
Chapter 12
An Interpolation Proof of Ehrhard’s
Inequality

Joe Neeman and Grigoris Paouris

Abstract We prove Ehrhard’s inequality using interpolation along the Ornstein–
Uhlenbeck semi-group. We also provide an improved Jensen inequality for Gaussian
variables that might be of independent interest.

12.1 Introduction

In [8], A. Ehrhard proved the following Brunn–Minkowski like inequality for
convex sets A,B in R

n:

�−1 (γn(λA + (1 − λ)B)) ≥ λ�−1(γn(A)) + (1 − λ)�−1(γn(B)), λ ∈ [0, 1],
(12.1)

where γn is the standard Gaussian measure in R
n (i.e. the measure with density

(2π)−n/2e−|x|2/2) and � is the Gaussian distribution function (i.e. �(x) =
γ1(−∞, x)).

This is a fundamental result of Gaussian space and it is known to have numerous
applications (see, e.g., [11]). Ehrhard’s result was extended by R. Latała [10] to the
case that one of the two sets is Borel and the other is convex. Finally, C. Borell [5]
proved that it holds for all pairs of Borel sets. Ehrhard’s original proof for convex
sets used a Gaussian symmetrization technique. Borell used the heat semi-group and
a maximum principle in his proof, which has since been further developed by Barthe
and Huet [4]; very recently Ivanisvili and Volberg [9] developed this method into a
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general technique for proving convolution inequalities. Another proof was recently
found by van Handel [14] using a stochastic variational principle.

In this work we will prove Ehrhard’s inequality by constructing a quantity that is
monotonic along the Ornstein–Uhlenbeck semi-group. In recent years this approach
has been developed into a powerful tool to prove Gaussian inequalities such as
Gaussian hypercontractivity, the log-Sobolev inequality, and isoperimetry [2]. There
is no known proof of Ehrhard inequality using these techniques and the purpose of
this note is to fill this gap.

An interpolation proof of the Lebesgue version of Ehrhard’s inequality (the
Prékopa–Leindler inequality) was presented recently in [7]. This proof uses an
“improved reverse Hölder” inequality for correlated Gaussian vectors that was
established in [7]. A generalization of the aforementioned inequality also appeared
recently [12, 13]. This inequality, while we call an “improved Jensen inequality”
for correlated Gaussian vectors, we present and actually also extend in the present
note. In Sect. 12.2 we briefly discuss how this inequality implies several known
inequalities in probability, convexity and harmonic analysis. Using a “restricted”
version of this inequality (Theorem 12.2.2), we will present a proof of Ehrhard’s
inequality.

The paper is organized as follows: In Sect. 12.2 we introduce the notation and
basic facts about the Ornstein–Uhlenbeck semi-group, and we present the proof of
the restricted, improved Jensen inequality. In Sect. 12.3 we use Jensen inequality to
provide a new proof of Prékopa–Leindler inequality. We will use the main ideas of
this proof as a guideline for our proof of Ehrhard’s inequality that we present in
Sect. 12.4.

12.2 An “Improved Jensen” Inequality

Fix a positive semi-definite D × D matrix A, and let X ∼ N (0, A). For t ≥ 0, we
define the operator PA

t on L1(R
D, γA) by

(PA
t f )(x) = Ef (e−t x +

√
1 − e−2tX).

We will use the following well-known (and easily checked) facts:

• the measure γA is stationary for PA
t ;

• for any s, t ≥ 0, PA
s PA

t = PA
s+t ;

• if f is a continuous function having limits at infinity then PA
s f converges

uniformly to PA
t f as s → t .
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We will also use the following “diffusion” formula for PA
t : let � : Rk → R be a

bounded C2 function. For any bounded, measurable f = (f1, . . . , fk) : RD → R
k ,

any x ∈ R
D and any 0 < s < t , PA

t−s�(PA
s f (x)) is differentiable in s and satisfies

∂

∂s
PA

t−s�(PA
s f ) = −PA

t−s

k∑

i,j=1

∂i∂j�(f )〈∇PA
s fi, A∇PA

s fj 〉. (12.2)

Suppose that D = ∑k
i=1 di , where di ≥ 1 are integers. We decompose R

D as
∏k

i=1 R
di and write �i for the projection on the ith component. Given a k × k

matrix M , write Ed1,...,dk (M) for the D × D matrix whose i, j entry is Mk,	 if∑
a<k da < i ≤ ∑

a≤k da and
∑

b<	 db < j ≤ ∑
b≤	 db; that is, each entry Mk,	 of

M is expanded into a dk × d	 block. We write ‘�’ for the element-wise product of
matrices, ‘�’ for the positive semi-definite matrix ordering, and HJ for the Hessian
matrix of the function J .

