
Chapter 6
Concentration of the Intrinsic Volumes
of a Convex Body

Martin Lotz, Michael B. McCoy, Ivan Nourdin, Giovanni Peccati,
and Joel A. Tropp

Abstract The intrinsic volumes are measures of the content of a convex body. This
paper applies probabilistic and information-theoretic methods to study the sequence
of intrinsic volumes. The main result states that the intrinsic volume sequence
concentrates sharply around a specific index, called the central intrinsic volume.
Furthermore, among all convex bodies whose central intrinsic volume is fixed, an
appropriately scaled cube has the intrinsic volume sequence with maximum entropy.
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6.1 Introduction and Main Results

Intrinsic volumes are the fundamental measures of content for a convex body. Some
of the most celebrated results in convex geometry describe the properties of the
intrinsic volumes and their interrelationships. In this paper, we identify several new
properties of the sequence of intrinsic volumes by exploiting recent results from
information theory and geometric functional analysis. In particular, we establish
that the mass of the intrinsic volume sequence concentrates sharply around a specific
index, which we call the central intrinsic volume. We also demonstrate that a scaled
cube has the maximum-entropy distribution of intrinsic volumes among all convex
bodies with a fixed central intrinsic volume.

6.1.1 Convex Bodies and Volume

For each natural number m, the Euclidean space R
m is equipped with the �2 norm

‖·‖, the associated inner product, and the canonical orthonormal basis. The origin
of Rm is written as 0m.

Throughout the paper, n denotes a fixed natural number. A convex body in R
n

is a compact and convex subset, possibly empty. Throughout this paper, K will
denote a nonempty convex body in R

n. The dimension of the convex body, dim K,
is the dimension of the affine hull of K; the dimension takes values in the range
{0, 1, 2, . . . , n}. When K has dimension j , we define the j -dimensional volume
Volj (K) to be the Lebesgue measure of K, computed relative to its affine hull. If
K is zero-dimensional (i.e., a single point), then Vol0(K) = 1.

For sets C ⊂ R
n and D ⊂ R

m, we define the orthogonal direct product

C × D := {(x, y) ∈ R
n+m : x ∈ C and y ∈ D}.

To be precise, the concatenation (x, y) ∈ R
n+m places x ∈ R

n in the first n

coordinates and y ∈ R
m in the remaining (n−m) coordinates. In particular, K×{0m}

is the natural embedding of K into R
n+m.

Several convex bodies merit special notation. The unit-volume cube is the set
Qn := [0, 1]n ⊂ R

n. We write Bn := {x ∈ R
n : ‖x‖ ≤ 1} for the Euclidean unit

ball. The volume κn and the surface area ωn of the Euclidean ball are given by the
formulas

κn := Voln(Bn) = πn/2

�(1 + n/2)
and ωn := nκn = 2πn/2

�(n/2)
. (6.1.1)

As usual, � denotes the gamma function.
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6.1.2 The Intrinsic Volumes

In this section, we introduce the intrinsic volumes, their properties, and connections
to other geometric functionals. A good reference for this material is [32]. Intrinsic
volumes are basic tools in stochastic and integral geometry [33], and they appear in
the study of random fields [2].

We begin with a geometrically intuitive definition.

Definition 6.1.1 (Intrinsic Volumes) For each index j = 0, 1, 2, . . . , n, let P j ∈
R

n×n be the orthogonal projector onto a fixed j -dimensional subspace of Rn. Draw
a rotation matrix Q ∈ R

n×n uniformly at random (from the Haar measure on the
compact, homogeneous group of n × n orthogonal matrices with determinant one).
The intrinsic volumes of the nonempty convex body K ⊂ R

n are the quantities

Vj (K) :=
(

n

j

)
κn

κj κn−j
EQ

[
Volj (P jQK)

]
. (6.1.2)

We write E for expectation and EX for expectation with respect to a specific random
variable X. The intrinsic volumes of the empty set are identically zero: Vj (∅) = 0
for each index j .

Up to scaling, the j th intrinsic volume is the average volume of a projec-
tion of the convex body onto a j -dimensional subspace, chosen uniformly at
random. Following Federer [11], we have chosen the normalization in (6.1.2) to
remove the dependence on the dimension in which the convex body is embedded.
McMullen [25] introduced the term “intrinsic volumes”. In her work, Chevet [10]
called Vj the j -ième épaisseur or the “j th thickness”.

Example 6.1.2 (The Euclidean Ball) We can easily calculate the intrinsic volumes
of the Euclidean unit ball because each projection is simply a Euclidean unit ball of
lower dimension. Thus,

Vj (Bn) =
(

n

j

)
κn

κn−j

for j = 0, 1, 2, . . . , n.

Example 6.1.3 (The Cube) We can also determine the intrinsic volumes of a cube:

Vj(Qn) =
(

n

j

)
for j = 0, 1, 2, . . . , n.

See Sect. 6.5 for the details of the calculation. A classic reference is [30, pp. 224–
227].
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6.1.2.1 Geometric Functionals

The intrinsic volumes are closely related to familiar geometric functionals. The
intrinsic volume V0 is called the Euler characteristic; it takes the value zero for
the empty set and the value one for each nonempty convex body. The intrinsic
volume V1 is proportional to the mean width, scaled so that V1([0, 1]×{0n−1}) = 1.
Meanwhile, Vn−1 is half the surface area, and Vn coincides with the ordinary volume
measure, Voln.

6.1.2.2 Properties

The intrinsic volumes satisfy many important properties. Let C, K ⊂ R
n be

nonempty convex bodies. For each index j = 0, 1, 2, . . . , n, the intrinsic volume
Vj is. . .

1. Nonnegative: Vj (K) ≥ 0.
2. Monotone: C ⊂ K implies Vj (C) ≤ Vj (K).
3. Homogeneous: Vj (λK) = λjVj (K) for each λ ≥ 0.
4. Invariant: Vj (TK) = Vj (K) for each proper rigid motion T . That is, T acts by

rotation and translation.
5. Intrinsic: Vj (K) = Vj (K × {0m}) for each natural number m.
6. A Valuation: Vj(∅) = 0. If C ∪ K is also a convex body, then

Vj (C ∩ K) + Vj (C ∪ K) = Vj (C) + Vj (K).

