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Preface

Since the mid-1980s, the following volumes containing collections of papers
reflecting the activity of the Israel Seminar in Geometric Aspects of Functional
Analysis have appeared:

1983–1984 Published privately by Tel Aviv University
1985–1986 Springer Lecture Notes in Mathematics, vol. 1267
1986–1987 Springer Lecture Notes in Mathematics, vol. 1317
1987–1988 Springer Lecture Notes in Mathematics, vol. 1376
1989–1990 Springer Lecture Notes in Mathematics, vol. 1469
1992–1994 Operator Theory: Advances and Applications, vol. 77, Birkhäuser
1994–1996 MSRI Publications, vol. 34, Cambridge University Press
1996–2000 Springer Lecture Notes in Mathematics, vol. 1745
2001–2002 Springer Lecture Notes in Mathematics, vol. 1807
2002–2003 Springer Lecture Notes in Mathematics, vol. 1850
2004–2005 Springer Lecture Notes in Mathematics, vol. 1910
2006–2010 Springer Lecture Notes in Mathematics, vol. 2050
2011–2013 Springer Lecture Notes in Mathematics, vol. 2116
2014–2016 Springer Lecture Notes in Mathematics, vol. 2169

The first six were edited by Lindenstrauss and Milman, the seventh by Ball and
Milman, the subsequent four by Milman and Schechtman, the subsequent one by
Klartag, Mendelson, and Milman, and the last two by the present editors.

This is the second of two volumes from the years 2017–2019, the first volume is
published in Springer Lecture Notes in Mathematics, vol. 2256. As in the previous
Seminar Notes, these two volumes reflect general trends in the study of Geometric
Aspects of Functional Analysis, understood in a broad sense. Two classical topics
represented are the Concentration of Measure Phenomenon in the Local Theory
of Banach Spaces, which has recently had triumphs in Random Matrix Theory,
and the Central Limit Theorem, one of the earliest examples of regularity and
order in high dimensions. Central to the text is the study of the Poincaré and log-
Sobolev functional inequalities, their reverses, and other inequalities, in which a
crucial role is often played by convexity assumptions such as log-concavity. The

v



vi Preface

concept and properties of entropy form an important subject, with Bourgain’s slicing
problem and its variants drawing much attention. Constructions related to convexity
theory are proposed and revisited, as well as inequalities that go beyond the
Brunn–Minkowski theory. One of the major current research directions addressed
is the identification of lower-dimensional structures with remarkable properties in
rather arbitrary high-dimensional objects. In addition to functional analytic results,
connections to computer science and to differential geometry are also discussed. All
contributions are original research papers and were subject to the usual refereeing
standards.

We are grateful to Vitali Milman for his help and guidance in preparing and
editing these two volumes.

Tel Aviv/Rehovot, Israel Bo’az Klartag
Haifa, Israel Emanuel Milman



Jean Bourgain: In Memoriam

Our friend and mentor Jean Bourgain passed away on December 22, 2018, at the
age of 64.

Jean Bourgain by Jan Rauchwerger. Courtesy of Vitali Milman

Jean Bourgain was one of the most outstanding mathematicians of our time.
Bourgain changed the face of analysis; he revolutionized our understanding of
analysis. He has introduced, mastered, and perfected many different methods in
every corner of analysis, including a dozen of neighboring fields, and has left his
mark in each of these directions. His achievements, vision, and insight united many
distant and very diverse directions of mathematics into one enormously powerful
and broad entity. When we say “Analysis” today we mean, besides classical
directions, also ergodic theory, PDE, several directions of analytical number theory,
geometry, and combinatorics (including complexity). This is undoubtedly the result
of Bourgain’s activity, unprecedented in its strength and diversity. The torrent of
his achievements is difficult to grasp, the number of very long-standing problems
Bourgain has solved can be counted in tens, perhaps approaching a hundred, and
this would take a whole book to describe. It is almost impossible to believe: ∼550
hard analysis papers written over less than 40 years.

Jean’s passing is a terrible loss for his family and friends, and a terrible loss to
the mathematical world. We shudder at the thought of how many more theorems he

vii



viii Jean Bourgain: In Memoriam

could have proved and open problems he could have solved. He leaves behind an
unbelievable legacy of results carrying his name, whose breadth is matched only by
their depth.

In addition to being a mathematical giant, Jean has personally influenced us all.
His influence was also well felt on the GAFA seminar notes. He has published a total
of 50 papers (3 in the present volume) in every volume of the GAFA seminar notes
since its inception (45 in Springer Math. Notes series, 2 in Birkhauser series, and 3
in Mathematical Sciences Research Institute (MSRI), Berkeley). We are proud that
some of his last papers are published in these GAFA Seminar Notes (Volume I).

May he rest in peace.

Tel Aviv/Rehovot, Israel Bo’az Klartag (Editor)
Haifa, Israel Emanuel Milman (Editor)
Tel Aviv, Israel Vitali Milman (Founding Editor)
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Chapter 1
A Generalized Central Limit Conjecture
for Convex Bodies

Haotian Jiang, Yin Tat Lee, and Santosh S. Vempala

Abstract The central limit theorem for convex bodies says that with high probabil-
ity the marginal of an isotropic log-concave distribution along a random direction
is close to a Gaussian, with the quantitative difference determined asymptotically
by the Cheeger/Poincare/KLS constant. Here we propose a generalized CLT for
marginals along random directions drawn from any isotropic log-concave distri-
bution; namely, for x, y drawn independently from isotropic log-concave densities
p, q , the random variable 〈x, y〉 is close to Gaussian. Our main result is that this
generalized CLT is quantitatively equivalent (up to a small factor) to the KLS
conjecture. Any polynomial improvement in the current KLS bound of n1/4 in R

n

implies the generalized CLT, and vice versa. This tight connection suggests that
the generalized CLT might provide insight into basic open questions in asymptotic
convex geometry.

This research of the author “Yin Tat Lee” was supported in part by NSF Awards CCF-1740551,
CCF-1749609, and DMS-1839116.
This research of the author “Santosh S. Vempala” was supported in part by NSF Awards CCF-
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1.1 Introduction

Convex bodies in high dimensions exhibit surprising asymptotic properties, i.e.,
phenomena that become sharper as the dimension increases. As an elementary
example, most of the measure of a sphere or ball inRn lies within distance O(1/

√
n)

of any bisecting hyperplane, and a one-dimensional marginal is close to a Gaussian,
i.e., its total variation distance to a Gaussian of the same variance is O(1/

√
n).

A striking generalization of this is the central limit theorem for convex bodies in
Theorem 1.1, originally due to Klartag [16]. A function h : Rn → R+ is called log-
concave if it takes the form h = exp(−f ) for a convex function f : Rn → R∪{∞}.
A probability measure is log-concave if it has a log-concave density. A measure is
said to be isotropic if it has zero mean and identity covariance.

Theorem 1.1 (Central Limit Theorem) Let p be an isotropic log-concave mea-
sure in R

n and y ∼ p. Then we have

Px∼Sn−1 [dTV (〈x, y〉,N(0, 1)) ≥ cn] ≤ cn,

for some constants cn that tends to 0 as n → +∞.

The central limit theorem is closely related to the thin-shell conjecture (also
known as the variance hypothesis) [2, 4]. Let σn ≥ 0 satisfy

σ 2
n = sup

p
Ex∼p

[(‖x‖ − √
n
)2]

,

where the supremum is taken over all isotropic, log-concave measures p in R
n. The

thin-shell conjecture [2, 4] asserts the existence of a universal constant C such that
σ 2
n < C for all n ∈ N. It is closely connected to the CLT: by a direct calculation,

the CLT implies a bound on σn (and the conjectured CLT parameter implies the
thin-shell conjecture); Moreover, cn = O(σn logn/

√
n) [2, 10]. The first non-trivial

bound on σn, which gives the first non-trivial bound on cn in Theorem 1.1, was due
to Klartag [16]. This was followed by several improvements and refinements [12, 14,
17, 27]. The current best bound is σn = O(n1/4) which implies cn = O(n−1/4 logn)

[18]. This follows from the well-known fact that σn = O(ψn), where ψn is the KLS
constant (also known as the inverse Cheeger constant) defined as follows.

Definition 1.2 (KLS Constant) For a log-concave density p in R
n with induced

measure μp, the KLS constant ψp is defined as

1

ψp

= inf
S⊂Rn,μp(S)≤1/2

μp(∂S)

μp(S)
.

We define ψn be the supremum of ψp over all isotropic log-concave densities p in
R

n.
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Theorem 1.3 ([18]) The KLS constant of any isotropic log-concave density in R
n

is O(n1/4).

For other connections and implications of the KLS conjecture, including its
equivalence to spectral gap and its implication of the slicing conjecture, the reader
is referred to recent surveys [13, 20] and this comprehensive book [5].

A key fact used in the above theorem is the following elementary lemma about
log-concave densities.

Lemma 1.4 (Third Moment) For x, y drawn independently from an isotropic log-
concave density p, we have E(〈x, y〉3) = O(n1.5).

We remark that the third moment bound in Lemma 1.4, holds even if x, y are drawn
independently from different measures.

