
Chapter 4
Further Investigations of Rényi Entropy
Power Inequalities and an Entropic
Characterization of s-Concave Densities

Jiange Li, Arnaud Marsiglietti, and James Melbourne

Abstract We investigate the role of convexity in Rényi entropy power inequalities.
After proving that a general Rényi entropy power inequality in the style of Bobkov
and Chistyakov (IEEE Trans Inform Theory 61(2):708–714, 2015) fails when the
Rényi parameter r ∈ (0, 1), we show that random vectors with s-concave densities
do satisfy such a Rényi entropy power inequality. Along the way, we establish the
convergence in the Central Limit Theorem for Rényi entropies of order r ∈ (0, 1)

for log-concave densities and for compactly supported, spherically symmetric and
unimodal densities, complementing a celebrated result of Barron (Ann Probab
14:336–342, 1986). Additionally, we give an entropic characterization of the class
of s-concave densities, which extends a classical result of Cover and Zhang (IEEE
Trans Inform Theory 40(4):1244–1246, 1994).

4.1 Introduction

Let X be a random vector in R
d . Suppose that X has the density f with respect to

the Lebesgue measure. For r ∈ (0, 1) ∪ (1,∞), the Rényi entropy of order r (or
simply, r-Rényi entropy) is defined as

hr(X) = 1

1 − r
log

∫
Rd

f (x)rdx. (4.1)
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For r ∈ {0, 1,∞}, the r-Rényi entropy can be extended continuously such that the
RHS of (4.1) is log |supp(f )| for r = 0; − ∫

Rd f (x) log f (x)dx for r = 1; and
− log ‖f ‖∞ for r = ∞. The case r = 1 corresponds to the classical Shannon
differential entropy. Here, we denote by |supp(f )| the Lebesgue measure of the
support of f , and ‖f ‖∞ represents the essential supremum of f . The r-Rényi
entropy power is defined by

Nr(X) = e2hr(X)/d.

In the following, we drop the subscript when r = 1.
The classical Entropy Power Inequality (henceforth, EPI) of Shannon [39] and

Stam [41], states that the entropy power N(X) is super-additive on the sum of
independent random vectors. There has been recent success in obtaining extensions
of the EPI from the Shannon differential entropy to r-Rényi entropy. In [7, 8],
Bobkov and Chistyakov showed that, at the expense of an absolute constant c > 0,
the following Rényi EPI of order r ∈ [1,∞] holds

Nr(X1 + · · · + Xn) ≥ c

n∑
i=1

Nr(Xi). (4.2)

Ram and Sason soon after gave a sharpened constant depending on the number of
summands [36]. Madiman, Melbourne, and Xu sharpened constants in the r = ∞
case by identifying extremizers in [31, 32]. Savaré and Toscani [38] showed that
a modified Rényi entropy power is concave along the solution of a nonlinear heat
equation, which generalizes Costa’s concavity of entropy power [19]. Bobkov and
Marsiglietti [10] proved the following variant of Rényi EPI

Nr(X + Y )α ≥ Nr(X)α + Nr(Y )α (4.3)

for r > 1 and some exponent α only depending on r . It is clear that (4.3) holds for
more than two summands. Improvement of the exponent α was given by Li [27].

One of our goals is to establish analogues of (4.2) and (4.3) when the Rényi
parameter r ∈ (0, 1). Both (4.2) and (4.3) can be derived from Young’s convolution
inequality in conjunction with the entropic comparison inequality hr1(X) ≥ hr2(X)

for any 0 ≤ r1 ≤ r2. The latter fact is an immediate consequence of Jensen’s
inequality. When the Rényi parameter r ∈ (0, 1), analogues of (4.2) and (4.3)
require a converse of the entropic comparison inequality aforementioned. This
technical issue prevents a general Rényi EPI of order r ∈ (0, 1) for generic random
vectors. Our first result shows that a general Rényi EPI of the form (4.2) indeed fails
for all r ∈ (0, 1).
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Theorem 4.1 For any r ∈ (0, 1) and ε > 0, there exist independent random vectors
X1, · · · ,Xn in R

d , for some d ≥ 1 and n ≥ 2, such that

Nr(X1 + · · · + Xn) < ε

n∑
i=1

Nr(Xi). (4.4)

We have an explicit construction of such random vectors. They are essentially
truncations of some spherically symmetric random vectors with finite covariance
matrices and infinite Rényi entropies of order r ∈ (0, 1). The key point is the con-
vergence along the Central Limit Theorem (henceforth, CLT) for Rényi entropies
of order r ∈ (0, 1); that is, the r-Rényi entropy of their normalized sum converges
to the r-Rényi entropy of a Gaussian. This implies that, after appropriate normal-
ization, the LHS of (4.4) is finite, but the RHS of (4.4) can be as large as possible.
The entropic CLT has been studied for a long time. A celebrated result of Barron
[3] shows the convergence in the CLT for Shannon differential entropy (see [26]
for a multidimensional setting). The recent work of Bobkov and Marsiglietti [11]
studies the convergence in the CLT for Rényi entropy of order r > 1 for real-valued
random variables (see also [12] for convergence in Rényi divergence, which is not
equivalent to convergence in Rényi entropy unless r = 1). In Sect. 4.2, we establish
the analogue of [11, Theorem 1.1] in higher dimensions and we prove convergence
along the CLT for Rényi entropies of order r ∈ (0, 1) for a large class of densities.

As mentioned above, the reverse entropic comparison inequality prevents Rényi
EPIs of order r ∈ (0, 1) for generic random vectors. However, a large class of
random vectors with the so-called s-concave densities do satisfy such a reverse
entropic comparison inequality. Our next results show that Rényi EPI of order
r ∈ (0, 1) holds for such densities. This extends the earlier work of Marsiglietti
and Melbourne [33, 34] for log-concave densities (which corresponds to the s = 0
case).

Let s ∈ [−∞,∞]. A function f : Rd → [0,∞) is called s-concave if the
inequality

f ((1 − λ)x + λy) ≥ ((1 − λ)f (x)s + λf (y)s)1/s (4.5)

holds for all x, y ∈ R
d such that f (x)f (y) > 0 and λ ∈ (0, 1). For

s ∈ {−∞, 0,∞}, the RHS of (4.5) is understood in the limiting sense; that is
min{f (x), f (y)} for s = −∞, f (x)1−λf (y)λ for s = 0, and max{f (x), f (y)}
for s = ∞. The case s = 0 corresponds to log-concave functions. The study
of measures with s-concave densities was initiated by Borell in the seminal work
[13, 14]. One can think of s-concave densities, in particular log-concave densities,
as functional versions of convex sets. There has been a recent stream of research on
a formal parallel relation between functional inequalities of s-concave densities and
geometric inequalities of convex sets.

Theorem 4.2 For any s ∈ (−1/d, 0) and r ∈ (−sd, 1), there exists c =
c(s, r, d, n) such that for all independent random vectors X1, · · · ,Xn with s-
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concave densities in R
d , we have

Nr(X1 + · · · + Xn) ≥ c

n∑
i=1

Nr(Xi).

