
Chapter 15
Polylog Dimensional Subspaces of �N∞

Gideon Schechtman and Nicole Tomczak-Jaegermann

In memory of Jean Bourgain, the brightest mathematical mind
we have ever encountered

Abstract We show that a subspace of �N∞ of dimension n > (log N log log N)2

contains 2-isomorphic copies of �k∞ where k tends to infinity with n/(log N log
log N)2. More precisely, for every η > 0, we show that any subspace of �N∞ of
dimension n contains a subspace of dimension m = c(η)

√
n/(log N log log N) of

distance at most 1 + η from �m∞.

15.1 Introduction

The dichotomy problem of Pisier asks whether a Banach space X either contains,
for every n, a subspace K-isomorphic to �n∞, for some (equivalently all) K > 1,
or, for every n, every n-dimensional subspace of X 2-embeds in �N∞ only if N is
exponential in n. This is equivalent to the question of whether for some (equivalently
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all) absolute K > 1 and any sequence nN ≤ N with nN/ log N → ∞ when
N → ∞, every subspace of �N∞ of dimension nN contains a subspace of dimension
mN K-isomorphic to �

mN∞ where mN → ∞ when N → ∞.
We remark in passing that the equivalence between the two versions of the

problem (“some K > 1” versus “all K > 1”) is due to the fact proved by R.C.
James that, for all 1 < κ < K < ∞, a space which is K isomorphic to �n∞ contains a
subspace κ isomorphic to �m∞ where m → ∞ as n → ∞. (James proof is essentially
included in [5]. A somewhat more precise statement and proof, still due to James,
can be read e.g. in [8, p. 283].)

As is exposed in [7], Maurey proved that if X∗ has non-trivial type (Equivalently
does not contain uniformly isomorphic copies of �n

1-s. This is a condition stronger
than X has non-trivial cotype; equivalently, does not contain uniformly isomorphic
copies of �n∞-s), then we get the required conclusion: For every n, every n-
dimensional subspace of X 2-embeds in �N∞ only if N is exponential in n.

Another partial result was obtained by Bourgain in [1] where he showed in
particular that the conclusion holds if nN > (log N)4.

Here we show some improvement over this result of Bourgain: The conclusion
holds if nN/(log N log log N)2 tends to ∞.

Theorem 15.1 Let n, and N be integers such that n > (log N log log N)2. Then,
for some absolute constant c > 0 and for every 0 < η < 1, any subspace of �N∞
of dimension n contains a subspace of dimension m = cη2√n/(log N log log N) of
distance at most 1 + η from �m∞.

Note that we get some specific estimates for the dimension of the contained
subspace (1 + η)-isomorphic to an �∞ space of its dimension. Although we are
interested in small n-s, the result gives some estimate in the whole range. This is
also the case in Bourgain’s result: He proved that if n ≥ Nδ than any subspace of
�N∞ of dimension n contains a subspace (1 + η)-isomorphic to an �∞ of dimension
m ≥ cη5δ2√n/ log(1/δ). Comparing the two, our result gives better estimates for m

when n � ec(η)
√

log N and worse when n is larger. Recall also that for n proportional
to N , Figiel and Johnson [3] proved earlier that m can be taken of order

√
N (and

no better). This is not recovered by our result.
The general idea of the proof of Theorem 15.1 is the same as in [1] but the

technical details are somewhat different. At the end of this note we also speculate
that, up to the (log log N)2 factor, our result may be best possible.

Our result was essentially achieved a long time ago, circa 1990. Since several
people showed interest in it lately we decided to write it up with the hope that more
modern methods (and younger minds) may be able to improve it farther.

15.2 Proofs

The main technical tool in the proof of Theorem 15.1 is the following proposition
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Proposition 15.1 Let n, and N be integers such that n > (log N)3/2 log log N . Let
[ai(j)] be an n × N matrix with ai(j) ≥ 0 for i = 1, . . . , n and j = 1, . . . , N .
Assume that

n∑

i=1

ai(j)2 ≤ 1 for j = 1, . . . , N

and

n∑

i=1

ai(j) ≤ 3
√

logN for j = 1, . . . , N.

Moreover, assume that, for some γ > 0, for every i = 1, . . . , n there exists
1 ≤ j ≤ N such that ai(j) ≥ γ . Denote by ai the i-th row of the matrix.
Then, for some positive constants, c(γ ),K(γ ) depending only on γ and for every
0 < η < 1, there are disjoint subsets σ1, . . . , σm of {1, . . . , n} with m ≥
c(γ )η2n/(log N)3/2 log log N , Such that

‖
m∑

r=1

∑

i∈σr

ai‖∞/ min
1≤r≤m

‖
∑

i∈σr

ai‖∞ ≤ (1 + K(γ )η).

