
Chapter 3
Two-Sided Estimates for Order Statistics
of Log-Concave Random Vectors

Rafał Latała and Marta Strzelecka

Abstract We establish two-sided bounds for expectations of order statistics
(k-th maxima) of moduli of coordinates of centered log-concave random vectors
with uncorrelated coordinates. Our bounds are exact up to multiplicative universal
constants in the unconditional case for all k and in the isotropic case for
k ≤ n − cn5/6. We also derive two-sided estimates for expectations of sums of
k largest moduli of coordinates for some classes of random vectors.

3.1 Introduction and Main Results

For a vector x ∈ R
n let k- max xi (or k- min xi) denote its k-th maximum

(respectively its k-th minimum), i.e. its k-th maximal (respectively k-th minimal)
coordinate. For a random vector X = (X1, . . . , Xn), k- min Xi is also called the
k-th order statistic of X.

Let X = (X1, . . . , Xn) be a random vector with finite first moment. In this note
we try to estimate Ek- maxi |Xi | and

E max|I |=k

∑

i∈I

|Xi | = E

k∑

l=1

l- max
i

|Xi |.

Order statistics play an important role in various statistical applications and there is
an extensive literature on this subject (cf. [2, 5] and references therein).

We put special emphasis on the case of log-concave vectors, i.e. random vectors
X satisfying the property P(X ∈ λK + (1 − λ)L) ≥ P(X ∈ K)λP(X ∈ L)1−λ for
any λ ∈ [0, 1] and any nonempty compact sets K and L. By the result of Borell
[3] a vector X with full dimensional support is log-concave if and only if it has
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a log-concave density, i.e. the density of a form e−h(x) where h is convex with
values in (−∞,∞]. A typical example of a log-concave vector is a vector uniformly
distributed over a convex body. In recent years the study of log-concave vectors
attracted attention of many researchers, cf. monographs [1, 4].

To bound the sum of k largest coordinates of X we define

t (k,X) := inf

{
t > 0 : 1

t

n∑

i=1

E|Xi |1{|Xi |≥t} ≤ k

}
. (3.1)

and start with an easy upper bound.

Proposition 3.1 For any random vector X with finite first moment we have

E max|I |=k

∑

i∈I

|Xi | ≤ 2kt (k,X). (3.2)

Proof For any t > 0 we have

max|I |=k

∑

i∈I

|Xi | ≤ tk +
n∑

i=1

|Xi |1{|Xi |≥t}.

��
It turns out that this bound may be reversed for vectors with independent

coordinates or, more generally, vectors satisfying the following condition

P(|Xi | ≥ s, |Xj | ≥ t) ≤ αP(|Xi | ≥ s)P(|Xj | ≥ t) for all i �= j and all s, t > 0.

(3.3)

If α = 1 this means that moduli of coordinates of X are negatively correlated.

Theorem 3.2 Suppose that a random vector X satisfies condition (3.3) with some
α ≥ 1. Then there exists a constant c(α) > 0 which depends only on α such that for
any 1 ≤ k ≤ n,

c(α)kt (k,X) ≤ E max|I |=k

∑

i∈I

|Xi | ≤ 2kt (k,X).

We may take c(α) = (288(5 + 4α)(1 + 2α))−1.

In the case of i.i.d. coordinates two-sided bounds for Emax|I |=k

∑
i∈I |aiXi | in

terms of an Orlicz norm (related to the distribution of Xi ) of a vector (ai)i≤n where
known before, see [7].

Log-concave vectors with diagonal covariance matrices behave in many aspects
like vectors with independent coordinates. This is true also in our case.
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Theorem 3.3 Let X be a log-concave random vector with uncorrelated coordinates
(i.e. Cov(Xi,Xj ) = 0 for i �= j ). Then for any 1 ≤ k ≤ n,

ckt (k,X) ≤ E max|I |=k

∑

i∈I

|Xi | ≤ 2kt (k,X).

In the above statement and in the sequel c and C denote positive universal
constants.

The next two examples show that the lower bound cannot hold if n 	 k and
only marginal distributions of Xi are log-concave or the coordinates of X are highly
correlated.

Example 3.1 Let X = (ε1g, ε2g, . . . , εng), where ε1, . . . , εn, g are independent,
P(εi = ±1) = 1/2 and g has the normal N (0, 1) distribution. Then CovX = Id
and it is not hard to check that Emax|I |=k

∑
i∈I |Xi | = k

√
2/π and t (k,X) ∼

ln1/2(n/k) if k ≤ n/2.

Example 3.2 Let X = (g, . . . , g), where g ∼ N (0, 1). Then, as in the previous
example, Emax|I |=k

∑
i∈I |Xi | = k

√
2/π and t (k,X) ∼ ln1/2(n/k).

Question 3.1 Let X′ = (X′
1,X

′
2, . . . , X

′
n) be a decoupled version of X, i.e. X′

i are
independent and X′

i has the same distribution as Xi . Due to Theorem 3.2 (applied
to X′), the assertion of Theorem 3.3 may be stated equivalently as

E max|I |=k

∑

i∈I

|Xi | ∼ E max|I |=k

∑

i∈I

|X′
i |.

Is the more general fact true that for any symmetric norm and any log-concave
vector X with uncorrelated coordinates

E‖X‖ ∼ E‖X′‖?

Maybe such an estimate holds at least in the case of unconditional log-concave
vectors?

We turn our attention to bounding k-maxima of |Xi |. This was investigated in
[8] (under some strong assumptions on the function t �→ P(|Xi | ≥ t)) and in the
weighted i.i.d. setting in [7, 9, 15]. We will give different bounds valid for log-
concave vectors, in which we do not have to assume independence, nor any special
conditions on the growth of the distribution function of the coordinates of X. To this
end we need to define another quantity:

t∗(p,X) := inf

{
t > 0 :

n∑

i=1

P(|Xi | ≥ t) ≤ p

}
for 0 < p < n.
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Theorem 3.4 Let X be a mean zero log-concave n-dimensional random vector with
uncorrelated coordinates and 1 ≤ k ≤ n. Then

Ek- max
i≤n

|Xi | ≥ 1

2
Med

(
k- max

i≤n
|Xi |

)
≥ ct∗

(
k − 1

2
,X

)
.

Moreover, if X is additionally unconditional then

Ek- max
i≤n

|Xi | ≤ Ct∗
(

k − 1

2
,X

)
.

The next theorem provides an upper bound in the general log-concave case.

Theorem 3.5 Let X be a mean zero log-concave n-dimensional random vector with
uncorrelated coordinates and 1 ≤ k ≤ n. Then

P

(
k- max

i≤n
|Xi | ≥ Ct∗

(
k − 1

2
,X

))
≤ 1 − c (3.4)

and

Ek- max
i≤n

|Xi | ≤ Ct∗
(

k − 1

2
k5/6,X

)
. (3.5)

In the isotropic case (i.e. EXi = 0, CovX = Id) one may show that t∗(k/2,X) ∼
t∗(k,X) ∼ t (k,X) for k ≤ n/2 and t∗(p,X) ∼ n−p

n
for p ≥ n/4 (see Lemma 3.24

below). In particular t∗(n−k+1−(n−k+1)5/6/2,X) ∼ k/n+n−1/6 for k ≤ n/2.
This together with the two previous theorems implies the following corollary.

Corollary 3.6 Let X be an isotropic log-concave n-dimensional random vector and
1 ≤ k ≤ n/2. Then

Ek-maxi≤n|Xi | ∼ t∗(k,X) ∼ t (k,X)

and

c
k

n
≤ Ek-mini≤n|Xi | = E(n − k + 1)-maxi≤n|Xi | ≤ C

(
k

n
+ n−1/6

)
.