In particular, one can take

c = r
1

1−r

(
1 + 1

n|r ′|
)1+n|r ′| ( d∏

k=1

(1 + ks)|r ′|(n−1)(1 + ks
r
)1+|r ′|

(1 + ks(1 + 1
n|r ′| ))1+n|r ′|

) 2
d

,

where r ′ = r/(r − 1) is the Hölder conjugate of r .

Theorem 4.3 Given s ∈ (−1/d, 0), there exist 0 < r0 < 1 and α = α(s, r, d) such
that for r ∈ (r0, 1) and independent random vectors X and Y in R

d with s-concave
densities,

Nr(X + Y )α ≥ Nr(X)α + Nr(Y )α.

In particular, one can take

r0 =
(

1 − 2

1 + √
3

(
1 + 1

sd

))−1

α =
(

1 + log r + (r + 1) log r+1
2r

+ C(s)

(1 − r) log 2

)−1

,

where

C(s) = 2

d

d∑
k=1

(
log

(
1 + ks

r

)
+ r log(1 + ks) − (r + 1) log

(
1 + ks(r + 1)

2r

))
.

Owing to the convexity, random vectors with s-concave densities also satisfy
a reverse EPI, which was first proved by Bobkov and Madiman [9]. This can be
seen as the functional lifting of Milman’s well known reverse Brunn–Minkowski
inequality [35]. Motivated by Busemann’s theorem [17] in convex geometry, Ball et
al. [2] conjectured that the following reverse EPI

N(X + Y )1/2 ≤ N(X)1/2 + N(Y )1/2 (4.6)

holds for any symmetric log-concave random vector (X, Y ) ∈ R
2. The r-Rényi

entropy analogue was asked in [30], and the r = 2 case was soon verified in [27].
It was also observed in [27] that the r-Rényi entropy analogue is equivalent to the
convexity of p-cross-section body in convex geometry introduced by Gardner and
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Giannopoulos [23]. The equivalent linearization of (4.6) reads as follows. Let (X, Y )

be a symmetric log-concave random vector in R
2 such that h(X) = h(Y ). Then for

any λ ∈ [0, 1] we have

h((1 − λ)X + λY ) ≤ h(X).

Cover and Zhang [20] proved the above inequality under the stronger assumption
that X and Y have the same log-concave distribution. They also showed that
this provides a characterization of log-concave distributions on the real line. The
following theorem extends Cover and Zhang’s result from log-concave densities to
a more general class of s-concave densities. This gives an entropic characterization
of s-concave densities and implies a reverse Rényi EPI for random vectors with the
same s-concave density.

Theorem 4.4 Let r > 1 − 1/d . Let f be a probability density function on R
d . For

any fixed integer n ≥ 2, the identity

sup
Xi∼f

hr

(
n∑

i=1

λiXi

)
= hr(X1)

holds for all λi ≥ 0 such that
∑n

i=1 λi = 1 if and only if the density f is (r − 1)-
concave.

The paper is organized as follows. In Sect. 4.2, we explore the convergence along
the CLT for r-Rényi entropies. For r > 1, the convergence is fully characterized
for densities on R

d , while for r ∈ (0, 1) sufficient conditions are obtained for
a large class of densities. More precisely, we prove the convergence for log-
concave densities and for compactly supported, spherically symmetric and unimodal
densities. As an application, we prove in Sect. 4.3 that a general r-Rényi EPI fails
when r ∈ (0, 1), thus establishing Theorem 4.1. We also complement this result
by proving Theorems 4.2 and 4.3. In the last section, we provide an entropic
characterization of the class of s-concave densities, and include a reverse Rényi
EPI as an immediate consequence.

4.2 Convergence Along the CLT for Rényi Entropies

Let {Xn}n∈N be a sequence of independent identically distributed (henceforth, i.i.d.)
centered random vectors in R

d with finite covariance matrix. We denote by Zn the
normalized sum

Zn = X1 + · · · + Xn√
n

. (4.7)
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An important tool used to prove various forms of CLT is the characteristic function.
Recall that the characteristic function of a random vector X is defined by

ϕX(t) = E
[
ei〈t,X〉], t ∈ R

d .

Before providing sufficient conditions for the convergence along the CLT for Rényi
entropy of order r ∈ (0, 1), we first extend [11, Theorem 1.1] to higher dimensions.

Theorem 4.5 Let r > 1. Let X1, · · · ,Xn be i.i.d. centered random vectors in R
d .

We denote by ρn the density of Zn defined in (4.7). The following statements are
equivalent.

1. hr(Zn) → hr(Z) as n → +∞, where Z is a Gaussian random vector with mean
0 and the same covariance matrix as X1.

2. hr(Zn0) is finite for some integer n0.
3.

∫
Rd |ϕX1(t)|ν dt < +∞ for some ν ≥ 1.

4. Zn0 has a bounded density ρn0 for some integer n0.

Proof 1 �⇒ 2: Assume that hr (Zn) → hr(Z) as n → +∞. Then there exists an
integer n0 such that

hr(Z) − 1 < hr(Zn0) < hr(Z) + 1.

Since hr(Z) is finite, we conclude that hr(Zn0) is finite as well.
2 �⇒ 3: Assume that hr(Zn0) is finite for some integer n0. Then Zn0 has a

density ρn0 ∈ Lr(Rd).

Case 1 If r ≥ 2, we have ρn0 ∈ L2(Rd). Using Plancherel’s identity, we have
ϕZn0

∈ L2(Rd). It follows that

∫
Rd

|ϕZn0
(t)|2 dt =

∫
Rd

|ϕX1

(
t/

√
n0

) |2n0 dt < +∞.

For ν = 2n0, we have

∫
Rd

|ϕX1(t)|ν dt < +∞.

Case 2 If r ∈ (1, 2), we apply the Hausdorff–Young inequality to obtain

‖ϕZn0
‖
Lr′ ≤ 1

(2π)d/r ′ ‖ρn0‖Lr ,

where r ′ is the conjugate of r such that 1/r + 1/r ′ = 1. Hence, for ν = r ′n0, we
have

∫
Rd

|ϕX1(t)|ν dt < +∞.
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3 �⇒ 4: Since
∫
Rd |ϕX1(t)|ν dt < +∞ for some ν ≥ 1, one may apply

Gnedenko’s local limit theorems (see [24]), which is valid in arbitrary dimensions
(see [5]). In particular, we have

lim
n→+∞ sup

x∈Rd

|ρn(x) − φ
(x)| = 0, (4.8)

where φ
 denotes the density of a Gaussian random vector with mean 0 and the
same covariance matrix as X1. We deduce that there exists an integer n0 and a
constant M > 0 such that ρn ≤ M for all n ≥ n0.