7. Continuous: If Km → K in the Hausdorff metric, then Vj (Km) → Vj (K).

With sufficient energy, one may derive all of these facts directly from Defini-
tion 6.1.1. See the books [14, 20, 30, 32, 33] for further information about intrinsic
volumes and related matters.

6.1.2.3 Hadwiger’s Characterization Theorems

Hadwiger [15–17] proved several wonderful theorems that characterize the intrinsic
volumes. To state these results, we need a short definition. A valuation F on R

n is
simple if F(K) = 0 whenever dim K < n.

Fact 6.1.4 (Uniqueness of Volume) Suppose that F is a simple, invariant, contin-
uous valuation on convex bodies in R

n. Then F is a scalar multiple of the intrinsic
volume Vn.

Fact 6.1.5 (The Basis of Intrinsic Volumes) Suppose that F is an invariant,
continuous valuation on convex bodies in R

n. Then F is a linear combination of
the intrinsic volumes V0, V1, V2, . . . , Vn.
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Together, these theorems demonstrate the fundamental importance of intrinsic
volumes in convex geometry. They also construct a bridge to the field of integral
geometry, which provides explicit formulas for geometric functionals defined by
integrating over geometric groups (e.g., the family of proper rigid motions).

6.1.2.4 Quermassintegrals

With a different normalization, the mean projection volume appearing in (6.1.2) is
also known as a quermassintegral. The relationship between the quermassintegrals
and the intrinsic volumes is

(
n

j

)
W

(n)
j (K) := κjVn−j (K) for j = 0, 1, 2, . . . , n.

The notation reflects the fact that the quermassintegral W(n)
j depends on the ambient

dimension n, while the intrinsic volume does not.

6.1.3 The Intrinsic Volume Random Variable

In view of Example 6.1.3, we see that the intrinsic volume sequence of the cube Qn

is sharply peaked (around index n/2). Example 6.1.2 shows that intrinsic volumes
of the Euclidean ball Bn drop off quickly (starting around index

√
2πn). This

observation motivates us to ask whether the intrinsic volumes of a general convex
body also exhibit some type of concentration.

It is natural to apply probabilistic methods to address this question. To that
end, we first need to normalize the intrinsic volumes to construct a probability
distribution.

Definition 6.1.6 (Normalized Intrinsic Volumes) The total intrinsic volume of
the convex body K, also known as the Wills functional [18, 25, 37], is the quantity

W(K) :=
n∑

j=0

Vj (K). (6.1.3)

The normalized intrinsic volumes compose the sequence

Ṽj (K) := Vj (K)

W(K)
for j = 0, 1, 2, . . . , n.

In particular, the sequence {Ṽj (K) : j = 0, 1, 2, . . . , n} forms a probability
distribution.



144 M. Lotz et al.

In spite of the similarity of notation, the total intrinsic volume W should not be
confused with a quermassintegral.

We may now construct a random variable that reflects the distribution of the
intrinsic volumes of a convex body.

Definition 6.1.7 (Intrinsic Volume Random Variable) The intrinsic volume ran-
dom variable ZK associated with a convex body K takes nonnegative integer values
according to the distribution

P {ZK = j } = Ṽj (K) for j = 0, 1, 2, . . . , n. (6.1.4)

The mean of the intrinsic volume random variable plays a special role in the
analysis, so we exalt it with its own name and notation.

Definition 6.1.8 (Central Intrinsic Volume) The central intrinsic volume of the
convex body K is the quantity

�(K) := EZK =
n∑

j=0

j · Ṽj (K). (6.1.5)

Equivalently, the central intrinsic volume is the centroid of the sequence of intrinsic
volumes.

Since the intrinsic volume sequence of a convex body K ⊂ R
n is supported on

{0, 1, 2, . . . , n}, it is immediate that the central intrinsic volume satisfies �(K) ∈
[0, n]. The extreme n is unattainable (because a nonempty convex body has Euler
characteristic V0(K) = 1). But it is easy to construct examples that achieve values
across the rest of the range.

Example 6.1.9 (The Scaled Cube) Fix s ∈ [0,∞). Using Example 6.1.3 and the
homogeneity of intrinsic volumes, we see that total intrinsic volume of the scaled
cube is

W(sQn) =
n∑

j=0

(
n

j

)
· sj = (1 + s)n.

The central intrinsic volume of the scaled cube is

�(sQn) = 1

(1 + s)n

n∑
j=0

j ·
(

n

j

)
· sj =

n∑
j=0

j ·
(

n

j

)
·
(

s

1 + s

)j (
1 − s

1 + s

)n−j

= ns

1 + s
.

We recognize the mean of the random variable BIN(s/(1 + s), n) to reach the last
identity. Note that the quantity �(sQn) = ns/(1 + s) sweeps through the interval
[0, n) as we vary s ∈ [0,∞).
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Example 6.1.10 (Large Sets) More generally, we can compute the limits of the
normalized intrinsic volumes of a growing set:

lim
s→∞ Ṽj (sK) → 0 for j < dim K;

lim
s→∞ Ṽj (sK) → 1 for j = dim K.

This point follows from the homogeneity of intrinsic volumes, noted in Sect. 6.1.2.2.

6.1.4 Concentration of Intrinsic Volumes

Our main result states that the intrinsic volume random variable concentrates sharply
around the central intrinsic volume.

Theorem 6.1.11 (Concentration of Intrinsic Volumes) Let K ⊂ R
n be a

nonempty convex body with intrinsic volume random variable ZK. The variance
satisfies

Var[ZK] ≤ 4n.

Furthermore, in the range 0 ≤ t ≤ √
n, we have the tail inequality

P
{|ZK − EZK| ≥ t

√
n
} ≤ 2e−3t2/28.

To prove this theorem, we first convert questions about the intrinsic volume
random variable into questions about metric geometry (Sect. 6.2). We reinterpret the
metric geometry formulations in terms of the information content of a log-concave
probability density. Then we can control the variance (Sect. 6.3) and concentration
properties (Sect. 6.4) of the intrinsic volume random variable using the analogous
results for the information content random variable.

A general probability distribution on {0, 1, 2, . . . , n} can have variance higher
than n2/3. In contrast, the intrinsic volume random variable has variance no greater
than 4n. Moreover, the intrinsic volume random variable behaves, at worst, like a
normal random variable with mean EZK and variance less than 5n. Thus, most of
the mass of the intrinsic volume sequence is concentrated on an interval of about
O(

√
n) indices.

