
Chapter 1
A Generalized Central Limit Conjecture
for Convex Bodies

Haotian Jiang, Yin Tat Lee, and Santosh S. Vempala

Abstract The central limit theorem for convex bodies says that with high probabil-
ity the marginal of an isotropic log-concave distribution along a random direction
is close to a Gaussian, with the quantitative difference determined asymptotically
by the Cheeger/Poincare/KLS constant. Here we propose a generalized CLT for
marginals along random directions drawn from any isotropic log-concave distri-
bution; namely, for x, y drawn independently from isotropic log-concave densities
p, q , the random variable 〈x, y〉 is close to Gaussian. Our main result is that this
generalized CLT is quantitatively equivalent (up to a small factor) to the KLS
conjecture. Any polynomial improvement in the current KLS bound of n1/4 in R

n

implies the generalized CLT, and vice versa. This tight connection suggests that
the generalized CLT might provide insight into basic open questions in asymptotic
convex geometry.
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1.1 Introduction

Convex bodies in high dimensions exhibit surprising asymptotic properties, i.e.,
phenomena that become sharper as the dimension increases. As an elementary
example, most of the measure of a sphere or ball inRn lies within distance O(1/

√
n)

of any bisecting hyperplane, and a one-dimensional marginal is close to a Gaussian,
i.e., its total variation distance to a Gaussian of the same variance is O(1/

√
n).

A striking generalization of this is the central limit theorem for convex bodies in
Theorem 1.1, originally due to Klartag [16]. A function h : Rn → R+ is called log-
concave if it takes the form h = exp(−f ) for a convex function f : Rn → R∪{∞}.
A probability measure is log-concave if it has a log-concave density. A measure is
said to be isotropic if it has zero mean and identity covariance.

Theorem 1.1 (Central Limit Theorem) Let p be an isotropic log-concave mea-
sure in R

n and y ∼ p. Then we have

Px∼Sn−1 [dTV (〈x, y〉,N(0, 1)) ≥ cn] ≤ cn,

for some constants cn that tends to 0 as n → +∞.

The central limit theorem is closely related to the thin-shell conjecture (also
known as the variance hypothesis) [2, 4]. Let σn ≥ 0 satisfy

σ 2
n = sup

p
Ex∼p

[(‖x‖ − √
n
)2]

,

where the supremum is taken over all isotropic, log-concave measures p in R
n. The

thin-shell conjecture [2, 4] asserts the existence of a universal constant C such that
σ 2

n < C for all n ∈ N. It is closely connected to the CLT: by a direct calculation,
the CLT implies a bound on σn (and the conjectured CLT parameter implies the
thin-shell conjecture); Moreover, cn = O(σn log n/

√
n) [2, 10]. The first non-trivial

bound on σn, which gives the first non-trivial bound on cn in Theorem 1.1, was due
to Klartag [16]. This was followed by several improvements and refinements [12, 14,
17, 27]. The current best bound is σn = O(n1/4) which implies cn = O(n−1/4 log n)

[18]. This follows from the well-known fact that σn = O(ψn), where ψn is the KLS
constant (also known as the inverse Cheeger constant) defined as follows.

Definition 1.2 (KLS Constant) For a log-concave density p in R
n with induced

measure μp, the KLS constant ψp is defined as

1

ψp

= inf
S⊂Rn,μp(S)≤1/2

μp(∂S)

μp(S)
.

We define ψn be the supremum of ψp over all isotropic log-concave densities p in
R

n.
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Theorem 1.3 ([18]) The KLS constant of any isotropic log-concave density in R
n

is O(n1/4).

For other connections and implications of the KLS conjecture, including its
equivalence to spectral gap and its implication of the slicing conjecture, the reader
is referred to recent surveys [13, 20] and this comprehensive book [5].

A key fact used in the above theorem is the following elementary lemma about
log-concave densities.

Lemma 1.4 (Third Moment) For x, y drawn independently from an isotropic log-
concave density p, we have E(〈x, y〉3) = O(n1.5).

We remark that the third moment bound in Lemma 1.4, holds even if x, y are drawn
independently from different measures.

If the KLS conjecture is true, then the expression above is O(n). It is shown in an
earlier version of [18] that any polynomial improvement in the third moment bound
to n1.5−ε for some ε > 0 would lead to an improvement in the bound on the KLS
constant to n1/4−ε′

for some ε′ > 0. (The techniques used in the corresponding part
of the preprint [18] are formally included in this paper.)

Motivated by the above connection, we propose a generalized CLT in this paper.
To formally state our generalized CLT, we need the definition of Lp Wasserstein
distance.

Definition 1.5 (Lp Wasserstein Distance or Wp Distance) The Lp Wasserstein
distance between two probability measures μ and ν in R for p ≥ 1 is defined by

Wp(μ, ν)
def= inf

π

[∫
|x − y|pdπ(x, y)

] 1
p

,

where the infimum is over all couplings of μ and ν, i.e. probability measures π in
R

2 that have marginals μ and ν.

When convenient we will denote Wp(μ, ν) also be Wp(x, y) where x ∼ μ, y ∼ ν.
Our generalized CLT is stated using the W2 distance, which is a natural choice, also
used in related work on CLT’s [11, 28].

The content of the conjecture is that one can replace the uniform distribution on
the sphere (or Gaussian) with any isotropic log-concave density, i.e., along most
directions with respect to any isotropic log-concave measure, the marginal of an
isotropic log-concave measure is approximately Gaussian.

Conjecture 1.6 (Generalized CLT) Let x, y be independent random vectors drawn
from isotropic log-concave densities p, q respectively and G ∼ N(0, n). Then,

W2(〈x, y〉,G) = O(1). (1.1.1)
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The current best upper bound on the W2 distance in Eq. (1.1.1) is the trivial bound
of O(

√
n). As we will see later, a third moment bound of order O(n) in Lemma 1.4

would be implied if Conjecture 1.6 holds.
Our main result is that this Generalized CLT is equivalent (up to a small factor)

to the KLS conjecture, and any polynomial improvement in one leads to a similar
improvement in the other.

Theorem 1.7 (Generalized CLT Equivalent to KLS) Fix ε ∈ (0, 1/2). If for
every isotropic log-concave measure p in R

n and independent vectors x, y ∼ p

and g ∼ N(0, n), we have W2(〈x, y〉, g) = O
(
n1/2−ε

)
, then for any δ > 0, we

have ψn = O
(
n1/4−ε/2+δ

)
.

On the other hand, if we have ψn = O
(
n1/4−ε/2

)
, then for any isotropic log-

concave measures p, q in R
n, independent vectors x ∼ p, y ∼ q and δ > 0, we

have W2(〈x, y〉,G) = O
(
n1/2−ε+δ

)
.

Remark 1.8 We emphasize that the equivalence between Generalized CLT and
the KLS conjecture in Theorem 1.7 does not hold in a pointwise sense, i.e. the
Generalized CLT for a specific isotropic log-concave measure p in R

n alone does
not imply the corresponding bound for ψp and vice versa. One needs to establish
the Generalized CLT for all isotropic log-concave measures in R

n in order to deduce
the KLS conjecture.

The proof of Theorem 1.7 proceeds in three steps: (1) in Theorem 1.9 below,
we show that an improved third moment bound implies an improved bound on the
KLS constant (an earlier version of this part of the proof is implicit in the preprint
[18]), (2) in Theorem 1.27, we show that an improved bound for Generalized CLT
implies an improved third moment bound, and (3) in Theorem 1.49, we show that an
improved bound on the KLS constant implies an improved bound for Generalized
CLT. While all three parts are new and unpublished (except on the arXiv), the proof
of (3) is via a coupling with Brownian motion (we discuss the similarity to existing
literature [11]), (2) is relatively straightforward, and (1) is the most technical, based
on a carefully chosen potential function and several properties of an associated
tensor.

The main intermediate result in our proof that the Generalized CLT implies the
KLS conjecture is the following theorem.

Theorem 1.9 Fix ε ∈ (0, 1/2). If for every isotropic log-concave distribution p in
R

n and independent vectors x, y ∼ p, we have

Ex,y∼p

(
〈x, y〉3

)
= O

(
n1.5−ε

)
, (1.1.2)

then for any δ > 0, we have ψn = O
(
n1/4−ε/2+δ

)
.

In fact what we show is that the KLS constant ψn can be bounded in terms of the
third moment.
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Theorem 1.10 Let p range over all isotropic log-concave distributions in R
n.

Then,

ψ2
n ≤ Õ (1)

n
· sup

p
Ex,y∼p

(
〈x, y〉3

)
= Õ(1) · sup

p
Eθ∼Sn−1

∥∥∥Ex∼p

(
〈x, θ〉xxT

)∥∥∥
F

.

(1.1.3)

This intermediate result might be of independent interest and is in fact a refinement
of the following bound on the KLS constant given by Eldan [10].

ψ2
n ≤ Õ(1) · sup

p
sup

θ∈Sn−1

∥∥∥Ex∼p

(
〈x, θ〉xxT

)∥∥∥
F

. (1.1.4)

We replace the supremum over θ ∈ S
n−1 on the RHS by the expectation over

S
n−1. Here ‖·‖F stands for the Frobenius norm (see Sect. 1.2.1). To see how (1.1.3)

refines (1.1.4), let x, y ∼ p be independent vectors and σ be the uniform measure
on S

n−1. Then,

∫

Sn−1

∥∥∥Ex∼p

(
〈x, θ〉xxT

)∥∥∥
F

dσ(θ) =
∫

Sn−1
Ex,y∼p

(
〈x, θ〉 · 〈y, θ〉 · 〈x, y〉2

)
dσ(θ)

= 1

n
Ex,y∼p

(
〈x, y〉3

)
.

1.2 Preliminaries

In this section, we review background definitions.

1.2.1 Notation and Definitions

A function h : R
n → R+ is called log-concave if it takes the form h(x) =

exp(−f (x)) for a convex function f : Rn → R∪{∞}. It is t-strongly log-concave if
it takes the form h(x) = h′(x)e− t

2 ‖x‖2
2 where h′(x) : Rn → R+ is an integrable log-

concave function. A probability measure is log-concave (t-strongly log-concave) if
it has a log-concave (resp. t-strongly log-concave) density function.