Our starting point in this note is the following inequality, which may be seen as
an improved Jensen inequality for correlated Gaussian variables.

Theorem 12.2.1 Let 
1, . . . , 
k be open intervals in R; let 
 = ∏k
i=1 
i and let

X ∼ γA. For a bounded, C2 function J : 
 → R, the following are equivalent:

(2.1.a) for every x ∈ 
, A � Ed1,...,dk (HJ (x)) � 0
(2.1.b) for every k-tuple of measurable functions fi : Rdi → 
i ,

EJ (f1(X1), . . . , fk(Xk)) ≥ J (Ef1(X1), . . . ,Efk(Xk)). (12.3)

We remark that the restriction that J be bounded can often be lifted. For example,
if J is a continuous but unbounded function then one can still apply Theorem 12.2.1
on bounded domains 
′

i ⊂ 
i . If J is sufficiently nice (e.g. monotonic, or bounded
above) then one can take a limit as 
′

i exhausts 
i (e.g. using the monotone
convergence theorem, or Fatou’s lemma).

As we have already mentioned, Theorem 12.2.1 is known to have many
consequences. However, we do not know how to obtain Ehrhard’s inequality using
only Theorem 12.2.1; we will first need to extend Theorem 12.2.1 in a few ways.
To motivate our first extension, note that the usual Jensen inequality on R extends
easily to the case where some function is convex only on a sub-level set. To be more
precise, take a C2 function ψ : Rd → R and the set B = {x ∈ R

d : ψ(x) < 0}. If B

is connected and ψ is convex when restricted to B, one can show that B is convex
and hence Eψ(X) ≥ ψ(EX) for any random vector supported on B. A similar
modification may be made to Theorem 12.2.1.

Theorem 12.2.2 Take the notation and assumptions of Theorem 12.2.1, and assume
in addition that {x ∈ 
 : J (x) < 0} is homeomorphic to an open ball. Then the
following are equivalent:
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(2.1.a) for every x ∈ 
 such that J (x) < 0, A � Ed1,...,dk (HJ (x)) � 0
(2.1.b) for every k-tuple of measurable functions fi : Rdi → 
i that γA-a.s. satisfy

J (f1, . . . , fk) < 0,

EJ (f1(X1), . . . , fk(Xk)) ≥ J (Ef1(X1), . . . ,Efk(Xk)).

Note that the threshold of zero in the conditions J (x) < 0 and J (f1, . . . , fk) < 0
is arbitrary, since we may apply the theorem to the function J (·) − a for any a ∈ R.
Of course, taking a sufficiently large recovers Theorem 12.2.1.

Proof Suppose that (2.2.a) holds. By standard approximation arguments, it suffices
to prove (2.2.b) for a more restricted class of functions f . Indeed, let F be the set
of measurable f = (f1, . . . , fk) satisfying J (f ) < 0 γA-a.s. and let Fε ⊂ F

be those functions that are continuous, converge to a limit at infinity, and satisfy
J (f ) ≤ −ε γA-a.s. Now, every f ∈ F can be approximated in L1(γA) by a
sequence f (n) ∈ F1/n: by truncating the values of f outside of a large ball in R

D

and away from the boundary of {x : J < 0}, we can approximate f ∈ F in L1(γA)

by f̃ satisfying the latter two conditions. To ensure continuity, we can use mollifiers:
if Tg denotes the convolution of g with a smooth, compactly supported mollifier and
F is a homeomorphism from {J < 0} to a ball, then F−1◦(T (F◦f̃ )) is a continuous
approximation of f̃ that takes values in {J < 0}. With these approximations in
mind, it suffices to prove (2.2.b) for f ∈ Fε , where ε > 0 is arbitrarily small. From
now on, fix ε > 0 and fix f = (f1, . . . , fk) ∈ Fε .

Recalling that �i : Rd1 × · · · × R
dk → R

di is the projection onto the ith block
of coordinates, define gi = fi ◦ �i and Gs,t(x) = PA

t−sJ (PA
s g(x)). Since f ∈

Fε , we have G0,0(x) ≤ −ε for every x ∈ R
D . Moreover, since f is continuous

and vanishes at infinity, PA
s g → g uniformly as s → 0. Since g is bounded, J

is uniformly continuous on the range of g and so there exists δ > 0 such that
|Gs,s(x) − Gr,r(x)| < ε for every x ∈ R

D and every |s − r| ≤ δ.
Now, fix r ≥ 0 and assume that Gr,r ≤ −ε pointwise; by the previous paragraph,

