
Chapter 16
On a Formula for the Volume
of Polytopes

Rolf Schneider

Abstract We carry out an elementary proof of a formula for the volume of
polytopes, due to A. Esterov, from which it follows that the mixed volume of
polytopes depends only on the product of their support functions.

16.1 Introduction

Esterov [1] has proved the surprising fact that the mixed volume of n convex
polytopes in R

n depends only on the product of their support functions. That an
extension of this result to general convex bodies is not true, was pointed out by
Kazarnovskiı̆ [3, Remark 2]. Esterov deduced his result from a new formula for the
volume of a polytope in terms of the nth power of its support function. It is the
purpose of this note to carry out an elementary proof of this formula. A motivation
will be given after we have stated this formula, in the next section.

16.2 Formulation of the Result

First we fix some terminology. We work in n-dimensional Euclidean space R
n

with scalar product 〈· , ·〉. Its unit sphere is denoted by S
n−1. Polytopes are always

nonempty, compact, and convex. The volume of a polytope P is denoted by Vn(P ).
A polyhedral cone is the intersection of a finite family of closed halfspaces with
the origin o in their boundaries; equivalently, it is the positive hull of a finite set
of vectors. The positive hull of a set {v1, . . . , vk} of linearly independent vectors
of Rn is a simplicial cone and is denoted by < v1, . . . , vk >; this cone is said to
be generated by v1, . . . , vk . A fan in R

n is a finite family F of polyhedral cones
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with the following properties: every face of a cone in F is a cone in F , and the
intersection of two cones in F is a face of both. A fan is called simplicial if all
its cones are simplicial. A fan F ′ is a refinement of the fan F if every cone of F ′
is contained in a cone of F . Every fan has a simplicial refinement. This is easily
seen by induction with respect to the dimension, taking positive hulls with suitable
additional rays (or see [2, Thm. 2.6]). For a polytope P and a (nonempty) face F

of P , we denote by N(P,F ) the normal cone of P at F . The family of all normal
cones of P at its faces is a fan, called the normal fan of P (see, e.g., Ziegler [5, p.
193], or Ewald [2, p. 17], where it is simply called the ‘fan’ of P ).

If (v1, . . . , vn) is an ordered basis of Rn, we denote by (v⊥
1 , . . . , v⊥

n ) its Gram–
Schmidt orthonormalization. This means that (v⊥

1 , . . . , v⊥
n ) is orthonormal, the set

{v⊥
1 , . . . , v⊥

k } spans the same subspace as {v1, . . . , vk}, and 〈vk, v
⊥
k 〉 > 0, for k =

1, . . . , n.
The following is a special case of a more general result of Esterov [1] (with a

corrected factor).

Theorem 16.1 (Esterov) Let P ⊂ R
n be a polytope, and let the fan � be a

simplicial refinement of the normal fan of P . Let B(�) be the set of all ordered
n-tuples of unit vectors generating cones of �. For each n-dimensional cone C ∈ �,
let fC be the restriction of the nth power of the support function of P to the interior
of C. Then

1

(n!)2

∑

(v1,...,vn)∈B(�)

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= Vn(P ). (16.1)

Esterov writes about his result: “We . . . represent it as a specialization of the
isomorphism between two well known combinatorial models of the cohomology of
toric varieties.” He also gives a brief sketch of an elementary proof, however, for
the polytope A under consideration, “assuming for simplicity that the orthogonal
complement to the affine span of every (relatively open) face B ⊂ A intersects B”.
This is too much of a simplification, since the construction becomes non-trivial if
this assumption is not satisfied. Moreover, the statement about the subdivision into
“simplices that are in one to one correspondence with the terms of the sum” (the sum
in (16.1) is meant) is not correct, since the simplices depend only on the polytope
P , whereas the sum gets more terms if the fan � is refined. That these extra terms
(which are in general not zero) add up to zero, requires an additional argument.
The author’s statement, “Independence of subdivisions of � and linearity follow by
definition“, seems unjustified.