Given a matrix A ∈ R
m×n, we define its Frobenius norm (also known as Hilbert-

Schmidt norm), denoted as ‖A‖F , to be

‖A‖F =
√√√√

m∑
i=1

n∑
j=1

|Ai,j |2 = Tr
(
AT A

)
.
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The operator norm (also known as spectral norm) of A, denoted ‖A‖op, is defined
as

‖A‖op =
√

λmax
(
AT A

)
,

where λmax(·) stands for the maximum eigenvalue.

1.2.2 Stochastic Calculus

Given real-valued stochastic processes xt and yt , the quadratic variations [x]t and
[x, y]t are real-valued stochastic processes defined by

[x]t = lim|P |→0

∞∑
n=1

(
xτn − xτn−1

)2 and

[x, y]t = lim|P |→0

∞∑
n=1

(
xτn − xτn−1

) (
yτn − yτn−1

)
,

where P = {0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ↑ t} is a stochastic partition of the non-
negative real numbers, |P | = maxn (τn − τn−1) is called the mesh of P and the
limit is defined using convergence in probability. Note that [x]t is non-decreasing
with t and [x, y]t can be defined as

[x, y]t = 1

4
([x + y]t − [x − y]t ) .

For example, if the processes xt and yt satisfy the SDEs dxt = μ(xt)dt +σ(xt)dWt

and dyt = ν(yt )dt + η(yt)dWt where Wt is a Wiener process, we have

[x]t =
∫ t

0
σ 2(xs)ds [x, y]t =

∫ t

0
σ(xs)η(ys)ds and d[x, y]t = σ(xt )η(yt )dt.

For vector-valued SDEs

dxt = μ(xt )dt + (xt )dWt and dyt = ν(yt )dt + M(yt)dWt,

we have that

[xi, xj ]t =
∫ t

0

(
(xs)

T (xs)
)

ij
ds and d[xi, yj ]t =

(
(xt )M

T (yt )
)

ij
dt.
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Lemma 1.11 (Itô’s Formula) Itô [15] Let x be a semimartingale and f be a twice
continuously differentiable function, then

df (xt ) =
∑

i

df (xt )

dxi
dxi + 1

2

∑
i,j

d2f (xt )

dxidxj
d[xi, xj ]t .

The next two lemmas are well-known facts about Wiener processes.

Lemma 1.12 (Reflection Principle) Given a Wiener process Wt and a, t ≥ 0, then
we have that

P

(
sup

0≤s≤t

Ws ≥ a

)
= 2P(Wt ≥ a).

Theorem 1.13 (Dambis, Dubins-Schwarz Theorem) [8, 9] Every continuous
local martingale Mt is of the form

Mt = M0 + W[M]t for all t ≥ 0,

where Ws is a Wiener process.

1.2.3 Log-Concave Functions

Theorem 1.14 (Dinghas, Prékopa, and Leindler) The convolution of two log-
concave functions is log-concave; in particular, any marginal of a log-concave
density is log-concave.

The next lemma is a “reverse” Hölder’s inequality (see e.g., [23]).

Lemma 1.15 (Log-Concave Moments) For any log-concave density p in R
n and

any positive integer k,

Ex∼p ‖x‖k ≤ (2k)k ·
(
Ex∼p ‖x‖2

)k/2
.

The following inequality bounding the small ball probability is from [3].

Theorem 1.16 ([3, Thm. 10.4.7]) For any isotropic log-concave density p and any
ε < ε0,

Px∼p

(‖x‖2 ≤ ε
√

n
) ≤ εc

√
n,

where ε0, c are absolute constants.
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The following theorem from [6, 24] states that the Poincaré constant is bounded
by the KLS constant.

Theorem 1.17 (Poincaré Constant [6, 24]) For any isotropic log-concave density
p in R

n and any smooth function g, we have

Varx∼pg(x) ≤ O
(
ψ2

n

)
· Ex∼p ‖∇g(x)‖2 .

An immediate consequence of the above theorem is the following lemma which
is central to our analysis. We give a proof of this central lemma for completeness.

Lemma 1.18 For any matrix A and any isotropic log-concave density p,

Varx∼p

(
xT Ax

)
≤ O

(
ψ2

r

)
· ‖A‖2

F ,

where r = rank(A + AT ).

Proof Since xT Ax=xT AT x, we have Varx∼p

(
xT Ax

)=Varx∼p

(
xT
(
A+AT

)
x
)
/4.

Now applying Theorem 1.17 to the projection of p onto the orthogonal complement
of the null space of matrix A finishes the proof. ��

To prove a upper bound on the KLS constant, it suffices to consider subsets of
measure 1/2. We quote a theorem from [26, Thm 1.8].

Theorem 1.19 The KLS constant of any log-concave density is achieved by a subset
of measure 1/2.

The next theorem is an essentially best possible tail bound on large deviations
for log-concave densities, due to Paouris [27].

Theorem 1.20 There exists a universal constant c such that for any isotropic log-
concave density p in R

n and any t > 1, Px∼p

(‖x‖ > c · t
√

n
) ≤ e−t

√
n.

1.2.4 Distance Between Probability Measures

The total variation distance is used in the statement of classical central limit theorem
(e.g. [16]).

Definition 1.21 The total variation distance between two probability measures μ

and ν in R is defined by

dTV(μ, ν)
def= sup

A⊆R

|μ(A) − ν(A)| .

The following lemma relates total variation distance to L1-Wasserstein distance
(see Definition 1.5) for isotropic log-concave distributions.
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Lemma 1.22 ([25, Prop 1]) Let μ and ν be isotropic log-concave distributions in
R, then we have

dTV(μ, ν) = O(1) ·√W1(μ, ν).

Now we relate Ls Wasserstein distance to Lt Wasserstein distance for 1 ≤
s �= t . By Hölder’s inequality, one can show that for any s ≤ t , we have
Ws(μ, ν) ≤ Wt(μ, ν). In the special case where both μ and ν are isotropic log-
concave distributions in R, it is shown in [25, Prop 5] that

Wt(μ, ν)t ≤ O(1) · Ws(μ, ν)s logt−s

(
t t

Ws(μ, ν)s

)
.

In the following, we generalize this result to cases where μ or ν might be the
measure of the inner product of two independent isotropic log-concave vectors. This
generalization might be useful for future applications. The proof is essentially the
same as that in [25] as is therefore postponed to Appendix 1.

Lemma 1.23 Let μ and ν be two probability measures in R. Suppose one of the
following holds:

1. Both μ and ν are isotropic log-concave distributions.
2. The distribution μ is isotropic log-concave, while ν is the measure of the random

variable 1√
n
〈x, y〉 where x ∼ p and y ∼ q are independent random vectors and

p, q are isotropic log-concave distributions in R
n.

3. There exist isotropic log-concave distributions pμ, qμ, pν and qν in R
n such that

μ is the measure of the random variable 1√
n
〈xμ, yμ〉 and ν is the measure of the

random variable 1√
n
〈xν, yν〉, where xμ ∼ pμ, yμ ∼ qμ, xν ∼ pν and yν ∼ qν

are independent random vectors.

Then there exists a universal constant c > 0 such that for any 1 ≤ s < t , we have

Wt(μ, ν)t ≤ cWs(μ, ν)s logt−s

(
ct t2t

Ws(μ, ν)s

)
+ ct t2t exp(−c

√
n).

Moreover, the above bound is valid even when the coupling (μ, ν) on the left-hand
side is taken to be the best coupling for Ws(μ, ν) instead of the best coupling for
Wt(μ, ν).

1.2.5 Matrix Inequalities

For any symmetric matrix B, we define |B| = √
B2, namely, the matrix formed by

taking absolute value of all eigenvalues of B.
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Lemma 1.24 (Matrix Hölder Inequality) Given a symmetric matrices A and B

and any s, t ≥ 1 with s−1 + t−1 = 1, we have

Tr(AB) ≤ (
Tr |A|s)1/s (

Tr |B|t)1/t
.

Lemma 1.25 (Lieb-Thirring Inequality [22]) Given positive semi-definite matri-
ces A and B and r ≥ 1, we have

Tr
((

B1/2AB1/2
)r) ≤ Tr

(
Br/2ArBr/2

)
.

Lemma 1.26 ([1, 10]) Given a symmetric matrix B, a positive semi-definite matrix
A and α ∈ [0, 1], we have

Tr
(
AαBA1−αB

)
≤ Tr

(
AB2

)
.

1.2.6 From Generalized CLT to Third Moment Bound

In this subsection, we prove that an improved bound for Generalized CLT implies
an improved third moment bound.

Theorem 1.27 Fix ε ∈ (0, 1/2). Let p be any isotropic log-concave distribution in
R

n, x, y be independent random vectors drawn from p and G ∼ N(0, n). If we have

W2(〈x, y〉,G)2 = O
(
n1−2ε

)
, (1.2.1)

then it follows that

Ex,y∼p

(
〈x, y〉3

)
= O

(
n1.5−ε

)
.

We remark that while the equivalence between Generalized CLT and the KLS
conjecture in our main theorem (Theorem 1.7) does not hold in a point-wise sense,
the result in Theorem 1.27 holds for every isotropic log-concave p.

Proof Let π2 be the best coupling between 〈x, y〉 and G in (1.2.1). In the rest of
the proof, we use Eπ2 to denote the expectation where 〈x, y〉 and G satisfies the
coupling π2. Applying Lemma 1.23, we have

Eπ2 |〈x, y〉,G|3 = O
(
n

3
2 −2ε log n

)
.
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Now we can bound Ex,y∼p〈x, y〉3 using the coupling π2 as

Ex,y∼p〈x, y〉3 = Eπ2 (〈x, y〉 − G + G)3

= Eπ2

(
G3 +3G2(〈x, y〉−G)+3G(〈x, y〉−G)2 + (〈x, y〉−G)3

)
.

The first term is zero due to symmetry. For the second term, we have

Eπ2G
2(〈x, y〉 − G) ≤

√
EG∼N(0,n)G4 ·

√
Eπ2(〈x, y〉 − G)2

= O(n) · O
(
n0.5−ε

)
= O

(
n1.5−ε

)
.

The last two terms can be bounded similarly as

Eπ2G(〈x, y〉 − G)2 ≤
(
EG∼N(0,n)|G|3

) 1
3 ·
(
Eπ2 |〈x, y〉 − G|3

) 2
3

= O
(√

n
) · O

(
n1− 4

3 ε log
2
3 n
)

= O
(
n1.5−ε

)
,

and

Eπ2(〈x, y〉 − G)3 ≤ Eπ2 |〈x, y〉 − G|3 = O
(
n1.5−2ε log n

)
= O

(
n1.5−ε

)
.