Looking back to Example 6.1.3, concerning the unit-volume cube Qn, we see that
Theorem 6.1.11 gives a qualitatively accurate description of the intrinsic volume
sequence. On the other hand, the bounds for scaled cubes sQn can be quite poor;
see Sect. 6.5.3.
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6.1.5 Concentration of Conic Intrinsic Volumes

Theorem 6.1.11 and its proof parallel recent developments in the theory of conic
intrinsic volumes, which appear in the papers [3, 13, 22]. Using the concentration
of conic intrinsic volumes, we were able to establish that random configurations
of convex cones exhibit striking phase transitions; these facts have applications in
signal processing [3, 21, 23, 24]. We are confident that extending the ideas in the
current paper will help us discover new phase transition phenomena in Euclidean
integral geometry.

6.1.6 Maximum-Entropy Convex Bodies

The probabilistic approach to the intrinsic volume sequence suggests other questions
to investigate. For instance, we can study the entropy of the intrinsic volume random
variable, which reflects the dispersion of the intrinsic volume sequence.

Definition 6.1.12 (Intrinsic Entropy) Let K ⊂ R
n be a nonempty convex body.

The intrinsic entropy of K is the entropy of the intrinsic volume random variable
ZK:

IntEnt(K) := Ent[ZK] = −
n∑

j=0

Ṽj (K) · log Ṽj (K).

We have the following extremal result.

Theorem 6.1.13 (Cubes Have Maximum Entropy) Fix the ambient space R
n,

and let d ∈ [0, n). There is a scaled cube whose central intrinsic volume equals
d:

�(sd,nQn) = d when sd,n = d

n − d
.

Among convex bodies with central intrinsic volume d , the scaled cube sd,nQn has
the maximum intrinsic entropy. Among all convex bodies, the unit-volume cube has
the maximum intrinsic entropy. In symbols,

max{IntEnt(K) : �(K) = d} = IntEnt(sd,nQn) ≤ IntEnt(Qn).

The maximum takes place over all nonempty convex bodies K ⊂ R
n.

The proof of Theorem 6.1.13 also depends on recent results from information
theory, as well as some deep properties of the intrinsic volume sequence. This
analysis appears in Sect. 6.6.
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Theorem 6.1.13 joins a long procession of results on the extremal properties of
the cube. In particular, the cube solves the (affine) reverse isoperimetric problem for
symmetric convex bodies [5]. That is, every symmetric convex body K ⊂ R

n has an
affine image whose volume is one and whose surface area is not greater than 2n, the
surface area of Qn. See Sect. 6.1.7.2 for an equivalent statement.

Remark 6.1.14 (Minimum Entropy) The convex body consisting of a single point
x0 ∈ R

n has the minimum intrinsic entropy: IntEnt({x0}) = 0. Very large convex
bodies also have negligible entropy:

lim
s→∞ IntEnt(sK) = 0 for each nonempty convex body K ⊂ R

n.

The limit is a consequence of Example 6.1.10.

6.1.7 Other Inequalities for Intrinsic Volumes

The classic literature on convex geometry contains a number of prominent inequal-
ities relating the intrinsic volumes, and this topic continues to arouse interest. This
section offers a short overview of the main results of this type. Our presentation is
influenced by [26, 28]. See [32, Chap. 7] for a comprehensive treatment.

Remark 6.1.15 (Unrelated Work) Although the title of the paper [1] includes the
phrase “concentration of intrinsic volumes,” the meaning is quite different. Indeed,
the focus of that work is to study hyperplane arrangements via the intrinsic volumes
of a random sequence associated with the arrangement.

6.1.7.1 Ultra-Log-Concavity

The Alexandrov–Fenchel inequality (AFI) is a profound result on the behavior of
mixed volumes; see [32, Sec. 7.3] or [34]. We can specialize the AFI from mixed
volumes to the particular case of quermassintegrals. In this instance, the AFI states
that the quermassintegrals of a convex body K ⊂ R

n compose a log-concave
sequence:

W
(n)
j (K)2 ≥ W

(n)
j+1(K) · W(n)

j−1(K) for j = 1, 2, 3, . . . , n − 1. (6.1.6)

As Chevet [10] and McMullen [26] independently observed, the log-concavity
(6.1.6) of the quermassintegral sequence implies that the intrinsic volumes form
an ultra-log-concave (ULC) sequence:

j · Vj (K)2 ≥ (j + 1) · Vj+1(K) · Vj−1(K) for j = 1, 2, 3, . . . , n − 1. (6.1.7)
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This fact plays a key role in the proof of Theorem 6.1.13. For more information on
log-concavity and ultra-log-concavity, see the survey article [31].

From (6.1.7), Chevet and McMullen both deduce that all of the intrinsic volumes
are controlled by the first one, and they derive an estimate for the total intrinsic
volume:

Vj (K) ≤ 1

j !V1(K)j for j = 1, 2, 3, . . . , n, hence W(K) ≤ eV1(K).

This estimate implies some growth and decay properties of the intrinsic volume
sequence. An interesting application appears in Vitale’s paper [35], which derives
concentration for the supremum of a Gaussian process from the foregoing bound on
the total intrinsic volume.

It is possible to establish a concentration result for intrinsic volumes as a
direct consequence of (6.1.7). Indeed, it is intuitive that a ULC sequence should
concentrate around its centroid. This point follows from Caputo et al. [9, Sec. 3.2],
which transcribes the usual semigroup proof of a log-Sobolev inequality to the
discrete setting. When applied to intrinsic volumes, this method gives concentration
on the scale of the mean width V1(K) of the convex body K. This result captures a
phenomenon different from Theorem 6.1.11, where the scale for the concentration
is the dimension n.

6.1.7.2 Isoperimetric Ratios

Another classical consequence of the AFI is a sequence of comparisons for the
isoperimetric ratios of the volume of a convex body K ⊂ R

n, relative to the
Euclidean ball Bn:

(
Vn(K)

Vn(Bn)

)1/n

≤
(

Vn−1(K)

Vn−1(Bn)

)1/(n−1)

≤ · · · ≤ V1(K)

V1(Bn)
. (6.1.8)

The first inequality is the isoperimetric inequality, and the inequality between Vn

and V1 is called Urysohn’s inequality [32, Sec. 7.2]. Isoperimetric ratios play a
prominent role in asymptotic convex geometry; for example, see [4, 6, 29].