Since Esterov’s surprising result has never been observed in the development of
the classical theory of mixed volumes, it might be desirable to have a complete proof
along classical lines. Therefore, in the following we carry out Esterov’s brief sketch
with the necessary details.
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16.3 Proof of Theorem 16.1

In the following, we use the common notations lin, pos, aff, conv for, respectively,
the linear, positive, affine, or convex hull of a set of vectors or points in R

n. Further,
vert P denotes the set of vertices of a polytope P .

First we recall the notion of an orthoscheme � in R
n. Given a base point z

(which will later be the origin, but is needed in greater generality for an induction
argument), an ordered orthonormal basis (u1, . . . , un) of R

n, and a sequence
(a1, . . . , an) of real numbers, it is defined by

� := conv{z, z1, . . . , zn}, zk := z +
k∑

i=1

aiui for k = 1, . . . , n.

This is a simplex, but it may be degenerate, since ai = 0 is allowed.
Let P ⊂ R

n be a polytope with interior points. Under the special assumption
in Esterov’s proof sketch quoted above, P can be decomposed into orthoschemes.
Without this assumption, one has to decompose the indicator function of P into the
indicator functions of signed orthoschemes.

To prepare this, we denote by H(Q, u) the supporting hyperplane of a polytope
Q ⊂ R

n with outer normal vector u ∈ R
n \ {o} (for notions from convex geometry

that are not explained here, we refer to [4]). By H−(Q, u),H+(Q, u) we denote
the two closed halfspaces bounded by H(Q, u), where H−(Q, u) contains Q. In
the following, for a point p ∈ R

n and a hyperplane H ⊂ R
n, we denote by p|H the

image of p under orthogonal projection to H .
Let (v1, . . . , vn) be a basis of Rn such that v1, . . . , vn ∈ N(P, {y}) for some

vertex y of P . Let (v⊥
1 , . . . , v⊥

n ) be the Gram–Schmidt orthonormalization of
(v1, . . . , vn). We define

S1 := P∩H(P, v⊥
1 ), S2 := S1∩H(S1, v

⊥
2 ), . . . , Sn := Sn−1∩H(Sn−1, v

⊥
n ).

Then dim Sk ≤ n − k, so that Sn = {y} for the vertex y of P , and Sk ⊇ Sk+1 for
k = 1, . . . , n − 1 (equality may hold). We say that (S1, . . . , Sn) is generated by
(v1, . . . , vn). A sequence (S1, . . . , Sn) of faces of P is called a complete tower of P

if S1 ⊃ S2 ⊃ · · · ⊃ Sn and dim Sk = n − k for k = 1, . . . , n.
Now we define the required orthoschemes. Let z ∈ R

n. Given (v1, . . . , vn) as
above and its generated sequence (S1, . . . , Sn) (so that Sn = {y}), we define a
sequence of points by

z1 := z|H(P, v⊥
1 ), z2 := z1|H(S1, v

⊥
2 ), . . . , zn := zn−1|H(Sn−1, v

⊥
n ).

We also define a sequence (a1, . . . , an) of numbers by

z1 = z + a1v
⊥
1 , z2 := z1 + a2v

⊥
2 , . . . , zn = zn−1 + anv

⊥
n .
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Here zn = y and hence y = z + a1v
⊥
1 + · · · + anv

⊥
n . Therefore,

ai = 〈y − z, v⊥
i 〉. (16.2)

We define the orthoscheme

� := conv{z, z1, . . . , zn}.

Its volume is given by

Vn(�) = 1

n! |a1 · · · an|. (16.3)

We denote by δ ∈ {−1, 0, 1} the sign of a1 · · · an and call the pair (�, δ) a signed
orthoscheme. It is said to be induced by (v1, . . . , vn) (if P and z are given).

We apply this construction from two different starting points. First, we start from
the n-dimensional polytope P and associate a signed orthoscheme with each of its
complete towers. Let (S1, . . . , Sn) be a complete tower of P . Then there is a unique
ordered orthonormal basis (u1, . . . , un) of Rn such that

S1 := P ∩ H(P, u1), S2 := S1 ∩ H(S1, u2), . . . Sn := Sn−1 ∩ H(Sn−1, un).

(16.4)

We call (u1, . . . , un) the orthonormal basis associated with the complete tower
(S1, . . . , Sn) of P . Let (�, δ) be the signed orthoscheme induced by (u1, . . . , un).
It is also said to be the signed orthoscheme induced by the complete tower
(S1, . . . , Sn).