Gs,s < 0 pointwise for every r ≤ s ≤ r + δ. Now we apply the commutation
formula (12.2): with Bs = Bs(x) = A � Ed1,...,dk (HJ (PA

s g)), we have

∂

∂s
Gs,t = −PA

t−s

k∑

i,j=1

〈∇PA
s gi, B∇PA

s gj 〉

(here, we have used the observation that PA
s gi(x) depends only on �ix, and so

∇PA
s gi is zero outside the ith block of coordinates). The assumption (2.2.a) implies

that Bs is positive semi-definite whenever Gs,s < 0; since Gs,s < 0 for every s ∈
[r, r+δ], we see that for such s, ∂

∂s
Gs,r+δ ≤ 0 pointwise. Since Gs,r+δ is continuous

in s and Gr,r ≤ −ε, it follows that Gs,s ≤ −ε pointwise for all s ∈ [r, r + δ].
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Next, note that r = 0 satisfies the assumption Gr,r ≤ −ε of the previous
paragraph. By induction, it follows that Gr,r ≤ −ε pointwise for all r ≥ 0. Hence,
the matrix Bs is positive semi-definite for all s ≥ 0 and x ∈ R

D , which implies that
Gs,t(x) is non-increasing in s for all t ≥ s and x ∈ R

D . Hence,

EJ (f1(X1), . . . , fk(Xk)) = lim
t→∞ G0,t (0) ≥ lim

t→∞ Gt,t (0) = J (Ef1, . . . ,Efk).

This completes the proof of (2.2.b).
Now suppose that (2.2.b) holds. Choose some v ∈ R

D and some y ∈ 
 with
J (y) < 0; to prove (2.2.a), it is enough to show that

vT (A � Ed1,...,dk (HJ (y)))v ≥ 0. (12.4)

Since 
 is open and J is continuous, there is some δ > 0 such that y + z ∈ 
 and
J (y + z) < 0 whenever maxi |zi | ≤ δ. For this δ, define ψ : R → R by

ψ(t) = max{−δ, min{δ, t}}.

For ε > 0, define fi,ε : Rdi → 
i by

fi,ε (x) = yi + ψ(ε〈x,�iv〉).

By (2.2.b),

EJ (f1,ε (X1), . . . , fk,ε(Xk)) ≥ J (Ef1,ε(X1), . . . ,Efk,ε(Xk)).

Since ψ is odd, Efi,ε (Xi) = yi for all ε > 0; hence,

EJ (f1,ε(X1), . . . , fk,ε(Xk)) ≥ J (y). (12.5)

Taylor’s theorem implies that for any z with y + z ∈ 
,

J (y + z) = J (y) +
k∑

i=1

∂J (y)

∂yi

zi +
k∑

i,j=1

∂2J (y)

∂yi∂yj

zizj + ρ(|z|),

where ρ is some function satisfying ε−2ρ(ε) → 0 as ε → 0. Now consider what
happens when we replace zi above with Zi = ψ(ε〈Xi,�iv〉) and take expectations.
One easily checks that EZi = 0, Eρ(|Z|) = o(ε2), and

EZiZj = ε2(�iv)T E[XiXj ](�iv) + o(ε2);
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hence,

EJ (y + Z) = J (y) + ε2
k∑

i,j=1

∂2J (y)

∂yi∂yj

(�iv)T E[XiXj ](�iv) + o(ε2)

= J (y) + ε2vT (A � Ed1,...,dk (HJ (y)))v + o(ε2).

On the other hand, EJ (y + Z) = EJ (f1,ε(X1), . . . , fk,ε(Xk)), which is at least
J (y) according to (12.5). Taking ε → 0 proves (12.4). ��

12.3 A Short Proof of Prékopa–Leindler Inequality

The Prékopa–Leindler inequality states that if f, g, h : Rd → [0,∞) satisfy

h(λx + (1 − λ)y) ≥ f (x)λg(y)1−λ

for all x, y ∈ R
d and some λ ∈ (0, 1) then

Eh ≥ (Ef )λ(Eg)1−λ,

where expectations are taken with respect to the standard Gaussian measure on
R

d . By applying a linear transformation, the standard Gaussian measure may be
replaced by any Gaussian measure; by taking a limit over Gaussian measures with
large covariances, the expectations may also be replaced by integrals with respect to
the Lebesgue measure.

As M. Ledoux brought to our attention, the Prékopa–Leindler inequality may be
seen as a consequence of Theorem 12.2.1; we will present only the case d = 1, but
the case for general d may be done in a similar way. Alternatively, one may prove
the Prékopa–Leindler inequality for d = 1 first and then extend to arbitrary d using
induction and Fubini’s theorem.