If X is additionally unconditional then

Ek-mini≤n|Xi | = E(n − k + 1)-maxi≤n|Xi | ∼ k

n
.

Question 3.2 Does the second part of Theorem 3.4 hold without the uncondition-
ality assumptions? In particular, is it true that in the isotropic log-concave case
Ek- mini≤n |Xi | ∼ k/n for 1 ≤ k ≤ n/2?
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Notation Throughout this paper by letters C, c we denote universal positive
constants and by C(α), c(α) constants depending only on the parameter α. The
values of constants C, c,C(α), c(α) may differ at each occurrence. If we need to
fix a value of constant, we use letters C0, C1, . . . or c0, c1, . . .. We write f ∼ g if
cf ≤ g ≤ Cg. For a random variable Z we denote ‖Z‖p = (E|Z|p)1/p. Recall that
a random vector X is called isotropic, if EX = 0 and CovX = Id.

This note is organised as follows. In Sect. 3.2 we provide a lower bound for the
sum of k largest coordinates, which involves the Poincaré constant of a vector. In
Sect. 3.3 we use this result to obtain Theorem 3.3. In Sect. 3.4 we prove Theorem 3.2
and provide its application to comparison of weak and strong moments. In Sect. 3.5
we prove the first part of Theorem 3.4 and in Sect. 3.6 we prove the second part of
Theorems 3.4, 3.5, and Lemma 3.24.

3.2 Exponential Concentration

A probability measure μ on R
n satisfies exponential concentration with constant

α > 0 if for any Borel set A with μ(A) ≥ 1/2,

1 − μ(A + uBn
2 ) ≤ e−u/α for all u > 0.

We say that a random n-dimensional vector satisfies exponential concentration if its
distribution has such a property.

It is well known that exponential concentration is implied by the Poincaré
inequality

Varμf ≤ β

∫
|∇f |2dμ for all bounded smooth functions f : Rn �→ R

and α ≤ 3
√

β (cf. [12, Corollary 3.2]).
Obviously, the constant in the exponential concentration is not linearly invariant.

Typically one assumes that the vector is isotropic. For our purposes a more natural
normalization will be that all coordinates have L1-norm equal to 1.

The next proposition states that bound (3.2) may be reversed under the assump-
tion that X satisfies the exponential concentration.

Proposition 3.7 Assume that Y = (Y1, . . . , Yn) satisfies the exponential concentra-
tion with constant α > 0 and E|Yi | ≥ 1 for all i. Then for any sequence a = (ai)

n
i=1

of real numbers and Xi := aiYi we have

E max|I |=k

∑

i∈I

|Xi | ≥
(

8 + 64
α√
k

)−1
kt (k,X),

where t (k,X) is given by (3.1).
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We begin the proof with a few simple observations.

Lemma 3.8 For any real numbers z1, . . . , zn and 1 ≤ k ≤ n we have

max|I |=k

∑

i∈I

|zi | =
∫ ∞

0
min

{
k,

n∑

i=1

1{|zi |≥s}
}
ds.

Proof Without loss of generality we may assume that z1 ≥ z2 ≥ . . . ≥ zn ≥ 0.
Then

∫ ∞

0
min

{
k,

n∑

i=1

1{|zi |≥s}
}
ds =

k−1∑

l=1

∫ zl

zl+1

lds +
∫ zk

0
kds =

k−1∑

l=1

l(zl − zl+1) + kzk

= z1 + . . . + zk = max|I |=k

∑

i∈I

|zi |.
��

Fix a sequence (Xi)i≤n and define for s ≥ 0,

N(s) :=
n∑

i=1

1{|Xi |≥s}. (3.6)

Corollary 3.9 For any k = 1, . . . , n,

E max|I |=k

∑

i∈I

|Xi | =
∫ ∞

0

k∑

l=1

P(N(s) ≥ l)ds,

and for any t > 0,

E

n∑

i=1

|Xi |1{|Xi |≥t} = tEN(t) +
∫ ∞

t

∞∑

l=1

P(N(s) ≥ l)ds.

In particular

E

n∑

i=1

|Xi |1{|Xi |≥t} ≤E max|I |=k

∑

i∈I

|Xi |+
∞∑

l=k+1

(
tP(N(t) ≥ l)+

∫ ∞

t

P(N(s) ≥ l)ds

)
.

Proof We have

∫ ∞

0

k∑

l=1

P(N(s) ≥ l)ds =
∫ ∞

0
Emin{k,N(s)}ds = E

∫ ∞

0
min{k,N(s)}ds

= E max|I |=k

∑

i∈I

|Xi |,
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where the last equality follows by Lemma 3.8.
Moreover,

tEN(t) +
∫ ∞

t

∞∑

l=1

P(N(s) ≥ l)ds = tEN(t) +
∫ ∞

t

EN(s)ds

= E

n∑

i=1

(
t1{|Xi |≥t} +

∫ ∞

t

1{|Xi |≥s}ds

)

= E

n∑

i=1

|Xi |1{|Xi |≥t}.

The last part of the assertion easily follows, since

tEN(t) = t

n∑

l=1

P(N(t) ≥ l) ≤
∫ t

0

k∑

l=1

P(N(s) ≥ l)ds +
∞∑

l=k+1

tP(N(t) ≥ l).

��
Proof of Proposition 3.7 To shorten the notation put tk := t (k,X). Without loss of
generality we may assume that a1 ≥ a2 ≥ . . . ≥ an ≥ 0 and a�k/4� = 1. Observe
first that

E max|I |=k

∑

i∈I

|Xi | ≥
�k/4�∑

i=1

aiE|Yi | ≥ k/4,

so we may assume that tk ≥ 16α/
√

k.
Let μ be the law of Y and

A :=
{
y ∈ R

n :
n∑

i=1

1{|aiyi |≥ 1
2 tk} <

k

2

}
.

We have

E max|I |=k

∑

i∈I

|Xi | ≥ k

4
tkP

( k∑

i=1

1{|aiYi |≥ 1
2 tk} ≥ k

2

)
= k

4
tk(1 − μ(A)),

so we may assume that μ(A) ≥ 1/2.
Observe that if y ∈ A and

∑n
i=1 1{|aizi |≥s} ≥ l > k for some s ≥ tk then

n∑

i=1

(zi − yi)
2 ≥

n∑

i=�k/4�
(aizi − aiyi)

2 ≥ (l − 3k/4)(s − tk/2)2 >
ls2

16
.
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Thus we have

P(N(s) ≥ l) ≤ 1 − μ

(
A + s

√
l

4
Bn

2

)
≤ e− s

√
l

4α for l > k, s ≥ tk.

Therefore
∫ ∞

tk

P(N(s) ≥ l)ds ≤
∫ ∞

tk

e− s
√

l
4α ds = 4α√

l
e− tk

√
l

4α for l > k,

and

∞∑

l=k+1

(
tkP(N(tk) ≥ l) +

∫ ∞

tk

P(N(s) ≥ l)ds

)
≤

∞∑

l=k+1

(
tk + 4α√

l

)
e− tk

√
l

4α

≤
(

tk + 4α√
k + 1

) ∫ ∞

k

e− tk
√

u

4α du ≤
(

tk + 4α√
k + 1

)
e
− tk

√
k

4
√

2α

∫ ∞

k

e
− tk

√
u−k

4
√

2α du

=
(

tk + 4α√
k + 1

)
64α2

t2
k

e
− tk

√
k

4
√

2α ≤
(
tk + 1

4
tk

)k

4
≤ 1

2
ktk,

where to get the next-to-last inequality we used the fact that tk ≥ 16α/
√

k.
Hence Corollary 3.9 and the definition of tk yields

ktk ≤ E

n∑

i=1

|Xi |1{|Xi |≥tk}

≤ E max|I |=k

∑

i∈I

|Xi | +
∞∑

l=k+1

(
tkP(N(tk) ≥ l) +

∫ ∞

tk

P(N(s) ≥ l)ds

)

≤ E max|I |=k

∑

i∈I

|Xi | + 1

2
ktk,

so Emax|I |=k

∑
i∈I |Xi | ≥ 1

2ktk . ��
We finish this section with a simple fact that will be used in the sequel.

