
Chapter 7
Two Remarks on Generalized Entropy
Power Inequalities

Mokshay Madiman, Piotr Nayar, and Tomasz Tkocz

Abstract This note contributes to the understanding of generalized entropy power
inequalities. Our main goal is to construct a counter-example regarding monotonic-
ity and entropy comparison of weighted sums of independent identically distributed
log-concave random variables. We also present a complex analogue of a recent
dependent entropy power inequality of Hao and Jog, and give a very simple
proof.
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7.1 Introduction

The differential entropy of a random vector X with density f (with respect to
Lebesgue measure on R

d ) is defined as

h (X) = −
∫
Rd

f log f,

provided that this integral exists. When the variance of a real-valued random
variable X is kept fixed, it is a long known fact [11] that the differential entropy
is maximized by taking X to be Gaussian. A related functional is the entropy power

of X, defined by N(X) = e
2h(X)

d . As is usual, we abuse notation and write h(X) and
N(X), even though these are functionals depending only on the density of X and
not on its random realization.

The entropy power inequality is a fundamental inequality in both Information
Theory and Probability, stated first by Shannon [34] and proved by Stam [36]. It
states that for any two independent random vectors X and Y in R

d such that the
entropies of X,Y and X + Y exist,

N(X + Y ) ≥ N(X) + N(Y ).

In fact, it holds without even assuming the existence of entropies as long as we set
an entropy power to 0 whenever the corresponding entropy does not exist, as noted
by Bobkov and Chistyakov [6]. One reason for the importance of this inequality in
Probability Theory comes from its close connection to the Central Limit Theorem
(see, e.g., [21, 25]). It is also closely related to the Brunn–Minkowski inequality,
and thereby to results in Convex Geometry and Geometric Functional Analysis (see,
e.g., [7, 31]).

An immediate consequence of the above formulation of the entropy power
inequality is its extension to n summands: if X1, . . . , Xn are independent random
vectors, then N(X1 +· · ·+Xn) ≥ ∑n

i=1 N(Xi). Suppose the random vectors Xi are
not merely independent but also identically distributed, and that Sn = 1√

n

∑n
i=1 Xi ;

these are the normalized partial sums that appear in the vanilla version of the Central
Limit Theorem. Then one concludes from the entropy power inequality together
with the scaling property N(aX) = a2N(X) that N(Sn) ≥ N(S1), or equivalently
that

h(Sn) ≥ h(S1). (7.1)

There are several refinements or generalizations of the inequality (7.1) that
one may consider. In 2004, Artstein et al. [2] proved (see [13, 26, 35, 38] for
simpler proofs and [27, 28] for extensions) that in fact, one has monotonicity of
entropy along the Central Limit Theorem, i.e., h(Sn) is a monotonically increasing
sequence. If N(0, 1) is the standard normal distribution, Barron [4] had proved
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much earlier that h(Sn) → h(N(0, 1)) as long as X1 has mean 0, variance 1, and
h(X1) > −∞. Thus one has the monotone convergence of h(Sn) to the Gaussian
entropy, which is the maximum entropy possible under the moment constraints.
By standard arguments, the convergence of entropies is equivalent to the relative
entropy between the distribution of Sn and the standard Gaussian distribution
converging to 0, and this in turn implies not just convergence in distribution but
also convergence in total variation. This is the way in which entropy illuminates the
Central Limit Theorem.

A different variant of the inequality (7.1) was recently given by Hao and Jog
[20], whose paper may be consulted for motivation and proper discussion. A random
vector X = (X1, . . . , Xn) in R

n is called unconditional if for every choice of signs
η1, . . . , ηn ∈ {−1,+1}, the vector (η1X1, . . . , ηnXn) has the same distribution as
X. Hao and Jog [20] proved that if X is an unconditional random vector in R

n,

then 1
n
h (X) ≤ h

(
X1+···+Xn√

n

)
. If X has independent and identically distributed

components instead of being unconditional, this is precisely h(Sn) ≥ h(S1) for real-
valued random variables Xi (i.e., in dimension d = 1).

The goal of this note is to shed further light on both of these generalized entropy
power inequalities. We now explain precisely how we do so.