Definition For given P and z, we denote by O(P, z) the set of all signed
orthoschemes induced by complete towers of P .

Let U be the union of the affine hulls of the facets of all orthoschemes �, for
(�, δ) ∈ O(P, z). Denoting the indicator function of a set A ⊂ R

n by 1A, we state
the following

Proposition 16.1

∑

(�,δ)∈O(P ,z)

δ1�(x) = 1P (x) for all x ∈ R
n \ U. (16.5)

Proof We set

gn(P, z, x) :=
∑

(�,δ)∈O(P ,z)

δ1�(x)
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and prove (16.5) by induction with respect to the dimension. The case n = 1 is clear.
We assume that n ≥ 2 and that the assertion has been proved in smaller dimensions,
for all polytopes and base points. Let P be an n-polytope and z a point in R

n. Let
(�, δ) ∈ O(P, z). Then (�, δ) is induced by some complete tower (S1, . . . , Sn) of
P . If F1, . . . , Fm are the facets of P , then S1 = Fi for some i ∈ {1, . . . ,m}, and
(S2, . . . , Sn) is a complete tower of Fi . We have � = conv(�′ ∪ {z}) with some
(�′, δ′) ∈ O(Fi, z|aff Fi) and δ = δ′σ(Fi, z), where we define, for a facet F of P

with outer unit normal vector u,

σ(F, z) :=
⎧
⎨

⎩

1 if z ∈ int H−(P, u),

0 if z ∈ H(P, u),

−1 if z ∈ int H+(P, u).

For x ∈ R
n \ {z} we define the ray

R(z, x) := {x + λ(x − z) : λ ≥ 0}.

Let x ∈ R
n \U . Then x �= z. We define q(x, Fi) as the intersection point of R(z, x)

and aff Fi if R(z, x) meets aff Fi , and as the point x otherwise. Clearly,

x ∈ � ⇔ R(z, x) meets aff Fi and q(x, Fi) ∈ �′

and thus 1�(x) = 1�′(q(x, Fi)). This gives

gn(P, z, x) =
∑

(�,δ)∈O(P ,z)

δ1�(x)

=
m∑

i=1

σ(Fi, z)
∑

(�′,δ′)∈O(Fi,z|aff Fi)

δ′1�′(q(x, Fi))

=
m∑

i=1

σ(Fi, z)gn−1(Fi, z|aff Fi, q(x, Fi))

=
m∑

i=1

σ(Fi, z)1{q(x, Fi) ∈ Fi},

where the induction hypothesis was applied to gn−1(Fi, ·, ·). This is possible, since
the point q(x, Fi) is not contained in the union of the affine hulls of the (n−2)-faces
of the orthoschemes �′, (�′, δ′) ∈ O(Fi , z|aff Fi), i = 1, . . . ,m.

If x ∈ P (recall that x /∈ U ), there is exactly one index i ∈ {1, . . . ,m} with
q(x, Fi) ∈ Fi , and we have σ(Fi, z) = 1. Therefore, gn(P, z, x) = 1. If x /∈ P

and some point q(Fi, x) ∈ Fi exists, then precisely one other index j exists with
q(Fj , x) ∈ Fj , and we have σ(Fi, z) = −σ(Fj , z). This gives gn(P, z, x) = 0. We
have proved Eq. (16.5). ��
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Integrating (16.5) with respect to Lebesgue measure, we obtain

Vn(P ) =
∑

(�,δ)∈O(P ,z)

δVn(�). (16.6)

Our second starting point for constructing signed orthoschemes is the fan �.
Let (�, δ) be the signed orthoscheme induced by (v1, . . . , vn) ∈ B(�), where
< v1, . . . , vn > ⊆ N(P, {y}) for a vertex y of P . To express the volume of �

in a suitable way, we note that the restriction of the support function of P to
<v1, . . . , vn> is given by u �→ 〈y, u〉, hence

f<v1,...,vn>(u) = 〈y, u〉n for u ∈ int<v1, . . . , vn> .