If the KLS conjecture is true, then the expression above is O(n). It is shown in an
earlier version of [18] that any polynomial improvement in the third moment bound
to n1.5−ε for some ε > 0 would lead to an improvement in the bound on the KLS
constant to n1/4−ε′

for some ε′ > 0. (The techniques used in the corresponding part
of the preprint [18] are formally included in this paper.)

Motivated by the above connection, we propose a generalized CLT in this paper.
To formally state our generalized CLT, we need the definition of Lp Wasserstein
distance.

Definition 1.5 (Lp Wasserstein Distance or Wp Distance) The Lp Wasserstein
distance between two probability measures μ and ν in R for p ≥ 1 is defined by

Wp(μ, ν)
def= inf

π

[∫
|x − y|pdπ(x, y)

] 1
p

,

where the infimum is over all couplings of μ and ν, i.e. probability measures π in
R

2 that have marginals μ and ν.

When convenient we will denote Wp(μ, ν) also be Wp(x, y) where x ∼ μ, y ∼ ν.
Our generalized CLT is stated using the W2 distance, which is a natural choice, also
used in related work on CLT’s [11, 28].

The content of the conjecture is that one can replace the uniform distribution on
the sphere (or Gaussian) with any isotropic log-concave density, i.e., along most
directions with respect to any isotropic log-concave measure, the marginal of an
isotropic log-concave measure is approximately Gaussian.

Conjecture 1.6 (Generalized CLT) Let x, y be independent random vectors drawn
from isotropic log-concave densities p, q respectively and G ∼ N(0, n). Then,

W2(〈x, y〉,G) = O(1). (1.1.1)
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The current best upper bound on the W2 distance in Eq. (1.1.1) is the trivial bound
of O(

√
n). As we will see later, a third moment bound of order O(n) in Lemma 1.4

would be implied if Conjecture 1.6 holds.
Our main result is that this Generalized CLT is equivalent (up to a small factor)

to the KLS conjecture, and any polynomial improvement in one leads to a similar
improvement in the other.

Theorem 1.7 (Generalized CLT Equivalent to KLS) Fix ε ∈ (0, 1/2). If for
every isotropic log-concave measure p in R

n and independent vectors x, y ∼ p

and g ∼ N(0, n), we have W2(〈x, y〉, g) = O
(
n1/2−ε

)
, then for any δ > 0, we

have ψn = O
(
n1/4−ε/2+δ

)
.

On the other hand, if we have ψn = O
(
n1/4−ε/2

)
, then for any isotropic log-

concave measures p, q in R
n, independent vectors x ∼ p, y ∼ q and δ > 0, we

have W2(〈x, y〉,G) = O
(
n1/2−ε+δ

)
.

Remark 1.8 We emphasize that the equivalence between Generalized CLT and
the KLS conjecture in Theorem 1.7 does not hold in a pointwise sense, i.e. the
Generalized CLT for a specific isotropic log-concave measure p in R

n alone does
not imply the corresponding bound for ψp and vice versa. One needs to establish
the Generalized CLT for all isotropic log-concave measures in R

n in order to deduce
the KLS conjecture.

The proof of Theorem 1.7 proceeds in three steps: (1) in Theorem 1.9 below,
we show that an improved third moment bound implies an improved bound on the
KLS constant (an earlier version of this part of the proof is implicit in the preprint
[18]), (2) in Theorem 1.27, we show that an improved bound for Generalized CLT
implies an improved third moment bound, and (3) in Theorem 1.49, we show that an
improved bound on the KLS constant implies an improved bound for Generalized
CLT. While all three parts are new and unpublished (except on the arXiv), the proof
of (3) is via a coupling with Brownian motion (we discuss the similarity to existing
literature [11]), (2) is relatively straightforward, and (1) is the most technical, based
on a carefully chosen potential function and several properties of an associated
tensor.

The main intermediate result in our proof that the Generalized CLT implies the
KLS conjecture is the following theorem.

Theorem 1.9 Fix ε ∈ (0, 1/2). If for every isotropic log-concave distribution p in
R

n and independent vectors x, y ∼ p, we have

Ex,y∼p

(
〈x, y〉3

)
= O

(
n1.5−ε

)
, (1.1.2)

then for any δ > 0, we have ψn = O
(
n1/4−ε/2+δ

)
.

In fact what we show is that the KLS constant ψn can be bounded in terms of the
third moment.
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Theorem 1.10 Let p range over all isotropic log-concave distributions in R
n.

Then,

ψ2
n ≤ Õ (1)

n
· sup

p
Ex,y∼p

(
〈x, y〉3

)
= Õ(1) · sup

p
Eθ∼Sn−1

∥∥∥Ex∼p

(
〈x, θ〉xxT

)∥∥∥
F
.

(1.1.3)

This intermediate result might be of independent interest and is in fact a refinement
of the following bound on the KLS constant given by Eldan [10].

ψ2
n ≤ Õ(1) · sup

p
sup

θ∈Sn−1

∥∥∥Ex∼p

(
〈x, θ〉xxT

)∥∥∥
F
. (1.1.4)

We replace the supremum over θ ∈ S
n−1 on the RHS by the expectation over

S
n−1. Here ‖·‖F stands for the Frobenius norm (see Sect. 1.2.1). To see how (1.1.3)

refines (1.1.4), let x, y ∼ p be independent vectors and σ be the uniform measure
on S

n−1. Then,

∫

Sn−1

∥∥∥Ex∼p

(
〈x, θ〉xxT

)∥∥∥
F
dσ(θ) =

∫

Sn−1
Ex,y∼p

(
〈x, θ〉 · 〈y, θ〉 · 〈x, y〉2

)
dσ(θ)

= 1

n
Ex,y∼p

(
〈x, y〉3

)
.

1.2 Preliminaries

In this section, we review background definitions.

1.2.1 Notation and Definitions

A function h : R
n → R+ is called log-concave if it takes the form h(x) =

exp(−f (x)) for a convex function f : Rn → R∪{∞}. It is t-strongly log-concave if
it takes the form h(x) = h′(x)e− t

2 ‖x‖2
2 where h′(x) : Rn → R+ is an integrable log-

concave function. A probability measure is log-concave (t-strongly log-concave) if
it has a log-concave (resp. t-strongly log-concave) density function.

Given a matrix A ∈ R
m×n, we define its Frobenius norm (also known as Hilbert-

Schmidt norm), denoted as ‖A‖F , to be

‖A‖F =
√√√√

m∑
i=1

n∑
j=1

|Ai,j |2 = Tr
(
ATA

)
.
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The operator norm (also known as spectral norm) of A, denoted ‖A‖op, is defined
as

‖A‖op =
√
λmax

(
ATA

)
,

where λmax(·) stands for the maximum eigenvalue.

1.2.2 Stochastic Calculus

Given real-valued stochastic processes xt and yt , the quadratic variations [x]t and
[x, y]t are real-valued stochastic processes defined by

[x]t = lim|P |→0

∞∑
n=1

(
xτn − xτn−1

)2 and

[x, y]t = lim|P |→0

∞∑
n=1

(
xτn − xτn−1

) (
yτn − yτn−1

)
,

where P = {0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ↑ t} is a stochastic partition of the non-
negative real numbers, |P | = maxn (τn − τn−1) is called the mesh of P and the
limit is defined using convergence in probability. Note that [x]t is non-decreasing
with t and [x, y]t can be defined as

[x, y]t = 1

4
([x + y]t − [x − y]t ) .

For example, if the processes xt and yt satisfy the SDEs dxt = μ(xt)dt +σ(xt)dWt

and dyt = ν(yt )dt + η(yt)dWt where Wt is a Wiener process, we have

[x]t =
∫ t

0
σ 2(xs)ds [x, y]t =

∫ t

0
σ(xs)η(ys)ds and d[x, y]t = σ(xt )η(yt )dt.

For vector-valued SDEs

dxt = μ(xt )dt + �(xt )dWt and dyt = ν(yt )dt + M(yt)dWt,

we have that

[xi, xj ]t =
∫ t

0

(
�(xs)�

T (xs)
)
ij
ds and d[xi, yj ]t =

(
�(xt )M

T (yt )
)
ij
dt.
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Lemma 1.11 (Itô’s Formula) Itô [15] Let x be a semimartingale and f be a twice
continuously differentiable function, then

df (xt ) =
∑
i

df (xt )

dxi
dxi + 1

2

∑
i,j

d2f (xt )

dxidxj
d[xi, xj ]t .

The next two lemmas are well-known facts about Wiener processes.

Lemma 1.12 (Reflection Principle) Given a Wiener process Wt and a, t ≥ 0, then
we have that

P

(
sup

0≤s≤t

Ws ≥ a

)
= 2P(Wt ≥ a).

Theorem 1.13 (Dambis, Dubins-Schwarz Theorem) [8, 9] Every continuous
local martingale Mt is of the form

Mt = M0 + W[M]t for all t ≥ 0,

where Ws is a Wiener process.

1.2.3 Log-Concave Functions

Theorem 1.14 (Dinghas, Prékopa, and Leindler) The convolution of two log-
concave functions is log-concave; in particular, any marginal of a log-concave
density is log-concave.

The next lemma is a “reverse” Hölder’s inequality (see e.g., [23]).

Lemma 1.15 (Log-Concave Moments) For any log-concave density p in R
n and

any positive integer k,

Ex∼p ‖x‖k ≤ (2k)k ·
(
Ex∼p ‖x‖2

)k/2
.

