Chapter 11 The Alon–Milman Theorem for Non-symmetric Bodies

Márton Naszódi

Abstract A classical theorem of Alon and Milman states that any *d* dimensional centrally symmetric convex body has a projection of dimension $m \ge e^{c\sqrt{\ln d}}$ which is either close to the *m*-dimensional Euclidean ball or to the *m*-dimensional cross-polytope. We extended this result to non-symmetric convex bodies.

11.1 Introduction

Some fundamental results from the theory of normed spaces have been shown to hold in the more general setting of non-symmetric convex bodies. Dvoretzky's theorem [3, 7] was extended in [6] and [5]; Milman's Quotient of Subspace theorem [8] and duality of entropy results were extended in [9]. In this note, we extend the Alon–Milman Theorem.

A *convex body* is a compact convex set in \mathbb{R}^d with non-empty interior. We denote the orthogonal projection onto a linear subspace H or \mathbb{R}^d by P_H . For $p = 1, 2, \infty$, the closed unit ball of ℓ_p^d centered at the origin is denoted by \mathbf{B}_p^d . Let K and L be convex bodies in \mathbb{R}^d with L = -L. We define their *distance* as

 $d(K, L) = \inf\{\lambda > 0: L \subset T(K - a) \subset \lambda L \text{ for some } a \in \mathbb{R}^d \text{ and } T \in GL(\mathbb{R}^d)\}.$

M. Naszódi (🖂)

The author thanks Alexander Litvak and Nicole Tomczak-Jaegermann for the discussions on the topic we had some time ago. The research was partially supported by the National Research, Development and Innovation Office (NKFIH) grant NKFI-K119670 and by the János Bolyai Scholarship of the Hungarian Academy of Sciences.

Alfréd Rényi Institute of Mathematics, Budapest, Hungary

Department of Geometry, Loránd Eötvös University, Budapest, Hungary e-mail: marton.naszodi@math.elte.hu

[©] Springer Nature Switzerland AG 2020

B. Klartag, E. Milman (eds.), *Geometric Aspects of Functional Analysis*, Lecture Notes in Mathematics 2266, https://doi.org/10.1007/978-3-030-46762-3_11

By compactness, this infimum is attained, and when K = -K, it is attained with a = 0.

Alon and Milman [1] proved the following theorem in the case when K is centrally symmetric.

Theorem 11.1 For every $\varepsilon > 0$ there is a constant $C(\varepsilon) > 0$ with the property that in any dimension $d \in \mathbb{Z}^+$, and for any convex body K in \mathbb{R}^d , at least one of the following two statements hold:

- (i) there is an m-dimensional linear subspace H of \mathbb{R}^d such that $d(P_H(K), \mathbf{B}_2^m) < 1 + \varepsilon$, for some m satisfying $\ln \ln m \ge \frac{1}{2} \ln \ln d$, or
- (ii) there is an m-dimensional linear subspace H such that $d(P_H(K), \mathbf{B}_1^m) < 1+\varepsilon$, for some m satisfying $\ln \ln m \ge \frac{1}{2} \ln \ln d - C(\varepsilon)$.

The main contribution of the present note is a way to deduce Theorem 11.1 from the original result of Alon and Milman, that is, the centrally symmetric case. By polarity, one immediately obtains

Corollary 11.1 For every $\varepsilon > 0$ there is a constant $C(\varepsilon) > 0$ with the property that in any dimension $d \in \mathbb{Z}^+$, and for any convex body K in \mathbb{R}^d containing the origin in its interior, at least one of the following two statements hold:

- (*i*) there is an *m*-dimensional linear subspace *H* of \mathbb{R}^d such that $d(H \cap K, \mathbf{B}_2^m) < 1 + \varepsilon$, for some *m* satisfying $\ln \ln m \ge \frac{1}{2} \ln \ln d$, or
- (ii) there is an m-dimensional linear subspace H such that $d(H \cap K, \mathbf{B}_{\infty}^{m}) < 1 + \varepsilon$, for some m satisfying $\ln \ln m \ge \frac{1}{2} \ln \ln d C(\varepsilon)$.

11.2 Proof of Theorem 11.1

For a convex body *K* in \mathbb{R}^d , we denote its polar by $K^* = \{x \in \mathbb{R}^d : \langle x, y \rangle \le 1 \text{ for all } y \in K\}$. The *support function* of *K* is $h_K(x) = \sup\{\langle x, y \rangle : y \in K\}$. For basic properties, see [2, 12].