Lemma 3.10 Suppose that a measure μ satisfies exponential concentration with
constant α. Then for any c ∈ (0, 1) and any Borel set A with μ(A) > c we have

1 − μ(A + uBn
2 ) ≤ exp

(
−

(u

α
+ ln c

)

+

)
for u ≥ 0.

Proof Let D := R
n \ (A + rBn

2 ). Observe that D + rBn
2 has an empty intersection

with A so if μ(D) ≥ 1/2 then

c < μ(A) ≤ 1 − μ(D + rBn
2 ) ≤ e−r/α,
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and r < α ln(1/c). Hence μ(A + α ln(1/c)Bn
2 ) ≥ 1/2, therefore for s ≥ 0,

1 − μ(A + (s + α ln(1/c))Bn
2 ) = 1 − μ((A + α ln(1/c)Bn

2 ) + sBn
2 ) ≤ e−s/α,

and the assertion easily follows. ��

3.3 Sums of Largest Coordinates of Log-Concave Vectors

We will use the regular growth of moments of norms of log-concave vectors multiple
times. By [4, Theorem 2.4.6], if f : Rn → R is a seminorm, and X is log-concave,
then

(Ef (X)p)1/p ≤ C1
p

q
(Ef (X)q)1/q for p ≥ q ≥ 1, (3.7)

where C1 is a universal constant.
We will also apply a few times the functional version of the Grünbaum inequality

(see [14, Lemma 5.4]) which states that

P(Z ≥ 0) ≥ 1

e
for any mean-zero log-concave random variable Z. (3.8)

Let us start with a few technical lemmas. The first one will be used to reduce
proofs of Theorem 3.3 and lower bound in Theorem 3.4 to the symmetric case.

Lemma 3.11 Let X be a log-concave n-dimensional vector and X′ be an indepen-
dent copy of X. Then for any 1 ≤ k ≤ n,

E max|I |=k

∑

i∈I

|Xi − X′
i | ≤ 2E max|I |=k

∑

i∈I

|Xi |,

t (k,X) ≤ et (k,X − X′) + 2

k
max|I |=k

∑

i∈I

E|Xi |, (3.9)

and

t∗(2k,X − X′) ≤ 2t∗(k,X). (3.10)

Proof The first estimate follows by the easy bound

E max|I |=k

∑

i∈I

|Xi − X′
i | ≤ E max|I |=k

∑

i∈I

|Xi | + E max|I |=k

∑

i∈I

|X′
i | = 2E max|I |=k

∑

i∈I

|Xi |.
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To get the second bound we may and will assume that E|X1| ≥ E|X2| ≥ . . . ≥
E|Xn|. Let us define Y := X − EX, Y ′ := X′ − EX and M := 1

k

∑k
i=1 E|Xi | ≥

maxi≥k E|Xi |. Obviously

k∑

i=1

E|Xi |1{|Xi |≥t} ≤ kM for t ≥ 0. (3.11)

We have EYi = 0, thus P(Yi ≤ 0) ≥ 1/e by (3.8). Hence

EYi1{Yi>t} ≤ eEYi1{Yi>t,Y ′
i ≤0} ≤ eE|Yi − Y ′

i |1{Yi−Y ′
i >t} = eE|Xi − X′

i |1{Xi−X′
i>t}

for t ≥ 0. In the same way we show that

E|Yi |1{Yi<−t} ≤ eE|Yi |1{Yi<−t,Y ′
i ≥0} ≤ eE|Xi − X′

i |1{X′
i−Xi>t}

Therefore

E|Yi |1{|Yi |>t} ≤ eE|Xi − X′
i |1{|Xi−X′

i |>t}.

We have

n∑

i=k+1

E|Xi |1{|Xi |>et(k,X−X′)+M} ≤
n∑

i=k+1

E|Xi |1{|Yi |>et(k,X−X′)}

≤
n∑

i=k+1

E|Yi |1{|Yi |>t(k,X−X′)} +
n∑

i=k+1

|EXi |P(|Yi | > et(k,X − X′))

≤ e

n∑

i=1

E|Xi − X′
i |1{|Xi−X′

i |>t(k,X−X′)} + M

n∑

i=1

P(|Yi | > et(k,X − X′))

≤ ekt (k,X − X′) + M

n∑

i=1

(
et (k,X − X′)

)−1
E|Yi |1{|Yi |>et(k,X−X′)}

≤ ekt (k,X − X′) + Mt(k,X − X′)−1
n∑

i=1

E|Xi − X′
i |1{|Xi−X′

i |>t(k,X−X′)}

≤ ekt (k,X − X′) + kM.

Together with (3.11) we get

n∑

i=1

E|Xi |1{|Xi |>et(k,X−X′)+M} ≤ k(et (k,X − X′) + 2M)

and (3.9) easily follows.
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In order to prove (3.10), note that for u > 0,

P(|Xi − X′
i | ≥ 2u) ≤ P

(
max{|Xi |, |X′

i |} ≥ u
) ≤ 2P

(|Xi | ≥ u
)
,

thus the last part of the assertion follows by the definition of parameters t∗. ��
Lemma 3.12 Suppose that V is a real symmetric log-concave random variable.
Then for any t > 0 and λ ∈ (0, 1],

E|V |1{|V |≥t} ≤ 4

λ
P(|V | ≥ t)1−λ

E|V |1{|V |≥λt}.

Moreover, if P(|V | ≥ t) ≤ 1/4, then E|V |1{|V |≥t} ≤ 4tP(|V | ≥ t).

Proof Without loss of generality we may assume that P(|V | ≥ t) ≤ 1/4 (otherwise
the first estimate is trivial).

Observe that P(|V | ≥ s) = exp(−N(s)) where N : [0,∞) → [0,∞] is convex
and N(0) = 0. In particular

P(|V | ≥ γ t) ≤ P(|V | ≥ t)γ for γ > 1

and

P(|V | ≥ γ t) ≥ P(|V | ≥ t)γ for γ ∈ [0, 1].

We have

E|V |1{|V |≥t} ≤
∞∑

k=0

2k+1tP(|V | ≥ 2kt) ≤ 2t

∞∑

k=0

2k
P(|V | ≥ t)2k

≤ 2tP(|V | ≥ t)

∞∑

k=0

2k41−2k ≤ 4tP(|V | ≥ t).

This implies the second part of the lemma.
To conclude the proof of the first bound it is enough to observe that

E|V |1{|V |≥λt} ≥ λtP(|V | ≥ λt) ≥ λtP(|V | ≥ t)λ.

��
Proof of Theorem 3.3 By Proposition 3.1 it is enough to show the lower bound. By
Lemma 3.11 we may assume that X is symmetric. We may also obviously assume
that ‖Xi‖2

2 = EX2
i > 0 for all i.