The following inequality bounding the small ball probability is from [3].

Theorem 1.16 ([3, Thm. 10.4.7]) For any isotropic log-concave density p and any
ε < ε0,

Px∼p

(‖x‖2 ≤ ε
√
n
) ≤ εc

√
n,

where ε0, c are absolute constants.
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The following theorem from [6, 24] states that the Poincaré constant is bounded
by the KLS constant.

Theorem 1.17 (Poincaré Constant [6, 24]) For any isotropic log-concave density
p in R

n and any smooth function g, we have

Varx∼pg(x) ≤ O
(
ψ2

n

)
· Ex∼p ‖∇g(x)‖2 .

An immediate consequence of the above theorem is the following lemma which
is central to our analysis. We give a proof of this central lemma for completeness.

Lemma 1.18 For any matrix A and any isotropic log-concave density p,

Varx∼p

(
xT Ax

)
≤ O

(
ψ2

r

)
· ‖A‖2

F ,

where r = rank(A + AT ).

Proof Since xT Ax=xT AT x, we have Varx∼p

(
xT Ax

)=Varx∼p

(
xT
(
A+AT

)
x
)
/4.

Now applying Theorem 1.17 to the projection of p onto the orthogonal complement
of the null space of matrix A finishes the proof. ��

To prove a upper bound on the KLS constant, it suffices to consider subsets of
measure 1/2. We quote a theorem from [26, Thm 1.8].

Theorem 1.19 The KLS constant of any log-concave density is achieved by a subset
of measure 1/2.

The next theorem is an essentially best possible tail bound on large deviations
for log-concave densities, due to Paouris [27].

Theorem 1.20 There exists a universal constant c such that for any isotropic log-
concave density p in R

n and any t > 1, Px∼p

(‖x‖ > c · t√n
) ≤ e−t

√
n.

1.2.4 Distance Between Probability Measures

The total variation distance is used in the statement of classical central limit theorem
(e.g. [16]).

Definition 1.21 The total variation distance between two probability measures μ

and ν in R is defined by

dTV(μ, ν)
def= sup

A⊆R

|μ(A) − ν(A)| .

The following lemma relates total variation distance to L1-Wasserstein distance
(see Definition 1.5) for isotropic log-concave distributions.
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Lemma 1.22 ([25, Prop 1]) Let μ and ν be isotropic log-concave distributions in
R, then we have

dTV(μ, ν) = O(1) ·√W1(μ, ν).

Now we relate Ls Wasserstein distance to Lt Wasserstein distance for 1 ≤
s �= t . By Hölder’s inequality, one can show that for any s ≤ t , we have
Ws(μ, ν) ≤ Wt(μ, ν). In the special case where both μ and ν are isotropic log-
concave distributions in R, it is shown in [25, Prop 5] that

Wt(μ, ν)t ≤ O(1) · Ws(μ, ν)s logt−s

(
t t

Ws(μ, ν)s

)
.

In the following, we generalize this result to cases where μ or ν might be the
measure of the inner product of two independent isotropic log-concave vectors. This
generalization might be useful for future applications. The proof is essentially the
same as that in [25] as is therefore postponed to Appendix 1.

Lemma 1.23 Let μ and ν be two probability measures in R. Suppose one of the
following holds:

1. Both μ and ν are isotropic log-concave distributions.
2. The distribution μ is isotropic log-concave, while ν is the measure of the random

variable 1√
n
〈x, y〉 where x ∼ p and y ∼ q are independent random vectors and

p, q are isotropic log-concave distributions in R
n.

3. There exist isotropic log-concave distributions pμ, qμ, pν and qν in R
n such that

μ is the measure of the random variable 1√
n
〈xμ, yμ〉 and ν is the measure of the

random variable 1√
n
〈xν, yν〉, where xμ ∼ pμ, yμ ∼ qμ, xν ∼ pν and yν ∼ qν

are independent random vectors.

Then there exists a universal constant c > 0 such that for any 1 ≤ s < t , we have

Wt(μ, ν)t ≤ cWs(μ, ν)s logt−s

(
ct t2t

Ws(μ, ν)s

)
+ ct t2t exp(−c

√
n).

Moreover, the above bound is valid even when the coupling (μ, ν) on the left-hand
side is taken to be the best coupling for Ws(μ, ν) instead of the best coupling for
Wt(μ, ν).

1.2.5 Matrix Inequalities

For any symmetric matrix B, we define |B| = √
B2, namely, the matrix formed by

taking absolute value of all eigenvalues of B.
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Lemma 1.24 (Matrix Hölder Inequality) Given a symmetric matrices A and B

and any s, t ≥ 1 with s−1 + t−1 = 1, we have

Tr(AB) ≤ (
Tr |A|s)1/s (Tr |B|t)1/t .

Lemma 1.25 (Lieb-Thirring Inequality [22]) Given positive semi-definite matri-
ces A and B and r ≥ 1, we have

Tr
((

B1/2AB1/2
)r) ≤ Tr

(
Br/2ArBr/2

)
.

Lemma 1.26 ([1, 10]) Given a symmetric matrix B, a positive semi-definite matrix
A and α ∈ [0, 1], we have

Tr
(
AαBA1−αB

)
≤ Tr

(
AB2

)
.

1.2.6 From Generalized CLT to Third Moment Bound

In this subsection, we prove that an improved bound for Generalized CLT implies
an improved third moment bound.

Theorem 1.27 Fix ε ∈ (0, 1/2). Let p be any isotropic log-concave distribution in
R

n, x, y be independent random vectors drawn from p and G ∼ N(0, n). If we have

W2(〈x, y〉,G)2 = O
(
n1−2ε

)
, (1.2.1)

then it follows that

Ex,y∼p

(
〈x, y〉3

)
= O

(
n1.5−ε

)
.

We remark that while the equivalence between Generalized CLT and the KLS
conjecture in our main theorem (Theorem 1.7) does not hold in a point-wise sense,
the result in Theorem 1.27 holds for every isotropic log-concave p.

Proof Let π2 be the best coupling between 〈x, y〉 and G in (1.2.1). In the rest of
the proof, we use Eπ2 to denote the expectation where 〈x, y〉 and G satisfies the
coupling π2. Applying Lemma 1.23, we have

Eπ2 |〈x, y〉,G|3 = O
(
n

3
2 −2ε logn

)
.
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Now we can bound Ex,y∼p〈x, y〉3 using the coupling π2 as

Ex,y∼p〈x, y〉3 = Eπ2 (〈x, y〉 − G + G)3

= Eπ2

(
G3 +3G2(〈x, y〉−G)+3G(〈x, y〉−G)2 + (〈x, y〉−G)3

)
.

The first term is zero due to symmetry. For the second term, we have

Eπ2G
2(〈x, y〉 − G) ≤

√
EG∼N(0,n)G4 ·

√
Eπ2(〈x, y〉 − G)2

= O(n) · O
(
n0.5−ε

)
= O

(
n1.5−ε

)
.

The last two terms can be bounded similarly as

Eπ2G(〈x, y〉 − G)2 ≤
(
EG∼N(0,n)|G|3

) 1
3 ·
(
Eπ2 |〈x, y〉 − G|3

) 2
3

= O
(√

n
) · O

(
n1− 4

3 ε log
2
3 n
)

= O
(
n1.5−ε

)
,

and

Eπ2(〈x, y〉 − G)3 ≤ Eπ2 |〈x, y〉 − G|3 = O
(
n1.5−2ε logn

)
= O

(
n1.5−ε

)
.

This completes the proof of Theorem 1.27. ��

1.3 Stochastic Localization

The key technique used in part of our proofs is the stochastic localization scheme
introduced in [10]. The idea is to transform a given log-concave density into one
that is proportional to a Gaussian times the original density. This is achieved by a
martingale process by modifying the current density infinitesimally according to an
exponential in a random direction. By having a martingale, the measures of subsets
are maintained in expectation, and the challenge is to control how close they remain
to their expectations over time. We now define a simple version of the process we
will use, which is the same as in [18].

1.3.1 The Process and Its Basic Properties

Given a distribution with a log-concave density p(x), we start at time t = 0 with
this distribution and at each time t > 0, we apply an infinitesimal change to the
density. This is done by picking a random direction from a standard Gaussian.
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Definition 1.28 Given a log-concave distribution p, we define the following
stochastic differential equation:

c0 = 0, dct = dWt + μtdt, (1.3.1)

where the probability distribution pt , the mean μt and the covariance At are defined
by

pt(x) = ec
T
t x− t

2 ‖x‖2
2p(x)∫

Rn e
cTt y− t

2 ‖y‖2
2p(y)dy

, μt = Ex∼pt x, At = Ex∼pt (x−μt)(x−μt)
T .

The following basic lemmas will be used in the analysis. For a more rigorous
account of the construction and further details of the process, the reader is referred
to [11, 18, 20]

Lemma 1.29 For any x ∈ R
n, we have dpt (x) = (x − μt )

T dWtpt (x).

Next we state the change of the mean and the covariance matrix.

Lemma 1.30 dμt = AtdWt and dAt = ∫
Rn(x−μt )(x−μt)

T
(
(x − μt)

T dWt

)
pt

(x)dx − A2
t dt.

1.3.2 Bounding the KLS Constant

The following lemmas from [18] are used to bound the KLS constant by the spectral
norm of the covariance matrix at time t . First, we bound the measure of a set of
initial measure 1

2 .