To motivate our first result, we first recall the notion of Schur-concavity. One
vector a = (a1, . . . , an) in [0,∞)n is majorised by another one b = (b1, . . . , bn),
usually denoted a ≺ b, if the nonincreasing rearrangements a∗

1 ≥ . . . ≥ a∗
n and

b∗
1 ≥ . . . ≥ b∗

n of a and b satisfy the inequalities
∑k

j=1 a∗
j ≤ ∑k

j=1 b∗
j for each 1 ≤

k ≤ n − 1 and
∑n

j=1 aj = ∑n
j=1 bj . For instance, any vector a with nonnegative

coordinates adding up to 1 is majorised by the vector (1, 0, . . . , 0) and majorises the
vector ( 1

n
, 1

n
, . . . , 1

n
). Let � : �n → R, where �n = {a ∈ [0, 1]n : a1 + · · · + an =

1} is the standard simplex. We say that � is Schur-concave if �(a) ≥ �(b) when
a ≺ b. Clearly, if � is Schur-concave, then one has �( 1

n
, 1

n
, . . . , 1

n
) ≥ �(a) ≥

�(1, 0, . . . , 0) for any a ∈ �n.
Suppose X1, . . . , Xn are i.i.d. copies of a random variable X with finite entropy,

and we define

�(a) = h
(∑ √

aiXi

)
(7.2)

for a ∈ �n. Then the inequality (7.1) simply says that �( 1
n
, 1

n
, . . . , 1

n
) ≥

�(1, 0, . . . , 0), while the monotonicity of entropy in the Central Limit Theorem
says that �( 1

n
, 1

n
, . . . , 1

n
) ≥ �( 1

n−1 , . . . , 1
n−1 , 0). Both these properties would be

implied by (but in themselves are strictly weaker than) Schur-concavity. Thus one
is led to the natural question: Is the function � defined in (7.2) a Schur-concave
function? For n = 2, this would imply in particular that h(

√
λX1 + √

1 − λX2)

is maximized over λ ∈ [0, 1] when λ = 1
2 . The question on the Schur-concavity

of � had been floating around for at least a decade, until [3] constructed a
counterexample showing that � cannot be Schur-concave even for n = 2. It was
conjectured in [3], however, that for n = 2, the Schur-concavity should hold
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if the random variable X has a log-concave distribution, i.e., if X1 and X2 are
independent, identically distributed, log-concave random variables, the function

λ 
→ h
(√

λX1 + √
1 − λX2

)
should be nondecreasing on [0, 1

2 ]. More generally,

one may ask: if X1, . . . , Xn are n i.i.d. copies of a log-concave random variable
X, is it true that h

(∑
aiXi

) ≥ h
(∑

biXi

)
when (a2

1, . . . , a2
n) ≺ (b2

1, . . . , b
2
n)?

Equivalently, is � Schur-concave when X is log-concave?
Our first result implies that the answer to this question is negative. The way we

show this is the following: since (1, 1
n
, . . . , 1

n
, 1

n
) ≺ (1, 1

n−1 , . . . , 1
n−1 , 0), if Schur-

concavity held, then the sequence h
(
X1 + X2+···+Xn+1√

n

)
would be nondecreasing.

If we moreover establish convergence of this sequence to h (X1 + G), where G is
an independent Gaussian random variable with the same variance as X1, we would

have in particular that h
(
X1 + X2+···+Xn+1√

n

)
≤ h (X1 + G). We construct examples

where the opposite holds.

Theorem 7.1 There exists a symmetric log-concave random variable X with
variance 1 such that if X0,X1, . . . are its independent copies and n is large enough,
we have

h

(
X0 + X1 + · · · + Xn√

n

)
> h (X0 + Z) ,

where Z is a standard Gaussian random variable, independent of the Xi . Moreover,
the left hand side of the above inequality converges to h(X0 + Z) as n tends
to infinity. Consequently, even if X is drawn from a symmetric, log-concave
distribution, the function � defined in (7.2) is not always Schur-concave.

Here by a symmetric distribution, we mean one whose density f satisfies
f (−x) = f (x) for each x ∈ R.

In contrast to Theorem 7.1, � does turn out to be Schur-concave if the
distribution of X is a symmetric Gaussian mixture, as recently shown in [15]. We
suspect that Schur-concavity also holds for uniform distributions on intervals (cf.
[1]).