4 �⇒ 1: Since ρn0 is bounded, then ρn0 ∈ L2, and we deduce by Plancherel’s
identity that

∫
Rd |ϕX1(t)|ν dt < +∞ for ν = 2n0. Hence, (4.8) holds and there

exists M > 0 such that ρn ≤ M for all n ≥ n0. Let us show that
∫
Rd ρn(x)rdx →∫

Rd φ
(x)rdx as n → +∞, where φ
 denotes the density of a Gaussian random
vector with mean 0 and the same covariance matrix as X1. By the CLT, for any
ε > 0, there exists T > 0 such that for all n large enough,

∫
|x|>T

ρn(x)dx < ε,

which implies that

∫
|x|>T

ρn(x)rdx ≤ Mr−1
∫

|x|>T

ρn(x)dx < Mr−1ε.

The function φ
 satisfies similar inequalities. Hence, for any δ > 0, there exists
T > 0 such that for all n large enough,

∣∣∣∣
∫

|x|>T

ρn(x)rdx −
∫

|x|>T

φ
(x)rdx

∣∣∣∣ < δ.

On the other hand, by (4.8), for all T > 0, the function ρr
n(x)1{|x|≤T } converges

everywhere to φr

(x)1{|x|≤T } as n → +∞. Since ρr

n(x)1{|x|≤T } is dominated by the
integrable function Mr1{|x|≤T }, one may use the Lebesgue dominated theorem to
conclude that

lim
n→+∞

∣∣∣∣
∫

|x|≤T

ρn(x)rdx −
∫

|x|≤T

φ
(x)rdx

∣∣∣∣ = 0.

��
Remark 4.6 Theorem 4.5 fails for r ∈ (0, 1). For example, one can consider i.i.d.
random vectors with a bounded density ρ(x) such that

∫
Rd ρ(x)rdx = +∞ (e.g.,

Cauchy-type distributions). The implication 4 �⇒ 2 (and thus 4 �⇒ 1) will not
hold since by Jensen inequality hr(Zn) ≥ hr(X1/

√
n) = ∞ for all n ≥ 1. As

observed by Barron [3], the implication 1 �⇒ 4 does not necessarily hold in the
Shannon entropy case r = 1.
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The following result yields a sufficient condition for convergence along the CLT
to hold for Rényi entropies of order r ∈ (0, 1) for a large class of random vectors in
R

d .

Theorem 4.7 Let r ∈ (0, 1). Let X1, · · · ,Xn be i.i.d. centered log-concave random
vectors in R

d . Then we have hr(Zn) < +∞ for all n ≥ 1, and

lim
n→∞ hr (Zn) = hr(Z),

where Zn is the normalized sum in (4.7) and Z is a Gaussian random vector with
mean 0 and the same covariance matrix as X1.

Proof Since log-concavity is preserved under independent sum, Zn is log-concave
for all n ≥ 1. Hence, for all n ≥ 1, Zn has a bounded log-concave density ρn, which
satisfies

ρn(x) ≤ e−an|x|+bn,

for all x ∈ R
d , and for some constants an > 0, bn ∈ R possibly depending on the

dimension (see, e.g., [16]). Hence, for all n ≥ 1, we have

∫
Rd

ρn(x)r dx ≤
∫
Rd

e−r(an|x|+bn) dx < +∞.

We deduce that hr(Zn) < +∞ for all n ≥ 1.
The boundedness of ρn implies that (4.8) holds, and thus there exists an integer

n0 such that for all n ≥ n0,

ρn(0) >
1

2
φ
(0),

where 
 is the covariance matrix of X1 (and thus does not depend on n). Moreover,
since ρn is log-concave, one has for all x ∈ R

d that

ρn(rx) = ρn((1 − r)0 + rx) ≥ ρn(0)1−rρn(x)r ≥ 1

21−r
φ
(0)1−rρn(x)r .

Hence, for all T > 0, we have

∫
|x|>T

ρn(x)r dx ≤ 21−r

φ
(0)1−r

∫
|x|>T

ρn(rx) dx

= 21−r

rdφ
(0)1−r
P (|Zn| > rT )

≤ 1

T 2

21−r
E[|X1|2]

rd+2φ
(0)1−r
,
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where the last inequality follows from Markov’s inequality and the fact that

E[|Zn|2] = E[|X1|2] + · · · + E[|Xn|2]
n

= E[|X1|2].

Hence, for every ε > 0, one may choose a positive number T such that for all n

large enough,

∫
|x|>T

ρn(x)rdx < ε,

∫
|x|>T

φ
(x)rdx < ε,

and hence
∣∣∣∣
∫

|x|>T

ρn(x)rdx −
∫

|x|>T

φ
(x)rdx

∣∣∣∣ < ε.

On the other hand, from (4.8), we conclude as in the proof of Theorem 4.5 that for
all T > 0,

lim
n→+∞

∣∣∣∣
∫

|x|≤T

ρn(x)rdx −
∫

|x|≤T

φ
(x)rdx

∣∣∣∣ = 0.

��
A function f : Rd → R is called unimodal if the super-level sets {x ∈ R

d :
f (x) > t} are convex for all t ∈ R. Next, we provide a convergence result
for random vectors in R

d with unimodal densities under additional symmetry
assumptions. First, we need the following stability result.

Proposition 4.8 The class of spherically symmetric and unimodal random vari-
ables is stable under convolution.

Proof Let f1 and f2 be two spherically symmetric and unimodal densities. By
assumption, fi satisfy that fi(T x) = fi(x) for an orthogonal map T and |x| ≤ |y|
implies fi(x) ≥ fi(y). By the layer cake decomposition, we write

fi(x) =
∫ ∞

0
1{(u,v):fi(u)>v}(x, λ)dλ.

Apply Fubini’s theorem to obtain

f1 � f2(x) =
∫
Rd

f1(x − y)f2(y)dy

=
∫ ∞

0

∫ ∞

0

(∫
Rd

1{(u,v):f1(u)>v}(x − y, λ1)1{(u,v):f2(u)>v}(y, λ2)dy

)

×dλ1dλ2. (4.9)
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Notice that by the spherical symmetry and decreasingness of fi , the super-level set

Lλi = {u : fi(u) > λi}

is an origin symmetric ball. Thus we can write the integrand in (4.9) as

∫
Rd

1Lλ1
(x − y)1Lλ2

(y)dy = 1Lλ1
� 1Lλ2

(x).

This quantity is clearly dependent only on |x|, giving spherical symmetry. In
addition, as the convolution of two log-concave functions, 1Lλ1

�1Lλ2
is log-concave

as well. It follows that for every λ1, λ2, and |x| ≤ |y| we have

1Lλ1
� 1Lλ2

(x) ≥ 1Lλ1
� 1Lλ2

(y).

Integrating this inequality completes the proof. ��
Let us establish large deviation and pointwise inequalities for compactly sup-

ported, spherically symmetric and unimodal densities.

Theorem 4.9 (Hoeffding [25]) Let X1, · · · ,Xn be independent random variables
with mean 0 and bounded in (ai, bi), respectively. One has for all T > 0,

P

(
n∑

i=1

Xi > T

)
≤ exp

(
− 2T 2∑n

i=1(bi − ai)2

)
.

The following result is Hoeffding’s inequality in higher dimensions.

