale factor at some places. The prototypical
example of such an approach is “Newtonian Cosmology” for which the laws that
describe the time evolution of an expanding homogeneous and isotropic universe can
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be deduced fromNewtonian dynamics and gravitation. Although the derivation is not
strictly self-consistent it nevertheless provides some intuitive insights and represents
a valuable first step. In some sense, here, we follow the same logic and, therefore,
we will simply postulate that Eq. (25) can also be used in this context where the
Hamiltonian of the system is simply the Hamiltonian (2) that is obtained from the
theory of relativistic cosmological perturbations.

In order to see what this implies in practice, it is convenient to view space-like sec-
tions as an infinite grid of discrete points. In this case, the functional can be interpreted
as an ordinary function of an infinite number of variables vi , �(· · · , vi , v j , · · · ),
where vi ≡ v(xi ) is the value of the field at each point of the grid. Therefore, instead
of dealing with a three-dimensional index i as before, we now deal with an infinite-
dimensional one. As a consequence, we can write an equation similar to Eq. (25)
for �(vi ) where, now, the operators Ĥ and Ĉ are functions of the “position” v̂i and
“momentum” p̂i = −i∂/∂vi . Then, taking the continuous limit, “

∑
i → ∫

dxp”, we
arrive at

d
∣∣�[ζ(xp)]

〉=
{
−i Ĥdt +

√
γ

m0

∫
dxp

[
Ĉ
(
xp
)−〈Ĉ(xp)

〉]
dWt

(
xp
)

− γ

2m2
0

∫
dxp

[
Ĉ
(
xp
)−

〈
Ĉ
(
xp
)〉]2

dt

} ∣∣�[ζ(xp)]
〉
. (26)

The quantity dWt (xp) is still a stochastic noise but we now have one for each point in
space. A fundamental aspect of the theory is to specify this noise, and each possibility
corresponds to a different version of the theory. A priori, as already mentioned, the
noise can be white or colored but, so far in the context of Cosmology, only white
noises have been considered. They satisfy E[dWt (xp)dWt ′(x′

p)] = δ(xp − x′
p)δ(t −

t ′). Let us also notice that xp denotes the physical coordinate, as opposed to the
comoving one x (xp = ax) usually employed in Cosmology, and in terms of which
Eq. (26) takes the form [24]

d|�[ζ(x)]〉=
{
−i Ĥdt + 1

m0

√
γ

a3

∫
dx a3

[
Ĉ(x)−

〈
Ĉ(x)

〉]
dWt (x)

− γ

2m2
0

∫
dx a3

[
Ĉ (x) −

〈
Ĉ(x)

〉]2
dt

}
|�[ζ(x)]〉 , (27)

where dWt (xp) = a−3/2dWt (x) so that dWt (x) is still white, namely
E
[
dWt (x)dWt ′(x′)

] = δ(x − x′)δ(t − t ′)dt2.We emphasize that the above stochas-
tic equation is the usual CSL equation: it is just written down in a situation where
the number of variables becomes infinite.

Of course, we are not forced to describe the field ζ̂(x) in real space and we can
also write it in Fourier space. In that case, the wave-functional becomes a function of
all Fourier components of the field,�(· · · , ζk, ζk′ , · · · ), that is to say we deal, again,
with the same situation as described by Eq. (25) but, now, with a continuous index
k instead of i = x, y, z. The advantage of this approach is that, because we work
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in the framework of linear perturbations theory, one can write the wave-function as
�(· · · , ζk, ζk′ , · · · ) = ∏

k �R
k �I

k. As explained before, we have used the notation
s = R, I so that �s

k ≡ �(ζsk). This is the great advantage of going to Fourier space
compared to real space: it drastically simplifies the wave-function. One may, how-
ever, wonder whether the non-linearities necessarily present in the theory (recall that
the new terms in the Schrödinger equation are necessarily stochastic and non-linear)
could bring to naught the technical convenience of using the Fourier transform. Usu-
ally, only when a theory is linear, the Fourier modes evolve independently (no mode
coupling) and it is useful to go to Fourier space. This corresponds to a situation where
the Hamiltonian is quadratic. A point, which is usually not very well appreciated, is
that this does not necessarily imply the absence of interactions. It is true that, in field
theory, interactions are associated with non-quadratic terms in the action but one
exception is the interaction of a quantum field with a classical source. In this case,
the action remains quadratic but the fundamental frequency of the system acquires
a time dependence given by the source. This is typically the case for the Schwinger
effect [35, 60] but also for Cosmology. In this last situation, the source is just the
dynamics of the background space-time itself. In the following, we restrict ourselves
to quadratic Hamiltonians since this is sufficient to describe cosmological pertur-
bations during inflation (of course, if one wants to calculate higher-order statistics,
such as Non-Gaussianities, then non-linear terms in the Hamiltonian must be taken
into account).

However, in the present situation, even if one restricts oneself to quadratic
Hamiltonians, one also has the extra non-linear and stochastic terms in the mod-
ified Schrödinger equation and, as noticed above, there is the concern that they
could be responsible for the appearance of mode couplings. Fortunately, this is
not the case. Indeed, if one recalls that the Hamiltonian of the system reads
Ĥ = ∫

R3+ dk
∑

s=R,I Ĥ
s
k and if one introduces the Fourier transform of the collapse

operator, Ĉ(x) = (2π)−3/2
∫
dk Ĉ(k)e−ik·x (and a similar formula for the noise),

then straightforward calculations lead to [24]

d
∣∣�s

k

〉=
{
−i Ĥ s
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m0

[
Ĉs(k)−

〈
Ĉs(k)

〉]
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t (k)

− γa3

2m2
0

[
Ĉs (k) −

〈
Ĉs(k)

〉]2
dt

} ∣∣�s
k

〉
. (28)

We see that we can write a CSL equation for each Fourier mode. In other words, it
seems that the presence of the extra stochastic and non-linear terms does not destroy
the property that the modes still evolve separately [24]. In order to better understand
the origin of this property, let us comeback toEq. (25). Let us assume thatwe are in the
particular situation where Ĥ = H(x̂, p̂) = H1(x̂1, p̂1) + H2(x̂2, p̂2) + H3(x̂3, p̂3)
and Ĉi = Ci (x̂, p̂) = Ci (x̂i , p̂i ), namely the component Ĉi only depends on x̂i and
p̂i [in other words, we do not have, for instance, Ĉx = Cx (ŷ, p̂y)]. Then writing
� = ∏

i �i (xi ), it is easy to show that
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〉)2
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(29)

where we have used the fact that
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(30)

We see that we can write an independent equation for each �i . In inflationary per-
turbations theory, the two properties needed to obtain this independent equation are
also satisfied, namely the Hamiltonian is a sum of the Hamiltonians for each Fourier
mode and Ĉs(k) only depends on k and not on other modes. This is the reason why
one can obtain an equation (28) for each Fourier mode.

Then comes the choice of the collapse operator Ĉ(xp).Many different possibilities
have been discussed in the literature and each of them correspond to a different
version of the theory. In the context of standard Quantum Mechanics, if Ĉ(xp) is
the position operator, then we have Quantum Mechanics with Universal Position
Localization (QMUPL) while if Ĉ(xp) is the mass density operator, we deal with
the Continuous Spontaneous Localization (CSL) model [4]. In the context of Field
Theory and Cosmology, two choices have been studied. The first one corresponds
to Ĉs(k) ∝ a p ζ̂sk, where p is a free parameter. Since, in some sense, field amplitude
plays the role of position, this case represents the field-theoretic version of QMUPL.
Except for p, this version is characterized by one parameter, γ. The other possibility
is CSL, which relies on coarse-graining the mass density over the distance rc. This
corresponds to

Ĉ(x) =
(
a

rc

)3 1

(2π)3/2

∫
d y δ̂g(x + y)e

− |y|2a2
2r2c , (31)

where δ̂g is the energy density contrast relative to a “Newtonian” time slicing (see
the beginning of the next section for a more complete discussion). At this point,
we meet again the problem that a fully relativistic and covariant collapse model
is not available. Indeed, the definition of energy density is not unique in General
Relativity and an infinite number of other choices could have been contemplated,
by considering the energy density contrast relative to other slicings [24]. Without
additional criterions, there is presently no mean to decide which version makes more
sense. However, what can be done is to constrain these different versions with CMB
data. In fact, and we come back to this question in the next section, Sect. 5, we can
show that the situation is not as problematic as it may seem and that (almost) all
possible choices lead to the same result. In this sense, the results obtained in the
following are rather generic.
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Once the collapse operator and the noise have been chosen, Eq. (28) is entirely
specified and the next step is then to solve it. The solution is given by a wave-function
evolving stochastically in Hilbert space. As discussed above, the initial conditions
are Gaussian and the Hamiltonian being quadratic, the Gaussian character of the
wave-function is preserved in time. Therefore, without loss of generality, one can
write the most general stochastic wave-function as

�s
k

(
ζsk
) = |Nk (η) | exp

{
−�e�k (η) z2

[
ζsk − ζ̄sk (η)

]2

+ iσs
k(η) + i zχs

k(η)ζsk − i z2�m�k(η)
(
ζsk
)2}

, (32)

where the free functions �k(η), ζ̄sk(η), σs
k(η) and χs

k(η) are (a priori) stochastic
quantities.

Let us now discuss how collapse models can be, in the context of Cosmology,
related to observations. This needs to be carefully studied sincewenowhave twoways
to calculate averages, the quantum average and the stochastic average. For instance,
the quantum average of a given observable O(ζ̂sk), 〈O(ζ̂sk)〉 ≡ ∫ |�s

k|2O(ζsk)dζ
s
k,

which, in the standard context, would be a number is, here, a stochastic quantity.
So only E[〈O(ζ̂sk)〉] = ∫

E[|�s
k|2]O(ζsk)dζ

s
k is a number. The quantity

|�s
k(ζ

s
k)|2 = z

√
2�e�k

π
exp

[
−2z2�e�k

(
ζsk − ζ̄sk

)2]
, (33)

which is centered at ζ̄sk and has width (4z2�e�k)
−1, describes a Gaussian wave-

packet whose mean and variance evolve stochastically (in fact, in the particular
case considered here, it turns out that the variance is a deterministic quantity and that
only themean is stochastic). Therefore, for a specific realization, one expects, as time
passes, that |�s

k(ζ
s
k)|2 stochastically shifts its position ζ̄sk(η)while its width decreases

until ζ̄sk settles down to a particular position ζ̄sk(ηcoll), with an (almost) vanishing
width. In this way, the macro-objectification problem of Quantum Mechanics is
solved and a single outcome has been produced. The interest of this approach for
Cosmology is that it does so without invoking the presence of an observer, and only
thanks to the modified dynamics of the wave-function. If one then considers another
realization, a qualitatively similar behavior is observed but, of course, the final value
ζ̄sk(ηcoll) (in fact the whole trajectory) needs not be the same. If we repeat many
times the same experiment and have at our disposal many realizations, one can then
calculate, say, E[〈ζ̂sk〉] = E[ζ̄sk] or E[〈ζ̂sk〉2] = E[ζ̄sk2]. This allows us to calculate the
dispersion of ζ̄sk according to

Pζ(k) = k3

2π2

{
E
[
ζ̄sk

2
]− E

2
[
ζ̄sk
]}

, (34)

which makes the connection with the previous considerations.
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In fact, in Cosmology, a legitimate question is why the above-defined dispersion
Pζ is equivalent to (or, even, has something to do with) the power spectrum of
curvature perturbations. Indeed, in order to give an operational meaning to the above
quantity, one needs to have access to a large number of realizations. This is necessary
if one wants to identify the mathematical object E[.] with the relative frequency of
occurrence. Clearly, in Cosmology, we deal with only one realization (one universe)
and there is no way to repeat the experiment. In fact, this question is by no mean an
issueonly for the collapsemodels since, even in the standard approach, the predictions
are expressed in terms of ensemble averages.

Here, the key idea, admittedly not always explicitly stated in the inflationary liter-
ature, is the use of an ergodic-like principle, which consists in identifying ensemble
averages with spatial averages [61]. A very schematic description of this procedure
is as follows. For a given Fourier mode k, one can divide the celestial sphere into
different patches, and construct an estimate of the amplitude of the curvature per-
turbation at this Fourier mode in each patch. Interpreting each patch as a different
realization, one can then calculate the ensemble average of these “measurements”,
which is thus nothing but a spatial average. In this sense, “repeating the experiment”
is replaced with “looking at different regions on the sky”. Obviously, to be able to
evaluate the Fourier mode k in a certain patch, the size of the patch has to be larger
than the wavelength associated to k. However, the celestial sphere being compact,
only a finite number of patches with a certain minimum size can be drawn on it.
This is why the ensemble average can be calculated only over a finite number of
“realizations”, and the larger the wavelength (i.e. the smaller k) is, the larger the
patches need to be, hence the fewer “realizations” are available. This introduces an
unavoidable error which is called the “cosmic variance” in the Cosmology literature,
see Ref. [61] for more details.

5 Comparison with Observations

In this section, we briefly discuss the observational status of collapse models in
Cosmology. As already mentioned, only few cases have been investigated so far:
QMUPL and CSL, both with a white noise and using a naive generalization of non-
relativistic collapse models to field theory. A discussion of QMUPL in Cosmology
can be found in Refs. [19, 62] and, here, we focus on CSL since this is the model
that has drawn the most attention [24].

The CSL theory consists in assuming that the collapse operator is mass or energy
density. In a cosmological context, as already briefly mentioned in the previous
section, this corresponds to Ĉ = ρ + δ̂ρ, where ρ is the energy density stored in the
inflaton field and δ̂ ≡ δ̂ρ/ρ is the density contrast. In fact, only the density contrast
will be playing a role inwhat follows because, in inflationary perturbations theory,ρ is
a classical quantity and, therefore, cancels out in the modified Schrödinger equation.
In General Relativity, however, as already mentioned, there is no unique definition
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for δ. Nevertheless, see Ref. [24], what matters is in fact the scale dependence of
δ, in particular its behavior on large scales. Conveniently, one can show that, for
all reasonable choices, all the δ’s behave similarly (namely, in the same way as the
Newtonian density contrast “δg”) except for one particular case, the so-called “δm”
density contrast. Therefore, even if the choice of δ is ambiguous, the final result turns
out to be (almost) independent of this choice.

Once the collapse operator has been chosen, one can solve the modified
Schrödinger equation and calculate the CSL inflationary power spectrum along the
lines explained in the previous sections. This power spectrum depends on the two
CSL parameters γ and rc. Quite intuitively, one finds that the extra CSL terms oper-
ate only if the physical wavelength of a Fourier mode is larger than the localization
scale rc. In an expanding universe, physical wavelengths increase with time, so this
implies that for any given wavenumber k, there is a time before which its physical
wavelength is smaller than rc, hence the CSL corrections are absent. This is a cru-
cial feature since it guarantees that the usual way of setting initial conditions in the
Bunch-Davies vacuum,which is a very important aspect of the inflationary paradigm,
is still available.

When the physical wavelength of a Fourier mode becomes larger than rc, the CSL
terms become important and collapse occurs. This generates the power spectrum [24]

Pζ(k) = k3

2π2

1

4�e�k|γ=0

[
1 + O(1)

γ

m2
0

ρ ε1

(
rc
�H

)a

end

(
k

aH

)b

end

− �e�k|γ=0

�e�k

]
.

(35)

In the limit where γ = 0, one checks that the power spectrum vanishes, since no
perturbation is being produced, in agreement with the discussion presented in Sect. 4.
Let us also recall that the “standard” result, obtained in theCopenhagen interpretation,
is given by Eq. (18), which matches the prefactor in Eq. (35), and that �e�k is
proportional to the inverse variance of the wave-packet. If γ is sufficiently large so
that the collapse occurs, the width of the wave-function is much smaller than what
it would be in the unmodified theory, hence the third term in the square brackets of
Eq. (35) can be neglected when compared to the first term. In that case, the power
spectrum takes the form of the standard result, plus a correction proportional to
γ. This CSL correction is also proportional to ρε1, where ε1 is the first slow-roll
parameter and ρ the energy density at the end of inflation. Let us recall that, during
inflation, ρ is quasi constant and can be as large as

ρ ∼ 1080g × cm−3. (36)

We see herewhyCosmology is a natural place to probe collapse theories: it tests them
in regimes that are completely different, in terms of energy, time or length scales, than
those relevant in the lab. Since the amplitude of the CSL new terms are controlled by
the energy density, it makes sense to constrain them in physical conditions where ρ is
as large as possible. This is why, for instance, the CSL mechanism was also applied
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Fig. 1 Observational
constraints on the two
parameters rc and λ of the
CSL model obtained in Ref.
[24]. The white region is
allowed by laboratory
experiments while the “CMB
map” region is allowed by
CMB measurements. The
green dashed line stands for
the upper bound on λ if
inflation proceeds at the
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to neutron stars in Ref. [63]. Primordial Cosmology is a situation where ρ is even
larger and, therefore, one can expect it to be even more appropriate when it comes
to establishing constraints on CSL.

The second crucial piece of information that comes from Eq. (35) is that the
CSL corrections are not scale invariant. Their scale dependence is ∝ kb where b =
−1 if the scale rc is crossed out during inflation and b = −10 if rc is crossed out
during the subsequent radiation dominated era. In this last case, there is an additional
factor ∝ (rc/�H)

a, where �H is the Hubble radius at the end of inflation, with a =
−9 (if rc is crossed out during inflation, this term is not present and a = 0). In
other words, detectable CSL corrections would be strongly incompatible with CMB
measurements. Since we have seen that they are typically very large, we expect the
constraints that can be inferred from them to be very efficient.

These constraints are represented in Fig. 1 in the space (rc,λ) where λ =
γ/(8π3/2r3c ). In this plot, thewhite region corresponds to the parameter space allowed
by lab experiments while the “CMB map” region corresponds to parameter space
allowed by CMB measurements. Evidently, the most striking feature of the plot is
that the two regions do not overlap. Taken at face value, this implies that CSL is ruled
out! However, this conclusion should be toned down. First, we should notice that if
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the collapse operator is taken to be δm, then the CMB constraints are no longer in
contradiction with the lab ones. Of course, in some sense, δm is “of measure zero”
in the space of density contrasts but, nevertheless, this shows that one can find col-
lapse operators for which CSL is rescued. Second, one has to remember that we used
a naive (too naive?) method to implement the collapse mechanism in field theory.
It could be that, when a truly covariant version of collapse models is available [4,
57–59], the final result will be modified. For instance, the constraints on the CSL
parameters coming from the CMB constraints on one hand, and from lab experiments
on the other hand, operate at very different energy scales. One could imagine that,
in a field-theoretic context, the CSL parameters run with the energy scale at which
the experiment is being performed, and that one cannot simply compare the con-
straints obtained at different energies. Finally, we used a white noise in the modified
Schrödinger equation and it remains to be seen if using a colored noise can modify
the constraints obtained in Fig. 1. For all these reasons, it is necessary to be cautious
and testing the robustness of the conclusions obtained here will certainly be a major
goal in the future.

6 Conclusions

Interestingly enough, collapse models advocated by Giancarlo Ghirardi (and others)
and cosmic inflation have almost the same age. Roughly speaking, they were both
introduced at the endof the seventies andbeginningof the eighties.Nevertheless, until
recently, they had never met. In this article, we have described the recent attempts
to apply collapse models to inflation. We have argued that there is a good scientific
case motivating those attempts. In particular, for collapse models to be interesting
and to insure proper localization, the collapse operators must be related to the energy
density. As a consequence, the most efficient tests of collapse models will be in
physical situations where the energy density is as large as possible. Without any
doubt, this is to be found in the early universe. We have shown that, indeed, the
high-accuracy data now at our disposal leads to extremely competitive constraints,
that anyone interested in collapse theories can no longer ignore. We hope this will
cause further investigations to test the robustness of these results.

Finally, after 40 years, collapse theories and cosmic inflation have met and we are
convinced that Giancarlo Ghirardi would have been fascinated by the fact that his
great insights about Quantum Mechanics can even find applications in Cosmology.
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Spontaneous Collapse Theories
and Cosmology

Daniel Sudarsky

Abstract The account for the emergence of the primordial seeds of structure in the
universe as a result of “quantum fluctuations” during the inflationary epoch, is, on
one hand, remarkably successful at the empirical level, and, on the other hand, it faces
severe conceptual shortcomings tied to the conceptual difficulties that afflict quantum
theory in general. In the cosmological context, such problems become exacerbated
by the relative simplicity of the form that the questions takes. This, at the same time,
makes their investigation rather direct, and the case for novel physics, such as that
represented by spontaneous collapse theories, extremely compelling.Wewill discuss
those aspects and argue that the most natural framework for the consideration of the
relevant issues in this context is that provided by semi-classical gravity. We will see
that such line of research offers a path to deal with the conceptual difficulties alluded.
Moreover, in this particular case, it also offers a natural resolution of one of the few
instances where predictions of the standard approaches to the subject are in tension
with the empirical results, namely that referring to the primordial gravity waves.

1We will use “spontaneous collapse” to refer to the kind of state reduction considered in theories
that attempt to address the “measurement problem” via a modification of Schrödinger’s evolution,
and that does not explicitly tie such “reduction” to “measurement situations” or “interactions” with
“observers”. We will make use of the generic term “collapse” to include both the situations above,
as well as possible considerations where the reduction of the quantum state is meant to be triggered
by “measurements”, “interaction with measuring apparatuses” or observers as in the Copenhagen or
Von Neumann’s approaches. That distinction will not be made explicitly when the context prevents
any possibility of confusion and the wording would become too cumbersome, including discussions
involving “collapse operators” and “the collapse rate constant”.
2 That dilution is often taken as characterized by a factor of eN , with N “the number of e-folds”
of inflation (the logarithm of the factor by which the scale factor of the Universe grows during the
inflationary regime) usually taken to be at least 60.
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1 Introduction

As clearly anticipated by Bell [1], cosmology provides a particularly clear context
where the difficulties of quantum theory, viewed as a fundamental description of
nature, are exposed. The issue was also recognized in [2], driving the authors to
look for an alternative formulation of quantum theory that was appropriate to deal
with cosmology. The focus was on an approach [3] which was soon shown to suffer
from serious deficiencies [4, 5]. It is, thus, perhaps not surprising that spontaneous
collapse 1 theories are increasingly being considered as playing an important role in
such context. Indeed, current approaches to cosmology which rely on the hypothesis
of an early inflationary epoch to address various “naturalness” difficulties [6] in the
traditional Big Bang model, all have quantum theory playing a central role. In par-
ticular, inflation is supposed to smooth out all inhomogeneities and dilute all sorts of
matter content present in the pre-inflationary stage.2 The result is a universe that is
devoid of matter and is homogeneous and isotropic to an exceedingly high degree.
Therefore, any successful scenario must account for both the repopulation of the
universe with matter,3 and for the emergence of the primordial inhomogeneities that
eventually grow to form all cosmic structure we see around us. The latter is where
the present cosmological models strongly rely on quantum aspects, more specifi-
cally, on the so called “quantum fluctuations” of the vacuum. The usual treatment
is, however, plagued with unjustifiable steps based on serious misunderstandings of
quantum theory, as we will note shortly. This issue was first discussed in [7], where
we argued that something like a spontaneous collapse theory could help in addressing
the problems behind the unjustified steps. That took place before we learned that,
by that time, the research program on spontaneous collapse theories was well under-
way with concrete and viable proposals represented by the GRW and CSL theories
[8–14], where G.C. Ghirardi left his most unerasable marks, and had already made
extraordinary advances [15]. The event illustrates, not only our level of ignorance
regarding the field at that time, a condition that still afflicts the great majority of the
cosmology community,4 but also, the compelling force of the spontaneous collapse
idea in the cosmological context.5

In this paper, we want to make the case that, not only is inflationary cosmology
an ideal ground to contemplate the role of spontaneous collapse theories, and, in
particular, their interface with gravitation, but also that the actual predictions of
inflation can be substantially modified. Actually, the modified predictions appear
to be, at the time of the writing of this article, more empirically adequate than the
standard ones. This is so, at least, within what we believe to be the most appropriate
implementation of the marriage between the description of space-time and quantum
theory.

3A process known as “reheating”. For a discussion see for instance [16].
4Although, there are some well known texts that do acknowledge the problem. See for instance [17,
18].
5Besides the embarrassment, something positive can be found in our lack of knowledge at the time.
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This manuscript is organized as follows: In Sect. 2, we offer a brief review of the
basic aspects of inflationary cosmology, including the usual account of the “predic-
tion” regarding the primordial inhomogeneities (for simplicity,many technical details
will be just mentioned in passing or completely ignored). In Sect. 3, we present a
discussion of the problematic aspects of such accounts, as well as a discussion of
the approach we have taken to deal with these and related problems. Section 4 is
devoted to a practical implementation of the ideas developed in the previous section
to the inflationary cosmological context. This includes the analysis of the emergence
of seeds of cosmic structure, and the calculation leading to our prediction of the
primordial spectrum of scalar perturbations, as well as a very brief discussion of that
corresponding to the primordial gravity waves. As we will see it is in regards to the
latter that we find the most dramatic modifications in the theoretical predictions. We
finish in Sect. 5 with a short review of what has been accomplished so far, and the
aspects of the approach that require further elucidation and development.

We will use the (− + ++) signature for the space-time metric, and Wald’s con-
ventions for the Riemann tensor [19]. Greek indiceswill be used to denote space-time
coordinates, and latin indices to denote spatial coordinates on suitable identified spa-
tial sections.

2 Cosmological Inflationary Model

The basic idea of inflation is that the standard radiation-dominatedBigBang regime is
preceded by a period of accelerated expansion, controlled by something that behaves
as a large cosmological constant, but which is later “turned off”, as a result of its
own dynamics. The specific realization of this idea is based on the introduction of
a new scalar field φ with a potential V , which acts as the cosmological constant
when the field is away from its minimum, usually taken to correspond to φ = 0
(with V (0) = 0), and the value the scalar field evolves towards, as the expansion
progresses. The theory is specified by the action:

S =
∫

d4x
√−g{ R

16πG
− (1/2)∇μφ∇μφ − V (φ) + LMatt } (2.1)

where G is Newton’s constant, R stands for the Ricci scalar of the space-time metric
gμν , indices are raised using the inverse metric gμν , and ∇μ are metric compatible
derivative operators (which when acting on scalar fields coincide with the usual
coordinate partial derivative operators). LMatt stands for the Lagrangian of the of
matter fields other than φ (i.e. say the standard model of particle physics).

Standard variational principle leads to Einstein’s equation for the space-time
metric,

Rμν − (1/2)gμνR = 8πG(T (Matt)
μν + T (φ)

μν ) (2.2)
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where Rμν stands for the Ricci tensor of the space-time metric, the first term in
the RHS represents the energy momentum of ordinary matter, which will be absent
during inflation,6 and the second that of the scalar field which is given by,

T (φ)
μν = ∇μφ∇νφ − (1/2)gμν(∇ρφ∇ρφ + 2V ), (2.3)

as well as the Klein -Gordon equation for the scalar field:

∇μφ∇μφ = −∂V

∂φ
. (2.4)

The space-time metric one considers is, up to small perturbations (restricted to the
relevant degrees of freedom for the problem at hand, namely the scalar perturbation
known as the Newtonian potential ψ and the tensor perturbation hi j ), and using a
specific gauge,7 that of a spatially flat Robertson Walker cosmology8:

ds2 = a2(η){−[1 + 2ψ(�x, η)]dη2 + [(1 − 2ψ(�x, η)δi j + hi j (x, η)]dxidx j }
(2.5)

where a stands for the cosmological scale factor, while the scalar field is expressed as
φ = φ0(η) + δφ(�x, η). Therefore, here, one is separating the treatment of the homo-
geneous (or zero) mode, from the modes that exhibit nontrivial spatial dependence.

The background (on top of which the perturbations of interest will be considered)
is taken to represent a spatially flat homogeneous and isotropic space-time, and cor-
responds to setting ψ = 0, hi j = 0, δφ = 0. For such situation, Einstein’s equations
yield:

3H2 = 4πG(φ̇2
0 + 2a2V0), (2.6)

H ≡ ȧ/a where “˙ ′′ = ∂
∂η
, while scalar field equation is:

φ̈0(η) + 2φ̇0(η)H + a2
∂V

∂φ
= 0 (2.7)

Note that the relation between the standard co-moving time t and the conformal
time η we are using is given by dt/dη = a. A further assumption regarding this

6In accordance to the view that the dilution caused by even the very early stages of inflation is
sufficient to essentially erase all contributions to the energy momentum coming from other sectors.
7In working with perturbation theory in a general relativistic context, one invariably encounters
ambiguities known as “the gauge freedom”, and the cosmological setting is no exception. Fortu-
nately, in this situation there are various approaches to deal with it in a satisfactory manner. One
approach works with gauge “invariant variables” [20], and another just fixes the “gauge”. We will
not discuss this issue further, and will work in the context of a fixed gauge.
8The spatially flat Robertson Walker space-time metric corresponds to that in Eq. (2.5) only when
setting ψ(�x, η) ≡ 0 and hi j (�x, η) ≡ 0.
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background is that the solution corresponds to a “slow roll” situation characterized
by the smallness of the so “called slow parameters”, in particular ε ≡ 1 − Ḣ

H2 .
Under those conditions, the cosmological expansion is almost exponential, cor-

responding, in conformal time, to a(η) ≈ CeHI t = − 1
ηHI

. For definiteness, we set
a = 1 at the “present cosmological time”, the starting time for inflation η = −T and
its end point at η = η0 < 0 so that the inflationary regime correspond η ∈ (−T , η0).
The inflationary epoch is supposed to be followed by a standard hot Big Bang cos-
mological development, with radiation and matter dominated epochs.9

On top of this background, one considers the perturbations or fluctuations charac-
terized by nontrivial ψ(�x, η), hi j (�x, η), and δφ(�x, η). Until this point, our treatment
coincides with the standard one. So, let us start by reviewing and examining the
“established lore”.

Before proceeding, however, let us clarify that the goal of the kind of study one
wants to undertake is to obtain an expression of the “power spectrum” of the various
kinds of perturbations occurring in the universe. In particular, we will be considering
the scalar density perturbations (and later the so called tensor or primordial wave
perturbations). In any event, it is worthwhile clarifying for the reader the usage of
these concepts.

The question is conveniently discussed representing the quantity of interest
χ(η, �x), which are functions of (�x, η), in terms of their spatial Fourier transform
coefficients χ�k(η):

χ(�x, η) = 1

(2π)3/2

∫
d3kχ�k(η)ei

�k.�x . (2.8)

For our universe, these variables, and thus the corresponding Fourier coefficients,
take some specific values. However, cosmologists often proceed by considering an
hypothetical ensemble of possible universes of which ours is a “fair” or “typical”
representative. The idea is then to describe the statistical distributions of the relevant
coefficients over such imaginary ensemble of universes.

In thisway, one definesPχ (η, k), the power spectrumofχ , through the expression:

χ�k(η)χ∗
�k ′(η) = δ3(�k − �k ′)Pχ (η, k), (2.9)

where the overline represents the average of the quantity in question over such ensem-
ble of universes. It follows from the above definitions that one might characterize
the spectrum by

χ(�x, η)χ(�y, η) = 1

(2π)3

∫
d3kPχ (η, k)ei

�k.(�x−�y). (2.10)

The empirical analysis then proceeds by considering that our universe should be
a typical random element of that ensemble.

9This transition is thought to be the result of the “reheating” process [16], where the “energy” stored
in the inflaton field is transferred to ordinary components of the hot Big Bang universe.
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2.1 The Standard Treatment

As it is customary, we will first focus on the so called scalar perturbations. The
first step in this treatment requires dealing with the fact that the perturbed evolution
equations link ψ(η, �x) and δφ(η, �x). This is resolved in this context by passing to
a characterization of the situation in terms of the combined variable introduced in
[36, 37]:

v ≡ a

(
δφ + φ̇0

Hψ

)
, (2.11)

This new field variable is now subjected to a quantum treatment, which is carried
out in the standard manner appropriate for quantum fields in a curved space time
background. That is, one constructs a Fock-Hilbert space andwrites the field variable
in terms of suitable creation and annihilation operators.10

v̂(η, �x) = 1

(2π)3/2

∫
d3k

(
â�kv�k(η)ei

�k.�x + â†�kv
∗
�k (η)e−i �k.�x

)
, (2.12)

The specific choice of the mode functions corresponds to the selection of a particular
vacuum state |0〉 (characterized by the requirement that â�k |0〉 = 0). In the situation
at hand, the natural choice for the mode functions v�k(η) corresponds to that which
mimics the usual choice in Minkowski space-time, in the limit in which η → −∞.11

This leads to the so called “Bunch Davies” state, but other possibilities are available.
As noted before, and as a result of the exponential expansion, after a short time

into the inflationary regime the Universe is taken to be homogeneous and isotropic
(H&I), both in the part that could be described at the “classical level”, as well as that
which is characterized at the quantum level.

A fundamental observation is that this vacuum state (as well as most of the alter-
natives considered) is a fully homogeneous and isotropic state. This can be readily
seen by considering a spatial displacement of the state by �D. This is just given

by ei �̂P . �D|0〉 = |0〉 (where �̂P is the operator representing generator of spatial dis-
placements in the Hilbert space, namely the “total momentum operator”), as follows

immediately from the fact the �̂P|0〉 = 0, indicating that the state is completely homo-
geneous. Similar considerations hold regarding isotropy, namely the invariance of
the state under rotations.

10Applying such procedure to gravitational perturbations themselves is rather worrisome. First,
because the resulting interacting theory is non-renormalizable (a problem that is now a days deemed
as non essential, as follows from the effective field theory point of view).On the other hand, andmore
importantly, the causal structure of the quantum field theory might deviate from that “true causal
structure” dictated by the combination of the metric background together with the perturbations
[34, 35].
11That is, one sets initial conditions for the mode functions that would correspond to the “positive
energy solutions” if used as initial data in Minkowski space-time.
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At this point, following the standard approach, one is directed to consider that the
relevant quantity to investigate the behavior of these “perturbations”, is the so called
two point correlation function evaluated in the vacuum state 〈0|v̂(�x, η)v̂(�y, η)|0〉.
The argument is that such object represents the “quantum fluctuations”.12 From
there, one extracts the so called “power spectrum”:

〈0|v̂(�x, η)v̂(�y, η)|0〉 = 1

(2π)3

∫
d3kei

�k(�x−�y)Pv(k). (2.13)

The result is (in the limit of infinitely slow roll conditions) Pv(k) ∼ k−3.
Now, the point is that the characterization of the quantity δ(η, �x) ≡ δρ(η,�x)

¯ρ(η)
,

where ¯ρ(η) is the spatial average of the universe’s density ρ(η, �x), with δρ(η, �x) ≡
ρ(η, �x) − ¯ρ(η), in terms of the “power spectrum” as

δ(�x, η)δ(�y, η) = 1

(2π)3

∫
d3kPδ(η, k)ei

�k.(�x−�y) (2.14)

where now the average is over pairs of equally separated points in our universe seems
to correspond to a Harrison-Zeldovich (HZ), or scale invariant13 spectrum namely
Pδ(k) ∝ k−3. Indeed, after the inclusion ofwell understood late time physical effects,
such as plasma oscillations, etc. (as well as a slight “tilt” or small deviation from the
exact exponent of −3, which depends on the small roll parameter ε) that spectrum
is in excellent agreement with the observations [21].

The issue is, however, that the “power spectrum” we obtained from quantum
considerations is now being taken to characterize the primordial inhomogeneities.
These include the seeds of all cosmic structure, and thus are what eventually lead
to the generation of galaxies, stars, planets, eventually life, and then creatures like
ourselves, capable of wondering about the origin of it all.

This all sounds like a really astonishing account, which is, moreover, so full of
profound poetic undertones that is hard to resist. Furthermore, as noted above, the
theoretical account seems to fit observations to a remarkable extent, so it is not
surprising that the prevailing attitude among cosmologists is “what else can one ask
for ?”.