Theorem 7.1 can be compared with the afore-mentioned monotonicity of entropy
property of the Central Limit Theorem. It also provides an example of two
independent symmetric log-concave random variables X and Y with the same
variance such that h (X + Y ) > h (X + Z), where Z is a Gaussian random variable
with the same variance as X and Y , independent of them, which is again in contrast
to symmetric Gaussian mixtures (see [15]). The interesting question posed in [15]
of whether, for two i.i.d. summands, swapping one for a Gaussian with the same
variance increases entropy, remains open.

Our proof of Theorem 7.1 is based on sophisticated and remarkable Edgeworth
type expansions recently developed by Bobkov et al. [9] en route to obtaining
precise rates of convergence in the entropic central limit theorem, and is detailed
in Sect. 7.2.
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The second contribution of this note is an exploration of a technique to prove
inequalities akin to the entropy power inequality by using symmetries and invariance
properties of entropy. It is folklore that when X1 and X2 are i.i.d. from a symmetric
distribution, one can deduce the inequality h(S2) ≥ h(S1) in an extremely simple
fashion (in contrast to any full proof of the entropy power inequality, which tends to
require relatively sophisticated machinery– either going through Fisher information
or optimal transport or rearrangement theory or functional inequalities). In Sect. 7.3,
we will recall this simple proof, and also deduce some variants of the inequality
h(S2) ≥ h(S1) by playing with this basic idea of using invariance, including
a complex analogue of a recent entropy power inequality for dependent random
variables obtained by Hao and Jog [20].

Theorem 7.2 Let X = (X1, . . . , Xn) be a random vector in C
n which is complex-

unconditional, that is for every complex numbers z1, . . . , zn such that |zj | = 1 for
every j , the vector (z1X1, . . . , znXn) has the same distribution as X. Then

1

n
h (X) ≤ h

(
X1 + · · · + Xn√

n

)
.

Our proof of Theorem 7.2, which is essentially trivial thanks to the existence of
complex Hadamard matrices, is in contrast to the proof given by Hao and Jog [20]
for the real case that proves a Fisher information inequality as an intermediary step.

We make some remarks on complementary results in the literature. Firstly, in
contrast to the failure of Schur-concavity of � implied by Theorem 7.1, the function
� : �n → R defined by �(a) = h

(∑
aiXi

)
for i.i.d. copies Xi of a random

variable X, is actually Schur-convex when X is log-concave [41]. This is an instance
of a reverse entropy power inequality, many more of which are discussed in [31].
Note that the weighted sums that appear in the definition of � are relevant to the
Central Limit Theorem because they have fixed variance, unlike the weighted sums
that appear in the definition of �.

Secondly, motivated by the analogies with Convex Geometry mentioned earlier,
one may ask if the function � : �n → R defined by �(a) = vold(

∑n
i=1 aiB),

is Schur-concave for any Borel set B ⊂ R
d , where vold denotes the Lebesgue

measure on R
d and the notation for summation is overloaded as usual to also denote

Minkowski summation of sets. (Note that unless B is convex, (a1 + a2)B is a
subset of, but generally not equal to, a1B +a2B.) The Brunn–Minkowski inequality
implies that �( 1

n
, 1

n
, . . . , 1

n
) ≥ �(1, 0, . . . , 0). The inequality �( 1

n
, 1

n
, . . . , 1

n
) ≥

�( 1
n−1 , . . . , 1

n−1 , 0), which is the geometric analogue of the monotonicity of
entropy in the Central Limit Theorem, was conjectured to hold in [8]. However,
it was shown in [16] (cf. [17]) that this inequality fails to hold, and therefore �

cannot be Schur-concave, for arbitrary Borel sets B. Note that if B is convex, � is
trivially Schur-concave, since it is a constant function equal to vold(B).

Finally, it has recently been observed in [32, 33, 40] that majorization ideas are
very useful in understanding entropy power inequalities in discrete settings, such as
on the integers or on cyclic groups of prime order.
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7.2 Failure of Schur-Concavity

Recall that a probability density f on R is said to be log-concave if it is of
the form f = e−V for a convex function V : R → R ∪ {∞}. Log-concave
distributions emerge naturally from the interplay between information theory and
convex geometry, and have recently been a very fruitful and active topic of research
(see the recent survey [31]).

This section is devoted to a proof of Theorem 7.1, which in particular falsifies
the Schur-concavity of � defined by (7.2) even when the distribution under
consideration is log-concave.

