
Chapter 5
Small Ball Probability for the Condition
Number of Random Matrices

Alexander E. Litvak, Konstantin Tikhomirov,
and Nicole Tomczak-Jaegermann

Abstract Let A be an n × n random matrix with i.i.d. entries of zero mean, unit
variance and a bounded sub-Gaussian moment. We show that the condition number
smax(A)/smin(A) satisfies the small ball probability estimate

P
{
smax(A)/smin(A) ≤ n/t

} ≤ 2 exp(−ct2), t ≥ 1,

where c > 0 may only depend on the sub-Gaussian moment. Although the estimate
can be obtained as a combination of known results and techniques, it was not noticed
in the literature before. As a key step of the proof, we apply estimates for the singular
values of A, P

{
sn−k+1(A) ≤ ck/

√
n
} ≤ 2 exp(−ck2), 1 ≤ k ≤ n, obtained

(under some additional assumptions) by Nguyen.

5.1 Introduction

We say that a random variable ξ has sub-Gaussian moment bounded above by
K > 0 if

P{|ξ | ≥ t} ≤ exp
(
1 − t2/(2K2)

)
, t ≥ 0.
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Let A be an n × n random matrix with i.i.d. entries of zero mean, unit variance
and sub-Gaussian moment bounded above by K , and denote by si (A), 1 ≤ i ≤
n, its singular values arranged in non-increasing order. We will write smax(A) and
smin(A) for s1(A) and sn(A), respectively. Estimating the magnitude of the condition
number,

κ(A) = smax(A)/smin(A),

is a well studied problem, with connections to numerical analysis and computation
of the limiting distribution of the matrix spectrum; we refer, in particular, to [20] for
discussion. Since the largest singular value smax(A) is strongly concentrated (see the
proof of Corollary 5.1.2 below), estimating κ(A) is essentially reduced to estimating
smin(A) from above and below.

The main result of [12] provides small ball probability estimates for smin(A) of
the form

P
{
smin(A) ≤ t/

√
n
} ≤ Ct + e−cn, t ≤ 1,

for some C, c > 0 depending only on the sub-Gaussian moment. It seems natural to
investigate the complementary regime—the large deviation estimates for smin(A). It
was shown in [13] that

P
{
smin(A) ≥ t/

√
n
} ≤ C ln t

t
+ e−cn, t ≥ 2

(see also [21] for an extension of this result to distributions with no assumptions on
moments higher than 2). The probability estimate was improved in [10] to

P
{
smin(A) ≥ t/

√
n
} ≤ e−ct , t ≥ 2,

for c > 0 depending only on the sub-Gaussian moment. The existing results on the
distribution of the singular values of random Gaussian matrices [4, 18] suggest that
the optimal dependence on t in the exponent on the right hand side is quadratic,
i.e. the variable

√
n smin(A) is sub-Gaussian. Specifically, it is shown in [18] that

smin(G) for the standard n × n Gaussian matrix G satisfies two-sided estimates

exp(−Ct2) ≤ P
{
smin(G) ≥ t/

√
n
} ≤ exp(−ct2), t ≥ C1,

where C,C1, c > 0 are some universal constants. The main result of our note
provides matching upper estimate for matrices with sub-Gaussian entries:

Theorem 5.1.1 Let A be an n × n random matrix with i.i.d. entries of zero mean,
unit variance, and sub-Gaussian moment bounded above by K > 0. Then the
smallest singular value smin(A) satisfies

P
{
smin(A) ≥ t/

√
n
} ≤ 2 exp(−ct2), t ≥ 1,
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where c > 0 is a constant depending only on K .

As a simple corollary of the theorem, we obtain small ball probability estimates
for the condition number:

Corollary 5.1.2 Let A be an n × n random matrix with i.i.d. entries of zero mean,
unit variance, and sub-Gaussian moment bounded above by K > 0. Then the
condition number κ(A) satisfies

P
{
κ(A) ≤ n/t

} ≤ 2 exp(−ct2), t ≥ 1,

where c > 0 is a constant depending only on K .