This completes the proof of Theorem 1.27. ��

1.3 Stochastic Localization

The key technique used in part of our proofs is the stochastic localization scheme
introduced in [10]. The idea is to transform a given log-concave density into one
that is proportional to a Gaussian times the original density. This is achieved by a
martingale process by modifying the current density infinitesimally according to an
exponential in a random direction. By having a martingale, the measures of subsets
are maintained in expectation, and the challenge is to control how close they remain
to their expectations over time. We now define a simple version of the process we
will use, which is the same as in [18].

1.3.1 The Process and Its Basic Properties

Given a distribution with a log-concave density p(x), we start at time t = 0 with
this distribution and at each time t > 0, we apply an infinitesimal change to the
density. This is done by picking a random direction from a standard Gaussian.
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Definition 1.28 Given a log-concave distribution p, we define the following
stochastic differential equation:

c0 = 0, dct = dWt + μtdt, (1.3.1)

where the probability distribution pt , the mean μt and the covariance At are defined
by

pt(x) = ecT
t x− t

2 ‖x‖2
2p(x)∫

Rn ecT
t y− t

2 ‖y‖2
2p(y)dy

, μt = Ex∼pt x, At = Ex∼pt (x−μt)(x−μt)
T .

The following basic lemmas will be used in the analysis. For a more rigorous
account of the construction and further details of the process, the reader is referred
to [11, 18, 20]

Lemma 1.29 For any x ∈ R
n, we have dpt (x) = (x − μt )

T dWtpt (x).

Next we state the change of the mean and the covariance matrix.

Lemma 1.30 dμt = AtdWt and dAt = ∫
Rn(x −μt )(x −μt)

T
(
(x − μt)

T dWt

)
pt

(x)dx − A2
t dt.

1.3.2 Bounding the KLS Constant

The following lemmas from [18] are used to bound the KLS constant by the spectral
norm of the covariance matrix at time t . First, we bound the measure of a set of
initial measure 1

2 .

Lemma 1.31 For any set E ⊂ R
n with

∫
E

p(x)dx = 1
2 and t ≥ 0, we have that

P

(
1

4
≤
∫

E

pt(x)dx ≤ 3

4

)
≥ 9

10
− P

(∫ t

0
‖As‖op ds ≥ 1

64

)
.

At time t , the distribution is t-strongly log-concave and it is known that it has
KLS constant O

(
t−1/2

)
. The following isoperimetric inequality was proved in [7]

and was also used in [10].

Theorem 1.32 Let h(x) = f (x)e− t
2 ‖x‖2

2/
∫

f (y)e− t
2 ‖y‖2

2dy where f : Rn → R+
is an integrable log-concave function. Then h is log-concave and for any measurable
subset S of Rn,

∫

∂S

h(x)dx = �
(√

t
)

· min

{∫

S

h(x)dx,

∫

Rn\S
h(x)dx

}
.

In other words, the KLS constant of h is O
(
t−1/2

)
.
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This gives a bound on the KLS constant.

Lemma 1.33 Given a log-concave distribution p, let At be given by Definition 1.28
using initial distribution p. Suppose that there is T > 0 such that

P

(∫ T

0
‖As‖op ds ≤ 1

64

)
≥ 3

4
,

then we have ψp = O
(
T −1/2

)
.

Thus to prove a bound on ψp , it suffices to give an upper bound on ‖At‖op. The
potential function we will use to bound ‖At‖op is �t = Tr((At − I)q) for some
even integer q . We give the detailed analysis in Sect. 1.4.

The following result from [18] will be useful. It shows that the operator norm
stays bounded up to a certain time with probability close to 1.

Lemma 1.34 ([18], Lemma 58) Assume for k ≥ 1, ψp = O(n1/2k) for any
isotropic log-concave distribution p in R

n. There is a constant c ≥ 0 s.t. for any

0 ≤ T ≤ 1

c · k · (log n)1− 1
k · n1/k

,

we have

P

[
max

t∈[0,T ]
‖At‖op ≥ 2

]
≤ 2 exp

(
− 1

cT

)
. (1.3.2)

1.3.3 Bounding the Potential

In order to bound the potential �t = Tr((At − I)q), we bound its derivative. We go
from the derivative to the potential itself via the following lemma, which might also
be useful in future applications.

Lemma 1.35 Let {�t }t≥0 be an n-dimensional Itô process with �0 ≤ U
2 and

d�t = δtdt + vT
t dWt . Let T > 0 be some fixed time, U > 0 be some target upper

bound, and f and g be some auxiliary functions such that for all 0 ≤ t ≤ T

1. δt ≤ f (�t) and ‖vt‖2 ≤ g(�t ),
2. Both f (·) and g(·) are non-negative non-decreasing functions,
3. f (U) · T ≤ U

8 and g(U) · √
T ≤ U

8 .

Then, we have the following upper bound on �t :

P

[
max

t∈[0,T ] �t ≥ U

]
≤ 0.01.
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Proof We denote the Itô process formed by the martingale term as {Yt }t≥0, i.e.
Y0 = 0 and dYt = vT

t dWt . We first show that in order to control �t , it suffices to
control Yt .

Claim 1.36 For any 0 ≤ t0 ≤ T , if maxt∈[0,t0] Yt ≤ U
3 , then we have

max
t∈[0,t0]

�t ≤ U.

Proof of Claim 1.36 Assume for the purpose of contradiction that maxt∈[0,t0] �t >

U . Denote t ′ = inf{t ∈ [0, t0]|�t ≥ U}. It follows that for any t ∈ [0, t ′], we have
�t ≤ U and f (�t) · t ′ ≤ f (U) · T ≤ U

8 . It follows that

�t ≤ �0 + U

8
+ Yt < U,

which leads to a contradiction. ��
Since Yt is a martingale, it follows from Theorem 1.13 that there exists a Wiener

process {Bt }t≥0 such that Yt = B[Y ]t , for all t ≥ 0. The next claim bounds Yt using
Bt .

Claim 1.37 If maxt∈[0,U2/64] Bt ≤ U
3 , then we have

max
t∈[0,T ] Yt ≤ U/3,

Proof of Claim 1.37 Assume for the purpose of contradiction that maxt∈[0,T ] Yt ≥
U
3 . Define t0 as the first time when Yt becomes at least U

3 . By definition, for any
t ∈ [0, t0], Yt ≤ U

3 . Using Claim 1.36, we have maxt∈[0,t0] �t ≤ U . It follows that

[Y ]t0 =
∫ t0

0
‖vt‖2

2 dt ≤ T · g2(U) ≤ U2

64
.

This implies that

Yt0 = B[Y ]t0 ≤ max
t∈[0,U2/64]

Bt ≤ U

3
,

which leads to a contradiction. ��
Now it suffices to bound the probability that the Wiener process {Bt }t≥0 exceeds

U/3 in the time period [0, U2/64]. Using the reflection principle in Lemma 1.12,
we have

Pr

[
max

t∈[0,T ]
�t ≥ U

]
≤ Pr

[
max

t∈[0,U2/64]
Bt > U/3

]
= 2 Pr

[
BU2/64 > U/3

] ≤ 0.01.

��
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1.4 From Third Moment Bound to KLS

In this section, we show that an improved third moment bound implies an improved
bound on the KLS constant. Theorems 1.9 and 1.27 together imply the first part of
Theorem 1.7.

Theorem 1.9 Fix ε ∈ (0, 1/2). If for every isotropic log-concave distribution p in
R

n and independent vectors x, y ∼ p, we have

Ex,y∼p

(
〈x, y〉3

)
= O

(
n1.5−ε

)
, (1.1.2)

then for any δ > 0, we have ψn = O
(
n1/4−ε/2+δ

)
.

The rest of this section is devoted to proving Theorem 1.9. Throughout this
section, we assume the condition in Theorem 1.9 holds, i.e. for every isotropic log-
concave distribution p in R

n and independent vectors x, y ∼ p, one has

Ex,y∼p

(
〈x, y〉3

)
= O

(
n1.5−ε

)
. (1.4.1)

1.4.1 Tensor Inequalities

The proof of Theorem 1.9 is based on the potential function �t = Tr ((At − I)q)

for some even integer q . This potential is the one of the key technical differences
between this paper and previous work using stochastic localization, which used
Tr(Aq

t ) [10, 19]. The proof of a tight log-Sobolev inequality [21] used a Stieltjes-
type potential function, Tr((uI − A)−q) to avoid logarithmic factors. The potential
we use here, Tr ((At − I)q) allows us to track how close At is to I (not just bounding
how large At is). For example, in Lemma 1.43, we bound the derivative of the
potential �t by some powers of �t . Since �t is 0 initially, this gives a significantly
tighter bound around t = 0 (compared to Tr(Aq

t )). We will discuss this again in the
course of the proof.

For the analysis we define the following tensor and derive some of its properties.

Definition 1.38 (3-Tensor) For an isotropic log-concave distribution p in R
n and

symmetric matrices A,B and C, define

Tp(A,B,C) = Ex,y∼p

(
xT Ay

)(
xT By

) (
xT Cy

)

We drop the subscript p to indicate the worst case bound over all isotropic log-
concave distributions

T (A,B,C)
def= sup

isotropic log-concave p

Ex,y∼p

(
xT Ay

)(
xT By

) (
xT Cy

)
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It is clear from the definition that T is invariant under permutation of A,B and
C. In the rest of this subsection, we give a few tensor inequalities that will be
used throughout the rest of our proofs. The proofs of these tensor inequalities are
postponed to Appendix 2.

Lemma 1.39 For any A1, A2, A3 � 0, we have that T (A1, A2, A3) ≥ 0 and for
any symmetric matrices B1, B2, B3, we have that

T (B1, B2, B3) ≤ T (|B1| , |B2| , |B3|) .

In the next lemma, we collect tensor inequalities that will be useful for later
proofs.

Lemma 1.40 Suppose that ψk ≤ αkβ for all k ≤ n for some fixed 0 ≤ β ≤ 1
2 and

α ≥ 1. For any isotropic log-concave distribution p in R
n and symmetric matrices

A and B, we have that

1. T (A, I, I) ≤ T (I, I, I ) · ‖A‖op.
2. T (A, I, I) ≤ O

(
ψ2

n

) · Tr |A|.
3. T (A,B, I) ≤ O

(
ψ2

r

) · ‖B‖op Tr |A| where r = min(2 · rank(B), n).