12In my view, a substantial amount of the confusion among practitioners is due, in part, to the
unfortunate usage of the word “fluctuations” to refer to various rather different notions: (i)Statistical
variations in an otherwise symmetric ensemble, (ii) Spatial variations in a single extended object,
which is homogeneous at large scales, and (iii) quantum indeterminacies. In our case, these are
uncertainties or indeterminacies in the quantum state, for the field and conjugate momentum oper-
ators. I.e. an instance of (iii), which is often taken by cosmologists to represent either an instance
of (i) or an instance of (ii).
13Note that as the LHS of (2.14) is dimensionless, so Pδ(k) has to have dimensions of length3 (as
k has dimensions of length−1. Thus, any kind of power law would require a length scale L0 so that
Pδ = L3+n

0 kn , unless n = −3. This spectrum was favored in early phenomenological cosmology
considerations [23, 24].
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The reader should already find some discomfort in the fact that all 3 notions of
fluctuations seem to be subject to a rather liberal interchange through the usage of
the same wording “power spectrum” for the characterization of quantities appear-
ing in Eqs. 2.10, 2.13 and 2.14. We will ignore for the most part in this work the
distinction between ensemble averages and spatial averages over a single inhomoge-
neous universe, and focus on themore problematic relationship between the quantum
characterization and the former two (for further discussion on these issues see [22]).

One often hears in the cosmology community this issue characterized as the prob-
lem of the “quantum to classical transition”. This, in my view, is a misnomer. There
is presumably nothing that is truly classical at a fundamental level, and, therefore,
a classical description can, at best, be one corresponding to some kind of approxi-
mated characterization of the situation. Thus, the framing of the issue in that manner
is really missing the point. The real question is the transition from a situation of full
homogeneity and isotropy to one that is not. Moreover, as the process is taken to be
described in quantum mechanical terms, what we need to account for is a transition
from a quantum state that is homogeneous and isotropic to one that is not.14 The
degree to which the latter might be suitably described in classical terms is a ques-
tion of the accuracy of the approximation, and although important, it is, in a sense,
secondary to the main issue that concerns us here, and which we will be expanding
on below.

3 The Case for a Modified Approach and a Specific
Proposal

We have so far hinted at, and will shortly discuss in more detail, a problematic aspect
of the presently accepted accounts of the emergence of primordial perturbations
during inflation as a result of quantum fluctuations. It is easy to see that this is, of
course, a particular instance of a broader problem afflicting quantum theory, namely
the so calledmeasurement problem. In this regard, it is convenient to remindourselves
of the result of [25] establishing the logical inconsistency of accepting the following
three postulates regarding quantum theory (viewed as a fundamental theory):

(A) The description of an isolated physical system by its quantum state is com-
plete (and thinking about our case, we ought to note that the universe is the epit-
ome of an isolated system). (B) The evolution of such system is always dictated
by Schrödinger’s equation.15 (C) Individual concrete experiments lead to definite
results.

14This is actually only a problem for those accounts of quantum theory, that posit that the character-
ization of a system by its quantum state is complete, and could be easily addressed by approaches
involving theories with (non-local) hidden variables, such as de-Broglie-Bohm type approaches.
15We ought to emphasize that for instance, the Copenhagen, interpretation explicitly forsakes this
postulate as it includes the clause that the state of a system instantaneously turns into one of
the eigen-states of the quantity that is being measured (thereby failing to evolve according to the
Schrödinger’s equation at that time) in a stochastic manner with probabilities dictated by Born’s
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The need to forsake (at least) one of the above forces one towards a specific
conceptual path depending on the choice one makes. Concretely speaking, forsaking
(A) seems to lead naturally to hidden variable theories, such as de-Broglie Bohm or
“pilot wave” theory. Forsaking (B), one is naturally led to collapse theories, which
for the cosmological case seem to leave no option but those of the spontaneous kind,
(as there is clearly no role for conscious observers or measuring devices that might be
meaningfully brought to bear to the situation at hand). Finally, forsaking (C) seems
to be the starting point of approaches such as the Everettian type of interpretations.
These, again, seem quite difficult to be suitably implemented in the context at hand,
simply because observers, minds, and such, notions that play an important role in
most attempts to characterize the world branching structure in those approaches, can
only be accounted for within a universe in which structure has already developed,
well before the emergence of the said entities.

We will focus in the present manuscript on the consideration of path (B), although
it seems clear that at least path (A) seems to offer quite a reasonable alternative.
However, before entering that discussion, we want to make the case that the account
described in Sect. 2.1 is not satisfactory at all. That is, despite its phenomenological
success, the picture it offers about the historical development of our universe is,
frankly speaking, conceptually inadequate.

3.1 Conceptual Difficulties in the Standard Approach

The first problem, as already noted, is that, according to the above framework, the
universe was H&I, both at the level of the part that is described in classical terms,
the background metric and background scalar field, as well as in those aspects that
are treated in quantum mechanical terms, the metric and scalar field perturbations.
The latter can be seen in the fact that the quantum state, the so called Bunch Davies
vacuum, is invariant under rotations and translations. Actually, this symmetry is itself
the expected result from the early stages of inflation.16

rule. Of course the point is that the theory is rather unclear about what kind of interaction does
qualify to be considered a measurement.
16The argument is that, even if the situation was not exactly homogeneous and isotropic at the
classical level, and the state of the quantumfieldwas not exactly the vacuum, the inflationary process
itself would drive relatively a broad set of initial conditions towards precisely such homogeneous
and isotropic stage for the space-time metric and the quantum state of all fields towards the vacuum.
One might then expect small deviations of order e−N to survive after N e- folds. However such
minuscule relics from the initial stages of inflation are deemed just too small to be of any relevance.
Note that, if those were relevant at all, they would destroy the predictability of the model. The
point is that they would be completely unpredictable in the absence of a fundamental quantum
gravity theory including a precise prescription of “initial conditions”, or whatever replaces that,
if such theory is a timeless theory, such as a canonical version of quantum gravity. We will thus
ignore any such possible remnants from the pre-inflationary regime and talk as if the situation is
exactly homogeneous and isotropic, where the caveat “up to possible corrections of order e−70” is
implicitly understood.
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The issue is the following conundrum: According to the inflationary character-
ization of the very early universe, the starting point of the analysis corresponds to
a situation that is completely homogeneous and isotropic, while the dynamics con-
trolling the evolution explicitly preserves such symmetries. How is it then that we
end up with a situation that does not share those symmetries? Indeed, how is it that
we are able to make predictions about those inhomogeneities and anisotropies at all?
Multiple attempts have been made [26, 27] to try addressing these questions within
orthodox and traditional physical practice, but all those have come up short. For a
detailed discussion see [28].

The second conceptual difficulty lies, as we discuss below, in the fact that it is
rather unclear what is the theoretical framework one is relying on when proceeding
according to the standard treatment. Regarding the matter fields, one might consider
that one is working with quantum field theory on curved spacetime (QFT in CS), a
subject with a rather well developed formalism (see [59]). This is so even though the
scalar field is being separated into the “classical background” and the perturbations.
The point is that one might regard the separation of the zero mode of the quantum
field φ̂0(η) from the other δφ̂(η, �x) (space-dependent modes) and consider that the
quantity φ0(η) appearing in say Eq. (2.7) actually represents the expectation value
of the zero mode 〈φ0(η)〉 in some highly excited coherent state, while the vacuum
state refers only to the state of the spatially nontrivial modes. Regarding gravitation,
however the issue is much more delicate. The fact is that one is certainly not working
with a quantum gravity theory, or any approximation thereof, simply because we
do not have a developed and workable version of such theory.17 One is not working
with classical gravity either, as there are at least some parts of the space-time metric
that are being treated in a quantum language (ψ and hi j ). What one is doing is
separating the metric into background and perturbations, treating the first part in a
classical language, and the second part as a quantum field theory on the background
space-time provided by the first. This has several problematic features. First, the
separation of the metric into background and perturbations can only be viewed as
a matter of convenience, and not as something of a fundamental nature. Actually,
by suitable changes of coordinates one can pass from one such particular separation
into another. Thus it is rather unclear in what sense such a distinct treatment for both
is justified. One might think that what one is doing here is similar to what was done
regarding the inflaton field, and that was just described above. However, that is not
what is going on, simply because, as we noted, we do not have the full quantum

17There are multiple approaches in the attempt to construct a fully satisfactory theory of quantum
gravity. These include the most popular such as String Theory and Loop Quantum gravity, both
still confronting severe obstacles. There are others which are less well known but not for that less
deserving, such as causal dynamical triangulations, causal sets, non-commutative geometry, etc.
The point is, nevertheless, that none of those approaches is able, at this time, to both recover in
a rigorous way general relativity as an approximation, and truly contend with the full quantum
nature of what one can expect to be a fundamental theory of space-time, namely one that can deal,
not only with causal structures subject to quantum indeterminism, but can also incorporate notions
of space-time that accommodate states of matter in superposition of substantially different energy
momentum distributions.



Spontaneous Collapse Theories and Cosmology 301

gravity theory that would justify that (i.e. we do not have, for quantum gravity, any
theory that might be said to be playing the analogous role as quantum field theory
on curved space-time). Moreover, we must note that when considering the treatment
of the metric perturbations as a QFT in CS, one is, actually, doing severe violence
to that framework from the start. The point is that the construction of QFT on CS
has as a basic postulate that the quantum fields so constructed must have causal
commutation relations (i.e. fields at space-like separated points must commute). In
the present context one would be imposing the commutation relations for the fields
according to the causal structure of the background space-time, rather than that of
the “actual” physical space-time, which would be in part characterized by those
quantum objects themselves. These and related issues have been discussed by other
authors (see for instance [34, 35]). One might dismiss all those concerns and argue
somehow that what one is doing is justified as an approximation, and that would
probably be something one would tend to agree with. However it seems clear that
a conceptually satisfactory picture would only be at hand if one had a clear idea of
“an approximation to what” one is supposed to be considering.

We will be motivated by the quest for a clear explanation, framed within a gen-
eral theoretical setting, that offers at least plausible answers to reasonable questions
naturally arising in the situation at hand.

3.2 Spontaneous Collapse of the Quantum State
and Einstein’s Semi-classical Equations

First, we note that what seems to be required to address the issue at hand is to
consider a physical process occurring in time, explaining the emergence of the seeds
of structure. After all, emergence means (in this context): something that was not
there at an early time, is there at a later time.

We need to explain the breakdown of the symmetry of the initial state. We do not
want to have to put the inhomogeneities by hand at the start (as that would remove
all the hope of predictability of the inflationary model). The theory we are dealing
with does not lead through its standard Hamiltonian evolution to a breakdown of
the symmetries we are considering. Therefore, something else is required. Sponta-
neous collapse theories do naturally contain the elements to achieve what is needed:
departure from unitary evolution and stochasticity.

Thus, we will add to the standard inflationary accounts of very early cosmol-
ogy, the spontaneous collapse of the wave function. On the other hand, that is not
something that can be done straightforwardly. We need to discuss the obstacles such
program faces, and the paths we have taken in the quest to overcome those.

We should start by noting that as the spontaneous collapse theories are described
by a modification of the dynamics, concretely the time evolution of the state of
quantum systems (in our case quantum fields), we seem to be forced to rely on a
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classical description of the space-time geometry. However, as we will see, for the
sake of conceptual clarity,18 there are even stronger reasons to proceed in this way.

It is worthwhile emphasizing at this point that the interface between quantum
theory and gravitation need not involve the Planck regime: Consider, for instance,
the issues that would have to be confronted in attempting to describe the space-time
associated with a macroscopic body in quantum superposition of states localized in
two distant regions. A rather influential work [29] considers such an experiment and
claims to show semi-classical GR is simply not viable. The core of the argument is
the following dichotomy: (1) If there are no quantum collapses, then semi-classical
GR conflicts with their experiment. (2) If there are quantum collapses, then semi-
classical GR equations are internally inconsistent. In this last regard, the issue is
that a quantum collapse would generally be associated with failure of one side of
Einsteins’s equation, namely that containing the expectation value of the energy
momentum tensor, from being divergence free, while the other side is automatically
divergence free as a result of Bianchi’s identities (see for instance Eq. (3.1)). This
and related issues have been considered by various authors, but there is no clear
consensus in the conclusions (see for instance [30–33]).

Thus, if the conclusions of [29] were correct, how could one possibly make sense
of our approach? The point is that we might regard semi-classical GR, not as a
fundamental theory but just as an approximated description with limited domain of
applicability. We then consider the present line of research as an attempt to push that
domain beyond what is usually viewed as a natural boundary. In the present context,
wewant to consider spontaneous collapses as themissing element that provides plau-
sible resolution to the basic questions discussed in the previous subsection. Indeed,
as it is clear that during the spontaneous collapse the equations can not be valid,
we can not hope to consider the approach as fundamental. The proposal is, then, to
follow an hydro-dynamical analogy: The Navier-Stokes equations for a fluid can not
hold in some situations, for instance when a wave is breaking in the ocean. But they
can be taken to hold to a very high approximation before and after that. Thus, we
take semi-classical GR equations to hold before and after a spontaneous collapse,
but not at the “time” it is occurring. In order for such approach to be fully specified,
it must be supplemented by a well defined formalism that includes a recipe of how
to join the descriptions “just before” and “just after” the spontaneous collapse.

In order tomake a concrete proposal for considering the ideas described above, we
need to specify amanner whichmight sensibly incorporate spontaneous collapse into
the context of semiclassical GR. At the formal level we take as starting point a slight
modification of what is normally described as semi-classical gravity, the theory of
classical gravitation, together with the theory of quantum fields on a curved space-
time. We will proceed by relying on the notion of Semi-classical Self-consistent
Configuration (SSC) introduced in [61].

18In the pursuit of the goal of conceptual clarity, we will try to avoid perturbation theory from
playing the dual role it is often relied upon: That of making the calculations manageable, and at the
same time helping hide from explicit view some of the most serious foundational difficulties. We
will not be able to avoid the former, but we will make all efforts to prevent the latter.
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Definition: The set {gμν(x), ϕ̂(x), π̂(x),H, |ξ 〉 ∈ H} represents a SSC iff ϕ̂(x), π̂(x)
H corresponds to QFT (that is, H is a Hilbert space and ϕ̂(x), π̂(x) represent the
quantum field and canonical conjugate momentum operators, as distributional val-
ued operators acting on it and realizing the canonical commutation relations, and
satisfying the corresponding evolution equations) constructed over the space-time
with metric gμν(x), and the state |ξ 〉 ∈ H is such that:

Gμν[g(x)] = 8πG〈ξ |T̂μν[g(x), ϕ̂(x), π̂(x)]|ξ 〉 (3.1)

The scheme is simply the standard QFT construction on a given space-time, except
for the requirement that there be a special quantum state taken to be the one corre-
sponding to the physical situation at hand, and such that the above equation holds.
That requirement gives the whole scheme the kind of self referential features which
occur in the Schrödinger-Newton system [41–44]. One might regard the SSC for-
malism as the General Relativistic version of the latter. We note that most other
states in H will fail to satisfy Eq. ( 3.1)19 and thus would have to be considered as
un-physical.20

Next, let us consider a spontaneous collapse a la GRW, i.e. a sudden transition
from a given quantum state |ξ 〉 to another |ξ̃〉, as dictated by the theory and the
“stochastic choice”. That would leave us with something that is no longer a SSC as
the new state will fail to satisfy Eq. (3.1).21 In order to remain as close as possible to
such formalism,wewill contemplate, instead, a spontaneous jump fromone complete
SSC to another one. That is, the usual “GRW jumps” must be considered now as
generalized jumps of the form one full SSC to another, i.e. the spontaneous transition
must now be regarded as SSC1 → SSC2. It is, however, clear that generically the
Eq. (3.1) will not hold during the jump itself.

In order for the scheme to be well defined, we must supply matching conditions:
for both space-time and for the states in the Hilbert space. This has been studied in
some detail in [61] and it involves various delicate issues.22 All those aspects will

19To see this, simply consider a given SSC, and an arbitrary smooth function of compact support
f , take φ̂( f ) ≡ ∫ √−gd4x f (x)φ̂(x), and define the new state |χ〉 = φ̂( f )|ξ〉. It should be quite
clear that the expectation value of the energy momentum for the state |χ〉 will differ from the
corresponding one for |ξ〉. So if the latter satisfies Eq. (3.1), then the former will not.
20In this sense, we are advocating a point of view where there is already, at this stage, a breakdown
of the superposition principle, because, even if there are two states |ξ〉 and |ξ̃〉 which happen to
satisfy Eq. (3.1), generic superpositions of these states would not. The principle would have to be
considered valid within the present formalism only as a certain type of approximation.
21Indeed, one of themost important characteristics of, sayGRWorCSL theories, is their tendency to
increase the localization of states in the sense of suppressing superpositions of states corresponding
to rather different mass densities distributions in physical space. As such, it seems clear that a
spontaneous collapse would generically imply an important change in the spatio-temporal form of
the expectation value of the energy momentum tensor.
22One of the requirements is that a reasonable spontaneous collapse be such that, when starting with
a state with a reasonably defined renormalized energy momentum tensor(i.e. a so called Hadamard
state), the spontaneous collapse dynamics leads to a state with the same characteristics (i.e. another
Hadamard state). That issue has been explored in [60]. A second problem is that the Hilbert space of
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certainly become even more complex and vexing when considered in the context of
a theory involving continuous spontaneous collapse such as CSL.

Next, let us consider howcould all this possiblyfitwith our current views regarding
an ultimate theory including quantum gravity. Let us start by recalling that the whole
quantum gravity program is still confronted with various outstanding issues and
conceptual difficulties. Among thosewe shouldmention (i)The Problem of Time [45]
i.e. the fact that canonical approaches to quantum gravity lead to timeless theories,
and (ii) the difficulties concerning the identification of suitable observables [46].
More generally, there is the issue (iii) of how to recover space-time and something
resembling general relativity fromvarious of the existing approaches, and specifically
those of the canonical type.

Solutions to (i) often rely on the use of a dynamical variable as a physical clock
and consider relative probabilities (and wave functions). Following that line seems
to lead to something like an approximated version of the Schrödinger equation, but
with corrections that violate unitarity (see [47]). Although tantalizing, it is not clear,
however, that the specific form that such issue takes in the analysis of that work is
of the kind that could lead to a resolution of the questions at hand here.

Regarding (iii) there are many suggestions indicating space-time might be an
emergent phenomena (see for instance [48–50]). In that case, it is not clear that gab,
as such, should be “quantized” any more than the heat equation should. Under such
circumstances, the classical level of description might be the only setting in which
notions of space-time may be talked about meaningfully.23

The point is that any talk about space-time concepts, in anything close to the
standard sense, implies that one is already working within some classical descrip-
tion, as we simply have no idea of how to think of a quantum space-time. Therefore,
even when considering that one might have started from some hypothetical satisfac-
tory and fully workable theory of quantum gravity, by the time we reach the level
of discussion where we can talk of space-time in the usual terms, we would have
proceeded through a long chain of approximations and simplifications. Under those
conditions, it does not seem unnatural to expect that some traces of the full quantum
gravity regime might survive and remain relevant at the stage we are dealing with.
Moreover, these might, from the perspective of the standard space-time language

the secondSSCmight not be unitarily equivalent to the first one. Even if they are, the unitarymapping
might not be unique, making it difficult to identify the state in the new Hilbert space resulting from
the spontaneous collapse theory applied to the state of the SSC previous to the collapse. Initial
proposals to deal with this issue were discussed and implemented in simple situations in [61, 62],
and further studies are under development [63].
23In thinking about the heat equation, it seems clear that, while at macroscopic effective level,
heat flow is a concept that can be truly made sense of, when considering the situation at the more
fundamental level, of say, many particle quantummechanics, the notions involved would become, at
best, secondary. Raising, for instance, a question regarding the “quantum operator” characterizing
heat is unlikely to lead to any meaningful answer. Analogously, it might well be, although we have,
of course, no proof one way of the other, that no sensible definition of a quantized space-time metric
is truly compatible with whatever the fundamental quantum description of gravity is.
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“look like spontaneous collapses”.24 Let us think again of the hydrodynamic anal-
ogy. Here, we might consider the situation where, say, foam forms after the breaking
of an ocean wave, a situation that presumably poses no great problems (at least in
principle) if we go all the way down to the description of what we call the fluid, in
terms of molecular dynamics. It clearly would look rather strange if we attempt to
incorporate some kind of phenomenological terms describing such effects within the
Navier-Stokes formalism.

One might characterize the present approach to the consideration of gravity /
quantum interface as an essentially bottom up approach, in contrast with the usual
“top-down” approach, where one starts with what is presumably a well defined
proposal for the full theory of quantum gravity, and then work towards establishing
a connection between the formalism and the empirical world. The strategy adopted
here starts by considering theories that are rather well understood, supported by
substantial experimental evidence, specifically general relativity and quantum field
theory treatment of matter fields (in this curved space-time version). Then we push
their range of applicability towards the domain where presumably new physics might
be required, seeking, in the process, to obtain clues about the features of the ultimate
theory.

4 Practical Treatment Adapted to the Cosmological Setting

Trying to apply the above formalism in any specific concrete situation of interest,
having no extraordinarily simplifying features, and many relevant degrees of free-
dom, is evidently an almost impossible task at the practical level.25 Wewill, therefore,
work by making several suitable simplifications, including using the simplest infla-
tionary model where the potential26 is just V = (1/2)m2φ2; focusing our attention
on the usage of the formalism in the inflationary cosmological setting, while try-
ing to follow its basic rules. Furthermore, instead of constructing a new complete
quantum field theory in a curved space-time that results from previous spontaneous
collapses, we will keep using a single QFT theory construction, that corresponding
to the background space-time. That is, we will consider jumps in the quantum state,
and the corresponding changes in the space-timemetric. However wewill neglect the

24At this point, and taking a completely agnostic posture regarding what the fundamental theory of
quantum gravity might look like, it is hard to offer anything beyond a simple analogy. Thus, one
might want to consider a scientist trying to come to terms with, say, the formation of foam when
a ocean wave breaks on the shore, while having no clue about the molecular nature of what he
normally describes as a fluid using standard tools of hydrodynamics.
25In [61], the treatment was applied to the excitation of a single anisotropic mode in the space-time
metric. The formalism was later applied [62] to the case of the consecutive excitation of a second
mode, allowing the study of essential aspects of the generation of tensor modes.
26This specific potential is usually taken as disfavoured by observations [53]. More recent analysis
claim quite generally that convex potentials are excluded at the 95% confidence levels [54]. As
noted below, that conclusion does not extend to our approach.
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requirement of simultaneously changing the Fock-Hilbert space, which will be kept
fixed (i.e. we will keep using the Hilbert space constructed for the background SSC,
namely the one corresponding to the situation before the breakdown of homogeneity
and isotropy).

This simplified treatment seems justified by the smallness of the so called pertur-
bations of the metric (characterized by the 10−5 deviations from isotropy observed
in the cosmic microwave radiation), and the corresponding smallness of the modifi-
cation of the Hilbert space. The second simplification is that, although the zero mode
of the scalar field (i.e. the mode corresponding to �k = 0 and thus involving no spatial
dependence) must, according to our formalism, be treated quantum-mechanically (as
should all matter fields), we will describe it as a classical background in the practical
calculations. The point is that the zero mode of the field will be taken, as described
in Sect. 3.1, to be in a highly excited (and sharply peaked) state, and take φ0(η) (of
Sect. 2) as corresponding to the expectation value of the zero mode 〈φ̂0(η)〉. The
quantum treatment of the zero mode was included in the works [61, 62] mentioned
above. That analysis indicates that, to the level of approximation one is working
with, the final results are the same as those we will describe now. The space depen-
dent modes will, just as in the standard approach, be treated quantum mechanically,
and taken to start in the “vacuum state”. However, the field in question is now the
scalar field δφ, rather than the composed field v (involving both, matter and metric
perturbations) of Sect. 2.1.

It turns out to be convenient to make a change of variables in field space and work
with the re-scaled field y ≡ a(η)δφ(η, �x). The momentum canonical conjugate to
that field in conformal time is π = aδφ′. These objects are now treated according to
the standard methods of quantum field theory on curved space-time [59]. In our case,
that space-time background is provided by the metric (2.5) with the perturbations set
to 0. Thus, the field operator can be represented by the operator as:

ŷ(η, �x) = 1

(2π)3/2

∫
d3k

(
â�k y�k(η)ei

�k.�x + â†�k y
∗
�k (η)e−i �k.�x

)
, (4.1)

with the modes y�k(η) chosen again according to the Bunch Davies prescription, so
that the state satisfying â�k |0〉 = 0 is the Bunch Davies vacuum.

The basic scheme of the analysis is now the following: During the early stages of
inflation taken to correspond to η = −T , the starting point of inflation (see Sect. 2),
the state of the field ŷ is the Bunch-Davies vacuum, and the space-time is homoge-
neous and isotropic. In that state, the operators corresponding to the Fourier com-
ponents of the field and momentum conjugate (π = aδφ′), ŷk , π̂k are characterized
by gaussian wave functions centered at 0 with uncertainties �yk and �πk . To the
extent that the spontaneous collapse dynamics is ignored, and as we are working in
the Heisenberg picture, the state of the field does not change with time.

The spontaneous collapse dynamics, treated using the interaction picture,modifies
the evolution of the quantum state during the inflationary epoch, resulting in a change
of the expectationvalues of ŷk(η) and π̂k(η).Wewill assume the spontaneous collapse
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occurs mode by mode,27 and is described by some version of a spontaneous collapse
theory, suitably adapted to the situation at hand (we will be more explicit in this point
later on).

It is worth noting that, in this approach, it is clear that our universe would cor-
respond to one specific realization of the stochastic objects or functions occurring
in the spontaneous collapse dynamics. Moreover, we will consider that to each field
mode �k corresponds an individual and independent stochastic object. We will shortly
see schematically how this is realized within the context of a specific theory.

Let us now consider the scalar metric perturbationsψ(η, �x), as well as the quanti-
ties of direct observational interest. We will do so in a schematic way ignoring at this
point the late time physics, which we take as well understood, and which is usually
incorporated by the introduction of so called “transfer functions” [51], which modify
the results coming directly from the inflationary regime.

The Fourier decomposition of the relevant semi classical Einstein’s Equations
takes the form (see Eq. (64) of [7] in the limit of exponential expansion):

− k2ψ(η)�k = 4πGφ0
′(η)

a
〈π̂(�k, η)〉 = c〈π̂ (�k, η)〉. (4.2)

At (η = −T ) the state is the vacuum, an homogeneous and isotropic state, and
as noted, in the absence of the spontaneous collapse part of the dynamics, that will
remain the case forever. In particularwewould have 〈π̂ (�k, η)〉 = 0, and, therefore, the
space-time would also be completely homogeneous and isotropic. The spontaneous
collapse will change that, so that by the end of inflation those expectation values
will generically differ from zero. Note that from Eq. (4.2) we can reconstruct the
space-time Newtonian potential simply by takingψ(η, �x) = 1

(2π)3/2

∫
d3kψ�k(η)ei �k.�x .

Of course we have to keep in mind that, if we are interested in the regimes that are
more directly empirically accessible, we must consider the evolution of the physical
situation from the end of inflation at η = η0 through the reheating epoch and standard
radiation andmatter dominated eras of the hot Big Bang.Wewill be rather schematic
in considering those aspects.

Let us focus on the quantity of main observational interest �T (θ,ϕ)

T̄
. It is the relative

deviation from the sky mean of the temperature of the CMB, coming from a certain
direction in the sky, specified by the angles θ, ϕ, and corresponding to the point
on the intersection of our past light cone with the last scattering surface (i.e. the
hypersurface corresponding to the moment the hot cosmic plasma cools sufficiently
for hydrogen atoms to form, and photons to effectively decouple) at (η = ηD). This
is related to the fact that photons emanating from that region undergo, besides the

27There are two arguments that seem to justify such assumption: on the one hand, GRW and CSL
dynamics seem to function in that manner in situations involving multiple degrees of freedom.
More importantly, as we are dealing with changes in the state that could be regarded as very small
perturbations, it seems clear that the linear level treatments should be accurate enough, and that the
kind of correlation generating collapses would only occur in higher order treatments. Indeed, we
have seen an indication of that kind of correlation-generation occuring in the second order treatment
carried out in [62].
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cosmological red shift associated with the universe’s expansion, an additional red-
shift as they overcome a local gravitational barrier characterized by the value, at the
emission event, of Newtonian potential ψ . Including effects of plasma physics, that
quantity is then given by:

�T (θ, ϕ)

T̄
= (1/3)ψ(ηD, RD, θ, ϕ) =

∑
lm

αlmYlm(θ, ϕ) (4.3)

where the last expression provides the decomposition of the sky map into spherical
harmonics and defines the coefficients αlm .

In our approach, we can therefore directly obtain the expression:

�T (θ, ϕ)

T̄
= (c/3)

∫
d3kei

�k·�x 1

k2
〈π̂(�k, ηD)〉, (4.4)

where the Newtonian potential is evaluated on the ηD , the conformal time corre-
sponding to the decoupling surface (also known as the surface of last scattering), and
at the co-moving radius RD of that surface intersection with our past light cone at
the corresponding direction in the sky. The specific version and implementation of
the spontaneous collapse theory, as well as the specific realizations of the stochastic
processes involved, characterize the quantity 〈π̂(�k, ηD)〉. This, of course, depends
also on the part of the evolution that does not directly tied to the spontaneous collapse
dynamics (i.e. that tied to the scalar field free Hamiltonian in the given background
space-time).

Thus we find,

αlm = c
∫

d2�Y ∗
lm(θ, ϕ)

∫
d3kei

�k·�x 1

k2
〈π̂(�k, η)〉. (4.5)

We note that we can not really extract a direct prediction from this expression, simply
because the complex quantities 〈π̂ (�k, η)〉 are determined by stochastic processes (one
for each �k). However, we would obtain an explicit prediction for each angle, if we
knew the result of all such stochastic processes. It is worth noting that no analogous
to this expression exists in the standard approaches. Those simply do not offer an
expression, not even in principle, for this quantity, which is actually that of direct
observational interest. The above quantity, in the usual approach, would actually be
simply zero.

Following the present approach, we are in a better situation, at least in principle,
but how can this approach produce actual predictions? The point is that the Eq. (4.5)
shows that the quantity of interest is the sumover a large number (actually an integral)
of stochastically determined complex quantities (one for each �k). So the quantity of
interest can be thought of as a result of a “random walk” on the complex plane.

As it is usually the case in such situations, one cannot predict the end point of such
“random walk”, but one can focus on the equivalent to the magnitude of the “total
displacement”, |αlm |2, and estimate its most likely value, which we denote |α(ML)

lm |2.
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We will evaluate the latter by identifying it with that corresponding to the ensemble
average over the possible realizations of the set of stochastic processes.

Thus, we proceed to compute the ensemble average (represented by an overline)
at “late times”. The relevant quantity is then:

(〈π̂(k, η)〉〈π̂ (k′, η)〉∗) = f (k)δ(k − k′). (4.6)

wherewe have used the fact that the differentmodes are taken as statistically indepen-
dent,28 and that, at the ensemble level, we are dealing with an isotropic system, even
though each individual element of the ensemble (and, in particular, the realization
that actually corresponds to our universe) is not isotropic.

Therefore, we are led to the following estimate,

|α(ML)
lm |2 = |αlm |2 = (4πc/3)2

∞∫

0

dk jl(kRD)2
1

k2
f (k). (4.7)

Agreement with observations requires f (k) ∼ k (which would correspond to a
Harrison-Zeldovich scale free power spectrum P(k) ∼ k−3). Note that, if this was
actually the exact form of the spectrum, we would have that |α(ML)

lm |2 would end up
being independent of RD (changing variables to z ≡ RDk, the LHS of (4.7) would
take the form (4πc)2

∫ ∞
0 dz jl(z)2

1
z = (4πc)2 π

l(l+1) ), reflecting the “scale invariance”
of this particular spectral shape. This would result in a statistically featureless CMB,
which is not what is really observed. The very interesting and famous oscillations that
have been the focus of the recent CMB studies, are thought to be the result of features
generated by late time physical process acting on top of the primordial flat spectrum
emerging from the inflationary regime.29 The point, however, is that, when on top of
the flat spectrum one places the effects of the late time physics, including acoustic
plasma oscillations, all of which is encoded in the so called “transfer functions” [51],
that we are ignoring (for simplicity), one obtains, after fixing a few free parameters
a spectrum that represents a remarkable match to the observations.30

A detailed analysis of the problem based on one of the simplest inflationary
models (a single scalar field with a simple quadratic potential term), together with a
version of CSL adapted to the situation at hand (i.e. one involving quantum fields in
a cosmological setting) has been performed in [38].

28Aswe noted before, at higher order in perturbation theory, within the approach developed here and
based on the SSC formalism, one naturally encounters deviations from statistically independence
[62]. An early exploration of the possible consequences of the kind of correlations that naturally
emerge include possiblemodifications in the part of the spectrum that refers to the very large angular
scales [72]. See also [71].
29There is an additional feature coming from the inflationary regime itself, known as the tilt in the
spectrum, which we will be ignoring in the present simplified treatment.
30This success after the best fit matching of few parameters, is achieved both, when following the
standard accounts [54] for the primordial spectrum, and when following ours [55].
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The starting point is the version of the theory described by the following two
equations: The modified Schrödinger equation, whose solution is:

|ψ, t〉 = τ̂e− ∫ t
0 dt

′
[
i Ĥ+ 1

4λ [w(t ′)−2λ Â]2
]
|ψ, 0〉 (4.8)

where τ̂ is the time-ordering operator, λ is a parameter of the theory, Â is a self
adjoint operator on the system’s Hilbert space (usually referred to as the “collapse-
driving-operator” or “collapse-operator” for short), and w(t) is a random classical
function of time, of white noise type, with a probability rule given by the equation,

PDw(t) ≡ 〈ψ, t |ψ, t〉
t∏

ti=0

dw(ti )√
2πλ/dt

. (4.9)

The state vector norm evolves dynamically (does not equal 1), so expectation values,
such as those needed in expressions such as (4.5), must be computed with suitably
re-normalized states.

The version of the theory adapted to the cosmological case at hand was based on
an equation of the form:

|ψ, t〉 = τ̂e
−i

∫ η

−T dη′ Ĥ− 1
4λ̃

η∫
−T

dη′ ∫ dx[w(x,η′)−2λ̃ỹ(x)]2 |ψ,−T 〉. (4.10)

where the operator playing the roll of the collapse operator31 Â of Eq. (4.8) was taken
to be linear in the field ŷ(η, �x) (the quantum field operator corresponding to the re-
scaled field y = a(η)δφ). The result of the analysis indicated that the choice for a
collapse operator that leads to results compatible with the scale free HZ spectrum
was

ỹ(x) ≡ (−∇2)1/4 ŷ(x) (4.11)

The study also considered the alternative where the operator playing the roll of
the collapse operator Â of Eq. (4.8) was taken to be linear in the field π̂(η, �x) (the
momentum conjugate to ŷ and given by π(x) = a(η)

∂δφ

∂η
) so that the evolution was

given by the equation:

|ψ, η〉 = τ̂e−i
∫ η

−T dη′ Ĥ− 1
4λ̃

∫ η

−T dη′ ∫ dx′[w(x′,η′)−2λ̃π̃ (x′)]2 |ψ,−T 〉. (4.12)

In this case, the collapse operator leading to adequate results turned out to be π̃(x) ≡
(−∇2)−1/4π̂(x).