We first show how to deduce Theorem 15.1 from the proposition above.

Proof of Theorem 15.1 Let X be an n dimensional subspace of �N∞. The π2 norm of
the identity on X is equal to

√
n [4, 9] and by the main theorem of [10] (see [11]

for the constant
√

2) this quantity can be computed, up to constant
√

2 on n vectors.
This means that there are n vectors ai = (ai(1), . . . , ai(N)), i = 1, . . . , n, in X

satisfying

n∑

i=1

ai(j)2 ≤ 1, for all j = 1, . . . , N

and

n∑

i=1

‖ai‖2∞ ≥ n/2.

The first condition implies in particular that ‖ai‖2∞ ≤ 1 for each i so necessarily for
a subset σ ′ of {1, . . . , n} of cardinality at least n/4, ‖ai‖∞ ≥ 1/2 for all i ∈ σ ′. The
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existence of a subset σ ′ of {1, . . . , n} of cardinality at least n/4 satisfying the two
conditions

∑

i∈σ ′
ai(j)2 ≤ 1, for all j = 1, . . . , N, and ‖ai‖∞ ≥ 1/2 for all i ∈ σ ′

(15.1)

is all that we shall use from now on. In Remark 15.1 below we’ll show another way
to obtain this.

Next we would like to choose a subset σ of σ ′ of cardinality of order
√

n log N

such that the matrix [|ai(j)|], i ∈ σ , j = 1, . . . , N , will satisfy the assumptions
of Proposition 15.1. So let ξi , i ∈ σ ′, be independent {0, 1} valued random
variables with Prob(ξi = 1) = √

(log N)/n. Since for all j
∑

u∈σ ′ |ai(j)| ≤ √
n,

E
∑

u∈σ ′ |ai(j)|ξi ≤ √
log N . By the most basic concentration inequality, using the

fact that
∑

i∈σ ′ ai(j)2 ≤ 1, for all j ,

Prob(
∑

i∈σ ′
|ai(j)|ξi > 3

√
log N)

≤ Prob(
∑

i∈σ ′
|ai(j)|(ξi − Eξi) > 2

√
log N) ≤ e−2 logN = 1/N2.

It follows that with probability larger than 1 − 1/N

∑

i∈σ ′
|ai(j)|ξi ≤ 3

√
log N

for all j . Since by a similar argument also
∑

i∈σ ′ ξi ≥
√

n log N
16 with probability

tending to 1 when N → ∞ we get a subset σ of cardinality n′ ≥
√

n log N
16 satisfying

∑

i∈σ

|ai(j)| ≤ 3
√

log N for all j = 1, . . . , N.

Note that the condition n ≥ 256(logN log log N)2 implies that
n′ ≥ (log N)3/2 log log N . It follows that the matrix [|ai(j)|], i ∈ σ ′, j = 1, . . . , N

satisfies the conditions of Proposition 15.1 with n′ replacing n and γ = 1/2. We
thus get that, for some absolute positive constants c,K , there are disjoint subsets
σ1, . . . , σm of {1, . . . , n} with

m ≥ 16cη2n′/(log N)3/2 log log N ≥ cη2√n/ log N log log N,

such that

‖
m∑

r=1

∑

i∈σr

|ai |‖∞/ min
1≤r≤m

‖
∑

i∈σr

|ai |‖∞ ≤ (1 + Kη).
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Rescaling, we may assume that min1≤r≤m ‖∑
i∈σr

|ai |‖∞ = 1. Let jr denote the
label of (one of) the largest coordinates of

∑
i∈σr

|ai|. Assume as we may that η <

1/K . Then no two r’s can share the same jr . Changing the labelling we can also
assume jr = r .

Put xr = ∑
i∈σr

sign(ai(r))ai . Then for all r , ‖xr‖∞ ≥ 1 and for all j =
1, . . . , N ,

m∑

r=1

|xr(j)| ≤ 1 + Kη. (15.2)

So the sequence xr , r = 1, . . . ,m, is (1 + Kη)-dominated by the �m∞ basis; i.e.,

‖
m∑

r=1

αrxr‖∞ ≤ (1 + Kη) max
1≤r≤m

|αr | for all {αr }mr=1.

The lower estimate is achieved similarly: Assume max1≤r≤m |αr | = |αr0 | and note
that

‖
m∑

r=1,r �=r0

∑

i∈σr

|ai(r0)|‖∞ ≤ Kη.

Then,

‖
m∑

r=1

αrxr‖∞ ≥ |
m∑

r=1

αrxr(r0)|

≥ |αr0 |
∑

i∈σr0

|ai(r0)| −
m∑

r=1,r �=r0

|αr |
∑

i∈σr

|ai(r0)|

≥ ((1 − Kη) max
1≤r≤m

|αr |.