Let Z = (Z1, . . . , Zn), where Zi = Xi/‖Xi‖2. Then Z is log-concave, isotropic
and, by (3.7), E|Zi | ≥ 1/(2C1) for all i. Set Y := 2C1Z. Then Xi = aiYi and
E|Yi | ≥ 1. Moreover, since any m-dimensional projection of Z is a log-concave,
isotropic m-dimensional vector, we know by the result of Lee and Vempala [13],
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that it satisfies the exponential concentration with a constants Cm1/4. (In fact an
easy modification of the proof below shows that for our purposes it would be enough
to have exponential concentration with a constant Cmγ for some γ < 1/2, so one
may also use Eldan’s result [6] which gives such estimates for any γ > 1/3). So
any m-dimensional projection of Y satisfies exponential concentration with constant
C2m

1/4.
Let us fix k and set t := t (k,X), then (since Xi has no atoms)

n∑

i=1

E|Xi |1{|Xi |≥t} = kt. (3.12)

For l = 1, 2, . . . define

Il := {i ∈ [n] : βl−1 ≥ P(|Xi | ≥ t) ≥ βl},

where β = 2−8. By (3.12) there exists l such that

∑

i∈Il

E|Xi |1{|Xi |≥t} ≥ kt2−l .

Let us consider three cases.

(1) l = 1 and |I1| ≤ k. Then

E max|I |=k

∑

i∈I

|Xi | ≥
∑

i∈I1

E|Xi |1{|Xi |≥t} ≥ 1

2
kt.

(2) l = 1 and |I1| > k. Choose J ⊂ I1 of cardinality k. Then

E max|I |=k

∑

i∈I

|Xi | ≥
∑

i∈J

E|Xi | ≥
∑

i∈J

tP(|Xi | ≥ t) ≥ βkt.

(3) l > 1. By Lemma 3.12 (applied with λ = 1/8) we have

∑

i∈Il

E|Xi |1{|Xi |≥t/8} ≥ 1

32
β−7(l−1)/8

∑

i∈Il

E|Xi |1{|Xi |≥t} ≥ 1

32
β−7(l−1)/82−lkt.

(3.13)

Moreover for i ∈ Il , P(|Xi | ≥ t) ≤ βl−1 ≤ 1/4, so the second part of
Lemma 3.12 yields

4t|Il |βl−1 ≥
∑

i∈Il

E|Xi |1{|Xi |≥t} ≥ kt2−l

and |Il | ≥ β1−l2−l−2k = 27l−10k ≥ k.
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Set k′ := β−7l/82−lk = 26lk. If k′ ≥ |Il | then, using (3.13), we estimate

E max|I |=k

∑

i∈I

|Xi | ≥ k

|Il |
∑

i∈Il

E|Xi | ≥ β7l/82l
∑

i∈Il

E|Xi |1{|Xi |≥t/8} ≥ 1

32
β7/8kt

= 2−12kt.

Otherwise set X′ = (Xi)i∈Il and Y ′ = (Yi)i∈Il . By (3.12) we have

kt ≥
∑

i∈Il

E|Xi |1{|Xi |≥t} ≥ |Il |tβl,

so |Il | ≤ kβ−l and Y ′ satisfies exponential concentration with constant α′ =
C2k

1/4β−l/4. Estimate (3.13) yields

∑

i∈Il

E|Xi |1{|Xi |≥2−12t} ≥
∑

i∈Il

E|Xi |1{|Xi |≥t/8} ≥ 2−12k′t,

so t (k′,X′) ≥ 2−12t . Moreover, by Proposition 3.7 we have (since k′ ≤ |Il |)

E max
I⊂Il ,|I |=k′

∑

i∈I

|Xi | ≥ 1

8 + 64α′/
√

k′ k
′t (k′,X′).

To conclude observe that

α′
√

k′ = C22−lk−1/4 ≤ C2

4

and since k′ ≥ k,

E max|I |=k

∑

i∈I

|Xi | ≥ k

k′E max
I⊂Il ,|I |=k′

∑

i∈I

|Xi | ≥ 1

8 + 16C2
2−12tk.

��

3.4 Vectors Satisfying Condition (3.3)

Proof of Theorem 3.2 By Proposition 3.1 we need to show only the lower bound.
Assume first that variables Xi have no atoms and k ≥ 4(1 + α).

Let tk = t (k,X). Then E
∑n

i=1 |Xi |1{|Xi |≥tk} = ktk . Note, that (3.3) implies that
for all i �= j we have

E|XiXj |1{|Xi |≥tk,|Xj |≥tk} ≤ αE|Xi |1{|Xi |≥tk}E|Xj |1{|Xj |≥tk}. (3.14)
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We may assume that Emax|I |=k

∑
i∈I |Xi | ≤ 1

6ktk , because otherwise the lower
bound holds trivially.

Let us define

Y :=
n∑

i=1

|Xi |1{ktk≥|Xi |≥tk} and A := (EY 2)1/2.

Since

E max|I |=k

∑

i∈I

|Xi | ≥ E

[
1

2
ktk1{Y≥ktk/2}

]
= 1

2
ktkP

(
Y ≥ ktk

2

)
,

it suffices to bound below the probability that Y ≥ ktk/2 by a constant depending
only on α.

We have

A2 = EY 2 ≤
n∑

i=1

EX2
i 1{ktk≥|Xi |≥tk} +

∑

i �=j

E|XiXj |1{|Xi |≥tk,|Xj |≥tk}

(3.14)≤ ktkEY + α
∑

i �=j

E|Xi |1{|Xi |≥tk}E|Xj |1{|Xj |≥tk}

≤ ktkA + α

( n∑

i=1

E|Xi |1{|Xi |≥tk}
)2

≤ 1

2
(k2t2

k + A2) + αk2t2
k .

Therefore A2 ≤ (1 + 2α)k2t2
k and for any l ≥ k/2 we have

EY1{Y≥ktk/2} ≤ ltkP(Y ≥ ktk/2) + 1

ltk
EY 2

≤ ltkP(Y ≥ ktk/2) + (1 + 2α)k2l−1tk. (3.15)

By Corollary 3.9 we have (recall definition (3.6))

n∑

i=1

E|Xi |1{|Xi |≥ktk} ≤ E max|I |=k

∑

i∈I

|Xi |

+
∞∑

l=k+1

(
ktkP(N(ktk) ≥ l) +

∫ ∞

ktk

P(N(s) ≥ l)ds

)

≤ 1

6
ktk +

∞∑

l=k+1

(
ktkEN(ktk)

2l−2 +
∫ ∞

ktk

EN(s)2l−2ds

)

≤ 1

6
ktk + 1

k

(
ktkEN(ktk)

2 +
∫ ∞

ktk

EN(s)2ds

)
. (3.16)
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Assumption (3.3) implies that

EN(s)2 =
n∑

i=1

P(|Xi | ≥ s) +
∑

i �=j

P(|Xi| ≥ s, |Xj | ≥ s)

≤
n∑

i=1

P(|Xi | ≥ s) + α

(
n∑

i=1

P(|Xi | ≥ s)

)2

.

Moreover for s ≥ ktk we have

n∑

i=1

P(|Xi | ≥ s) ≤ 1

s

n∑

i=1

E|Xi |1{|Xi |≥s} ≤ ktk

s
≤ 1,

so

EN(s)2 ≤ (1 + α)

n∑

i=1

P(|Xi | ≥ s) for s ≥ ktk.

Thus

ktkEN(ktk)
2 ≤ ktk(1 + α)

n∑

i=1

P(|Xi | ≥ ktk) ≤ (1 + α)

n∑

i=1

E|Xi |1{|Xi |≥ktk},

and

∫ ∞

ktk

EN(s)2ds ≤ (1 + α)

n∑

i=1

∫ ∞

ktk

P(|Xi| ≥ s)ds ≤ (1 + α)

n∑

i=1

E|Xi |1{|Xi |≥ktk}.