We do not know, at this pointwhy are those particular choices of collapse operators
the ones that work in this situation. Actually, it is clear that we need a general recipe
for extending the spontaneous collapse theories that have been developed for the
context of non-relativistic many particle quantummechanics tomore general settings

31The operator that drives the spontaneous collapse dynamics of the theory.
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involving quantum fields, as well as special and general relativity. The general form
of the collapse operator should be framed in such terms, and should, of course,
reduce in the former context to the smeared position operators that have proven to
successfully deal with the measurement problem, in the corresponding settings. This
is clearly, at this stage of the research program, an open task. However, wemight note
that these seem to be rather natural choices, dimensionally speaking, in the sense
that the constant λ̃, appearing in the above equations is of the correct dimensionality
(i.e. s−1). For further discussion on this point see [38].

Moreover, as shown in [38], the specific resulting prediction for the power spec-
trum is:

PS(k) ∼ (1/k3)(1/ε)(V/M4
Pl)λ̃T (4.13)

where T is the duration of the inflationary stage in conformal time taken for standard
inflationary parameters as 108 MpC, V is the starting value of the inflationary poten-
tial, and ε is the slow roll parameter which is known to lead to a slight amplification
of the spectrum even, in the context of spontaneous collapse theories [52]. When
using standard estimates for the inflationary model, including the GUT scale for the
inflation potential, and standard values for the slow-roll, the result of the detailed cal-
culation leads to agreement with observation if one sets λ̃ ∼ 10−5MpC−1 ≈ 10−19

s−1. This is not very different from the GRW suggestion (a standard characteristic
GRW value for this quantity in many particle non-relativistic applications of GRW
and the corresponding one in CSL is often taken to be 10−17 s−1). We find that result
rather encouraging, in the sense that it provides hope for the existence of a general
CSL like theory capable of simultaneously dealing with the present problem, and
reducing to the standard versions of spontaneous collapse theories in the regimes
appropriate to non relativistic many particle quantum mechanics, and thus adequate
for the laboratory situations described elsewhere in this volume.

We should point out that treatments based on CSL adapted to the inflationary
cosmology problem, but based on rather different specific implementations, have
been carried out by other groups [39, 40].

4.1 Primordial Gravity Waves

Wehave seen that, while spontaneous collapse theories have, in principle, the features
that allow them to resolve the very serious shortcoming of traditional inflationary
accounts for the emergence of the seeds of cosmic structure out of quantumuncertain-
ties in the early universe, a detailed qualitative and quantitatively successful treatment
which is empirically adequate, requires rather specific features. In the preceding sub-
section we adjusted those so that the emergent “predictions” matched observations.
This might be regarded as a search for clues of how a theory that was developed
with the non-relativistic many particle quantum mechanics settings in mind could
be extended to work in contexts involving quantum field theory in curved space-
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time, and, in particular, the cosmological contexts. It is clear we do not, at this time,
have a general proposal for the universal form of such theory. However, once this
is done, one can go beyond such adjustments and consider truly novel predictions.
In particular, we will next concentrate on the generation, by the same mechanism,
of the so called primordial gravity waves, also known as primordial tensor modes.
Such waves are, indeed, also a generic prediction of the standard approaches. Exten-
sive efforts are currently under way to detect the traces such gravity waves would
leave in the CMB. The effects in question are expected to be observable in a certain
type of anisotropy in the polarization patterns of the CMB radiation, known as the
polarization B modes32 [51]. The results of the search for such primordial B modes
have, so far, failed to find any clear evidence of their existence at the levels that
are expected from the simplest, and otherwise more compelling specific inflationary
models. Empirical bounds on their amplitude are currently being employed to rule
out many specific proposals [66]. We will show here that, regarding this specific
issue, the results from the approach outlined in this review are rather different from
those of the standard accounts. The former predict amuch smaller amplitude for these
primordial gravity waves than the usual approach [68], thus dramatically altering the
conclusions regarding the viability of most inflationary models.

Our starting point for this calculation is again the corresponding component of
the semi-classical version of Einstein’s Eq. (3.1). This is the equation of motion for
the tensor perturbations hi j , which under the conditions we have previously set, and
retaining only dominant terms, takes the form:

(∂2
0 − ∇2)hi j + 2(ȧ/a)ḣi j = 16πG〈(∂iδφ)(∂ jδφ)〉tr−tr

Ren (4.14)

tr − tr stands for the transverse trace-less part of the expression. The fact that the
quantity has been subjected to a standard renormalization is indicated in the suffix
(Ren) (for in-depth discussions of this see [59]).

We have retained in the right hand side just the largest non-vanishing term in the
perturbation expansion of 〈Tμν〉, which, in this case, is quadratic in the collapsing
quantities. The point is that the energy momentum tensor, for a field with simple
quadratic potential, is simply quadratic in the field. As we have seen, the field might
be written as φ(η, �x) = φ0(η) + δφ(η, �x). The part containing the relevant spatial
dependences (leading to actual gravity waves) involves two kinds of terms (a) the
term linear in φ0 and linear in δφ and (b) the term quadratic in δφ. When focusing
on the component 〈T00〉, the dominant contribution comes from terms of type (a),
but those are absent when considering the component 〈Ti j 〉 ( i �= j) simply because
φ0, does not depend on �x and thus ∂

∂xi φ0 = 0.
Passing to a Fourier decomposition, we need to solve the following equation,

¨̃hi j (�k, η) + 2(ȧ/a)
˙̃hi j (�k, η) + k2h̃i j (�k, η) = Si j (�k, η), (4.15)

32The other polarization modes, the so called E modes in the anisotropy in the polarization patterns,
are expected to arise from well understood late time plasma physics effects, and have, in fact, been
observed in complete accordance with expectations.
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with vanishing initial data (i.e. hi j = ḣi j = 0 on the initial hypersurface η = −T ),
and source term given by:

Si j (�k, η) = 16πG
∫

d3x√
(2π)3

ei
�k �x 〈(∂iδφ)(∂ jδφ)〉tr−tr

Ren (η, �x). (4.16)

As it is well known, general relativity has a well posed initial value formulation,
thus once the gauge is fixed, the solution to the evolution equation is completely
determined by the initial data (which are vanishing in this case), as well as the source
terms.

Again, the quantity of interest is the following average over the ensemble of
realizations of the stochastic processes, expressed as:

hi j (�k)hkl(�k ′) = δtr−tr
ik jl (�k)(2π)3δ3(�k − �k ′)Ph(k) (4.17)

where the symbol δtr−tr
ik jl (�k) is 1 for the index structure compatible with the transverse

traceless nature of the gravity waves, and the fact that distinct modes are uncorrelated
and 0 otherwise. This expression can be taken as the adapted definition to that in
Eq. (2.9) when considering the indexed quantity hi j (�k), and thus defining the tensor
mode power spectrum.

The calculation is rather involved, and the details can be found in [68]. The result
turns out to be formally divergent, involving an integral over pairs of modes �q, �p
such that �p + �q = �k arising from the term 〈∂iδφ(η, �x)〉〈∂ jδφ(η, �x)〉 (evaluated on
the state resulting from the spontaneous collapse), which is the leading contribution
left after the renormalization.33 However, there are various clear physical reasons
indicating that we must introduce an ultra-violet (or short wavelength) cut-off pCUV
on the integral. In particular, we must consider the diffusion effects at late times,
which would affect the gradients of density perturbations on very short scales, to
the point of effectively damping their contribution to the generation of the gravity
waves in question. The fact that other physical sources for a cut-off (for instance
that which could be expected to result from GUT scale physics effects during the
radiation domination) correspond to higher values of k suggests that we should take
the cut-off at the scale of diffusion (Silk) dumping with pCUV ≈ 0.078 MpC−1.

After a long calculation, the resulting prediction for the power spectrum of the
tensor perturbations is:

Ph(k) ∼ (1/k3)(V/M4
Pl)

2(λ̃2T 4 p5UV /k3) (4.18)

We note that the relation between the above power spectrum and that for the scalar
perturbations given in Eq. ( 4.13) indicates that the latter is substantially smaller than

33This divergence is not the same as the standard divergences occurring in the evaluation of the
expectation value of the energy momentum tensor. That is dealt with via a well established renor-
malization procedure, which in this setting corresponds to the so called “minimal subtraction” based
on the Bunch Davies vacuum.
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the former. Indeed, by comparing Eqs. (4.18) and (4.13), in terms of dimensionless
quantities, we have that Ph(k)k3 = ε2(PS(k)k3)2(T 2 p5UV /k3). Given that the scalar
power spectrum is extremely small for the relevant values of k, it is clear that the
tensor power spectrum is suppressed by a huge factor.

That is very different from the standardly obtained relation between them, which
indicates that Ph(k) = rPS(k) with r = 16ε [70], (i.e. it is dictated by the slow
roll parameter ε, which is, in turn, related to other observables, such as the scalar
spectral tilt). Thus, in contrast with the expectations of the standard approach, we
do not expect to see primordial tensor modes (and the corresponding polarization B
modes) at the level they are currently being looked for. In this regard, our approach
can be said to be empirically more adequate than the standard one, which, with
the exception of few specific inflationary models, indicates that a detection should
already have been made [67].

In [68], we have also considered a simpler spontaneous collapse model (the naive
one designed in [7], with just this specific cosmological application in mind), and
again obtained a substantially reduced tensor mode amplitude, but with a slightly,
different shape. We take this, together with the general discussion before Eq. (4.14),
as an indication of the robustness of the generic prediction of a substantial reduction
for amplitude of the primordial gravity waves spectrum, in comparison with that
of standard approaches. Further studies considering multiple specific inflationary
models have been used to determine their viability within the present context [69].

5 Discussion

We have seen that despite its phenomenological success, the usual inflationary
account for the emergence of the seeds of cosmic structure out of primordial quan-
tum fluctuations of the vacuum suffers from a serious conceptual flaw: it is unable to
account for the transition from a completely homogeneous and isotropic situation,
as described both by the classical background and the quantum mechanical state of
matter fields, to one that is not.

We have argued that spontaneous collapse theories contain, in principle, the ele-
ments needed to deal with that conceptual shortcoming. We have provided a theoret-
ical framework whereby such spontaneous collapse theories might be incorporated
within a semi-classical treatment of gravitation, and argued how that view might
be reconciled, as a suitable effective treatment, with more traditional expectations
regarding the nature of quantum gravity.

We have then proceeded to employ such approach in a simplified fashion within
the context of inflationary cosmology, and obtained predictions for the primordial
spectrum of both the scalar and tensor perturbations. We saw that by a suitable
choice of collapse operators, using a simple inflationary model, with typical values
of the inflationary parameters, the spontaneous collapse constant λ̃ of the theory can
be adjusted so as to fit the scalar perturbation observations with values that are of a
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similar order ofmagnitude as those considered in the context of spontaneous collapse
theories as applied to laboratory situations.

Furthermore, we have seen that, once such adjustments have been made, the
approach leads to specific predictions for the tensor mode spectrum that differ sub-
stantially from the traditional expectations in their regard. Actually, according to this
approach, the tensor perturbations occur only at a higher order in perturbation theory,
and thus imply a substantially reduced amplitude, which naturally accounts for the
lack of their experimental detection so far. Moreover, with the present approach, the
predicted tensor spectrum has a mush steeper shape, indicating the the possibility of
detection increases as one looks at longer wave-lengths. If such expectations were
confirmed, this might represent the first case where spontaneous collapse theories
lead to different predictions than those of the usual practice in quantum theory, which
are such that the former are actually empirically preferred.

The above listed findings illustrate, not only the accuracy of J. Bell’s observa-
tions concerning the need for cosmologists to become concerned about the concep-
tual problems surrounding quantum theory, but also the fact that present theoretical
frameworks dealing with the early stages of our cosmological models, namely the
quantum aspects of inflation, are actually inadequate without such a solid quantum
theoretical foundation. We have seen that the incorporation of spontaneous collapse
theories into the setting provides both a conceptual and an effective path for address-
ing such issues. We have also shown that some of the actual predictions naturally
emerging from the approach differ from the standard ones in a manner that is favored
by current observations.

A related development along this line of research is the analysis, within the con-
text of quantum field theory of scalar fields, of the kind of collapse operators that
have the property of maintaining the renormalizability of the expectation value of the
energy momentum tensor. In other words, a characterization of spontaneous collapse
theories for which the dynamics preserves the Hadamard properties of the quantum
state [75]. Other works include an analysis showing how correlations arising from the
spontaneous collapse dynamics could naturally account for an anomalous low power
in the scalar CMB spectrum [71] at large angles [72]; the proposal of a speculative
scenario based on spontaneous collapse dynamics that could dynamically account for
the apparently spacial conditions characterized in Penrose’s hypothesis[73] regard-
ing the Weyl curvature of the initial state of the Universe [80]; the deveopment of
a scheme whereby spontanous collapse theories could restore the viability of Higgs
inflation [74]. Furthermore, we should mention a recent proposal that ties the viola-
tion of energy conservation characteristic of spontaneous collapse theories (as well
as of other approches to deal with the “measurement problem” [81]) to the small
current value of the cosmological constant [82], and a more recent refinement of
that idea connecting the violation of energy momentum conservation to a space-time
discreteness associated with quantum gravity which does a superb job in predicting
the correct magnitude [83]. It must be said however that the latter is, at this time,
not explicitly connected to spontaneous collapse dynamics. This last feature might
decrease one’s enthusiasm for some of the ideas discussed in this manuscript. How-
ever, this need not be so. The point is that it is not unreasonable to expect that the
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two might be connected, because, as argued in [41, 44], spontaneous collapse might
be ultimately tied to quantum aspects of gravitation. Furthermore, the kind of con-
nection that would be required in this specific context (i.e. one between some sort of
space-time granularity and energy momentum non-conservation with spontaneous
collapse theories), is, in my view, made plausible by the simultaneous considera-
tion of a flash type ontology, the approach employed in [84] for the construction of
a relativistic spontaneous collapse theory, and the proposal of [87] to incorporate
intrinsic diffusion into the spontaneous collapse theories. Finally, it should be men-
tioned that we have applied spontaneous collapse theories to deal with a different
problem involving the interface of quantum theory and gravitation, namely the so
called “black hole information puzzle” [57, 58, 76–79] resulting in what we see as
an overall self consistent and reasonable picture of the situation.

Needless is to say that there remain many issues requiring a deeper study and
substantial development.Among those is the construction of a universal version of the
spontaneous collapse theory that is applicable in general situations, including those
pertaining to the laboratory conditions on which spontaneous collapse theories have
been traditionally considered, as well as regimes such as cosmology, where they need
to coexist with general relativity and quantum field theory. As far as the inflationary
context is concerned, we made some adjustments in the theory particularly regarding
the choice of the field operators that play the role of the collapse operators (or
equivalently, the dependence of parameter on the mode’s comoving wave number
k) which we found to be dimensionally appropriate, but which we, at this point,
could not otherwise justify in a clear manner. In this regard, the continuous search
for versions of spontaneous collapse theories that are fully compatible, not just with
special relativity (where there is already noteworthy progress [84–86]), but also with
general relativity seems as an obligated path for future investigations.

More broadly speaking, the discussion presented in this manuscript offers support
for my strong conviction that ignoring “the measurement problem”, when discussing
issues at the Gravity/Quantum interface, can be a serious source of confusion. The
incorporation of proposals to seriously address it, such as spontaneous collapse theo-
ries, the subject towhichG.C.Ghirardi contributed sodramatically to create, develop,
and establish, will not just help in clarifying the overall physical picture, but, has the
potential to contribute to the resolution of seemingly unconnected problems.
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A Relativistic GRW Flash Process with
Interaction

Roderich Tumulka

Abstract In 2004, I described a relativistic version of the Ghirardi-Rimini-Weber
(GRW) model of spontaneous wave function collapse for N non-interacting dis-
tinguishable particles. Here I present a generalized version for N interacting dis-
tinguishable particles. Presently, I do not know how to set up a similar model for
indistinguishable particles or a variable number of particles. The present interacting
model is constructed from a given interacting unitary Tomonaga-Schwinger type evo-
lution between spacelike hypersurfaces, into which discrete collapses are inserted. I
assume that this unitary evolution is interaction-local (i.e., no interaction at space-
like separation). The model is formulated in terms of Bell’s flash ontology but is
also compatible with Ghirardi’s matter density ontology. It is non-local and satis-
fies microscopic parameter independence and no-signaling; it also works in curved
space-time; in the non-relativistic limit, it reduces to the known non-relativistic GRW
model.

1 Introduction

In this paper, I describe a relativistic model of spontaneous wave function collapse
for N distinguishable particles with interaction, thereby generalizingmy 2004model
without interaction [23, 24, 26]. The model involves, like the GRW model [7, 13]
on which it is based, discrete jumps of the wave function with unitary evolution in
between. I will describe the model in terms of Bell’s flash ontology [2, 7, 27] by
specifying the joint probability distribution of all flashes, but it could also be set
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up using Ghirardi’s matter density ontology [2, 9] along the lines described in [6].
Neither choice of ontology makes the problem easier or more difficult. In the model,
one can, as already suggested by Aharonov and Albert in 1981 [1], associate a wave
function ψ� with every spacelike hypersurface �. For every flash in the past of �,
a collapse operator gets applied to the wave function; thus, each collapse affects the
wave function everywhere in the universe, although the model is fully relativistic.
Since the flashes occur randomly, ψ� is a random wave function and can thus be
regarded as subject to a stochastic time evolution. In contrast to Bohmian mechanics
but like the non-interacting 2004model, the presentmodel does not invoke a preferred
foliation (i.e., slicing) of space-time into spacelike hypersurfaces.

Since, unlike Bohmian mechanics, the model does not involve trajectories in
space-time, the word “particle” should not be taken literally. Rather, in this paper it
means a space-time variable in the wave function (or in the configuration PVM on
Hilbert space).

The interaction is incorporated by assuming the unitary part of the time evo-
lution as given and including interaction. More precisely, I assume that a unitary
Tomonaga-Schwinger type evolution between spacelike hypersurfaces is given and
describe how to insert collapses in between unitary evolution operators. I assume that
the unitary evolution is relativistic and interaction-local (i.e., involves no interaction
terms between spacelike separated regions, see below). For example, such an evolu-
tion is rigorously known for N Dirac particles in 1 + 1 dimensions with zero-range
interaction [15–17]. For another example, the N particles could be taken to inter-
act through a quantized field (which will neither be associated with local beables
by itself nor with collapses).1 If the unitary evolution is non-interacting, then the
model reduces, up to small deviations, to the 2004 version. In particular, the model
is non-local, i.e., two spacelike separated events a and b can influence each other,
although there is no fact about the direction of the influence (whether a influenced
b or b influenced a) [25]. Also like the 2004 version, the model obeys, up to small
deviations, the condition that the distribution of the flashes up to a given spacelike
hypersurface � does not depend on external fields in the future of �; this condition
is a microscopic analog of the condition known as “parameter independence.”

Much of the difficulty of devising amodel with interaction arises from the fact that
the collapse operators associated with different particles do not generally commute,
whereas they do in the non-interacting case. This leads to a question of how to order
the operators in the formula defining the joint probability density of the flashes, all
the while with a need to ensure that the density integrates up to 1. The procedure
proposed here is, roughly speaking, based on ordering the operator factors associated
with two flashes in the temporal order when they are timelike separated, while the
operators essentially still commute when the flashes are spacelike separated, except
for certain details arising from the width σ of the collapses.

1However, quantized fields are usually mathematically ill defined due to ultraviolet divergence. It
would be of interest to study carefullywhether one of the fewmathematicallywell defined evolutions
for quantum fields (such as [14] in 1 + 1 dimensions) can be put to work here.



A Relativistic GRW Flash Process with Interaction 323

Another difficulty arises precisely from the use of smeared-out collapse operators
of width σ. Partly due to the use of different operator orderings depending on the
space-time locations of the flashes, it turned out relevant to cut off the tails of the
profile function, usually a Gaussian function of width σ, to ensure it vanishes exactly
outside a certain admissible region. In fact, “cut off the tails” is a shorthand for a
somewhat more involved procedure that will also change the shape of the profile
function (away from a Gaussian shape) in the region where it does not vanish, as
I will explain in Sect. 4.1. To make the model work, these several difficulties must
jointly be dealt with.

Like the original GRW model, the present model has two parameters, the width
σ of the collapse and the collapse rate λ per particle (or, equivalently, the expected
waiting time τ = 1/λ for a collapse for a given particle). For our purposes, the
waiting time is the relativistic timelike distance between two flashes associated with
the same particle. We assume here the values suggested by GRW [13], σ ≈ 10−7 m
and τ ≈ 1016 s. The empirical predictions of the model are presumably, like those of
the original GRWmodel, too close to those of standard quantum mechanics to allow
for an experimental test with present technology; a careful study of its empirical
predictions, its deviations from the original GRW model, and possible experimental
tests would be of interest.

While the considerations of this paper also work in curved space-time, they will
be formulated for Minkowski space-time M.

Let me mention other proposals of relativistic collapse theories: Early attempts
at a relativistic version of continuous spontaneous localization (CSL) [19, 20] are
divergent and lead to infinite energy increase; see also [5]. A regularized relativistic
version was developed by Bedingham and Pearle [3, 4, 21]. A model due to Dowker
and Henson [10] lives on a discrete space-time and is relativistic in the appropriate
lattice sense. A relativistic model due to Tilloy [22] is based on starting from a
standard quantum field theory in a suitable regime, tracing out certain degrees of
freedom, obtaining a master equation for the remaining ones, and finally using an
unravelingof thatmaster equation that should be empirically equivalent to the original
quantum field theory in the regime considered.

The remainder of this paper is organized as follows. In Sect. 2, I review the non-
interacting model. In Sect. 3, I describe the assumptions made on the unitary part
of the time evolution. In Sect. 4, I define the interacting model. In Sect. 5, I discuss
some of its properties.

2 Review of the Non-interacting Version

We begin with a brief summary of the 2004 model for N distinguishable non-
interacting particles.

I will specify the joint distribution of the first ni flashes for each particle number
i ∈ {1, . . . , N }. Let Xik with i ∈ {1, . . . , N }, k ∈ {1, . . . , ni } be the random space-
time points at which the flashes occur. Let X denote the collection of all Xik with
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Fig. 1 In Minkowski
space-time, the surface of
constant timelike distance s
from y in the future of y,
Hy(s), has the shape of a
hyperboloid that is
asymptotic to the future light
cone of y (dashed)

space

time
Hy(s)

s

y

1 ≤ i ≤ N and 1 ≤ k ≤ ni , likewise x the collection of the space-time points xik ,
and

dx =
N∏

i=1

ni∏

k=1

d4xik (1)

the volume element in 4ν dimensions (meaning either an infinitesimal set or its
volume) with ν := n1 + · · · + nN . For each i , let xi0 be a given “seed” flash. The
distribution of X is of the form

P
(
X ∈ dx

) = 〈ψ0|D(x)|ψ0〉 dx (2)

with operators D to be specified belowandψ0 awave function on a surface�0 playing
the role of an initial surface. In particular, the distribution of X is associated with a
POVMG(dx) = D(x) dx with density D(x). LetH1� be the 1-particleHilbert space
associated with the spacelike surface �, and H10 := H1�0 , so ψ0 ∈ H0 := H ⊗N

10 .
For each i ∈ {1, . . . , N }, let U�′

i� be the unitary time evolution of particle i from the
spacelike surface� to the spacelike surface�′. For all particles together, the unitary
time evolution is U�′

� = U�′
1� ⊗ · · · ⊗ U�′

N� . We write U�′
0 for U�′

�0
.

LetHy(s) be the surface of constant timelike distance s from y ∈ M in the future
of y (henceforth called a hyperboloid, see Fig. 1); we also write | · | for the invariant
(proper) length of a timelike 4-vector, Hy(x) := Hy(|x − y|) for the hyperboloid
containing x ∈ future(y), and2

Hik := Hxik−1(xik) . (3)

Let g̃yx be the Gaussian function centered at x along the hyperboloid Hy(x),

g̃yx (z) := exp

(
− s-distHy(x)(x, z)2

4σ2

)
, (4)

2For definiteness, we take future(y) to be a closed set (i.e., the “causal future”), including the future
light cone and y itself. Likewise for the past.
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where s-dist� means the spacelike distance along �, and gyx the version normalized
in x ,

gyx (z) := 1

‖g̃yz‖ g̃yx (z) , (5)

where, for a spacelike surface � and f : � → C,

‖ f ‖ :=
(∫

�

d3x | f (x)|2
)1/2

(6)

is the L2 norm and d3x means the invariant volume of a 3-surface element (defined
by the 3-metric on �). For the multiplication operator by gyx on � = Hy(x), we
write P(gyx ). To the flash xik we associate the collapse operator

K (xik) := U 0
iHik

P(gxik−1xik ) UHik
i0 , (7)

and to all flashes together the operator

L(x) :=
N⊗

i=1

ni∏

k=1

K (xik) (8)

with the order in the product so that k increases from right to left. Then set

D(x) :=
(

1

τν

N∏

i=1

ni∏

k=1

1xik∈future(xik−1)e
−|xik−xik−1|/τ

)
L(x)† L(x) . (9)

It was shown in [23] (and it follows from the proofs below that apply to the more
general interacting case) that

∫

Mν

dx D(x) = I (10)

with I the unit operator; as a consequence, P is a probability distribution for every
ψ0 ∈ H0 with ‖ψ0‖ = 1.

Equivalently, G(dx) = ⊗N
i=1Gi (d4xi1 × · · · × d4xini ) and D(x) = ⊗N

i=1Di

(xi1, . . . , xini ) with Gi (d4xi1 × · · · × d4xini ) = Di (xi1, . . . , xini ) d4xi1 · · · d4xini

and

Di (xi1, . . . , xini ) =
(

1

τ ni

ni∏

k=1

1xik∈future(xik−1)e
−|xik−xik−1|/τ

)
×

K (xi1)
† · · · K (xini )

†K (xini ) . . . K (xi1) . (11)
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If ψ0 factorizes into a tensor product ⊗N
i=1ψ0i , then P will factorize, and the flashes

for different i will be independent of each other. But in general, even though G
factorizes, P will not factorize, which leads to non-local correlations between the
flashes associated with different i .

We now prepare for defining the novel interacting version of the model.

3 Assumptions

In this article, I put no emphasis on mathematical rigor. But the reasoning is actually
rigorous if the assumption is satisfied that the unitary evolution is defined not only
between Cauchy surfaces but also to hyperboloids or surfaces consisting of pieces
of hyperboloids. For example, a sufficient class of surfaces would be the set S of
those sets that are intersected exactly once by every timelike straight line; in the
following, I will simply say “spacelike surface” for any � ∈ S . For massive free
Dirac particles, it is known [11] (see also [26]) that the unitary evolution is also
defined from a Cauchy surface to a hyperboloid, so it seems plausible that it is also
defined between any two surfaces belonging toS .

So, we assume that the unitary part of the time evolution is given by a Tomonaga–
Schwinger type evolution, more precisely, by a unitary hypersurface evolution [18]
between spacelike surfaces. That is, we assume that with every spacelike surface
� ∈ S there is associated a Hilbert spaceH� (see [18] for examples), and that for
any two spacelike surfaces �,�′ we are given a unitary isomorphism U�′

� : H� →
H�′ representing the time evolution without collapses, such that

U�
� = I, U�′′

�′ U�′
� = U�′′

� (12)

for all �,�′, and �′′. Moreover, for each � we are given a position PVM P�

(“configuration observable”) on �N acting on H� . This completes the definition
of “unitary hypersurface evolution.” For a function f : �N → R, we define the
associated multiplication operator

P( f ) := P�( f ) :=
∫

�N

P�(d3x1 × · · · × d3xN ) f (x1, . . . , xN ) . (13)

Of the unitary evolution we assume

Interaction locality (IL) [18]: For any two spacelike hypersurfaces �,�′, any set
A ⊆ � ∩ �′ in the overlap, and any i ∈ {1, . . . , N },

P�′
(
(�′)i−1 × A × (�′)N−i−1

)
= U�′

� P�

(
�i−1 × A × �N−i−1

)
U�

�′ . (14)

The condition expresses that the unitary evolution includes no interaction term
between spacelike separated regions. Specifically, the unitary evolution from � to
�′ acts like the identity on � ∩ �′. Here are some consequences of IL:
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1. Fix a function f on � ∩ �′ and a label i ∈ {1, . . . , N }, and let P( f ) be the
associated multiplication operator in the i-th variable; more precisely, let

P�( f ) :=
∫

x∈�∩�′

P�

(
�i−1 × d3x × �N−i−1

)
f (x) , (15a)

P�′( f ) :=
∫

x∈�∩�′

P�′
(
�′(i−1) × d3x × �′(N−i−1)

)
f (x) . (15b)

Then

P�′( f ) = U�′
� P�( f ) U�

�′ . (16)

That is because, setting A = d3x in (14),

U�′
� P�( f ) U�

�′ =
∫

�∩�′
U�′

� P�(�i−1 × d3x × �N−i−1) U�
�′ f (x) (17a)

=
∫

�∩�′
P�′(�′(i−1) × d3x × �′(N−i−1)) f (x) (17b)

= P�′( f ) . (17c)

2. Let A := � ∩ �′, B := � \ A, B ′ := �′ \ A. Then

P�′
(
(�′)i−1 × B ′ × (�′)N−i−1

)
= U�′

� P�

(
�i−1 × B × �N−i−1

)
U�

�′ . (18)

That is because, using the normalization P�′(�′N ) = I ,

P�′
(
(�′)i−1 × B ′ × (�′)N−i−1

)
(19a)

= I − P�′
(
(�′)i−1 × A × (�′)N−i−1

)
(19b)

(13)= I − U�′
� P�

(
�i−1 × A × �N−i−1

)
U�

�′ (19c)

= U�′
� P�

(
�i−1 × B × �N−i−1

)
U�

�′ . (19d)

4 Interacting Model

4.1 A Simple Case

As a warm-up we consider the simple case of N = 2 particles and limit our attention
to the first flash for each particle. That is, we define the joint distribution of two
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flashes, X1 and X2, each associated with a different particle. We take as given a seed
flash for each particle, y1 and y2, and an initial wave function ψ0. We postulate that
the joint distribution is of the form

P
(
X1 ∈ d4x1, X2 ∈ d4x2

) = 〈ψ0|D(x1, x2)|ψ0〉 d4x1 d4x2 (20)

with positive operator-valued density

D(x1, x2) = 1x1∈future(y1)1x2∈future(y2)
1

τ 2
e−|x1−y1|/τ e−|x2−y2|/τ L(x1, x2)

† L(x1, x2) ,

(21)

where L will be defined below. As before, the distribution of (X1, X2) is determined
by a POVM G(dx1 × dx2) = D(x1, x2) dx1 dx2 with density D(x1, x2). We will
consider two relevant hyperboloids,

Hi := Hyi (xi ) with i = 1, 2, (22)

and a profile function gyx (z) on Hy(x) that has a bump shape around x ; the first
thought would be to use the Gaussian function g̃yx centered at x given by (4), but
we will refine this choice later. We write gyxi for the function gyx applied to the i-th
variable; that is, gyx is a function on a 3-surface �, and gyxi a function on �N (here
with N = 2).

A basic difference between the interacting and the non-interacting case is that in
the non-interacting case, one can evolve particle 1 to�1 and independently particle 2
to another surface �2; in the interacting case, we can only evolve all particles jointly
to a certain surface. Let us consider two candidates for L(x1, x2),

L(21)(x1, x2) := U 0
H2

PH2(gy2x22)U
H2
H1

PH1(gy1x11) UH1
0 , (23a)

L(12)(x1, x2) := U 0
H1

PH1(gy1x11)U
H1
H2

PH2(gy2x22) UH2
0 . (23b)

We can think of each of (23a) and (23b) as a product of two multiplication operators,
eachHeisenberg-evolved to the initial surface�0. Since the unitary evolution does not

Fig. 2 Two hyperboloids
H1,H2 are each subdivided
according to (24) into two
3-regions Fi and Pi , above
and below the other

H1
H2

P1

F1

P2

F2
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commute with multiplication operators, the twomultiplication operators on different
surfaces do not commute with each other, so (23a) and (23b) are in general not
equal, with two relevant exceptions: First, in the absence of interaction, the unitary
evolution factorizes, and the two multiplication operators commute because they act
on different factors. Second, if the supports of gy1x1 and gy2x2 are spacelike separated
(i.e., if every point in the one set is spacelike from every point in the other), then
they commute by virtue of IL. (It may appear pointless to talk about the support of
gyx if gyx is a Gaussian because then its support is the entire surface Hy(x); but we
will later cut off the Gaussian tails to create smaller supports.).

So, for the purpose of defining the operator L(x1, x2), we are confronted with a
problem of operator ordering. Roughly speaking, we choose the ordering according
to the temporal ordering of x1 and x2: For x1 in the past of x2, we choose L = L(21)

and vice versa. But the exact definition is a little more complicated, partly because
we need to consider the support of gy1x1 , not just the point x1.

To this end, we subdivide each Hi into two parts (see Fig. 2),

Fi := Hi ∩ future(H3−i ) , Pi := Hi ∩ past(H3−i ) . (24)

(Note that the interface H1 ∩ H2 has measure 0 in H1 as well as in H2, except if
y1 = y2 and τ1 = τ2, which happens with probability 0. Ignoring sets of measure 0,
we can pretend that Fi and Pi form a partition of Hi .)

For any set A ⊆ Hy(x), set

‖ f ‖A =
(∫

A
d3z | f (z)|2

)1/2
(25)

and

gy Ax (z) := 1

‖g̃yz‖A
1z∈A 1x∈A g̃yx(z) . (26)

Some functions of this type are depicted in Fig. 3.
Since

g̃yx(z) = g̃yz(x) , (27)

it follows that for every z ∈ Hy(x),

∫

A
d3x gy Ax (z)

2 = 1z∈A

∫

A
d3x

1

‖g̃yz‖2A
g̃yx (z)

2 (28a)

= 1z∈A

‖g̃yz‖2A

∫

A
d3x g̃yx (z)

2 (28b)

= 1z∈A

‖g̃yz‖2A

∫

A
d3x g̃yz(x)2 (28c)

= 1z∈A

‖g̃yz‖2A
‖g̃yz‖2 (28d)
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Fig. 3 Examples of
functions of the type (26),
but defined on the real line
instead of a hyperboloid,
here with A = [0,∞). The
first factor on the right-hand
side of (26) causes a
deviation from the Gaussian
shape which is small for x
far from the boundary of A
but visible for x close to it.
The right axis shown is z, the
functions plotted are
gAx (z) = ‖gz‖−1

A g̃x (z) with
g̃x the Gaussian density with
center x and width 1 for the
values x = 0, 1

2 , 1, 2, 5 (in
the order of centers from left
to right, or of decreasing
values of gAx (0))

= 1z∈A . (28e)

Again, we write gy Axi for the function gy Ax applied to the i-th variable. It follows
from (28e) that, for any i ∈ {1, . . . , N } and A ⊆ Hy(s),

∫

A
d3x PHy(s)(gy Axi )

2 = PHy(s)
(
Hy(s)

i−1 × A × Hy(s)
N−i−1

)
. (29)

We define

L(x1, x2) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U 0
H2

PH2(gy2 P2x22) UH2
H1

PH1(gy1 P1x11) UH1
0 if x1 ∈ P1, x2 ∈ P2

U 0
H2

PH2(gy2F2x22) UH2
H1

PH1(gy1 P1x11) UH1
0 if x1 ∈ P1, x2 ∈ F2

U 0
H1

PH1(gy1F1x11) UH1
H2

PH2(gy2 P2x22) UH2
0 if x1 ∈ F1, x2 ∈ P2

U 0
H1

PH1(gy1F1x11) UH1
H2

PH2(gy2F2x22) UH2
0 if x1 ∈ F1, x2 ∈ F2.

(30)

Proposition 1 Interaction locality implies that

∫
d4x1

∫
d4x2 D(x1, x2) = I . (31)

As a consequence, G(·) is a POVM, and (20) defines a probability distribution for
every ψ0 ∈ H0 with ‖ψ0‖ = 1.