4. T (A,B, I) ≤ O
(
α2 log n

) · (Tr |B|1/(2β)
)2β

Tr |A|.
5. T (A,B, I) ≤ (

T
(|A|s , I, I

))1/s · (T (|B|t , I, I
))1/t

, for any s, t ≥ 1 with
s−1 + t−1 = 1.

Lemma 1.41 For any positive semi-definite matrices A,B,C and any α ∈ [0, 1],
then

T
(
B1/2AαB1/2, B1/2A1−αB1/2, C

)
≤ T

(
B1/2AB1/2, B,C

)
.

1.4.2 Derivatives of the Potential

The next lemma computes the derivative of �t = Tr((At − I)q), as done in [18].
For the reader’s convenience, we include a proof here.

Lemma 1.42 Let At be defined by Definition 1.28. For any integer q ≥ 2, we have
that

dTr
(
(At − I)q

) = q · Ex∼pt (x − μt)
T (At − I)q−1(x − μt)(x − μt)

T dWt

− q · Tr ((At − I)q−1 A2
t )dt

+ q

2
·

∑
α+β=q−2

Ex,y∼pt (x − μt)
T (At − I)α(y − μt)

× (x − μt)
T (At − I)β(y − μt )(x − μt)

T (y − μt )dt.
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Proof Let �(X) = Tr((X − I)q). Then the first and second-order directional
derivatives of � at X is given by

∂�

∂X

∣∣∣∣
H

= q · Tr
(
(X − I)q−1H

)
and

∂2�

∂X∂X

∣∣∣∣
H1,H2

= q ·
q−2∑
k=0

Tr
(
(X − I)kH2(X − I)q−2−kH1

)
.

Using these and Itô’s formula, we have that

dTr((At − I)q) = q · Tr
(
(At − I)q−1dAt

)

+ q

2
·

∑
α+β=q−2

∑
ijkl

Tr
(
(At − I)αeij (At − I)βekl

)
d[Aij ,Akl]t ,

where eij is the matrix that is 1 in the entry (i, j) and 0 otherwise, and Aij is the
real-valued stochastic process defined by the (i, j)th entry of At .

Using Lemmas 1.30 and 1.29, we have that

dAt = Ex∼pt (x − μt)(x − μt )
T (x − μt)

T dWt − AtAtdt

= Ex∼pt (x − μt)(x − μt )
T (x − μt)

T ezdWt,z − AtAtdt, (1.4.2)

where Wt,z is the zth coordinate of Wt . Therefore,

d[Aij ,Akl]t =
∑

z

(
Ex∼pt (x − μt )i(x − μt )j (x − μt)

T ez

)

×
(
Ex∼pt (x − μt )k(x − μt)l(x − μt)

T ez

)
dt

= Ex,y∼pt (x − μt)i(x − μt)j (y − μt)k(y − μt)l(x − μt)
T

× (y − μt)dt. (1.4.3)

Using the formula for dAt (1.4.2) and d[Aij ,Akl]t (1.4.3), we have that

dTr
(
(At − I)q

) = q · Ex∼pt (x − μt )
T (At − I)q−1(x − μt)(x − μt)

T dWt

− q · Tr
(
(At − I)q−1A2

t

)
dt

+ q

2
·

∑
α+β=q−2

∑
ijkl

Tr
(
(At − I)αeij (At − I)βekl

)
Ex,y∼pt

× (x − μt)i(x − μt )j (y − μt)k(y − μt )l(x − μt)
T (y − μt )dt
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= q · Ex∼pt (x − μt )
T (At − I)q−1(x − μt)(x − μt)

T dWt

− q · Tr
(
(At − I)q−1A2

t

)
dt

+ q

2
·

∑
α+β=q−2

Ex,y∼pt (x − μt)
T (At − I)α(y − μt)

× (x − μt)
T (At − I)β(y − μt )(x − μt)

T (y − μt )dt.

��

1.4.3 Bounding the Potential

The derivative of the potential has drift (dt) and stochastic/Martingale (dWt ) terms.
The next lemma bounds the drift and Martingale parts of the change in the potential
by tensor quantities. We will then bound each one separately.

Lemma 1.43 Let At and pt be defined as in Definition 1.28. Let �t = Tr((At−I)q)

for some even integer q ≥ 2, then we have that d�t = δtdt + vT
t dWt with

δt ≤ 1

2
q(q − 1) · T

(
At(At − I)q−2, At , At

)
+ 2q ·

(
�

1+ 1
q

t + �
1− 1

q

t n
1
q

)

and

‖vt‖2 ≤ q ·
∥∥∥Ex∼p(x − μt)

T (A − I)q−1(x − μt)(x − μt)
T
∥∥∥

2
.

Proof By Lemma 1.42, we have

d�t = q · Ex∼pt (x − μt )
T (At − I)q−1(x − μt)(x − μt)

T dWt

− q · Tr
(
(At − I)q−1A2

t

)
dt

+ q

2
·

∑
α+β=q−2

Ex,y∼pt (x − μt)
T (At − I)α(y − μt)(x − μt )

T

× (At − I)β(y − μt)(x − μt )
T (y − μt)dt

= q · Ex∼p(x − μt)
T (A − I)q−1(x − μt)(x − μt)

T dWt

− q · Tr
(
(At − I)q−1A2

t

)
dt

+ q

2
·

∑
α+β=q−2

Ex,y∼p̃t
xT At (At − I)αyxT At(At − I)βyxT

× Atydt
def= δtdt + vT

t dWt .
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where p̃t is the isotropic correspondence of pt defined by p̃t (x) = p
(
A

1/2
t x + μt

)
,

δtdt is the drift term in d�t and vT
t dWt is the martingale term in d�t .

For the drift term αtdt , we have

δt ≤ q

2
·

∑
α+β=q−2

T
(
At(At − I)α,At (At − I)β,At

)− q · Tr
(
(At − I)q−1A2

t

)
.

The first drift term is

q

2
·

∑
α+β=q−2

T
(
At(At − I)α,At (At − I)β ,At

)

≤ q

2
·

∑
α+β=q−2

T
(
At |At − I |α ,At |At − I |β ,At

)
(Lem 1.39)

≤ q

2
·

∑
α+β=q−2

T
(
At |At − I |q−2 , At , At

)
(Lem 1.41)

= q(q − 1)

2
· T
(
At(At − I)q−2, At , At

)
.

For the second drift term, since q is even, we have that

−q · Tr
(
(At − I)q−1A2

t

)
≤ q · Tr

(
|At − I |q−1(At − I + I)2

)

≤ 2q · Tr
(
|At − I |q+1

)
+ 2q · Tr

(
|At − I |q−1

)

≤ 2q · �
1+ 1

q

t + 2q · �1− 1
q

t n
1
q .

For the Martingale term vT
t dWt , we note that

‖vt‖2 = q ·
∥∥∥Ex∼p(x − μt)

T (A − I)q−1(x − μt)(x − μt )
T
∥∥∥

2
.

��
The Martingale term is relatively straightforward to bound. We use the following

lemma from [18] in our analysis.

Lemma 1.44 ([18, Lem 25]) Given a log-concave distribution p with mean μ and
covariance A. For any positive semi-definite matrix C, we have that

∥∥∥Ex∼p(x − μ)(x − μ)T C(x − μ)

∥∥∥
2

= O
(
‖A‖1/2

op · Tr
(
A1/2CA1/2

))
.

Lemma 1.45 Let pt be the log-concave distribution at time t with covariance
matrix At . Let �t = Tr((At − I)q) for some even integer q ≥ 2 and d�t =
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δtdt + vT
t dWt . Assume �t ≤ n. Then,

||vt ||2 ≤ q ·
∥∥∥Ex∼pt (x − μt )

T (A − I)q−1(x − μt )(x − μt)
T
∥∥∥

2

≤ O (q) ·
(

�
1− 1

2q

t n
1
q + n

1
q

)
.

Proof Note that

∥∥∥Ex∼p(x − μt )
T (At − I)q−1(x − μt)(x − μt)

T
∥∥∥

2

≤ O (1) · ‖At‖1/2
op Tr

∣∣∣A1/2
t (At − I)q−1A

1/2
t

∣∣∣ (Lem 1.44)

≤ O (1) · ‖At‖1/2
op Tr|At − I |q−1 + O (1) · ‖At‖1/2

op Tr|At − I |q

≤ O

(
1 + �

1
2q

t

)
· �

1− 1
q

t n
1
q + O

(
1 + �

1
2q

t

)
· �t

≤ O

(
�

1− 1
2q

t n
1
q + �

1+ 1
2q

t + n
1
q

)
.

��
Next we bound the drift term. This takes more work. We write

δt ≤ 1

2
q(q − 1)δ

(1)
t + qδ

(2)
t ,

where

δ
(1)
t = T

(
At(At − I)q−2, At , At

)
and δ

(2)
t = �

1+ 1
q

t + �
1− 1

q

t n
1
q .

We bound δ
(1)
t in the following lemma. This is the core lemma which needs

several tensor properties and bounds. It is also the reason we use Tr((At − I)q as
the potential. Specifically, using this potential lets us write A − I as the sum of
two matrices one with small eigenvalues and the other of low rank, by choosing the
threshold for “small” eigenvalue appropriately.

Lemma 1.46 Suppose that ψk ≤ αkβ for all k ≤ n for some α ≥ 1 and β s.t.
1/4 − ε/2 ≤ β ≤ 1/4. Let � = Tr((A − I)q) for some even integer q ≥ 1

2β
and

� = 4β + 2ε − 1. Assume � ≤ n. Then

δ(1) ≤ O(α2) · �n2β ·
[
n

− 1
q �

1
q log n + n

− �
4q · n 2

q �
− 2

q

]
.
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Proof We have that

δ(1) = T
(
A(A − I)q−2, A,A

)

= T
(
(A − I)q−1 + (A − I)q−2, A − I + I,A − I + I

)

≤ T
(
|A − I |q−1, |A − I |, |A − I |

)
+ 2T

(
|A − I |q−1, |A − I |, I

)

+ T
(
|A − I |q−1, I, I

)
(Lem 1.39)

+ T
(
(A − I)q−2, |A − I |, |A − I |

)
+ 2T

(
(A − I)q−2, |A − I |, I

)

+ T
(
(A − I)q−2, I, I

)

≤ T
(
|A − I |q−1, |A − I |, |A − I |

)
+ 3T

(
|A − I |q−1, |A − I |, I

)

+ 3T
(
|A − I |q−1, I, I

)
+ T

(
(A − I)q−2, I, I

)
(Lem 1.41)

�= δ
(1)
1 + 3δ

(1)
2 + 3δ

(1)
3 + δ

(1)
4 .

