
Chapter 11
The Alon–Milman Theorem
for Non-symmetric Bodies

Márton Naszódi

Abstract A classical theorem of Alon and Milman states that any d dimensional
centrally symmetric convex body has a projection of dimension m ≥ ec

√
ln d which

is either close to the m-dimensional Euclidean ball or to the m-dimensional cross-
polytope. We extended this result to non-symmetric convex bodies.

11.1 Introduction

Some fundamental results from the theory of normed spaces have been shown
to hold in the more general setting of non-symmetric convex bodies. Dvoretzky’s
theorem [3, 7] was extended in [6] and [5]; Milman’s Quotient of Subspace theorem
[8] and duality of entropy results were extended in [9]. In this note, we extend the
Alon–Milman Theorem.

A convex body is a compact convex set in R
d with non-empty interior. We denote

the orthogonal projection onto a linear subspace H or Rd by PH . For p = 1, 2,∞,
the closed unit ball of �d

p centered at the origin is denoted by Bd
p. Let K and L be

convex bodies in R
d with L = −L. We define their distance as

d(K,L) = inf{λ > 0 : L ⊂ T (K − a) ⊂ λL for some a ∈ R
d and T ∈ GL(Rd )}.
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By compactness, this infimum is attained, and when K = −K , it is attained with
a = 0.

Alon and Milman [1] proved the following theorem in the case when K is
centrally symmetric.

Theorem 11.1 For every ε > 0 there is a constant C(ε) > 0 with the property that
in any dimension d ∈ Z

+, and for any convex body K in R
d , at least one of the

following two statements hold:

(i) there is an m-dimensional linear subspace H of Rd such that d(PH (K), Bm
2 ) <

1 + ε, for some m satisfying ln ln m ≥ 1
2 ln ln d , or

(ii) there is an m-dimensional linear subspace H such that d(PH (K), Bm
1 ) < 1+ε,

for some m satisfying ln ln m ≥ 1
2 ln ln d − C(ε).

The main contribution of the present note is a way to deduce Theorem 11.1 from
the original result of Alon and Milman, that is, the centrally symmetric case. By
polarity, one immediately obtains

Corollary 11.1 For every ε > 0 there is a constant C(ε) > 0 with the property that
in any dimension d ∈ Z

+, and for any convex body K in R
d containing the origin

in its interior, at least one of the following two statements hold:

(i) there is an m-dimensional linear subspace H of Rd such that d(H ∩K, Bm
2 ) <

1 + ε, for some m satisfying ln ln m ≥ 1
2 ln ln d , or

(ii) there is an m-dimensional linear subspace H such that d(H ∩K, Bm∞) < 1+ε,
for some m satisfying ln ln m ≥ 1

2 ln ln d − C(ε).

11.2 Proof of Theorem 11.1

For a convex body K in R
d , we denote its polar by K∗ = {x ∈ R

d : 〈x, y〉 ≤
1 for all y ∈ K}. The support function of K is hK(x) = sup{〈x, y〉 : y ∈ K}. For
basic properties, see [2, 12].

First in Lemma 11.2, by a standard argument, we show that if the difference body
L − L of a convex body L is close to the Euclidean ball, then so is some linear
dimensional section of L. For this, we need Milman’s theorem whose proof (cf.
[4, 7, 10]) does not use the symmetry of K even if it is stated with that assumption.
We use S

d−1 to denote the boundary of Bd
2 .

Lemma 11.1 (Milman’s Theorem) For every ε > 0 there is a constant C(ε) > 0
with the property that in any dimension d ∈ Z

+, and for any convex body K in
R

d with Bd
2 ⊆ K , there is an m-dimensional linear subspace H of Rd such that
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(1 − ε)r(Bd
2 ∩H) ⊆ K ⊆ (1 + ε)r(Bd

2 ∩H), for some m satisfying m ≥ C(ε)M2d ,
where

M = M(K) =
∫

Sd−1

||x||Kdσ(x),

and r = 1
M

.

Lemma 11.2 Let α, ε > 0 be given. Then there is a constant c = c(α, ε) with the
property that in any dimension m ∈ Z

+, and for any convex body L in R
m with

d(L − L, Bm
2 ) < 1 + α, there is a k dimensional linear subspace F of Rm such that

d(PF (L), Bk
2) < 1 + ε for some k ≥ cm.