Let us denote

Zn = X1 + · · · + Xn√
n

and let pn be the density of Zn and let ϕ be the density of Z. Since X0 is assumed to
be log-concave, it satisfies E|X0|s < ∞ for all s > 0. According to the Edgeworth-
type expansion described in [9, (Theorem 3.2 in Chapter 3)], we have (with any
m ≤ s < m + 1)

(1 + |x|m)(pn(x) − ϕm(x)) = o(n− s−2
2 ) uniformly in x,

where

ϕm(x) = ϕ(x) +
m−2∑
k=1

qk(x)n−k/2.

Here the functions qk are given by

qk(x) = ϕ(x)
∑

Hk+2j (x)
1

r1! . . . rk!
(γ3

3!
)r1

. . .

(
γk+2

(k + 2)!
)rk

,

where Hn are Hermite polynomials,

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2,

and the summation runs over all nonnegative integer solutions (r1, . . . , rk) to the
equation r1 + 2r2 + · · · + krk = k, and one uses the notation j = r1 + · · · + rk . The
numbers γk are the cumulants of X0, namely

γk = i−k dk

dtk
logEeitX0

∣∣
t=0.
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Let us calculate ϕ4. Under our assumption (symmetry of X0 and EX2
0 = 1), we

have γ3 = 0 and γ4 = EX4
0 − 3. Therefore q1 = 0 and

q2 = 1

4!γ4ϕH4 = 1

4!γ4ϕ
(4), ϕ4 = ϕ + 1

n
· 1

4! (EX4
0 − 3)ϕ(4). (7.3)

We get that for any ε ∈ (0, 1)

(1 + x4)(pn(x) − ϕ4(x)) = o(n− 3−ε
2 ), uniformly in x. (7.4)

Let f be the density of X0. Let us assume that it is of the form f = ϕ + δ, where
δ is even, smooth and compactly supported (say, supported in [−2,−1] ∪ [1, 2])
with bounded derivatives. Moreover, we assume that 1

2ϕ ≤ f ≤ 2ϕ, in particular
|δ| ≤ 1/4. Multiplying δ by a very small constant we can ensure that f is log-
concave.

We are going to use Theorem 1.3 from [10]. To check the assumptions of this
theorem, we first observe that for any α > 1 we have

Dα(Z1||Z) = 1

α − 1
log

(∫ (
ϕ + δ

ϕ

)α

ϕ

)
< ∞,

since δ has bounded support. We have to show that for sufficiently big α = α
α−1

there is

EetX0 < eαt2/2, t = 0.

Since X0 is symmetric, we can assume that t > 0. Then

EetX0 = et2/2 +
∞∑

k=1

t2k

(2k)!
∫

x2kδ(x)dx ≤ et2/2 +
∞∑

k=1

t2k

(2k)!2
2k

∫ 2

−2
|δ(x)|dx

< et2/2 +
∞∑

k=1

(2t)2k

(2k)! = 1 +
∞∑

k=1

(
t2k

2kk! + (2t)2k

(2k)!
)

≤ 1 +
∞∑

k=1

(
t2k

k! + (2t)2k

k!
)

≤
∞∑

k=0

t2k42k

k! = e16t2
,

where we have used the fact that
∫

δ(x)dx = 0, δ has a bounded support contained
in [−2, 2] and |δ| ≤ 1/4. We conclude that

|pn(x) − ϕ(x)| ≤ C0

n
e−x2/64 (7.5)
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for some constant C0 independent of n. (In this proof, C0, C1, . . . denote sufficiently
large constants that may depend on the distribution of X0.) Thus

pn(x) ≤ ϕ(x) + C0

n
e−x2/64 ≤ C1e

−x2/64. (7.6)

Another consequence of (7.5) is the inequality

pn(x) ≥ 1

10
for |x| ≤ 1 (7.7)

and large enough n.
We now prove the convergence part of the theorem. From (7.5) we get that pn →

ϕ pointwise. Moreover, from (7.6) and from the inequality f ≤ 2ϕ we get, by using
Lebesgue’s dominated convergence theorem, that f ∗pn → f ∗ϕ. In order to show
that

∫
f ∗pn log f ∗pn → ∫

f ∗ϕ log f ∗ϕ it is enough to bound f ∗pn| log f ∗pn|
by some integrable function m0 independent of n and use Lebesgue’s dominated
convergence theorem. To this end we observe that by (7.6) we have

(f ∗ pn)(x) ≤ 2(ϕ ∗ pn)(x) ≤ 2C1√
2π

∫
e−t2/2e−(x−t )2/64dt ≤ 2C1e

−x2/66.