Proof Since (coarea formula)
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∫

future(y)

d4x f (x, y) =
∞∫

0

ds
∫

Hy(s)

d3x f (x, y) , (32)

and since
∫ ∞

0
ds τ−1 exp(−s/τ ) = 1 , (33)

it suffices to show that for any two hyperboloids H1,H2 based at y1 and y2, respec-
tively, ∫

H1

d3x1

∫

H2

d3x2 L(x1, x2)
† L(x1, x2) = I . (34)

Let � := P1 ∪ P2. Writing Hi = Pi ∪ Fi yields four parts for H1 × H2. We deal
with each part separately, beginning with P1 × P2: By the consequence (18) of IL,

U�
H2

PH2(H2 × P2) UH2
� = P�(� × P2) . (35)

By the consequence (16) of IL,

U�
H1

PH1(gy1 P1x11) UH1
� = P�(gy1 P1x11) (36)

for every x1 ∈ P1. Thus,

∫

P1
d3x1

∫

P2
d3x2 L(x1, x2)

† L(x1, x2) (37a)

=
∫

P1
d3x1

∫

P2
d3x2 U0

H1
PH1 (gy1 P1x11) UH1

H2
PH2 (gy2 P2x22)

2 UH2
H1

PH1 (gy1 P1x11) UH1
0

(37b)
(29)=

∫

P1
d3x1 U0

H1
PH1 (gy1 P1x11) UH1

H2
PH2 (H2 × P2) UH2

H1
PH1 (gy1 P1x11) UH1

0 (37c)

(35),(36)=
∫

P1
d3x1 U0

� P�(gy1 P1x11) P�(� × P2) P�(gy1 P1x11) U�
0 (37d)

=
∫

P1
d3x1 U0

� P�(gy1 P1x11)
2 P�(� × P2) U�

0 (37e)

(29)= U0
� P�(P1 × �) P�(� × P2) U�

0 (37f)

= U0
� P�(P1 × P2) U�

0 . (37g)

Here, we used in (37e) that the operators of a PVM commute, and in the last step
that, for every PVM, P(A)P(B) = P(A ∩ B).

We now turn to the contribution from P1 × F2. Here we exploit that, by the
consequence (18) of IL applied to H2 and � = P1 ∪ P2,

P�(� × P1) = U�
H2

PH2(H2 × F2) UH2
� . (38)
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With the same strategy as in (37), we now obtain that

∫

P1

d3x1

∫

F2

d3x2 L(x1, x2)
† L(x1, x2) = U 0

� P�(P1 × P1) U�
0 . (39)

For F1 × P2, we interchange the order of integration so that the x1 integration is
carried out first (i.e., inside the x2 integral). Exploiting that, by (18),

P�(P2 × �) = U�
H1

PH1(F1 × H1) UH1
� , (40)

we obtain through the same strategy as before that

∫

P2

d3x2

∫

F1

d3x1 L(x1, x2)
† L(x1, x2) = U 0

� P�(P2 × P2) U�
0 . (41)

Likewise for F1 × F2:

∫

F1

d3x1

∫

F2

d3x2 L(x1, x2)
† L(x1, x2) = U 0

� P�(P2 × P1) U�
0 . (42)

Putting together (37g), (39), (41), and (42), we obtain that

∫

H1

d3x1

∫

H2

d3x2 L(x1, x2)
† L(x1, x2) (43a)

= U 0
� P�

(
(P1 × P2) ∪ (P1 × P1) ∪ (P2 × P2) ∪ (P2 × P1)

)
U�

0 (43b)

= U 0
� P�(�2) U�

0 = U 0
� I U�

0 = I , (43c)

as claimed in (34). �

4.2 General Case

Consider ni flashes for particle i ; they occur at the randompoints Xik , i ∈ {1, . . . , N },
k ∈ {1, . . . , ni }. Let X denote again the collection of all Xik with 1 ≤ i ≤ N and
1 ≤ k ≤ ni , likewise x the collection of the space-time points xik , and dx as in (1).
For each i , let xi0 be a given seed flash. The distribution of X is again of the form

P
(
X ∈ dx

) = 〈ψ0|D(x)|ψ0〉 dx (44)

with D again of the form



A Relativistic GRW Flash Process with Interaction 333

D(x) =
(

1

τν

N∏

i=1

ni∏

k=1

1xik∈future(xik−1)e
−|xik−xik−1|/τ

)
L(x)† L(x) . (45)

In particular, the distribution of X is again determined by a POVMG(dx) = D(x) dx
with density D(x). We use the notation Hik as in (3). The first, rough idea would be
to take L to be something like

“ L(x) =
N∏

i=1

ni∏

k=1

U 0
Hik

PHik (gxik−1xik i ) UHik
0 ” (46)

with a problem of operator ordering. To address this problem, we need to construct
the analogs of the 3-cells Pi and Fi of the previous section.

4.2.1 Division Into Cells

The connected components of M \ ∪ikHik (more precisely, their closures) we call
4-cells. They can be labeled by k = (k1, . . . , kN ) ∈ ∏N

i=1{0, . . . , ni }: the 4-cell for
k is defined as

4Ck :=
N⋂

i=1

(
future(Hiki ) ∩ past(Hiki +1)

)
, (47)

where future(Hi0) and past(Hini +1) should be understood as M; see Fig. 4 for an
example. There are

∏
i (ni + 1) 4-cells. The 4-cells form a partition of space-time,

except for overlap on the hyperboloids. For k with all ki = 0 we write 0N , and we
write n = (n1, . . . , nN ), as well as 4C for the set of all 4-cells.

The faces of the 4-cells are pieces of hyperboloids henceforth called 3-cells,

3Cik := Hiki ∩
⋂

j �=i

(
future(H jk j ) ∩ past(H jk j +1)

)
, (48)

Fig. 4 Notation for 4-cells
as in (47)

H11
H21

4C00

4C01
4C10

4C11
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where k must be such that ki ≥ 1. In fact, 3Cik is the common boundary of 4Ck and
4Ck ′ , where k ′

i = ki − 1 and k ′
j = k j for all j �= i . For example, for two hyperboloids

as in Figs. 2 and 4, P1 = 3C110, P2 = 3C201, and Fi = 3Ci11. The set of all 3-cells
will be denoted by 3C .

If two 4-cells border on each other along a 3-cell 3Cik , then the one in the future
of Hiki will henceforth be said to be a successor of the one in the past of Hiki , and
conversely a predecessor. The predecessors of 4Ck are those for which one k j in k
has been replaced by k j − 1.

We say that a set S ⊆ M is past complete if past(S) ⊆ S; correspondingly future
complete. For example, ∅ andM are both past and future complete, the past of any set
is past complete, an intersection of past complete sets is past complete, 4C0N is past
complete, 4Cn is future complete, andM \ 4Cn is past complete. One easily verifies
that the complement of a past complete set is future complete and vice versa.

Proposition 2 Every (closed) past complete set S except ∅ and M is the past of its
boundary, S = past(∂S), and ∂S is a spacelike-or-lightlike hypersurface.

Proof For any x ∈ S, consider a timelike straight line (geodesic) γ through x ; there
must be a point on γ outside S, or else S = M by past completeness. Again by past
completeness, γ must lie in S up to a point γ(s0) and outside from there onwards.
So γ(s0) must lie on ∂S, and x ∈ past(γ(s0)) ⊆ past(∂S). �

While the exact location and shape of 4Ck depends on the hyperboloids, many
relations between the 4-cells, such as which one borders onwhich others alongwhich
3-cells, can be read off from the index k. That is why we also call k ∈ ∏

i {0, . . . , ni }
an abstract 4-cell and a pair (i, k) such that ki ≥ 1 an abstract 3-cell. The set of
abstract 4-cells (respectively, 3-cells) is 4A := ∏

i {0, . . . , ni }, respectively 3A :=
{(i, k) ∈ {1 . . . N } × 4A : ki ≥ 1}. The future faces of the abstract 4-cell k are the
abstract 3-cells (i, k ′) with k ′

i = ki + 1 and k ′
j = k j for all j �= i (if they exist); the

past faces of k are the (i, k) with ki ≥ 1. The predecessors of k are those abstract 4-
cells for which one k j in k has been replaced by k j − 1; correspondingly successors.
A set V of abstract 4-cells will be called predecessor complete iff3 it contains every
predecessor of each of its elements; correspondingly successor complete. A set is
successor complete iff its complement is predecessor complete.

Proposition 3 If a set V ⊆ 4A is predecessor complete, then the corresponding
space-time set S(V ) = ∪k∈V

4Ck is past complete. Furthermore, if the hyperboloids
are such that 4Ck has non-empty interior (or non-zero 4-volume) for every k ∈ 4A ,
then also the converse is true: S(V ) is past complete only if V is predecessor complete.

Proof To see that S(V ) is past complete, consider x ∈ S(V ) and y in the past of
x . The straight line (or any causal curve) from x to y, when crossing hyperboloids,
enters a predecessor of the 4-cell, and thus remains in S(V ). We remark that if
some 4Ck is empty (as would happen if xiki −1 ∈ future(x jk j +1) with j �= i), then
S({k}) = 4Ck = ∅ is past complete although V = {k} is not predecessor complete.

3iff = if and only if.
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Nowassuming that the 4-cells havenon-empty interior, if S(V )werepast complete
but V not predecessor complete, then let k ′ /∈ V be a predecessor of k ∈ V . Since
the interiors are non-empty, there are interior points x ∈ 4Ck and y ∈ 4Ck ′ such that
y ∈ past(x), in contradiction to y ∈ S(V ). �

Let N be the set of predecessor complete sets of abstract 4-cells. It becomes
a directed network by putting a directed edge from V1 to V2 whenever V2 can be
obtained from V1 by adding one abstract 4-cell, V2 = V1 ∪ {k}. In particular, every
edge is related to some abstract 4-cell, while the same abstract 4-cell can occur for
several edges at different vertices. An admissible sequence (V1, . . . , Vr+1) is a path
in N (using only edges in their direction) from the vertex ∅ to the vertex 4A . We
will show in Proposition 6 that admissible sequences exist.

We say that the admissible sequence (V1, . . . , Vr+1) crosses the 4-cell kin step
n iff Vn+1 = Vn ∪ {k}. We say that it crosses the 3-cell (i, k) ∈ 3A in step n iff
Vn+1 = Vn ∪ {k}.
Proposition 4 Every admissible sequence crosses every 4-cell and every 3-cell
exactly once.

Proof Since each step in the path adds exactly one 4-cell, and since the last element
of the sequence is the set of all 4-cells, each 4-cell must occur sooner or later, and
cannot occur twice. The 3-cell (i, k) gets crossed exactly when the 4-cell k gets
crossed. �

In particular, r equals the number of 4-cells. Since the starting point is fixed,
an admissible sequence can be characterized by specifying which edge to use in
each step. Since the edges are labeled with abstract 4-cells, it can be specified by
the sequence (k1, . . . , kr ) of abstract 4-cells in the order in which they are crossed.
Such a sequence is an ordering of the set of all abstract 4-cells. However, not every
ordering of the 4-cells corresponds to an admissible sequence.

Proposition 5 An ordering (k1, . . . , kr ) of the 4-cells corresponds to an admissible
sequence iff for every n ∈ {1, . . . , r}, every predecessor of kn occurred earlier.

Proof “only if”: Otherwise Vn+1 = Vn ∪ {kn} is not predecessor complete, as Vn =
{k1, . . . , kn−1}.

“if”: The sequence of 4-cells tells us in each step of the path inN which edge to
take. In order to verify that such edges exist in N , we need to check that, for each
step from Vn to Vn+1 = Vn ∪ {kn}, Vn+1 is predecessor complete. It is because each
predecessor of kn is contained in Vn = {k1, . . . , kn−1} by assumption, and because
Vn is predecessor complete. Since every 4-cell occurs, the end point of the path in
N is the set of all 4-cells. �

As a consequence, the sequence of 4-cells must begin with 0N (the only one
without predecessor) and end with n (the only one without successor). For N = 2
and n1 = 1 = n2 as in Figs. 4, 5, and 6, there are two orderings as described in
Proposition 5: (00,01,10,11) and (00,10,01,11).
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{00}

{00, 01}{00, 10}

{00, 01, 10}

{00, 01, 10, 11} = 4A

∅

Fig. 5 The directed network N for two hyperboloids as in Fig. 4. There are two paths from ∅ to
4A , both of which are admissible sequences

{00} {00, 10} {00, 01} {00, 01, 10}

Fig. 6 The space-time sets (unions of 4-cells) S(V ) corresponding to some vertices V in N for
two hyperboloids

Proposition 6 For every choice of N , n1, . . . , nN ∈ N, there exists an admissible
sequence.

Proof For every k, define m(k) = k1 + · · · + kN . We specify the ordering of 4-cells.
Begin with k = 0N , the only 4-cell with m(k) = 0. Then list, in arbitrary order, all 4-
cells k withm(k) = 1. Then, in arbitrary order, all 4-cells k withm(k) = 2, and so on
up to m(k) = ν, which occurs only for k = n. Then all 4-cells have occurred exactly
once. Every predecessor k ′ of k occurred earlier than k because m(k ′) = m(k) − 1.
(We remark that not every admissible sequence needs to have this structure.) �

Of two admissible sequences,we say that they differ by an elementary deformation
if their associated orderings of 4-cells differ only by an exchange of two successive
4-cells, i.e., one is (k1, . . . , kr ) and the other

(
k1, . . . , kn−1, kn+1, kn, kn+2, . . . , kr

)
(49)
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for some n ∈ {1, . . . , r − 1}. For example, in Fig. 5 this exchange corresponds to
switching from the left path to the right one or vice versa. An exchange of 4-cells
as in (49), applied to an admissible sequence, does not necessarily yield another
admissible sequence, but here we need the converse fact:

Proposition 7 Any two admissible sequences can be obtained from each other
through finitely many elementary deformations.

Proof Let (k1, . . . , kr ) be the ordering of 4-cells corresponding to one of the two
admissible sequences and (k ′

1, . . . , k ′
r ) the other. Apply the following elementary

deformations to the primed ordering. Find the place where k1 occurs and move k1
one place to the left in the primed ordering (by exchange with its left neighbor). The
resulting ordering corresponds to an admissible sequence because k1 has no prede-
cessor. Likewise, k1 can be moved again to the left, in fact repeatedly until it reaches
the first position. Repeating the procedure, we canmove k2 to the second position and
so on until we have reached the unprimed ordering. In each intermediate ordering,
predecessors always occur earlier, because they did in the two given orderings. �

4.2.2 Definition of L

We use an admissible sequence to define the operator ordering in L(x), and then
proceed to show that the operator L(x) does not, in fact, depend on the choice of
admissible sequence.

So fix an admissible sequence. Since each Hik is partitioned into 3-cells, there is
exactly one 3-cell 3C(xik) containing xik (except in the probability-0 case that xik

lies on the boundary between two 3-cells on Hik , which we ignore). To the flash xik

we associate the operator

K (xik) := U 0
Hik

PHik

(
gxik−1,3C(xik ),xik ,i

)
UHik

0 . (50)

We define L(x) as the product of the K (xik) in the order from right to left in which the
3-cells are crossed in the admissible sequence. Now in some steps of the sequence,
several 3-cells are crossed in the same step. Among these, it does not matter which
order we choose, as their operators commute:

Proposition 8 Assume interaction locality and consider V and V ′ = V ∪ {k} inN .
If 3C(xik) and 3C(x j�) are two 3-cells in the common boundary of S(V ) and 4Ck (so
k = ki and � = k j ), then K (xik) commutes with K (x j�). As a consequence, every
admissible sequence unambiguously defines a product L(x).

Proof Since 3C(xik) ⊆ Hik ∩ ∂S(V ), and since gxik−1,3C(xik ),xik vanishes outside of
3C(xik), the consequence (16) of interaction locality implies that multiplication by
this g function can as well be carried out on ∂S(V ), i.e.,
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K (xik) K (x j�) = U 0
Hik

PHik

(
gxik−1,3C(xik ),xik ,i

)
UHik

H j�
PH j�

(
gx j�−1,3C(x j�),x j�, j

)
U

H j�

0

(51a)

= U 0
∂S(V ) P∂S(V )

(
gxik−1,3C(xik ),xik ,i

)
P∂S(V )

(
gx j�−1,3C(x j�),x j�, j

)
U ∂S(V )

0

(51b)

= U 0
∂S(V ) P∂S(V )

(
gxik−1,3C(xik ),xik ,i gx j�−1,3C(x j�),x j�, j

)
U ∂S(V )

0 . (51c)

Since multiplication of the two g functions is commutative, K (x j�) K (xik) yields the
same expression. �

Proposition 9 Assuming interaction locality, any two admissible sequences lead to
the same operator L(x).

Proof By Proposition 7, it suffices to consider two admissible sequences that differ
by an elementary deformation as in (49). By Proposition 5, the two 4-cells kn, kn+1
that get exchanged must be such that neither is a predecessor of the other; that is,
they do not have a 3-cell in common. Hence, for each of them the past boundary is a
subset of ∂S(Vn) with Vn = {k1, . . . , kn−1}. For the same reasons as in the proof of
Proposition 8, the K operators for any two flashes in 3-cells in the past boundaries of
4Ckn

and 4Ckn+1
commute (they are multiplication operators on a common spacelike

surface). Thus, the different operator orderings associated with the two admissible
sequences yield the same L(x). �

This completes the definition of L(x) and thus of D(x) as in (45) and of the
distribution of X as in (44). It remains to verify that P is a probability distribution.

4.2.3 Normalization

Proposition 10 Interaction locality implies that

∫

Mν

dx D(x) = I . (52)

As a consequence, G(·) is a POVM, and (44) defines a probability distribution for
every ψ0 ∈ H0 with ‖ψ0‖ = 1.

Proof Written out, (52) reads

1

τν

(∏

ik

∫

future(xik−1)

d4xik

)(∏

ik

e−|xik−xik−1|/τ
)

L(x)†L(x) = I (53)

with the abuse of notation that
∏

ik

∫
d4xik means, not a product, but repeated inte-

gration over all xik , with each integral extending up to the equal sign.
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By the coarea formula (32) and the normalization (33), it suffices to show that for
all sik > 0,

(∏

ik

∫

Hxik−1 (sik )

d3xik

)
L(x)†L(x) = I . (54)

While Fubini’s theorem allows us to exchange the order of integration, it must be
noted here that the domain for xik depends on xik−1, so the xik-integral must occur to
the right of the xik−1-integral. This limitation on the possible ordering of the integrals
must be kept in mind; note also that the order of integrals is not a priori related to
the order of factors in L(x).

Fix the sik and letHik := Hxik−1(sik). We split the multiple integral, corresponding
to the partition of each Hik into the 3Cik’s with ki = k, into a sum

∑

k11...k NnN

kik
i =k ∀ik

(∏

ik

∫

3Cikik

d3xik

)
L(x)†L(x) . (55)

Each summand is associated with a certain element of 4A ν , and different summands
with different elements of 4A ν .

As a preparation for the general procedure, let us outline the first step of the
induction. In each summand, consider the two innermost K factors of L(x)†L(x),
let them be K (x j�)

†K (x j�). We want to integrate them out using (29), resulting in a
factor P j�

3C jk j�
in the abbreviated notation

P j�
3Cik

:= U 0
Hiki

PHiki

(
1x j�∈3Cik

)
U

Hiki
0 (56)

(which depends only on the 3-cell rather than on Hiki by interaction locality). But
let us be slow and integrate out, at this step, x j� only if 3C jk j� lies on ∂4Cn (the

futuremost surface formed by 3-cells). Since k j�
j = �, and H j� must border on 4Cn ,

� = n j ; thus, there is no H j�+1, and therefore no obstacle to changing the order
of integration so that the rightmost integral is over x j�. That is, such an x j� can,
in fact, be integrated out. Since factors corresponding to different 3-cells on ∂4Cn

commute, we can integrate them all out. As a result, in each summand, there is no
integration any more over any 3-cell on ∂4Cn , but for each 3-cell on ∂4Cn involved
in a summand, there is a factor of the form (56). The induction step will be about
considering surfaces made up of 3-cells that lie further and further in the past, until
we are done with the pastmost surface ∂4C0N and all variables are integrated out.
Now we give the details.

Fix an admissible sequence (V1, . . . , Vr+1). We will consider the sequence back-
wards and count down the index n of Vn from r + 1 to 1. We write V c

n := 4A \ Vn

for the complement of Vn; since the corresponding space-time set S(V c
n ) = S(Vn)

c

is future complete, it is for every n �= r + 1 the future of some spacelike surface
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Hik
Σn

S(Outnik)

S(Innik)

Fig. 7 The sets In and Out for a particular hyperboloid Hik and �n . Some pieces of hyperbola are
drawn as straight lines. Some lines are drawn next to each other (rather than on top of each other)
for better visibility

�n := ∂S(V c
n ) = ∂S(Vn) = S(∂V c

n ) = S(∂Vn) . (57)

At each stage of the process, each summand stemming from (55) is related to ν
3-cells. After integrating out one variable, we call the associated 3-cell an out-cell,
while a 3-cell associated with a variable that has not yet been integrated out will be
called an in-cell. In each step n → n − 1 of the induction, we will operate on the
summands keeping their sum the same. LetB denote the set of abstract flashes, i.e.,
of all pairs (i, k):

B := {
(i, k) ∈ {1 . . . N } × N : 1 ≤ k ≤ ni

}
. (58)

The abstract 3-cells on Hik form the set

3Aik = {
(i, k) ∈ 3A : ki = k

}
. (59)

Moreover, we define the sets that will turn out to be the sets of all in-cells (out-cells,
respectively) by

Innik :=
{
(i, k) ∈ 3Aik : earlier than ∂Vn

}
, (60a)

Outnik :=
{
( j, �) ∈ ∂Vn : no later than 3Aik

}
. (60b)

They correspond to the space-time sets

S(Innik) = Hik ∩ (past(�n) \ �n) , S(Outnik) = �n ∩ past(Hik) . (61)

Together, they form the spacelike surface ∂
(
future(Hik) ∪ future(�n)

)
; see Fig. 7.

Induction hypothesis: The summands are labeled by the elements of

Mn :=
{
θ : B → 3A : ∀ik ∈ B : θ(ik) ∈ Innik ∪ Outnik

}
=

∏

ik

(Innik ∪ Outnik)

(62)
with

∏
the Cartesian product, and the summand labeled θ reads
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( ∏

ik∈B
θ(ik)∈Innik

∫

3Cθ(ik)

d3xik

)( ∏

ik∈B
θ(ik)∈Innik

K (xik)

)†( ∏

ik∈B
θ(ik)∈Outnik

Pik
3Cθ(ik)

)( ∏

ik∈B
θ(ik)∈Innik

K (xik)

)
, (63)

where the product over K (xik) is understood in the order from right to left in which
the 3-cells are crossed in the admissible sequence.

The form (63) of the summand labeled θ means, in particular, that the in-cells are
integrated over, and the out-cells appear only in the projections in the middle. The
order of the factors Pik

3Cθ(ik)
need not be specified: they commute pairwise because all

of the 3-cells 3Cθ(ik) lie on a common spacelike surface �n .
The anchor of the induction is the case n = r , in which Inrik = {(i, k) ∈ 3A :

ki = k} and Outrik = ∅, so Mr as in (62) corresponds to those (k11 . . . k NnN ) with
kik

i = k, and the summands agree with those of (55).
On the other end, for n = 2, we find that V2 = {0N }, �2 = ∂4C0N , In2ik = ∅, and

Out2ik contains exactly the 3-cells on�2. So the induction hypothesis, when proved,
will imply that no summands involve integrals any more, and the sum reads

∑

k11...k NnN ∈∂{0N }

∏

ik∈B
Pik

3Ckik
=

∏

ik∈B

( ∑

k∈∂{0N }
Pik

3Ck

)

︸ ︷︷ ︸
=I

= I , (64)

as needed for (54).
So it remains to carry out the induction step n → n − 1, which consists of two

parts. The first part deals with the projections in the middle of (63), the second with
integrating out some of the variables.

First part: Interaction locality in the form (18) implies that the projection to the
future boundary of a 4-cell can be “pulled across” the 4-cell, i.e., is equal to the
projection to its past boundary,

P j�
∂+4C = P j�

∂−4C , (65)

where ∂± denotes the future (past) boundary, which consists of one or more 3-cells,
and P j�

∂±4C equals the sum of the P j�
3C over all 3-cells 3C belonging to ∂±4C . The

relevant 4-cell 4C here is the one crossed by the admissible sequence between n − 1
and n, 4C = 4Ck with Vn = Vn−1 ∪ {k}. The future boundary of 4C consists of 3-cells
belonging to �n , the past boundary of 3-cells belonging to �n−1; in fact, the only
difference between �n and �n−1 is that the 3-cells belonging to the future boundary
of 4C are replaced by those belonging to the past boundary of 4C .

For every ik ∈ B,

either all or none of the 3-cells in ∂+4C belong toOutnik . (66)
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Indeed, either 4C ⊆ future(Hik) or 4C ⊆ past(Hik). In the former case, ∂+4C ⊆
future(Hik) \ Hik ; since Outnik lies in the past of Hik , none of the 3-cells in ∂+4C
belong to Outnik . In the latter case, ∂+4C ⊆ past(Hik); since all of the 3-cells in
∂+4C belong to �n , they all belong to Outnik , which proves (66).

Now define

Õutnik :=
{

(Outnik \ ∂+4C) ∪ ∂−4C if ∂+4C ⊆ Outnik

Outnik otherwise
(67)

and M̃n like Mn in (62) but with Outnik replaced by Õutnik .

Claim : The sum over θ ∈ Mnof (63) equals the sum over θ ∈ M̃n of (63)withOutnik replaced by Õutnik .

(68)

To see this, think of Mn as the rightmost expression of (62). We take the following
step successively for each j� ∈ B (in any ordering of B): We replace Outnj� in
(62) and (63) by Õutnj�; that is, a P factor appears in each summand for each
ik for which θ(ik) ∈ Outnik respectively θ(ik) ∈ Õutnik , depending on whether the
replacement step has already been done for ik. We check that each step leaves the
sum unchanged; in fact, for every fixed choice of θ(ik) for all ik �= j�, the sum
of the summand remains unchanged. Indeed, this sum is a sum over all θ( j�) ∈
Innj� ∪ Outnj�. The summands with θ( j�) ∈ Innj� ∪ Outnj� \ ∂+4C do not change.
By (66), the summands with θ( j�) ∈ Outnj� ∩ ∂+4C together are either 0 or can be
combined into one expression of the form (63) with P j�

3Cθ( j�)
replaced by P j�

∂+4C . By
(65), ∂+ can be replaced by ∂−, and by the same reasoning backwards, this equals
the sum over θ( j�) ∈ Õutnj� ∩ ∂−4C . Thus, each step leaves the sum unchanged,
and after all steps (for all j�), we have proved the claim (68).

At this point, we have achieved in particular that all P factors refer to 3-cells on
�n−1.

Second part: We now wish to integrate out all variables that vary over 3-cells
in �n−1. We can do this for each summand individually, so focus on a particular
θ̃ ∈ M̃n . The only 3-cells in �n−1 that were not included already in �n are those in
∂−4C , and the only ones that any variable xik ever gets integrated over are those in
Innik . In the given summand θ̃, there can be none or one or several variables xik for
which ∂−4C overlaps with Innik . If none, we leave the summand unchanged. If one
or more, we will treat them successively in an arbitrary order. So let x j� be one of
them. The leftmost factors in the

∏
K (xik) in (63) are those referring to 3-cells in

∂−4C ; by Proposition 8, these factors commute with each other, so we can assume
that K (x j�) is the leftmost one.

Now we want to make sure that the integral over x j� is the rightmost integral. We
can change the order of integration using Fubini’s theorem, provided the domains
of integration of the other integration variables do not depend on x j�. The variables
whose domain depends on x j� are x j�+1 and higher ones for particle j . Since these
domains all lie onH j�+1 or later, and thus in the future of x j�, they lie on �n or later,
so by (60b) and the induction hypothesis, all of these variables have already been
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integrated out in previous induction steps (Innj�+1 = ∅), and we can assume that the
x j� integral is the rightmost integral.

For carrying out the integral, we need that the space-time locations of the 3-cells
3C ˜θ(ik) in the factors Pik

3C ˜θ(ik)

do not depend on x j�. This follows if none of these 3-cells

lies in the strict (open) future of x j�. Now all of these 3-cells lie on �n−1, a spacelike
hypersurface containing x j�, and thus not in the strict future of x j�.

We also need that K (x j�) commutes with the P’s in the middle. That is the case
because the P’s are multiplication operators on their 3-cells and thus (by interaction
locality) on �n−1; likewise, K (x j�) is by its definition (50) a multiplication operator
on the 3-cell 3C(x j�) containing x j� (which remains the same 3-cell 3C := 3C ˜θ( j�)
during the integration over x j�) and thus (by interaction locality) a multiplication
operator on �n−1. Since all multiplication operators on a common spacelike surface
commute, we can pull K (x j�) to the left of all P’s, where it arrives next to K (x j�)

†.
Since none of the other factors (P’s and K ’s) in the integrand depends on x j�, they
can be pulled out of the x j� integral. By (29), the integral can be carried out to yield

∫

3C
d3x j� K (x jk)

†K (x jk) = P j�
3C . (69)

This factor joins the P factors, showing up in the correct position among all factors
in the remaining integrand (63). In particular, still all P factors refer to 3-cells on
�n−1. We repeat this operation of carrying out the integral for all integrals over
3-cells on ∂−4C . Afterwards, in this summand θ̃ the out-cells (with P factors) are
those in Õutnik together with those in ∂−4C , and thus exactly those in Outn−1,ik ; the
in-cells (with K factors) are those in Innik except for those on �n−1 or later, and thus
exactly those in Inn−1,ik . The summand has the form (63) with n replaced by n − 1,
and the index θ labeling the summands runs through Mn−1. We have thus proved
the induction hypothesis for n − 1, completed the induction step, and completed the
proof of Proposition 10. �

4.2.4 Definition of the Theory

We have defined the model in (44) for chosen numbers ni of flashes for each particle
i . If we want to think of this model as a theory of the universe, and compare it to our
empirical observations, we should take the limit ni → ∞ or choose ni very large.

In contrast to the non-interacting 2004 model, in the present model the marginal
distribution of the first ñi flashes for each particle i (i.e., the distribution after inte-
grating out the flashes after ñi ) is not given by the same formula (44), although it
is still given by some POVM. That is because the partition of the hyperboloids into
3-cells depends on the later flashes, and thus so does the procedure of cutting off the
tails of the Gaussians. As a consequence, for the 2004model we did not actually have
to specify the numbers ni , but now we have to; any choice of very large ni should
yield reasonable behavior of the theory, as well as the limit ni → ∞.
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5 Properties of the Model

1. Size of 3-cells. Since the tails of the Gaussian profile function get cut off at the
boundary of a 3-cell A, the width of the resulting profile function gy Ax could
be smaller than σ if the diameter of A is, which could have undesirable con-
sequences such as amplified empirical deviations of the model from standard
quantum mechanics. I have made a crude estimate of the typical diameter of the
3-cells for condensedmatter under everyday conditions and arrived at several mil-
limeters or larger, which is much larger than GRW’s suggested value of σ = 10−7

m and thus suggests that the deviations are not amplified. Put differently, the tails
are typically cut off at about 104 standard deviations, so the change is tiny. A
more careful study of this question would be of interest.
Matthias Lienert has made the interesting suggestion (personal communication)
that since the Gaussians get cut off anyway, maybe they can be dispensed with
altogether and replaced by a constant function (corresponding to the limit σ →
∞); at each collapse, the wave function would then be localized to the size of a
3-cell. An investigation of whether such a theory is viable would be of interest.

2. Stochastic evolution of the wave function. In order to define a theory with flash
ontology, it suffices to define the joint distribution of the flashes. But it is common
to think of collapse model in terms of a stochastically evolving wave function.
Such a wave function ψ� can be defined for the present model for every spacelike
surface� as follows. It should be related to the conditional probability distribution
of X , given the flashes up to �. To express this distribution, let I ⊆ B be an
arbitrary index set of ik’s (withB as in (58) the set of all ik’s), letI c := B \ I ,
and let XI be the collection of Xik with ik ∈ I ; likewise xI etc., so we can
write x = (xI , xI c). Then the conditional distribution of the flashes after �,
given that those before � were at xI ∈ past(�)I , is

P

(
XI c ∈ dxI c

∣∣∣∣XI c ∈ future(�)I
c
and XI = xI

)

= 1xI c ∈future(�)I
c

〈ψ0|D(x)|ψ0〉
〈ψ0|W�(xI )2|ψ0〉 dxI c

(70)

with positive operators

W�(xI ) =
(

G(dxI × future(�)I
c
)

dxI

)1/2

=
( ∫

future(�)I
c

dxI c D(x)

)1/2

. (71)

(The condition that Xik+1 ∈ future(Xik) restricts the relevant index sets I , but
this fact does not change the validity of (70).) We therefore define, given that the
flashes up to � were xI ,
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ψ� := U�
0 W�(xI )ψ0

‖W�(xI )ψ0‖ , (72)

in analogy to Eq. (25) of [24]. Considering a fixed pattern x of flashes and varying
�, this wave function changes abruptly whenever� crosses one of the flashes (as
I changes then). The conditional probability (70) can be expressed as

P = 1xI c ∈future(�)I
c

〈
ψ�

∣∣∣U�
0 W�(xI )−1D(x)W�(xI )−1U 0

�

∣∣∣ψ�

〉
dxI c . (73)

3. Non-interacting special case. If the given unitary hypersurface evolution U�′
� is

non-interacting, the situation simplifies as different particle variables x j in the
wave function can be evolved to different surfaces, and K (xik) commutes with
K (x j�) for j �= i . If we could replace the cut-off Gaussians gy Ax of (26) in the
definition (50) of the collapse by the original Gaussians g̃yx of (4), we would
obtain exactly the 2004 model. Thus, whenever it is the case that the 3-cells A
are typically much larger than the width σ of the Gaussians, then (with high
probability) the cutting off does not make a big difference as it concerns only
tiny tails of the Gaussian, and the 2004 model is a close approximation to the
non-interacting case of the present model.

4. Non-locality. The collapse model presented here is non-local while being fully
relativistic. In fact, it violates Bell’s inequality. The non-locality corresponds to
the fact that the joint distribution of two flashes is not a product even when the
flashes are spacelike separated.Already the 2004modelwas non-local, and further
aspects of this property were discussed in [23–26].

5. Microscopic parameter independence. This is the property of a theory that the
probability distribution of the local beables before any spacelike surface � does
not depend on the external fields after �. For example, microscopic parameter
independence is grossly violated in Bohmian mechanics (for � not belonging to
the preferred foliation). The model presented here does not satisfy microscopic
parameter independence exactly, but it does up to small deviations.
This is suggested by the following considerations. First, U�′

0 does not depend on
the external fields after � if both �0 and �′ lie in the past of �; by interaction
locality, a collapse operator K (xik) does not depend on the external fields after �

if 3C(xik) lies in the past of �. The space-time location of 3C(xik) (specifically,
where its boundaries are) depends on other x j�, but only on those before �. As a
by-product of the proof of Proposition 10, the marginal distribution of the flashes
in the past of ∂Vn for Vn ∈ N is given by the sum over θ ∈ Mn of the integrands
in (63), so if S(∂Vn) lies in the past of �, this distribution will not depend on
external fields after �. However, even if xik lies in the past of �, 3C(xik) need
not lie in the past of �. Yet, it seems that the significant support of gxik−1,3C(xik ),xik

reaches no further than about σ/c ≈ 10−15 s into the future of �.
6. No signaling. This property means the impossibility for agents to transmit mes-

sages faster than light; it should follow frommicroscopic parameter independence,
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as the message to be sent could be modeled as an external field and the message
received would have to be some (coarse-grained) function of the local beables.