Writing

u = α1v
⊥
1 + · · · + αnv

⊥
n ,

we have

f<v1,...,vn>(u) =
(
α1〈v⊥

1 , y〉 + · · · + αn〈v⊥
n , y〉

)n

and therefore

∂f<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= n!〈v⊥
1 , y〉 · · · 〈v⊥

n , y〉 = n!a1 · · · an = (n!)2δVn(�) (16.7)

by (16.3), where the numbers a1, . . . , an are those defined by (16.2) with z = o.
To utilize this, we need to know which (v1, . . . , vn) ∈ B(�) induce signed

orthoschemes from O(P, o). We introduce the following definition.

Definition Let (v1, . . . , vn) be an ordered basis of R
n such that v1, . . . , vn are

contained in a polyhedral cone C. Then (v1, . . . , vn) is called adapted to C if
there is a sequence T1 ⊂ T2 ⊂ · · · ⊂ Tn where Tk is a k-face of C and v1 ∈ T1,
vk ∈ Tk \ Tk−1 for k = 2, . . . , n.

An ordered basis (v1, . . . , vn) ∈ B(�) is called tidy if it is adapted to the
normal cone N(P, {y}) containing v1, . . . , vn. The set of all tidy ordered bases
(v1, . . . , vn) ∈ B(�) is denoted by T , and we set B(�) \ T =: U .

From now on, the point z ∈ R
n chosen earlier is the origin o.

Proposition 16.2 The signed orthoscheme induced by (v1, . . . , vn) ∈ B(�)

belongs to O(P, o) if and only if (v1, . . . , vn) is tidy. Moreover, every signed
orthoscheme from O(P, o) is induced by a unique element of B(�).

Proof We assume first that (v1, . . . , vn) ∈ B(�) induces the signed orthoscheme
that is induced by the complete tower (S1, . . . , Sn) of P , with Sn = {y}. Then
the Gram–Schmidt orthonormalization of (v1, . . . , vn) is equal to the ordered basis
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(u1, . . . , un) associated with the complete tower (S1, . . . , Sn) (that is, defined
by (16.4)). By the definition of the Gram–Schmidt orthonormalization, this implies
that v1 ∈ N(P, S1) and vk ∈ N(P, Sk) \ N(P, Sk−1) for k = 2, . . . , n. The
normal cone N(P, Sk) is a k-face of the normal cone N(P, {y}) (see, e.g., [4,
Sect. 2.4], also for the facts on normal cones used below). Thus, (v1, . . . , vn) is
adapted to N(P, {y}), and hence (v1, . . . , vn) is tidy. Conversely, suppose that
(v1, . . . , vn) ∈ B(�) is tidy, say that v1 ∈ T1 and vk ∈ Tk \ Tk−1 for k = 2, . . . , n,
where T1 ⊂ T2 ⊂ · · · ⊂ Tn are faces of N(P, {y}) (for some vertex y of P ) with
dim Tk = k. Then there is a complete tower (S1, . . . , Sn) of P with N(P, Sk) = Tk

for k = 1, . . . , n. The signed orthoscheme induced by this tower is induced by
(v1, . . . , vn).

A given signed orthoscheme (�, δ) ∈ O(P, o) is induced by a unique complete
tower (S1, . . . , Sn) of P , say with Sn = {y}. Then Tk := N(P, Sk) is a k-face of
N(P, {y}) and T1 ⊂ T2 ⊂ · · · ⊂ Tn. Since N(P, {y}) is the union of simplicial
cones from �, there is a unique cone C = <v1, . . . , vn> ∈ � which has k-faces Fk ,
k = 1, . . . , n, satisfying Fk ⊆ Tk. With a suitable (unique) ordering, we then have
v1 ∈ F1 and vk ∈ Fk \ Fk−1 for k = 2, . . . , n. This element (v1, . . . , vn) ∈ B(�)

induces (�, δ), and it is the only one with this property. This completes the proof of
Proposition 16.2. ��

We now see from (16.6) and (16.7) that

1

(n!)2

∑

(v1,...,vn)∈T

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= Vn(P ).

To complete the proof of (16.1), it remains to show that

∑

(v1,...,vn)∈U

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= 0. (16.8)

To prove (16.8), we state a more general version, which can be proved by induction.