Lemma 4.10 Let X1, · · · ,Xn be centered independent random vectors in R
d

satisfying P(|Xi | > R) = 0 for some R > 0. One has for all T > 0 that

P

(∣∣∣∣X1 + · · · + Xn√
n

∣∣∣∣ > T

)
≤ 2d exp

(
− T 2

2d2R2

)
.

Proof Let Xi,j be the j -th coordinate of the random vector Xi . Then we have

P

(∣∣∣∣X1 + · · · + Xn√
n

∣∣∣∣ > T

)
≤ P

⎛
⎝ d⋃

j=1

{
|X1,j + · · · + Xn,j | >

T
√

n

d

}⎞
⎠ (4.10)

≤
d∑

j=1

P

(
|X1,j + · · · + Xn,j | >

T
√

n

d

)
(4.11)

≤ 2d exp

(
− T 2

2d2R2

)
, (4.12)
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where inequality (4.10) follows from the pigeon-hole principle, (4.11) from a union
bound, and (4.12) follows from applying Theorem 4.9 to X1,j + · · · + Xn,j and
(−X1,j ) + · · · + (−Xn,j ). ��

We deduce the following pointwise estimate for unimodal spherically symmetric
and bounded random variables.

Corollary 4.11 Let X1, · · · ,Xn be i.i.d. random vectors with spherically symmet-
ric, unimodal density supported on the Euclidean ball BR = {x : |x| ≤ R} for some
R > 0. Let ρn denote the density of the normalized sum Zn. Then there exists cd > 0
such that for all n ≥ 1 and |x| > 2,

ρn(x) ≤ cd exp

(
− (|x| − 1)2

2d2R2

)
.

Proof Stating Lemma 4.10 in terms of ρn, we have

∫
|w|>T

ρn(w)dw ≤ 2d exp

(
− T 2

2d2R2

)
. (4.13)

Since the class of spherically symmetric unimodal random variables is stable
under independent summation by Proposition 4.8, ρn is spherically symmetric and
unimodal, so that

ρn(x) ≤
∫
B|x|\B|x|−1

ρn(w)dw

Vol(B|x|\B|x|−1)

≤
∫
|w|≥|x|−1 ρn(w)dw

(2d − 1)ωd

(4.14)

where B|x| represents the Euclidean ball of radius |x| centered at the origin and ωd

is the volume of the unit ball. Note that

Vol(B|x|\B|x|−1) = (|x|d − (|x| − 1)d)ωd ≥ (2d − 1)ωd,

since t �→ td − (t − 1)d is increasing, so that (4.14) follows. Now applying (4.13)
we have

ρn(x) ≤
∫
|w|≥|x|−1 ρn(w)dw

(2d − 1)ωd

≤ 2d

(2d − 1)ωd

exp

(
− (|x| − 1)2

2d2R2

)
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and our result holds with

cd = 2d

(2d − 1)ωd

.

��
We are now ready to establish a convergence result for bounded spherically

symmetric unimodal random vectors.

Theorem 4.12 Let r ∈ (0, 1). Let X1, · · · ,Xn be i.i.d. random vectors in R
d with

a spherically symmetric unimodal density with compact support. Then we have

lim
n→∞ hr(Zn) = hr(Z),

where Zn is the normalized sum in (4.7) and Z is a Gaussian random vector with
mean 0 and the same covariance matrix as X1.

Proof Let us denote by ρn the density of Zn. Since ρ1 is bounded, one may
apply (4.8) together with Lebesgue dominated convergence to conclude that for all
T > 0,

lim
n→+∞

∣∣∣∣
∫

|x|≤T

ρn(x)rdx −
∫

|x|≤T

φ
(x)rdx

∣∣∣∣ = 0.

On the other hand, by Corollary 4.11, one may choose T > 0 such that for all n ≥ 1,

∫
|x|>T

ρn(x)rdx < ε,

∫
|x|>T

φ
(x)rdx < ε,

and hence
∣∣∣∣
∫

|x|>T

ρn(x)rdx −
∫

|x|>T

φ
(x)rdx

∣∣∣∣ < ε.

��

4.3 Rényi EPIs of Order r ∈ (0, 1)

A striking difference between Rényi EPIs of orders r ∈ (0, 1) and r ≥ 1 is the lack
of an absolute constant. Indeed, it was shown in [8] that for r ≥ 1 Rényi EPI of the
form (4.2) holds for generic independent random vectors with an absolute constant

c ≥ 1
e
r

1
r−1 . In the following subsection, we show that such a Rényi EPI does not

hold for r ∈ (0, 1).
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4.3.1 Failure of a Generic Rényi EPI

Definition 4.13 For r ∈ [0,∞], we define cr as the largest number such that for all
n, d ≥ 1 and any independent random vectors X1, · · · ,Xn in R

d , we have

Nr(X1 + · · · + Xn) ≥ cr

n∑
i=1

Nr(Xi). (4.15)

Then we can rephrase Theorem 4.1 as follows.

Theorem 4.14 For r ∈ (0, 1), the constant cr defined in (4.15) satisfies cr = 0.

The motivating observation for this line of argument is the fact that for r ∈
(0, 1), there exist distributions with finite covariance matrices and infinite r-Rényi
entropies. One might anticipate that this could contradict the existence of an r-Rényi
EPI, as the CLT forces the normalized sum of i.i.d. random vectors X1, · · · ,Xn

drawn from such a distribution to become “more Gaussian”. Heuristically, one
anticipates that Nr(X1 + · · · + Xn)/n = Nr(Zn) should approach Nr(Z) for large
n, where Zn is the normalized sum in (4.7) and Z is a Gaussian vector with the same
covariance matrix as X1, while

∑n
i=1 Nr(Xi)/n = Nr(X1) is infinite.

Proof of Theorem 4.14 Let us consider the following density

fR,p,d (x) = CR(1 + |x|)−p1BR(x) x ∈ R
d,

with p,R > 0 and CR implicitly determined to make fR,p,d a density. Since the
density is spherically symmetric, its covariance matrix can be rewritten as σ 2

RI for
some σR > 0, where I is the identity matrix. Computing in spherical coordinates
one can check that limR→∞ CR is finite for p > d , and we can thus define a density
f∞,p,d . What is more, when p > d + 2, the limiting density f∞,p,d has a finite
covariance matrix, and has finite Rényi entropy if and only if p > d/r .