Theorem 5.1.1 is a consequence of the following theorem, which is of indepen-
dent interest.

Theorem 5.1.3 Under conditions of Theorem 5.1.1 one has

P
{‖A−1‖HS ≤ min(n/t,

√
n/t)

} ≤ 2 exp(−ct2), t ≥ 0,

where c > 0 is a constant depending only on K .

The proof of Theorem 5.1.3 uses, as a main step, the estimates

P
{
sn−k+1(A) ≤ ck/

√
n
} ≤ 2 exp(−ck2), 1 ≤ k ≤ n,

for the singular values of the matrix A. These estimates, based on the restricted
invertibility of matrices and certain averaging arguments, were recently obtained by
Nguyen [9] under some additional assumptions (which will be discussed in the next
section).

5.2 Preliminaries

Given a matrix A, it singular values si = si (A), i ≥ 1, are square roots of
eigenvalues of AA∗. We always assume that s1 ≥ s2 ≥ . . . By ‖A‖ and ‖A‖HS

we denote the operator �2 → �2 norm of A (also called the spectral norm) and the
Hilbert–Schmidt norm respectively. Note that

‖A‖ = s1 and ‖A‖2
HS =

∑

i≥1

s2
i .

The columns and rows of A are denoted by Ci (A) and Ri (A), i ≥ 1, respectively.
Given J ⊂ [m], the coordinate projection in R

m onto R
J is denoted by PJ . For

convenience, we often write AJ instead of APJ . Given m ≥ 1, the identity operator
R

� → R
� we denote by Im. Given x, y ∈ R

n by 〈x, ·〉 y we denote the operator
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z �→ 〈x, z〉 y (in the literature it is often denoted by x ⊗ y or yx�). The canonical
Euclidean norm in R

m is denoted by ‖ · ‖2 and the unit Euclidean sphere by Sm−1.
As the most important part of our argument, we will use the following result.

Theorem 5.2.1 Let A be an n × n random matrix with i.i.d. entries of zero mean,
unit variance, and sub-Gaussian moment bounded above by K > 0. Then for any
1 ≤ k ≤ n one has

P
{
sn−k+1(A) ≤ ck/

√
n
} ≤ 2 exp(−ck2),

where c > 0 is a constant depending only on K .

The above theorem, up to some minor modifications, was proved by Nguyen in [9].
Specifically, in the case k ≥ C log n, the theorem follows from [9, Theorem 1.7]
(or [9, Corollary 1.8]) if one additionally assumes either that the entries of A are
uniformly bounded by a constant, or that the distribution density of the entries is
bounded. Removing these conditions requires a minor change of the proof in [9].
Further, in the case k ≤ C log n, the above result (in fact, in a stronger form) is stated
as formula (4) in [9, Theorem 1.4]. However, [9, Theorem 3.6], which is used to
derive [9, formula (4)], provides a non-trivial probability estimate only for the event
{sn−k+1(A) ≤ cγ k1−γ /

√
n} (for any given γ ∈ (0, 1) and cγ depending on γ ), see

[9, formula (31)]. Again, a minor update of the argument of [9] provides the result
needed for our purposes. In view of the above and for the reader’s convenience, we
provide a proof of Theorem 5.2.1 in the last section.

The following result was proved in [17] as an extension of the classical Bourgain–
Tzafriri restricted invertibility theorem [2]. With worse dependence on ε, the
theorem was earlier proved in [22]. See also recent papers [1, 8] for further
improvements and discussions.

Theorem 5.2.2 ([17]) Let T be n × n matrix. Then for any ε ∈ (0, 1) there is a set
J ⊂ [n] such that

� := |J | ≥
⌊

ε2‖T ‖2
HS

‖T ‖2

⌋
and s�(TJ ) ≥ (1 − ε)‖T ‖HS√

n
.