We first bound δ
(1)
1 as follows

δ
(1)
1 = T

(
|A − I |q−1, |A − I |, |A − I |

)

≤ T
(|A − I |q, |A − I |, I) (Lem 1.41)

≤ O(α2 log n) · �
(

Tr|A − I |1/2β
)2β

(Lem 1.40.4)

≤ O(α2 log n) · �

((
Tr|A − I |q) 1

2βq n
1− 1

2βq

)2β

(Lem 1.24)

≤ O(α2 log n) · n
2β− 1

q �
1+ 1

q .

For δ
(1)
2 , we write

|A − I | = B1 + B2,

where B1 consists of the eigen-components of |A − I | with eigenvalues at most η

and B2 is the remaining part. Then we can bound δ
(1)
2 as follows

δ
(1)
2 = T

(
B

q−1
1 , B1, I

)
+ T

(
B

q−1
1 , B2, I

)
+ T

(
B

q−1
2 , B1, I

)

+ T
(
B

q−1
2 , B2, I

)
. (1.4.4)
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The first term in Eq. (1.4.4) can be bounded as

T
(
B

q−1
1 , B1, I

)
≤ T

(
B

q

1 , I, I
)

(Lem 1.41)

≤ T (I, I, I ) · ||B1||q (Lem 1.40.1)

≤ O
(
ηqn1.5−ε

)
.

The second term in Eq. (1.4.4) is bounded as

T
(
B

q−1
1 , B2, I

)
≤ T

(
B

q

1 , I, I
) q−1

q · T
(
B

q

2 , I, I
) 1

q (Lem 1.40.5)

≤ O
(
ηqn1.5−ε

) q−1
q · O

(
ψ2

n�
) 1

q

(Lem 1.40.1 and Lem 1.40.2)

= O(1) · α
2
q ηq−1n

(1.5−ε)(q−1)
q

+ 2β
q �

1
q ,

where we used Tr
(
B

q
2

) ≤ Tr ((A − I)q) ≤ � in the last line. For the third term in
Eq. (1.4.4), we have

T
(
B

q−1
2 , B1, I

)
≤ T

(
B

q

2 , I, I
) q−1

q · T
(
B

q

1 , I, I
) 1

q (Lem 1.40.5)

≤ O
(
ψ2

n�
) q−1

q · O
(
ηqn1.5−ε

) 1
q

(Lem 1.40.1 and Lem 1.40.2)

= O(1) · α
2(q−1)

q ηn
2β− 2β

q
+(1.5−ε)· 1

q �
q−1
q .

For the last term in Eq. (1.4.4) , let P be the orthogonal projection from R
n to the

range of B2. Notice that rank(B2) ≤ �
ηq because each positive eigenvalue of B2 is at

least η. We have

T
(
B

q−1
2 , B2, I

)
= T

(
PB

q−1
2 P,PB2P, I

)

≤ T
(
PB

q

2 P,P, I
)

(Lem 1.41)

≤ O
(
ψ2

2·rank(B2)

)
· � (Lem 1.40.3)

= O

(
α2�1+2β

η2βq

)
.
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Summing up these four terms, we get

δ
(1)
2 ≤ O(1) ·

[
ηqn1.5−ε + α

2
q ηq−1n

(1.5−ε)(q−1)
q

+ 2β
q �

1
q

+ α
2(q−1)

q ηn
2β− 2β

q
+(1.5−ε)· 1

q �
q−1
q + α2�1+2β

η2βq

]

≤ O(α2) ·
[
ηqn1.5−ε + ηq−1n

2β+(1.5−ε)(q−1)
q �

1
q + ηn

2β− 2β
q +(1.5−ε)· 1

q

× �
q−1
q + �1+2β

η2βq

]
.

It turns out that when 1/4 − ε/2 ≤ β ≤ 1/4, the last two terms dominate the
first two terms (which is justified shortly). Balancing the last two terms, we choose

η = �
1
q n

− 2β(q−1)+1.5−ε
q(1+2βq) , and this gives

δ
(1)
2 ≤ O(α2) ·

[
�n2β · nβ(1−4β−2ε)q

1+2βq + �n2β · n
β(1−4β−2ε)(q−1)

1+2βq

+ �n2β · nβ(1−4β−2ε)
1+2βq + �n2β · nβ(1−4β−2ε)

1+2βq

]
.

Since β ≥ 1/4 − ε/2, β(1 − 4β − 2ε) ≤ 0 which implies that the last two terms
dominate the first two terms in this case. We therefore have

δ
(1)
2 ≤ O(α2) · �n2β · n

β(1−4β−2ε)
1+2βq .

The third term δ
(1)
3 is bounded as

δ
(1)
3 = T

(
|A − I |q−1, I, I

)

= T
(
B

q−1
1 , I, I

)
+ T

(
B

q−1
2 , I, I

)

≤ O(1) ·
(
ηq−1n1.5−ε + α2n2β�/η

)
(Lem 1.40.1 and Lem 1.40.2)

≤ O(α2) · n
2β(q−1)+1.5−ε

q �
q−1
q ,

where the last line is by choosing η = (
n2β−1.5+ε�

)1/q
. The final term δ

(1)
4 is

bounded as

δ
(1)
4 = T

(
|A − I |q−2, I, I

)
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= T
(
B

q−2
1 , I, I

)
+ T

(
B

q−2
2 , I, I

)

≤ O(1) ·
(
ηq−2n1.5−ε + α2n2β�/η2

)
(Lem 1.40.1 and Lem 1.40.2)

≤ O(α2) · n 2β(q−2)+2(1.5−ε)
q �

q−2
q .

Combining all the terms we have

δ(1) ≤ O(α2)·�n2β ·
[
n

− 1
q �

1
q log n + n

− β
1+2βq

·� + n
− �

2q n
1
q �

− 1
q + n

− �
q n

2
q �

− 2
q

]
.

Simplifying the above with the assumptions � ≤ n and q ≥ 1
2β

finishes the proof
of the lemma. ��

1.4.4 Proof of Theorem 1.9

We note that �0 = 0. Using the bounds we have, we will show that when q is taken
as the smallest even integer greater than max{8, �1/δ�}, with probability close to 1,
we can write

�t ≤ O
(
n1− �

12 log−q n
)

,

for all t ∈ [0, T ] where T = O

(
n

−2β+ �
24q

α2

)
.

Intuitively, when �t ≤ O
(
n1− �

12 log−q n
)

and T = O

(
n

−2β+ �
24q

α2

)
, we have,

using the analysis of the previous section,

δtT ≤ O
(
n1− �

12 log−q n
)

and ‖vt‖2

√
T ≤ O

(
n1− �

12 log−q n
)

.

This suggests that �t stays at most O
(
n1− �

12 log−q n
)

during a period of length

T . Formally, we prove the following lemma to get an improved bound on ψn. Our
proof applies Lemma 1.35.

Lemma 1.47 Suppose that ψk ≤ αkβ,∀k ≤ n for some α ≥ 1 and 1/4 − ε/2 <

β ≤ 1/4. Let p be any isotropic log-concave distribution. Let �t = Tr((At − I)q)

with q = 2�1/β�. Then for n large enough such that n
�

48q > log n where � =
4β + 2ε − 1, there exists a universal constant C s.t.

P

[
max

t∈[0,T ] �t ≥ n1− �
12 log−q n

]
≤ 0.01 with T = Cn

−2β+ �
24q

α2 .
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Proof We use Lemma 1.35 with the bounds from Lemma 1.45 and 1.46. Recall we
have the following bound on the potential change.

d�t = δtdt + vT
t dWt ,

with ||vt ||2 ≤ g(�t ) where g(�t) is defined to be +∞ when �t > n and O (q) ·(
�

1− 1
2q

t n
1
q + n

1
q

)
otherwise, and δt ≤ f (�t) where f (�t) is defined to be +∞

when �t > n and 1
2q(q − 1)δ(1)(�t ) + qδ(2)(�t ) otherwise where

δ(1)(�t ) = O(α2) · �tn
2β ·

[
n

− 1
q �

1
q

t log n + n
− �

4q · n 2
q �

− 2
q

t

]
,

and

δ(2)(�t ) = �
1+ 1

q

t + �
1− 1

q

t n
1
q .

We show that the conditions in Lemma 1.35 are met with U = n1− �
12 log−q n and

T = Cn
−2β+ �

24q

α2 for some small enough constant C. It is easy to see that f (�t ) and
g(�t ) are non-negative and non-decreasing functions of �t by our choice of q , so
we only need to check that the last condition of Lemma 1.35 holds.

We first consider the martingale term. For 1 ≤ U ≤ n, we have

g(U) · √
T = O (q) ·

(
U

1− 1
2q n

1
q + n

1
q

)
·
√

Cn
−β+ �

48q

α2

≤ O(q) · U · U− 1
2q n

1
q ·

√
Cn

−β+ �
48q

α2

≤ U · O(q) · √C · n
−β+ 1

q
+ �

48q .

Note that q ≥ 2/β and � ≤ 1. Thus,

g(U) · √T ≤ U · O(q)
√

C.

which is bounded by U/8 when C is small enough.
Now we verify that f (U) ·T ≤ U/8 for some suitably small constant C. We first

verify this for δ(2)(�t ).

δ(2)(U) · T ≤ U ·
(
U

1
q + U

− 1
q n

1
q

)
Cn

−2β+ �
24q

= U · C
(
n

1
q
− �

12q log−1 n + n
�

12q log n
)

n
−2β+ �

24q
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≤ UCn
−2β+ 1

q − �
24q log n

≤ UC,

where in the last line we used q ≥ 2/β, � ≤ 1 and nβ > log n. Now we consider
δ(1)(�t ). We denote the two terms in δ(1)(�t ) as δ

(1)
i (�t ), where i = 1, 2. For the

first term δ
(1)
1 (�t ) we have

δ
(1)
1 (U) · T = O(α2) · Un2β(log n)n

− 1
q U

1
q · Cn

−2β+ �
24q

α2

= O(1) · UCn
− �

24q

≤ O(1) · UC.

For the second term δ
(1)
2 (�t) we have

δ
(1)
2 (U) · T = O(α2) · Un2β · n− �

4q · n 2
q U

− 2
q · Cn

−2β+ �
24q

α2

= O(1) · UCn
− �

24q log2 n

≤ O(1) · UC.

This shows that

δ(1)(U)T ≤ O(1)UC.