For fixed r ∈ (0, 1), we take p ∈ (d∗ + 2, d∗/r], where d∗ = min{d ∈ N :
d > 2r/(1 − r)} guarantees the existence of such p. In this case, the limiting
density f∞,p,d∗ is well defined and it has finite covariance matrix σ 2∞I , but the
corresponding r-Rényi entropy is infinite. Now we select independent random
vectors X1, · · · ,Xn from the distribution fR,p,d∗ . Since fR,p,d∗ is a spherically
symmetric and unimodal density with compact support, we can apply Theorem 4.12
to conclude that

lim
n→∞ Nr(Zn) = σ 2

RNr(ZId),

where Zn is the normalized sum in (4.7) and ZId is the standard d-dimensional
Gaussian. Since limR→∞ σR = σ∞ < ∞, we can take R large enough such that
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|σ 2
R − σ 2∞| ≤ 1. Then we can take n large enough such that

Nr(Zn) ≤ (σ 2∞ + 2)Nr(ZId). (4.16)

Since the limiting density f∞,p,d∗ has infinite r-Rényi entropy, given M > 0, we
can take R large enough such that

Nr(X1) ≥ M. (4.17)

Combining (4.16) and (4.17), we conclude that for inequality (4.15) to hold we must
have

cr ≤ (σ 2∞ + 2)Nr(ZId)

M

for all M > 0. Then the statement follows from taking the limit M → ∞. ��
Remark 4.15 Random vectors in our proof has identical s-concave density with
s ≤ −r/d . In the following section, we provide a complementary result by showing
that Rényi EPI of order r ∈ (0, 1) does hold for s-concave densities when −r/d <

s < 0.

4.3.2 Rényi EPIs for s-Concave Densities

As showed above, a generic Rényi EPI of the form (4.2) fails for r ∈ (0, 1). In this
part, we establish Rényi EPIs of the forms (4.2) and (4.3) for an important class of
random vectors with s-concave densities (see (4.5)).

Following Lieb [29], we prove Theorems 4.2 and 4.3 by showing their equivalent
linearizations. The following linearization of (4.2) and (4.3) is due to Rioul [37]. The
c = 1 case was used in [27].

Theorem 4.16 ([37]) Let X1, · · · ,Xn be independent random vectors in R
d . The

following statements are equivalent.

1. There exist a constant c > 0 and an exponent α > 0 such that

Nα
r

(
n∑

i=1

Xi

)
≥ c

n∑
i=1

Nα
r (Xi). (4.18)

2. For any λ1, · · · , λn ≥ 0 such that
∑n

i=1 λi = 1, one has

hr

(
n∑

i=1

√
λiXi

)
−

n∑
i=1

λihr (Xi) ≥ d

2

(
log c

α
+

(
1

α
− 1

)
H(λ)

)
, (4.19)
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where H(λ) � H(λ1, · · · , λn) is the discrete entropy defined as

H(λ) = −
n∑

i=1

λi log λi.

Inequality (4.19) is the linearized form of inequality (4.18). One of the ingre-
dients used to establish (4.19) is Young’s sharp convolution inequality [4, 15]. Its
information-theoretic formulation was given in [21], which we recall below. We
denote by r ′ the Hölder conjugate of r such that 1/r + 1/r ′ = 1.

Theorem 4.17 ([15, 21]) Let r > 0. Let λ1, · · · , λn ≥ 0 such that
∑n

i=1 λi =
1, and let r1, · · · , rn be positive reals such that λi = r ′/r ′

i . For any independent
random vectors X1, · · · ,Xn in R

d , one has

hr

(
n∑

i=1

√
λiXi

)
−

n∑
i=1

λihri (Xi) ≥ d

2
r ′

(
log r

r
−

n∑
i=1

log ri

ri

)
. (4.20)

The second ingredient is a comparison between Rényi entropies hr and hri . When
r > 1, we have 1 < ri < r , and Jensen’s inequality implies that hr ≤ hri . In this
case, one can deduce (4.19) from (4.20) with hri replaced by hr . However, when
r ∈ (0, 1), the order of r and ri are reversed, i.e., 0 < r < ri < 1, and we need a
reverse entropy comparison inequality. The so-called s-concave densities do satisfy
such a reverse entropy comparison inequality. The following result of Fradelizi et
al. [22] serves this purpose.

Theorem 4.18 ([22]) Let s ∈ R. Let f : Rd → [0,+∞) be an integrable s-
concave function. The function

G(r) = C(r)

∫
Rd

f (x)r dx

is log-concave for r > max{0,−sd}, where

C(r) = (r + s) · · · (r + sd). (4.21)

We deduce the following Rényi entropic comparison for random vectors with
s-concave densities.

Corollary 4.19 Let X be a random vector in R
d with a s-concave density. For

−sd < r < q < 1, we have

hq(X) ≥ hr(X) + log
C(r)

1
1−r C(1)

q−r
(1−q)(1−r)

C(q)
1

1−q

.
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Proof Write q = (1 − λ) · r + λ · 1. Using the log-concavity of the function G in
Theorem 4.18, we have

G(q) ≥ G(r)1−λG(1)λ = G(r)
1−q
1−r G(1)

q−r
1−r .

The above inequality can be rewritten in terms of entropy power as follows

C(q)
2
d
· 1

1−q Nq(X) ≥ C(r)
2
d
· 1−q

1−r
· 1

1−q Nr(X)C(1)
2
d
· q−r

1−r
· 1

1−q .

The desired statement follows from taking the logarithm of both sides of the above
inequality. ��

Theorem 4.17 together with Corollary 4.19 yields the following Rényi EPI with
a single Rényi parameter r ∈ (0, 1) for s-concave densities.

Theorem 4.20 Let s ∈ (−1/d, 0) and r ∈ (−sd, 1). Let X1, · · · ,Xn be indepen-
dent random vectors in R

d with s-concave densities. For all λ = (λ1, · · · , λn) ∈
[0, 1]n such that

∑n
i=1 λi = 1, we have

hr

(
n∑

i=1

√
λiXi

)
−

n∑
i=1

λihr (Xi) ≥ d

2
A(λ) +

d∑
k=1

gk(λ),

where

A(λ) = r ′
((

1 − 1

r ′

)
log

(
1 − 1

r ′

)
−

n∑
i=1

(
1 − λi

r ′

)
log

(
1 − λi

r ′

))
,

gk(λ) = (1 − n)r ′ log(1 + ks) + (1 − r ′) log
(

1 + ks

r

)
+ r ′

n∑
i=1

(
1 − λi

r ′

)

× log

(
1 + ks

(
1 − λi

r ′

))
.