We will use two following results by Rudelson–Verhsynin. The first one was
one of the key ingredients in estimating the smallest singular value of rectangular
matrices. The second one is an immediate consequence of the Hanson–Wright
inequality [5, 23] generalized in [15].

Theorem 5.2.3 ([14, Theorem 4.1]) Let X be a vector in R
n, whose coordinates

are i.i.d. mean-zero, sub-Gaussian random variables with unit variance. Let F be a
random subspace in R

n spanned by n − � vectors, 1 ≤ � ≤ c′n, whose coordinates
are i.i.d. mean-zero, sub-Gaussian random variables with unit variance, jointly
independent with X. Then, for every ε > 0, one has

P
{
dist(X, F ) ≤ ε

√
�
} ≤ (Cε)� + exp(−cn).
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where C > 0, c, c′ ∈ (0, 1) are constants depending only on the sub-Gaussian
moments.

Theorem 5.2.4 ([15, Corollary 3.1]) Let X be a vector in R
n, whose coordinates

are i.i.d. mean-zero random variables with unit variance and with sub-Gaussian
moment bounded by K . Let F be a fixed subspace in R

n of dimension n − �. Then,
for every t > 0, one has

P
{|dist(X, F ) − √

�| ≥ t
} ≤ 2 exp(−ct2/K4).

where c > 0 is an absolute constant.

We will also need the following standard claim, which can be proved by
integrating the indicator functions (see e.g., [9, Claim 3.4], cf. [7, Claim 4.9]).

Claim 5.2.5 Let α, p ∈ (0, 1). Let E be an event. Let Z be a finite index set, and
{Ez}z∈Z be a collection of |Z| events satisfying P(Ez) ≤ p for every z ∈ Z. Assume
that at least α|Z| of events Ez hold whenever the event E occurs. Then P(E) ≤ p/α.

5.3 Proofs of Main Results

Proof of Theorem 5.1.1 In the case t > n we have

P
{
smin(A) ≥ t/

√
n
} = P

{
s1(A

−1) ≤ √
n/t

}
≤ P

{ n∑

i=1

si (A
−1)2 ≤ n2/t2

}

and the result follows from Theorem 5.1.3.
Now we consider the case 1 ≤ t ≤ n. Let L ≥ 1 be a parameter which we will

choose later. Then

P
{
smin(A) ≥ t/

√
n
} = P

{
s1(A

−1) ≤ √
n/t

}

≤ P

{
s1(A

−1)2 ≤ n/t2 and
∑

i≥�t�
si(A

−1)2 ≥ Ln/t
}

+ P

{
s1(A

−1)2 ≤ n/t2 and
∑

i≥�t�
si(A

−1)2 < Ln/t
}

≤ P

{ ∑

i≥�t�
si (A

−1)2 ≥ Ln/t
}

+ P

{ n∑

i=1

si (A
−1)2 ≤ n/t + Ln/t

}
.
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For the first summand in the last expression, we apply Theorem 5.2.1. Since∑∞
i=�t� 1

i2 ≤ 2
t
, we obtain

P

{ n∑

i=�t�
si(A

−1)2 ≥ Ln/t
}

≤
n∑

i=�t�
P
{
si (A

−1)2 ≥ Ln/(2i2)
}

=
n∑

i=�t�
P
{
sn−i+1(A) ≤ √

2i/
√

Ln
}
.

Choosing L so that
√

2/L is equal to the constant from Theorem 5.2.1, we get

n∑

i=�t�
P
{
sn−i+1(A) ≤ √

2i/
√

Ln
} ≤ 2

n∑

i=�t�
exp(−ci2) ≤ 3 exp(−c′t2)

for some c′ > 0 depending only on K . The bound on the second summand follows
from Theorem 5.1.3 applied with t/(L + 1) instead of t . This completes the proof.