(7.8)

Moreover, by (7.7)

(f ∗ pn)(x) ≥ 1

2
(ϕ ∗ pn)(x) ≥ 1

20

∫ 1

−1
ϕ(x − t)dt ≥ 1

10
ϕ(|x| + 1). (7.9)

Combining (7.8) with (7.9) we get

| log(f ∗ pn)(x)| ≤ max

{
| log 2C1|, 1

10
| log ϕ(|x| + 1)|

}
≤ C2(1 + x2).

(7.10)

From (7.10) and (7.8) we see that the function m0(x) = 2C1C2e
−x2/66(1 + x2) is

the required majorant.
Let us define hn = pn − ϕ4. Note that by (7.3) we have ϕ4 = ϕ + c1

n
ϕ(4), where

c1 = 1
4! (EX4

0 − 3). We have

∫
f ∗ pn log f ∗ pn =

∫ (
f ∗ ϕ + c1

n
f ∗ ϕ(4) + f ∗ hn

)
log f ∗ pn

=
∫

f ∗ ϕ log f ∗ pn + c1

n

∫
f ∗ ϕ(4) log f ∗ pn
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+
∫

f ∗ hn log f ∗ pn

= I1 + I2 + I3.

We first bound I3. Note that using (7.4) with ε = 1/2 we get

|(f ∗ hn)(x)| ≤ 2(ϕ ∗ |hn|)(x) ≤ C3n
−5/4

∫
e−y2/2 1

1 + (x − y)4 dy (7.11)

for sufficiently large n. Assuming without loss of generality that x > 0, we have

∫
e−y2/2 1

1 + (x − y)4
dy ≤

∫
y∈[ 1

2 x,2x]
e−y2/2 1

1 + (x − y)4
dy

+
∫

y /∈[ 1
2 x,2x]

e−y2/2 1

1 + (x − y)4 dy

≤
∫

y∈[ 1
2 x,2x]

e−x2/8dy

+ 1

1 + 1
16x4

∫
y /∈[ 1

2 x,2x]
e−y2/2dy

≤ 3

2
xe−x2/8 +

√
2π

1 + 1
16x4

≤ C4

1 + x4 .

Combining this with (7.11) one gets for large n

|(f ∗ hn)(x)| ≤ C3C4n
−5/4 1

1 + x4 . (7.12)

Inequalities (7.12) and (7.10) give for large n,

|I3| ≤ C3C4C2n
−5/4

∫
1 + x2

1 + x4
dx ≤ 5C3C4C2n

−5/4. (7.13)

We now take care of I2 by showing that

I2 = c1

n

∫
f ∗ ϕ(4) log f ∗ pn = c1

n

∫
f ∗ ϕ(4) log f ∗ ϕ + o(n−1). (7.14)

To this end it suffices to show that
∫

f ∗ ϕ(4) log f ∗ pn → ∫
f ∗ ϕ(4) log f ∗

ϕ. As we already observed f ∗ pn → f ∗ ϕ pointwise. Taking into account the
bound (7.10), to find a majorant m1 of f ∗ ϕ(4) log f ∗ pn, it suffices to observe that
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|ϕ(4)(t)| ≤ C5e
−t2/4 and thus

|f ∗ ϕ(4)|(x) ≤ 2(ϕ ∗ |ϕ(4)|)(x) ≤ 2C5

∫
e−(x−t )2/2e−t2/4dt ≤ 8C5e

−x2/6.

One can then take m1(x) = 8C5C2e
−x2/6(1 + x2).

By Jensen’s inequality,

I1 =
∫

f ∗ ϕ log f ∗ pn ≤
∫

f ∗ ϕ log f ∗ ϕ = −h(X0 + Z). (7.15)

Putting (7.15), (7.14) and (7.13) together we get

∫
f ∗ pn log f ∗ pn ≤

∫
f ∗ ϕ log f ∗ ϕ + c1

n

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) + o(n−1).

This is

h(X0 + Z) ≤ h(X0 + Zn) + 1

n
· 1

4! (EX4
0 − 3)

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) + o(n−1).