7. Non-relativistic limit. In the non-relativistic limit, the presentmodel reduces to the
non-relativistic GRWmodel, provided that the unitary evolution reduces to a non-
relativistic unitary evolution. To see this, note that in the limit the hyperboloids
become horizontal 3-planes, while the intersection between two hyperboloids
escapes to infinity, so that every 3-cell becomes a full horizontal 3-plane and every
4-cell a layer between two such planes. Thus, cutting off the Gaussians becomes
irrelevant, there is only one admissible sequence, K is just theHeisenberg-evolved
multiplication by a Gaussian, and it becomes visible that the joint distribution of
the flashes approaches that of the non-relativistic GRW model.
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Non-Markov Processes in Quantum
Theory

Bassano Vacchini

Abstract The study of quantumdynamics featuringmemory effects has always been
a topic of interest within the theory of open quantum system. The latter is concerned
with providing useful conceptual and theoretical tools for the description of the
reduced dynamics of a system interacting with an external environment. Definitions
of non-Markovian processes have been introduced trying to capture the notion of
memory effect by studying features of the quantum dynamical map providing the
evolution of the system states, or changes in the distinguishability of the system
states themselves. We introduce basic notions in the framework of open quantum
systems. We stress in particular analogies and differences with models used for
introducing modifications of quantum mechanics which should help in dealing with
the measurement problem. We further discuss recent developments in the treatment
of non-Markovian processes and their role in consideringmore general modifications
of quantum mechanics.

1 Introduction

Quantum theorywas born as a newmechanics, capable of providing the correct quan-
titative assessment of phenomena which could not find their explanation within the
usual framework of classical mechanics. About a century after its introduction, many
different facets and complementary presentations of the theory have beenworked out.
It has been put into evidence in particular that quantum theory indeed provides a new
probabilistic framework for the prediction of outcomes of statistical experiments.
It is therefore not only a “quantum” version of classical mechanics, it is indeed a
“quantum” version of classical probability theory, containing into itself an often non
trivial classical limit [1–3]. One of the most intriguing and delicate aspects of quan-
tum theory is its irreducibly probabilistic structure, conflicting with the deterministic
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description we are accustomed to, as well as our everyday experience of the real-
ization of definite events. From a classical viewpoint a probabilistic analysis is only
necessary if not all degrees of freedom are under control or can be taken into account
in detail. Not so for quantum theory. This state of affairs has led among others to the
so-called “measurement problem”. It refers to the difficulty in reconciling the classi-
cal description for macroscopic objects and the laws of quantum theory, predicting a
statistical distribution rather than definite events [4]. On turn, this problem has led to
consider alternatives to quantum theory, complyingwith its successes but leading to a
different behavior for the prediction of events, effectively suppressing superposition
of macroscopic objects. Among these theories one of the most renowned classes is
given by collapse models, also known as dynamical reduction models [5, 6], arisen
from the seminal paper [7]. Their distinctive trait is a stochastic non-linear modifi-
cation of the Schrödinger equation, which on top of the standard evolution allows
for the introduction of a collapse or localization mechanism. This mechanism, once
accepted, avoids the measurement problem. Importantly, this mechanism has to be
implemented at the level of the wavefunction, so as to allow for the suppression
of superpositions. Nevertheless, at the level of experimental observations, it usually
cannot be distinguished from other effects leading to a vanishing contribution of
coherences.

The theory of open quantum systems is focused on the description of the reduced
dynamics of a system interacting with other degrees of freedom, typically called
environment, which are not described in detail [9, 10]. The environment therefore
brings in an additional level of randomicity in the dynamics, on top of the unavoidable
statistical aspect brought in by quantum theory. In this framework, the suppression of
superposition states in a given basis is indeed predicted from a class of models known
as decoherence models [8]. It thus appears that such models, bringing in another
element of probabilistic description, typically provide the same average effect as
dynamical reduction models, aimed at overcoming the inherent statistical structure
of any quantum dynamics. In this respect, the two fields of dynamical reduction
models and open quantum systems share some underlying mathematical structure.
We will briefly address recent advancements in open quantum system having this
perspective inmind. An important caveat to bementioned is the fact that decoherence
models do not provide a solution of the measurement problem in the sense addressed
by collapse models: the suppression of macroscopic superpositions only takes place
in the average and a whole statistical distribution of outcomes is predicted [11].

The contribution is organized as follows. In Sect. 2 we briefly outline the open
quantum system viewpoint and address the term quantum process as used in the
physical literature. The description of decoherence effects and their relationship
to specific collapse models is worked out in Sect. 3. Finally Sect. 4 is devoted to
introduce the notion of non-Markovian dynamics for an open system, and its influence
on the elaboration of dynamical reduction models.
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USE(t)

System Environment

Fig. 1 Illustration of an open system interacting with an environment via a unitary couplingUSE (t)

2 Open Systems and Quantum Processes

For the case in which a quantum system is not isolated from other quantum systems,
the latter should be taken into account in the description of its dynamics. If the
system and the other degrees of freedom, collectively named environment, do not
share correlations at the initial time, one candescribe the evolution of the systemalone
by introducing a collection of completely positive trace preserving maps {Φ(t)}t∈R+ .
They determine the statistics of any local observation once the initial state of the
system ρS(0) has been specified according to the formula

〈AS〉t = Tr{ASΦ(t)[ρS(0)]},

where AS denotes a system observable. The collection of maps {Φ(t)}t∈R+ describes
what is usually called a quantum process. The term process is here used in a loose
sense, in analogy with the classical situation. It hints at the presence of an irre-
ducible randomicity, here corresponding to the environmental degrees of freedom
not accessible or described in detail, but affecting the system dynamics due to a
unitary coupling with the environment USE (t) as drawn in Fig. 1. If system and
environment interaction can be neglected, and only in this case, Φ(t) is a unitary
transformation, implying in particular a group composition law. In all other cases
reversibility is lost, and the general mathematical structure of this collection of maps
is not known. Some partial results are however available. A most famous and rel-
evant class of reduced dynamics is obtained if we ask Φ(t) to obey a semigroup
composition law forward in time. For this case we have Φ(t) = exp(tL), with L in
Lindblad form [9], that is

L[ρS(t)] = − i

�
[H, ρS(t)] +

∑

k

λk

[
AkρS(t)A

†
k − 1

2
{A†

k Ak, ρS(t)}
]

,

where {Ak} and H denote system operators, with H an effective self-adjoint Hamil-
tonian, and λk are positive rates. A dynamics of this kind has always been called
Markovian, since it arose as quantum counterpart of classicalMarkovian semigroups.
The implicit idea is that the stochasticity in the dynamics arising due to interaction
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with the environment does not lead to effects that can be termed memory, making
reference to previous history or states of the system. This feature is immediately lost
even only considering dynamics which can be obtained as randommixture of unitary
evolutions, so-called random unitary dynamics [12–15]. The latter might arise also as
a consequence of classical environment noise and can be experimentally engineered
[16, 17]. The operators {Ak} describe microscopic interaction events, e.g. random
localization or momentum transfer events for the case of decoherence as discussed
in Sect. 3.

3 Events and Decoherence

Dynamical reduction models and open quantum system theory share a common root
in the treatment of measurement in quantummechanics. The description of measure-
ment deals with a description of the outcomes of statistical experiments in which the
interaction with the measurement apparatus is taken into account. Indeed, the first
seminal contributions to open quantum systems were intimately connected with the
description of measurement processes and its relevance for the foundations of quan-
tum mechanics [18–20]. They put into evidence the relevance of the mathematical
notion of complete positivity. Not by chance the original GRW paper, which intro-
duced the first collapse model, was built upon work aimed at the quantum description
of continuous measurement in time [21, 22], and started the treatment from a master
equation describing decoherence in position [23].

To better work out this connection, let us consider in more detail how a collapse
model can describe in the average a decoherence effect and how a microscopic
description of decoherence can be related to a notion of event. In this spirit we
briefly recall the formulation of the GRW model in the formulation via stochastic
differential equations [5, 24]

d|ψ(t)〉 = − i

�
Ĥ0|ψ(t)〉dt +

∫

R

dy

(
L(y, x̂)

‖L(y, x̂)|ψ(t)〉‖ − 1

)
|ψ(t)〉dN (y, t). (1)

Here ψ(t) is the system’s wavefunction, Ĥ0 denotes the Hamiltonian appearing in
the standard Schrödinger equation and the stochastic modification is determined
by the collection of operators {L(y, x̂)}y∈R, with x̂ the standard position operator,
and the family of classical stochastic processes {N (y, t)}y∈R. Note in particular that
this modification is non-linear in ψ(t). In order to obtain suppression of spatial
superposition of states, the L operators have to act as localization operators and to
recover the original GRW model must be of the form

L(y, x̂) = 1
4
√

πrc
e
− (y−x̂)2

2r2c . (2)
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The stochastic modification depends on the field of independent processes
{N (y, t)}y∈R such that N (y, t)dy is the counting process giving the number of jumps
taking place at time t in the space interval from y to y + dy. The collection of count-
ing processes satisfies dN (x, t)dN (y, t) = δ(x − y)dN (y, t), with rates given by

E[dN (y, t)] = λ‖L(y, x̂)|ψ(t)〉‖2dt,

where E[·] denotes the stochastic average. The phenomenological parameters λ and
rc determine intensity and localization strength of the random jumps inducing a
dynamical localization in position of the system. Averaging over the realization of
the processes one obtains the state determining the statistics of observation on the
system, namely

ρ(t) = E[|ψ(t)〉〈ψ(t)|],

which obeys the master equation

d

dt
ρ(t) = −λ

[
ρ(t) −

∫
dyL(y, x̂)ρ(t)L(y, x̂)

]
(3)

predicting a reduction of the off-diagonal matrix elements in the position represen-
tation according to

〈x |ρ(t)|y〉 = exp

(
−λt

[
1 −

∫
dzL(z, x)L(z, y)

])
〈x |ρ(0)|y〉. (4)

The obtained master Eq. (3) is in standard Lindblad form [9], describes decoherence
in position according to Eq. (4), and in particular is characterised by translational
invariance. Building on this aspect one realizes that it can be written in an explicit
translationally covariant form [25–27] as follows

d

dt
ρ(t) = −λ

[
ρ(t) −

∫
dq L̃(q)e

i
�
qx̂ρ(t)e− i

�
qx̂

]
(5)

with L̃(q) Fourier transform of the function L2(y, 0), that is again aGaussianweight.
It thus appears that the dynamics that can be observed as a consequence of the
localization mechanism, described at the level of trajectories of the wavefunction in
Hilbert space by the stochastic differential equation Eq. (1), is the same that would
arise as a consequence of interaction of the system with an external environment
whose effect can be described in terms of localisation events as in Eq. (3) or in terms

of momentum transfers described by the collection of unitaries
{
e

i
�
qx̂

}

q∈R
as in

Eq. (5). This viewpoint, connecting the open systembased description of decoherence
and the measurement based viewpoint of collapse models, implies in particular that
the natural benchmark in the assessment of possible modifications of the quantum
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mechanical predictions due to a collapse mechanism is the estimate of possible
decoherence effects affecting the considered dynamics. Indeed, this is one of the
main difficulties in looking for experimental signatures of collapse mechanisms [6].
On the other hand, awareness of this relationship has opened the way to consider
variants of dynamical reduction models. In particular, it has led to overcome an
important intrinsic limitation of models such as Eq. (1), which predict an infinite
growth of the system energy [24, 28]. A further natural extension of dynamical
reduction models arising from analogy and differences shared with open quantum
system models is the inclusion of memory effects [29–33], in view of a definition of
non-Markovian dynamics as discussed in Sect. 4.

4 Non-Markovian Processes

In mentioning some of the basic tenets and results of the theory of open quantum
systems, we have put into evidence the notion of quantum process as used and under-
stood in the physical literature. In particular, the time evolutions arising as solutions
of master equations in Lindblad form are typically termed quantum Markovian pro-
cesses, since they provide the natural quantum counterpart of classical semigroup
evolutions, arising in connection with homogeneous in time Markovian processes.
A next natural step in this respect is considering time evolutions which can provide
a quantum realization of a non-Markovian process. Given the looser definition of
process considered in the quantum framework, as a collection of time dependent
completely positive trace preserving maps describing a continuous quantum dynam-
ics, one might consider a suitable definition of non-Markovian quantum process
within this very same framework of dynamical maps. Indeed, providing a notion of
non-Markovian quantum process in the same spirit as in the classical case, which
gives an exact defintion of Markovian process in terms of conditions on the infinite
hierarchy of conditional probability densities for the process, appears to be a very
difficult task. Already from a conceptual point of view the situation does not appear
to be neatly defined, since speaking about values of an observable at a given time
calls for ameasurement procedure which affects the subsequent values to be assumed
by the quantity [34]. On the contrary, focusing on the collection of completely pos-
itive trace preserving maps giving the reduced dynamics has allowed to introduce
clearcut definitions of Markovian, and in a complementary way non-Markovian,
quantum process. Actually, there have been various proposals in this direction. We
will here only focus on one of them, based on the behavior of the distinguishability
of states in time, which is in direct relationship with a notion of divisibility of the
time evolution maps. For more details and a complete treatment we refer the reader
to recent reviews [35–38].

The basic insight can be summarized as follows. By interacting with the envi-
ronmental degrees of freedom the system gets correlated with the environment and
possibly leads to a change in time of the reduced state of the environment itself.
As a consequence of the dynamics therefore, the capability of distinguishing two
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different initial system states, by performing measurements on the system degrees of
freedom only, changes in time. Indeed, taking the partial trace necessary to define the
reduced system state, which is all that is necessary in order to provide the statistics
of measurements on the system, the whole information about correlations is no more
available. To exploit this fact one can introduce a suitable quantifier of the distin-
guishability between states, such as the trace distance, given by the trace norm of the
difference of the states

D(ρ1
S(t), ρ

2
S(t)) = 1

2
‖ρ1

S(t) − ρ2
S(t)‖1 (6)

and consider its behavior in time. Being a contraction under the action of completely
positive trace preserving transformations, the trace distance always diminishes with
respect to its initial value, that is

D(ρ1
S(t), ρ

2
S(t)) � D(ρ1

S(0), ρ
2
S(0)).

In particular for the semigroup case, considered in Sect. 2 for the case of a quantum
Markovian process, due to the composition law one has a monotonous reduction of
the distance among states with time. In such a situation the distance between states,
and therefore their distinguishability [39], gets smaller and smaller with elapsing
time. The failure of this monotic decreasing behavior for at least a pair of possible
initial states has been taken as indication of non-Markovian dynamics in the seminal
paper [40]. Indeed, it amounts to a revival in the distinguishability between the states
that can only arise as a consequence of previously established correlations with
the environment or changes in the environmental state that affect the subsequent
reduced system dynamics. This fact is schematically drawn in Fig. 2. The validity of
this interpretation is substantiated by the inequality [41–43].

D(ρ1
S(t), ρ

2
S(t)) − D(ρ1

S(s), ρ
2
S(s)) � D(ρ1

SE (s), ρ1
S(s) ⊗ ρ1

E (s)) (7)

+D(ρ2
SE (s), ρ2

S(s) ⊗ ρ2
E (s))

+D(ρ1
E (s), ρ2

E (s)),

where it is assumed that t � s. The term at the lhs when positive provides a signature
of non-Markovianity, so that the positivity of the rhs is a precondition for non-
Markovianity, to be traced back to the effects mentioned above: correlations and
influence of the system on the environment. While the notions of distinguishability,
contractivity of the used distinguishability quantifier upon the action of a quantum
transformation, and connection of the distinguishability revivals to the imprint of the
system dynamics left in correlations or environment, provide the basic traits of this
approach to the description of memory effects in quantum mechanics, many more
subtle issues are involved in the definition of this framework. Importantly, there is a
stringent mathematical connection between this viewpoint and divisibility properties
of the time evolution, corresponding to the fact that the evolution over a finite time
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USE(t)
M

M

M
NM

NM
System Environment

Fig. 2 Open system interacting with an environment via a unitary coupling USE (t). Markovian
effects (M) are depicted as an information flow from system to environment, while an information
flow from environment to system (NM) is identified with memory effects

can always be split into evolutions over shorter times, each described by a proper
quantum transformation [44–46].

Dynamics allowing for non-Markovian effects have also been considered in the
above-mentioned framework of a decoherence dynamics driven by random events
[47, 48], as well as in the introduction of more general dynamical reduction models
[31, 49]. While in the context of decoherence allowing for non-Markovian dynamics
is a way to consider more general and accurate description of the reduced dynamics,
within the framework of dynamical reduction models non-Markovian models lead to
possibly more stringent exclusion regions of the parameter values which characterise
the model.

5 Conclusions and Outlook

In recent times a lot of work in the field of open quantum systems has been devoted to
characterization and study of non-Markovian dynamics. This research has involved
in the first instance the very definition and clarification of what can be meant as
quantum dynamics featuring memory effects. It has further addressed the possible
relevance of non-Markovian dynamics in the description of the reduced dynamics of
non isolated quantum systems as well as related fields. In this contribution we have
recalled in particular the relationship between the description of decoherence in
open quantum systems and modifications of quantum mechanics such as dynamical
reduction models introduced for the sake of better grasping the so-called quantum
measurement problem. We have briefly discussed a natural physical interpretation
of non-Markovian dynamics as related to information exchange between system and
environment. We have further pointed to the use of the formalism of non-Markovian
dynamics to consider more general collapse model which might help in improving
the known bounds on the parameters characterizing the possible deviations from
standard quantum mechanics. The relevance of the classification of non-Markovian
dynamics itself as well as the role of memory effects in collapse mechanisms remain
two open questions that will surely involve future research.
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Eight Oxford Questions: Quantum
Mechanics Under a New Light

N. Ares, A. N. Pearson, and G. A. D. Briggs

Abstract Conceptual and experimental advances are opening up possibilities for
addressing new questions in quantum theory. What is changing is the potential for
relating conceptual and theoretical developments to foreseeable experimental tests.
It is becoming feasible to rule out certain interpretations, maybe even to look for new
ones, as well as addressing the various open questions in quantum mechanics, such
as the role of gravity. We set out eight questions as a manifesto for future study and
research.

1 Background

Apart from violations of inequalities of the type of Bell’s, which have been imple-
mented to stunning precision [1–9], until recently it was, for the most part, doubted
that experiments could ever discriminate between different variants and interpreta-
tions of quantum theory (QT). However, we now believe that avenues for such exper-
imental tests are opening up. The steady improvement of experimental techniques
[10, 11] for manipulating quantum systems might even allow us now to explore the
post-quantum territory.

Fundamentally different theories of quantum reality, such as Everettian QT [12,
13], collapse-variants of QT [14–18], the pilot-wave theory [19–21] and Quantum
Bayesianism [22], disagree on crucial issues like locality, reversibility, universality,
completeness and determinism. For each variant there are different interpretations
for entities appearing in the theory—for instance, concerning the reality of the wave
function (whichmotivated the so-called ontologicalmodels framework [23]). Itmight
be argued that since the empirically accessible part of quantum theory is the same
for different interpretations/variants of QT, we should not worry about the above
differences, but the key point is that differences may become testable in the near
future.
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Looking for post quantum theories, a good place to start would be where grav-
itational effects are important. The problem of integrating general relativity (GR)
with QT remains open. Loop quantum gravity [24] and string theory [25] are the two
pre-eminent approaches that have been taken to studying such issues. GR and QT—
the best available fundamental theories in their own domains of applicability—clash
with one another at the fundamental level. Different quantum physical realities, even
if empirically equivalent, may suggest different ways of going about reconciling QT
with GR, of searching for the successor of QT, and of designing new experiments
for QT. For example, a local, deterministic theory might be easier to reconcile with
GR than a non-local, stochastic one.

To help make progress with such deep, long-unsolved problems, it is useful to
find some specific key questions which could be addressed in the shorter term, rather
than simply revisiting a familiar cycle of arguments which have now been around
for decades. Fresh pieces of evidence are of the essence. We therefore ask where
one should look for that evidence, and what kinds of new experimental (and theo-
retical) tools are needed to look for it? Although the realisation of experiments that
would shine light on some of the long-standing problems will be challenging, the
mere exercise of trying to pose the appropriate questions stimulates the intellectual
environment and may hopefully create a fertile territory for scientific breakthroughs.
This was the fundamental motivation for the questions which follow, which we
have collected during a conference on Experimental Tests of Quantum Reality. This
conference followed a conference on Quantum Physics and the Nature of Reality
that led to The Oxford Questions on the foundations of quantum physics [26].

These new questions aim for a productive interplay between theory and experi-
ment. Our questions reinforce the conviction that experimental tests are of the essence
in discerning which foundational theories to accept and which to reject. We expect
that the interplay between experimental and theoretical tools will in turn lead to the
development of new ideas. The questions are charted in Fig. 1. The questions pertain
to two territories: one, within QT and the other, post-QT, and some overlap between
them.

2 The Questions

1. Is it possible to devise an experiment that might allow one to falsify one of
the interpretations or variants of QT?

The quantum realities described by the variants of QT show profound differences
from one another. For example, Everettian quantum theory (EQT) is universal
[13], deterministic and reversible, and non-probabilistic, in that it does not have the
Born Rule axiom. Moreover, the theory is deemed to be local by some [27], and
non-local by others [28].
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Fig. 1 The questions relate to two territories: within QT and post QT, with questions 1, 3 and 6
having bearings both within and post QT. Arrows indicate links between questions. (I) highlights
the link between certain interpretations of QT being disproved and amore radical failure of quantum
theory. It also links these questionswith the possibility of advancement of our understanding enabled
by the use of quantum technologies to look beyond our current formulation of QT. (II) brings out the
question whether at a certain level of macroscopicity QT will fail and give way to classical physics.
(III) shows that experiments on the early conditions of the universe might point to a breakdown
of QT. (IV) links questions 4 and 5: the development of a quantum computer will allow for new
tests of QT looking beyond the benchmark of classical physics. (V) draws on questions that are
raised about the initial conditions of the universe, specifically with regards to measurement, when
considering causality and agency

Collapse variants of QT (CQT) are stochastic and prescribe that there be an
irreversible evolution of the wave function (the collapse), whenever a measurement
is completed. EQT implies the existence of the Multiverse, where the probabilistic
predictions of the Born Rule are recovered via the decision-theoretic approach to
probability [13, 29] (there is an ongoing debate in regard to that approach, see e.g.
Ref. [30] for a critique). According to CQT, there is instead a single, irreversibly
(although this is challenged in Ref. [31]) and stochastically evolving universe.

Bohmian mechanics is deterministic, non-local and avails itself of an additional
equation of motion [32] but it is limited in that it has not fully been extended to
relativistic quantum field theories of the Standard Model.
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Other relational interpretations of QT such asQBism [33] andContexts, Systems
and Modalities [34, 35] redefine what is meant by/how one assigns probabilities
and how physical properties are attributed to a system. For an overview of how these
different interpretations compare to each other see Table 1. We have not included
interpretations which may be from distinguished thinkers in the field but which have
not been widely taken up by others, such as cellular automata and superdeterminism
[36, 37].

Despite being so remarkably different, it is usually thought that these interpreta-
tions cannot be told apart bymeans of experimental tests. However, new technologies
might unlock the potential to do so. A thought experiment, originally suggested by
Deutsch [38], can discriminate collapse variants (CQT) from Everettian quantum
theory (EQT). While EQT prescribes a universal reversible unitary evolution, CQT
requires an irreversible change in the descriptor of the physical state, i.e. the wave
function collapse. This leads to empirically testable different predictions, provided
anobserver canundergoacoherentunitary evolution.Wecandistinguishbetween
the question whether this is conceptually self-consistent, and the question whether in
practice a wave function for such an observer could be determined. Similar consid-
erations apply to QBism in so far as it depends on assumptions about the observer,
such as whether a belief requires consciousness. Since there is even less consensus

Table 1 An overview and comparison of the variants of QT mentioned in the text

Everettian quantum theory Universal, deterministic and
reversible. Debateable whether
local [27] or non-local [41].
The wave function is ontic

Everett [12] and Wallace [13]

Measurement collapse
variants of quantum theory

Non-universal, stochastic,
irreversible, non-local and
violates energy conservation.
The wave function is epistemic

Ghirardi et al. [14–16] and
Bassi et al. [17, 18]

Dynamical collapse
variants of quantum theory

Universal, stochastic,
irreversible, non-local and
violates energy conservation.
The wave function is ontic

Ghirardi et al. [14–16] and
Bassi et al. [17, 18]

Pilot Wave Mechanics Universal, deterministic,
reversible and non-local.
It is proposed that the wave
function is ontic, either (quasi)
material or nomological

Dürr et al. [19], Bricmont [20],
Norsen [21], Dürr et al. [42]

QBism Piece-wise universal (there’s
nothing, from one’s own
perspective, with the exception
of one’s own experiences
which QT does not apply to)
and local.
The wave function is doxastic

Fuchs et al. [33]
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about consciousness than about interpretations of quantum theory [39, 40], we shall
not follow that path.

Deutsch’s thought experiment can be described schematically as follows: a spin
½ particle is prepared in an eigenstate |↑〉 of, say, the z-component of the spin.
This is an equally weighted superposition of the eigenstates |0〉 and |1〉 of the x-
component of the spin, X. An automaton is then coupled with the particle so that in
the EQT interpretation it would undergo a unitary evolution that corresponds
to its measuring the observable X. The automaton is programmed so that once the
measurement is complete, it writes on a piece of paper that themeasurement is indeed
complete and that it sees a definite outcome, without writing down which value it
sees. According to CQT, the particle and the automaton’s register by this point have
undergone an irreversible collapse, ending up in either the pure state |00〉 or the pure
state |11〉, with probability ½ each. In the case of EQT, the composite system of
the automaton and the spin is now in an equally weighted superposition of |00〉 and
|11〉: the spin and the automaton are entangled. Then one applies the time-reversal
of the unitary transformation that implemented the reversible measurement of the
automaton on the spin—acting on the spin and the automaton’s register only, but not
on the piece of paper; finally, the z-component of the spin is measured. In the case
of CQT, the prediction is that the outcome ‘up’ or ‘down’ is observed, each one with
probability ½. According to EQT, since the above was an interference experiment,
the outcome will be invariably |↑〉. The fundamental irreversibility of CQT therefore
makes the difference, and this difference can be empirically tested in this scenario.

This experiment touches on several of the problems mentioned below—chiefly,
macroscopicity (see Q3) and the role of the observer. Implementing such an exper-
iment might require technology beyond current capabilities; but understanding what
technologies would be needed, and which kinds of approximations to that experi-
ment could be currently conceived is a productive line of enquiry. Tests of CQT are
discussed in more detail in Q2.

Another interesting line of experimental tests are non-local hidden variable
‘super-deterministic’ theories, as proposed by Hossenfelder [43]. She proposes
searching for evidence for correlations generated by non-local hidden variables via a
time-resolved single-photon double-slit experiment and a Stern-Gerlach type exper-
iment in a spatial loop, at low temperature and with minimal sources of noise. This
should probe regimes where the corrections to quantum theory predicted by those
hidden-variable models become relevant.

Concerning the reality of thewave function, the problem is whether the quantum
wave function encodes our knowledge of a quantum system (the so-called ‘psi-
epistemic’ view), or whether it describes something objective about reality, irrespec-
tive of us (the ‘psi-ontic’ view). New, general no-go theorems provide the theoretical
inspiration for experimentally testing the difference between ontic and epistemic
views of the wave function: the Pusey-Barrett-Rudolph (PBR) [44] theorem, further
advanced in the Barrett-Cavalcanti-Lal-Maroney (BCLM) [45], and Branciard theo-
rems [46]. These theorems have started to be tested experimentally with the
results all favouring the psi-ontic view [47–50]. In addition, recent experimental
work by S. Simmons and co-authors (private communication) ruled out ‘maximally
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psi-epistemic’models using a single electron-nuclear two-spin system in isotopically
purified silicon, achieving the low degree of errors required by the BCLM test. For
an overview of testable theorems and their experimental status see Table 2.

Table 2 Theorems used to test aspects of QT, with their underlying postulates and experiments
performed to date

Theorem Postulates Experimental status

Bell Correlations are locally
explicable and no causal
influence can travel faster than
light [51]a

The inequality has been violated
[1–5]

Leggett-Garg (Bell type
inequality for time)

Macrorealism per se—A
macroscopic object, which has
available to it two or more
macroscopically distinct states,
is at any given time in a definite
one of those states.
Noninvasive measurability—It
is possible in principle to
determine which of these states
the system is in without any
effect on the state itself, or on the
subsequent system dynamics
[52]

The inequality has been violated
in microscopic systems leading
to the conclusion that “All
accurate descriptions of systems
of this type must include a
concept similar to that of
quantum superposition, and/or
an exotic notion of measurement
similar to that of wavefunction
collapse” [7–9] but tests using a
macroscopic system have yet to
be carried out. It should be
noted that this conclusion has
been debated philosophically
[53]

Bell-Kochen-Specker No non-contextual hidden
variable theorem (i.e. one in
which the values of the physical
observables are the same
whatever the experimental
context in which they appear)
can reproduce the predictions of
quantum theory [54, 55]

The inequality has been violated
in microscopic systems showing
that the observed phenomena
cannot be described by
non-contextual models [56, 57].
In addition it has been shown
experimentally that there is a
monogamy relation between the
violation of either a Bell
inequality or a
Bell-Kochen-Specker inequality
[58]

PBR/BCLM/Branciard The quantum state is not purely
epistemic (informational)
[44–46]

Bounds have been put on
maximally psi-epistemic models
but further tests are needed to
rule out partially psi-epistemic
models [47–50]

aIn Bell’s original 1964 treatment [51] the existence and determinism of underlying hidden variables
was derived from the conjunction of locality with the existence of perfect (anti-)correlations for
parallel measurements on a singlet state. In later discussions (e.g. 1976, 1981, 1990 [175]) he
relaxed the perfect correlations assumption, whilst retaining the idea that correlations ought to be
explicable, even if only probabilistically
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2. Under which conditions might quantum theory fail?

The continuous spontaneous localisation (CSL) model [14–16] is one of many
theoretical efforts to explain wave function collapse [17, 18]. In this model, the wave
function collapses spontaneously, and the collapse rate is proportional to the mass,
hence certain superposition states of macroscopic objects (e.g. involving a localised
mass being in a superposition of significantly different positions) are very difficult
to observe.

In order to distinguish the effects of CSL from decoherence stimulated by inter-
actions with the environment, a system in which noise induced by the environment
is minimised is required. Potential phenomena due to CSL include:

1. the decoherence of a superposition state [59–61],
2. the linewidth broadening [62] and heating of a mechanical oscillator (i.e. a

violation of energy conservation due to the collapse of the wave function)
[63–65],

3. diffusion in free space [66, 67].

It might be that the most practical way to test for CSL is to look for thermally
induced delocalisation due to the collapse process. A detailed analysis has been
evaluated for an experiment to detect the heating due to CSL of a trapped nanosphere
[68] and also of a charged macroscopic object in an ion trap [69]. Of all the possible
causes of unwanted decoherence, the dominant ones are likely to be mechanical and
electrical noise and molecular collisions. The calculations suggest that although the
practical demands exceed what has already been achieved, the experiment should
be within reach. Using a high quality factor cantilever, a nonthermal force noise of
unknown origin which could be due to the CSL heating rate predicted by Adler has
been recently detected [65].

Trying to create macroscopic quantum superpositions is another way of testing
the ground where quantum mechanics might fail. See Q3 for a discussion on
macroscopicity.

To perform laboratory-scale experiments of QT where gravity would be impor-
tant, the challenge is to engineer quantum states of mechanical systems in which
gravitational effectsmust be taken into account to describe the dynamics [70]. In such
scenarios, QMmay need to be modified in a yet unknown way in order to account for
gravitational effects such as decoherence and gravitational self-interaction [71–74],
or on the other hand the gravitational force may be quantum coherent [75, 76].

In a quantum theory of gravity, quantum fluctuations in the underlying field
that mediates the gravitational interaction between matter degrees of freedom may
appear as an additional source of noise [77]. Such effects might be thought to be
restricted to the Planck scale and thus seem unlikely to arise in table-top experi-
ments. Surprisingly, proposals of Penrose [72] and Diosi [73], and later by Kafri
et al. [78], amongst others [79–82], would indicate that this is not the case and that,
given sufficient quantum control over macroscopic mechanical degrees of freedom,
gravitational decoherence might be revealed. Like CSL, the most accessible way to
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test for gravitational decoherence might be through sensitive detection of heating
effects. Optomechanical systems might be a good platform for this goal, enabling us
to measure minuscule heating rates [83].

3. Is there a universal measure of macroscopicity for quantum theory?

Leggett used the term ‘macroscopic’ to—amongst other things—articulate how,
in our ‘us-sized’ lives, we experience events and outcomes that are definite and
predictable in a way that seems quite different from the mystery of quantum super-
position [84]. He questioned whether (whereas Bohr assumed) there was some
different kind of reality at the macroscopic level from that which is found at the
quantum level, and he sought to devise a rigorous test of this proposition in the form
of experimentally measureable inequalities. What his inequalities actually put under
test is, however, still under debate [53].

There could bemany dimensions ofmacroscopicity. Does it lie in a greater number
of atoms or photons, in a greater mass or spatial size, in greater complexity (if so how
should this be quantified?), or in a greater number of dimensions in Hilbert space?
Does it perhaps lie at the threshold where life begins [85]? Another quantifiable
possibility may be that it depends on limits to the linearity of the system. If so,
can we quantify the degree of non-linearity of dynamical evolution that would be
required to prevent macroscopic superpositions or entanglement occurring, and
can we characterise the kinds of contexts in which this limit would arise [86]? Are
they for example related to the issue of thermalisation and heat baths that interact
with quantum systems [87]? Each of these dimensions of macroscopicity needs to
be explored in order to extend the tests of macroscopic realism.

The task of defining macroscopicity measures within quantum theory is
confounded by a fundamental problem of an ad hoc selection of distinguishable
observables. As Nimmrichter and Hornberger put it, ‘the more macroscopic [some-
thing is] the better its experimental demonstration allows one to rule out even a
minimal modification of quantum mechanics, which would predict a failure of the
superposition principle on the macroscale’ [88]. As that paper showed, the question
ofmacroscopicity applies asmuch to collapse theories as toLeggett-type inequalities.

The issue of whether a universalmeasure ofmacroscopicity exists is central to our
understanding of quantum reality. On the one hand, wave function collapse variants
of quantum mechanics require there to be a limit to the domain of applicability of
reversible unitary quantum theory, whence the necessity of specifying, quantita-
tively, where this limit exactly is. On the other hand, if there is not such a fundamental
limit to quantum coherence, a universal measure of macroscopicity would still be
highly desirable in order to monitor technological progress, and compare results of
different experiments. Indeed, the question of how far can we demonstrate quantum
behaviour it is not only at the heart of foundations of QT but it is crucial for the
development of new technologies. It has also big implications on how we under-
stand complex systems and even life; for example, can macroscopic living entities
make use of quantum coherence? The importance of quantum effects in biological
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processes has been highlighted for olfaction [89], magneto-reception in the avian
compass [90] and photosynthesis [91, 92].

Finally, even if there is no universal measure of macroscopicity (see Ref. [93] for
an outline of 14 different measures of macroscopicity), it is fruitful to search for
measures of how hard it is to maintain a physical system in a given superposition
or to implement a unitary gate to arbitrarily high degree of accuracy—whence the
modified question of what particular measures of macroscopicity might arise from
operational/experimental considerations.

Theoretical proposals for creating superpositions of macroscopically distinct
states include capacitively coupling a resonator to a superconducting qubit [94],
flux coupling a nanotube to a superconducting qubit [95] and using an interferom-
eter to optomechanically couple a mirror to a photon in a superposition [61, 96,
97]. On the experimental front, although yet to be fully realised, much progress has
been made toward the goal of creating a superposition state in a micromechanical
resonator coupled to a superconducting qubit [98, 99]. In millimetre sized [100,
101] resonators, the ground state has been reached, which is the first step towards
creating a quantum superposition. Interference experiments have been carried out
with molecules of up to 1 × 104 atomic mass units [102] and entanglement has been
demonstrated between a single photon and a single collective atomic excitation in a
1 cm long crystal [103], as well as between two mechanical resonators [104, 105].