Some of the inequalities in (6.1.8) can be inverted by applying affine transforma-
tions. For example, Ball’s reverse isoperimetric inequality [5] states that K admits
an affine image K̂ for which

(
Vn−1(K̂)

Vn−1(Bn)

)1/(n−1)

≤ constn ·
(

Vn(K̂)

Vn(Bn)

)1/n

.

The sharp value for the constant is known; equality holds when K is a simplex. If
we restrict our attention to symmetric convex bodies, then the cube is extremal.
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The recent paper [28] of Paouris et al. contains a more complete, but less precise,
set of reversals. Suppose that K is a symmetric convex body. Then there is a
parameter β
 := β
(K) for which

V1(K)

V1(Bn)
≤

[
1 + const ·

(
β
j log

(
e

jβ


))1/2
]

·
(

Vj (K)

Vj (Bn)

)1/j

for j = 1, 2, 3, . . . , const/β
. (6.1.9)

The constants here are universal but unspecified. This result implies that the prefix
of the sequence of isoperimetric ratios is roughly constant. The result (6.1.9) leaves
open the question about the behavior of the sequence beyond the distinguished point.

It would be interesting to reconcile the work of Paouris et al. [28] with
Theorem 6.1.11. In particular, it is unclear whether the isoperimetric ratios remain
constant, or whether they exhibit some type of phase transition. We believe that our
techniques have implications for this question.

6.2 Steiner’s Formula and Distance Integrals

The first step in our program is to convert questions about the intrinsic volume
random variable into questions in metric geometry. We can accomplish this goal
using Steiner’s formula, which links the intrinsic volumes of a convex body to its
expansion properties. We reinterpret Steiner’s formula as a distance integral, and we
use this result to compute moments of the intrinsic volume random variable. This
technique, which appears to be novel, drives our approach.

6.2.1 Steiner’s Formula

The Minkowski sum of a nonempty convex body and a Euclidean ball is called a
parallel body. Steiner’s formula gives an explicit expansion for the volume of the
parallel body in terms of the intrinsic volumes of the convex body.

Fact 6.2.1 (Steiner’s Formula) Let K ⊂ R
n be a nonempty convex body. For each

λ ≥ 0,

Voln(K + λBn) =
n∑

j=0

λn−j κn−j Vj (K).

In other words, the volume of the parallel body is a polynomial function of the
expansion radius. Moreover, the coefficients depend only on the intrinsic volumes
of the convex body. The proof of Fact 6.2.1 is fairly easy; see [14, 32].
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Remark 6.2.2 (Steiner and Kubota) Steiner’s formula can be used to define the
intrinsic volumes. The definition we have given in (6.1.2) is usually called Kubota’s
formula; it can be derived as a consequence of Fact 6.2.1 and Cauchy’s formula for
surface area. For example, see [4, Sec. B.5].

6.2.2 Distance Integrals

The parallel body can also be expressed as the set of points within a fixed distance of
the convex body. This observation motivates us to introduce the distance to a convex
set.

Definition 6.2.3 (Distance to a Convex Body) The distance to a nonempty convex
body K is the function

dist(x, K) := min
{ ‖y − x‖ : y ∈ K

}
where x ∈ R

n.

It is not hard to show that the distance, dist(·, K), and its square, dist2(·, K), are both
convex functions.

Here is an alternative statement of Steiner’s formula in terms of distance
integrals [18].

Proposition 6.2.4 (Distance Integrals) Let K ⊂ R
n be a nonempty convex body.

Let f : R+ → R be an absolutely integrable function. Provided that the integrals
on the right-hand side converge,

∫
Rn

f (dist(x, K)) dx = f (0) · Vn(K) +
n−1∑
j=0

(
ωn−j

∫ ∞

0
f (r) · rn−j−1 dr

)
· Vj(K).

This result is equivalent to Fact 6.2.1.

Proof For r > 0, Steiner’s formula gives an expression for the volume of the locus
of points within distance r of the convex body:

Voln{x ∈ R
n : dist(x, K) ≤ r} =

n∑
j=0

rn−j κn−j Vj (K).

The rate of change in this volume satisfies

d

dr
Voln{x ∈ R

n : dist(x, K) ≤ r} =
n−1∑
j=0

rn−j−1ωn−j Vj (K). (6.2.1)

We have used the relation (6.1.1) that ωn−j = (n − j)κn−j .
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Let μ� be the push-forward of the Lebesgue measure on R
n to R+ by the function

dist(·; K). That is,

μ�(A) := Voln{x ∈ R
n : dist(x; K) ∈ A} for each Borel set A ⊂ R+.

This measure clearly satisfies μ�({0}) = Vn(K). Beyond that, when 0 < a < b,

μ�((a, b]) = Voln{x ∈ R
n : a < dist(x; K) ≤ b}

= Voln{x ∈ R
n : dist(x; K) ≤ b} − Voln{x ∈ R

n : dist(x; K) ≤ a}

=
∫ b

a

d

dr
Voln{x ∈ R

n : dist(x; K) ≤ r} dr.

Therefore, by definition of the push-forward,

∫
Rn

f (dist(x; K)) dx =
∫
R+

f (r) dμ�(r)

= f (0) · Vn(K)

+
∫ ∞

0
f (r) · d

dr
Voln{x ∈ R

n : dist(x; K) ≤ r} dr.

Introduce (6.2.1) into the last display to arrive at the result. 
�

6.2.3 Moments of the Intrinsic Volume Sequence

We can compute moments (i.e., linear functionals) of the sequence of intrinsic
volumes by varying the function f in Proposition 6.2.4. To that end, it is helpful
to make another change of variables.

Corollary 6.2.5 (Distance Integrals II) Let K ⊂ R
n be a nonempty convex body.

Let g : R+ → R be an absolutely integrable function. Provided the integrals on the
right-hand side converge,

∫
Rn

g(π dist2(x, K)) · e−π dist2(x,K) dx

= g(0) · Vn(K) +
n−1∑
j=0

(
1

�((n − j)/2)

∫ ∞

0
g(r) · r−1+(n−j)/2e−r dr

)
· Vj (K).