Proposition 16.3 Let C ⊂ R
n be an n-dimensional polyhedral cone, and let �C be

a simplicial fan such that C is the union of its cones. Let B(�C) be the set of all
ordered n-tuples of unit vectors generating cones of �C , and let UC be the subset
of ordered n-tuples that are not adapted to C. Let y ∈ R

n and f (u) := 〈y, u〉n for
u ∈ C. Then

∑

(v1,...,vn)∈UC

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= 0. (16.9)

Proof We abbreviate

Df (v1, . . . , vn) := 1

n!
∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

for (v1, . . . , vn) ∈ B(�C),
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then

Df (v1, . . . , vn) = 〈v⊥
1 , y〉 · · · 〈v⊥

n , y〉, (16.10)

by (16.7).
We proceed by induction with respect to the dimension, starting with n = 2. Let

the data be as in the proposition, with n = 2. Let (v1, v2) ∈ UC . Then v1 ∈ int C,
since otherwise (v1, v2) would be adapted to C. Therefore, there exists precisely
one cone < v1, w2 > ∈ �C with w2 independent from v2. The Gram–Schmidt
orthonormalizations of (v1, v2), (v1, w2) are, respectively, (v⊥

1 , v⊥
2 ) and (v⊥

1 ,−v⊥
2 ).

It follows from (16.10) that

Df (v1, v2) + Df (v1, w2) = 0.

Thus, the elements (v1, v2) of UC can be grouped into pairs for which the
expressions Df (v1, v2) sum to 0. Therefore, (16.9) holds for n = 2.

Now we assume that n ≥ 3 and that Proposition 16.3 has been proved in
smaller dimensions. Let the data be as in the proposition. We consider two classes
of elements (v1, . . . , vn) ∈ UC .

Class 1 contains the tuples (v1, . . . , vn) ∈ UC with pos{v1, . . . , vn−1} ∩ int C �=
∅. For (v1, . . . , vn) in this class, pos{v1, . . . , vn−1} is an (n − 1)-dimensional
face of the cone < v1, . . . , vn > ∈ �C that meets int C and hence is a face of
precisely one other cone < v1, . . . , vn−1, wn > ∈ �C . Let (v⊥

1 , . . . , v⊥
n ) be the

Gram–Schmidt orthonormalization of (v1, . . . , vn), and let (v⊥
1 , . . . , v⊥

n−1, w
⊥
n ) be

the Gram–Schmidt orthonormalization of (v1, . . . , vn−1, wn). Since vn and wn lie
in different halfspaces bounded by lin{v1, . . . , vn−1} = lin{v⊥

1 , . . . , v⊥
n−1}, we have

v⊥
n = −w⊥

n . It follows from (16.10) that

Df (v1, . . . , vn) + Df (v1, . . . , vn−1, wn) = 0.

Thus, the elements (v1, . . . , vn) of UC in class 1 can be grouped into pairs for which
the expressions Df (v1, . . . , vn) sum to 0.

Class 2 contains the tuples (v1, . . . , vn) ∈ UC with pos{v1, . . . , vn−1} ∩ int C =
∅. Let (v1, . . . , vn) be in this class. Then the cone pos{v1, . . . , vn−1} is contained
in an (n − 1)-dimensional face Fi of the cone C. We have vn ∈ C \ lin Fi ,
since v1, . . . , vn are linearly independent. If the (n − 1)-tuple (v1, . . . , vn−1) were
adapted to the cone Fi , then the n-tuple (v1, . . . , vn) were adapted to the cone C,
a contradiction. Thus, (v1, . . . , vn−1) is not adapted to Fi . We can now apply the
inductional hypothesis to the cone Fi and the simplicial fan induced in Fi by �C .
This yields

∑

(v1,...,vn)∈ class 2i

〈v⊥
1 , y〉 · · · 〈v⊥

n−1, y〉 = 0, (16.11)
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where class 2i contains the tuples (v1, . . . , vn) ∈ UC with pos{v1, . . . , vn−1} ⊆ Fi .
For each (v1, . . . , vn) ∈ class 2i , we have

lin{v⊥
1 , . . . , v⊥

n−1} = lin{v1, . . . , vn−1} = lin Fi,

and vn is contained in the open halfspace bounded by lin Fi whose closure
contains C. Therefore, v⊥

n is the same vector for all (v1, . . . , vn) ∈ class 2i .
Multiplying (16.11) by 〈v⊥

n , y〉, we obtain

∑

(v1,...,vn)∈class 2i

Df (v1, . . . , vn) = 0.