4. How could tests of QT be devised so that they do not rely on classical physics
for their benchmarking?

Most tests involving QT over the past decades have been designed to corroborate
the idea that QT largely violates our classical expectations. Indeed, QT’s predictions
have been tested against rival theories sharing the common feature of keeping one
or the other basic principle of the classical physics intact:

1. hidden-variable models involved in Bell-type experiments assign definite values
to outcomes of unperformed measurements;

2. non-linear Schrödinger equations allow solutions with localised wave-packets to
resemble classical trajectories;

3. collapse-type models restore macrorealism by suppressing superpositions
between macroscopically distinct states.

While of great importance in the problem-situation of demonstrating funda-
mental differences between quantum mechanics and the classical world-view, such
approaches to testing quantum reality may not be very fruitful when considering
different problems that are now coming to the fore. A particularly prominent example
of problems calling for experimentswith a different benchmark than classical physics
is the search for the successor of quantum theory: for a ‘post-quantum’ theorymay be
expected to break not only principles of classical but also of quantum physics. This
is a case where interplay between experiment and theory promises to be particularly
fruitful. There have indeed been a number of proposals for theoretical frameworks
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for thinking of viable post-quantum theories, against which QT could then be tested.
These frameworks could thus be the source of such new tests.

One logic, suggested byDakic and Bruckner [106], is to reconstruct QT from a set
of axioms (see, e.g., Hardy [107]; Clifton et al. [108]; Chiribella et al. [109]), and then
weaken or drop some of the axioms to get broader theoretical structures, whereby
we can conceive of QT’s generalisations. This has led to generalised probabilistic
theories [110]—generalisations of quantum theory, which permit phenomena such
as interference, randomness of individual results or violation of Bell’s inequalities,
but in more extreme ways than quantum theory does.

Another approach is to define a set of theoretical possibilities designed so that they
share with quantum theory (some of) its main features (and reproduce its testable
predictions). For example, when the features are chosen to be quantum theory’s
information-theoretic properties, a local,non-probabilistic framework for generalisa-
tions of quantum theory can be accommodated in the recently-proposed constructor-
theory of information [111, 112]. Other general frameworks that could provide tools
to devise rivals against which to test QT are ontological models frameworks [23].

Quantum simulators, annealers and computers provide a playground for testing
QT without relying in classical physics (see Q5).

5. Howmight one use a well-controlled multi-qubit quantum system, such as a
quantum computer, to explore contested aspects of postquantum theories?

In his Nobel lecture, Robert B. Laughlin starts by saying that to deduce phenomena
such as superfluidity from first principles is an impossible task; superfluidity, he
says, is an emergent phenomenon, a low energy collective effect of huge number
of particles that cannot be deduced from the microscopic equations of motion in a
rigorous way and that disappears completely when the system is taken apart [113].

Could it be that new questions and new answers arise from emergent phenomena
in multi-qubit quantum systems like quantum annealers, simulators, computers or
different types of quantumnetworks?Can these systemshelp us to explore and formu-
late postquantum theories [114–116]? In the same way we use classical computers
to calculate quantum (post-classical) predictions, could we use a quantum computer
to calculate postquantum predictions?

Large quantum networks provide an appealing route to a scalable universal
quantum computer, which is built by networking together several simple processor
nodes (as opposed to a monolithic structure) [117]. Other applications are made
possible via the network directly. One is so-called blind quantum computation
[118], where a remote person can control a quantum computer which is run and
maintained by another person,who nevertheless cannot knowwhat particular compu-
tational task the computer is performing. This is crucial to preserve the privacy of a
computation.

Other applications arise for quantum networks with some amount of computation
at each node (as implementable by, e.g., the ion trap architecture being pursued at
Oxford [119]). For instance, cryptographic applications beyond quantum key distri-
bution; verifiable quantum computation (which allows a user to verify the results of
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a quantum computation with certainty) [120]; quantum homomorphic encryption (a
form of encryption which allows operations to be performed on the encrypted data
without access to the secret key) [121]; a quantum internet [122] which can distribute
quantum software [123]; and even long baseline astronomy [124].

Large scale quantum computers—not necessarily universal ones—open up a new
frontier because they are systems with large amounts of entanglement. In particular,
when the internal entanglement of a system becomes sufficiently high, our ability
to simulate the system with anything other than a quantum computer falls away,
due to the apparent difference between the computational complexity classes P and
BQP [125]. Experimentally demonstrating quantum algorithms which show a large
advantage over the best classical algorithms (particularly in terms of provable advan-
tages such as in the case of query complexity for search and collision algorithms)
would provide further insights into a proof of clear separation between computation
allowed by quantum physics and computations achievable by a classical computation
model. Another notable phenomenon is the breakdown of thermalisation for open
systems. Although we expect systems in a confined volume in contact with a heat
bath eventually to reach a Gibbs distribution, it is known that the ground states of
certain classes of local Hamiltonian are QMA hard to compute [126]; they cannot
efficiently be reached by physical systems. Thus, existing conjectures about compu-
tational complexity [127] would imply the possibility of constructing systems which
cannot thermalize in less than exponential time. This may bring about an important
transition in our understanding of chemistry and condensed matter physics, implying
that absolute energy structure is less important for understanding the behaviour of
large quantum systems and materials.

Quantum machine learning might be another promising tool. In addition to
quantum machine learning showing quadratic improvements in learning efficiency
and exponential improvements in performance over limited time periods over clas-
sical machine learning [128] it is hoped that a quantum artificial intelligence may be
able to recognize patterns that are difficult to recognize classically [129]. This could
be a powerful tool for research into post-quantum theories.

6. Can laboratory-scale experiments elucidate open questions in the evolution
of the universe?

About 400,000 years after the Big Bang, the last scattering occurred; photons decou-
pled from matter and travelled freely through the universe, constituting what we
observe today as cosmic microwave background radiation. There is no good theory
for how the quantum fluctuations arising during inflation get changed to classical
fluctuations by the time of last scattering, when they become seeds for large scale
structure formation. Any experiments that elucidate the classical to quantum transi-
tion as a real or effective physical process have the potential to help throw light on
this. It has been proposed on the one hand that this may be due to decoherence [130]
and on the other that this is related to variants of CSL [131, 132].

In order to discriminate between such proposals, one can speculate on whether
these proposals might make a difference to the expected classical fluctuations at
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the end of inflation. For example, might they be scale-dependent and hence cause a
breakdown in the prediction of an almost scale-invariant spectrum of perturbations,
affecting Cosmic Microwave Background and large scale structure observations at
the present time [133]? Would they affect the usual assumption of Gaussianity of
fluctuations at the end of inflation? If either were to be true these would be observa-
tional tests of such quantum theory variants [134]. Test of quantum theory variants
can be devised as further bench-top experiments, enabling us to answer questions
about the growth of structure in the Universe in the laboratory, as well as using data
from cosmological phenomena to probe QT in extreme conditions [135, 136].

Finally, when considering the problem of the initial conditions of the universe one
gets into the domain of quantum gravity (see also Q2). We are unable to access the
required energies to test quantumgravity theories in colliders, and in the cosmological
context inflation smooths out any pre-inflationary structures there might be, so we
cannot see their cosmological outcomes either, although one avenue for exploring
quantum gravity is Black Hole evaporation [137]. String cosmology suggests some
inflationary potential on the basis of string theory, but this cannot be applied to the
inflationary regime where the relevant energies are quite different.

The issues here are twofold. First, do the same principles of ordinary quantum
theory apply to quantum gravity or do we need new foundational principles for the
nature of space-time, or for some kind of (probably discrete) pre-spacetime structure,
and hence for quantum theory? Loop quantum gravity [24] and string theory [25]
are the two pre-eminent approaches that have been taken to studying such issues,
but others such as causal set theory [138] provide more radical departures points,
because they assume space-time structure is discrete. What justifies use of the same
principles as those of ordinary quantum theory in these circumstances?

The more direct relation to the questions posed here arise as regards the second
point: does the start of the universe in some sense correspond to a measurement
event? How does the idea of measurement work out in quantum gravity theories,
whatever they are?

7. How can causality and agency be reconciled within quantum theory?

Puzzling situations can arise where the causal order of events (in a fixed spacetime
background) is not necessarily fixed, but is subject to quantum uncertainty. Could
there be indefiniteness with respect to the question of whether an interval between
two events is time-like or space-like, or even whether event A is prior to or after
event B? Might, this correspond to the “superpositions of situations where, ‘A is in
the past of B’ and ‘B is in the past of A’ jointly” [139]? This problem has bearings on
quantum gravity studies: a theory unifying collapse-based variants of QT with GR,
causal structure might plausibly be both be dynamic, as in general relativity, as well
as indefinite, due to quantum features. A framework for the dynamics of quantum
causal structures of something of this kind is given in Ref. [140].

Oreshkov, Costa and Brukner have put forward theoretical models where there
is no fixed causal order and the dynamics is specified in terms of linear opera-
tors [141]. In 2017 an experiment was carried out in Vienna which implemented
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a measurement which was described as a superposition of causal orders [142], and
subsequently a demonstration described as an entanglement of temporal orders [143]
violating a Bell inequality for temporal order [144] (although it is not yet a loophole
free test). The development of this inequality for temporal order allows for a quan-
titative method for investigating quantum aspects of space-time and gravity, and the
demonstration of its violation could lead to the conclusion that nature is incompatible
with a local definite temporal order. An improved experiment to render the causal
order between operations indistinguishable by their spacetime location has yielded
a causal witness 18 standard deviations beyond the definite-order bound [145].

Other approaches to investigating modified causal orders within quantum theory
are based on the framework of closed time-like curves (see Ref. [139] for a
discussion), and have recently inspired experimental simulations—see e.g. Ref.
[146].

A special kind of causal order is that pertaining to events caused by the action of
agents: things which react to environmental stimuli in flexible yet sensible ways, and
to whose active powers we attributemany of the happenings around us. In this regard,
there is an ongoing rich debate about how attributable agency can be incorporated
within physics, and in particularly reconciled with quantum theory. In the case of
collapse-endowed variants of QT, the problem, according to some (see Ref. [147]
for a discussion of the problem of agency), is that there appears to be no room for
attributable agency in the context of a stochastic theory; it is therefore a challenge
to accommodate a prominent feature of physical reality, i.e., the existence of agents,
within those variants of quantum theory. Progress has been made via a theoretical
model of projective simulation, where the concrete outcome of a random process can
be consistently attributed to an agent [147]. This has recently inspired a model for
an implementation via measurement-based quantum computation [148]. Could the
source of asymmetry between cause and effect be simply the act of intervention itself?
Milburn and Shrapnel put forward the view that it is the temporally symmetric laws
of physics that underwrite the agent-based interventions through which asymmetric
causal relations are discovered [149].

An additional aspect to consider when discussing causality is the possibility of
retrocausality; of events in the future being able to influence events in the past. Retro-
causality would be one way of allowing for a Lorentz-invariant explanation of Bell
correlations without action at a distance and it has been proposed that retrocausality
follows directly from the quantization of light, provided that fundamental physics is
time-symmetric and that one does not take an ontic interpretation of the quantum state
[150, 151]. Of course, some models of QT are not time symmetric—the introduction
of a collapse event for thewave function is said by some to introduce time-asymmetry,
inwhich case retrocausalitywould not be introduced. The transactional interpretation
introduces a form of retrocausality, although in this interpretation the future does not
influence the past [152]. In this case the predictions of QT are interpreted to be due
to an exchange of advanced and retarded waves, with the predictions of the theory
being the same as standard quantum mechanics.

8. Are thermodynamic laws revised in quantum theory?
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Standard thermodynamics offers a bird’s eye view of a system consisting of vast
numbers of particles by describing it using a few parameters such as temperature,
volume and pressure. Although this simplicity allows for an elegant approach when
dealing with systems with large numbers of particles, the downside is that as the
system size decreases the thermodynamic approach starts to lose accuracy as fluc-
tuations of the parameters become relevant. Stochastic thermodynamics can be used
to describe fluctuations in the thermodynamic quantities due to thermal effects and
to describe non equilibrium systems however, once quantum effects come into play
we need a theory of quantum thermodynamics [153].

The famous Maxwell demon case, with regards to the second law, highlights the
link between work and information. Using knowledge of the system the demon can
extract work from the system without increasing its entropy, seemingly violating the
second law. We achieve a neat resolution to this puzzle upon realising that the infor-
mation (stored in the demon’s memory, which is used to enable it to extract work)
must also be accounted for thermodynamically, and achieving a thermodynamic
cycle requires that this memory be erased, incurring a waste of energy as heat
[154].

Early experiments to study non-equilibrium phenomena in nanoscale systems
have been realized with molecules and soft matter at ambient temperatures [155,
156]. Heat-to-work conversion has been demonstrated with a dimeric polystyrene
bead suspended in a fluid bymeasuring if the particle hasmoved up and, depending on
the result, modifying an external potential to ensure the particle continues climbing.
A micrometre-sized stochastic heat engine and a Carnot engine were realized with
a single optically trapped particle as the working substance [157, 158]. A direct
measurement of the entropy change along symmetry-breaking transitions for a
Brownian particle in a bistable potential has also been achieved [159].

These experiments, however, do not provide an easy path towards incorporating
quantumeffects.A single-atomheat engine has beendemonstrated in a single calcium
ion in a tapered ion trap [159]. The study of quantum fluctuation relations with
spin-1/2 system [160] and a trapped ion [161], as well as a demonstration of the
Landauer principle in the quantum regime with a three-nuclear-spin molecule [162]
andultracold ions [163],were achieved.Very recently, spin heat engineswere realised
in an ion trap and a spin ½ system [164, 165]. The limitation in these cases is that
either they are restricted to closed systems or the reservoir is not much larger than the
system; reservoirs in the conventional sense are those of open systems and it is the
study of open quantum systems that will answer the most pressing questions about
energy harvesting, dissipation and thermalisation in quantum circuits.

A glimpse of the potential of solid-state circuits became evident when the
Jarzynski equality, a Szilard engine and an autonomous Maxwell’s demon were
demonstrated with a single electron box [166–168]. A superconducting qubit has
been used to demonstrate a quantum Maxwell demon [169] and an ensemble of
nitrogen-vacancy centres in diamond has been used as a quantum heat engine [170].
A quantum heat valve [171], a quantum-dot heat engine [172] and a quantum-dot
energy harvester [173] have also been realised in the solid-state.
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The development of these experimental techniques opens the way for testing
disagreements which are beginning to emerge about aspects of nonequilibrium ther-
modynamics in nanoscale quantum systems. To some extent these different view-
points arise because of the different communities in which they originate, such as
statistical physics, mesoscopic physics, quantum information theory, andmany-body
theory. Open questions include the definition of work, how quantum systems ther-
malize, and the efficiency and power of quantum engines [174]. We confidently
hope and anticipate that experimental testing will serve to evaluate the validity of
different approaches in different contexts, and will elucidate those concepts which
are presently obscure.

3 Discussion and Conclusions

Thinking back to the first set of Oxford questions [26], these new questions, although
sharing the same theme, are less focused on reconciling quantum physics with clas-
sical physics and ideas and are more focused on experiments to test the boundaries
of QT with post quantum theories. With the development of new technologies it
is important to continue to think of experiments to expand the boundaries of our
understanding of the quantum realm.

With regards to collecting fresh evidence, good progress has been made even in
the short period of time since the first set of Oxford questions. There has been further
theoretical development of the PBR theorem on the reality of the wave function to
the BCLM and Branciard theorems, with experimental tests pointing towards a psi-
ontic interpretation [47–50]. A framework for indefinite causal order within quantum
theory has been developed including a Bell inequality for temporal order with the
first experimental verifications being recently published [142, 143]. The most recent
experiment of a CSL type heating effect has measured a nonthermal force noise
of unknown origin, down to the level of the CSL heating predicted by Adler [65],
although the authors are not willing to claim CSL heating until every other possible
source has been ruled out. We are still some way off making sense of many of the
aspects of QT, but as these experiments are improved and theoretical proposals are
brought into realisation we can expect the murky waters of the foundations of QT to
become clearer.
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106. Dakic B, Brukner Č. 2011 Quantum Theory and Beyond: Is Entanglement Special? In
Deep Beauty: Understanding the Quantum World through Mathematical Innovation (ed H
Halvorson), pp. 365–392. Cambridge University Press.

https://doi.org/10.1103/physrevlett.110.160403
https://doi.org/10.1093/chemse/21.6.773
https://doi.org/10.1103/physrevlett.106.040503
https://doi.org/10.1063/1.3002335
https://doi.org/10.1038/nphys1652
https://doi.org/10.1103/revmodphys.90.025004
https://doi.org/10.1103/physrevlett.88.148301
https://doi.org/10.1103/physrevx.8.021052
https://doi.org/10.1103/physrevlett.91.130401
https://doi.org/10.1088/1367-2630/15/9/093007
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature11821
https://doi.org/10.1038/ncomms9491
https://doi.org/10.1088/1367-2630/18/10/103036
https://doi.org/10.1039/c3cp51500a
https://doi.org/10.1038/nature09662
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0038-x


Eight Oxford Questions: Quantum Mechanics Under a New Light 381

107. Hardy L. 2001 Quantum Theory From Five Reasonable Axioms. arXiv:quant-ph/0101012
108. Clifton R, Bub J, Halvorson H. 2003 Characterizing quantum theory in terms of information-

theoretic constraints. Found. Phys. 33, 1561–1591. (https://doi.org/10.1023/a:102605671
6397)

109. Chiribella G, D’Ariano GM, Perinotti P. 2011 Informational derivation of quantum theory.
Phys. Rev. A 84, 012311. (https://doi.org/10.1103/physreva.84.012311)

110. Barrett J. 2007 Information processing in generalized probabilistic theories. Phys. Rev. A. 75,
032304. (https://doi.org/10.1103/physreva.75.032304)

111. Deutsch D, Marletto C. 2015 Constructor theory of information. Proc. R. Soc. A 471,
20140540. (https://doi.org/10.1098/rspa.2014.0540)

112. Marletto C. 2016 Constructor theory of probability. Proc. R. Soc. A 472, 20150883. (https://
doi.org/10.1098/rspa.2015.0883)

113. Laughlin RB. 1999 Nobel Lecture: Fractional quantization. Rev. Mod. Phys. 71, 863–874.
(https://doi.org/10.1103/revmodphys.71.863)
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Interferometric Tests of Wave-Function
Collapse

Stefan Gerlich, Yaakov Y. Fein, and Markus Arndt

Abstract Among the various commonly proposed interpretations of quantum
mechanics, models of wave function collapse are unique in being empirically falsi-
fiable. Here we review experiments which place bounds on the parameter space of
these models, with a particular focus on matter-wave interferometry. Proving the
persistence of superposition states is the most direct way to test collapse models, and
by performing interferometry with macromolecules we can exclude large regions of
parameter space due to the quadratic scaling of the collapse rate with mass.

1 How the Puzzle Started

When Louis de Broglie proposed the wave nature of matter in 1923, he did this with
the conviction that “by means of these new ideas, it will probably be possible to …
solve almost all the problems brought up by quanta” [1]. De Broglie was certainly
right in many respects: Already in 1926, his idea inspired Erwin Schrödinger’s wave
mechanics [2], which became the most successful and best-verified non-relativistic
theory of modern physics. Born’s rule, which states that observable probabilities
are predicted by the squared modulus of the quantum wave function, has also been
verified in many experiments [3–5]. Quantum mechanics seems to be here to stay.

And yet we challenge de Broglie’s statement with the counterclaim that these
new ideas created almost all (philosophical) problems brought up by quanta. By
this we refer to the longstanding debate about the meaning of the wave function
and the measurement process. The persistence of a surprisingly large number of
interpretations of quantum mechanics is evidence of this discomfort, with one of
the key questions being whether the wave function is something that exists as an
ontological entity, or rather describes what we can know, an epistemological concept.

The success of quantum theory should not be understated: It underlies countless
modern technologies, and has been corroborated by every experimental test so far.
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And yet there persist fundamental questions, such as the apparent transition to a clas-
sical regime and the fuzzy concepts of measurement and observers. There are many
approaches toward a satisfactory resolution of these questions, which we will not
attempt to list here, but there is one approach that stands out, because of its exper-
imental falsifiability: objective collapse, and in particular continuous spontaneous
localization (CSL) models.

Here we describe ongoing experiments to test CSLmodels, as originally proposed
by Ghirardi, Rimini andWeber [6] and Pearle [7], as well as by Diosi [8] and Penrose
[9] with a focus on the gravitational origin of objective wavefunction collapse. We
discuss the current state of the art and the possibility to falsify such models, in
particular with matter-wave interferometry of massive objects.

2 Experimental Approaches to Testing Objective Collapse

Several versions of collapse models have been described in the literature and also
in this book. They all assume the wave function to shrink to a certain localization
length rc with a certain localization rate λ. All models are phenomenological and
extend the Schrödinger equation by a stochastic non-linear term, with the purpose
to effectively destroy mesoscopic or macroscopic spatial superposition states. The
collapse-inducing agent is typically unspecified. On the experimental side, there are
three main approaches for testing wave function collapse [10, 11]:

Absence of anomalous heating: If collapse confines the wave function this would
lead to heating that should be observable in ultra-cold systems. This can be studied
with a wide range of even classical systems, such as levitated nanoparticles [12],
cantilevers [13], neutron stars [14, 15], the gravitational wave detector LIGO [16–
18] or the satellites of LISA pathfinder. This approach is described in other chapters
of this book and provides strong bounds on the CSL parameter space. However,
the concept also has one apparent loophole: colored and dissipative extensions of
the postulated noise field may not lead to any heating at all [20]. Even spontaneous
cooling is not excluded. The absence of anomalous heating does not prove by itself the
non-existence of the hypothetical background field, but rather constrains its possible
properties.

Absence of spontaneous radiation: If light charged particles such as electrons
undergo spontaneous wave function collapse, the random recoil associated with that
process should lead to X-ray emission. This unexpected radiation has been searched
for so far without success, which provides some of the most constraining bounds on
CSL models [19].

Persistence of quantum superposition: CSL theory was introduced to effectively
destroy quantum superpositions beyond a certain scale, so the most direct way to
test it is to demonstrate quantum interference with increasingly massive particles
over longer times. Unlike the two previous tests, the bounds produced by an inter-
ferometric test are not altered by the characteristics of the collapsing field [20]. In
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the following we will therefore focus on an account of matter-wave interference
experiments which were in part motivated by the work of Giancarlo Ghirardi.

Matter-wave interferometry is an established and highly active field of research,
nearly a century after the publication of Louis de Broglie’s wave hypothesis [1].
The quantum wave nature of electrons has become a key element of modern surface
science, used in electron microscopy [21], diffraction [22], holography [23] and
multidimensional electron scattering [24] even on the femtosecond timescale [25].
Coherent neutron scattering has become a routine tool of modern condensed matter
research, elucidating the 3D order and structure of metals [26], proteins [27] and
even atoms [28]. Atom interferometers have become sensitive tools for funda-
mental physics [29], for testing general relativity [30–32] andmeasuring fundamental
constants [33, 34], and are also sensitive devices for inertial sensing [35], geodesy
and navigation [36].

But howmacroscopic can such superpositions become? Here we review in partic-
ular our own work on macromolecule, cluster and nanoparticle interferometry [37–
39] and put this into perspective with references to neutrons and atoms split over
large distances, masses entangled over long distances and the prospects for entangled
condensates or macroscopic bodies.

In doing this, we will refer to a measure of quantum macroscopicity which was
introduced by Nimmrichter and Hornberger [40] and recently refined and extended
[41]. The quantum macroscopicity μ was introduced to provide a way to compare
howwell experiments excludemodifications to theSchrödinger equation.Themodels
and hypotheses underlying the derivation of macroscopicity are similar to those of
continuous spontaneous localization.However,whileCSLmodels focus primarily on
spontaneous momentum kicks, quantummacroscopicity considers both spontaneous
kicks and displacements which lead to a stochastic nonlinear term in the Schrödinger
equation.

Asdiscussed above,CSLmodels define a localization length rc and rateλ,whereas
the macroscopicity is independent of the length scale [40]. The measure is defined
as

μ = log

[
1

| f |
τ

1s

(
m

me

)2
]

(1)

which depends on the time τ the matter-wave remains coherent and the mass m of
the delocalized particles compared to that of a reference particle, here chosen to be
the electron with mass me. The fidelity f of the observed signal also enters, which
in matter-wave interferometry can be estimated as the ratio of the experimental to
the theoretically expected fringe contrast.
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In the following we outline, roughly in order of increasing macroscopicity, the
various categories of matter-wave interferometry experiments potentially relevant
for placing bounds on CSL.

Electron interferometry
Electron matter-waves can cover macroscopic areas with billions or trillions of elec-
trons in a superconducting current of a SQUID [42]. However, even in the presence of
such large numbers of particles, only a small subset of electrons rotating in the clock-
wise or anti-clockwise direction are distinguishable in momentum space. Because
of that, SQUIDS have low macroscopicity [40]. CSL bounds are expected to be
similarly weak because of the quadratic mass scaling of the collapse rate.

Neutron interferometry
Mass increases by a factor of 1836 when we go from electrons to neutrons. This is
a sizable increase and spatial separations can be as large as 10 cm with an enclosed
area of 80 cm, as demonstrated in a perfect-crystal neutron interferometer in [43].
Such experiments are an impressive achievement, but the bounds on CSLmodels are
still moderate because the neutron is light compared to atoms or molecules.

Bose Einstein condensates
One might rightfully argue that Bose Einstein condensates are huge macroscopic
matter-waves with anywhere from a few hundred to a few hundred million atoms
contributing to the condensate. They can extend over millimeters when freely
expanded and the participation of many atoms in the effect seems to imply a large
mass and macroscopicity. However, while BECs represent large coherent ensembles
of atoms, the atoms are not entangled with one another. During the beam splitting
process the system is better described by the single particle product state ψtot ∝
(|L〉 + |R〉)⊗N rather than by the n-particle NOON-state ψtot ∝ |L〉⊗N + |R〉⊗N.
Without entanglement, the large number of atoms does not add to the mass term in
Eq. (1). This will change if it becomes feasible to prepare high-NOON states, i.e.
true Schrödinger cat states.

Atom interferometry
Atoms can be much better controlled than neutrons. High phase space densities and
ultra-low temperatures are accessible with laser cooling. The mass of a heavy alkali
exceeds that of a single neutron by more than two orders of magnitude. Separations
of a few millimeters were achieved early in the history of atom interferometry. The
recent record of up to half a meter separation in a 10 m high atomic fountain [44] is a
stunning realization and represents a new bound on the parameter space of collapse
models, particularly for large values of the localization radius rc, with values up to
several tens of centimeters. Obtaining a larger splitting over longer times in such
experiments may become possible in drop towers or fountains with up to 300 m
height [45]. This can stretch the superposition state and increase the coherence time
by a factor of 5.5 over the 10 m fountain, as the speed rapidly increases in free fall.
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Atom interferometry using coherent storage of trapped wave packets
While atomic fountains seem to be the most obvious approach to achieving long
decoherence-free evolution times, a recent experiment in Berkeley demonstrated
that trapped atoms could maintain their coherence for up to 20 s after the beam
splitting process in an off-resonant optical lattice before being recombined [46]. A
fountain would need to be 1000 m high to achieve a comparable storage time. In
present-day experiments the optical trap still reduces the matter-wave coherence by
about 30%within 5 s. One could envision, however, that future lattice-interferometry
experiments with lower atom temperatures, improved beam splitter efficiency and
optimized trapping conditions may tighten CSL bounds, in particular for rc on the
micron or millimeter scale.

Macromolecule and cluster interferometry
We focus now on experiments at the University of Vienna, which exploit the regime
of short beam path separation and high mass. Because the CSL rate increases with
the mass of the particle squared, an experiment with 104 amu particles in a quantum
superposition [47] is thus a 1014 times better test of CSL models than an equivalent
experiment with electrons [40].

If we are searching for localization lengths rC = 0.1− 1 µm [48], there is no big
gain in splitting the wave function of electrons or atomsmuchmore than this amount.
Mass then becomes the most relevant parameter in interferometric tests of CSL once
the coherence extends beyond this scale. This is the approach and parameter range
that our group has pursued in recent years.

Starting with the first diffraction of hot fullerenes [49], numerous devices were
built and tested inVienna to push themass and complexity of particles inmatter-wave
interference experiments. In the following we focus first on far-field diffraction, due
to its conceptual simplicity, and then on the near-field interferometer LUMI, as the
current mass record holder in matter-wave interferometry.

2.1 Far-Field Diffraction

The diffraction of massive particles at a double slit or grating constitutes perhaps the
most intuitive demonstration of the wave-particle duality of matter. Following the
seminal double slit or grating diffraction experiments with electrons [50], neutrons
[51], atoms [52] and dimers [53], quantum interference was also observed with
complex molecules [49].

To observe molecule interference on the single-molecule level in real time [54],
phthalocyanine molecules (m = 514 amu) were chosen for the experiment since
they are fluorescent and can thus be imaged with established microscopy techniques.
They were evaporated by a micron-focused laser beam into the vacuum chamber
with velocities in the range of 160 m/s. The beam was collimated to about 10 µrad
and then diffracted at a 10 nm thick SiNx grating with period 100 nm and a slit
opening of 50 nm. The arrival of each single molecule onto a quartz slide behind
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Fig. 1 Far-field diffraction. This is themost intuitive scheme to illustrate thewave particle duality of
quantum mechanics. Molecules are laser desorbed, collimated and sent through a nanomechanical
grating. The resulting diffraction pattern is visible on a quartz slide further downstream. The arriving
molecules are imaged as they arrive one-by-one via fluorescence microscopy [54]

the grating was imaged via fluorescence microscopy and localized to within 10 nm
accuracy [54, 55]. The molecular interference pattern observed on the quartz slide
is the expected probability amplitude distribution to find the molecules in certain
places on the detector plane. A schematic of the far-field experiment and sample
diffraction fringes are shown in Fig. 1. The interference pattern reveals a number of
non-classical aspects of quantum mechanics.

Quantum indistinguishability
Matter-wave interference requires coherence, i.e. a sufficiently well-defined and
constant phase across the beam when it arrives at the diffraction slit or grating.
Spatial coherence is the condition for a massive particle to have many possible paths
through the diffractive element that are fundamentally indistinguishable. This is what
is sometimes colloquially referred to as a molecule being in two or more places at
once: the wave function covers several slits in the grating and there is no a priori way
to know which path it will take.

The probabilistic nature of reality
While classical mechanics contains deterministic chaos and ignorance, quantum
mechanics adds an element of true randomness, in which a measurement acts as a
stochastic projection of the quantum system into one of its observable eigenstates.
Deterministic laws describe the probabilities, but randomness seems to determine
the selection of any individual observation. While it is fundamentally impossible
to predict where on the quartz slide any particular molecule will land, quantum
mechanics still allows us to describe the observed distribution with incredible
accuracy.

It is such properties of the realm of quantum physics that are so foreign to our
everyday experience in the classical world which inspired Giancarlo Ghirardi to
consider stochastic non-linear extensions of the Schrödinger equation. The bounds
placed by this far-field diffraction experiment on collapse models have recently been
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analyzed [56]. However, because of the low mass of the molecules involved and
the moderate signal to noise ratio, this experiment is predominantly a conceptual
introduction to molecule interference rather than one to restrict CSL models.

2.2 Near Field Interference with a Long Baseline
Interferometer

The CSL rate increases with the square of the mass of the object put in quantum
superposition, suggesting interference experiments with particles of increasing mass
as the natural and most effective way to probe the largest area of CSL parameter
space. However, quantum experiments with massive objects much more complex
than elementary particles or single atoms involve multiple challenges. In particular,
high mass is associated with extremely small de Broglie wavelengths. The phthalo-
cyanine molecules investigated in the far-field diffraction experiments above, for
example, correspond to a de Broglie wavelength of only 4 pm, while a molecular
beam experiment with particles in the mass range of 100,000 amu would require the
handling of de Broglie wavelengths below 50 fm. In far-field diffraction, as shown
in Fig. 1, matter with λdB = 50 fm diffracted at a grating of d = 100 nm would be
diffracted at an angle of ϑ = λdB/d = 200 nrad. This would require impractically
high beam collimation of order 100 nrad and long beam lines.

Clauser suggested that a near-fieldTalbot-Lau interferometer (TLI) iswell adapted
to the task [57], because it is shorter and with a higher particle throughput than any
far-field experiment. TheTalbot-Lau concept alsomakes rathermoderate demands on
coherence and scales very favorably with respect to the particle wavelength, making
it ideal for high-mass interference experiments.

A TLI with mechanical gratings [58] was proven to work with complex molecules
[59] but the van der Waals interactions with mechanical gratings suggested that an
optical gratingwould be better suited as the central diffraction element whenworking
with highly polarizable particles [60]. This was confirmed in the realization of a
Kapitza-Dirac-Talbot-Lau Interferometer (KDTLI) [61], which employs an optical
phase grating (KDTLI) as the second grating. The optical grating induces an electric
dipole moment proportional to the molecule’s polarizability which interacts with the
laser field to induce a phase shift of the molecules in the anti-nodes of the grating.
The Optical Time-domain Ionizing Matter-wave Interferometer (OTIMA) [62] also
employs optical gratings, but relies on photo-depletion rather than the Kapitza-Dirac
effect. The most recent addition, the Long-baseline Universal Matter-wave Interfer-
ometer (LUMI) [47], combines the capabilities of both an all-mechanical TLI and a
mixed optical-mechanical KDTLI scheme with a ten-fold increased interferometer
length compared to the original KDTLI experiment.

At the heart of LUMI are three gratings of period 266 nm which are spaced
equidistantly by 0.98 m. The outer gratings are nanofabricated masks etched into a
silicon-nitride wafer, while for the experiments presented here, the central grating is



392 S. Gerlich et al.

Fig. 2 Schematic of the LUMI experiment. The molecules are desorbed from a glass slide by
nanosecond laser pulses (532 nm, 108 W/cm2). They pass a set of three gratings of identical periods
of 266 nm, spaced by 0.98 m. While silicon-nitride nanostructures serve as the first and the last
grating, the central grating is realized as a pure phase grating generated by retro-reflection of a
continuous high-power laser beam (532 nm). The molecules are then ionized by electron impact
and sent through a quadrupole for mass selection. The time-of-flight can be measured by encoding
a pseudo-random sequence on the beam with a chopper

realized as an optical phase grating by retro-reflection of a 532 nm laser beam. The
interferometer scheme is illustrated in Fig. 2.

LUMI can accept spatially incoherent illumination of the first grating and can be
operated with broad velocity distributions. The alignment of the three gratings with
respect to each other and to gravity requires an accuracy on the order of 100 µrad.
A set of 18 slip-stick piezo actuators allows the positioning of the gratings along
all axes with the necessary precision. The interferometer is also highly sensitive
to vibrations and drifts, as well as the rotation of the Earth. The vibrational noise
has been damped to better than 10 nm across the relevant frequency band (>2 Hz)
by means of a vibration isolation system that combines a pendulum suspension,
mechanical springs and eddy current brakes.

The molecules used in the experiment are perfluoroalkyl-functionalized
porphyrin-tetramer derivatives, which come as a family of molecules with up to
60 attached perfluoroalkyl chains. The molecules were designed and synthesized
by Marcel Mayor and his team at the University of Basel to ensure high mass
as well as moderate polarizability and intermolecular bond strengths, even though
these bonds are still too strong for sublimation in a Knudsen cell. Previous exper-
iments have shown that nanosecond desorption can lead to intact volatilization of
such large molecules [63]. The beam consists of a molecular library, where each
molecule is composed of different combinations and numbers of the perfluoralkyl
chains, connected to different combinations of nodes. Onemolecule from this library
is shown in Fig. 3.