��
Proof of Corollary 5.1.2 Theorem 5.2.4 implies that there exists an absolute con-
stant c1 > 0 depending only on K such that for every i ≤ n

P(‖Ci (A)‖2 ≤ √
n/2) ≤ exp(−c1n)

(this can be shown by direct calculations as well, see e.g. Fact 2.5 in [6]). Since the
entries of A are independent, we obtain

P(‖A‖ ≤ √
n/2) ≤

n∏

i=1

P(‖Ci (A)‖2 ≤ √
n/2) ≤ exp(−c1n

2).

Note that if ‖A‖ ≥ √
n/2 and κ(A) ≤ n/2t then sn(A) = ‖A‖/κ(A) ≥ t/

√
n.

Therefore, by Theorem 5.1.1,

P{κ(A) ≤ n/2t} ≤ 2 exp(−ct2) + exp(−c1n
2).

By adjusting constants, this implies the conclusion for t ≤ n. Since κ(A) ≥ 1, the
case t > n is trivial. ��
Proof of Theorem 5.1.3 Adjusting the constant in the exponent if needed, without
loss of generality, we assume that t ≥ C0, where C0 > 0 is a large enough constant
depending only on K . Denote

E0 :=
{ n∑

i=1

si (A
−1)2 ≤ n/t

}
.
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We first consider the case t ≤ n. Applying the negative second moment identity
(see e.g. Exercise 2.7.3 in [19]),

n∑

i=1

si (A
−1)2 =

n∑

i=1

dist
(
Ci (A), span{Cj (A), j �= i})−2

,

we observe that on the event E0,

∣
∣{i ≤ n : dist

(
Ci (A), span{Cj (A), j �= i}) ≥ √

t/2
}∣∣ ≥ n/2.

For each subset I ⊂ [n] of cardinality k ≤ n/2 (the actual value of k will be defined
later), let 1I be the indicator of the event

{
dist

(
Ci (A), span{Cj (A), j ∈ [n] \ I }) ≥ √

t/2 for all i ∈ I
}
.

Then, in view of the above, everywhere on the event E0 we have

∑

I⊂[n], |I |=k

1I ≥
(�n/2�

k

)
≥

(
n

2k

)k

≥ (2e)−k

(
n

k

)
.

Hence, by Markov’s inequality and permutation invariance of the matrix distribu-
tion,

P(E0) ≤ (2e)k E 1[k].

As the last step of the proof, we estimate the expectation of 1[k] (with a suitable
choice of k). In view of independence and equidistribution of the matrix columns,
we have

E 1[k] =
(
P
{
dist

(
C1(A), span{Cj (A), j ∈ [n] \ [k]}) ≥ √

t/2
})k

.

Choose k := �t/4� ≤ n/2 and denote

D := dist
(
C1(A), span{Cj (A), j ∈ [n] \ [k]}).

Using independence of columns of the matrix A and applying Theorem 5.2.4 with
� = k and F = span{Cj (A), j ∈ [n] \ [k]}, we obtain

P

{
D ≥ √

t/2
}

≤ P

{
D − √

k ≥ (
√

2 − 1)
√

t/4
}

≤ 2 exp(−c̄ t)

for some c̄ > 0 depending only on K . Hence,

P(E0) ≤ (2e)k 2k exp(−c̄ t k) ≤ exp(−c̄t2/16),
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provided that t is larger than a certain constant depending only on K . This implies
the desired result for t ≤ n.

In the case t > n we essentially repeat the argument along the same lines. Define

E ′
0 :=

{ n∑

i=1

si (A
−1)2 ≤ n2/t2

}
.

Observe that on the event E ′
0,

∣∣{i ≤ n : dist
(
Ci (A), span{Cj (A), j �= i}) ≥ t/

√
2n

}∣∣ ≥ n/2.

Repeating the above computations with the same notation and with k = �n/4� we
obtain

P

{
D ≥ t/

√
2n

}
≤ P

{
D − √

k ≥ t/(5
√

n)
}

≤ 2 exp(−c̄ t2/n),

which leads to

P(E ′
0) ≤ (2e)k 2k exp(−c̄ kt2/n) ≤ exp(−c̄t2/16),

provided that t > Cn for large enough C depending only on K . For n < t ≤ Cn

the result follows by adjusting the absolute constants. ��

5.4 Small Ball Estimates for Singular Values

The goal of this section is to prove Theorem 5.2.1. As we have noted, the argument
essentially reproduces that of [9]. An important part of the proof is the use of
restricted invertibility (see also [3] and [11] for some recent applications of restricted
invertibility in the context of random matrices).