We have thus found a subspace of x of dimension m ≥ cη
√

n/(log N log log N)

whose distance to �m∞ is at most (1 + Kη)/(1 − Kη). Changing the last quantity to
1 + η, paying by changing c to another absolute constant, is standard.

In the proof of Proposition 15.1 we shall use the following Lemma which follows
immediately from Lemma 2 in [2] (but, following the proof of that lemma from [2],
is a bit easier to conclude).
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Lemma 15.1 Let ξi , i ∈ {1, . . . , n}, be independent {0, 1} valued random variables
with Prob(ξi = 1) = δ. Then for all q ≥ 1,

(E(

n∑

i=1

ξi)
q)1/q ≤ C(δn + q).

C is a universal constant.

We now pass to the

Proof of Proposition 15.1 We shall assume as we may that η < γ . We first deal
with the small ai(j)-s. Fix ε > 0 to be defined later. Let

bi(j) =
{

ai(j) if ai(j) ≤ ε

0 otherwise.

We will show that for any δ > 0, and with high probability for a random subset
σ ⊂ {1, . . . , n} of cardinality |σ | ∼ δn

∑

i∈σ

bi(j) ≤ C(δ
√

log N + ε log N) for j = 1, . . . , N, (15.3)

where C is an absolute constant.
Indeed, set p = log N . Fix δ > 0 and let ξi denote selectors with mean δ as in

Lemma 15.1. By Chebyshev inequality, (15.3) follows from the estimate

sup
j

(
E(

n∑

i=1

ξi(ω)bi(j))p

)1/p

≤ C(δ
√

log N + ε log N). (15.4)

Indeed,

⎛

⎝E

N∑

j=1

(

n∑

i=1

ξi(ω)bi(j))p

⎞

⎠
1/p

≤ N1/ log N sup
j

(
E(

n∑

i=1

ξi(ω)bi(j))p

)1/p

≤ eC(δ
√

log N + ε log N).

Now apply Chebyshev’s inequality.
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Fix 1 ≤ j ≤ N and denote (bi(j))i ∈ R
n by b. Considering the level sets of b

we may assume without loss of generality that b is of the form

b =
∞∑

k=2 log(1/ε)

2−k/2χDk ,

(log is log2) where the sets Dk ⊂ {1, . . . , n} are mutually disjoint and χDk denotes
the characteristic function of the set Dk , for k = 2 log(1/ε), . . . . Thus,

⎛

⎝E(

n∑

j=1

ξj (ω)bi(j))p

⎞

⎠
1/p

≤
∞∑

k=2 log(1/ε)

2−k/2

⎛

⎝E(
∑

j∈Dk

ξj (ω))p

⎞

⎠
1/p

≤ C

∞∑

k=2 log(1/ε)

2−k/2 (δ|Dk| + p)) by Lemma 15.1

≤ Cδ

∞∑

k=2 log(1/ε)

2−k/2|Dk| + Cp

∞∑

k=2 log(1/ε)

2−k/2. (15.5)

To estimate the first term in (15.5) note that

∞∑

k=2 log(1/ε)

2−k/2|Dk| = ‖b‖1 ≤ 3
√

log N.

The second term is clearly smaller than an absolute constant times εp.
Combining the latter two estimates with (15.5) we get (15.4) and hence

also (15.3).
To deal with the large coordinates, set, for j = 1, . . . , N ,

Aj = {1 ≤ i ≤ n; ai(j) ≥ ε}.

Since
∑n

i=1 ai(j) ≤ 3
√

log N ,

|Aj | ≤ 3
√

log N/ε for j = 1, . . . , N. (15.6)

An argument similar to the one that proved (15.4) also shows that a random set
σ ⊂ {1, . . . , n} of cardinality |σ | ∼ δn satisfies

|σ ∩ Aj | ≤ C(δ
√

log N/ε + log N). (15.7)
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Indeed, this follows easily by applying the following inequality with p = log N ,

⎛

⎝E

⎛

⎝
√

log N/ε∑

i=1

ξi

⎞

⎠
p⎞

⎠
1/p

≤ C(δ
√

log N/ε + log N).

Moreover, Chebyshev’s inequality implies that we can find a set σ ⊂ {1, . . . , n} of
cardinality at least 1

2δn which satisfies (15.3) and (15.7) simultaneously (say, with
the same absolute constant C).

Choose now δ = 2η/
√

log N and ε = η/ log N . Then we get a set σ ⊂
{1, . . . , n} of cardinality at least ηn/

√
log N . such that

∑

i∈σ

bi(j) ≤ 3Cη for j = 1, . . . , N, (15.8)

and

|σ ∩ Aj | ≤ 3C log N for j = 1, . . . , N. (15.9)

Define j1 ∈ {1, . . . , N} and s1 by

s1 =
∑

i∈σ∩Aj1

ai(j1) = max
j

∑

i∈σ∩Aj

ai(j).