It is therefore enough to construct X0 (satisfying all previous conditions) such that

(EX4
0 − 3)

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) < 0.

It actually suffices to construct a smooth compactly supported even function g

such that
∫

g = ∫
gx2 = ∫

gx4 = 0 and the function f = ϕ + εg satisfies

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) > 0

for some fixed small ε. We then perturb g a bit to get EX4
0 < 3 instead of EX4

0 = 3.
This can be done without affecting log-concavity.

Let ϕ2(x) = (ϕ ∗ ϕ)(x) = 1
2
√

π
e−x2/4. Note that ϕ

(4)
2 (x) = ϕ2(x)( 3

4 − 3
4x2 +

1
16x4). We have

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) =

∫
(ϕ2 + εϕ ∗ g)(4) log(ϕ2 + εϕ ∗ g)

=
∫

(ϕ2 + εϕ ∗ g)(4)

(
log(ϕ2) + ε

ϕ ∗ g

ϕ2

−1

2
ε2

(
ϕ ∗ g

ϕ2

)2

+ rε(x)

)
dx.
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We shall show that
∫ |(ϕ2 + εϕ ∗ g)(4)||rε| ≤ C8|ε|3. To justify this we first observe

that by Taylor’s formula with the Lagrange reminder, we have

| log(1 + a) − a + a2/2| ≤ 1

3

|a|3
(1 − |a|)3 |a| < 1. (7.16)

Due to the fact that g is bounded and compactly supported, we have

|ϕ ∗ g|(x) ≤ C6

∫ C6

−C6

ϕ(x − t)dt ≤ 2C2
6ϕ((|x| − C6)+) ≤ 2C2

6e−(|x|−C6)
2+/2.

Thus

|ϕ ∗ g|(x)

ϕ2(x)
≤ 4

√
πC2

6ex2/4e−(|x|−C6)
2+/2 ≤ C7.

Using (7.16) with a = ε
ϕ∗g
ϕ2

and |ε| < 1
2C7

(in which case |a| ≤ 1/2) we get

|rε(x)| =
∣∣∣∣∣log

(
1 + ε

ϕ ∗ g

ϕ2

)
− ε

ϕ ∗ g

ϕ2
+ 1

2
ε2

(
ϕ ∗ g

ϕ2

)2
∣∣∣∣∣ ≤ |ε|3

3
C3

7
1

(1 − 1
2 )3

.

Thus

∫
|(ϕ2 + εϕ ∗ g)(4)||rε| ≤ 8

3
C3

7 |ε|3
∫ (

|ϕ(4)
2 | + 1

2C7
ϕ ∗ |g(4)|

)
≤ C8|ε|3.

Therefore

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) =

∫
(ϕ2 + εϕ ∗ g)(4)

(
log(ϕ2) + ε

ϕ ∗ g

ϕ2

−1

2
ε2

(
ϕ ∗ g

ϕ2

)2
)

+ o(ε2).

Integrating by parts we see that the leading term in the above equation is

∫
ϕ

(4)
2 log ϕ2 =

∫
ϕ

(4)
2 (x) log

(
1

2
√

π
e−x2/4

)
dx

= −
∫

ϕ
(4)
2 (x)

(
log(2

√
π) + 1

4
x2

)
dx

= −
∫

ϕ2(x)

(
log(2

√
π) + 1

4
x2

)(4)

dx = 0.
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The term in front of ε vanishes. Indeed,
∫

ϕ
(4)
2

ϕ∗g
ϕ2

= ∫
( 3

4 − 3
4x2+ 1

16x4)(ϕ∗g) which
can be seen to vanish after using Fubini’s theorem thanks to g being orthogonal to

1, x, . . . , x4. Moreover,
∫
(ϕ ∗ g)(4) log(ϕ2) = ∫

(ϕ ∗ g)(log 1
2
√

π
− x2

4 )(4) = 0. The

term in front of ε2 is equal to

J =
∫

(ϕ ∗ g)(4)(ϕ ∗ g)

ϕ2
− 1

2

∫
ϕ

(4)
2 (ϕ ∗ g)2

ϕ2
2

= J1 − J2.

The first integral is equal to

J1 =
∫ ∫ ∫

2
√

πex2/4g(4)(s)g(t)
1

2π
e−(x−s)2/2e−(x−t )2/2dxdsdt .