We will use a construction from [9]. Given an integer k and an n × n matrix A

define a k × n matrix Z = Z(A, k) in the following way. Consider singular value
decomposition A = ∑n

i=1 si 〈vi, ·〉 wi , where si = si(A) are singular values of A

(arranged in non-increasing order) and {vi}i , {wi}i are two orthonormal systems in
R

n. For i ≤ k denote zi = vn−i+1. Let Z be the matrix whose rows are Ri (Z) = zi .
Clearly, the rows of Z are orthonormal and for every i ≤ k,

‖Azi‖2 = sn−i+1 ≤ sn−k+1. (5.1)

Moreover,

‖Z‖ = 1 and ‖Z‖HS = √
k.
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The matrix Z is not uniquely defined when some of the k smallest singular values
of A have non-trivial multiplicity; we will however assume that for each realization
of A, a single admissible Z is chosen in such a way that Z is a (measurable) random
matrix.

5.4.1 Proof of Theorem 5.2.1, the Case k ≥ lnn

Let C, c, c′ be constants from Theorem 5.2.3. Let γ = √
c′. Note that C, c, c′, γ

depend only on K . Let Z = Z(A, k) be the k × n matrix constructed above.
Applying Theorem 5.2.2 to Z (one can add zero rows to make it an n × n matrix),
there exists J ⊂ [n] such that

|J | = � := �γ 2k
⌋ ≤ c′k and s�(ZJ ) ≥ (1 − γ )

√
k/n.

Fix a (small enough, depending on K) constant c0 > 0. Define the event

Ek := {
sn−k+1(A) ≤ c0k/

√
n
}
.

Consider the n×k matrix B = AZ�. Using property (5.1), on the event Ek , we have
for every i ≤ k,

‖Ci (B)‖2 = ‖Azi‖2 ≤ c0k/
√

n,

hence ‖B‖HS ≤ c0k
3/2/

√
n. Now, since s�(ZJ ) > 0, there exists a k × � matrix M

such that Z�
J M = I�. Then

‖M‖ = 1/s�(Z) ≤ (1 − γ )−1
√

n/k.

Therefore,

‖BM‖HS ≤ ‖B‖HS ‖M‖ ≤ c0(1 − γ )−1k.

Writing B = AJ (ZJ )� + AJc(ZJ c)�, we also have BM = AJ + AJc(ZJ c)�M .
Next denote

F = F(A, J ) := span{Ci (AJ c)}i∈J c ,

and let P be the orthogonal projection on F⊥. Then, on the event Ek ,

c2
0(1 − γ )−2k2 ≥ ‖PBM‖2

HS ≥ ‖PAJ ‖2
HS =

∑

i∈J

‖P Ci (AJ )‖2
2

=
∑

i∈J

dist2(Ci (A), F ).
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Therefore, for at least �/2 indices i ∈ J , one has

dist(Ci (A), F ) ≤ √
2c0(1 − γ )−1k/

√
� ≤ 2c0

√
�/((1 − γ )γ 2).

Note that the subspace F is spanned by n − � random vectors, it is independent
of columns Ci (A), i ∈ J , and that columns of A are independent. Therefore, by
Theorem 5.2.3 and the union bound we obtain

P(Ek) ≤
∑

J⊂[n]
|J |=�

∑

J1⊂J

|J |=��/2�

P

{
∀i ∈ J1 dist(Ci (A), F ) ≤ 2c0

√
�/((1 − γ )γ 2)

}

≤
(

n

�

)
2�

(
(2Cc0/((1 − γ )γ 2))� + exp(−cn)