Lemma 1.31 For any set E ⊂ R
n with

∫
E
p(x)dx = 1

2 and t ≥ 0, we have that

P

(
1

4
≤
∫

E

pt(x)dx ≤ 3

4

)
≥ 9

10
− P

(∫ t

0
‖As‖op ds ≥ 1

64

)
.

At time t , the distribution is t-strongly log-concave and it is known that it has
KLS constant O

(
t−1/2

)
. The following isoperimetric inequality was proved in [7]

and was also used in [10].

Theorem 1.32 Let h(x) = f (x)e− t
2 ‖x‖2

2/
∫
f (y)e− t

2 ‖y‖2
2dy where f : Rn → R+

is an integrable log-concave function. Then h is log-concave and for any measurable
subset S of Rn,

∫

∂S

h(x)dx = �
(√

t
)

· min

{∫

S

h(x)dx,

∫

Rn\S
h(x)dx

}
.

In other words, the KLS constant of h is O
(
t−1/2

)
.
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This gives a bound on the KLS constant.

Lemma 1.33 Given a log-concave distribution p, let At be given by Definition 1.28
using initial distribution p. Suppose that there is T > 0 such that

P

(∫ T

0
‖As‖op ds ≤ 1

64

)
≥ 3

4
,

then we have ψp = O
(
T −1/2

)
.

Thus to prove a bound on ψp , it suffices to give an upper bound on ‖At‖op. The
potential function we will use to bound ‖At‖op is �t = Tr((At − I)q) for some
even integer q . We give the detailed analysis in Sect. 1.4.

The following result from [18] will be useful. It shows that the operator norm
stays bounded up to a certain time with probability close to 1.

Lemma 1.34 ([18], Lemma 58) Assume for k ≥ 1, ψp = O(n1/2k) for any
isotropic log-concave distribution p in R

n. There is a constant c ≥ 0 s.t. for any

0 ≤ T ≤ 1

c · k · (logn)1− 1
k · n1/k

,

we have

P

[
max

t∈[0,T ]
‖At‖op ≥ 2

]
≤ 2 exp

(
− 1

cT

)
. (1.3.2)

1.3.3 Bounding the Potential

In order to bound the potential �t = Tr((At − I)q), we bound its derivative. We go
from the derivative to the potential itself via the following lemma, which might also
be useful in future applications.

Lemma 1.35 Let {�t }t≥0 be an n-dimensional Itô process with �0 ≤ U
2 and

d�t = δtdt + vTt dWt . Let T > 0 be some fixed time, U > 0 be some target upper
bound, and f and g be some auxiliary functions such that for all 0 ≤ t ≤ T

1. δt ≤ f (�t) and ‖vt‖2 ≤ g(�t ),
2. Both f (·) and g(·) are non-negative non-decreasing functions,
3. f (U) · T ≤ U

8 and g(U) · √
T ≤ U

8 .

Then, we have the following upper bound on �t :

P

[
max

t∈[0,T ]�t ≥ U

]
≤ 0.01.
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Proof We denote the Itô process formed by the martingale term as {Yt }t≥0, i.e.
Y0 = 0 and dYt = vTt dWt . We first show that in order to control �t , it suffices to
control Yt .

Claim 1.36 For any 0 ≤ t0 ≤ T , if maxt∈[0,t0] Yt ≤ U
3 , then we have

max
t∈[0,t0]

�t ≤ U.

Proof of Claim 1.36 Assume for the purpose of contradiction that maxt∈[0,t0] �t >

U . Denote t ′ = inf{t ∈ [0, t0]|�t ≥ U}. It follows that for any t ∈ [0, t ′], we have
�t ≤ U and f (�t) · t ′ ≤ f (U) · T ≤ U

8 . It follows that

�t ≤ �0 + U

8
+ Yt < U,

which leads to a contradiction. ��
Since Yt is a martingale, it follows from Theorem 1.13 that there exists a Wiener

process {Bt }t≥0 such that Yt = B[Y ]t , for all t ≥ 0. The next claim bounds Yt using
Bt .

Claim 1.37 If maxt∈[0,U2/64] Bt ≤ U
3 , then we have

max
t∈[0,T ] Yt ≤ U/3,

Proof of Claim 1.37 Assume for the purpose of contradiction that maxt∈[0,T ] Yt ≥
U
3 . Define t0 as the first time when Yt becomes at least U

3 . By definition, for any
t ∈ [0, t0], Yt ≤ U

3 . Using Claim 1.36, we have maxt∈[0,t0] �t ≤ U . It follows that

[Y ]t0 =
∫ t0

0
‖vt‖2

2 dt ≤ T · g2(U) ≤ U2

64
.

This implies that

Yt0 = B[Y ]t0 ≤ max
t∈[0,U2/64]

Bt ≤ U

3
,

which leads to a contradiction. ��
Now it suffices to bound the probability that the Wiener process {Bt }t≥0 exceeds

U/3 in the time period [0, U2/64]. Using the reflection principle in Lemma 1.12,
we have

Pr

[
max

t∈[0,T ]
�t ≥ U

]
≤ Pr

[
max

t∈[0,U2/64]
Bt > U/3

]
= 2 Pr

[
BU2/64 > U/3

] ≤ 0.01.

��
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1.4 From Third Moment Bound to KLS

In this section, we show that an improved third moment bound implies an improved
bound on the KLS constant. Theorems 1.9 and 1.27 together imply the first part of
Theorem 1.7.

Theorem 1.9 Fix ε ∈ (0, 1/2). If for every isotropic log-concave distribution p in
R

n and independent vectors x, y ∼ p, we have

Ex,y∼p

(
〈x, y〉3

)
= O

(
n1.5−ε

)
, (1.1.2)

then for any δ > 0, we have ψn = O
(
n1/4−ε/2+δ

)
.

The rest of this section is devoted to proving Theorem 1.9. Throughout this
section, we assume the condition in Theorem 1.9 holds, i.e. for every isotropic log-
concave distribution p in R

n and independent vectors x, y ∼ p, one has

Ex,y∼p

(
〈x, y〉3

)
= O

(
n1.5−ε

)
. (1.4.1)

1.4.1 Tensor Inequalities

The proof of Theorem 1.9 is based on the potential function �t = Tr ((At − I)q)

for some even integer q . This potential is the one of the key technical differences
between this paper and previous work using stochastic localization, which used
Tr(Aq

t ) [10, 19]. The proof of a tight log-Sobolev inequality [21] used a Stieltjes-
type potential function, Tr((uI − A)−q) to avoid logarithmic factors. The potential
we use here, Tr ((At − I)q) allows us to track how close At is to I (not just bounding
how large At is). For example, in Lemma 1.43, we bound the derivative of the
potential �t by some powers of �t . Since �t is 0 initially, this gives a significantly
tighter bound around t = 0 (compared to Tr(Aq

t )). We will discuss this again in the
course of the proof.

For the analysis we define the following tensor and derive some of its properties.

Definition 1.38 (3-Tensor) For an isotropic log-concave distribution p in R
n and

symmetric matrices A,B and C, define

Tp(A,B,C) = Ex,y∼p

(
xT Ay

)(
xT By

) (
xT Cy

)

We drop the subscript p to indicate the worst case bound over all isotropic log-
concave distributions

T (A,B,C)
def= sup

isotropic log-concave p

Ex,y∼p

(
xT Ay

)(
xT By

) (
xT Cy

)
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It is clear from the definition that T is invariant under permutation of A,B and
C. In the rest of this subsection, we give a few tensor inequalities that will be
used throughout the rest of our proofs. The proofs of these tensor inequalities are
postponed to Appendix 2.

Lemma 1.39 For any A1, A2, A3 � 0, we have that T (A1, A2, A3) ≥ 0 and for
any symmetric matrices B1, B2, B3, we have that

T (B1, B2, B3) ≤ T (|B1| , |B2| , |B3|) .

In the next lemma, we collect tensor inequalities that will be useful for later
proofs.

Lemma 1.40 Suppose that ψk ≤ αkβ for all k ≤ n for some fixed 0 ≤ β ≤ 1
2 and

α ≥ 1. For any isotropic log-concave distribution p in R
n and symmetric matrices

A and B, we have that

1. T (A, I, I) ≤ T (I, I, I ) · ‖A‖op.
2. T (A, I, I) ≤ O

(
ψ2

n

) · Tr |A|.
3. T (A,B, I) ≤ O

(
ψ2

r

) · ‖B‖op Tr |A| where r = min(2 · rank(B), n).

4. T (A,B, I) ≤ O
(
α2 logn

) · (Tr |B|1/(2β))2β Tr |A|.
5. T (A,B, I) ≤ (

T
(|A|s , I, I))1/s · (T (|B|t , I, I))1/t , for any s, t ≥ 1 with

s−1 + t−1 = 1.

Lemma 1.41 For any positive semi-definite matrices A,B,C and any α ∈ [0, 1],
then

T
(
B1/2AαB1/2, B1/2A1−αB1/2, C

)
≤ T

(
B1/2AB1/2, B,C

)
.

1.4.2 Derivatives of the Potential

The next lemma computes the derivative of �t = Tr((At − I)q), as done in [18].
For the reader’s convenience, we include a proof here.