This together with (3.16) and the assumption that k ≥ 4(1 + α) implies

n∑

i=1

E|Xi |1{|Xi |≥ktk} ≤ 1

3
ktk

and

EY =
n∑

i=1

E|Xi |1{|Xi |≥tk} −
n∑

i=1

E|Xi |1{|Xi |≥ktk} ≥ 2

3
ktk.

Therefore

EY1{Y≥ktk/2} ≥ EY − 1

2
ktk ≥ 1

6
ktk.
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This applied to (3.15) with l = (12 + 24α)k gives us P(Y ≥ ktk/2) ≥ (144 +
288α)−1 and in consequence

E max|I |=k

∑

i∈I

|Xi | ≥ 1

288(1 + 2α)
kt (k,X).

Since k �→ kt (k,X) is non-decreasing, in the case k ≤ �4(1 + α)� =: k0 we
have

E max|I |=k
|Xi | ≥ k

k0
E max|I |=k0

|Xi | ≥ k

5 + 4α
· 1

288(1 + 2α)
k0t (k0,X)

≥ 1

288(5 + 4α)(1 + 2α)
kt (k,X).

The last step is to loose the assumption that Xi has no atoms. Note that both
assumption (3.3) and the lower bound depend only on (|Xi |)ni=1, so we may assume
that Xi are nonnegative almost surely. Consider Xε := (Xi + εYi)

n
i=1, where

Y1, . . . , Yn are i.i.d. nonnegative r.v’s with EYi < ∞ and a density g, independent
of X. Then for every s, t > 0 we have (observe that (3.3) holds also for s < 0 or
t < 0).

P(Xε
i ≥ s,Xε

j ≥ t)

=
∫ ∞

0

∫ ∞

0
P(Xi + εyi ≥ s, Xj + εyj ≥ t)g(yi)g(yj )dyidyj

(3.3)≤ α

∫ ∞

0

∫ ∞

0
P(Xi ≥ s − εyi)P(Xj ≥ t − εyj )g(yi)g(yj )dyidyj

= αP(Xε
i ≥ s)P(Xε

j ≥ t).

Thus Xε satisfies assumption (3.3) and has the density function for every ε > 0.
Therefore for all natural k we have

E max|I |=k

n∑

i=1

Xε
i ≥ c(α)kt (k,Xε) ≥ c(α)kt (k,X).

Clearly,Emax|I |=k

∑n
i=1 Xε

i → Emax|I |=k

∑n
i=1 Xi as ε → 0, so the lower bound

holds in the case of arbitrary X satisfying (3.3). ��
We may use Theorem 3.2 to obtain a comparison of weak and strong moments

for the supremum norm:

Corollary 3.13 Let X be an n-dimensional centered random vector satisfying
condition (3.3). Assume that

‖Xi‖2p ≤ β‖Xi‖p for every p ≥ 2 and i = 1, . . . , n. (3.17)
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Then the following comparison of weak and strong moments for the supremum norm
holds: for all a ∈ R

n and all p ≥ 1,

(
Emax

i≤n
|aiXi |p

)1/p ≤ C(α, β)
[
Emax

i≤n
|aiXi | + max

i≤n

(
E|aiXi |p

)1/p
]
,

where C(α, β) is a constant depending only on α and β.

Proof Let X′ = (X′
i )i≤n be a decoupled version of X. For any p > 0 a random

vector (|aiXi |p)i≤n satisfies condition (3.3), so by Theorem 3.2

(
Emax

i≤n
|aiXi |p

)1/p ∼ (
Emax

i≤n
|aiX

′
i |p

)1/p

for all p > 0, up to a constant depending only on α. The coordinates of X′
are independent and satisfy condition (3.17), so due to [11, Theorem 1.1] the
comparison of weak and strong moments of X′ holds, i.e. for p ≥ 1,

(
Emax

i≤n
|aiX

′
i |p

)1/p ≤ C(β)
[
Emax

i≤n
|aiX

′
i | + max

i≤n

(
E|aiX

′
i |p

)1/p
]
,

where C(β) depends only on β. These two observations yield the assertion. ��

3.5 Lower Estimates for Order Statistics

The next lemma shows the relation between t (k,X) and t∗(k,X) for log-concave
vectors X.

Lemma 3.14 Let X be a symmetric log-concave random vector in R
n. For any

1 ≤ k ≤ n we have

1

3

(
t∗(k,X) + 1

k
max|I |=k

∑

i∈I

E|Xi |
)

≤ t (k,X) ≤ 4

(
t∗(k,X) + 1

k
max|I |=k

∑

i∈I

E|Xi |
)

.

Proof Let tk := t (k,X) and t∗k := t∗(k,X). We may assume that any Xi is not
identically equal to 0. Then

∑n
i=1 P(|Xi | ≥ t∗k ) = k and

∑n
i=1 E|Xi |1{|Xi |≥tk} = ktk .

Obviously t∗k ≤ tk . Also for any |I | = k we have

∑

i∈I

E|Xi | ≤
∑

i∈I

(
tk + E|Xi |1{|Xi |≥tk}

)≤|I |tk + ktk = 2ktk.

To prove the upper bound set

I1 := {i ∈ [n] : P(|Xi | ≥ t∗k ) ≥ 1/4}.
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We have

k ≥
∑

i∈|I1|
P(|Xi | ≥ t∗k ) ≥ 1

4
|I1|,

so |I1| ≤ 4k. Hence

∑

i∈I1

E|Xi |1{|Xi |≥t∗k } ≤
∑

i∈I1

E|Xi | ≤ 4 max|I |=k

∑

i∈I

E|Xi |.

Moreover by the second part of Lemma 3.12 we get

E|Xi |1{|Xi |≥t∗k } ≤ 4t∗kP(|Xi | ≥ t∗k ) for i /∈ I1,

so

∑

i /∈I1

E|Xi |1{|Xi |≥t∗k } ≤ 4t∗k
n∑

i=1

P(|Xi | ≥ t∗k ) ≤ 4kt∗k .

Hence if s = 4t∗k + 4
k

max|I |=k

∑
i∈I E|Xi | then

n∑

i=1

E|Xi |1{|Xi |≥s} ≤
n∑

i=1

E|Xi |1{|Xi |≥t∗k } ≤ 4 max|I |=k

∑

i∈I

E|Xi | + 4kt∗k = ks,

that is tk ≤ s. ��
To derive bounds for order statistics we will also need a few facts about log-

concave vectors.

Lemma 3.15 Assume that Z is an isotropic one- or two-dimensional log-concave
random vector with a density g. Then g(t) ≤ C for all t . If Z is one-dimensional,
then also g(t) ≥ c for all |t| ≤ t0, where t0 > 0 is an absolute constant.

Proof We will use a classical result (see [4, Theorem 2.2.2, Proposition 3.3.1,
Proposition 3.3.2, and Proposition 2.5.9]): ‖g‖sup ∼ g(0) ∼ 1 (note that here we use
the assumption that Z is isotropic, in particular that EZ = 0, and that the dimension
of Z is 1 or 2). This implies the upper bound on g.

In order to get the lower bound in the one-dimensional case, it suffices to prove
that g(u) ≥ c for |u| = εE|Z| ≥ (2C1)

−1ε, where 1/4 > ε > 0 is fixed and its
value will be chosen later (then by the log-concavity we get g(u)sg(0)1−s ≤ g(su)

for all s ∈ (0, 1)). Since −Z is again isotropic we may assume that u ≥ 0.
If g(u) ≥ g(0)/e, then we are done. Otherwise by log-concavity of g we get

P(Z ≥ u) =
∫ ∞

u

g(s)ds ≤
∫ ∞

u

g(u)s/ug(0)−s/u+1ds ≤ g(0)

∫ ∞

u

e−s/uds ≤C0u ≤C0ε.
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On the other hand, Z has mean zero, so E|Z| = 2EZ+ and by the Paley–Zygmund
inequality and (3.7) we have

P(Z ≥ u) = P(Z+ ≥ 2εEZ+) ≥ (1 − 2ε)2 (EZ+)2

EZ2+
≥ 1

16

(E|Z|)2

EZ2 ≥ c0.