)�/2

≤
(

4en

�
max

{( √
2Cc0

γ
√

1 − γ

)�

, exp(−cn/2)

})�

Choosing small enough c0 and using k ≥ ln n, we obtain P(Ek) ≤ exp(−c3�
2),

where c3 > 0 depends only on K . By adjusting constants this proves the desired
result for k ≥ ln n. ��

5.4.2 Proof of Theorem 5.2.1, the Case k ≤ lnn

Let A be as in Theorem 5.2.1. It is well known (see e.g. Fact 2.4 in [6]) that there is
an absolute constant C1 > 0 such that

P
{‖A‖ ≤ C1K

√
n
} ≥ 1 − e−n. (5.2)

Let Ebd denote the event from this equation. Further, from [16, Theorem 1.5] one
infers that for any γ > 0 there are γ1, γ2, γ3 > 0 depending only on γ and K such
that, denoting

Einc(γ ) := {∀x ∈ Sn−1 with ‖Ax‖2 ≤ γ1
√

n, ∀I ⊂ [n]
with |I | ≥ γ n one has ‖PI x‖2 ≥ γ2

}
,

the event satisfies

P(Einc(γ )) ≥ 1 − 2e−γ3n. (5.3)

The following statement was proved by Nguyen ([9, Corollary 3.8]).
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Proposition 5.4.1 For any K > 0 there are C, c1, c2, γ > 0 depending only on
K with the following property. Let A be an n × n random matrix with i.i.d. entries
of zero mean, unit variance, and sub-Gaussian moment bounded above by K . Let
2 ≤ k ≤ n/(C ln n), and let the random k × n matrix Z = Z(A, k) be defined as
above. Then everywhere on the event

{
sn−k+1(A) ≤ c1k/

√
n
} ∩ Einc(γ ) ∩ Ebd one

has

∣
∣{J ⊂ [n] : |J | = �k/2�, s�k/2�(ZJ ) ≥ c1

√
k/n

}∣∣ ≥ ck ln k
2 n�k/2�.

Now assume that k ≤ ln n. Without loss of generality we may also assume that k

is bounded below by a large constant. Let C, c, c′ be constants from Theorem 5.2.3
and c1, c2, γ from Proposition 5.4.1. Fix for a moment any realization of A from the
event

{
sn−k+1(A) ≤ c0k/

√
n
} ∩ Einc(γ ) ∩ Ebd , where c0 ∈ (0, c1] will be chosen

later. Let � := �k/2� and

J := {
J ⊂ [n] : |J | = �k/2�, s�k/2�(ZJ ) ≥ c1

√
k/n

}
.

Fix J ∈ J and repeat the procedure used in Sect. 5.4.1 with J and �. We obtain that
for at least �/2 indices i ∈ J , one has

dist(Ci (A), F ) ≤ √
2c0k/(c1

√
�) ≤ 4c0

√
�/c1, (5.4)

where F = span{Ci (AJ c)}i∈J c . For any fixed subset J ⊂ [n] of cardinality �

consider the event

EJ := {
for at least �/2 indices i ∈ J inequality (5.4) holds

}
.

Applying Theorem 5.2.3 and the union bound we observe

P(EJ ) ≤ 2�
(
(4c0C/c1)

� + exp(−cn)
)�/2

≤
(

4 max
{
(4c0C/c1)

� , exp(−cn)
})�/2

.

Choosing c0 to be small enough we obtain that P(EJ ) ≤ exp(−c4k
2), where c4 > 0

depends only on K . Combining this with Claim 5.2.5 and Proposition 5.4.1 we
obtain

P
({

sn−k+1(A) ≤ c0k/
√

n
} ∩ Einc(γ ) ∩ Ebd

) ≤ c−k ln k
2 exp(−c4k

2) ≤ exp(−c5k
2)

provided that k ≥ C2, where C2 ≥ 1 ≥ c5 > 0 are constants depending on on K

only. By Eqs. (5.2) and (5.3) this completes the proof in the case k ≤ ln n. ��
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