Lemma 1.42 Let At be defined by Definition 1.28. For any integer q ≥ 2, we have
that

dTr
(
(At − I)q

) = q · Ex∼pt (x − μt)
T (At − I)q−1(x − μt)(x − μt)

T dWt

− q · Tr ((At − I)q−1 A2
t )dt

+ q

2
·

∑
α+β=q−2

Ex,y∼pt (x − μt)
T (At − I)α(y − μt)

× (x − μt)
T (At − I)β(y − μt )(x − μt)

T (y − μt )dt.
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Proof Let �(X) = Tr((X − I)q). Then the first and second-order directional
derivatives of � at X is given by

∂�

∂X

∣∣∣∣
H

= q · Tr
(
(X − I)q−1H

)
and

∂2�

∂X∂X

∣∣∣∣
H1,H2

= q ·
q−2∑
k=0

Tr
(
(X − I)kH2(X − I)q−2−kH1

)
.

Using these and Itô’s formula, we have that

dTr((At − I)q) = q · Tr
(
(At − I)q−1dAt

)

+ q

2
·

∑
α+β=q−2

∑
ijkl

Tr
(
(At − I)αeij (At − I)βekl

)
d[Aij ,Akl]t ,

where eij is the matrix that is 1 in the entry (i, j) and 0 otherwise, and Aij is the
real-valued stochastic process defined by the (i, j)th entry of At .

Using Lemmas 1.30 and 1.29, we have that

dAt = Ex∼pt (x − μt)(x − μt )
T (x − μt)

T dWt − AtAtdt

= Ex∼pt (x − μt)(x − μt )
T (x − μt)

T ezdWt,z − AtAtdt, (1.4.2)

where Wt,z is the zth coordinate of Wt . Therefore,

d[Aij ,Akl]t =
∑
z

(
Ex∼pt (x − μt )i(x − μt )j (x − μt)

T ez

)

×
(
Ex∼pt (x − μt )k(x − μt)l(x − μt)

T ez

)
dt

= Ex,y∼pt (x − μt)i(x − μt)j (y − μt)k(y − μt)l(x − μt)
T

× (y − μt)dt. (1.4.3)

Using the formula for dAt (1.4.2) and d[Aij ,Akl]t (1.4.3), we have that

dTr
(
(At − I)q

) = q · Ex∼pt (x − μt )
T (At − I)q−1(x − μt)(x − μt)

T dWt

− q · Tr
(
(At − I)q−1A2

t

)
dt

+ q

2
·

∑
α+β=q−2

∑
ijkl

Tr
(
(At − I)αeij (At − I)βekl

)
Ex,y∼pt

× (x − μt)i(x − μt )j (y − μt)k(y − μt )l(x − μt)
T (y − μt )dt
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= q · Ex∼pt (x − μt )
T (At − I)q−1(x − μt)(x − μt)

T dWt

− q · Tr
(
(At − I)q−1A2

t

)
dt

+ q

2
·

∑
α+β=q−2

Ex,y∼pt (x − μt)
T (At − I)α(y − μt)

× (x − μt)
T (At − I)β(y − μt )(x − μt)

T (y − μt )dt.

��

1.4.3 Bounding the Potential

The derivative of the potential has drift (dt) and stochastic/Martingale (dWt ) terms.
The next lemma bounds the drift and Martingale parts of the change in the potential
by tensor quantities. We will then bound each one separately.

Lemma 1.43 Let At and pt be defined as in Definition 1.28. Let �t = Tr((At−I)q)

for some even integer q ≥ 2, then we have that d�t = δtdt + vTt dWt with

δt ≤ 1

2
q(q − 1) · T

(
At(At − I)q−2, At , At

)
+ 2q ·

(
�

1+ 1
q

t + �
1− 1

q

t n
1
q

)

and

‖vt‖2 ≤ q ·
∥∥∥Ex∼p(x − μt)

T (A − I)q−1(x − μt)(x − μt)
T
∥∥∥

2
.

Proof By Lemma 1.42, we have

d�t = q · Ex∼pt (x − μt )
T (At − I)q−1(x − μt)(x − μt)

T dWt

− q · Tr
(
(At − I)q−1A2

t

)
dt

+ q

2
·

∑
α+β=q−2

Ex,y∼pt (x − μt)
T (At − I)α(y − μt)(x − μt )

T

× (At − I)β(y − μt)(x − μt )
T (y − μt)dt

= q · Ex∼p(x − μt)
T (A − I)q−1(x − μt)(x − μt)

T dWt

− q · Tr
(
(At − I)q−1A2

t

)
dt

+ q

2
·

∑
α+β=q−2

Ex,y∼p̃t
xT At (At − I)αyxT At(At − I)βyxT

× Atydt
def= δtdt + vTt dWt .
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where p̃t is the isotropic correspondence of pt defined by p̃t (x) = p
(
A

1/2
t x + μt

)
,

δtdt is the drift term in d�t and vTt dWt is the martingale term in d�t .
For the drift term αtdt , we have

δt ≤ q

2
·

∑
α+β=q−2

T
(
At(At − I)α,At (At − I)β,At

)− q · Tr
(
(At − I)q−1A2

t

)
.

The first drift term is

q

2
·

∑
α+β=q−2

T
(
At(At − I)α,At (At − I)β ,At

)

≤ q

2
·

∑
α+β=q−2

T
(
At |At − I |α ,At |At − I |β ,At

)
(Lem 1.39)

≤ q

2
·

∑
α+β=q−2

T
(
At |At − I |q−2 , At , At

)
(Lem 1.41)

= q(q − 1)

2
· T
(
At(At − I)q−2, At , At

)
.

For the second drift term, since q is even, we have that

−q · Tr
(
(At − I)q−1A2

t

)
≤ q · Tr

(
|At − I |q−1(At − I + I)2

)

≤ 2q · Tr
(
|At − I |q+1

)
+ 2q · Tr

(
|At − I |q−1

)

≤ 2q · �1+ 1
q

t + 2q · �1− 1
q

t n
1
q .

For the Martingale term vTt dWt , we note that

‖vt‖2 = q ·
∥∥∥Ex∼p(x − μt)

T (A − I)q−1(x − μt)(x − μt )
T
∥∥∥

2
.

��
The Martingale term is relatively straightforward to bound. We use the following

lemma from [18] in our analysis.

Lemma 1.44 ([18, Lem 25]) Given a log-concave distribution p with mean μ and
covariance A. For any positive semi-definite matrix C, we have that

∥∥∥Ex∼p(x − μ)(x − μ)T C(x − μ)

∥∥∥
2

= O
(
‖A‖1/2

op · Tr
(
A1/2CA1/2

))
.

Lemma 1.45 Let pt be the log-concave distribution at time t with covariance
matrix At . Let �t = Tr((At − I)q) for some even integer q ≥ 2 and d�t =
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δtdt + vTt dWt . Assume �t ≤ n. Then,

||vt ||2 ≤ q ·
∥∥∥Ex∼pt (x − μt )

T (A − I)q−1(x − μt )(x − μt)
T
∥∥∥

2

≤ O (q) ·
(
�

1− 1
2q

t n
1
q + n

1
q

)
.

Proof Note that

∥∥∥Ex∼p(x − μt )
T (At − I)q−1(x − μt)(x − μt)

T
∥∥∥

2

≤ O (1) · ‖At‖1/2
op Tr

∣∣∣A1/2
t (At − I)q−1A

1/2
t

∣∣∣ (Lem 1.44)

≤ O (1) · ‖At‖1/2
op Tr|At − I |q−1 + O (1) · ‖At‖1/2

op Tr|At − I |q

≤ O

(
1 + �

1
2q
t

)
· �1− 1

q

t n
1
q + O

(
1 + �

1
2q
t

)
· �t

≤ O

(
�

1− 1
2q

t n
1
q + �

1+ 1
2q

t + n
1
q

)
.

��
Next we bound the drift term. This takes more work. We write

δt ≤ 1

2
q(q − 1)δ(1)t + qδ

(2)
t ,

where

δ
(1)
t = T

(
At(At − I)q−2, At , At

)
and δ

(2)
t = �

1+ 1
q

t + �
1− 1

q

t n
1
q .

We bound δ
(1)
t in the following lemma. This is the core lemma which needs

several tensor properties and bounds. It is also the reason we use Tr((At − I)q as
the potential. Specifically, using this potential lets us write A − I as the sum of
two matrices one with small eigenvalues and the other of low rank, by choosing the
threshold for “small” eigenvalue appropriately.

Lemma 1.46 Suppose that ψk ≤ αkβ for all k ≤ n for some α ≥ 1 and β s.t.
1/4 − ε/2 ≤ β ≤ 1/4. Let � = Tr((A − I)q) for some even integer q ≥ 1

2β and
� = 4β + 2ε − 1. Assume � ≤ n. Then

δ(1) ≤ O(α2) · �n2β ·
[
n

− 1
q �

1
q logn + n

− �
4q · n 2

q �
− 2

q

]
.
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Proof We have that

δ(1) = T
(
A(A − I)q−2, A,A

)

= T
(
(A − I)q−1 + (A − I)q−2, A − I + I,A − I + I

)

≤ T
(
|A − I |q−1, |A − I |, |A − I |

)
+ 2T

(
|A − I |q−1, |A − I |, I

)

+ T
(
|A − I |q−1, I, I

)
(Lem 1.39)

+ T
(
(A − I)q−2, |A − I |, |A − I |

)
+ 2T

(
(A − I)q−2, |A − I |, I

)

+ T
(
(A − I)q−2, I, I

)

≤ T
(
|A − I |q−1, |A − I |, |A − I |

)
+ 3T

(
|A − I |q−1, |A − I |, I

)

+ 3T
(
|A − I |q−1, I, I

)
+ T

(
(A − I)q−2, I, I

)
(Lem 1.41)

�= δ
(1)
1 + 3δ(1)2 + 3δ(1)3 + δ

(1)
4 .