Proof Let ri be defined by λi = r ′/r ′
i , where r ′ and r ′

i are Hölder conjugates of r

and ri , respectively. Combining Theorem 4.17 with Corollary 4.19, we have

hr

(
n∑

i=1

√
λiXi

)
−

n∑
i=1

λihr (Xi) ≥ d

2
r ′

(
log r

r
−

n∑
i=1

log ri

ri

)

+
n∑

i=1

λi log
C(r)

1
1−r C(1)

ri−r

(1−ri )(1−r)

C(ri)
1

1−ri

. (4.22)
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Notice that C(r) = rdD(r), where C(r) is given in (4.21) and D(r) = (1 +
s/r) · · · (1 + sd/r). Thus,

n∑
i=1

λi log
C(r)

1
1−r C(1)

ri−r

(1−ri )(1−r)

C(ri)
1

1−ri

=
n∑

i=1

λi

(
log D(r)

1 − r
+

(
1

1 − ri
− 1

1 − r

)
log D(1)− log D(ri)

1 − ri

)

+d

(
log r

1 − r
−

n∑
i=1

λi
log ri

1 − ri

)
. (4.23)

Using the identities 1/(1 − r) = 1 − r ′ and λi/(1 − ri ) = λi − r ′, we have

n∑
i=1

λi

(
log D(r)

1 − r
+

(
1

1 − ri
− 1

1 − r

)
log D(1) − log D(ri)

1 − ri

)

= (1 − r ′) log D(r) + (1 − n)r ′ log D(1) +
d∑

k=1

n∑
i=1

(r ′ − λi) log

(
1 + ks

ri

)

=
d∑

k=1

(
(1 − r ′) log

(
1 + ks

r

)
+ (1 − n)r ′ log(1 + ks)

+
n∑

i=1

(r ′ − λi) log

(
1 + ks

ri

))
=

d∑
k=1

gk(λ). (4.24)

The last identity follows from 1/ri = 1 − λi/r ′. Using (4.24) and (4.23), the RHS
of (4.22) can be written as

d

2
r ′

(
log r

r
−

n∑
i=1

log ri

ri

)
+ d

(
log r

1 − r
−

n∑
i=1

λi
log ri

1 − ri

)

+
d∑

k=1

gk(λ) = d

2
A(λ) +

d∑
k=1

gk(λ).

This concludes the proof. ��
Having Theorems 4.16 and 4.20 at hand, we are ready to prove Theorems 4.2

and 4.3.
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4.3.2.1 Proof of Theorem 4.2

Put Theorems 4.16 and 4.20 together. Then it suffices to find c such that the
following inequality

d

2
A(λ) +

d∑
k=1

gk(λ) ≥ d

2
log c

holds for all λ = (λ1, · · · , λn) ∈ [0, 1]n such that
∑n

i=1 λi = 1. Hence, we can set

c = inf
λ

exp

(
A(λ) + 2

d

d∑
k=1

gk(λ)

)
,

where the infimum runs over all λ = (λ1, · · · , λn) ∈ [0, 1]n such that
∑n

i=1 λi = 1.
For fixed r , both A(λ) and gk(λ) are sum of one-dimensional convex functions of
the form (1 + x) log(1 + x). Furthermore, both A(λ) and gk(λ) are permutation
invariant. Hence, the minimum is achieved at λ = (1/n, · · · , 1/n). This yields the
numerical value of c in Theorem 4.2.

4.3.2.2 Proof of Theorem 4.3

The following lemma in [33] serves us in the proof of Theorem 4.3.

Lemma 4.21 ([33]) Let c > 0. Let L,F : [0, c] → [0,∞) be twice differentiable
on (0, c], continuous on [0, c], such that L(0) = F(0) = 0 and L′(c) = F ′(c) = 0.
Let us also assume that F(x) > 0 for x > 0, that F is strictly increasing, and that
F ′ is strictly decreasing. Then L′′

F ′′ increasing on (0, c) implies that L
F

is increasing
on (0, c) as well. In particular,

max
x∈[0,c]

L(x)

F (x)
= L(c)

F (c)
.

Proof of Theorem 4.3 Apply Theorems 4.16 and 4.20 with n = 2. Then it suffices
to find α such that for all λ ∈ [0, 1] we have

d

2
A(λ) +

d∑
k=1

gk(λ) ≥ d

2

(
1

α
− 1

)
H(λ),
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where

A(λ) = r ′
((

1− 1

r ′

)
log

(
1− 1

r ′

)
−

(
1− λ

r ′

)
log

(
1− λ

r ′

)
−

(
1− 1−λ

r ′

)

× log

(
1− 1−λ

r ′

))
,

gk(λ) = (1 − r ′) log
(

1 + ks

r

)
− r ′ log(1 + ks)

+r ′
((

1− λ

r ′

)
log

(
1+ks

(
1− λ

r ′

))
+

(
1− 1−λ

r ′

)

× log

(
1+ks

(
1− 1−λ

r ′

)))
.

We can set

α =
(

1 − sup
0≤λ≤1

(
− A(λ)

H(λ)
− 2

d

d∑
k=1

gk(λ)

H(λ)

))−1

. (4.25)

We will show that the optimal value is achieved at λ = 1/2. Since the function is
symmetric about λ = 1/2, it suffices to show that

− A(λ)

H(λ)
− 2

d

n∑
k=1

gk(λ)

H(λ)
(4.26)

is increasing on [0, 1/2]. It has been shown in [27] that −A(λ)/H(λ) is increasing
on [0, 1/2]. We will show that for each k = 1, · · · , n the function −gk(λ)/H(λ)

is also increasing on [0, 1/2]. One can check that −gk(λ) and H(λ) satisfy the
conditions in Lemma 4.21. Hence, it suffices to show that −g′′

k (λ)/H ′′(λ) is
increasing on [0, 1/2]. Elementary calculation yields that

H ′′(λ) = − 1

λ(1 − λ)
.

Define x = λ
|r ′| and y = 1−λ

|r ′| = 1
|r ′| − x. Then one can check that

−g′′
k (λ) = ks

|r ′|
(

1

1 + ks(1 + x)
+ 1

1 + ks(1 + y)
+ 1

(1 + ks(1 + x))2

+ 1

(1 + ks(1 + y))2

)
.
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Hence, we have

− g′′
k (λ)

H ′′(λ)
= ksr ′W(x),

where

W(x) = xy

(
1

1 + ks(1 + x)
+ 1

1 + ks(1 + y)
+ 1

(1 + ks(1 + x))2

+ 1

(1 + ks(1 + y))2

)
.

Since s, r ′ < 0, it suffices to show that W(x) is increasing on [0, 1
2|r ′| ]. We rewrite

W as follows

W(x) = W1(x) + W2(x),

where

W1(x) = xy

(
1

1 + ks(1 + x)
+ 1

1 + ks(1 + y)

)
,

W2(x) = xy

(
1

(1 + ks(1 + x))2 + 1

(1 + ks(1 + y))2

)
. (4.27)

We will show that both W1(x) and W2(x) are increasing on [0, 1
2|r ′| ].

Now let us focus on W1. Since y = 1
|r ′| − x, one can check that

W ′
1(x) =

(
1

|r ′| −2x

)(
1

1+ks(1+x)
+ 1

1+ks(1+y)

)

− ksxy

(
1

(1+ks(1+x))2 − 1

(1+ks(1+y))2

)
.

Let us denote

a � a(x) = 1 + ks(1 + x), (4.28)

b � b(x) = 1 + ks(1 + y) = 1 + ks

(
1

|r ′| − x + 1

)
. (4.29)
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The condition r > −sd implies that a, b ≥ 0. With these notations, we have

W ′
1(x) =

(
1

a
+ 1

b

) (
1

|r ′| − 2x − ksxy

(
1

a
− 1

b

))

=
(

1

a
+ 1

b

) (
1

|r ′| − 2x

)(
1 − (ks)2 xy

ab

)
.

The last identity follows from

1

a
− 1

b
= ks

ab

(
1

|r ′| − 2x

)
.