First in Lemma 11.2, by a standard argument, we show that if the *difference body* L - L of a convex body L is close to the Euclidean ball, then so is some linear dimensional section of L. For this, we need Milman's theorem whose proof (cf. [4, 7, 10]) does not use the symmetry of K even if it is stated with that assumption. We use \mathbb{S}^{d-1} to denote the boundary of \mathbf{B}_2^d .

Lemma 11.1 (Milman's Theorem) For every $\varepsilon > 0$ there is a constant $C(\varepsilon) > 0$ with the property that in any dimension $d \in \mathbb{Z}^+$, and for any convex body K in \mathbb{R}^d with $\mathbf{B}_2^d \subseteq K$, there is an m-dimensional linear subspace H of \mathbb{R}^d such that $(1-\varepsilon)r(\mathbf{B}_2^d \cap H) \subseteq K \subseteq (1+\varepsilon)r(\mathbf{B}_2^d \cap H)$, for some *m* satisfying $m \ge C(\varepsilon)M^2d$, where

$$M = M(K) = \int_{\mathbb{S}^{d-1}} ||x||_K d\sigma(x),$$

and $r = \frac{1}{M}$.

Lemma 11.2 Let α , $\varepsilon > 0$ be given. Then there is a constant $c = c(\alpha, \varepsilon)$ with the property that in any dimension $m \in \mathbb{Z}^+$, and for any convex body L in \mathbb{R}^m with $d(L-L, \mathbf{B}_2^m) < 1 + \alpha$, there is a k dimensional linear subspace F of \mathbb{R}^m such that $d(P_F(L), \mathbf{B}_2^k) < 1 + \varepsilon$ for some $k \ge cm$.

Proof Let $\delta = d(L - L, \mathbf{B}_2^m)$. We may assume that $\frac{1}{\delta}\mathbf{B}_2^m \subseteq L - L \subseteq \mathbf{B}_2^m$. Thus, for the support function of L - L, we have $h_{L-L}(x) \ge \frac{1}{\delta}$ for any $x \in \mathbb{S}^{d-1}$. With the notations of Lemma 11.1, we have

$$M(L^*) = \int_{\mathbb{S}^{d-1}} ||x||_{L^*} d\sigma(x) = \frac{1}{2} \int_{\mathbb{S}^{d-1}} h_L(x) + h_L(-x) d\sigma(x)$$
(11.1)
$$= \frac{1}{2} \int_{\mathbb{S}^{d-1}} h_{L-L}(x) d\sigma(x) \ge \frac{1}{2\delta} \ge \frac{1}{2(1+\alpha)}.$$

Note that $L^* \supset (L - L)^* \supset \mathbf{B}_2^d$, thus, by Lemma 11.1 and polarity, we obtain that *L* has a *k* dimensional projection P_F with $d(P_FL, \mathbf{B}_2^d \cap F) \leq 1 + \varepsilon$ and $k \geq C(\varepsilon) \frac{1}{4(1+\alpha)^2}m$. Here, $C(\varepsilon)$ is the same as in Lemma 11.1.

The novel geometric idea of our proof is the following. We call a convex body $T = \operatorname{conv} (T_1 \cup \{\pm e\})$ in \mathbb{R}^m a *double cone* if $T_1 = -T_1$ is convex set, span T_1 is an (m - 1)-dimensional linear subspace, and $e \in \mathbb{R}^m \setminus \operatorname{span} T_1$. Double cones are *irreducible convex bodies*, that is, for any double cone T, if T = L - L then L = T/2, see [11, 13]. We prove a stability version of this fact.

Lemma 11.3 (Stability of Irreducibility of Double Cones) *Let L be a convex body in* \mathbb{R}^m *with* $m \ge 2$ *, and T be a double cone of the form* $T = \text{conv}(T_1 \cup \{\pm e\})$ *. Assume that* $T \subseteq L - L \subseteq \delta T$ *for some* $1 \le \delta < \frac{3}{2}$ *. Then*

$$\left(\frac{3}{2}-\delta\right)T\subseteq L-a\subseteq \left(\delta-\frac{1}{2}\right)T.$$

for some $a \in \mathbb{R}^m$.