Thus, for some suitably small C, we have f (U) · T ≤ U/8. Applying Lemma 1.35
completes the proof of the lemma. ��

When 1/4 − ε/2 < β ≤ 1/4, we get a better bound on ψn.

Lemma 1.48 Suppose that ψk ≤ αkβ , for all k ≤ n for some α ≥ 1 and 1/4 −
ε/2 < β ≤ 1/4. Let p be an isotropic log-concave distribution in R

n. Then for n

large enough such that n
�

48q > log n, there exists a universal constant C > 0 s.t.

ψn ≤ Cαn
β− �

48q ,

where � = 4β + 2ε − 1 and q = 2�1/β�.

Proof Using Lemma 1.47, with probability at least 0.99, for any t ≤ T =
Cn

−2β+ �
24q

α2 where C is some universal constant and q = 2�1/β�, we have

�t ≤ n1− �
12 log−q n.
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Assuming this event, we have

∫ T

0
||At ||opdt ≤

∫ T

0

(
1 + �

1/q
t

)
≤ T

(
1 + n

1
q − �

12q log−1 n
)

≤ 1/64.

Now applying Lemma 1.33, we get

ψp ≤ O(α) · n
β− �

48q ,

where C is some universal constant. Since p is arbitrary, we have the result. ��
Now we are finally ready to prove Theorem 1.9.

Proof of Theorem 1.9 We start with the known bound ψn ≤ α0n
β0 for β0 = 1/4

and some constant α0. We construct a sequence of better and better bounds for ψn

which hold for any n large enough such that n
�

48q > log n, where q = �(1/β) =
O(1/(1 − 2ε + 4δ)). (Note that if � ≤ 4δ, then we are done by Lemma 1.48. So
we can assume without loss of generality that � > 4δ). Since q is fixed, one can

find a fixed n0 such that for any n ≥ n0, the requirement n
�

48q > log n is satisfied
whenever � > 4δ, regardless of the current bound on ψn.

Suppose ψn ≤ αin
βi is the current bound. If βi ≤ 1/4 − ε/2 + δ, then we are

done. Otherwise, applying Lemma 1.48 gives the better bound

ψn ≤ αi+1n
βi+1,

where αi+1 = Cαi and βi+1 = βi − �
48q

≤ βi − δ
12q

(since � ≥ 4δ). Therefore,

starting from β0 = 1/4 and repeating the procedure at most M = � 6εq
δ

� times,
we will get some m ≤ M such that ψn ≤ αmnβm where βm ≤ 1/4 − ε/2 + δ

and αm ≤ C� 3q
δ �α0. This holds for any large n such that n

δ
12q > log n. For small

n that doesn’t satisfy the requirement n
δ

12q > log n, we simply bound them by
some constant. We conclude that ψn ≤ O

(
n1/4−ε/2+δ

)
for any n. We note that in

fact the bound we get is n1/4−ε/2+δ+q/(δ log n) and since q = O(1/β), we can set
δ = O(1/

√
β log n) so that the bound on β is 1/4 − ε/2 + o(1). ��

1.5 From KLS to Generalized CLT

Theorem 1.49 Assume ψn = O(n1/4−ε/2) for some 0 < ε < 1/2 and some
dimension n. Let p, q be any isotropic log-concave distributions in R

n, x, y be
independent random vectors drawn from p and q and G ∼ N(0, n). It follows
that

W2(〈x, y〉,G)2 = O
(
n1−2ε(log n)1/2+ε

)
. (1.5.1)
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This gives exactly the condition in Theorem 1.27 (up to a small polynomial factor
in log n). The remainder of this section is devoted to proving Theorem 1.49. We start
by relating 〈x, y〉 with 〈x, g〉, where x ∼ p, y ∼ q are independent vectors drawn
from isotropic log-concave distributions p, q in R

n and g ∼ N(0, I ) is a standard
Gaussian vector in R

n.

Lemma 1.50 Assume the conditions of Theorem 1.49. Let g ∼ N(0, I ) be
independent from x and y, then we have

W2(〈x, y〉, 〈x, g〉)2 = O
(
n1−2ε(log n)1/2+ε

)
.

Before we prove Lemma 1.50, we show how to use the lemma to prove
Theorem 1.49. The intuition is the following. Lemma 1.50 allows us to relate 〈x, y〉
to 〈x, g〉. Notice for fixed x, the random variable 〈x, g〉 has a Gaussian law with
variance ‖x‖2. Since ‖x‖2 is concentrated around

√
n, it follows that 〈x, g〉 is close

to the Gaussian distribution N(0, n).

Proof of Theorem 1.49 Using Lemma 1.50 Let g be a random vector drawn from
a standard n-dimensional normal distribution N(0, I ). By Lemma 1.50, we have

W2(〈x, y〉, 〈x, g〉)2 = O
(
n1−2ε(log n)1/2+ε

)
. (1.5.2)

For fixed sample x, the random variable 〈x, g〉 has the same law as ‖x‖2 · g1 where
g1 ∼ N(0, 1). Notice that G has the same law as

√
n · g2, where g2 ∼ N(0, 1).

When x is fixed, we obtain a coupling between 〈x, g〉 and G by identifying g1 with
g2. It follows that

W2(〈x, g〉,G) ≤ Ex∼p

(‖x‖2 − √
n
)2 · Eg1∼N(0,1)g

2
1

= Ex∼p

(‖x‖2 − √
n
)2

≤ Ex∼p

( (‖x‖2
2 − n

)2
(‖x‖2 + √

n
)2
)

≤ 1

n
· Var

(
‖x‖2

2

)

≤ 1

n
· O

(
ψ2

n

)
= O

(
n1−2ε

)
,

where the last line uses Lemma 1.18 with the matrix A being the identity matrix in
R

n. This combined with (1.5.2) finishes the proof of Theorem 1.49. ��
Now we are left to prove Lemma 1.50. For this we turn to the stochastic

localization technique introduced in Sect. 1.3. In the proof, we make use of
Lemma 1.34. Our proof here bears structural similarities to that in [11], in that
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both proofs use stochastic localization specifically by viewing random variables as
Brownian motion.

Proof of Lemma 1.50 We apply the stochastic construction in Sect. 1.3 with initial
probability distribution p0 = p. Since pt is a martingale and p∞ is a point mass at
μ∞, we have that

x ∼ μ∞ =
∫ ∞

0
dμt =

∫ ∞

0
AtdW

(n)
t ,

where we used Lemma 1.30 and W
(n)
t is a standard n-dimensional Brownian motion.

The inner product 〈x, y〉 can be written similarly as

〈x, y〉 =
∫ ∞

0
yT AtdW

(n)
t .

Notice that yT AtdW
(n)
t is a martingale whose quadratic variation has deriva-

tive yT A2
t y at time t . It follows that the process W

(1)
t defined by dW

(1)
t =

yT AtdW
(n)
t /

√
yT A2

t y is a one-dimensional standard Brownian motion. We there-
fore have

〈x, y〉 =
∫ ∞

0

√
yT A2

t y · dW
(1)
t .

Note that
√

yT A2
t y is concentrated near

√
Ey∼qyT A2

t y =
√

Tr
(
A2

t

)
. It is therefore

natural to couple 〈x, y〉 with the random variable L = ∫∞
0

√
Tr
(
A2

t

)
dW

(1)
t . We will

show that this coupling gives an upper bound on W2(〈x, y〉, L)2. Notice that the first
random variable 〈x, y〉 depends on both x and y but the second random variable L

depends only on x. So why would this coupling work? The intuition behind the
coupling is the following: as one takes the expectation over y, the random variable√

yT A2
t y is concentrated around

√
Tr
(
A2

t

)
and the deviation depends on the variable

‖At‖2
op. In the stochastic construction in Sect. 1.3, At starts from identity and ends

up being 0. This allows good bounds on ‖At‖2
op.

We use Ex to denote the expectation taken with respect to the randomness of
W

(n)
t (notice that both At and W

(1)
t adapt to W

(n)
t ). It follows that

W2(〈x, y〉, L)2 ≤ Ex,y

[∫ ∞

0

(√
yT A2

t y −
√

Tr
(
A2

t

)) · dW
(1)
t

]2

= Ex,y

[∫ ∞

0

(√
yT A2

t y −
√

Tr
(
A2

t

))2

dt

]
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=
∫ ∞

0
Ex,y

[(√
yT A2

t y −
√

Tr
(
A2

t

))2
]

dt

=
∫ ∞

0
Ex,y

⎡
⎢⎣

⎛
⎜⎝ yT A2

t y − Tr
(
A2

t

)
√

yT A2
t y +

√
Tr
(
A2

t

)

⎞
⎟⎠

2⎤
⎥⎦ dt

≤
∫ ∞

0
Ex

[
Ey

(
yT A2

t y − Tr
(
A2

t

))2
Tr
(
A2

t

)
]

dt

=
∫ ∞

0
Ex

[
Var

(
yT A2

t y
)

Tr
(
A2

t

)
]

dt

≤
∫ ∞

0
Ex

[
O
(
ψ2

n

) · Tr
(
A4

t

)

Tr
(
A2

t

)
]

dt

≤ O
(
ψ2

n

)
·
∫ ∞

0
Ex

[
||At ||2op

]
dt,

where the first equality uses Ito’s isometry and the last two lines follow from
Lemma 1.18. The remaining thing is to bound ||At ||2op.

The covariance matrix At corresponds to a density proportional to the log-
concave density p(x) multiplied by a Gaussian density e−cT

t x− t
2 ||x||22 . It is well

known that the operator norm of such At is dominated by the Gaussian term
(e.g. [10], Proposition 2.6), i.e.

||At ||op ≤ O(1/t).

We also need an upper bound for Ex [||At ||2op] when t is close to 0. For this take

k = 1
1/2−ε

in Lemma 1.34, we have for any 0 ≤ t ≤ 1/2−ε

cn1/2−ε (logn)1/2+ε ,

P
[||At ||op ≥ 2

] ≤ 2 exp

(
− 1

ct

)
. (1.5.3)

We can therefore bound E[||At ||2op] as

E[||At ||2op] ≤ 4 · P [||At ||op < 2
]+ 1

t2 · P [||At ||op ≥ 2
] ≤ 4+ 1

t2 · 2 exp

(
− 1

ct

)
.