For ε < c0/C0 we get a contradiction. ��
Lemma 3.16 Let Y be a mean zero log-concave random variable and let
P(|Y | ≥ t) ≤ p for some p > 0. Then

P

(
|Y | ≥ t

2

)
≥ 1√

ep
P(|Y | ≥ t).

Proof By the Grünbaum inequality (3.8) we have P(Y ≥ 0) ≥ 1/e, hence

P

(
Y ≥ t

2

)
≥ √

P(Y ≥ t)P(Y ≥ 0) ≥ 1√
e

√
P(Y ≥ t) ≥ 1√

ep
P(Y ≥ t).

Since −Y satisfies the same assumptions as Y we also have

P

(
−Y ≥ t

2

)
≥ 1√

ep
P(−Y ≥ t).

��
Lemma 3.17 Let Y be a mean zero log-concave random variable and let
P(|Y | ≥ t) ≥ p for some p > 0. Then there exists a universal constant C

such that

P(|Y | ≤ λt) ≤ Cλ√
p
P(|Y | ≤ t) for λ ∈ [0, 1].

Proof Without loss of generality we may assume that EY 2 = 1. Then by
Chebyshev’s inequality t ≤ p−1/2. Let g be the density of Y . By Lemma 3.15
we know that ‖g‖∞ ≤ C and g(t) ≥ c on [−t0, t0], where c, C and t0 ∈ (0, 1) are
universal constants. Thus

P(|Y | ≤ t) ≥ P(|Y | ≤ t0
√

pt) ≥ 2ct0
√

pt,

and

P(|Y | ≤ λt) ≤ 2‖g‖∞λt ≤ 2Cλt ≤ Cλ

ct0
√

p
P(|Y | ≤ t).

��
Now we are ready to give a proof of the lower bound in Theorem 3.4. The next

proposition is a key part of it.
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Proposition 3.18 Let X be a mean zero log-concave n-dimensional random vector
with uncorrelated coordinates and let α > 1/4. Suppose that

P
(|Xi | ≥ t∗(α,X)

) ≤ 1

C3
for all i.

Then

P

(
�4α�- max

i
|Xi | ≥ 1

C4
t∗(α,X)

)
≥ 3

4
.

Proof Let t∗ = t∗(α,X), k := �4α� and L = �
√

C3
4
√

e
�. We will choose C3 in such a

way that L is large, in particular we may assume that L ≥ 2. Observe also that α =∑n
i=1 P(|Xi| ≥ t∗(α,X)) ≤ nC−1

3 , thus Lk ≤ C
1/2
3 e−1/2α ≤ e−1/2C

−1/2
3 n ≤ n if

C3 ≥ 1 > 1
e
. Hence

k- max
i

|Xi | ≥ 1

k(L − 1)

Lk∑

l=k+1

l- max
i

|Xi |

= 1

k(L − 1)

(
max|I |=Lk

∑

i∈I

|Xi | − max|I |=k

∑

i∈I

|Xi |
)

. (3.18)

Lemma 3.16 and the definition of t∗(α,X) yield

n∑

i=1

P

(
|Xi | ≥ 1

2
t∗

)
≥

√
C3√
e

α ≥ Lk.

This yields t (Lk,X) ≥ t∗(Lk,X) ≥ t∗
2 and by Theorem 3.3 we have

E max|I |=Lk

∑

i∈I

|Xi | ≥ c1Lk
t∗

2
.

Since for any norm P(‖X‖ ≤ tE‖X‖) ≤ Ct for t > 0 (see [10, Corollary 1]) we
have

P

(
max|I |=Lk

∑

i∈I

|Xi | ≥ c2Lkt∗
)

≥ 7

8
. (3.19)

Let X′ be an independent copy of X. By the Paley-Zygmund inequality and (3.7),

P(|Xi | ≥ 1
2E|Xi |) ≥ (E|Xi |)2

4E|Xi |2 > 1
C3

if C3 > 16C2
1 , so 1

2E|Xi | ≤ t∗. Moreover it
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is easy to verify that k = �4α� > α for α > 1/4, thus t∗(k,X) ≤ t∗(α,X) = t∗.
Hence Proposition 3.1, Lemma 3.14, and inequality (3.10) yield

E max|I |=k

∑

i∈I

|Xi | = E max|I |=k

∑

i∈I

|Xi − EX′
i | ≤ E max|I |=k

∑

i∈I

|Xi − X′
i |

≤ E max|I |=2k

∑

i∈I

|Xi − X′
i |

≤ 4kt (2k,X − X′) ≤ 16k
(
t∗(2k,X − X′) + max

i
E|Xi − X′

i |
)

≤ 16k
(
2t∗(k,X) + 2 max

i
E|Xi |

) ≤ 96kt∗.

Therefore

P

(
max|I |=k

∑

i∈I

|Xi | ≥ 800kt∗
)

≤ 1

8
. (3.20)

Estimates (3.18)–(3.20) yield

P

(
k- max

i
|Xi | ≥ 1

L − 1
(c2L − 800)t∗

)
≥ 3

4
,

so it is enough to choose C3 in such a way that L ≥ 1600/c2. ��
Proof of the First Part of Theorem 3.4 Let t∗ = t∗(k − 1/2,X) and C3 be as in
Proposition 3.18. It is enough to consider the case when t∗ > 0, then P(|Xi | =
t∗) = 0 for all i and

∑n
i=1 P(|Xi| ≥ t∗) = k − 1/2. Define

I1 :=
{
i ≤ n : P(|Xi | ≥ t∗) ≤ 1

C3

}
, α :=

∑

i∈I1

P(|Xi | ≥ t∗),

I2 :=
{
i ≤ n : P(|Xi | ≥ t∗) >

1

C3

}
, β :=

∑

i∈I2

P(|Xi | ≥ t∗).

If β = 0 then α = k − 1/2, |I1| = {1, . . . , n}, and the assertion immediately
follows by Proposition 3.18 since 4α ≥ k.

Otherwise define

Ñ(t) :=
∑

i∈I2

1{|Xi |≤t}.

We have by Lemma 3.17 applied with p = 1/C3

EÑ(λt∗) =
∑

i∈I2

P(|Xi| ≤ λt∗) ≤ C5λ
∑

i∈I2

P(|Xi | ≤ t∗) = C5λ(|I2| − β).
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Thus

P

(
�β�- max

i∈I2
|Xi | ≤ λt∗

)
= P(Ñ(λt∗) ≥ |I2| + 1 − �β�)

≤ 1

|I2| + 1 − �β�EÑ(λt∗) ≤ C5λ.

Therefore

P

(
�β�- max

i∈I2
|Xi | ≥ 1

4C5
t∗

)
≥ 3

4
.

If α < 1/2 then �β� = k and the assertion easily follows. Otherwise Proposi-
tion 3.18 yields

P

(
�4α�- max

i∈I1
|Xi | ≥ 1

C4
t∗

)
≥ 3

4
.

Observe that for α ≥ 1/2 we have �4α� + �β� ≥ 4α − 1 + β ≥α + 1/2 + β = k, so

P

(
k- max

i
|Xi | ≥ min

{
t∗

C4
,

t∗

4C5

})

≥ P

(
�4α�- max

i∈I1
|Xi | ≥ 1

C4
t∗, �β�- max

i∈I2
|Xi | ≥ 1

4C5
t∗

)
≥ 1

2
.