Fix λ ∈ (0, 1), let (X, Y ) ∼ N (
0,

( 1 ρ
ρ 1

))
and let Z = λX + (1 − λ)Y . Let

σ 2 = σ 2(ρ, λ) be the variance of Z and let A = A(ρ, λ) be the covariance of
(X, Y,Z). Note that A is a rank-two matrix, and that it may be decomposed as
A = uuT + vvT where u and v are both orthogonal to (λ, 1 − λ,−1)T .

For α,R ∈ R+, define Jα,R : R3+ → R by

Jα,R(x, y, z) = (xλy1−λz−α)R.

Lemma 12.3.1 For any λ and ρ, and for any α < σ 2, there exists R ∈ R+ such
that A � HJα,R � 0.

To see how the Prékopa–Leindler inequality follows from Theorem 12.2.1 and
Lemma 12.3.1, suppose that h(λx + (1 − λ)y) ≥ f λ(x)g1−λ(y) for all x, y ∈ R.



12 An Interpolation Proof of Ehrhard’s Inequality 269

Then Jα,R(f (X), g(Y ), h1/α(Z)) ≤ 1 with probability one (because Z = λX +
(1 −λ)Y with probability one). By Theorem 12.2.1, with the R from Lemma 12.3.1
we have

1 ≥ EJα,R(f (X), g(Y ), h(Z))

≥ Jα,R(Ef (X),Eg(Y ),Eh(Z))

=
(

(Ef (X))λ(Eg(Y ))1−λ

(Eh1/α(Z))α

)R

.

In other words, (Eh1/α(Z))α ≥ (Ef )λ(Eg)1−λ. This holds for any ρ and any α <

σ 2. By sending ρ → 1, we send σ 2 → 1 and so we may take α → 1 also. Finally,
note that in this limit Z converges in distribution to N (0, 1). Hence, we recover the
Prékopa–Leindler inequality for the standard Gaussian measure.

Proof of Lemma 12.3.1 By a computation,

HJα,R = Jα,R(x, y, z)

⎛

⎜⎜
⎝

λR(λR−1)

x2
λR(1−λ)R

xy
−λαR2

xz
λR(1−λ)R

xy
(1−λ)R((1−λ)R−1)

y2 − (1−λ)αR2

yz

−λαR2

xz
− (1−λ)αR2

yz
αR(αR+1)

z2

⎞

⎟⎟
⎠ .

We would like to show that A � HJ � 0; since elementwise multiplication
commutes with multiplication by diagonal matrices, it is enough to show that

A �
⎛

⎜
⎝

⎛

⎝
λ

1 − λ

−α

⎞

⎠

⊗2

− 1

R

⎛

⎝
λ 0 0
0 1 − λ 0
0 0 −α

⎞

⎠

⎞

⎟
⎠ ≥ 0. (12.6)

Let θ = (λ, 1 − λ,−α)T and recall that A = uuT + vvT , where u and v are both
orthogonal to (λ, 1 − λ − 1)T . Then

A � (θθT ) = (u � θ)(u � θ)T + (v � θ)(v � θ)T ,

where u � θ and v � θ are both orthogonal to (1, 1, 1
α
)T (call this w). In particular,

A � (θθT ) is a rank-two, positive semi-definite matrix whose null space is the span
of w.

On the other hand, A � diag(λ, 1 − λ,−α) = diag(λ, 1 − λ,−ασ 2) (call this
D). Then wT Dw = 1 − σ 2/α < 0. As a consequence of the following Lemma,

A ◦ (θθT ) − 1

R
D ≥ 0

for all sufficiently large R. ��
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Lemma 12.3.2 Let A be a positive semi-definite matrix and let B be a symmetric
matrix. If uT Bu ≥ δ|u|2 for all u ∈ ker(A) and vT Av ≥ δ|v|2 for all v ∈ ker(A)⊥
then A + εB � 0 for all 0 ≤ ε ≤ δ2

‖B‖2+δ‖B‖ , where ‖B‖ is the operator norm of B.

Proof Any vector w may be decomposed as w = u + v with u ∈ ker(A) and
v ∈ ker(A)⊥. Then

wT (A + εB)w = uT Au + εuT Bu + 2εuT Bv + εvT Bv

≥ δ|u|2 − ε‖B‖|u|2 − 2ε‖B‖|u||v| + εδ|v|2.

Considering the above expression as a quadratic polynomial in |u| and |v|, we see
that it is non-negative whenever (δ − ε‖B‖)δ ≥ ε‖B‖2. ��

We remark that the preceding proof of the Prékopa–Leindler inequality may be
extended in an analogous way to prove Barthe’s inequality [3].

12.4 Proof of Ehrhard’s Inequality

The parallels between the Prékopa–Leindler and Ehrhard inequalities become
obvious when they are both written in the following form. The version of Prékopa–
Leindler that we proved above may be restated to say that

exp(R(λ log f (X) + (1 − λ) log g(Y ) − α log h(Z))) ≤ 0 a.s.

implies

exp(R(λ logEf (X) + (1 − λ) logEg(Y ) − α logEh(Z))) ≤ 0.