Since t ≤ 1/2−ε

cn1/2−ε (log n)1/2+ε , 1/t ≥ cn1/2−ε (log n)1/2+ε

1/2−ε
. For fixed 0 < ε < 1/2, the last

term 1
t2 · 2 exp

(
− 1

ct

)
becomes negligible when n is sufficiently large so E[||At ||2op]
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is bounded by some constant Cε (that depends on ε) for any t ≤ 1/2−ε

cn1/2−ε (log n)1/2+ε =
T ≤ 1. It follows that

W2(〈x, y〉, L)2 ≤ O
(
ψ2

n

)
·
∫ ∞

0
Ex

[
||At ||2op

]
dt

≤ O
(
ψ2

n

)
·
(∫ T

0
Cεdt +

∫ ∞

T

1

t2 dt

)

≤ O
(
ψ2

n

)
· 1

T
= O

(
n1−2ε(log n)1/2+ε

)
.

We note that L is defined using only the isotropic log-concave distribution p. One
can therefore prove a similar bound when q is the n-dimensional standard normal
distribution, i.e.

W2(〈x, g〉, L)2 = O
(
n1−2ε(log n)1/2+ε

)
.

Combining these two bounds, we have the desired result.

W2(〈x, y〉, 〈x, g〉)2 = O
(
n1−2ε(log n)1/2+ε

)
.

��

1.5.1 Connection to Classical CLT for Convex Sets

Using exactly the same approach, we prove the following theorem which is easier
to compare with classical results on central limit theorem for convex sets. Here we
replace the W2 distance in Theorem 1.5.1 by the total variation distance.

Theorem 1.51 Assume ψn = O
(
n1/4−ε/2

)
for some 0 < ε < 1/2 and some

dimension n. Let p, q be any isotropic log-concave distributions in R
n. For fixed

vector x ∼ p, denote 〈x, y〉 the random variable formed by the inner product of x

and y, when y ∼ q is independently drawn from x. Let g ∼ N(0, 1) be a standard
normal distribution. Then we have

Px∼p

[
dTV

( 〈x, y〉
‖x‖2

, g

)
≥ Cn−ε/2

]
≤ exp

(
−cn

1
2 −ε(log n)1/2+ε

)
,

for some constants c and C that depend on ε.

The following lemma can be proved by using a similar approach as in the proof
of Lemma 1.50.
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Lemma 1.52 Assume ψn = O
(
n1/4−ε/2

)
for some 0 < ε < 1/2 and some

dimension n. Let p, q be any isotropic log-concave distributions in R
n and let

x ∼ p, y ∼ q and g ∼ N(0, I ) be independent samples. Then with probability

at least 1 − exp
(
−cn

1
2 −ε(log n)1/2+ε

)
over the random choice of x, we have

W2(〈x, y〉, 〈x, g〉) = O
(
n

1
2 −ε
)

,

where the constant c depends on ε.

Proof of Theorem 1.51 Using Lemma 1.52 By Lemma 1.16, we have with proba-
bility at least 1 − exp(−�(

√
n)), ‖x‖2 ≥ C

√
n for some universal constant C > 0.

We condition on this event and the event in Lemma 1.52 such that

W2(〈x, y〉, 〈x, g〉) = O
(
n

1
2 −ε
)

.

The probability that these events hold at the same time is at least

1 − exp
(
−�

(
n

1
2 −ε(log n)1/2+ε

))
.

In this case we have

W2 (〈x, y〉/ ‖x‖2 , 〈x, g〉/ ‖x‖2) = O
(
n−ε

)
.

Notice that for a fixed x, 〈x, y〉/ ‖x‖2 follows a one-dimensional isotropic log-
concave distribution and 〈x, g〉/ ‖x‖2 follows a standard normal distribution.
Applying Lemma 1.22 finishes the proof of the theorem. ��

Appendix 1: Missing Proofs in Sect. 1.2.4

We restate Lemma 1.23 below for reference.

Lemma 1.23 Let μ and ν be two probability measures in R. Suppose one of the
following holds:

1. Both μ and ν are isotropic log-concave distributions.
2. The distribution μ is isotropic log-concave, while ν is the measure of the random

variable 1√
n
〈x, y〉 where x ∼ p and y ∼ q are independent random vectors and

p, q are isotropic log-concave distributions in R
n.

3. There exist isotropic log-concave distributions pμ, qμ, pν and qν in R
n such that

μ is the measure of the random variable 1√
n
〈xμ, yμ〉 and ν is the measure of the

random variable 1√
n
〈xν, yν〉, where xμ ∼ pμ, yμ ∼ qμ, xν ∼ pν and yν ∼ qν

are independent random vectors.
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Then there exists a universal constant c > 0 such that for any 1 ≤ s < t , we have

Wt(μ, ν)t ≤ cWs(μ, ν)s logt−s

(
ct t2t

Ws(μ, ν)s

)
+ ct t2t exp(−c

√
n).

Moreover, the above bound is valid even when the coupling (μ, ν) on the left-hand
side is taken to be the best coupling for Ws(μ, ν) instead of the best coupling for
Wt(μ, ν).

Proof of Lemma 1.23 The result for Case 1 is given by Meckes and Meckes [25,
Prop 5]. Here we use the same idea to prove the result for Case 2. The proof for Case
3 is almost the same and is omitted.

We denote the random variable drawn from ν as z and the best coupling for

Ws(μ, ν) as
(

1√
n
〈x, y〉, z

)
. We use the coupling

(
1√
n
〈x, y〉, z

)
in the rest of the

proof whenever we write expectations. Denote 1{·} the indicator function of an event.
For any R > 0, we have

Wt

(
1√
n

〈x, y〉, z
)t

≤ E

∣∣∣∣
1√
n

〈x, y〉 − z

∣∣∣∣
t

≤ Rt−s · E
∣∣∣∣

1√
n
〈x, y〉 − z

∣∣∣∣
s

+ E

∣∣∣∣
1√
n

〈x, y〉 − z

∣∣∣∣
t

1{∣∣∣ 1√
n
〈x,y〉−z

∣∣∣≥R
}

≤ Rt−s · Ws

(
1√
n
〈x, y〉, z

)s

+
√
P

[∣∣∣∣
1√
n
〈x, y〉 − z

∣∣∣∣ ≥ R

]
· E
(

1√
n
〈x, y〉 − z

)2t

,

where the last step is by Cauchy-Schwarz. Now we bound the second term in the
above expression. Using Minkowski’s inequality, we have

(
E

(
1√
n
〈x, y〉 − z

)2t
)1/2t

≤
(
Ez2t

)1/2t +
(
E

(
1√
n
〈x, y〉

)2t
)1/2t

.

Since z follows an isotropic log-concave distribution, it follows from Lemma 1.15

that
(
Ez2t

)1/2t ≤ 4t . For the second term we notice that when x is fixed, the random
variable 1√

n
〈x, y〉 follows a one-dimensional log-concave distribution with variance
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‖x‖2
2

n
. Using Lemma 1.15 again, we have

E

(
1√
n
〈x, y〉

)2t

≤ Ex∼p

(
Ey∼q

(
1√
n
〈x, y〉

)2t
)

≤ (4t)2t · Ex∼p

‖x‖2t
2

nt
≤ (4t)4t .

We therefore have

E

(
1√
n
〈x, y〉 − z

)2t

≤
(

4t + 16t2
)2t

.

Now we bound P

[∣∣∣ 1√
n
〈x, y〉 − z

∣∣∣ ≥ R
]

as follows. For some constant c2, CR >

0, whenever R > CR we have

P

[∣∣∣∣
1√
n
〈x, y〉 − z

∣∣∣∣ ≥ R

]
≤ P

[∣∣∣∣
1√
n
〈x, y〉

∣∣∣∣ ≥ R/2

]
+ P [|z| ≥ R/2]

≤ P

[∣∣∣∣
1√
n
〈x, y〉

∣∣∣∣ ≥ R/2

]
+ exp(−c2R).

Since x follows an isotropic log-concave distribution, we have from Theo-
rem 1.20 that whenever R > CR , there exist constants c1, C > 0 such that

P[‖x‖2 ≥ √
Cn] ≤ exp(−c1

√
n).

Whenever ‖x‖2 <
√

Cn for fixed vector x, the random variable 1√
n
〈x, y〉 follows a

one-dimensional log-concave distribution with variance at most C. Therefore when
the universal constant CR is large enough and when R > CR , we have

P

[∣∣∣∣
1√
n

〈x, y〉
∣∣∣∣ ≥ R/2

]
≤ exp(−c1

√
n) + exp(−c2R).

Combining everything we have that when R > CR ,

Wt

(
1√
n
〈x, y〉, z

)t

≤ Rt−sWs

(
1√
n
〈x, y〉, z

)s

+ (4t + 16t2)t ·
√

2
(
exp(−c2R) + exp(−c1

√
n)
)
.
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Optimizing over R, for some constant c ≥ 0 we have

Wt

(
1√
n
〈x, y〉, z

)t

≤ c · Ws

(
1√
n
〈x, y〉, z

)s

· logt−s

⎛
⎜⎝ ct t2t

Ws

(
1√
n
〈x, y〉, z

)s

⎞
⎟⎠

+ ct t2t exp(−c
√

n).

This finishes the proof of Lemma 1.23. ��

Appendix 2: Missing Proofs in Sect. 1.4.1

In this section, we give proofs of the lemmas in Sect. 1.4.1. Here we repeatedly use
the elementary facts that Tr(AB) = Tr(BA) and xT Ay = Tr

(
AyxT

)
.

Lemma 1.53 For any isotropic log-concave distribution p and symmetric matrices
A and B, we have that

Tp(A,B, I) =
∑

i

Tr(A�iB�i) and Tp(A,B, I) =
∑
i,j

Aij Tr(�iB�j),

where �i = Ex∼pxxT xi .

Proof Direct calculation shows that

Tp(A,B, I) = Ex,y∼pxT AyxT ByxT y =
∑

i

Ex,y∼pxT AyxT Byxiyi

=
∑

i

Ex,y∼pTr
(
AxxT ByyT xiyi

)
=
∑

i

Tr(A�iB�i),

and

Tp(A,B, I) = Ex,y∼pxT AyxT ByxT y =
∑
i,j

AijEx,y∼pxiyjx
T ByxT y

=
∑
i,j

AijEx,y∼pTr
(
xxT ByyT xiyj

)
=
∑
i,j

Aij Tr(�iB�j).