Since a, b ≥ 0 and x ∈ [0, 1
2|r ′| ], it suffices to show that

ab − (ks)2xy ≥ 0.

Using (4.28) and (4.29), we have

ab − (ks)2xy = (1 + ks)

(
1 + ks

r

)
.

Then the desired statement follows from that s > −1/d and r > −sd . We conclude
that W1 is increasing on [0, 1

2|r ′| ].
It remains to show that W2(x) is increasing on [0, 1

2|r ′| ]. Recall the definition of
W2(x) in (4.27), one can check that

W ′
2(x) =

(
1

|r ′| − 2x

)(
1

a2
+ 1

b2

)
− 2ksxy

(
1

a3
− 1

b3

)

= b − a

ks

(
1

a2 + 1

b2

)
− 2ksxy

(
1

a3 − 1

b3

)

= b − a

ksa3b3 T (x),

where a and b are defined in (4.28) and (4.29), and

T (x) = ab(a2 + b2) − 2k2s2xy(a2 + ab + b2).

Since

b − a

ks
= 1

|r ′| − 2x ≥ 0, x ∈ [0,
1

2|r ′| ],
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it suffices to show that T (x) ≥ 0 for [0, 1
2|r ′| ]. Using the identity

a′(x)b(x) + a(x)b′(x) = ks(b − a) = −a(x)a′(x) − b(x)b′(x),

one can check that

T ′(x) = ks(a − b)U(x),

where

U(x) = a2 + b2 + 4ab − 2k2s2xy.

Notice that U ′(x) ≡ 0, which implies that U(x) is a constant. Since a, b ≥ 0, we
have

U(0) = a2 + b2 + 4ab > 0.

Hence, T ′(x) ≤ 0, i.e., T (x) is decreasing. Therefore, since a = b when x = 1
2|r ′| ,

we have

T (x) ≥ T

(
1

2|r ′|
)

= 2a2(a2 − 3k2s2x2) at x = 1

2|r ′| .

It suffices to have

a2 ≥ 3k2s2x2, x = 1

2|r ′| ,

which is equivalent to

1

|r ′| ≤ 2

1 + √
3

(
1

k|s| − 1

)
.

This finishes the proof that every −gk(λ)/H(λ) is also increasing on [0, 1/2]. Then
the numerical value of α in Theorem 4.3 follows from setting λ = 1/2 in (4.25). ��
Remark 4.22 Our optimization argument heavily relies on the fact that
−A(λ)/H(λ) and −gk(λ)/H(λ) are monotonically increasing for λ ∈ [0, 1/2].
As observed in [27], the monotonicity of −A(λ)/H(λ) does not depend on the
value of r . Numerical examples show that −gk(λ)/H(λ), even the whole quantity
in (4.26), is not monotone when r is small. This is one of the reasons for the
restriction r > r0.
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Remark 4.23 Note that the condition r > −sd of Theorem 4.18 can be rewritten as

1

|r ′| <

(
1

d|s| − 1

)
.

We do not know whether Theorem 4.3 holds when

2

1 + √
3

(
1

d|s| − 1

)
<

1

|r ′| <

(
1

d|s| − 1

)
.

4.4 An Entropic Characterization of s-Concave Densities

Let X and Y be real-valued random variables (possibly dependent) with the identical
density f . Cover and Zhang [20] proved that

h(X + Y ) ≤ h(2X)

holds for every coupling of X and Y if and only if f is log-concave. This yields an
entropic characterization of one-dimensional log-concave densities. We will extend
Cover and Zhang’s result to Rényi entropies of random vectors with s-concave
densities (defined in (4.5)), which particularly include log-concave densities as a
special case. This was previously proved in [28] when f is continuous.

Firstly, we introduce some classical variations of convexity and concavity which
will be needed in our proof.

Definition 4.24 Let λ ∈ (0, 1) be fixed. A function f : Rd → R with convex
support is called almost λ-convex if the following inequality

f ((1 − λ)x + λy) ≤ (1 − λ)f (x) + λf (y) (4.30)

holds for almost every pair x, y in the domain of f . We say that f is λ-convex if
the above inequality holds for every pair x, y in the domain of f . Particularly, for
λ = 1/2, it is usually called mid-convex or Jensen convex. We say that f is convex
if f is λ-convex for any λ ∈ (0, 1).

One can define almost λ-concavity, λ-concavity and concavity by reversing
inequality (4.30). Adamek [1, Theorem 1] showed that an almost λ-convex function
is identical to a λ-convex function except on a set of Lebesgue measure 0. (To apply
the theorem there, one can take the ideals I1 and I2 as the family of sets with
Lebesgue measure 0 in R

d and R
2d , respectively). In general, λ-convexity is not

equivalent to convexity, as it is not a strong enough notion to imply continuity,
at least not in a logical framework that accepts the axiom of choice. Indeed,
counterexamples can be constructed using a Hamel basis for R as a vector space
over Q. However, in the case that f is Lebesgue measurable, a classical result of
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Blumberg [6] and Sierpinski [40] (see also [18] in more general setting) shows that
λ-convexity implies continuity, and thus convexity.

Theorem 4.25 Let s > −1/d and we define r = 1 + s. Let f be a probability
density on R

d . The following statements are equivalent.

1. The density f is s-concave.
2. For any λ ∈ (0, 1), we have hr(λX+ (1−λ)Y ) ≤ hr(X) for any random vectors

X and Y with the identical density f .
3. We have hr

(
X+Y

2

) ≤ hr(X) for any random vectors X and Y with the identical
density f .

Proof We only prove the statement for s > 0, or equivalently r > 1. The proof for
−1/d < s < 0, or equivalently 1 − 1/d < r < 1, is similar and sketched below.

1 �⇒ 2: The proof is taken from [28]. We include it for completeness. Let g be
the density of λX + (1 − λ)Y . Then we have

hr(X) = 1

1 − r
logEf r−1(X)

= 1

1 − r
log(λEf r−1(X) + (1 − λ)Ef r−1(Y )) (4.31)

≥ 1

1 − r
logEf r−1(λX + (1 − λ)Y ) (4.32)

= 1

1 − r
log

∫
Rd

f (x)r−1g(x)dx

≥ 1

1 − r
log

(∫
Rd

f (x)rdx

)1− 1
r
(∫

Rd

g(x)rdx

) 1
r

(4.33)

= r − 1

r
hr (X) + 1

r
hr (λX + (1 − λ)Y ).

This is equivalent to the desired statement. Identity (4.31) follows from the
assumption that X and Y have the same distribution. In inequality (4.32), we use
the concavity of f r−1 and the fact that 1

1−r
log x is decreasing when r > 1.

Inequality (4.33) follows from Hölder’s inequality and the fact that 1
1−r

log x is
decreasing when r > 1. For 1 − 1/d < r < 1, the statement follows from the
same argument in conjunction with the convexity of f r−1, the converse of Hölder’s
inequality and the fact that 1

1−r
log x is increasing when 0 < r < 1.

2 �⇒ 3: Obvious by taking λ = 1
2 .