Proof Let δ = d(L− L, Bm
2 ). We may assume that 1

δ
Bm

2 ⊆ L− L ⊆ Bm
2 . Thus, for

the support function of L − L, we have hL−L(x) ≥ 1
δ

for any x ∈ S
d−1. With the

notations of Lemma 11.1, we have

M(L∗) =
∫

Sd−1

||x||L∗dσ(x) = 1

2

∫

Sd−1

hL(x) + hL(−x)dσ(x) (11.1)

= 1

2

∫

Sd−1

hL−L(x)dσ(x) ≥ 1

2δ
≥ 1

2(1 + α)
.

Note that L∗ ⊃ (L − L)∗ ⊃ Bd
2 , thus, by Lemma 11.1 and polarity, we obtain

that L has a k dimensional projection PF with d(PF L, Bd
2 ∩ F) ≤ 1 + ε and k ≥

C(ε) 1
4(1+α)2 m. Here, C(ε) is the same as in Lemma 11.1. ��

The novel geometric idea of our proof is the following. We call a convex body
T = conv (T1 ∪ {±e}) in R

m a double cone if T1 = −T1 is convex set, span T1
is an (m − 1)-dimensional linear subspace, and e ∈ R

m \ span T1. Double cones
are irreducible convex bodies, that is, for any double cone T , if T = L − L then
L = T/2, see [11, 13]. We prove a stability version of this fact.

Lemma 11.3 (Stability of Irreducibility of Double Cones) Let L be a convex
body in R

m with m ≥ 2, and T be a double cone of the form T = conv (T1 ∪ {±e}).
Assume that T ⊆ L − L ⊆ δT for some 1 ≤ δ < 3

2 . Then

(
3

2
− δ

)
T ⊆ L − a ⊆

(
δ − 1

2

)
T .

for some a ∈ R
m.
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Proof By the assumptions, e ∈ T ⊆ L − L, thus, by translating L, we may assume
that o, e ∈ L. Thus,

L ⊆ (L − L) ∩ (L − L + e) ⊆ δT ∩ (δT + e). (11.2)

We claim that

δT ∩ (δT + e) = e

2
+

(
δ − 1

2

)
T . (11.3)

Indeed, let Hλ denote the hyperplane Hλ = λe + span T1. To prove (11.3), we
describe the sections of the right hand side and the left hand side by the hyperplanes
Hλ for all relevant values of λ. For any λ ∈ [−δ, δ], we have

δT ∩ Hλ = δ(T ∩ Hλ/δ) = λe + δ

(
1 − |λ|

δ

)
T1.

For any λ ∈ [−δ + 1, δ + 1], we have

(δT + e) ∩ Hλ = e + (δT ∩ Hλ−1) = λe + δ

(
1 − |λ − 1|

δ

)
T1.

Thus, for any λ ∈ [−δ + 1, δ], we have

δT ∩ (δT + e) ∩ Hλ = λe + δ

(
1 − 1

δ
max{|λ|, |λ − 1|}

)
T1.

On the other hand, for any λ ∈ [−δ + 1, δ], we have

(e/2 + (δ − 1/2)T ) ∩ Hλ = λe + (δ − 1/2)

(
1 − |λ − 1/2|

δ − 1/2

)
T1.

Combining these two equations yields (11.3).
Thus,

T ⊆ L − L =
(
L − e

2

)
−

(
L − e

2

)
⊆

(
L − e

2

)
−

(
δ − 1

2

)
T .

Using the fact that T = −T , and 1 ≤ δ < 3/2, we obtain

(
3

2
− δ

)
T ⊆ L − e

2
,

finishing the proof of Lemma 11.3. ��
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Now, we are ready to prove Theorem 11.1. With the notations of the theorem,
let D = K − K , and apply the symmetric version of the theorem for D in place
of K . We may assume that ε < 1/2. In case (1), we use Lemma 11.2 and loose a
linear factor in the dimension of the almost-Euclidean projection. In case (2), we
use Lemma 11.3 with T = Bm

1 and δ = 1 + ε, and obtain the same dimension for
the almost-�m

1 projection.
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