⎫
⎪⎪⎬

⎪⎪⎭
(12.7)

On the other hand, here we will prove that

�
(
R(λ�−1(f (X)) + (1 − λ)�−1(g(Y )) − σ�−1(h(Z)))

)
≤ 0 a.s.

implies

�
(
R(λ�−1(Ef (X)) + (1 − λ)�−1(Eg(Y )) − σ�−1(Eh(Z)))

)
≤ 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(12.8)

(It may not yet be clear why the α in (12.7) has become σ in (12.8); this turns
out to be the right choice, as will become clear from the example in Sect. 12.4.1.)
This implies Ehrhard’s inequality in the same way that (12.7) implies the Prékopa–
Leindler inequality. In particular, our proof of (12.7) suggests a strategy for
attacking (12.8): define the function

JR(x, y, z) = �
(
R(λ�−1(x) + (1 − λ)�−1(y) − σ�−1(z))

)
.
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(We will drop the parameter R when it can be inferred from the context.) In analogy
with our proof of Prékopa–Leindler, we might then try to show that for sufficiently
large R, A � HJR � 0. Unfortunately, this is false.

12.4.1 An Example

Recall from the proof of Theorem 12.2.2 that if A � HJ � 0 then

Gs,t,R(x, y) := PA
t−sJR(P 1

s f (x), P 1
s g(y), P σ 2

s h(λx + (1 − λ)y))

is non-increasing in s for every x and y. We will give an example in which Gs,t,R

may be computed explicitly and it clearly fails to be non-increasing.
From now on, define fs = P 1

s f , gs = P 1
s g and hs = Pσ 2

s h. Let f (x) = 1{x≤a},
g(y) = 1{y≤b} and h(z) = 1{z≤c}, where c ≥ λa + (1 − λ)b. A direct computation
yields

fs(x) = �

(
a − e−sx√

1 − e−2s

)

gs(y) = �

(
b − e−sy√

1 − e−2s

)

hs(z) = �

(
c − e−sz

σ
√

1 − e−2s

)
.

Hence,

J (fs(x), gs(y), hs(λx + (1 − λy))) = �

(
R

λa + (1 − λ)b − c√
1 − e−2s

)
.

If c > λa + (1 − λ)b then the above quantity is increasing in s. Since it is also
independent of x and y, it remains unchanged when applying PA

t−s . That is,

Gs,t,R = �

(
R

λa + (1 − λ)b − c√
1 − e−2s

)

is increasing in s. On the bright side, in this example G
s,r,R

√
1−e−2s

is constant.

Since Theorem 12.2.1 was not built to consider such behavior, we will adapt it so
that the function J is allowed to depend on s.
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12.4.2 Allowing J to Depend on t

Recalling the notation of Sect. 12.2, we assume from now on that 
i ⊆ [0, 1] for
each i. Then A is a k × k matrix; let σ 2

1 , . . . , σ 2
k be its diagonal elements. We will

consider functions of the form J : 
 × [0,∞] → R. We write HJ for the Hessian
matrix of J with respect to the variables in 
, and ∂J

∂t
for the partial derivative

of J with respect to the variable in [0,∞]. Let I : [0, 1] → R be the function
I (x) = φ(�−1(x)).

Lemma 12.4.1 With the notation above, suppose that J : 
 × [0,∞] → R is
bounded and C2, and take (X1, . . . , Xk) ∼ γA. Let λ1, . . . , λk be non-negative
numbers with

∑
i λi = 1, let D(x) be the k × k diagonal matrix with λiσ

2
i /I 2(xi)

in position i, and take some ε ≥ 0. If ∂J
∂t

(x, t) ≤ 0 and

A � HJ (x, t) − (e2(t+ε) − 1)
∂J (x, t)

∂t
D � 0 (12.9)

for every x ∈ 
 and t > 0 then for every k-tuple of measurable functions fi : R →

i ,

EJ (Pσ1
ε f1(X1), . . . , P

σk
ε fk(Xk), 0) ≥ J (Ef1(X1), . . . ,Efk(Xk),∞). (12.10)

Note that Lemma 12.4.1 has an extra parameter ε ≥ 0 compared to our
previous versions of Jensen’s inequality. This is for convenience when applying
Lemma 12.4.1: when ε > 0 then the function e2(t+ε) − 1 is bounded away from
zero, which makes (12.9) easier to check.

Proof Write fi,s for P
σ 2

i
s+εfi and fs = (f1,s, . . . , fk,s). Define

Gs,t = PA
t−sJ (f1,s, . . . , fk,s , s).