Proof By the assumptions, $e \in T \subseteq L - L$, thus, by translating L, we may assume that $o, e \in L$. Thus,

$$L \subseteq (L - L) \cap (L - L + e) \subseteq \delta T \cap (\delta T + e).$$
(11.2)

We claim that

$$\delta T \cap (\delta T + e) = \frac{e}{2} + \left(\delta - \frac{1}{2}\right) T.$$
(11.3)

Indeed, let H_{λ} denote the hyperplane $H_{\lambda} = \lambda e + \text{span } T_1$. To prove (11.3), we describe the sections of the right hand side and the left hand side by the hyperplanes H_{λ} for all relevant values of λ . For any $\lambda \in [-\delta, \delta]$, we have

$$\delta T \cap H_{\lambda} = \delta(T \cap H_{\lambda/\delta}) = \lambda e + \delta\left(1 - \frac{|\lambda|}{\delta}\right)T_1.$$

For any $\lambda \in [-\delta + 1, \delta + 1]$, we have

$$(\delta T + e) \cap H_{\lambda} = e + (\delta T \cap H_{\lambda-1}) = \lambda e + \delta \left(1 - \frac{|\lambda - 1|}{\delta}\right) T_{1}$$

Thus, for any $\lambda \in [-\delta + 1, \delta]$, we have

$$\delta T \cap (\delta T + e) \cap H_{\lambda} = \lambda e + \delta \left(1 - \frac{1}{\delta} \max\{|\lambda|, |\lambda - 1|\} \right) T_1.$$

On the other hand, for any $\lambda \in [-\delta + 1, \delta]$, we have

$$(e/2 + (\delta - 1/2)T) \cap H_{\lambda} = \lambda e + (\delta - 1/2) \left(1 - \frac{|\lambda - 1/2|}{\delta - 1/2}\right) T_1.$$

Combining these two equations yields (11.3).

Thus,

$$T \subseteq L - L = \left(L - \frac{e}{2}\right) - \left(L - \frac{e}{2}\right) \subseteq \left(L - \frac{e}{2}\right) - \left(\delta - \frac{1}{2}\right)T.$$

Using the fact that T = -T, and $1 \le \delta < 3/2$, we obtain

$$\left(\frac{3}{2}-\delta\right)T\subseteq L-\frac{e}{2},$$

finishing the proof of Lemma 11.3.

Now, we are ready to prove Theorem 11.1. With the notations of the theorem, let D = K - K, and apply the symmetric version of the theorem for D in place of K. We may assume that $\varepsilon < 1/2$. In case (1), we use Lemma 11.2 and loose a linear factor in the dimension of the almost-Euclidean projection. In case (2), we use Lemma 11.3 with $T = \mathbf{B}_1^m$ and $\delta = 1 + \varepsilon$, and obtain the same dimension for the almost- ℓ_1^m projection.

References

- 1. N. Alon, V.D. Milman, Embedding of l_{∞}^{k} in finite-dimensional Banach spaces. Israel J. Math. **45**(4), 265–280 (1983)
- S. Brazitikos, A. Giannopoulos, P. Valettas, B.-H. Vritsiou, *Geometry of Isotropic Convex Bodies*. Mathematical Surveys and Monographs, vol. 196 (American Mathematical Society, Providence, 2014)
- A. Dvoretzky, Some results on convex bodies and Banach spaces, in *Proceedings International Symposium Linear Spaces (Jerusalem, 1960)* (Jerusalem Academic Press, Jerusalem, 1961), pp. 123–160
- T. Figiel, J. Lindenstrauss, V.D. Milman, The dimension of almost spherical sections of convex bodies. Acta Math. 139(1–2), 53–94 (1977)
- Y. Gordon, Gaussian processes and almost spherical sections of convex bodies. Ann. Probab. 16(1), 180–188 (1988)
- D.G. Larman, P. Mani, Almost ellipsoidal sections and projections of convex bodies. Math. Proc. Camb. Philos. Soc. 77, 529–546 (1975)
- 7. V.D. Milman, A new proof of A. Dvoretzky's theorem on cross-sections of convex bodies. Funkcional. Anal. i Priložen. **5**(4), 28–37 (1971)
- V.D. Milman, Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space. Proc. Amer. Math. Soc. 94(3), 445–449 (1985)
- V.D. Milman, A. Pajor, Entropy and asymptotic geometry of non-symmetric convex bodies. Adv. Math. 152(2), 314–335 (2000)
- V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Mathematics, With an appendix by M. Gromov, vol. 1200 (Springer, Berlin, 1986)
- M. Naszódi, B. Visy, Sets with a unique extension to a set of constant width, in *Discrete Geometry*. Monographs and Surveys in Pure and Applied Mathematics, vol. 253 (Dekker, New York, 2003), pp. 373–380
- R. Schneider, *Convex Bodies: The Brunn-Minkowski Theory*. Encyclopedia of Mathematics and its Applications, vol. 151 (Cambridge University Press, Cambridge, Expanded edition, 2014)
- 13. D. Yost, Irreducible convex sets. Mathematika 38(1), 134-155 (1991)