The diffraction at the second grating leads to a modulation in the density of the
beam that is roughly sinusoidal with the same period as the gratings. Depending
on the transverse position of the third grating, molecules can either be transmitted
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Fig. 3 Left: Molecular interference pattern with a phase grating power of 0.8 W, as recorded by
scanning the third grating across the molecular density pattern. The counts have been referenced to
a non-interfering signal to compensate for fluctuations of the signal intensity. The displayed points
are an average of three scans and the shaded area is the standard deviation of the mean. right: The
beam consists of a molecular library of functionalized oligoporphyrins with the largest compounds
containing up to 2000 atoms. The mass of this library is centered around m = 27,000 amu and has
a mass spread of about 15% [47]

or blocked, leading to a sinusoidal variation in flux as the third grating is moved.
The transmitted molecules are ionized by electron impact and mass filtered in a
quadrupole. The mass-filtered molecules are accelerated onto a dynode and release
electrons which are counted by a secondary electron multiplier. A sample of the
observed interference signal is shown in Fig. 3. A key parameter in determining
the agreement of the observed signal with quantum theory is the visibility, V =
(Smax− Smin)/

(
(Smax + Smin

)
. The visibility can also be measured as a function

of the phase grating laser power for a direct comparison with theory. The resulting
bounds on the CSL parameter space are plotted in Fig. 4.

3 A Look into the Future of Matter-Wave Tests of CSL
Models

Quantum interference experiments with beams of even heavier particles depend on
the further development of efficient sources for neutral massive particles and poten-
tially new interferometer schemes.Metal clusters launched from amagnetron sputter
source have been identified as a feasible candidate to access the mass regime beyond
105 amu in LUMI interferometry [67], as plotted in Fig. 5. The high density of
metal clusters and the possibility to ionize and neutralize them in free-flight with
available lasers is an asset of this material class [68]. UV laser gratings will allow a
further reduction of the grating periods in an all-optical interferometer that relies on
the neutralization, ionization [62] or fragmentation [69] in the standing light waves.
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Fig. 4 CSL exclusion plot indicating the current limits imposed by superposition tests: long-
baseline atom interferometry [44], long-baseline molecule interference (LUMI) [47], KDTLI
molecule interference [64], far-field diffraction of molecules [54] and entangled NV centers in
nanodiamonds [65]. The plot shows the combinations of localization radius rc and event rate
λ which are excluded by superposition experiments. Non-interferometric experiments currently
exclude larger areas, but are a less direct and robust test [66]

Fig. 5 Mass-velocity combinations accessible with LUMI and with the next generation of long-
baseline universal matter-wave interferometers. De Broglie wavelengths as tiny as 35 fm can be
handled in LUMI already. A future enhanced version of LUMI will operate with grating separations
of L = 1 m but reduce the grating period by a factor of two, thus reducing the minimum accessible
de Broglie wavelength by a factor of up to four



Interferometric Tests of Wave-Function Collapse 395

Sputter sources can generate nanoparticles with an internal temperature of 80 K
which suppresses thermal decoherence even with masses up to 107 amu. Cooling to
10 K is conceivable and may allow scaling to even higher masses.

Cooling to even lower translational temperatures is in sight for individual dielec-
tric particles. The fields of parametric feedback cooling [70–73], cavity assisted
self-induced feedback cooling [74–76] and cavity assisted scattering cooling are
progressing at a fast pace [77, 78]. However, while cooling works best for large
systems with large polarizability and therefore large coupling to the electric field,
quantum delocalization over large distances is attained more easily with lower
masses: The width of the harmonic oscillator ground state �x = √

�/2mω scales
with 1/

√
m, and the diffraction angle grows directly with λdB = h/mv, i.e. with

1/m.
The idea of extending the concept of Talbot and Talbot-Lau interferometry to high

masses has been proposed [57] and refined a number of times [39, 79, 80] including
the proposal of using cavity cooled nanoparticles for that purpose [81].

While these schemes assumed optical gratings as beam splitters, recent proposals
also focused on using magnetic beam splitters coupled to an NV center in nanodia-
mond [82], or magnetic splitting of magnetically levitated superconducting spheres
[83].

Orientational interference and localization by collapse
A new branch of macroscopic quantum superposition experiments has recently been
openedwith the idea of utilizing the closed space of rotating nanorods [84]. Advances
in preparing and manipulating nanorods in optical tweezers [85–87] have triggered
proposals for how to prepare coherent superpositions of rotational states and observe
their revivals [88, 89] and how to use this to search for quantum wave function
collapse [90].

4 Summary: On the Distinction of Collapse
and Decoherence

As of today, all tests of spontaneous wave function collapse have provided negative
results. Standard quantum mechanics is still safe. This is positive news as more and
more teams are pushing emergent quantum technologies and an objective limit in
mass or number of qubits involved in a quantum computer, simulator or sensor would
be a road stop for important emergent technologies. At present, all indications are
that these systems are still in the clear.

Interestingly, a wide range of models, including versions of collapse models with
particle sizes smaller than rc, gravity-induced collapse models and solutions of the
Schrödinger-Newton equation [91], would predict a scaling with m2. Even models
exploring the diffusion of matter-waves on spontaneous conformal fluctuations of
space-time would predict the same scaling [92, 93].
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But if we ever observe an absence of interference at a certain mass scale, what
claim could we make regarding collapse models? The naïve answer is: Absence of
interference shows absence of interference. Identifying the cause for an unexpected
loss of fringe visibility is always hard and particularly challenging since many poten-
tially decohering effects also scale with particle mass. A key challenge would be to
distinguish spontaneous collapse from decoherence. While we know how to test for
collisional [94, 95] or thermal decoherence [96] there may still be unexpected new
contributions as we scale up the particle mass. Successful high contrast interference
with delocalization over more than 100 nm of masses larger than 109 amu would
allow us to exclude the parameters originally proposed by Giancarlo Ghirardi. Non-
interferometric tests are guiding the way, but genuine quantum superposition tests
will be required to demonstrate that quantum physics ultimately holds in this mass
regime.
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Tests in Space

Rainer Kaltenbaek

Abstract The technological progress on ground and in space have rendered space an
increasingly attractive platform for highprecision fundamental tests of physics. Here,
wewill discuss a specific example: themission proposalMAQROfor amedium-sized
space mission with the goal of testing quantum physics with high-mass dielectric
particles. In particular, we will provide an overview of the origins of MAQRO,
the on-going development of the mission and payload design and the remaining
challenges that need to be faced before a possible launch. The origins of theMAQRO
proposal have benefited greatly from the work of G. C. Ghirardi. His work provided
the framework for estabilishing experimental benchmarks to meet when testing for
potential deviations from the pedictions of quantum physics.

Over the last decades, there has been impressive progress in space technology thanks
to missions like LISA [1] and LISA Pathfinder [2]. The rapid development of space
technology in combination with the possibility of harnessing the unique environment
of space provided fertile ground for our mission proposal MAQRO [3]: the vision
of realizing a space platform for testing the foundations of quantum physics. In
developing the concept of MAQRO, collapse models have played a central role by
providing challenging bench marks for the mission design. The main motivation for
MAQRO has been to develop a quantum physics platform in space to test quantum
physics with macroscopic test masses. Gravitational collapse models like the ones
of Diósi [4, 5] and Penrose [6] were of particular interest because they indicated one
could expect deviations from quantum physics due to gravitational effects for test
masses on the order of 109 atomic mass units (amu) or more.

Although I never had the pleasure of meeting G. C. Ghirardi, his work on collapse
models and the influence of his research on others have proved crucial in developing
MAQRO. He and others developed the mathematical framework for the Ghirardi-
Rimini-Weber (GRW) [7] and continuous spontaneous localization (CSL) [8]models
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and for parameterizing and describing potential deviations from the coherent evolu-
tion of quantum superpositions. In the following, we will describe the motivation
behind performing experiments in space. We will give an overview of the develop-
ment of the mission concept of MAQRO and of recent results of a study performed
together with the European Space Agency (ESA) at their Concurrent Design Facility
(CDF) about a potential future realization of a quantum physics platform (QPPF) in
space [9].

1 Beyond State of the Art

Recently, there have been suggestions to use not center-of-mass superpositions to test
quantum physics and collapse models in order to circumvent some of the challenges
one needs to face to realize and to maintain macroscopic center-of-mass superposi-
tions. For example, it was suggested to use rotational degrees of freedom instead [10],
which could be less sensitive to decoherence in position space. The most favorable
argument for this approach would be that one does not require the implementation
of an interferometer and therefore does not need to keep a large experimental setup
interferometrically stable. Especially in the low-frequency regime, this could prove
a significant advantage. Nevertheless, it can be argued that testing center-of-mass
superpositions is the most direct way of testing the quantum superposition principle
in the spirit of G. C. Ghirardi and others. In addition, the technological readiness of
interferometric setups is well established in comparison to using rotational degrees
of freedom. A central advantage of interferometric tests is that they provide unequiv-
ocal bounds on collapse models like the CSLmodel. For comparison, indirect exper-
imental tests look, e.g., for spurious heating of the center-of-mass motion due to
collapse processes [11, 12]. Bounds resulting from such tests can depend on the
specific noise model for the collapse.

One can confirm the successful preparation of a center-of-mass superposition by
observing matter-wave interferometry. The preceding chapters showed the state of
the art of such experiments with the mass record being held by the group ofM. Arndt
with masses on the order of several 104 amu [13, 14]. Matter-wave experiments with
high-mass test particles have not yet achieved combative restrictions on the GRW or
CSL collapse models. Instead, some of the strongest bounds result from the evalua-
tion of data fromLISAPathfinder and from tests not observing spurious heating of the
motion of cantilevers [11, 15]. Significant progress in observing matter-wave inter-
ferometry with increasing test masses promises novel, stronger bounds on the CSL
model. To cover significant parts of the remaining untested CSL parameter range,
one has to increase by several orders of magnitude (a) the size of the superposition
and/or (b) the test masses. Both approaches face specific challenges:

(a) increasing the superposition size in Talbot-type interferometers is difficult
because the required coherence time scales with the square of the superposi-
tion size. As an alternative, one can consider non-classical state preparation like



Tests in Space 403

pulsed quantum optomechanics [16] or Bordé-type matter-wave interferometry
harnessing spin to center-of-mass coupling [17]. It has also been suggested to
dynamically modify the size of quantum states of levitated objects in a potential
landscape [18]. For now, these methods are far from realization and from the
technical readiness of state-of-the-art Talbot-type matter-wave interferometry.

(b) the mass of the test particles used in Talbot-type matter-wave interferometry has
continuously increased over the last decades. Apart from technical challenges,
the required coherence time in such experiments scales linearly with the test
mass. To cover all or at least most of the remaining untested parameter regime
of the CSL model, one would need to increase the test mass from below 105

amu at the moment to about 109 amu or 1010 amu. This will require coherence
times on the order of tens or even hundreds of seconds. If the test masses are
not suspended or trapped in some way, this also means that the test particles
need to be in free fall for tens or hundreds of seconds. As we will see, such
long free-fall times are a very good argument to perform such experiments in
space. Novel proposals using charged [19] or magnetically suspended [18] test
particles might overcome this limitation in the future, but these proposals may
well suffer from other practical limitations not yet fully understood. For compar-
ison: when it was first suggested to perform quantum experiments with optically
trapped particles, the central toolbox for dealing with optically trapped dielec-
tric particles was already well established due to efforts of the atom-trapping
community (see, e.g., Ref. [20]). Still it took about 10 years to achieve sufficient
control over optically trapped particles to cool them close to the ground-state of
motion [21], but significant challenges still remain in order to use optomechani-
cally prepared dielectric particles for high-massmatter-wave interferometry. For
example, while there has been progress [22, 23], there is still no reliable way to
load single, massive and neutral dielectric particles into an optical trap in ultra-
high vacuum. Also, there are significant challenges in creating non-classical
states for matter-wave interferometry. For example, as the test particles become
more massive, their radius becomes comparable to or even larger than the wave-
length of the light used for the standing-wave gratings in a Talbot-type inter-
ferometer [24, 25], and gas collisions may pose an ultimate limitation to such
experiments [9]. For comparison, the theoretical proposals for using charged
particles or magnetically suspended particles are still very recent, so it is diffi-
cult to estimate which technical or fundamental challenges these approaches
may face in the future. For example, low-frequency vibrations could pose a
significant challenge, and the vacuum requirements for particles with a mass of
~1013 amu may prove challenging even at very low temperatures.

2 Why Space?

As we will argue below, a deep-space environment could provide significant advan-
tages compared to ground-based experiments, but one has to be keenly aware that
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space-based experiments are also extremely expensive, time consuming and techno-
logically challenging. For these reasons, one should not only have a good argument
why one wants to do an experiment in space, but one also has to show that it is
possible and that no-one could do a similar experiment on ground within the fore-
seeable future. That means, within the next 20 years, which is usually about the time
it takes to get a space mission going from the moment one already has a reasonable
concept.

Needing a long free-fall time would not be a sufficient reason to go to space.
For example, there are also parabolic flights, where one can have tens of seconds of
free-fall time, and there are sounding rockets with a few minutes of free-fall time
(see e.g. Ref. [26]). The crucial point is that in order to test quantum physics using
high-mass matter-wave interferometry one not only has to have free-fall times on
the order of tens or hundreds of seconds but one also must prevent vibrations from
washing out the interference pattern. In particular, one requires a rather high-quality
microgravity environment between 10−6 and 10−9 g, depending on the test masses
[27]. At present, such conditions are potentially achievable on Earth for times on
the order of one second, for example, by using a free-fall capsule within a free-fall
capsule in the drop tower in Bremen [28]. Longer free-fall times are achievable in
parabolic flights, but the microgravity environment there is by far not good enough.
In sounding rockets, it may be conceivable to isolate the experiment well enough,
but in this case one faces the problem that one would have to collect a sufficient
number of data points in one shot. For the high-mass test particles we are interested
in, typically one would only get one data point or maybe a few during one flight of
a sounding rocket. This is far from the thousands or tens of thousands of data points
one would need to resolve a single interference pattern [29].

But how sure are we that no-one will come up with a clever idea within the
near future to perform comparable tests on ground? As we mentioned earlier, there
already have been suggestions of using alternatives to Talbot-type interferometry to
test quantum physics with high test masses. However, these are just ideas so far, and
it is unclear if and when it will be possible to realize them. One should also note that
quantum physics is one of the most successful physical theories we have. If we do
an experiment with the potential to see deviations from the predictions of quantum
physics, we would want to be very certain indeed that we can trust the results. In
addition,wehave the question of scaling: state-of-the-art experiments have confirmed
quantum physics with test masses up to a few 104 amu. Ground-based tests in the lab
or in a drop tower could successfully test quantum physics up to masses of possibly
106 amu. MAQRO would aim for tests between 108 amu and 1010 amu [29]. Using
non-interferometric tests, MAQRO could potentially cover a wider mass range. The
proposal of O. Romero-Isart’s group would aim for test particles with a mass beyond
~1012 amu [18]. In order to test the predictions of quantum physics as well as the
predictions for standard decoherencemechanisms and for physicalmodels predicting
deviations from quantum physics, it will be crucial to have a continuous coverage
of the range of masses. In this sense, ground-based experiments and experiments
in microgravity and in space will perfectly complement each other, and they will
provide sanity checks in parameter regimes covered by multiple platforms.
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3 MAQRO—Macroscopic Quantum Resonators

In 2010, me and a few colleagues pondered on the question whether we could use
a space environment to perform tests of quantum physics or to realize applications
of quantum physics using novel space technology originally developed for LISA
and LISA pathfinder as well as GAIA and the James-Webb Space Telescope in
combination with the novel idea of using optically trapped particles as a quantum
optomechanical system.

After investigating a large variety of ideas in terms of their feasibility, we came to
the conclusion that it should indeed be possible to perform matter-wave interferom-
etry with high-mass dielectric particles in space using optomechanical state prepa-
ration in combination with a post-selection procedure for preparing non-classical
quantum superposition states. We developed this idea into a mission concept and
submitted it as a mission proposal called “MAQRO” in response to ESA’s call for
proposals for a medium-sized mission in 2010 [3].

MAQROcontainedmanyunique ideas, but let us concentrate on those of imminent
interest in the context of collapse models and tests of quantum physics:

• MAQRO was the first dedicated mission proposal to test the foundations of
quantum physics. While there had been proposals of using atom interferometry
in space, the science goals of these mission proposals were to use atom interfer-
ometry as a tool to test general relativity or to test the applicability of general
relativity to quantum objects [30].

• Not taking into account environmental decoherence, the post-selection based
method of preparing quantum superpositions in this first version of the proposal
would have allowed to prepare (nearly) arbitrarily large superpositions. The
central idea was to focus a short-wavelength pulse of light much narrower than
the width of the wave function at the very center of the wavefunction. The width
of the superposition would then depend on the size of the laser waist and the laser
intensity. Within the laser beam and close to it, the quantum state would decohere
due to light scattering, but parts of the wavefunction sufficiently far from the beam
center would remain coherent [3, 27]. For practical reasons, we later replaced this
method with a Talbot-type approach [31]. Some of the problems were: (1) the
focused laser beam would decohere most of the quantum state and therefore lead
to only a limited amount of interference visibility on top of the background of fully
localized particles, (2) lasers at the required short wavelength (~30 nm) are far
from being space-qualified, (3) the short wavelength could induce color centers
in the test particles used, and (4) the required free-fall times would have been
several 100 s [3].

• Our spacecraft design was optimized to reduce any environmental decoherence
effects. That means, we aimed to achieve extremely high vacuum and cryo-
genic temperatures while at the same time ascertaining a very high quality of
microgravity comparable to LISA Pathfinder.

• The environmental conditions were to be achieved by directly harnessing a deep-
space environment without the need for active cooling. This allowed for extremely
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good microgravity, low weight, (comparatively) low cost and extended lifetimes
in order to collect high amounts of data and achieve high statistical significance
[3, 32, 33].

Our proposal was well received and it was followed by a lot of activity over the
following years in order to further develop the mission concept, the mission design
as well as some of the core technology. We will provide a short overview of these
developments in the following.

From 2011 to 2012, I led an ESA study (MQES) with members of the Aspelmeyer
group, and in collaborationwithG.Hechenblaikner andU. Johann (AirbusDefence&
Space) with the goal of defining experiments using quantum optomechanics in space,
to devise possible designs and to derive the corresponding scientific and technological
requirements [27].

The study proposed and focused on two experiments:

• DECIDE: this was a more detailed development of the central experiment
proposed in MAQRO. That means, quantum optomechanics is used to prepare
an optically trapped dielectric test particle in a low-entropy state. After this state
preparation, matter-wave interferometry is used to confirm the preparation of the
macroscopic superposition, and the test results are compared with the predictions
of quantum physics and with deviations predicted by collapse models or other
alternative theoretical models.

• WAX: the layout for this experiment is simpler than for DECIDE. Instead of
performing matter-wave interferometry, one simply lets the wavefunction expand
over time, and the width of the wavepacket determined in the experiment is
comparedwith the predictions of quantum theory andwith the predictions of alter-
native theoretical models. This experiment has less demanding technical require-
ments than DECIDE and could operate even in the presence of stronger sources
of decoherence.

Since 2012, we have investigated specific core technologies of MAQRO in more
detail: (a) methods for loading dielectric nanoparticles into an optical trap in ultra-
high vacuum (UHV) [34] and (b) optimized designs of the thermal shield design
of MAQRO, which is necessary to achieve the required vacuum and cryogenic
temperature conditions [32, 33].

In 2015, ESA published another call for proposals for a medium sized mission.
This call required a very high technological readiness level (TRL) for the missions
proposed in order to be launched on a short time scale.WhileMAQRO did not satisfy
these conditions, we used this opportunity to further improve themission design. The
most noteworthy changes were the following:

• we adapted the payload to perform Talbot-type near-field interferometry instead
of the far-field interferometry approach used in the original MAQRO proposal.

• we proposed to use multiple cavity modes in order to achieve 3D cooling of the
center-of-mass motion of the test particle.

• we took into account the results of the MQES study in order to better define the
scientific and technical requirements of MAQRO.
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• we replaced the original loading mechanism for test particles (launching them via
surface-acoustic waves from a piezoelectric substrate) with a more sophisticated
approach, where the particles are initially charged and loaded into hollow-core
fibers inside the spacecraft. They are then transported outside the spacecraft using
linear Paul traps to confine them and buffer gas to cool their internal temperature.
Outside the spacecraft, the particles are then discharged and loaded into an optical
trap for the experiment.

• weadopted recent results of twofinite-element studies on passive radiative cooling
using the heat shield design of MAQRO.

4 QPPF—A Quantum Physics Platform in Space

In 2017, testing quantum physics with high test masses and testing a possible tran-
sition between the predictions of quantum physics and classical physics has been
chosen as one of the New Science Ideas of ESA. As a consequence, ESA performed
a detailed study at their Concurrent Design Facility (CDF). The study investigated
the engineering details of a “Quantum Physics Platform” (QPPF) in space based on
the MAQRO mission design [9].

The study provided an updated design, where the payload was to be inside a
protective cover outside the space craft. The conical heat shields of MAQRO were
replaced with a V-grove structure to accommodate a larger payload volume. In addi-
tion, the payload was to be also actively cooled by a hydrogen sorption cooler in
order to achieve the necessary cryogenic temperatures with certainty.

The results of the study showed that the mission is, in principle, feasible and could
be realized in the mid 2030 s. In the CDF study, we identified several critical issues
that need to be addressed:

• Vacuum: because the payload is not open to space, the achievable vacuum will
not be as good as required for MAQRO (10−15 mbar). Either we find ways to
achieve the necessary vacuum, or we have to restrict ourselves to smaller test
particles and/or to shorter free-fall times.

• Loading mechanism: ESA suggested a different loading mechanism, but in any
case the loading mechanism [9], the transport of the test particles and the state
preparation and the discharging of the test particles remain to be demonstrated.

• Light scattering: as the test particle size is comparable to the grating wavelength
in a Talbot-type approach, the scattering of light may decohere the quantum state
[25]. Either we show that this approach can still work, or we need a different way
to prepare our non-classical states.
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5 The Experiments to Be Performed

We already described the two central experiments very briefly in the context of the
MQES study above, where we denoted these experiments as DECIDE andWAX.We
later dropped these acronyms as the respective ideas developed further. There are still
(at least) two experiments to be performed: wave-packet expansion and matter-wave
interferometry. In either case, the first step of the experiment is always to optically
trap a dielectric test particle and to cool its center-of-mass motion. How much we
have to cool the motion depends on the free fall time, the size of the optical modes
used for measuring the particle position and on the sensitivity we want to achieve.

In order to achieve the necessary optomechanical interaction while reducing
potential surface interactions, we always assumed to use a long, high-finesse cavity
in MAQRO. This requires very narrow modes such that the test particle will typi-
cally move out of the cavity mode during long free-fall times. In order to later detect
the particle’s position via optical means, we need an additional, wider optical mode
perpendicular to the cavity mode.

To observe wavepacket expansion, the experimental steps are:

1. Load and then optomechanically cool a test particle.
2. Release the particle and let it evolve freely for some time t .
3. Optically detect the position of the test particle.

These steps are repeated many times, and the standard deviation of the positions
measured will give the width of the wavepacket. This can be done for different times
t and for different particle sizes and materials. It should be noted that the test particle
remains close to its original position defined by the optical modes because in space
the whole setup will be in free fall.

To observe matter-wave interferometry, we have to add an additional step: in the
case of Talbot-type interferometry, we spatially overlap the transverse infrared beam
perpendicular to the cavity mode with a short-wavelength pulse of light to realize a
phase grating for the dielectric test particle. The steps of the experiment then are the
following:

1. Load and then optomechanically cool a test particle
2. Release the particle and let it evolve freely for some time t1.
3. Use a short-wavelength pulse to realize a phase grating (pulse duration much

shorter than the mechanical oscillation period) [35].
4. Let the particle evolve freely again for a time t2.
5. Optically detect the position of the test particle.

6 Using the Results to Test Quantum Physics

If we want to test quantum physics, we need to have somemeasure for any deviations
we might see. Any realistic experiments will of course not give the exact values
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predicted by quantum theory. For example, we will never see 100% interference
visibility. The question then is: when do we consider a deviation to be significant?

Typically, the most significant deviations from free quantum evolution will result
from environmental decoherence. Examples are: (1) collisions with gas particles, (2)
emission, absorption, scattering of blackbody radiation, (3) scattering of (cosmic)
radiation, (4) stray electromagnetic fields. Of course, one could extend this list. For
example, one can also include higher-order effects of some of these decoherence
mechanisms. The question is: when is our measurement precise enough?

One of the big benefits of collapse models in the context of MAQRO is that they
provide us with specific numeric predictions of deviations from free evolution. This
then gives us a benchmark for how well we have to isolate our quantum system
from environmental decoherence and, for example, how good our micro-gravity
environment needs to be such that the interference pattern is not washed out too
much.

Collapse models typically also predict a different parameter dependence of deco-
herence compared to environmental decoherence. The same may hold true for
deviations from quantum physics due to quantum gravitational effects or similar.

7 Recent Results and Current Efforts

After the first proposals in 2009 and 2010 to use optically trapped particles to do
quantum optomechanics [36–38], researchers were optimistic that it would not take
long to bring these systems into the quantum regime by cooling the center-of-mass
motion close to the quantum ground state. Unfortunately, achieving this goal has
proved surprisingly difficult, often due to verymundane reasons. For example, getting
clean dielectric particles trapped in ultra-high vacuum has long proved a challenge.
It was achieved in the Novotny group in 2012 by using feedback cooling to keep
particles stably trapped even at low pressures [39]. In 2013, the first demonstration
of side-band cooling of optically trapped dielectric particles was reported [40], and
very recently the Aspelmeyer group demonstrated the use of coherent scattering for
optomechanical cooling [41]. The same approach was then also implemented by the
Novotny group [42]. A very important benefit of this method is that it requires less
laser power and therefore reduces the effects of laser shot noise and optical heating
on the trapped particles. Using this technique, ground-state cooling is now achievable
[21].

Using hollow-core fibers for particle transport has been demonstrated by the
Aspelmeyer group in 2016 [23], and the Northup group and the Barker group have
reported a range of interesting experiments using charged dielectric particles (e.g.,
Refs. [19, 43]). Controlling the charges of dielectric particles has been reported by
the groups of Geraci [44, 45] and Novotny [46].
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8 The Next Steps Towards Experiments in Space

Now that optically trapped dielectric particles are entering the quantum regime, we
can soon expect a series of proof-of-principle experiments and potentially also first
applications. At the same time, efforts are on-going to make the loading of the test
particles more reliable and to achieve optical trapping at extremely high vacuum
levels in order to limit collisional decoherence.

The loading and the delivery of test particles have to be combined with reliable
techniques of charge control. In the context of future space experiments, some of
the methods used/proposed in the laboratory will not be applicable, and we will
have to adapt more space-suitable techniques in some cases. For example, particle
loading via laser desorption could be challenging in space due to mass and power
limitations as well as the lack of space-proof lasers necessary for this technique.
Alternatives may be piezoelectric or MEMS devices [3, 9, 34]. Suggested methods
for charge control using plasma close to the dielectric particles [46] is only feasible
in the presence of some residual gas—not in the case of near perfect vacuum required
for MAQRO.

9 Conclusions

Efforts towards future space-based tests of quantum physics have come a long way.
Ground-based experiments haveprovidedproof-of-principle demonstrations ofmany
of the techniques involved, and the success of the LISAPathfindermission has shown
it is possible to realize an extremely good microgravity environment in space [47].
The selection of QPPF as a New Science Idea by ESA shows that testing quantum
physics has attracted significant interest from space agencies, and the study showed
that such tests are, in principle, feasible within the foreseeable future [9].

Without the efforts of G. C. Ghirardi and others this would not have been possible.
They have shown us the way towards testing for possible deviations from the predic-
tions of quantum physics. Who knows where this road will lead? An interesting
analogy might be that the quest for detecting gravitational waves fueled efforts
towards increasingly sensitive measurements. Apart from leading to the seminal
success of detecting gravitational waves, these efforts resulted in high-sensitivity
measurements even beyond the quantum limit and they led to the completely new
field of quantum optomechanics. In a similar way, the quest to isolate increasingly
macroscopic systems to study novel sources of decoherencemay lead to novel discov-
eries we cannot yet point the finger to, but we can be excited about the opportunities
arising.
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Sneaking a Look at Ghirardi’s Cards:
Collapse Models Mapped with the
Spontaneous Radiation

K. Piscicchia, R. Del Grande, M. Laubenstein, and C. Curceanu

Abstract The collapse models were proposed more than 30 years ago to save the
poorSchrödinger’s cat from its zombie-fate. In thesemodels the standardSchrödinger
equation is modified with the introduction of non-linear and stochastic terms, natu-
rally collapsing the wave function in space. Ghirardi was pioneering these models,
which predict deviations from the standardQuantumMechanics. One of these predic-
tions is the emission of a “spontaneous radiation”, which we explored to set the most
stringent limits on the collapse models parameters in a broad range. This allowed us
paraphrasing the title of his famous book, to sneak a look at Ghirardi’s cards.

1 Introduction

Quantum Mechanics has been experimentally confirmed with outstanding precision
and represents the most complete and successful theory of the microscopic world.
However, since its formulation, the tension among the linear and unitary character
of the Schrödinger equation and the wave packet reduction principle—needed to
account for the measurement process—demands for a deeper understanding. More-
over the superposition principle does not seems to apply to the macroscopic objects,
the scale which marks the transition among quantum and classical worlds being
unknown.

In this contextGianCarloGhirardi proposed collapsemodels as phenomenological
solutions to overcome what is usually referred as the measurement problem (see
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e.g. Ref. [1]); they consist in a dynamical reformulation of the standard Quantum
Mechanics, which is realised by modifying the linear and unitary evolution given by
the Schrödinger equation by adding non-linear terms interacting with a stochastic
noise field. Collapse models account for the wave function collapse in space, which
is characterised by an amplification mechanism, the biggest the mass the faster the
reduction of the wave packet. The quantum to classical transition is then realised by
ensuring that macroscopic objects always have well defined positions. On the other
hand the interaction with the noise field is very small at the microscopic level, where
the standard Schrödinger evolution dominates.

Phenomenological collapse models embed slight deviations from the standard
quantummechanics predictions, in particular an unavoidable effect of the non-linear
interaction with the noise field represented by emission of a spontaneous radiation
[2]. When collapse occurs the centre of mass is shifted towards the localized wave
function position, and since the process is random this results in a diffusion motion
which determines, for charged particles, the emission of photons.

Wewill review in this work the experimental constrains on the so-called Ghirardi-
Rimini-Weber (GRW) and Continuous Spontaneous Localization (CSL) models,
obtained by analysing X-ray spectra measured in high precision low-background
experiments, exploiting the predicted spontaneous radiation emission process.

The paper is organized as follows: in Sect. 2, we briefly describe the GRW and
CSL models and introduce their characteristic physical parameters λ and rC . In the
same section we also introduce the gravity related collapse model introduced by
L. Diósi and R. Penrose (DP). In Sect. 3 we review recent constrains on the GRW
and CSL models (see also Ref. [3, 4]) based on the spontaneous radiation emission
search. In Sect. 4 we present the ongoing experimental efforts and future perspectives
for further improving the limits on λ and rC and for setting stringent constraints on
the DP model.

2 Collapse Models and Characteristic Physical Parameters

In the GRW [5] model particles experience spontaneous localizations in space
around appropriate positions, at random times according to a Poisson distribution
with mean rate λ. The mechanism is designed such that the Born rule is recov-
ered. The wave function localization at the position a is realised by the operator

La = (πr2C)−3/4e
− (q−a)2

2r2C (where q is the position operator), among subsequent local-
izations the evolution is determined by the Schrödinger equation. Considered the
superposition of two one dimensional wave packets characterised by a width l � rC
and a separation 2a � rC , then the application of La (with appropriate normaliza-
tion) determines the localization around awith a probability which recovers the Born
rule.

In the GRWmodel the localization process does not preserve the symmetry of the
wave function, hence it can not be applied to a system of identical particles. The prob-
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lemwas solvedwith the introduction of theCSLmodel [6, 7], developed in the second
quantization formulation. In the CSL the standard Hamiltonian is modified with the
introduction of non-linear and stochastic terms, characterized by the interaction with
a continuous set of independent noisesw(x, t) (one for each point of the space, which
is why this set is often referred to as “noise field”) having zero average and white
correlation in time, i.e., E[w(x, t)] = 0 and E[w(x, t)w(y, s)] = δ(x − y)δ(t − s)
where E[...] denotes the average over the noises. Two phenomenological parameters
(λ and rC ) are introduced in the model. The parameter λ has the dimensions of a rate
and sets the strength of the collapse, while rC is a correlation length which deter-
mines the spatial resolution of the collapse: the collapse is weaker for a superposition
with size much smaller than rC , compared to the case in which the delocalization is
much larger than rC . The values originally proposed by Ghirardi for λ and rC are [5]
λ = 10−16 s−1, rC = 10−7 m. Higher values for λ were also suggested by Adler [8],
up to λ = 10−8±2 s−1.

The energy distribution of the spontaneous radiation, emitted as a consequence
of the interaction of free electrons with the collapsing stochastic field, was first
calculated by Fu [2] and later on studied in more detail in [9–12], in the framework
of the non-relativisticCSLmodel. If the stochastic field is assumed to be awhite noise,
coupled to the particlemass density (mass proportional CSLmodel), the spontaneous
emission rate is given by:

d�(E)

dE
= e2λ

4π2r2Cm
2
N E

, (1)

where e is the charge of the proton, mN represents the nucleon mass and E is the
energy of the emitted photon. In the non-mass proportional case, the rate takes the
expression:

d�(E)

dE
= e2λ

4π2r2Cm
2
e E

, (2)

with me the electron mass.
Using the measured radiation emitted in an isolated slab of Germanium [13]

corresponding to an energy of 11 keV, and comparing it with the predicted rate in
Eqs. (1) and (2), Fu extracted the following upper limits on λ for the two cases:

λ ≤ 2.20 · 10−10 s−1 mass prop., (3)

λ ≤ 0.55 · 10−16 s−1 non-mass prop., (4)

assuming that the correlation length value is rC = 10−7 m. In his estimate, Fu consid-
ered the contribution to the spontaneous X-ray emission of the four valence electrons
in the Germanium atoms. Such electrons can be considered as quasi-free, since their
binding energy (of the order of ∼10 eV) is much less than the emitted photons’
energy. In Ref. [8], the author argues that an erroneous value for the fine structure
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constant is used in Ref. [2]. This correction is taken into account in the analysis
described in Sect. 3. Further, the preliminary TWIN data set [13] used by Fu to esti-
mate the upper limit on λ turned out to be underestimated by a factor of about 50 at
10 keV.

A new analysis was performed in Ref. [14]. Based on the improved data presented
in Ref. [15], the limits corresponding to the footnote [7] in Ref. [14], for the cases
of mass proportional and non-mass proportional CSL models, were:

λ ≤ 8 · 10−10 s−1 mass prop., (5)

λ ≤ 2 · 10−16 s−1 non-mass prop.. (6)

To conclude this section, among the most intriguing collapse models, of great
charm, is the gravity related collapse model named Diósi-Penrose (DP) after the
authors [16] (first proposed by Diósi, and later by Penrose, based on independent
arguments on the behavior of spacetime in presence of quantum superpositions). DP
proposes that gravity might be the ultimate explanation for the wave function col-
lapse. Gravity is universal, and its magnitude increases with increasing mass, match-
ing the amplification requirements of the collapse. Since no experimental evidence
is available so far for gravity quantization, this could give the non-linear coupling
which is necessary for the quantum linearity breakdown.