3 �⇒ 1: We will prove the statement by contradiction. We first show an example
borrowed from Cover and Zhang [20] to illustrate the “mass transferring” argument
used in our proof. Consider the density f (x) = 3/2 in the intervals (0, 1/3) and
(2/3, 1). It is clear that f is not (r−1)-concave. The joint distribution of (X, Y ) with
Y ≡ X is supported on the diagonal line y = x. The Radon-Nikodym derivative
g with respect to the one-dimensional Lebesgue measure on the line y = x exists
and is shown in Fig. 4.1. We remove some “mass” from the diagonal line y = x to



4 Further Investigations of Rényi Entropy Power Inequalities and an Entropic. . . 119
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the lines y = x − 2/3 and y = x + 2/3. The new Radon–Nikodym derivative ĝ is
shown in Fig. 4.2. Let (X̂, Ŷ ) be a pair of random variables whose joint distribution
possesses this new Radon–Nikodym derivative. It is easy to see that X̂ and Ŷ still
have the same density f . But X̂ + Ŷ is uniformly distributed on (0, 2), and thus
hr(X̂ + Ŷ ) = log 2. One can check that hr(2X) = log(4/3).

Now we turn to the general case. Suppose that f is not (r − 1)-concave, i.e.,
f r−1 is not concave (for r > 1). We claim that there exists a set A ⊆ R

2d of
positive Lebesgue measure on R

2d such that the inequality

2f r−1
(

x + y

2

)
< f r−1(x) + f r−1(y) (4.34)

holds for all (x, y) ∈ A. Otherwise, the converse of (4.34) holds for almost every
pair (x, y), and thus f r−1 is an almost mid-concave function (i.e., 1/2-concave).
By Theorem 1 in [1], f r−1 is identical to a mid-concave function except on a set
of Lebesgue measure 0. Without changing the distribution, we can modify f such
that f r−1 is mid-concave. Using the equivalence of mid-concavity and concavity
(under the Lebesgue measurability), after modification, f r−1 is concave, i.e., f is
(r − 1)-concave. This contradicts our assumption. Hence, there exists such a set A

with positive Lebesgue measure on R
2d . Then there exists y such that (4.34) holds

for a set of x with positive Lebesgue measure on R
d . We rephrase this statement in

a form suitable for our purpose. There is x0 �= 0 such that the set

� = {
x ∈ R

d : 2f (x)r−1 < f (x + x0)
r−1 + f (x − x0)

r−1} (4.35)
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has positive Lebesgue measure on R
d . For ε > 0, we denote by �(ε) a ball of radius

ε whose intersection with � has positive Lebesgue measure on R
d . Consider (X, Y )

such that X ≡ Y , where X and Y have the identical density f . Let g(x, y) be the
Radon-Nikodym derivative of (X, Y ) with respect to the d-dimensional Lebesgue
measure on the “diagonal line” y = x. Now we build a new density ĝ by translating
a small amount of “mass” from “diagonal points” (x−x0, x−x0) and (x+x0, x+x0)

to “off-diagonal points” (x − x0, x + x0) and (x + x0, x − x0). To be more precise,
we define the new joint density ĝ as

ĝ(x, y) = g(x, y)1{x=y} − √
d/2δ(1{(x−x0,x−x0):x∈�(ε)} + 1{(x+x0,x+x0):x∈�(ε)})

+√
d/2δ(1{(x−x0,x+x0):x∈�(ε)} + 1{(x+x0,x−x0):x∈�(ε)}),

where δ > 0 and 1S is the indicator function of the set S. The function ĝ is supported
on the “diagonal line” y = x and “off-diagonal segments” {(x − x0, x + x0) :
x ∈ �(ε)} and {(x + x0, x − x0) : x ∈ �(ε)}, which are disjoint for sufficiently
small ε > 0. (This is similar to Fig. 4.2.) When δ > 0 is small enough, ĝ(x, y) is
non-negative everywhere. Furthermore, our construction preserves the “total mass”.
Hence, the function ĝ(x, y) is indeed a probability density with respect to the
d-dimensional Lebesgue measure on the “diagonal line” and two “off-diagonal
segments”. Let (X̂, Ŷ ) be a pair with the joint density ĝ(x, y). The marginals X̂ and
Ŷ have the same distribution as that of X, since the “positive mass” on “off-diagonal
points” complements the “mass deficit” on “diagonal points” when we project in the

x and y directions. We claim that X̂+Ŷ
2 has larger entropy than X̂. One can check

that the density of X̂+Ŷ
2 is

f̂ (x) = f (x) + δ(21�(ε) − 1�(ε)+x0 − 1�(ε)−x0).

Let � denote the union of �(ε), �(ε) + x0 and �(ε) − x0. Then we have

hr

(
X̂ + Ŷ

2

)
= 1

1 − r
log

(∫
�

f̂ (x)rdx +
∫

�c

f r(x)dx

)
. (4.36)

Since x0 �= 0, for ε > 0 small enough, � is the union of disjoint translates of �(ε).
When δ > 0 is sufficiently small, we have

∫
�

f̂ (x)rdx =
∫

�(ε)

[
(f (x) + 2δ)r + (f (x + x0) − δ)r + (f (x − x0) − δ)r

]
dx

<

∫
�(ε)

[
f (x)r + f (x + x0)

r + f (x − x0)
r
]
dx (4.37)

=
∫

�

f (x)rdx, (4.38)
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where inequality (4.37) follows from the observation that for x ∈ �(ε) ⊂ �

(see (4.35)) the derivative of the integrand at δ = 0 is

r[2f (x)r−1 − f (x − x0)
r−1 − f (x + x0)

r−1] < 0. (4.39)

Since r > 1, (4.36) together with (4.38) implies that

hr

(
X̂ + Ŷ

2

)
>

1

1 − r
log

(∫
�

f (x)rdx +
∫

�c

f (x)rdx

)
= h(X) = h(X̂).

This is contradictory to our assumption. Hence, f has to be (r − 1)-concave. For
1 − 1/d < r < 1, we redefine the set � by reversing inequality (4.35), and
inequality (4.37) will be also reversed. We will arrive at the same conclusion. ��
Remark 4.26 The proof of 1 �⇒ 2 is an immediate consequence of Theorem 3.36
in [30]. The theorem there draws heavily on the ideas of [42], where a related
study, deriving the Schur convexity of Rényi entropies under the assumption of
exchangeability and s-concavity of the random variables, generalizing Yu’s results
in [43] on the entropies of sums of i.i.d. log-concave random variables. Although
we state Theorem 4.25 for two random vectors, the argument also works for more
than two random vectors. Hence, it implies the seemingly stronger Theorem 4.4.

As an immediate consequence of Theorem 4.25, we have the following reverse
Rényi EPI for random vectors with the same distribution.

Corollary 4.27 Let s > −1/d and let r = 1 + s. Let X and Y be (possibly
dependent) random vectors in R

d with the same density f being s-concave. Then
we have

Nr(X + Y ) ≤ 4Nr(X).
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