We differentiate in s, using the commutation formula (12.2). Compared to the proof
of Theorem 12.2.2, an extra term appears because the function J itself depends on s:

− ∂

∂s
Gs,t = Pt−s

k∑

i,j=1

∂i∂jJ (fs, s)Aij f ′
i,sf

′
j,s − Pt−s

∂J

∂s
(fs, s)

= Pt−sv
T
s (A � HJ (fs, s))vs − Pt−s

∂J

∂s
(fs, s),

where vs = ∇fs . Bakry and Ledoux [1] proved that |vi,s | ≤ σ−1
i (e2(s+ε) −

1)−1/2I (fi,s ). Hence,

vT
s D(fs)vs =

k∑

i=1

λi

(
σi |vi,s |
I (fi,s )

)2

≤ (e2(s+ε) − 1)−1,
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and so

− ∂

∂s
Gs,t ≥ Pt−s

(
vT
s (A � HJ (fs, s))vs − (e2(s+ε) − 1)

∂J

∂s
(fs, s)v

T
s D(fs)vs

)
.

Clearly, the argument of Pt−s is non-negative pointwise if

A � HJ (x, s) � (e2(s+ε) − 1)
∂J (x, s)

∂s
D(x)

for all x, s. In this case, Gs,t is non-increasing in s and we conclude as in the proof
of Theorem 12.2.2. ��

By combining the ideas of Theorem 12.2.2 and Lemma 12.4.1, we obtain the
following combined version.

Corollary 12.4.2 With the notation of Lemma 12.4.1, suppose that J : 
 ×
[0,∞] → R is bounded and C2, and take (X1 . . . , Xk) ∼ γA. Let λ1, . . . , λk be
non-negative numbers with

∑
i λi = 1, let D(x) be the k × k diagonal matrix with

λiσ
2
i /I 2(xi) in position i, and take some ε ≥ 0. Assume that {x ∈ 
 : J (x, 0) < 0}

is homeomorphic to an open ball, that ∂J (x,t)
∂t

≤ 0 whenever J (x, t) < 0, and that

A � HJ (x, t) − (e2(t+ε) − 1)
∂J (x, t)

∂t
D � 0

for every t ≥ 0 and every x such that J (x, t) < 0. Then for every k-tuple of

measurable functions fi : R → 
i satisfying J (P
σ 2

1
ε f1, . . . , P

σ 2
k

ε fk, 0) < 0 γA-
a.s.,

EJ (P
σ 2

1
ε f1(X1), . . . , P

σ 2
k

ε fk(Xk), 0) ≥ J (Ef1(X1), . . . ,Efk(Xk),∞).

Proof As in the proof of Theorem 12.2.2, we can assume that f = (f1, . . . , fk) is
bounded, continuous, converges to a constant near infinity, and we can strengthen
the assumption

J (P
σ 2

1
ε f1, . . . , P

σ 2
k

ε fk, 0) < 0

to

J (P
σ 2

1
ε f1, . . . , P

σ 2
k

ε fk, 0) < −η

for some fixed but arbitrarily small η > 0. As in the proof of Lemma 12.4.1, we

define fi,s = P
σ 2

i
s+εfi and

Gs,t = PA
t−sJ (f1,s, . . . , fk,s , s).
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The same computation as in Lemma 12.4.1 shows that ∂
∂s

Gs,t ≤ 0 whenever Gs,s =
J (f1,s, . . . , fk,s , s) < 0 (the requirement that Gs,s < 0 is the only difference so far
compared to the proof of Lemma 12.4.1, in which it was shown that ∂

∂s
Gs,t ≤ 0

unconditionally).
Now we use the argument from the proof of Theorem 12.2.2: by uniform

continuity there exists δ > 0 such that |Gs,s(x)−Gr,r(x)| < η for every x ∈ R
k and

|s − r| < δ. Hence, if Gr,r ≤ −η pointwise then Gs,s < 0 (and hence Gs,r+δ < 0)
pointwise for every s ∈ [r, r + δ]. By the previous paragraph, Gs,r+δ is non-
increasing in s for s ∈ [r, r +δ], and so Gr+δ,r+δ ≤ Gr,r ≤ −η pointwise. Since we
assumed that G0,0 ≤ −η, it follows by induction that limt→∞ Gt,t ≤ G0,0, which
is the required conclusion. ��

12.4.3 The Hessian of J

Define JR : (0, 1)3 → 0 by

JR(x, y, z) = �
(
R

(
λ�−1(x) + (1 − λ)�−1(y) − σ�−1(z))

))
.