More in detail DP sets the correlation function of the noise equal to the Newtonian
gravitational potential. The DP introduces only one cut-off length phenomenological
parameter R0, which cures the ultraviolet divergence of the gravitational interaction.
The effective collapse rate, analogous to λ, is given by (Gm2

N )/(
√

π�R0), while R0

describes how well an object is localized, in analogy to rC .

3 Recent Upper Limits on λ from Spontaneous Radiation
Search

Recently themost stringent limits on the collapse rate parameterλwere set, in a broad
range of the λ − rC parameters space, and in particular for rC = 10−7 m, looking
for signature of spontaneous radiation emission in extremely low background X-ray
spectra. In Ref. [3, 4] the data collected by the IGEX experiment [17] is analysed
based on various techniques. IGEX is a low-background experiment originally con-
ceived for the neutrinoless double beta decay (ββ0ν) search. The analyses described
in Ref. [3, 4] refer to the data set published in Ref. [18], the measurement exploited
one High Purity Germanium detector (HPGE) (active mass of about 2kg) with an
80kg day exposure (the total mass which is considered to be possible signal source
multiplied by the total acquisition time). The shielding and the cryostat were pro-
duced following ultra-low background techniques, since the main contamination is
represented by the radionuclides emission. The experiment had an overburden of
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2450 m.w.e. (metres of water equivalent) , corresponding to a muon flux of 2 · 10−7

cm−2 s−1, moreover a cosmic muon veto covered the top and the sides of the shield.
In Ref. [18] a Monte Carlo (MC) simulation of the background from known emis-
sion processes is not given, nor a simulation of the detection efficiency. The main
inefficiency sources are due to the muon veto anti-coincidence and the adopted pulse
shape analysis. The probability of rejecting non-coincident events with the muon
veto was found to be less than 0.01. The pulse shape analysis contributes negligibly
to the efficiency loss for energies above 4 keV.

In Ref. [3] the X-ray experimental spectrum published in [18] is fitted in the
range �E = (4.5 ÷ 48.5) keV by minimising a χ2 function, assuming the expected
number of counts in each 1 keV bin to be given by the theoretical prediction Eqs. (1)
and (2), i.e. the fitting function is:

d�(E)

dE
= α(λ)

E
. (7)

�E is compatible with the non-relativistic assumption (for electrons) used in the
calculation of the predicted rate.MoreoverEqs. (1) and (2) are valid for free electrons;
this assumption is accurate if the spontaneous emission of the 22 external electrons of
each Ge atom is considered, down to the 3s orbit. The binding energy of the 3 s orbit
is 180.1 eV—much less then the lower energetic measured photon—the 22 outermost
electrons can then be considered as quasi-free. From the fit the value α(λ) = 110 ± 7
is obtained, corresponding to a reduced χ2/(n.d. f. − n.p.) = 1.1 (n.d. f. represents
the number of degrees of freedom, n.p. is the number of free parameters of the fit).
The upper limits on λ are then extracted using Eqs. (1) and (2):

d�(E)

dE
= c

e2λ

4π2r2Cm
2E

≤ 121.48

E
, (8)

where the factor c is given by:

c =
(
8.29 × 1024

atoms

kg

)
· (80 kg × day) ·

(
8.64 × 104

n.of seconds

day

)
· (22),

(9)

the first bracket accounts for the particle density ofGermanium, the second represents
the amount of emittingmaterial expressed in kg× day, the third term is the number of
seconds in one day and 22 represents the number of spontaneously emitting electrons
for each Ge atom. Applying Eq. (8), the following upper limits for the reduction rate
parameter are obtained:

λ ≤ 9.4 · 10−12 s−1 mass prop., (10)

λ ≤ 2.8 · 10−18 s−1 non-mass prop., (11)
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Fig. 1 X-ray emission
spectrum measured by the
IGEX experiment [17, 18]
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corresponding to a probability of 0.95.
This procedure is implicitly based on two assumptions: first, the measured spec-

trum is assumed to be background free, that is to say that the upper limits on λ cor-
respond to the case in which all the measured X-ray emission would be originated in
spontaneous emission processes. This ansatz is conservative, and is necessary since
in Ref. [18] a MC description of the background is missing. The second assumption,
consistent with the analysis presented in Ref. [18], is that the detector efficiency,
in the range �E , is one, and that the inefficiencies which are introduced by the
muon veto anticoincidence and the pulse shape analysis, performed to extract the
experimental spectrum in Ref. [18], are very small for energies greater than 4 keV.

Based on these considerations and with the aim to account for the spontaneous
emission of the 30 outermost electrons of the Ge atoms (considered as quasi-free) a
new analysis of the same data set is performed in Ref. [4]. The measured spectrum is
analysed in the range �E ′ = (14.5 ÷ 48.5) keV, the binding energy of the 2 s orbit
in Ge is still one order of magnitude smaller than 14.5 keV, justifying the quasi-free
hypothesis. The experimental spectrum is shown in blue in Fig. 1.

The spectrum is scarcely populated in the range �E ′, the bin contents yi are then
considered to fluctuate around themean values�i according to Poisson distributions.
By applying the Bayes theorem the probability distribution function for the collapse
rate parameter λ is then obtained:

G ′(λ) ∝
(

n∑
i=1

α(λ)

Ei
+ 1

)y

e
−

(∑n
i=1

α(λ)

Ei
+1

)
. (12)

In Eq. (12) the expected number of signal counts is calculated from Eq. (7), n is the
number of bins each corresponding to an energy Ei , the total number of measured
counts is y = 130. The upper limits on the λ parameter are obtained by solving the
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Fig. 2 Mapping of the
λ − rC Continuous
Spontaneous Localization
(CSL) parameters: the
originally proposed
theoretical values
(GRW, Adler) are shown as
black points; the region
excluded by theory (theory)
is represented in gray. The
excluded region according to
our analysis is shown in cyan
for the non-mass
proportional case (n-m-p)
and in magenta for the mass
proportional case (m-p)

following integral equation, i.e. by equating the cumulative distribution function to
0.95:

∫ λ0

0
G ′(λ) dλ = 0.95, (13)

from which the upper limits on λ are

λ ≤ 6.8 · 10−12 s−1 mass prop., (14)

λ ≤ 2.0 · 10−18 s−1 non-mass prop., (15)

with probability 0.95 having set rC = 10−7 m.
Figure2 represents the exclusion plot in the λ − rC plane letting the rC parameter

to vary. The originally proposed values are shown, together with the results of the
Bayesian analysis, in cyan the region excluded for the non-mass proportional case
and in magenta for the mass proportional case. The gray band is excluded by theory
(see Ref. [19]).

Figure2 can be compared with Fig. 2 in Ref. [20], where the mapping is obtained
using other measurements. It is interesting to note that, for a collapse induced by a
white noise, the allowed parameter space is confined to a drastically reduced region.
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4 Ongoing Experimental Efforts and Future Perspectives

In the last few years we devoted big effort to design experimental setups dedicated
to collapse models tests, with the goal to improve the experimental limits obtained
by using the IGEX data. Two data taking runs were performed corresponding to
exposures of 124kg× day and 141.4kg× day respectively. The experimental setups
were based on HPGe coaxial p-type detectors (about 2kg active area) surrounded
by a complex shielding structure (layers of radio-pure electrolytic copper and roman
lead), operated in the extremely low-background environment of the underground
Gran Sasso Laboratories of INFN (Italy).

The most significant improvement is represented by a complete MC characteriza-
tion of the detector and all of its components, the simulation based on the GEANT4
software library. This allows an accurate determination of the background from resid-
ual radionuclides contained in the setup materials. Moreover the detection efficiency
was carefully determined, as a function of the energy, for spontaneous photons emit-
ted in each component close to the crystal.

The accurate knowledge of the background, as well as the determination of the
spontaneous emission contributions from all the apparatus components will improve
the bound on λ by at least one order of magnitude, and will allow to set the first limit
ever on the characteristic length R0 of the DP model.
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New Avenues for Testing Collapse Models

Andrea Vinante and Hendrik Ulbricht

1 Introduction

There is an increasing interest in developing experiments aimed at testing collapse
models, in particular theContinuous LocalizationModel (CSL), the natural evolution
of the GRW model initially proposed by Ghirardi et al. [1–4]. Current experiments
and related bounds on collapse parameters are partially discussed in other contribu-
tions in this review. Our aim here is to discuss some of the most promising directions
towards future improvements. The paper is organized as follows. In Sects. 2, 3, 4
we will discuss noninterferometric techniques. In detail, in Sect. 2 we will discuss
mechanical experiments, bothwith conventional and levitatedmechanical resonators,
in Sect. 3 we will consider proposed experiment looking at bulk thermal heating of
solid bodies and in Sect. 4 we will briefly discuss the use of cold atoms or macro-
scopic condensates. In Sect. 5 we will outline proposals of matter-wave interference
with massive nano/microparticles. We will end in Sect. 6 with some ideas on how
precision experiments can be used for testing collapse models.

2 Noninterferometric Mechanical Tests of Collapse Models

2.1 Key Concepts

Noninterferometric spontaneous heating experiments have emerged in recent years
as a powerful and effective way to test collapse models. Some examples which
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Fig. 1 Simplified sketch of some of the noninterferometric methods to test collapse models dis-
cussed in this contribution. a Measuring the mechanical noise induced by CSL using an ultracold
cantilever detected by a SQUID (adapted fromRef. [15]);bMeasuring themechanical noise induced
by CSL using a levitated nanoparticle detected optically (adapted from Ref. [24]); cMeasuring the
heating induced by CSL in a solid matter object cooled to very low temperature (adapted from
Ref. [42]); d Measuring the increase of kinetic energy induced by CSL in a ultracold atoms cloud
(adapted from Ref. [44])

will be discussed in this contribution are shown in Fig. 1. We start by discussing
purelymechanical experiments. The underlying idea [5–7] is that amechanismwhich
continuously localizes the wavefunction of a mechanical system, which can be either
a free mass or a mechanical resonator, must be accompanied by a random force noise
acting on its center-of-mass. This leads in turn to a random diffusion which can be
possibly detected by ultrasensitive mechanical experiments.

In a real mechanical system such diffusion will be masked by standard thermal
diffusion arising from the coupling to the environment, i.e. from the same effects
which lead to decoherence in quantum interference experiments [8]. In practice there
will be additional nonthermal effects, due to external nonequilibrium vibrational
noise (seismic/acoustic/gravity gradient). Moreover, one has to ensure that the back-
action from the measuring device is negligible.

Under the assumption that thermal noise is the only significant effect, the (one-
sided) power spectral density of the force noise acting on the mechanical system is
given by:

S f f = 4kBTmω

Q
+ 2�

2η. (1)

where kB is theBoltzmann constant, T is the temperature,m is themass,ω the angular
frequency, Q is the mechanical quality factor. η is a diffusion constant associated
to spontaneous localization, and can be calculated explicitly for the most known
models. For CSL, it is given by the following expression

η = 2λ

m2
0

∫∫
d3r d3r′ exp

(
−|r − r′|2

4r2C

)
∂�(r)
∂z

∂�(r′)
∂z′ (2)

= (4π)
3
2 λ r3C
m2

0

∫
d3k

(2π)3
k2z e

−k2r2C |�̃(k)|2 (3)
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with k = (kx , ky, kz), �̃(k) = ∫
d3x eik·r �(r) and �(r) the mass density distribution

of the system. In the expressions above m0 is the nucleon mass and rC and λ are the
free parameters of CSL. The typical values proposed in CSL literature are rC = 10−7

m and 10−6 m, while for λ a wide range of possible values has been proposed, which
spans from the GRW value λ ≈ 10−16 Hz [1, 2] to the Adler value λ ≈ 10−8±2 Hz
at rC = 10−7 m [7]. The possibility for such non-interferometric tests, which aim to
directly test the non-thermal noise predicted by collapse models has been pointed
out first by Bahrami et al. [9] and the ideas has been picked-up rapidly by many
others [10–14].

An experiment looking for CSL-induced noise has to be designed in order to
maximize the signal to noise ratio between the CSL term and the thermal noise.
From Eq. (1) it follows that this is achieved by lowest possible temperature T , lowest
possible damping time or linewidth, 1/τ = ω/Q, and highest possible η/m ratio.
The first two conditions express the requirement of lowest possible power exchange
with the thermal bath, the third condition is inherently related to the details of the
specific model.

For CSL we can distinguish two relevant limits. When the characteristic size L of
the system is small, L � rC , then the CSL field cannot resolve the internal structure
of the system, and one finds η/m ∝ m. When the characteristic length of the system
in the direction of motion L is large, L � rC , then η/m ∝ ρ/L , where ρ is the mass
density [10, 12, 14]. The expressions in the two limits imply that, for a well defined
characteristic length rC , the optimal system is a plate or disk with thickness L ∼ rC
and the largest possible density ρ.

Among other models proposed in literature, we mention the gravitational Diosi-
Penrose (DP) model, which leads to localization and diffusion similarly to CSL. The
diffusion constant ηDP is given by [12]:

ηDP = Gρm

6
√

π�

(
a

rDP

)3

, (4)

where a is the lattice constant and G is the gravitational constant, so that he ratio
ηDP/m depends only on the mass density. Unlike CSL, there is no explicit depen-
dence on the shape or size of the mechanical system.

2.2 Cantilevers and Other Clamped Resonators

Experiments based on ultrasensitive cryogenic cantilevers have been historically the
first serious attempt to bound collapse models using diffusive mechanical exper-
iments. The micro/nanocantilever employed in these experiments are optimized
devices developed in the context of atomic force microscopy. They are character-
ized by low stiffness, relatively low frequency f0 ∼ kHz and high Q factors in the
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range 105 − 107. Operation at millikelvin temperature has been enabled by the use
of SQUIDs for detection.

Current cantilever-based experiments bound the CSL collapse rate to be lower
than 10−8 Hz at rC = 10−7 m, and 10−10 Hz at rC = 10−6 m, values which are
already partially excluding the Adler parameters [14, 15].

It is not easy to push much further the current limits. Operation at lower tempera-
ture appears challenging due to increasing thermalization problems, while mechan-
ical Q can be hardly improved over current values due to clamping losses. It can be
noticed that, unlike cantilevers, micromembranes with much higher quality factor
up to 109 have been demonstrated using an optimized design to suppress clamping
losses [16]. However, these outstanding values are obtained only in high stress mem-
brane at relatively high frequency ∼0.1–1 MHz. The ratio Q/ f0 is not improved by
this trick. Finally, pushing micromechanical systems to lower frequencies is possible
but this approach has not been much investigated so far.

A novel route towards a significant improvement, specifically valid for the CSL
model, has been recently proposed. The idea is to optimize the shape of a test mass
to be attached on the cantilever, in order to maximize the effect at a given value of rC
[17]. The proposed optimized shape is a multilayer structure, where many different
layers of two alternate materials with large difference in mass density are stacked
together. This configuration is predicted to enhance the effect of CSL for rC � 3d,
where d is the layer thickness, at the expense of reducing the effect at larger rC .
First experiments in this direction have been able to bound the CSL collapse rate
well below 10−9 Hz at rC = 10−7 m and are thus close to exclude completely the
parameter range proposed by Adler [18].

2.3 Levitated Particles

One of the most promising approaches towards a significant leap forward in the
achievable sensitivity to spontaneous collapse effects is by levitation of nanoparti-
cles or microparticles. The main benefits of levitation are the absence of clamping
mechanical losses and wider tunability of mechanical parameters. In addition, sev-
eral degrees of freedom can be exploited, either translational or rotational [13, 19,
20]. This comes at the price of higher complexity, poor dynamic range and large non-
linearities, which usually require active feedback stabilization over multiple degrees
of freedom. However, levitated systems hold the promise of much better isolation
from the environment, therefore higher quality factor. One relevant example, in the
macroscopic domain, is the space mission LISA Pathfinder (LPF), currently setting
the strongest bound on collapse models over a wide parameter range [21]. LPF test
masses were nominally in free-fall, but a complex electrostatic system was used to
control the spacecraft and the laser readout position with respect to the test masses.
Thismakes LPF substantially similar to an electrostatically levitated system, with the
advantage that the near free-fall condition achievable in space allows to operate with
very low electrostatic coupling, thus minimizing the effect of external disturbances.
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Several levitation methods for micro/nanoparticles are currently being investi-
gated. The most developed is optical levitation using force gradients induced by
laser fields, the so called optical tweezer approach [22]. While this is a very effective
and flexible approach to trap nanoparticles, in this context it is inherently limited
by two factors: the relatively high trap frequency, in the order of 100 kHz, and the
high internal temperature of the particles, induced by laser power absorption, which
leads ultimately to strong thermal decoherence. Alternative approaches have to be
found, featuring lower trap frequency and low or possible null power dissipated in
the levitated particle. The two possible classes of techniques are electrical levitation
and magnetic levitation.

Electrical levitation has been deeply developed in the context of ion traps. The
standard tool is the Paul trap, which allows to trap an ion, or equivalently a charged
nanoparticle, using a combination of ac and dc bias electric fields applied through
a set of electrodes [23]. The power dissipation is much lower than in the optical
case, and the technology is relatively well-established. However, the detection of a
nanoparticle in a Paul trap still poses some technological challenge.

This issue has been extensively investigated in a recent paper [24], specifically
considering a nanoparticle in a cryogenic Paul trap in the context of collapse model
testing. Three detection schemes have been considered: an optical cavity, an optical
tweezer, and a all-electric readout based on SQUID. It was found that to detect the
nanoparticle motion with good sensitivity, optical detection has to be employed.
Unfortunately, optical detection is not easily integrated in a cryogenic environment,
and leads to a nonnegligible internal heating and excess force noise. On the other
hand, an all-electrical readout would potentially allow for a better ultimate test of
collapsemodels, but at the price of a very poor detection sensitivity,which couldmake
the experiment hardly feasible. The authors argue that a Paul-trapped nanoparticle,
with an oscillating frequency of 1 kHz, cooled in a cryostat at 300 mKwith an optical
readout may be able to probe the CSL collapse rate down to 10−12 Hz at rC = 10−7

m. A SQUID-based readout, if viable, could theoretically allow to reach 10−14 Hz.
A recent experiment employing a nanoparticle in a Paul trap with very low secular

frequencies at ∼100Hz and low pressure has demonstrated ultranarrow linewidth
γ/2π = 82 µHz [25]. This result has been used to set new bounds on the dissipative
extension of CSL. This experiment may be able to probe the current limits on the
CSLmodel in the near future, once it will be performed at cryogenic temperature and
the main sources of excess noise, in particular bias voltage noise, will be removed.

Magnetic levitation, while less developed, has the crucial advantage of being
completely passive. Furthermore the trap frequencies can be quite low, in the Hz
range. Three possible schemes can be devised: levitation of a diamagnetic insulating
nanoparticle with strong external field gradients [26, 27], levitation of a supercon-
ducting particle using external currents [28, 29], and levitation of a ferromagnetic
particle above a superconductor [30].

The first approach has been recently considered in the context of collapse models
[27]. The experiment was based on a polyethylene glycol microparticle levitated in
the static field generated by neodymium magnets and optical detection. The experi-
ment has been able to set an upper bound on the CSL collapse rate λ < 10−6.2 Hz at
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rC = 10−7 m, despite being performed at room temperature. A cryogenic version of
this experiment should be able to approach the current experimental limits on CSL.

The second and third approach based on levitating superconducting or ferromag-
netic particles are currently investigated by a handful of groups [18, 28–31], but
no experiment has so far reached the experimental requirements needed to probe
collapse models. However, a significant progress has been recently achieved: a fer-
romagnetic microparticle levitated above a type I superconductor (lead) and detected
using a SQUID, has demonstrated mechanical quality factors for the rotational and
translational rigid body mechanical modes exceeding 107, corresponding to a ring-
down time larger than 104 s [18]. The noise in this experiment is still dominated
by external vibrations. However, as the levitation is completely passive and there-
fore compatible with cryogenic temperatures, this appears as an excellent candidate
towards near future improved tests of collapse models.

3 Bulk Heating Experiments

A different strategy towards testing the violation of energy conservation caused by
collapsemodels is to search for anomalous heating of specific systems. The difference
compared to mechanical experiments is that in the latter case one looks for an energy
increase in an individual degree of freedom, which is a purely mechanical effect,
while in the general case one looks for the total increase of internal energy (i.e. of
temperature) of a macroscopic body, which is a thermal effect.

According to Adler [7], the heating of a macroscopic body due to CSL can be
generally written as:

dE

dt
= 3

4

λ�
2M

r2Cm
2
N

(5)

where M is the total mass of the system. This expression, initially derived for a gas
of noninteracting particles, has been shown to be very general. For instance, it holds
for standard solid state systems [33–35] and for nonstandard matter such as Fermi
liquids [35].

An important caveat has to be pointed out in the case of condensedmatter systems,
in particular of solids. The λ factor has to be regarded as an effective value λeff ,
averaged over the frequencies of the internal (phononic) modes of the system. This
average value is shown to be λeff ≈ λ (ω0), where ω0 is the frequency corresponding
to phonons with wavelength∼ rC [33–35]. For typical solid matter, this corresponds
to ω0 ≈ 1011 s−1. A consequence of this fact is that any bound from heating of solid
matter would be evaded by a nonwhite CSL noise with a low-pass cutoff at frequency
lower than ω0 [36–38].

As the bulk heating scales with the mass, one possible experimental approach is to
estimate this effect in astronomical objects. For instanceby analyzing the intergalactic
medium, mainly composed of cold hydrogen, one can infer a bound on the CSL
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collapse rate λ < 10−8 Hz [7] at rC = 10−7 m (in the following of this chapter we
will always assume rC = 10−7 m). More recently, it has been suggested that neutron
stars can set much stronger bounds [39]. The actual bounds inferred from current
observational data are however not yet competitive, at level λeff < 10−7 Hz [35,
39], but speculative bounds based on the capabilities of future astronomical surveys
suggest that much stronger bounds can be obtained in the future. Stronger bounds,
at level λeff < 10−10 Hz, can be inferred from the astronomical data on planets of
the solar system, in particular Neptune [35]. This is essentially due to the very low
temperature of these planets. An even better bound, at level λeff < 10−11 Hz, can be
inferred from the earth thermal balance, once primordial and radiogenic sources of
Earth heat are very carefully taken into account [33]. A more speculative prospect is
to test collapse models by evaluating their effect at cosmological level, for instance
in the Cosmic Microwave Background.

Here, we focus instead on the possibility of detecting very small heating in con-
trolled laboratory experiments. Bulk massive objects can be routinely cooled down
to very low temperatures. Dilution refrigerators can be used to cooldown relatively
massive objects down to ∼10mK. The most massive object ever cooled in this way
is probably the CUORE detector looking at neutrinoless beta decay [40], with a mass
of ∼1 ton cooled to 10mK. Much lower temperatures, even below 100µK, can be
reached by adiabatic nuclear demagnetization cryostats [41]. Here, the typical mass
which can be cooled is of the order of several kilograms.

As the thermalization of any object becomes increasingly difficult at lower and
lower temperature, a crucial requirement of these experiments is to suppress as much
as possible any heat leak. The dominant residual heat sources are (i) vibrations,
(ii) relaxation of internal stress and two-level systems and (iii) the background of
radioactivity andmuons fromcosmic rays [41]. Thefirst two sources canbe efficiently
suppressed by propermechanical isolation, proper choice ofmaterials and bywaiting
for long relaxation times. Overall, the best residual heat leak estimated in current
experiments is of the order of 10−11W/kg, limited by background muons, which
corresponds to λeff < 3 × 10−11 Hz [33].

It is important to note that, due to the high penetration of cosmic muons, their
background heating scales with the experimental mass and is therefore a fundamental
barrier, unless the experiment is performed heavily underground. This idea has been
considered recently by Mishra et al. [42], who have estimated the achievable upper
limit onλeff which could be detected by an ideal cosmic-background-limited detector
placed underground. It has been found that the shielding provided by the deepest
existing underground laboratory (the China Jinping Underground Laboratory, placed
at 6.7kmof “water-equivalent” depth)would be sufficient to test theCSLmodel down
to the GRW parameters, i.e λeff ≈ 10−16 Hz. Slightly worse performance is expected
by operating in alternative sites, such as the Gran Sasso Laboratory in Italy.

Of course such an experiment would require a systematic and very efficient sup-
pression of any parasitic heating source, such as vibrations or internal relaxation,
by several orders of magnitude. This appears a tough challenge, which is however
purely technical and not related to fundamental limits. The technology developed for
existing underground cryogenic experiments looking for DarkMatter or neutrinoless
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double beta decay, such as CUORE [40], is probably already good enough to push the
current bounds by 1–2 orders of magnitude. However, a specific experimental design
is needed, specifically optimized to detect a constant heating source such as CSL. In
particular, thermometry with very good absolute accuracy is needed, in contrast with
existing detectors which are optimized for very high responsivity in order to resolve
individual high energy events.

4 Cold Atoms and Condensates

Cold atoms represent another possible system to detect effects related with collapse
models, due to (i) the very low kinetic temperatures that can be achieved, which can
be as low as a few pK and (ii) the flexibility of these systems which allow the realiza-
tion of a variety of quantum states involving a relatively large number of atoms, in
particular Bose-Einstein Condensates (BEC). An obvious drawback, which partially
compensates these advantages, is the much lower density, i.e. a comparatively lower
total number of atoms compared to solid state systems.

Some first investigations of using cold atoms in order to probe collapse models,
in particular CSL, have been reported in literature [43–45] and include an outlook
on future improvements.

Thefirst approach considered inRef. [43] consists in analyzing the lifetimeofBEC
condensates. The spontaneous heating induced by CSL results into an exponential
decay of the ground state population,which can be bounded by experiments.Analysis
of current experiments yielded a bound on the CSL collapse rate λ < 10−7 Hz at
the standard rC = 10−7 m. The authors remark that the analysis is provisional, and
that new experiments specifically tailored to estimate the rate of energy increase will
significantly improve the bounds. Specific improvements will be the use of heavy
atomic mass (like cesium), lower background of foreign atoms, suppression of three-
body recombination, and a sufficiently high barrier to eliminate evaporative cooling.

A second approach was investigated by Bilardello et al. [44], by analyzing an
experiment performed by Kasevich et al. [45] with a diluted cloud of ultracold rubid-
ium atoms. The last stage of this experiment consisted in a delta-kick optical-lensing
cooling, which enabled free evolution of the cloud on a time scale of seconds at
an extremely low temperature below 100pK. This bounds the CSL collapse rate to
λ < 5 × 10−8 Hz at rC = 10−7 m, slightly improving BEC limits. The authors of the
experiment estimate that this technique can be improved by 2–3 orders of magnitude
before reaching fundamental limits imposed by diffraction limited collimation tem-
perature [45]. The analysis performed in [44] also shows that cold atoms experiments
are particularly efficient in testing non Markovian [46–49] and dissipative [50–52]
extensions of the CSL model.

A third option is to use cold atoms to perform interferometric experiments. This
will be discussed in the next section.
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a c d b 

Fig. 2 Illustration of some of the proposed schemes for matterwave interferometry with nano-
and micro-particles to test the quantum superposition principle directly, and therefore also col-
lapse models. a The cryogenic skatepark for a single superconducting micro-particle (adapted from
Ref. [53]);bThe nanoparticle Talbot interferometer (adapted fromRef. [54]); cTheRamsey scheme
addressing the electron Spin of a NV-centre diamond coupled to an external magnetic field gradient
(∂B/∂x) (adapted from Ref. [55]); d The adaptation of an interferometer at a free falling satellite
platform in space to allow form longer free evolution times (adapted from Ref. [56])

5 Matter-Wave Interferometry

Matterwave interferometry is directly testing the quantum superposition principle.
Relevant for mass-scaling collapse models, such as CSL, are matterwave interferom-
eters testing themaximalmacroscopic extend in termsofmass, size and timeof spatial
superpositions of single large-mass particles. Such beautiful, but highly challenging
experiments have been pushed by Markus Arndt’s group in Vienna to impressive
particle masses of 104 atomic mass units (amu), which is still not significantly chal-
lenging CSL. More details can be found in chapter XXX of this volume. Therefore
the motivation remains to push matterwave interferometers to more macroscopic
systems. Here we will discuss some possible ideas, some of which are summarized
in Fig. 2 [60–63]. Predicted bounds on collapsemodels set by large-massmatterwave
interferometers are worked out in detail in [51, 57].

As usual in open quantum system dynamics treatments, non-linear stochastic
extensions of the Schrödinger equation on the level of the wavefunction [58] cor-
respond to a non-uniquely defined master equation on the level of the density
matrix ρ to describe the time evolution of the quantum system, say the spatial
superposition across distance |x − y|, where the conserving von Neumann term
∂ρt (x, y)/∂t = −(i/�)[H, ρ], is now extended by a Lindblad operator L term:

∂ρt (x, y)

∂t
= − i

�
[H, ρt (x, y)] + Lρt (x, y), (6)

where H is the Hamilton operator of the quantum system and different realisations of
a Lindblad operator are used to describe both standard decoherence (triggered by the
immediate environment of the quantum system) [59] as well as spontaneous collapse
of the wavefunction triggered by the universal classical noise field as predicted by
collapse models.
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Now the dynamics of the system is very different with and without the Lindbla-
dian, where with the Lindbladian the unitary evolution breaks down and the system
dynamics undergoes a quantum-to-classical transition witnessed by a vanishing of
the fringe visibility of the matterwave interferometer. In the state represented by the
density matrix the off-diagonal terms vanish as the system evolves according to the
open system dynamics, the coherence/superposition of that state is lost. The prin-
cipal goal of interference experiments with massive particles is then to explore and
quantify the relevance of the (Lρt (x, y))-term—as collapse models predict a break
down of the quantum superposition principle for a sufficient macroscopic system.
An intrinsic problem is the competition with known and unknown environmental
decoherence mechanisms, if a visibility loss is observed. However solutions seem
possible.

In order to further increase the macroscopic limits in interference some ambitious
proposals have been made utilizing nano- and micro-particles, c.f. Fig.(2). The main
challenge is to allow for a long enough free evolution time of the prepared quan-
tum superposition state in order to be sensitive to the collapsing effects. The free
evolution—the spatial spreading of the wavefunction �(r, t) with time—according
to the time-dependent Schrödinger equation with the potential V (r) = 0,

∂

∂t
�(r, t) = −i

�

2m
∇2�(r, t), (7)

describes a diffusive process for probability amplitudes similar to a typical diffusion
equation with the imaginary diffusion coefficient (−i�/2m). Therefore the spreading
of �(r, t) scales inversely with particle mass m. For instance for a 107 amu particle
it already takes so long to show the interference pattern in a matterwave experiment
that the particle would significantly drop in Earth’s gravitational field, in fact it would
drop on the order of 100m. This requires a dramatic change in the way large-mass
matterwave interferometry experiments have to be performed beyond the mass of
106 amu [54].

Different solutions are thinkable. One could of course envisage building a 100m
fountain, but that seems very unfeasible also given that no sufficient particle beam
preparation techniques exist (and don’t seem to be likely to be developed in the
foreseeable future) to enable the launch and detection of particles in the mass range
in question over a distance of 100m. One can consider to levitate the particle by a
force field to compensate for the drop in gravity, but here we face a high demand
on the fluctuations of that levitating field, which have to be small compared to the
amplitudes of the quantum evolution. This requirement does not appear to be feasible
with current technology. A maybe possible option is to coherently boost/accelerate
the evolution of the wavefunction spread by a beam-splitter operation. The proposals
in Refs. [53, 55] are such solutions, which are still awaiting their technical realisation
for largemasses.Amore realistic alternative, given current technical capabilities, is to
allow for long enough free evolution by freely fall thewhole interferometer apparatus
in a co-moving reference frame with the particle. This is the idea of the MAQRO
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proposal, a dedicated satellite mission in space to perform large-mass matterwave
interference experiments with micro- and nano-particles [56].

Another interesting approach is to consider the use of cold or ultra-cold ensembles
of atoms such as cloud in a magneto optical trap (MOT) or an atomic Bose-Einstein
Condensate (BEC) as also there we find up to 108 atoms of alkali species such as
rubidium or caesium. On closer look it turns out that such weakly interacting atomic
ensembles are not of immediate use for the purpose to test macroscopic quantum
superpositions in the context of collapse model test. For instance, a crucial property
for testing the CSL model is the mass-proportional (number of particles N , more
precisely the number of nucleons: protons and neutrons in the nuclei of the atoms)
amplification which in principle can even go with N 2. This effect can be seen in
Eq. (2), and can be thought as arising from the classical collapse noise (treated as a
wave with correlation length rc) coherently scattering off the particle in the quantum
superposition state. Naively, if the CSL noise is collapsing the wavefunction of only
one of the constituent nucleons, then the total wavefunction of the whole composite
object collapses. While this holds for a solid nanoparticle consisting of many atoms
(and therefore nucleons), it is not the case for a weakly interacting atomic ensemble.
If one atom is collapsing then the total atomic wavefunction remains intact and the
one atom is lost from the ensemble.

This may change if the atoms in the cold or ultra-cold ensemble can be made
strongly interacting, without running into the complications of chemistry which may
forbid condensation of the atomic—then molecular—cloud at all. However there
is hope to circumvent this problem by means of quantum optical state preparation
techniques applied after a BEC has been formed. For instance, collective NOON
or squeezed states, featuring macroscopic entanglement between individual atoms,
would enable N and even N 2 scaling in the fashion fit for testing wavefunction col-
lapse. This approach is extremely challenging, and is discussed in detail in Ref. [60].

A different scenario might arise if the physical mechanism responsible for the
collapse of the wavefunction, which remains highly speculative at present, is in any
way related to gravity [61], then there might be hope that atomic ensembles even in
the weakly interacting case can be used to test CSL-type models. The condition to
fulfil is that the atomic ensemble is interacting gravitationally strong enough so that
it acts collectively under collapse, even if just a single constituent atom (nucleon) is
affected by the collapsing effect. That hope is possibly very weak.

6 Some Concluding Remarks

We have discussed avenues for non-interferometric and interferometric tests of the
linear superposition principle of quantum mechanics in direct comparison to pre-
dictions from collapse models which break the linear/unitary evolution of the wave-
function. As matters stand both non-interferometric and interferometric set already
bounds on the CSL collapse model, while those from non-interferometric tests are
stronger by orders of magnitude. The simple reason lies in the immense difficulty
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to experimentally generate macroscopic superposition states, however a number of
proposals have been made and experimentalists are set to approach the challenge.

We want to close by mentioning that there are possibly other experimental plat-
forms which could set experimental bounds on collapse models and it would be
of interest to study those in detail. Collapse models predict a universal classical
noise field to fill the Universe and in principle couple to any physical system. In the
simplest approach the experimental test particle can be regarded as a two-level sys-
tem, as typically described in quantum optics. Then the collapse noise perturbs the
two-level system and emissive broadening and spectral shifts can be expected, unfor-
tunately out of experimental reach at the moment [62]. The minuscule collapse effect
on a single particle (nucleon) needs some sort of amplification mechanism which
usually comes with an increase of the number of constituent particles. However,
ultra-high precision experiments have improved a lot in recent years. For instance
much improved ultra-stable Penning ion traps are used to measure the mass of single
nuclear particles, such as the electron, proton, and neutron, with an ultra-high pre-
cision to test quantum electrodynamics predictions [63]. In principle also here the
effect of collapse models should become apparent. Any theoretical predictions are
difficult as relativistic versions of collapse models still represent a serious formal
challenge [64–66]. Other high potentials for testing collapse are ever more precise
spectroscopies of simple atomic species with analytic solutions such as transitions
in hydrogen [67] and needless to say atomic clocks [68].

As tests move on to set stronger and stronger bounds, we have to remain open
to actually find something new. It is so easy to disregard tiny observed effects as
unknown technical noise. In the case of direct testing collapse noise it is a formidable
theoretical challenge to think about possible physics responsible for collapse, satis-
fying the constraints given by the structure of the collapse equation: the noise has to
be classical, stochastic and nonlinear. Such concrete physics models will predict a
clear frequency fingerprint, should we ever observe the collapse noise field.
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