��
Remark 3.19 A modification of the proof above shows that under the assumptions
of Theorem 3.4 for any p < 1 there exists c(p) > 0 such that

P

(
k- max

i≤n
|Xi | ≥ c(p)t∗(k − 1/2,X)

)
≥ p.

3.6 Upper Estimates for Order Statistics

We will need a few more facts concerning log-concave vectors.

Lemma 3.20 Suppose that X is a mean zero log-concave random vector with
uncorrelated coordinates. Then for any i �= j and s > 0,

P(|Xi | ≤ s, |Xj | ≤ s) ≤ C6P(|Xi | ≤ s)P(|Xj | ≤ s).

Proof Let C7, c3 and t0 be the constants from Lemma 3.15. If s > t0‖Xi‖2 then,
by Lemma 3.15, P(|Xi | ≤ s) ≥ 2c3t0 and the assertion is obvious (with any C6 ≥
(2c3t0)

−1). Thus we will assume that s ≤ t0 min{‖Xi‖2, ‖Xj‖2}.
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Let X̃i = Xi/‖Xi‖2 and let gij be the density of (X̃i , X̃j ). By Lemma 3.15 we
know that ‖gi,j ‖∞ ≤ C7, so

P(|Xi| ≤ s, |Xj | ≤ s) = P(|X̃i| ≤ s/‖Xi‖2, |X̃j | ≤ s/‖Xj‖2) ≤ C7
s2

‖Xi‖2‖Xj‖2
.

On the other hand the second part of Lemma 3.15 yields

P(|Xi | ≤ s)P(|Xj | ≤ s) ≥ 4c2
3s

2

‖Xi‖2‖Xj‖2
.

��
Lemma 3.21 Let Y be a log-concave random variable. Then

P(|Y | ≥ ut) ≤ P(|Y | ≥ t)(u−1)/2 for u ≥ 1, t ≥ 0.

Proof We may assume that Y is non-degenerate (otherwise the statement is
obvious), in particular Y has no atoms. Log-concavity of Y yields

P(Y ≥ t) ≥ P(Y ≥ −t)
u−1
u+1P(Y ≥ ut)

2
u+1 .

Hence

P(Y ≥ ut) ≤
(

P(Y ≥ t)

P(Y ≥ −t)

) u+1
2

P(Y ≥ −t) =
(

1 − P(|Y | ≤ t)

P(Y ≥ −t)

) u+1
2

P(Y ≥ −t)

≤ (1 − P(|Y | ≤ t))
u+1

2 P(Y ≥ −t) = P(|Y | ≥ t)
u+1

2 P(Y ≥ −t).

Since −Y satisfies the same assumptions as Y , we also have

P(Y ≤ −ut) ≤ P(|Y | ≥ t)
u+1

2 P(Y ≤ t).

Adding both estimates we get

P(|Y | ≥ ut) ≤ P(|Y | ≥ t)
u+1

2 (1 + P(|Y | ≤ t)) = P(|Y | ≥ t)
u−1

2 (1 − P(|Y | ≤ t)2).

��
Lemma 3.22 Suppose that Y is a log-concave random variable and P(|Y | ≤ t) ≤
1

10 . Then P(|Y | ≤ 21t) ≥ 5P(|Y | ≤ t).

Proof Let P(|Y | ≤ t) = p then by Lemma 3.21

P(|Y | ≤ 21t) = 1 − P(|Y | > 21t) ≥ 1 − P(|Y | > t)10 = 1 − (1 − p)10

≥ 10p − 45p2 ≥ 5p.

��
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Let us now prove (3.4) and see how it implies the second part of Theorem 3.4.
Then we give a proof of (3.5).

Proof of (3.4) Fix k and set t∗ := t∗(k − 1/2,X). Then
∑n

i=1 P(|Xi| ≥ t∗) =
k − 1/2. Define

I1 :=
{
i ≤ n : P(|Xi| ≥ t∗) ≤ 9

10

}
, α :=

∑

i∈I1

P(|Xi | ≥ t∗), (3.21)

I2 :=
{
i ≤ n : P(|Xi | ≥ t∗) >

9

10

}
, β :=

∑

i∈I2

P(|Xi | ≥ t∗). (3.22)

Observe that for u > 3 and 1 ≤ l ≤ |I1| we have by Lemma 3.21

P(l- max
i∈I1

|Xi | ≥ ut∗) ≤ E
1

l

∑

i∈I1

1{|Xi |≥ut∗} = 1

l

∑

i∈I1

P(|Xi | ≥ ut∗) (3.23)

≤ 1

l

∑

i∈I1

P(|Xi| ≥ t∗)(u−1)/2 ≤ α

l

(
9

10

)(u−3)/2

.

Consider two cases.

Case 1 β > |I2| − 1/2. Then |I2| < β + 1/2 ≤ k, so k − |I2| ≥ 1 and

α = k − 1

2
− β ≤ k − |I2|.

Therefore by (3.23)

P
(
k- max |Xi | ≥ 5t∗

) ≤ P

(
(k − |I2|)- max

i∈I1
|Xi | ≥ 5t∗

)
≤ 9

10
.

Case 2 β ≤ |I2| − 1/2. Observe that for any disjoint sets J1, J2 and integers l,m

such that l ≤ |J1|, m ≤ |J2| we have

(l + m − 1)- max
i∈J1∪J2

|xi | ≤ max

{
l- max

i∈J1
|xi |,m- max

i∈J2
|xi |

}

≤ l- max
i∈J1

|xi | + m- max
i∈J2

|xi |. (3.24)

Since

�α� + �β� ≤ α + β + 2 < k + 2

we have �α� + �β� ≤ k + 1 and, by (3.24),

k- max
i

|Xi | ≤ �α�- max
i∈I1

|Xi | + �β�- max
i∈I2

|Xi |.
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Estimate (3.23) yields

P

(
�α�- max

i∈I1
|Xi | ≥ ut∗

)
≤

(
9

10

)(u−3)/2

for u ≥ 3.

To estimate �β�- maxi∈I2 |Xi | = (|I2| + 1 − �β�)- mini∈I2 |Xi | observe that by
Lemma 3.22, the definition of I2 and assumptions on β,

∑

i∈I2

P(|Xi | ≤ 21t∗) ≥ 5
∑

i∈I2

P(|Xi | ≤ t∗) = 5(|I2| − β) ≥ 2(|I2| + 1 − �β�).

Set l := (|I2| + 1 − �β�) and

Ñ(t) :=
∑

i∈I2

1{|Xi |≤t}.

Note that we know already thatEÑ(21t∗) ≥ 2l. Thus the Paley-Zygmund inequality
implies

P

(
�β�- max

i∈I2
|Xi | ≤ 21t∗

)
= P

(
l- min

i∈I2
|Xi | ≤ 21t∗

)
≥ P(Ñ(21t∗) ≥ l)

≥ P

(
Ñ(21t∗) ≥ 1

2
EÑ(21t∗)

)
≥ 1

4

(EÑ(21t∗))2

EÑ(21t∗)2
.

However Lemma 3.20 yields

EÑ(21t∗)2 ≤ EÑ(21t∗) + C6(EÑ(21t∗)))2 ≤ (C6 + 1)(EÑ(21t∗))2.

Therefore

P

(
k- max

i
|Xi | > (21 + u)t∗

)
≤ P

(
�α�- max

i∈I1
|Xi | ≥ ut∗

)

+ P

(
�β�- max

i∈I2
|Xi | > 21t∗

)

≤
(

9

10

)(u−3)/2

+1 − 1

4(C6 + 1)
≤ 1− 1

5(C6 + 1)

for sufficiently large u. ��
The unconditionality assumption plays a crucial role in the proof of the next

lemma, which allows to derive the second part of Theorem 3.4 from estimate (3.4).
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Lemma 3.23 Let X be an unconditional log-concave n-dimensional random vec-
tor. Then for any 1 ≤ k ≤ n,

P

(
k- max

i≤n
|Xi | ≥ ut

)
≤ P

(
k- max

i≤n
|Xi | ≥ t

)u

for u > 1, t > 0.