Summing this over i = 1, . . . ,m, where F1, . . . , Fm are the facets of C, we
complete the induction and thus the proof of Proposition 16.3. ��

To prove (16.8), we now apply Proposition 16.3 to the normal cone of each vertex
of P and sum over the vertices. This completes the proof of (16.1).

Formula (16.1) is useful if one has to consider a common simplicial refinement of
several normal fans, as in the next section. In a volume formula for a single polytope,
the superfluous terms may well be omitted. We state an appropriate reformulation
of the above result. Let (S1, . . . , Sn) be a complete tower of the n-polytope P . We
say that it ends at the vertex y if Sn = {y}. The orthonormal basis (u1, . . . , un)

associated with the complete tower (S1, . . . , Sn) (defined by (16.4)) is also the
unique orthonormal basis defined by

u1 ∈ N(P, S1), u2 ∈ lin{u1}+N(P, S2), . . . , un ∈ lin{u1, . . . , un−1}+N(P, Sn).

For each vertex y of P , we denote by B(y) the set of all orthonormal bases
associated with all complete towers of P ending at y. With these notations, the
volume formula obtained from (16.6) and (16.7) can also be written in the form

Vn(P ) = 1

n!
∑

y∈vertP

∑

(u1,...,un)∈B(y)

〈u1, y〉 · · · 〈un, y〉. (16.12)

Note that 〈u1, y〉 · · · 〈un, y〉 is the product of the coordinates of the vertex y with
respect to the orthonormal basis (u1, . . . , un).

16.4 Mixed Volumes

For the extension of Theorem 16.1 to mixed volumes V (·, . . . , ·), it is crucial that
the normal fans of finitely many polytopes have a common simplicial refinement.
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Theorem 16.2 Let P1, . . . , Pn ⊂ R
n be polytopes, and let the fan � be a simplicial

refinement of the normal fans of P1, . . . , Pn. Let B(�) be the set of all ordered n-
tuples of unit vectors generating cones of �. For each n-dimensional cone C ∈ �,
let gC be the restriction of the product of the support functions of P1, . . . , Pn to the
interior of C. Then

1

(n!)2

∑

(v1,...,vn)∈B(�)

∂ng<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= V (P1, . . . , Pn). (16.13)

Proof Let C ∈ �. To each i ∈ {1, . . . , n}, there is a vertex yi of Pi such that
the support function of Pi on C is given by 〈· , yi〉. Let λ1, . . . , λn ≥ 0 and P =
λ1P1 + · · · + λnPn with polytopes P1, . . . , Pn ⊂ R

n. The support function of P on
C is given by 〈· , λ1y1 + · · · + λnyn〉. With fC defined as in Theorem 16.1 for the
polytope P , we have

n∑

i1,...,in=1

λi1 · · · λinV (Pi1 , . . . , Pin ) = Vn(P )

= 1

(n!)2

∑

(v1,...,vn)∈B(�)

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

.

Here

f<v1,...,vn>(u) = 〈u, λ1y1 + · · · + λnyn〉n for u ∈ pos{v1, . . . , vn},

hence

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= n!〈v⊥
1 , λ1y1 + · · · + λnyn〉 · · · 〈v⊥

n , λ1y1 + · · · + λnyn〉

= n!
n∑

i1,...,in=1

λi1 · · · λin〈v⊥
1 , yi1〉 · · · 〈v⊥

n , yin〉.

By comparison we get, in particular,

V (P1, . . . , Pn) = 1

n!
∑

(v1,...,vn)∈B(�)

〈v⊥
1 , y1〉 · · · 〈v⊥

n , yn〉

= 1

(n!)2

∑

(v1,...,vn)∈B(�)

∂ng<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

,

which completes the proof. ��
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I thank the referee for correcting an inaccuracy and for several suggestions that
improved the presentation.
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