We first bound δ
(1)
1 as follows

δ
(1)
1 = T

(
|A − I |q−1, |A − I |, |A − I |

)

≤ T
(|A − I |q, |A − I |, I) (Lem 1.41)

≤ O(α2 logn) · �
(

Tr|A − I |1/2β
)2β

(Lem 1.40.4)

≤ O(α2 logn) · �
((

Tr|A − I |q) 1
2βq n

1− 1
2βq

)2β

(Lem 1.24)

≤ O(α2 logn) · n2β− 1
q �

1+ 1
q .

For δ(1)2 , we write

|A − I | = B1 + B2,

where B1 consists of the eigen-components of |A − I | with eigenvalues at most η
and B2 is the remaining part. Then we can bound δ

(1)
2 as follows

δ
(1)
2 = T

(
B

q−1
1 , B1, I

)
+ T

(
B

q−1
1 , B2, I

)
+ T

(
B

q−1
2 , B1, I

)

+ T
(
B

q−1
2 , B2, I

)
. (1.4.4)
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The first term in Eq. (1.4.4) can be bounded as

T
(
B

q−1
1 , B1, I

)
≤ T

(
B

q

1 , I, I
)

(Lem 1.41)

≤ T (I, I, I ) · ||B1||q (Lem 1.40.1)

≤ O
(
ηqn1.5−ε

)
.

The second term in Eq. (1.4.4) is bounded as

T
(
B

q−1
1 , B2, I

)
≤ T

(
B

q

1 , I, I
) q−1

q · T (Bq

2 , I, I
) 1

q (Lem 1.40.5)

≤ O
(
ηqn1.5−ε

) q−1
q · O

(
ψ2

n�
) 1

q

(Lem 1.40.1 and Lem 1.40.2)

= O(1) · α 2
q ηq−1n

(1.5−ε)(q−1)
q

+ 2β
q �

1
q ,

where we used Tr
(
B

q
2

) ≤ Tr ((A − I)q) ≤ � in the last line. For the third term in
Eq. (1.4.4), we have

T
(
B

q−1
2 , B1, I

)
≤ T

(
B

q

2 , I, I
) q−1

q · T (Bq

1 , I, I
) 1

q (Lem 1.40.5)

≤ O
(
ψ2

n�
) q−1

q · O
(
ηqn1.5−ε

) 1
q

(Lem 1.40.1 and Lem 1.40.2)

= O(1) · α 2(q−1)
q ηn

2β− 2β
q

+(1.5−ε)· 1
q �

q−1
q .

For the last term in Eq. (1.4.4) , let P be the orthogonal projection from R
n to the

range of B2. Notice that rank(B2) ≤ �
ηq

because each positive eigenvalue of B2 is at
least η. We have

T
(
B

q−1
2 , B2, I

)
= T

(
PB

q−1
2 P,PB2P, I

)

≤ T
(
PB

q

2 P,P, I
)

(Lem 1.41)

≤ O
(
ψ2

2·rank(B2)

)
· � (Lem 1.40.3)

= O

(
α2�1+2β

η2βq

)
.
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Summing up these four terms, we get

δ
(1)
2 ≤ O(1) ·

[
ηqn1.5−ε + α

2
q ηq−1n

(1.5−ε)(q−1)
q

+ 2β
q �

1
q

+ α
2(q−1)

q ηn
2β− 2β

q
+(1.5−ε)· 1

q �
q−1
q + α2�1+2β

η2βq

]

≤ O(α2) ·
[
ηqn1.5−ε + ηq−1n

2β+(1.5−ε)(q−1)
q �

1
q + ηn

2β− 2β
q +(1.5−ε)· 1

q

× �
q−1
q + �1+2β

η2βq

]
.

It turns out that when 1/4 − ε/2 ≤ β ≤ 1/4, the last two terms dominate the
first two terms (which is justified shortly). Balancing the last two terms, we choose

η = �
1
q n

− 2β(q−1)+1.5−ε
q(1+2βq) , and this gives

δ
(1)
2 ≤ O(α2) ·

[
�n2β · nβ(1−4β−2ε)q

1+2βq + �n2β · nβ(1−4β−2ε)(q−1)
1+2βq

+ �n2β · nβ(1−4β−2ε)
1+2βq + �n2β · nβ(1−4β−2ε)

1+2βq

]
.

Since β ≥ 1/4 − ε/2, β(1 − 4β − 2ε) ≤ 0 which implies that the last two terms
dominate the first two terms in this case. We therefore have

δ
(1)
2 ≤ O(α2) · �n2β · nβ(1−4β−2ε)

1+2βq .

The third term δ
(1)
3 is bounded as

δ
(1)
3 = T

(
|A − I |q−1, I, I

)

= T
(
B

q−1
1 , I, I

)
+ T

(
B

q−1
2 , I, I

)

≤ O(1) ·
(
ηq−1n1.5−ε + α2n2β�/η

)
(Lem 1.40.1 and Lem 1.40.2)

≤ O(α2) · n 2β(q−1)+1.5−ε
q �

q−1
q ,

where the last line is by choosing η = (
n2β−1.5+ε�

)1/q
. The final term δ

(1)
4 is

bounded as

δ
(1)
4 = T

(
|A − I |q−2, I, I

)
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= T
(
B

q−2
1 , I, I

)
+ T

(
B

q−2
2 , I, I

)

≤ O(1) ·
(
ηq−2n1.5−ε + α2n2β�/η2

)
(Lem 1.40.1 and Lem 1.40.2)

≤ O(α2) · n 2β(q−2)+2(1.5−ε)
q �

q−2
q .

Combining all the terms we have

δ(1) ≤ O(α2)·�n2β ·
[
n

− 1
q �

1
q logn + n

− β
1+2βq ·� + n

− �
2q n

1
q �

− 1
q + n

−�
q n

2
q �

− 2
q

]
.

Simplifying the above with the assumptions � ≤ n and q ≥ 1
2β finishes the proof

of the lemma. ��

1.4.4 Proof of Theorem 1.9

We note that �0 = 0. Using the bounds we have, we will show that when q is taken
as the smallest even integer greater than max{8, �1/δ�}, with probability close to 1,
we can write

�t ≤ O
(
n1− �

12 log−q n
)
,

for all t ∈ [0, T ] where T = O

(
n

−2β+ �
24q

α2

)
.

Intuitively, when �t ≤ O
(
n1− �

12 log−q n
)

and T = O

(
n

−2β+ �
24q

α2

)
, we have,

using the analysis of the previous section,

δtT ≤ O
(
n1− �

12 log−q n
)

and ‖vt‖2

√
T ≤ O

(
n1− �

12 log−q n
)
.

This suggests that �t stays at most O
(
n1− �

12 log−q n
)

during a period of length

T . Formally, we prove the following lemma to get an improved bound on ψn. Our
proof applies Lemma 1.35.

Lemma 1.47 Suppose that ψk ≤ αkβ,∀k ≤ n for some α ≥ 1 and 1/4 − ε/2 <

β ≤ 1/4. Let p be any isotropic log-concave distribution. Let �t = Tr((At − I)q)

with q = 2�1/β�. Then for n large enough such that n
�

48q > logn where � =
4β + 2ε − 1, there exists a universal constant C s.t.

P

[
max

t∈[0,T ]�t ≥ n1− �
12 log−q n

]
≤ 0.01 with T = Cn

−2β+ �
24q

α2 .
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Proof We use Lemma 1.35 with the bounds from Lemma 1.45 and 1.46. Recall we
have the following bound on the potential change.

d�t = δtdt + vTt dWt ,

with ||vt ||2 ≤ g(�t ) where g(�t) is defined to be +∞ when �t > n and O (q) ·(
�

1− 1
2q

t n
1
q + n

1
q

)
otherwise, and δt ≤ f (�t) where f (�t) is defined to be +∞

when �t > n and 1
2q(q − 1)δ(1)(�t ) + qδ(2)(�t ) otherwise where

δ(1)(�t ) = O(α2) · �tn
2β ·

[
n

− 1
q �

1
q

t logn + n
− �

4q · n 2
q �

− 2
q

t

]
,

and

δ(2)(�t ) = �
1+ 1

q

t + �
1− 1

q

t n
1
q .

We show that the conditions in Lemma 1.35 are met with U = n1− �
12 log−q n and

T = Cn
−2β+ �

24q

α2 for some small enough constant C. It is easy to see that f (�t ) and
g(�t ) are non-negative and non-decreasing functions of �t by our choice of q , so
we only need to check that the last condition of Lemma 1.35 holds.