Let HJ = HJ (x, y, z) denote the 3 × 3 Hessian matrix of J ; let A be the 3 × 3
covariance matrix of (X, Y,Z). In order to apply Corollary 12.4.2, we will compute
the matrix A � HJ . First, we define some abbreviations: set

u = �−1(x) � = λu + (1 − λ)v − σw

v = �−1(y) θ = (λ, 1 − λ,−σ)T

w = �−1(z) I = diag(φ(u), φ(v), φ(w))

We will use a subscript s to denote that any of the above quantities is evaluated at
(fs, gs, hs) instead of (x, y, z). That is us = �−1(fs), �s = λus +(1−λ)vs −σws ,
and so on.

Lemma 12.4.3 HJ = φ(R�)I−1
(
R diag(λu, (1 − λ)v,−σw) − R3�θθT

)
I−1.

Proof Noting that du
dx

= 1/φ(u), the chain rule gives

d

dx
�(R�) = Rλ

φ(R�)

φ(u)
= Rλ exp

(
−R2�2 − u2

2

)
.

Differentiating again,

d2

dx2
�(R�) = Rλ(u − R2�λ)

φ(R�)

φ2(u)
.
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For cross-derivatives,

d2

dxdy
�(R�) = −R3�λ(1 − λ)

φ(R�)

φ(u)φ(v)
.

Putting these together with the analogous terms involving differentiation by z,

HJ

φ(R�)
= −R3�

⎛

⎜⎜
⎝

λ2

φ2(u)

λ(1−λ)
φ(u)φ(v)

− λσ
φ(u)φ(w)

λ(1−λ)
φ(u)φ(v)

(1−λ)2

φ2(v)
− (1−λ)σ

φ(v)φ(w)

− λσ
φ(u)φ(w)

− (1−λ)σ
φ(u)φ(v)

σ 2

φ2(w)

⎞

⎟⎟
⎠

+ R

⎛

⎜
⎝

λu

φ2(u)
0 0

0 (1−λ)v

φ2(v)
0

0 0 − σw

φ2(w)

⎞

⎟
⎠ .

Recalling the definition of I and θ , this may be rearranged into the claimed form.
��

Having computed HJ , we need to examine A � HJ . Recall that A is a rank-two
matrix and so it may be decomposed as A = aaT + bbT . Moreover, the fact that
Z = λX + (1 − λ)Y means that a and b are both orthogonal to (λ, 1 − λ,−1)T .
Recalling the definition of θ , this implies that a �θ and b�θ are both orthogonal to
(1, 1, σ−1)T . This observation allows us to deal with the θθT term in Lemma 12.4.3:

A � θθT = (aaT ) � (θθT ) + (bbT ) � (θθT ) = (a � θ)⊗2 + (b � θ)⊗2.

To summarize:

Lemma 12.4.4 The matrix B := A � θθT is positive semidefinite and has rank
two. Its kernel is the span of (1, 1, 1

σ
)T .

On the other hand, the diagonal entries of A are 1, 1, and σ 2; hence,

A � diag(λu, (1 − λ)v,−σw) = diag(λu, (1 − λ)v,−σ 3w) =: D.

Combining this with Lemma 12.4.3, we have

A � HJ = Rφ(R�)I−1(D − R2�B)I−1. (12.11)

Consider the expression above in the light of our earlier proof of Prékopa–
Leindler. Again, we have a sum of two matrices (D and −R2�B), one of which
is multiplied by a factor (R2) that we may take to be large. There are two important
differences. The first is that the matrix D (whose analogue was constant in the proof
of Prékopa–Leindler) cannot be controlled pointwise in terms of B. This difference
is closely related to the example in Sect. 12.4.1; we will solve it by making J depend
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on t in the right way; the dJ
dt

term in Corollary 12.4.2 will then cancel out part of
D’s contribution.

The second difference is that in (12.11), the term that is multiplied by a
large factor (namely, −�B) is not everywhere positive semi-definite because there
exist (x, y, z) ∈ R

3 such that �(x, y, z) > 0. This is the reason that we
consider the “restricted” formulation of Jensen’s inequality in Theorem 12.2.2 and
Corollary 12.4.2.

12.4.4 Adding the Dependence on t

Recall that X and Y have variance 1 and covariance ρ, that Z = λX + (1 − λ)Y ,
and that A is the covariance of (X, Y,Z). Recall also the notations u, v,w,�, and
their subscripted variants. For R > 0, define r(t) = R

√
1 − e−2t−ε and

JR(x, y, z, t) = �
(
r(t)

(
λ�−1(x) + (1 − λ)�−1(y) − σ�−1(z))

))

= �(r(t)�). (12.12)

Let E = diag(λ, 1 − λ, σ)/(1 + σ−1).