Proof Set f (r) = g(πr2) · e−πr2
in Proposition 6.2.4 and invoke (6.1.1). 
�

We are now prepared to compute some specific moments of the intrinsic volume
sequence by making special choices of g in Corollary 6.2.5.
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Example 6.2.6 (Total Intrinsic Volume) Consider the case where g(r) = 1. We
obtain the appealing formula

∫
Rn

e−π dist2(x,K) dx =
n∑

j=0

Vj (K) = W(K).

The total intrinsic volume W(K) was defined in (6.1.3). This identity appears in [18,
25].

Example 6.2.7 (Central Intrinsic Volume) The choice g(r) = 2r/W(K) yields

1

W(K)

∫
Rn

2π dist2(x, K)·e−π dist2(x,K) dx = 1

W(K)

n∑
j=0

(n−j)·Vj (K) = n−EZK.

We have recognized the total intrinsic volume (6.1.3) and the central intrinsic
volume (6.1.5).

Example 6.2.8 (Generating Functions) We can also develop an expression for the
generating function of the intrinsic volume sequence by selecting g(r) = e(1−λ2)r .
Thus,

∫
Rn

e−λ2π dist2(x,K) dx = λ−n
n∑

j=0

λjVj (K). (6.2.2)

This expression is valid for all λ > 0. See [18] or [33, Lem. 14.2.1].
We can reframe the relation (6.2.2) in terms of the moment generating function of

the intrinsic volume random variable ZK. To do so, we make the change of variables
λ = eθ and divide by the total intrinsic volume W(K):

E eθ(ZK−n) = 1

W(K)

∫
Rn

e−e2θ π dist2(x,K) dx. (6.2.3)

This expression remains valid for all θ ∈ R.

Remark 6.2.9 (Other Moments) In fact, we can compute any moment of the intrin-
sic volume sequence by selecting an appropriate function f in Proposition 6.2.4.
Corollary 6.2.5 is designed to produce gamma integrals. Beta integrals also arise
naturally and lead to other striking relations. For instance,

∫
Rn

dx

(1 + λ dist(x, K))n+1 = κnλ
−n

n∑
j=0

λj Vj (K)

Vj (Bn)
for λ > 0.

The intrinsic volumes of the Euclidean ball are computed in Example 6.1.2.
Isoperimetric ratios appear naturally in convex geometry (see Sect. 6.1.7.2), so this
type of result may have independent interest.
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6.3 Variance of the Intrinsic Volume Random Variable

Let us embark on our study of the intrinsic volume random variable. The main
result of this section states that the variance of the intrinsic volume random variable
is significantly smaller than its range. This is a more precise version of the variance
bound in Theorem 6.1.11.

Theorem 6.3.1 (Variance of the Intrinsic Volume Random Variable) Let K ⊂
R

n be a nonempty convex body with intrinsic volume random variable ZK. We have
the inequalities

Var[ZK] ≤ 2(n + EZK) ≤ 4n.

The proof of Theorem 6.3.1 occupies the rest of this section. We make a
connection between the distance integrals from Sect. 6.2 and the information content
of a log-concave probability measure. By using recent results on the variance of
information, we can develop bounds for the distance integrals. These results, in turn,
yield bounds on the variance of the intrinsic volume random variable. A closely
related argument, appearing in Sect. 6.4, produces exponential concentration.

Remark 6.3.2 (An Alternative Argument) Theorem 6.3.1 can be sharpened using
variance inequalities for log-concave densities. Indeed, it holds that

Var[ZK] ≤ 2(n − EZK).

To prove this claim, we apply the Brascamp–Lieb inequality [8, Thm. 4.1] to a
perturbation of the log-concave density (6.3.4) described below. It is not clear
whether similar ideas lead to normal concentration (because the density is not
strongly log-concave), so we have chosen to omit this development.

6.3.1 The Varentropy of a Log-Concave Distribution

First, we outline some facts from information theory about the information content
in a log-concave random variable. Let μ : Rn → R+ be a log-concave probability
density; that is, a probability density that satisfies the inequalities

μ(τx + (1 − τ )y) ≥ μ(x)τμ(y)1−τ for x, y ∈ R
n and τ ∈ [0, 1].

We define the information content Iμ of a random point drawn from the density μ

to be the random variable

Iμ := − log μ(y) where y ∼ μ. (6.3.1)
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The symbol ∼ means “has the distribution.” The terminology is motivated by the
operational interpretation of the information content of a discrete random variable
as the number of bits required to represent a random realization using a code with
minimal average length [7].

The expected information content E Iμ is usually known as the entropy of the
distribution μ. The varentropy of the distribution is the variance of information
content:

VarEnt[μ] := Var[Iμ] = E (Iμ − E Iμ)2. (6.3.2)

Here and elsewhere, nonlinear functions bind before the expectation.
Bobkov and Madiman [7] showed that the varentropy of a log-concave distribu-

tion on R
n is not greater than a constant multiple of n. Other researchers quickly

determined the optimal constant. The following result was obtained independently
by Nguyen [27] and by Wang [36] in their doctoral dissertations.

Fact 6.3.3 (Varentropy of a Log-Concave Distribution) Let μ : Rn → R+ be a
log-concave probability density. Then

VarEnt[μ] ≤ n.

See Fradelizi et al. [12] for more background and a discussion of this result.
For future reference, note that the varentropy and related quantities exhibit a

simple scale invariance. Consider the shifted information content

Icμ := − log(cμ(y)) where c > 0 and y ∼ μ.

It follows from the definition that

Icμ − E Icμ = Iμ − E Iμ for each c > 0. (6.3.3)

In particular, Var[Icμ] = Var[Iμ].

6.3.2 A Log-Concave Density

Next, we observe that the central intrinsic volume is related to the information
content of a log-concave density. For a nonempty convex body K ⊂ R

n, define

μK(x) := 1

W(K)
e−π dist2(x,K) for x ∈ R

n. (6.3.4)
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The density μK is log-concave because the squared distance to a convex body is a
convex function. The calculation in Example 6.2.6 ensures that μK is a probability
density.

Introduce the (shifted) information content random variable associated with K:

HK := − log(W(K) · μK(y)) = π dist2(y, K) where y ∼ μK. (6.3.5)

Up to the presence of the factor W(K), the random variable HK is the information
content of a random draw from the distribution μK. In view of (6.3.2) and (6.3.3),

Var[HK] = Var[IμK ] = VarEnt[μK]. (6.3.6)

More generally, all central moments and cumulants of HK coincide with the
corresponding central moments and cumulants of IμK :

E f (HK − EHK) = E f (IμK − E IμK). (6.3.7)

This expression is valid for any function f : R → R such that the expectations
exist.