We first consider the martingale term. For 1 ≤ U ≤ n, we have

g(U) · √
T = O (q) ·

(
U

1− 1
2q n

1
q + n

1
q

)
·
√
Cn

−β+ �
48q

α2

≤ O(q) · U · U− 1
2q n

1
q ·

√
Cn

−β+ �
48q

α2

≤ U · O(q) · √C · n−β+ 1
q
+ �

48q .

Note that q ≥ 2/β and � ≤ 1. Thus,

g(U) · √T ≤ U · O(q)
√
C.

which is bounded by U/8 when C is small enough.
Now we verify that f (U) ·T ≤ U/8 for some suitably small constant C. We first

verify this for δ(2)(�t ).

δ(2)(U) · T ≤ U ·
(
U

1
q + U

− 1
q n

1
q

)
Cn

−2β+ �
24q

= U · C
(
n

1
q
− �

12q log−1 n + n
�

12q logn
)
n

−2β+ �
24q
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≤ UCn
−2β+ 1

q − �
24q logn

≤ UC,

where in the last line we used q ≥ 2/β, � ≤ 1 and nβ > logn. Now we consider
δ(1)(�t ). We denote the two terms in δ(1)(�t ) as δ

(1)
i (�t ), where i = 1, 2. For the

first term δ
(1)
1 (�t ) we have

δ
(1)
1 (U) · T = O(α2) · Un2β(logn)n

− 1
q U

1
q · Cn

−2β+ �
24q

α2

= O(1) · UCn
− �

24q

≤ O(1) · UC.

For the second term δ
(1)
2 (�t) we have

δ
(1)
2 (U) · T = O(α2) · Un2β · n− �

4q · n 2
q U

− 2
q · Cn

−2β+ �
24q

α2

= O(1) · UCn
− �

24q log2 n

≤ O(1) · UC.

This shows that

δ(1)(U)T ≤ O(1)UC.

Thus, for some suitably small C, we have f (U) · T ≤ U/8. Applying Lemma 1.35
completes the proof of the lemma. ��

When 1/4 − ε/2 < β ≤ 1/4, we get a better bound on ψn.

Lemma 1.48 Suppose that ψk ≤ αkβ , for all k ≤ n for some α ≥ 1 and 1/4 −
ε/2 < β ≤ 1/4. Let p be an isotropic log-concave distribution in R

n. Then for n

large enough such that n
�

48q > logn, there exists a universal constant C > 0 s.t.

ψn ≤ Cαn
β− �

48q ,

where � = 4β + 2ε − 1 and q = 2�1/β�.

Proof Using Lemma 1.47, with probability at least 0.99, for any t ≤ T =
Cn

−2β+ �
24q

α2 where C is some universal constant and q = 2�1/β�, we have

�t ≤ n1− �
12 log−q n.
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Assuming this event, we have

∫ T

0
||At ||opdt ≤

∫ T

0

(
1 + �

1/q
t

)
≤ T

(
1 + n

1
q − �

12q log−1 n
)

≤ 1/64.

Now applying Lemma 1.33, we get

ψp ≤ O(α) · nβ− �
48q ,

where C is some universal constant. Since p is arbitrary, we have the result. ��
Now we are finally ready to prove Theorem 1.9.

Proof of Theorem 1.9 We start with the known bound ψn ≤ α0n
β0 for β0 = 1/4

and some constant α0. We construct a sequence of better and better bounds for ψn

which hold for any n large enough such that n
�

48q > logn, where q = �(1/β) =
O(1/(1 − 2ε + 4δ)). (Note that if � ≤ 4δ, then we are done by Lemma 1.48. So
we can assume without loss of generality that � > 4δ). Since q is fixed, one can

find a fixed n0 such that for any n ≥ n0, the requirement n
�

48q > logn is satisfied
whenever � > 4δ, regardless of the current bound on ψn.

Suppose ψn ≤ αin
βi is the current bound. If βi ≤ 1/4 − ε/2 + δ, then we are

done. Otherwise, applying Lemma 1.48 gives the better bound

ψn ≤ αi+1n
βi+1,

where αi+1 = Cαi and βi+1 = βi − �
48q ≤ βi − δ

12q (since � ≥ 4δ). Therefore,

starting from β0 = 1/4 and repeating the procedure at most M = � 6εq
δ

� times,
we will get some m ≤ M such that ψn ≤ αmnβm where βm ≤ 1/4 − ε/2 + δ

and αm ≤ C� 3q
δ �α0. This holds for any large n such that n

δ
12q > logn. For small

n that doesn’t satisfy the requirement n
δ

12q > logn, we simply bound them by
some constant. We conclude that ψn ≤ O

(
n1/4−ε/2+δ

)
for any n. We note that in

fact the bound we get is n1/4−ε/2+δ+q/(δ log n) and since q = O(1/β), we can set
δ = O(1/

√
β logn) so that the bound on β is 1/4 − ε/2 + o(1). ��

1.5 From KLS to Generalized CLT

Theorem 1.49 Assume ψn = O(n1/4−ε/2) for some 0 < ε < 1/2 and some
dimension n. Let p, q be any isotropic log-concave distributions in R

n, x, y be
independent random vectors drawn from p and q and G ∼ N(0, n). It follows
that

W2(〈x, y〉,G)2 = O
(
n1−2ε(logn)1/2+ε

)
. (1.5.1)
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This gives exactly the condition in Theorem 1.27 (up to a small polynomial factor
in logn). The remainder of this section is devoted to proving Theorem 1.49. We start
by relating 〈x, y〉 with 〈x, g〉, where x ∼ p, y ∼ q are independent vectors drawn
from isotropic log-concave distributions p, q in R

n and g ∼ N(0, I ) is a standard
Gaussian vector in R

n.

Lemma 1.50 Assume the conditions of Theorem 1.49. Let g ∼ N(0, I ) be
independent from x and y, then we have

W2(〈x, y〉, 〈x, g〉)2 = O
(
n1−2ε(logn)1/2+ε

)
.

Before we prove Lemma 1.50, we show how to use the lemma to prove
Theorem 1.49. The intuition is the following. Lemma 1.50 allows us to relate 〈x, y〉
to 〈x, g〉. Notice for fixed x, the random variable 〈x, g〉 has a Gaussian law with
variance ‖x‖2. Since ‖x‖2 is concentrated around

√
n, it follows that 〈x, g〉 is close

to the Gaussian distribution N(0, n).

Proof of Theorem 1.49 Using Lemma 1.50 Let g be a random vector drawn from
a standard n-dimensional normal distribution N(0, I ). By Lemma 1.50, we have

W2(〈x, y〉, 〈x, g〉)2 = O
(
n1−2ε(logn)1/2+ε

)
. (1.5.2)

For fixed sample x, the random variable 〈x, g〉 has the same law as ‖x‖2 · g1 where
g1 ∼ N(0, 1). Notice that G has the same law as

√
n · g2, where g2 ∼ N(0, 1).

When x is fixed, we obtain a coupling between 〈x, g〉 and G by identifying g1 with
g2. It follows that

W2(〈x, g〉,G) ≤ Ex∼p

(‖x‖2 − √
n
)2 · Eg1∼N(0,1)g

2
1

= Ex∼p

(‖x‖2 − √
n
)2

≤ Ex∼p

( (‖x‖2
2 − n

)2
(‖x‖2 + √

n
)2
)

≤ 1

n
· Var

(
‖x‖2

2

)

≤ 1

n
· O

(
ψ2

n

)
= O

(
n1−2ε

)
,

where the last line uses Lemma 1.18 with the matrix A being the identity matrix in
R

n. This combined with (1.5.2) finishes the proof of Theorem 1.49. ��
Now we are left to prove Lemma 1.50. For this we turn to the stochastic

localization technique introduced in Sect. 1.3. In the proof, we make use of
Lemma 1.34. Our proof here bears structural similarities to that in [11], in that
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both proofs use stochastic localization specifically by viewing random variables as
Brownian motion.

Proof of Lemma 1.50 We apply the stochastic construction in Sect. 1.3 with initial
probability distribution p0 = p. Since pt is a martingale and p∞ is a point mass at
μ∞, we have that

x ∼ μ∞ =
∫ ∞

0
dμt =

∫ ∞

0
AtdW

(n)
t ,

where we used Lemma 1.30 and W
(n)
t is a standard n-dimensional Brownian motion.

The inner product 〈x, y〉 can be written similarly as

〈x, y〉 =
∫ ∞

0
yT AtdW

(n)
t .

Notice that yT AtdW
(n)
t is a martingale whose quadratic variation has deriva-

tive yT A2
t y at time t . It follows that the process W

(1)
t defined by dW

(1)
t =

yT AtdW
(n)
t /

√
yT A2

t y is a one-dimensional standard Brownian motion. We there-
fore have

〈x, y〉 =
∫ ∞

0

√
yT A2

t y · dW(1)
t .

Note that
√
yT A2

t y is concentrated near
√
Ey∼qyT A2

t y =
√

Tr
(
A2

t

)
. It is therefore

natural to couple 〈x, y〉 with the random variable L = ∫∞
0

√
Tr
(
A2

t

)
dW

(1)
t . We will

show that this coupling gives an upper bound on W2(〈x, y〉, L)2. Notice that the first
random variable 〈x, y〉 depends on both x and y but the second random variable L

depends only on x. So why would this coupling work? The intuition behind the
coupling is the following: as one takes the expectation over y, the random variable√
yT A2

t y is concentrated around
√

Tr
(
A2

t

)
and the deviation depends on the variable

‖At‖2
op. In the stochastic construction in Sect. 1.3, At starts from identity and ends

up being 0. This allows good bounds on ‖At‖2
op.