��
Lemma 1.39 For any A1, A2, A3 � 0, we have that T (A1, A2, A3) ≥ 0 and for
any symmetric matrices B1, B2, B3, we have that

T (B1, B2, B3) ≤ T (|B1| , |B2| , |B3|) .
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Proof Fix any isotropic log-concave distribution p. We define �i = Ex∼pxxT xT

A
1/2
3 ei which is well defined since A3 � 0. Then, we have that

Tp(A1, A2, A3) = Ex,y∼pxT A1yxT A2yxT A3y =
∑

i

Tr(A1�iA2�i).

Since �i is symmetric and A1, A2 � 0, we have that A
1/2
1 �iA2�iA

1/2
1 � 0 and

Tr(A1�iA2�i) ≥ 0. Therefore, T (A1, A2, A3) ≥ Tp(A1, A2, A3) ≥ 0.

For the second part, we write B1 = B
(1)
1 − B

(2)
1 where B

(1)
1 � 0, B

(2)
1 � 0 and

|B1| = B
(1)
1 + B

(2)
1 . We define B

(1)
2 , B

(2)
2 , B

(1)
3 , B

(2)
3 similarly. Note that

T (B1, B2, B3) = T
(
B

(1)
1 , B

(1)
2 , B

(1)
3

)
− T

(
B

(1)
1 , B

(1)
2 , B

(2)
3

)

− T
(
B

(1)
1 , B

(2)
2 , B

(1)
3

)
+ T

(
B

(1)
1 , B

(2)
2 , B

(2)
3

)

− T
(
B

(2)
1 , B

(1)
2 , B

(1)
3

)
+ T

(
B

(2)
1 , B

(1)
2 , B

(2)
3

)

+ T
(
B

(2)
1 , B

(2)
2 , B

(1)
3

)
− T

(
B

(2)
1 , B

(2)
2 , B

(2)
3

)
.

Since B
(i)
j � 0, the first part of this lemma shows that every term

T
(
B

(i)
1 , B

(j)

2 , B
(k)
3

)
≥ 0. Hence, we have that

T (B1, B2, B3) ≤ T
(
B

(1)
1 , B

(1)
2 , B

(1)
3

)
+ T

(
B

(1)
1 , B

(1)
2 , B

(2)
3

)

+ T
(
B

(1)
1 , B

(2)
2 , B

(1)
3

)
+ T

(
B

(1)
1 , B

(2)
2 , B

(2)
3

)

+ T
(
B

(2)
1 , B

(1)
2 , B

(1)
3

)
+ T

(
B

(2)
1 , B

(1)
2 , B

(2)
3

)

+ T
(
B

(2)
1 , B

(2)
2 , B

(1)
3

)
+ T

(
B

(2)
1 , B

(2)
2 , B

(2)
3

)

= T (|B1| , |B2| , |B3|) .

��
Lemma 1.54 Suppose that ψk ≤ αkβ for all k ≤ n for some 0 ≤ β ≤ 1

2 and α ≥ 1.
Given an isotropic log-concave distribution p and a unit vector v, the following two
statements hold for � = Ex∼pxxT xT v:

1. For any orthogonal projection matrix P with rank r , we have that

Tr(�P�) ≤ O
(
ψ2

min(2r,n)

)
.
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2. For any symmetric matrix A, we have that

Tr(�A�) ≤ O
(
α2 log n

)
·
(

Tr |A|1/(2β)
)2β

.

Proof We first bound Tr(�P�). This part of the proof is generalized from a proof
by Eldan [10]. Note that Tr(�P�) = Ex∼pxT P�xxT v. Since ExT v = 0, we have
that

Tr(�P�)≤
√
E
(
xT v

)2
√

Var
(
xT P�x

) Lem 1.18≤ O
(
ψrank(P�+�P)

) ·√Tr (�P�).

This gives Tr(�P�) ≤ O
(
ψ2

min(2r,n)

)
.

Now we bound Tr(�A�). Since Tr(�A�) ≤ Tr(� |A|�), we can assume
without loss of generality that A � 0. We write A = ∑

i Ai + B where each Ai has
eigenvalues between

( ‖A‖op 2i/n, ‖A‖op 2i+1/n
]

and B has eigenvalues smaller
than or equals to ‖A‖op /n. Clearly, we only need at most �log(n) + 1� many such
Ai . Let Pi be the orthogonal projection from R

n to the span of the range of Ai .
Using ‖Ai‖op Pi � Ai , we have that

Tr(�Ai�) ≤ ‖Ai‖op Tr(�Pi�)

≤ O
(
ψ2

min(2rank(Ai),n)

)
· ‖Ai‖op ≤ O(α2) ·

∑
i

rank(Ai)
2β ‖Ai‖op ,

where we used the first part of this lemma in the last inequality.
Similarly, we have that

Tr(�B�) ≤ O
(
ψ2

n

)
· ‖B‖op ≤ O(n ‖B‖op) ≤ O(1) · ‖A‖op .

Combining the bounds on Tr(�Ai�) and Tr(�B�), we have that

Tr(�A�) ≤ O(α2) ·
∑

i

rank(Ai)
2β ‖Ai‖op + O(1) · ‖A‖op

≤ O(α2) ·
(∑

i

rank(Ai) ‖Ai‖1/(2β)
op

)2β

log(n)1−2β

≤ O(α2 log n) ·
(

Tr |A|1/(2β)
)2β

.

��
In the next lemma, we collect tensor inequalities that will be useful for later

proofs.
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Lemma 1.40 Suppose that ψk ≤ αkβ for all k ≤ n for some fixed 0 ≤ β ≤ 1
2 and

α ≥ 1. For any isotropic log-concave distribution p in R
n and symmetric matrices

A and B, we have that

1. T (A, I, I) ≤ T (I, I, I ) · ‖A‖op.
2. T (A, I, I) ≤ O

(
ψ2

n

) · Tr |A|.
3. T (A,B, I) ≤ O

(
ψ2

r

) · ‖B‖op Tr |A| where r = min(2 · rank(B), n).

4. T (A,B, I) ≤ O
(
α2 log n

) · (Tr |B|1/(2β)
)2β

Tr |A|.
5. T (A,B, I) ≤ (

T
(|A|s , I, I

))1/s · (T (|B|t , I, I
))1/t

, for any s, t ≥ 1 with
s−1 + t−1 = 1.

Proof Without loss of generality, we can assume A is diagonal by rotating space.
In particular, if we want to prove something for Tr(Aα�Aβ�) where A,� are
symmetric matrices, we use the spectral decomposition A = UUT to rewrite
this as

Tr
(
UαUT �UβUT �

)
= Tr

(
α

(
UT �U

)
β

(
UT �U

))
,

which puts us back in the same situation, but with a diagonal matrix A. For all
inequalities listed above, it suffices to upper bound T by upper bounding Tp for any
isotropic log-concave distribution p.

For inequality 1, we note that

Tp(A, I, I )
Lem 1.53=

∑
i

AiiTr(�2
i ) ≤ ‖A‖op

∑
i

Tr
(
�2

i

)
Lem 1.53= ‖A‖op T (I, I, I ),

where the last inequality is from the third moment assumption.
For inequality 2, we note that

Tp(A, I, I)
Lem 1.53=

∑
i

AiiTr(�2
i )

Lem 1.54≤
∑

i

|Aii | · O
(
ψ2

n

)
= O

(
ψ2

n

)
· Tr |A| .

For inequality 3, we let P be the orthogonal projection from R
n to the span of

the range of B. Then, we have that

Tp(A,B, I) ≤ Tp(|A|, |B|, I ) (Lem 1.39)

=
∑

i

|Aii | Tr(�i |B|�i) (Lem 1.53)

1©≤ ‖B‖op

∑
i

|Aii | Tr(�iP�i)

≤ O
(
ψ2

r

)
· Tr|A| ‖B‖op . (Lem 1.54)

where we used that |B| � ‖B‖op P in 1©.
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For inequality 4, we note that

Tp(A,B, I )
Lem 1.53=

∑
i

AiiTr(�iB�i)
Lem 1.54≤ O(α2 log n) · Tr |A|

(
Tr |B|1/(2β)

)2β

.

For inequality 5, we note that

Tp(A,B, I) ≤ Tp(|A| , |B| , I ) (Lem 1.39)

=
∑

i

Tr(|A|�i |B| �i) (Lem 1.53)

≤
∑

i

Tr(|A| |�i | |B| |�i |)

=
∑

i

Tr
(
|�i |1/s |A| |�i |1/s |�i |1/t |B| |�i |1/t

)

≤
∑

i

(
Tr
((

|�i |1/s |A| |�i |1/s
)s))1/s

·
(

Tr

((
|�i |1/t |B| |�i |1/t

)t
))1/t

(Lem 1.24)

≤
∑

i

(
Tr
(|�i | |A|s |�i |

))1/s · (Tr
(|�i | |B|t |�i |

))1/t

(Lem 1.25)

=
∑

i

(
Tr
(
|A|s �2

i

))1/s ·
(

Tr
(
|B|t �2

i

))1/t

≤
(∑

i

Tr
(
|A|s �2

i

))1/s

·
(∑

i

Tr
(
|B|t �2

i

))1/t

= (
Tp

(|A|s , I, I
))1/s · (Tp

(|B|t , I, I
))1/t

. (Lem 1.53)

��
Lemma 1.41 For any positive semi-definite matrices A,B,C and any α ∈ [0, 1],
then

T
(
B1/2AαB1/2, B1/2A1−αB1/2, C

)
≤ T

(
B1/2AB1/2, B,C

)
.

Proof Fix any isotropic log-concave distribution p. Let �i =Ex∼pB1/2xxT B1/2xT

C1/2ei . Then, we have that
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Tp(B1/2AαB1/2, B1/2A1−αB1/2, C)

= Ex,y∼pxT B1/2AαB1/2yxT B1/2A1−αB1/2yxT Cy

=
∑

i

E

((
yT B1/2AαB1/2x

)(
xT B1/2A1−αB1/2y

)
xT C1/2eiy

T C1/2ei

)

=
∑

i

E

(
Tr
(
AαB1/2xxT B1/2A1−αB1/2yyT B1/2

) (
xT C1/2ei

) (
yT C1/2ei

))

=
∑

i

Tr(Aα�iA
1−α�i).

Using Lemma 1.26, we have that

∑
i

Tr
(
Aα�iA

1−α�i

)
≤
∑

i

Tr
(
A�2

i

)
= Ex,y∼pxT B1/2AB1/2yxT ByxT Cy

= Tp

(
B1/2AB1/2, B,C

)
.

Taking the supremum over all isotropic log-concave distributions, we get the result.
��
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