6.3.3 Information Content and Intrinsic Volumes

We are now prepared to connect the moments of the intrinsic volume random
variable ZK with the moments of the information content random variable HK.
These representations allow us to transfer results about information content into
data about the intrinsic volumes.

Using the notation from the last section, Example 6.2.7 gives a relation between
the expectations:

EZK = n − 2EHK. (6.3.8)

The next result provides a similar relationship between the variances.

Proposition 6.3.4 (Variance of the Intrinsic Volume Random Variable) Let K ⊂
R

n be a nonempty convex body with intrinsic volume random variable ZK and
information content random variable HK. We have the variance identity

Var[ZK] = 4 (Var[HK] − EHK).
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Proof Apply Corollary 6.2.5 with the function g(r) = 4r2/W(K) to obtain

4EH 2
K = 1

W(K)

∫
Rn

4π2 dist4(x, K) · e−π dist2(x,K) dx

= 1

W(K)

n−1∑
j=0

(n − j)((n − j) + 2) · Vj (K)

= E(n − ZK)2 + 2E[n − ZK]
= Var[n − ZK] + (E[n − ZK])2 + 2E[n − ZK]
= Var[ZK] + 4(EHK)2 + 4EHK.

We have used the definition (6.1.4) of the intrinsic volume random variable to
express the sum as an expectation. In the last step, we used the relation (6.3.8)
twice to pass to the random variable HK. Finally, rearrange the display to complete
the proof. 
�

6.3.4 Proof of Theorem 6.3.1

We may now establish the main result of this section. Proposition 6.3.4 yields

Var[ZK] = 4 (Var[HK]−EHK) = 4 VarEnt[μK]−2(n−EZK) ≤ 2n+2EZK ≤ 4n.

We have invoked (6.3.6) to replace the variance of HK with the varentropy
and (6.3.8) to replace EHK by the central intrinsic volume EZK. The inequality
is a consequence of Fact 6.3.3, which controls the varentropy of the log-concave
density μK. We obtain the final bound by noting that EZK ≤ n.

Here is an alternative approach to the final bound that highlights the role of the
varentropy:

Var[ZK] ≤ 4 Var[HK] = 4 VarEnt[μK] ≤ 4n.

The first inequality follows from Proposition 6.3.4, and the second inequality is
Fact 6.3.3.

6.4 Concentration of the Intrinsic Volume Random Variable

The square root of the variance of the intrinsic volume random variable ZK gives the
scale for fluctuations about the mean. These fluctuations have size O(

√
n), which

is much smaller than the O(n) range of the random variable. This observation
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motivates us to investigate the concentration properties of ZK. In this section, we
develop a refined version of the tail bound from Theorem 6.1.11.

Theorem 6.4.1 (Tail Bounds for Intrinsic Volumes) Let K ⊂ R
n be a nonempty

convex body with intrinsic volume random variable ZK. For all t ≥ 0, we have the
inequalities

P {ZK − EZK ≥ t} ≤ exp

{
−(n + EZK) · ψ∗

(
t

n + EZK

)}
;

P {ZK − EZK ≤ −t} ≤ exp

{
−(n + EZK) · ψ∗

( −t

n + EZK

)}
.

The function ψ∗(s) := ((1 + s) log(1 + s) − s)/2 for s > −1.

The proof of this result follows the same pattern as the argument from Theo-
rem 6.3.1. In Sect. 6.4.5, we derive Theorem 6.4.1 as an immediate consequence.

6.4.1 Moment Generating Function of the Information
Content

In addition to the variance, one may study other moments of the information content
random variable. In particular, bounds for the moment generating function (mgf) of
the centered information content lead to exponential tail bounds for the information
content. Bobkov and Madiman [7] proved the first result in this direction. More
recently, Fradelizi et al. [12] have obtained the optimal bound.

Fact 6.4.2 (Information Content mgf) Let μ : R
n → R+ be a log-concave

probability density. For β < 1,

E eβ(Iμ−E Iμ) ≤ enϕ(β),

where ϕ(s) := −s − log(1 − s) for s < 1. The information content random variable
Iμ is defined in (6.3.1).

6.4.2 Information Content and Intrinsic Volumes

We extract concentration inequalities for the intrinsic volume random variable ZK
by studying its (centered) exponential moments. Define

mK(θ) := E eθ(ZK−EZK) for θ ∈ R.
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The first step in the argument is to represent the mgf in terms of the information
content random variable HK defined in (6.3.5).

Proposition 6.4.3 (mgf of Intrinsic Volume Random Variable) Let K ⊂ R
n be a

nonempty convex body with intrinsic volume random variable ZK and information
content random variable HK. For θ ∈ R,

mK(θ) = e−ϕ(β)EHK · E eβ(HK−EHK) where β := 1 − e2θ .

The function ϕ is defined in Fact 6.4.2.

Proof The formula (6.2.3) from Example 6.2.8 yields the identity

E eθ(ZK−n) = 1

W(K)

∫
Rn

e(1−e2θ )·π dist2(x,K) · e−π dist2(x,K) dx = E e(1−e2θ )HK .

We can transfer this result to obtain another representation for mK. First, use the
identity (6.3.8) to replace EZK with EHK. Then invoke the last display to reach

mK(θ) = E eθ(ZK−EZK) = e2θ EHK E eθ(ZK−n)

= e2θ EHK E e(1−e2θ )HK

= e(1+2θ−e2θ )EHK E e(1−e2θ )(HK−EHK)

= e(β+log(1−β))EHK E eβ(HK−EHK).

In the last step, we have made the change of variables β = 1 − e2θ . Finally, identify
the value −ϕ(β) in the first exponent. 
�

6.4.3 A Bound for the mgf

We are now prepared to bound the mgf mK. This result will lead directly to
concentration of the intrinsic volume random variable.