Now,

∫
2
√

πex2/4 1

2π
e−(x−s)2/2e−(x−t )2/2dx = 2e

1
6

(−s2+4st−t2
)

√
3

.

Therefore,

J1 = 2√
3

∫ ∫
e

1
6

(−s2+4st−t2
)
g(4)(s)g(t)dsdt .

If we integrate the first integral four times by parts we get

J1 = 2

81
√

3

∫ ∫
e

1
6 (−s2+4st−t2)

[
27 + s4 − 8s3t − 72t2

+ 16t4 − 8st (−9 + 4t2) + 6s2(−3 + 4t2)
]
g(s)g(t)dsdt

Since ϕ
(4)
2 /ϕ2

2 =
√

π

8 (12 − 12x2 + x4)ex2/4, we get

J2 =
∫ ∫ ∫ √

π

16
(12 − 12x2 + x4)ex2/4g(s)g(t)

1

2π
e−(x−s)2/2e−(x−t )2/2dxdsdt .

Since

∫ √
π

16
(12 − 12x2 + x4)ex2/4 1

2π
e−(x−s)2/2e−(x−t )2/2dx

= 1

81
√

3
e

1
6 (−s2+4st−t2)

[
27 + (s + t)2(−18 + (s + t)2)

]
,
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we arrive at

J2 =
∫ ∫

1

81
√

3
e

1
6 (−s2+4st−t2)

[
27 + (s + t)2(−18 + (s + t)2)

]
g(s)g(t)dsdt .

Thus J = J1 − J2 becomes

J = J (g) = 1

81
√

3

∫ ∫
e

1
6 (−s2+4st−t2)

[
27 + s4 − 20s3t − 126t2 + 31t4

+ 6s2(−3 + 7t2) + s(180t − 68t3)
]
g(s)g(t)dsdt .

The function

g(s) =
(

7280

69
|s|3 − 11025

23
s2 + 49000

69
|s| − 7875

23

)
1[1,2](|s|)

is compactly supported and it satisfies
∫

g = ∫
gx2 = ∫

gx4 = 0. Numerical
computations show that for this g we have J (g) > 0.003. However, this function is
not smooth. To make it smooth it is enough to consider gε = g ∗ 1

ε
ψ(·/ε) where ψ

is smooth, compactly supported and integrates to 1. Then for any ε > 0 the function
gε is smooth, compactly supported and satisfies

∫
gε = ∫

gεx
2 = ∫

gεx
4 = 0. To

see this denote for simplicity h = 1
ε
ψ(·/ε) and observe that, e.g.,

∫
gε(x)x4dx =

∫
g(t)h(s)(s + t)4dsdt

=
∫

g(t)h(s)(s4 + 4s3t + 6s2t2 + 4st3 + t4)dtds = 0,

since the integral with respect to t vanishes because of the properties of g. Taking
ε → 0+, the corresponding functional J (gε) converges to J (g) due to the
convergence of gε to g is L1 and uniform boundedness of gε . As a consequence,
for small ε > 0 we have J (gε) > 0.001. It suffices to pick one particular ε with this
property.

��

7.3 Entropy Power Inequalities Under Symmetries

The heart of the folklore proof of h(S2) ≥ h(S1) for symmetric distributions (see,
e.g., [39]) is that for possibly dependent random variables X1 and X2, the SL(n,R)-
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invariance of differential entropy combined with subadditivity imply that

h(X1,X2) = h

(
X1 + X2√

2
,
X1 − X2√

2

)

≤ h

(
X1 + X2√

2

)
+ h

(
X1 − X2√

2

)
.

If the distribution of (X1,X2) is the same as that of (X1,−X2), we deduce that

h

(
X1 + X2√

2

)
≥ h(X1,X2)

2
. (7.17)

If, furthermore, X1 and X2 are i.i.d., then h(X1,X2) = 2h(X1), yielding h(S2) ≥
h(S1). Note that under the i.i.d. assumption, the requirement that the distributions of
(X1,X2) and (X1,−X2) coincide is equivalent to the requirement that X1 (or X2)
has a symmetric distribution.