Lemma 12.4.5 Define 
ε = [�(−1/ε),�(1/ε)]3. For every ρ, λ, and ε, there
exists R > 0 such that

A � HJ − (e2(t+ε) − 1)
∂J

∂t
I−1EI−1 � 0

on {(x, t) ∈ 
ε × [0,∞) : �(x) ≤ −ε}.
Proof We computed A � HJ in (12.11) already; applying that formula and noting
that I−1 � 0, it suffices to show that

r(t)φ(r(t)�)(D − r2(t)�B) − (e2(t+ε) − 1)
∂J

∂t
E � 0

whenever � ≤ −ε. (Recall that D = diag(λu, (1 − λ)v,−σ 3w), and that B is
a rank-two positive semidefinite matrix that depends only on ρ and λ, and whose
kernel is the span of (1, 1, σ−1)T ). We compute

∂J

∂t
= r ′(t)�φ(r(t)�) = r(t)

e2t+ε − 1
�φ(r(t)�).

Now, there is some δ = δ(ε) > 0 such that

e2(t+ε) − 1

e2t+ε − 1
≥ 1 + δ
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for all t ≥ 0. For this δ,

r(t)φ(r(t)�)(D − r2(t)�B) − (e2(t+ε) − 1)
∂J

∂t
E

� r(t)φ(r(t)�)(D − (1 + δ)�E − r2(t)�B);

Hence, it suffices to show that D − (1 + δ)�E − r2(t)�B � 0. Since � ≤ −ε,
it suffices to show that r2(t)εB + D − (1 + δ)�E � 0. Now, B is a rank-two
positive semi-definite matrix depending only on λ and ρ. Its kernel is spanned by
θ = (1, 1, σ−1)T . Note that θT Dθ = � and θT Eθ = 1. Hence,

θT (D − (1 + δ)�E)θ = −δ� ≥ δε > 0.

Next, note that we can bound the norm of D − (1 + δ)�E uniformly: on 
ε ,
‖D‖ ≤ 1/ε and |�| ≤ 2/ε. All together, if we assume (as we may) that δ ≤ 1 then
‖D + (1 + δ)�E‖ ≤ 5/ε. By Lemma 12.3.2, if η > 0 is sufficiently small then

εB + η(D − (1 + δ)�E) � 0.

To complete the proof, choose R large enough so that R2(1 − eε) ≥ 1/η; then
r2(t) ≥ 1/η for all t . ��

Finally, we complete the proof of (12.8) by a series of simple approximations.
First, let Ca denote the set of continuous functions R → [0, 1] that converge to a at
±∞, and note that it suffices to prove (12.8) in the case that f, g ∈ C0 and h ∈ C1.
Indeed, any measurable f, g : R → [0, 1] may be approximated (pointwise at γ1-
almost every point) from below by functions in C0, and any measurable h : R →
[0, 1] may be approximated from above by functions in C1. If we can prove (12.8)
for these approximations, then it follows (by the dominated convergence theorem)
for the original f, g, and h.

Now consider f, g ∈ C0 and h ∈ C1 satisfying �(f, g, h) ≤ 0 pointwise. For
δ > 0, define

fδ = �(−1/δ) ∨ f ∧ �(1/(3δ))

gδ = �(−1/δ) ∨ g ∧ �(1/(3δ))

hδ = �

(
− 1

3δ
∨ (�−1(h) + δ) ∧ 1

δ

)
.

If δ > 0 is sufficiently small then �(fδ, gδ, hδ) ≤ −δ pointwise; moreover, fδ, gδ ,
and hδ all take values in [�(−1/δ),�(1/δ)], are continuous, and have limits at
±∞. Since fδ → f as δ → 0 (and similarly for g and h), it suffices to show that

λ�−1(Efδ) + (1 − λ)�−1(Egδ) ≤ σ�−1(Ehδ) (12.13)

for all sufficiently small δ > 0.
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Since fδ has limits at ±∞, it follows that Pεfδ → fδ uniformly as ε → 0
(similarly for gδ and hδ). By taking ε small enough (at least as small as δ/2),
we can ensure that �(P 1

ε fδ, P
1
ε gδ, P

σ 2

ε hδ) < −ε pointwise. Now we apply
Corollary 12.4.2 with 
i = [�(−1/ε),�(1/ε)], the function J defined in (12.12),
a = 1

2 , and with (λ1, λ2, λ3) = (λ, 1 − λ, σ−1)/(1 + σ−1). Lemma 12.4.5 implies
that the condition of Corollary 12.4.2 is satisfied. We conclude that

1

2
≥ JR(Efδ,Egδ,Ehδ,∞)

= �
(
R

(
λ�−1(Efδ) + (1 − λ)�−1(Egδ) − σ�−1(Ehδ)

))
,

which implies (12.13) and completes the proof of (12.8).
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