For r > 1 define Sr−1 = σ \ (Aj1 ∪ · · · ∪ Ajr−1) and jr and sr by

sr =
∑

i∈Sr−1∩Ajr

ai(jr) = max
j

∑

i∈Sr−1∩Aj

ai(j).

By rearranging the columns we may assume jr = r for all r . Now, (15.9) implies
that |Sr | ≥ |σ | − 3Cr log N so Sr is not empty for 1 ≤ r ≤ ηn

3C(logN)3/2 . Also,

γ ≤ sr ≤ 3
√

log N ≤ 3 log N for 1 ≤ r ≤ ηn

3C(log N)3/2 .

The sequence sr is non-increasing, divide it into (log((3 log N)/γ ))/ log(1 + η)

intervals such that in each interval max sr/ min sr is at most 1 + η. There is an

interval R with |R| ≥ (log(1+η))ηn

3C(logN)3/2 log((3 logN)/γ )
≥ η2n

6C(logN)3/2 log((3 logN)/γ )
such

that

max
r∈R

sr/ min
r∈R

sr ≤ 1 + η.
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Put σr = Sr−1 ∩ Ar . Since minr∈R sr ≥ γ > η we are done in view of (15.8) and
the fact that sr ≥ ∑

Sr−1∩As
ai(s) for r < s.

15.3 Remarks

Remark 15.1 Here is an alternative way to get (15.1):

Let X be an n-dimensional normed space which, without loss of generality we
assume is in John’s position, i.e., the maximal volume ellipsoid inscribed in the
unit ball of X is the canonical sphere Sn−1. A weak form of the Dvoretzky–Rogers
lemma asserts that there are orthonormal vectors x1, . . . , xn such that ‖xi‖X ≥ c

for some universal positive constant c. This is proved by a simple volume argument,
see for example Theorem 3.4 in [6]. (There it is shown that there are [n/2] such
vectors. This is enough for us but it’s also easy and well known how to use these
n/2 orthonormal vectors to get n orthonormal vectors with a somewhat worse lower
bound on their norms.)

The map T : �n
2 → X defined by T ei = xi is norm one. Note that

1 = ‖T ‖ = sup
‖x∗‖X∗≤1

(

n∑

i=1

(x∗(xi))
2)1/2.

When X is isometric to a subspace of �N∞ there are N elements x∗
j ∈ BX∗ such that,

for all x ∈ X, ‖x‖ = max1≤j≤N x∗
j (x). From this it is easy to deduce that

sup
‖x∗‖X∗≤1

(
∑

(x∗(xi))
2)1/2 = max

1≤j≤N
(

n∑

i=1

(x∗
j (xi))

2)1/2.

Denoting ai(j) = x∗
j (xi) we get (15.1).

Remark 15.2 Here we would like to suggest an approach toward showing that the
dichotomy conjecture fails and maybe even that one can’t get below the estimate
n > (log N)2 in Theorem 15.1.

Let X and Y be two l dimensional normed spaces. Put n = l2 and N = 36l . Let
{xi}6l

i=1 be a 1/2 net in the sphere of X and {y∗
i }6l

i=1 be a 1/2 net in the sphere of Y ∗.
Note that for every T : X → Y ,

max
1≤i,j≤6l

y∗
i (T xj ) ≤ ‖T ‖ ≤ 4 max

1≤i,j≤6l
y∗
i (T xj ).

Consequently, B(X, Y ), the space of operators from X to Y with the operator norm,
4-embeds into �N∞. Note that dim(B(X, Y )) = n ∼ (log N)2.



334 G. Schechtman and N. Tomczak-Jaegermann

(Un)fortunately, B(X, Y ) cannot serve as a negative example since it always
contains �∞-s with dimension going to infinity with N . This was pointed out to
us by Bill Johnson. Indeed, by Dvoretzky’s theorem, �k

2 2-embeds into Y and into
X∗, for some k tending to infinity with n. Let I denote the first embedding and Q

be the adjoint of the second embedding. It is then easy to see that T → IT Q is
a 4-embedding of B(�k

2, �
k
2) into B(X, Y ). Finally, B(�k

2, �
k
2) contains isometrically

�k∞.
However, to get a negative answer to the dichotomy problem, it is enough to find

n dimensional X and Y and a subspace Z of B(X, Y ) of dimension m with m/n

tending to infinity with n which has good cotype, i.e., if Z contains a 2-isomorph of
�k∞ then k is bounded by a universal constant. If one can find such an example with
m ≥ cn2 for some universal positive constant c then it will even show that one can’t
get below the estimate n > (log N)2 in Theorem 15.1.
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