Without assuming symmetry but assuming independence, we can use the fact
from [23] that h(X − Y ) ≤ 3h(X + Y ) − h(X) − h(Y ) for independent random
variables X,Y to deduce 1

2 [h(X1) + h(X2)] ≤ h
(

X1+X2√
2

) + 1
4 log 2. In the i.i.d.

case, the improved bound h(X − Y ) ≤ 2h(X + Y ) − h(X) holds [29], which
implies h(X1) ≤ h

(
X1+X2√

2

) + 1
6 log 2. These bounds are, however, not particularly

interesting since they are weaker than the classical entropy power inequality; if they
had recovered it, these ideas would have represented by far its most elementary
proof.

Hao and Jog [20] generalized the inequality (7.17) to the case where one
has n random variables, under a natural n-variable extension of the distributional
requirement, namely unconditionality. However, they used a proof that goes through
Fisher information inequalities, similar to the original Stam proof of the full entropy
power inequality. The main observation of this section is simply that under certain
circumstances, one can give a direct and simple proof of the Hao–Jog inequality, as
well as others like it, akin to the 2-line proof of the inequality (7.17) given above.
The “certain circumstances” have to do with the existence of appropriate linear
transformations that respect certain symmetries– specifically Hadamard matrices.

Let us first outline how this works in the real case. Suppose n is a dimension for
which there exists a Hadamard matrix– namely, a n × n matrix with all its entries
being 1 or −1, and its rows forming an orthogonal set of vectors. Dividing each row
by its length

√
n results in an orthogonal matrix O , all of whose entries are ± 1√

n
.

By unconditionality, each coordinate of the vector OX has the same distribution as
X1+···+Xn√

n
. Hence

h (X) = h (OX) ≤
n∑

j=1

h
(
(OX)j

) = nh

(
X1 + · · · + Xn√

n

)
,
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where the inequality follows from subadditivity of entropy. This is exactly the Hao-
Jog inequality for those dimensions where a Hadamard matrix exists. It would be
interesting to find a way around the dimensional restriction, but we do not currently
have a way of doing so.

As is well known, other than the dimensions 1 and 2, Hadamard matrices may
only exist for dimensions that are multiples of 4. As of this date, Hadamard matrices
are known to exist for all multiples of 4 up to 664 [22], and it is a major open
problem whether they in fact exist for all multiples of 4. (Incidentally, we note that
the question of existence of Hadamard matrices can actually be formulated in the
entropy language. Indeed, Hadamard matrices are precisely those that saturate the
obvious bound for the entropy of an orthogonal matrix [19].)

In contrast, complex Hadamard matrices exist in every dimension. A complex
Hadamard matrix of order n is a n × n matrix with complex entries all of which
have modulus 1, and whose rows form an orthogonal set of vectors in C

n. To
see that complex Hadamard matrices always exist, we merely exhibit the Fourier
matrices, which are a well known example of them: these are defined by the entries
Hj,k = exp{ 2πi(j−1)(k−1)

n
}, for j, k = 1, . . . , n, and are related to the discrete

Fourier transform (DFT) matrices. Complex Hadamard matrices play an important
role in quantum information theory [37]. They also yield Theorem 7.2.

Proof of Theorem 7.2 Take any n × n unitary matrix U which all entries are
complex numbers of the same modulus 1√

n
; such matrices are easily constructed

by multiplying a complex Hadamard matrix by n−1/2. (For instance, one could take
U = 1√

n
[e2πikl/n]k,l .) By complex-unconditionality, each coordinate of the vector

UX has the same distribution, the same as X1+···+Xn√
n

. Therefore, by subadditivity,

h (X) = h (UX) ≤
n∑

j=1

h
(
(UX)j

) = nh

(
X1 + · · · + Xn√

n

)
,

which finishes the proof. ��
Let us mention that the invariance idea above also very simply yields the

inequality

D(X) ≤ 1

2
|h(X1 + X2) − h(X1 − X2)|,

where D(X) denotes the relative entropy of the distribution of X from the closest
Gaussian (which is the one with matching mean and covariance matrix), and X1,X2
are independent copies of a random vector X in R

n. First observed in [30, Theorem
10], this fact quantifies the distance from Gaussianity of a random vector in terms
of how different the entropies of the sum and difference of i.i.d. copies of it are.

Finally, we mention that the idea of considering two i.i.d. copies and using
invariance (sometimes called the “doubling trick”) has been used in sophisticated
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ways as a key tool to study both functional inequalities [5, 12, 24] and problems in
network information theory (see, e.g., [14, 18]).
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