Proof Let ν be the law of (|X1|, . . . , |Xn|). Then ν is log-concave on R
+
n . Define

for t > 0,

At :=
{
x ∈ R

+
n : k- max

i≤n
|xi| ≥ t

}
.

It is easy to check that 1
u
Aut + (1 − 1

u
)Rn+ ⊂ At , hence

P

(
k- max

i≤n
|Xi | ≥ t

)
= ν(At) ≥ ν(Aut )

1/uν(Rn+)1−1/u = P

(
k- max

i≤n
|Xi | ≥ ut

)1/u

.

��
Proof of the Second Part of Theorem 3.4 Estimate (3.4) together with Lemma
3.23 yields

P

(
k- max

i≤n
|Xi | ≥ Cut∗(k − 1/2,X)

)
≤ (1 − c)u for u ≥ 1,

and the assertion follows by integration by parts. ��
Proof of (3.5) Define I1, I2, α and β by (3.21) and (3.22), where this time t∗ =
t∗(k − k5/6/2,X). Estimate (3.23) is still valid so integration by parts yields

El- max
i∈I1

|Xi | ≤
(

3 + 20
α

l

)
t∗.

Set

kβ :=
⌈
β + 1

2
k5/6

⌉
.

Observe that

�α� + kβ < α + β + 1

2
k5/6 + 2 = k + 2.

Hence �α� + kβ ≤ k + 1.
If kβ > |I2|, then k − |I2| ≥ �α� + kβ − 1 − |I2| ≥ �α�, so

Ek- max
i

|Xi | ≤ E(k − |I2|)- max
i∈I1

|Xi | ≤ E�α�- max
i∈I1

|Xi | ≤ 23t∗.

Therefore it suffices to consider case kβ ≤ |I2| only.
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Since �α� + kβ − 1 ≤ k and kβ ≤ |I2|, we have by (3.24),

Ek- max
i

|Xi | ≤ E�α�- max
i∈I1

|Xi | + Ekβ - max
i∈I2

|Xi | ≤ 23t∗ + Ekβ - max
i∈I2

|Xi |.

Since β ≤ k − 1
2k5/6 and x → x − 1

2x5/6 is increasing for x ≥ 1/2 we have

β ≤ β + 1

2
k5/6 − 1

2

(
β + 1

2
k5/6

)5/6

≤ kβ − 1

2
k

5/6
β .

Therefore, considering (Xi)i∈I2 instead of X and kβ instead of k it is enough to
show the following claim:

Let s > 0, n ≥ k and let X be an n-dimensional log-concave vector with
uncorrelated coordinates. Suppose that

∑

i≤n

P(|Xi | ≥ s) ≤ k − 1

2
k5/6 and min

i≤n
P(|Xi| ≥ s) ≥ 9/10

then

Ek- max
i≤n

|Xi | ≤ C8s.

We will show the claim by induction on k. For k = 1 the statement is obvious
(since the assumptions are contradictory). Suppose now that k ≥ 2 and the assertion
holds for k − 1.

Case 1 P(|Xi0 | ≥ s) ≥ 1 − 5
12k−1/6 for some 1 ≤ i0 ≤ n. Then

∑

i �=i0

P(|Xi | ≥ s) ≤ k − 1

2
k5/6 −

(
1 − 5

12
k−1/6

)
≤ k − 1 − 1

2
(k − 1)5/6,

where to get the last inequality we used that x5/6 is concave on R+, so (1 − t)5/6 ≤
1 − 5

6 t for t = 1/k. Therefore by the induction assumption applied to (Xi)i �=i0 ,

Ek- max
i

|Xi | ≤ E(k − 1)- max
i �=i0

|Xi | ≤ C8s.

Case 2 P(|Xi| ≤ s) ≥ 5
12k−1/6 for all i. Applying Lemma 3.15 we get

5

12
k−1/6 ≤ P

( |Xi |
‖Xi‖2

≤ s

‖Xi‖2

)
≤ C

s

‖Xi‖2
,

so maxi ‖Xi‖2 ≤ Ck1/6s. Moreover n ≤ 10
9 k. Therefore by the result of Lee and

Vempala [13] X satisfies the exponential concentration with α ≤ C9k
5/12s.
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Let l = �k − 1
2 (k5/6 −1)� then s ≥ t∗(l −1/2,X) and k − l +1 ≥ 1

2 (k5/6 −1) ≥
1
9k5/6. Let

A :=
{
x ∈ R

n : l- max
i

|xi | ≤ C10s

}
.

By (3.4) (applied with l instead of k) we have P(X ∈ A) ≥ c4. Observe that

k- max
i

|xi | ≥ C10s + u ⇒ dist(x,A) ≥ √
k − l + 1u ≥ 1

3
k5/12u.

Therefore by Lemma 3.10 we get

P

(
k- max

i
|Xi | ≥ C10s + 3C9us

)
≤ exp (−(u + ln c4)+) .

Integration by parts yields

Ek- max
i

|Xi | ≤ (C10 + 3C9(1 − ln c4)) s

and the induction step is shown in this case provided that C8 ≥ C10+3C9(1−ln c4).
��

To obtain Corollary 3.6 we used the following lemma.

Lemma 3.24 Assume that X is a symmetric isotropic log-concave vector in R
n.

Then

t∗(p,X) ∼ n − p

n
for n > p ≥ n/4. (3.25)

and

t∗(k/2,X) ∼ t∗(k,X) ∼ t (k,X) for k ≤ n/2. (3.26)

Proof Observe that

n∑

i=1

P(|Xi| ≤ t∗(p,X)) = n − p.

Thus Lemma 3.15 implies that for p ≥ c5n (with c5 ∈ ( 1
2 , 1)) we have t∗(p,X) ∼

n−p
n

. Moreover, by the Markov inequality

n∑

i=1

P(|Xi | ≥ 4) ≤ n

16
,
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so t∗(n/4,X) ≤ 4. Since p �→ t∗(p,X) is non-increasing, we know that
t∗(p,X) ∼ 1 for n/4 ≤ p ≤ c5n.

Now we will prove (3.26). We have

t∗(k,X) ≤ t∗(k/2,X) ≤ t (k/2,X) ≤ 2t (k,X),

so it suffices to show that t∗(k,X) ≥ ct (k,X). To this end we fix k ≤ n/2. By (3.25)
we know that t := C11t

∗(k,X) ≥ C11t
∗(n/2,X) ≥ e, so the isotropicity of X and

Markov’s inequality yield P(|Xi | ≥ t) ≤ e−2 for all i. We may also assume that
t ≥ t∗(k,X). Integration by parts and Lemma 3.21 yield

E|Xi |1{|Xi |≥t} ≤ 3tP(|Xi | ≥ t) + t

∫ ∞

0
P(|Xi | ≥ (s + 3)t)ds

≤ 3tP(|Xi | ≥ t) + t

∫ ∞

0
P(|Xi | ≥ t)e−sds ≤ 4tP(|Xi | ≥ t).

Therefore

n∑

i=1

E|Xi |1{|Xi |≥t} ≤ 4t

n∑

i=1

P(|Xi | ≥ t) ≤ 4t

n∑

i=1

P(|Xi | ≥ t∗(k,X)) ≤ 4kt,

so t (k,X) ≤ 4C11t
∗(k,X). ��
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