Proposition 6.4.4 (A Bound for the mgf) Let K ⊂ R
n be a nonempty convex body

with intrinsic volume random variable ZK. For θ ∈ R,

mK(θ) ≤ eψ(θ)(n+EZK),

where ψ(s) := (e2s − 2s − 1)/2 for s ∈ R.
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Proof For the parameter β = 1 − e2θ , Proposition 6.4.3 yields

mK(θ) = e−ϕ(β)EHK E eβ(HK−EHK)

= e−ϕ(β)EHK E eβ(IμK−E IμK )

≤ e−ϕ(β)EHK · enϕ(β)

= e−ϕ(β)(n−EZK)/2 · enϕ(β) = eϕ(β)(n+EZK)/2.

To reach the second line, we use the equivalence (6.3.7) for the central moments.
The inequality is Fact 6.4.2, the mgf bound for the information content IμK of the
log-concave density μK. Afterward, we invoke (6.3.8) to pass from the information
content random variable HK to the intrinsic volume random variable ZK. The next
step is algebraic. The result follows when we return from the variable β to the
variable θ , leading to the appearance of the function ψ . 
�

6.4.4 Proof of Theorem 6.4.1

The Laplace transform method, combined with the mgf bound from Proposi-
tion 6.4.4, produces Bennett-type inequalities for the intrinsic volume random
variable. In brief,

P {ZK − EZK ≥ t} ≤ inf
θ>0

e−θt · mK(θ)

≤ inf
θ>0

e−θt+ψ(θ)(n+EZK)

= exp

{
−(n + EZK) · ψ∗

(
t

n + EZK

)}
.

The Fenchel–Legendre conjugate ψ∗ of the function ψ has the explicit form given
in the statement of Theorem 6.4.1. The lower tail bound follows from the same
argument.

6.4.5 Proof of Theorem 6.1.11

The concentration inequality in the main result, Theorem 6.4.1, follows when we
weaken the inequalities obtained in the last section. Comparing derivatives, we can
verify that ψ∗(s) ≥ (s2/4)/(1 + s/3) for all s > −1. For the interesting range,
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0 ≤ t ≤ n, we have

P {ZK − EZK ≥ t} ≤ exp

{ −t2/4

n + EZK + t/3

}
;

P {ZK − EZK ≤ −t} ≤ exp

{ −t2/4

n + EZK − t/3

}
.

We may combine this pair of inequalities into a single bound:

P {|ZK − EZK| ≥ t} ≤ 2 exp

( −t2/4

n + EZK + t/3

)
.

Make the estimate EZK ≤ n, and bound the denominator using t ≤ n. This
completes the argument.

6.5 Example: Rectangular Parallelotopes

In this section, we work out the intrinsic volume sequence of a rectangular
parallelotope. This computation involves the generating function of the intrinsic
volume sequence. Because of its elegance, we develop this method in more depth
than we need to treat the example at hand.

6.5.1 Generating Functions and Intrinsic Volumes

To begin, we collect some useful information about the properties of the generating
function of the intrinsic volumes.

Definition 6.5.1 (Intrinsic Volume Generating Function) The generating func-
tion of the intrinsic volumes of the convex body K is the polynomial

GK(λ) :=
n∑

j=0

λjVj (K) = W(λK) for λ > 0.

We can use the generating function to read off some information about a convex
body, including the total intrinsic volume and the central intrinsic volume. This is a
standard result [38, Sec. 4.1], so we omit the elementary argument.
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Proposition 6.5.2 (Properties of the Generating Function) For each nonempty
convex body K ⊂ R

n,

W(K) = GK(1) and �(K) = G′
K(1)

GK(1)
= (log GK)′(1).

As usual, the prime ′ denotes a derivative.

It is usually challenging to compute the intrinsic volumes of a convex body, but
the following fact allows us to make short work of some examples.

Fact 6.5.3 (Direct Products) Let C ⊂ R
n1 and K ⊂ R

n2 be nonempty convex
bodies. The generating function of the intrinsic volumes of the convex body C×K ⊂
R

n1+n2 takes the form

GC×K(λ) = GC(λ) · GK(λ).

For completeness, we include a short proof inspired by Hadwiger [18]; see [33,
Lem. 14.2.1].

Proof Abbreviate n := n1 + n2. For a point x ∈ R
n, write x = (x1, x2) where

xi ∈ R
ni . Then

dist2(x, C × K) = dist2(x1, C) + dist2(x2, K).

Invoke the formula (6.2.2) from Example 6.2.8 for the generating function of the
intrinsic volumes (three times!). For λ > 0,

λ−n
n∑

j=0

λjVj (C × K) =
∫
Rn

e−λ2π dist2(x,C×K) dx

=
∫
R

n1

∫
R

n2
e−λ2π dist2(x1,C) · e−λ2π dist2(x2,K) dx1 dx2

=
⎛
⎝λ−n1

n1∑
j=0

λjVj (C)

⎞
⎠

⎛
⎝λ−n2

n2∑
j=0

λjVj (K)

⎞
⎠ .

Cancel the leading factors of λ to complete the argument. 
�
As a corollary, we can derive an expression for the central intrinsic volume of a

direct product.

Corollary 6.5.4 (Central Intrinsic Volume of a Product) Let C ⊂ R
n1 and K ⊂

R
n2 be nonempty convex bodies. Then

�(C × K) = �(C) + �(K).
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Proof According to Proposition 6.5.2 and Fact 6.5.3,

�(C × K) = (log GC×K)′(1) = (log(GCGK))′(1)

= (log GC + log GK)′(1) = (log GC)′(1) + (log GK)′(1)

= �(C) + �(K).

This is what we needed to show. 
�

6.5.2 Intrinsic Volumes of a Rectangular Parallelotope

Using Fact 6.5.3, we quickly compute the intrinsic volumes and related statistics for
a rectangular parallelotope.

Proposition 6.5.5 (Rectangular Parallelotopes) For parameters s1, s2, . . . , sn ≥
0, construct the rectangular parallelotope

P := [0, s1] × [0, s2] × · · · × [0, sn] ⊂ R
n.

The generating function for the intrinsic volumes of the parallelotope P satisfies

GP(λ) =
n∏

i=1

(1 + λsi).

In particular, Vj (K) = ej (s1, . . . , sn), where ej denotes the j th elementary
symmetric function. The total intrinsic volume and central intrinsic volume satisfy

W(P) =
n∏

i=1

(1 + si ) and �(P) =
n∑

i=1

si

1 + si
.

Proof Let s ≥ 0. By direct calculation from Definition 6.1.1, the intrinsic volumes
of the interval [0, s] ⊂ R

1 are V0([0, s]) = 1 and V1([0, s]) = s. Thus,

G[0,s](λ) =
1∑

j=0

λjVj ([0, s]) = 1 + λs.

Fact 6.5.3 implies that the generating function for the intrinsic volumes of the
parallelotope P is

GP(λ) :=
n∑

j=0

λjVj(P) =
n∏

i=0

(1 + λsi).
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We immediately obtain formulas for the total intrinsic volume and the central
intrinsic volume from Proposition 6.5.2. Alternatively, we can compute the central
intrinsic volume of an interval [0, s] and use Corollary 6.5.4 to extend this result to
the parallelotope P. 
�

6.5.3 Intrinsic Volumes of a Cube

As an immediate consequence of Proposition 6.5.5, we obtain a clean result on the
intrinsic volumes of a scaled cube.

Corollary 6.5.6 (Cubes) Let Qn ⊂ R
n be the unit cube. For s ≥ 0, the normalized

intrinsic volumes of the scaled cube sQn coincide with a binomial distribution. For
each j = 0, 1, 2, . . . , n,

Ṽj (sQn) =
(

n

j

)
· pj (1 − p)n−j where p = s

1 + s
.

In particular, the central intrinsic volume of the scaled cube is

�(sQn) = np = ns

1 + s
.

Corollary 6.5.6 plays a starring role in our analysis of the intrinsic volume
sequences that attain the maximum entropy.

We can also use Corollary 6.5.6 to test our results on the variance and concen-
tration properties of the intrinsic volume sequence by comparing them with exact
computations for the cube. Fix a number s ≥ 0, and let p = s/(1 + s). Then

Var[ZsQn
] = np(1 − p) = ns

(1 + s)2 .

Meanwhile, Theorem 6.3.1 gives the upper bound

Var[ZsQn
] ≤ 2(n + np) = 2n(1 + 2s)

1 + s
.

For s = 1, the ratio of the upper bound to the exact variance is 12. For s ≈ 0
and s → ∞, the ratio becomes arbitrarily large. Similarly, Theorem 6.4.1 gives a
qualitatively good description for s = 1, but its predictions are far less accurate for
small and large s. There remains more work to do!
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6.6 Maximum-Entropy Distributions of Intrinsic Volumes

We have been using probabilistic methods to study the intrinsic volumes of a convex
body, and we have seen that the intrinsic volume sequence is concentrated, as
reflected in the variance bound (Theorem 6.3.1) and the exponential tail bounds
(Theorem 6.4.1). Therefore, it is natural to consider other measures of the dispersion
of the sequence. We recall Definition 6.1.12, of the intrinsic entropy, which is the
entropy of the normalized intrinsic volume sequence. This concept turns out to be
interesting.

In this section, we will establish Theorem 6.1.13. This result states that, among
all convex bodies with a fixed central intrinsic volume, a scaled cube has the largest
entropy. Moreover, the unit-volume cube has the largest intrinsic entropy among
all convex bodies in a fixed dimension. We prove this theorem using some recent
observations from information theory.

6.6.1 Ultra-Log-Concavity and Convex Bodies

The key step in proving Theorem 6.1.13 is to draw a connection between intrinsic
volumes and ultra-log-concave sequences. We begin with an important definition.

Definition 6.6.1 (Ultra-Log-Concave Sequence) A nonnegative sequence {aj :
j = 0, 1, 2, . . . } is called ultra-log-concave, briefly ULC, if it satisfies the relations

j · a2
j ≥ (j + 1) · aj+1aj−1 for j = 1, 2, 3, . . . .

It is equivalent to say that the sequence {j ! aj : j = 0, 1, 2, . . . } is log-concave.

Among all finitely supported ULC probability distributions, the binomial dis-
tributions have the maximum entropy. This result was obtained by Yaming Yu [39]
using methods developed by Oliver Johnson [19] for studying the maximum-entropy
properties of Poisson distributions.

Fact 6.6.2 (Binomial Distributions Maximize Entropy) Let p ∈ [0, 1], and fix a
natural number n. Among all ULC probability distributions with mean pn that are
supported on {0, 1, 2, . . . , n}, the binomial distribution BIN(p, n) has the maximum
entropy.

These facts are relevant to our discussion because the intrinsic volumes of a
convex body form an ultra-log-concave sequence.

Fact 6.6.3 (Intrinsic Volumes are ULC) The normalized intrinsic volumes of a
nonempty convex body in R

n compose a ULC probability distribution supported on
{0, 1, 2, . . . , n}.
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This statement is a consequence of the Alexandrov–Fenchel inequalities [32,
Sec. 7.3]; see the papers of Chevet [10] and McMullen [26].

6.6.2 Proof of Theorem 6.1.13

With this information at hand, we quickly establish the main result of the section.
Recall that Qn denotes the unit-volume cube in R

n. Let K ⊂ R
n be a nonempty

convex body. Define the number p ∈ [0, 1) by the relation pn = �(K). According
to Corollary 6.5.6, the scaled cube sQn satisfies

�(sQn) = pn = �(K) when s = p

1 − p
.

Fact 6.6.3 ensures that the normalized intrinsic volume sequence of the convex body
K is a ULC probability distribution supported on {0, 1, 2, . . . , n}. Since EZK =
�(K) = pn, Fact 6.6.2 now delivers

IntEnt(K) = Ent[ZK] ≤ Ent[BIN(p, n)] = Ent[ZsQn
] = IntEnt(sQn).

We have used Corollary 6.5.6 again to see that ZsQn
∼ BIN(p, n). The remaining

identities are simply the definition of the intrinsic entropy. In other words, the scaled
cube has the maximum intrinsic entropy among all convex bodies that share the
same central intrinsic volume.

It remains to show that the unit-volume cube has maximum intrinsic entropy
among all convex bodies. Continuing the analysis in the last display, we find that

IntEnt(K) ≤ Ent[BIN(p, n)] ≤ Ent[BIN(1/2, n)] = Ent[ZQn
] = IntEnt(Qn).

Indeed, among the binomial distributions BIN(p, n) for p ∈ [0, 1], the maximum
entropy distribution is BIN(1/2, n). But this is the distribution of ZQn

, the intrinsic
volume random variable of the unit cube Qn. This observation implies the remaining
claim in Theorem 6.1.13.
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