We use Ex to denote the expectation taken with respect to the randomness of
W

(n)
t (notice that both At and W

(1)
t adapt to W

(n)
t ). It follows that

W2(〈x, y〉, L)2 ≤ Ex,y

[∫ ∞

0

(√
yT A2

t y −
√

Tr
(
A2

t

)) · dW(1)
t

]2

= Ex,y

[∫ ∞

0

(√
yT A2

t y −
√

Tr
(
A2

t

))2

dt

]
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=
∫ ∞

0
Ex,y

[(√
yT A2

t y −
√

Tr
(
A2

t

))2
]
dt

=
∫ ∞

0
Ex,y

⎡
⎢⎣

⎛
⎜⎝ yT A2

t y − Tr
(
A2

t

)
√
yT A2

t y +
√

Tr
(
A2

t

)

⎞
⎟⎠

2⎤
⎥⎦ dt

≤
∫ ∞

0
Ex

[
Ey

(
yT A2

t y − Tr
(
A2

t

))2
Tr
(
A2

t

)
]
dt

=
∫ ∞

0
Ex

[
Var

(
yT A2

t y
)

Tr
(
A2

t

)
]
dt

≤
∫ ∞

0
Ex

[
O
(
ψ2

n

) · Tr
(
A4

t

)

Tr
(
A2

t

)
]
dt

≤ O
(
ψ2

n

)
·
∫ ∞

0
Ex

[
||At ||2op

]
dt,

where the first equality uses Ito’s isometry and the last two lines follow from
Lemma 1.18. The remaining thing is to bound ||At ||2op.

The covariance matrix At corresponds to a density proportional to the log-
concave density p(x) multiplied by a Gaussian density e−cTt x− t

2 ||x||22 . It is well
known that the operator norm of such At is dominated by the Gaussian term
(e.g. [10], Proposition 2.6), i.e.

||At ||op ≤ O(1/t).

We also need an upper bound for Ex [||At ||2op] when t is close to 0. For this take

k = 1
1/2−ε

in Lemma 1.34, we have for any 0 ≤ t ≤ 1/2−ε

cn1/2−ε (logn)1/2+ε ,

P
[||At ||op ≥ 2

] ≤ 2 exp

(
− 1

ct

)
. (1.5.3)

We can therefore bound E[||At ||2op] as

E[||At ||2op] ≤ 4 · P [||At ||op < 2
]+ 1

t2 · P [||At ||op ≥ 2
] ≤ 4+ 1

t2 · 2 exp

(
− 1

ct

)
.

Since t ≤ 1/2−ε

cn1/2−ε (logn)1/2+ε , 1/t ≥ cn1/2−ε (logn)1/2+ε

1/2−ε
. For fixed 0 < ε < 1/2, the last

term 1
t2 · 2 exp

(
− 1

ct

)
becomes negligible when n is sufficiently large so E[||At ||2op]
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is bounded by some constant Cε (that depends on ε) for any t ≤ 1/2−ε

cn1/2−ε (logn)1/2+ε =
T ≤ 1. It follows that

W2(〈x, y〉, L)2 ≤ O
(
ψ2

n

)
·
∫ ∞

0
Ex

[
||At ||2op

]
dt

≤ O
(
ψ2

n

)
·
(∫ T

0
Cεdt +

∫ ∞

T

1

t2 dt

)

≤ O
(
ψ2

n

)
· 1

T
= O

(
n1−2ε(logn)1/2+ε

)
.

We note that L is defined using only the isotropic log-concave distribution p. One
can therefore prove a similar bound when q is the n-dimensional standard normal
distribution, i.e.

W2(〈x, g〉, L)2 = O
(
n1−2ε(logn)1/2+ε

)
.

Combining these two bounds, we have the desired result.

W2(〈x, y〉, 〈x, g〉)2 = O
(
n1−2ε(logn)1/2+ε

)
.

��

1.5.1 Connection to Classical CLT for Convex Sets

Using exactly the same approach, we prove the following theorem which is easier
to compare with classical results on central limit theorem for convex sets. Here we
replace the W2 distance in Theorem 1.5.1 by the total variation distance.

Theorem 1.51 Assume ψn = O
(
n1/4−ε/2

)
for some 0 < ε < 1/2 and some

dimension n. Let p, q be any isotropic log-concave distributions in R
n. For fixed

vector x ∼ p, denote 〈x, y〉 the random variable formed by the inner product of x
and y, when y ∼ q is independently drawn from x. Let g ∼ N(0, 1) be a standard
normal distribution. Then we have

Px∼p

[
dTV

( 〈x, y〉
‖x‖2

, g

)
≥ Cn−ε/2

]
≤ exp

(
−cn

1
2 −ε(logn)1/2+ε

)
,

for some constants c and C that depend on ε.

The following lemma can be proved by using a similar approach as in the proof
of Lemma 1.50.
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Lemma 1.52 Assume ψn = O
(
n1/4−ε/2

)
for some 0 < ε < 1/2 and some

dimension n. Let p, q be any isotropic log-concave distributions in R
n and let

x ∼ p, y ∼ q and g ∼ N(0, I ) be independent samples. Then with probability

at least 1 − exp
(
−cn

1
2 −ε(logn)1/2+ε

)
over the random choice of x, we have

W2(〈x, y〉, 〈x, g〉) = O
(
n

1
2 −ε
)
,

where the constant c depends on ε.

Proof of Theorem 1.51 Using Lemma 1.52 By Lemma 1.16, we have with proba-
bility at least 1 − exp(−�(

√
n)), ‖x‖2 ≥ C

√
n for some universal constant C > 0.

We condition on this event and the event in Lemma 1.52 such that

W2(〈x, y〉, 〈x, g〉) = O
(
n

1
2 −ε
)
.

The probability that these events hold at the same time is at least

1 − exp
(
−�

(
n

1
2 −ε(logn)1/2+ε

))
.

In this case we have

W2 (〈x, y〉/ ‖x‖2 , 〈x, g〉/ ‖x‖2) = O
(
n−ε

)
.

Notice that for a fixed x, 〈x, y〉/ ‖x‖2 follows a one-dimensional isotropic log-
concave distribution and 〈x, g〉/ ‖x‖2 follows a standard normal distribution.
Applying Lemma 1.22 finishes the proof of the theorem. ��

Appendix 1: Missing Proofs in Sect. 1.2.4

We restate Lemma 1.23 below for reference.

Lemma 1.23 Let μ and ν be two probability measures in R. Suppose one of the
following holds:

1. Both μ and ν are isotropic log-concave distributions.
2. The distribution μ is isotropic log-concave, while ν is the measure of the random

variable 1√
n
〈x, y〉 where x ∼ p and y ∼ q are independent random vectors and

p, q are isotropic log-concave distributions in R
n.

3. There exist isotropic log-concave distributions pμ, qμ, pν and qν in R
n such that

μ is the measure of the random variable 1√
n
〈xμ, yμ〉 and ν is the measure of the

random variable 1√
n
〈xν, yν〉, where xμ ∼ pμ, yμ ∼ qμ, xν ∼ pν and yν ∼ qν

are independent random vectors.
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Then there exists a universal constant c > 0 such that for any 1 ≤ s < t , we have

Wt(μ, ν)t ≤ cWs(μ, ν)s logt−s

(
ct t2t

Ws(μ, ν)s

)
+ ct t2t exp(−c

√
n).

Moreover, the above bound is valid even when the coupling (μ, ν) on the left-hand
side is taken to be the best coupling for Ws(μ, ν) instead of the best coupling for
Wt(μ, ν).

Proof of Lemma 1.23 The result for Case 1 is given by Meckes and Meckes [25,
Prop 5]. Here we use the same idea to prove the result for Case 2. The proof for Case
3 is almost the same and is omitted.

We denote the random variable drawn from ν as z and the best coupling for

Ws(μ, ν) as
(

1√
n
〈x, y〉, z

)
. We use the coupling

(
1√
n
〈x, y〉, z

)
in the rest of the

proof whenever we write expectations. Denote 1{·} the indicator function of an event.
For any R > 0, we have

Wt

(
1√
n

〈x, y〉, z
)t

≤ E

∣∣∣∣
1√
n

〈x, y〉 − z

∣∣∣∣
t

≤ Rt−s · E
∣∣∣∣

1√
n
〈x, y〉 − z

∣∣∣∣
s

+ E

∣∣∣∣
1√
n

〈x, y〉 − z

∣∣∣∣
t

1{∣∣∣ 1√
n
〈x,y〉−z

∣∣∣≥R
}

≤ Rt−s · Ws

(
1√
n
〈x, y〉, z

)s

+
√
P

[∣∣∣∣
1√
n
〈x, y〉 − z

∣∣∣∣ ≥ R

]
· E
(

1√
n
〈x, y〉 − z

)2t

,

where the last step is by Cauchy-Schwarz. Now we bound the second term in the
above expression. Using Minkowski’s inequality, we have

(
E

(
1√
n
〈x, y〉 − z

)2t
)1/2t

≤
(
Ez2t

)1/2t +
(
E

(
1√
n
〈x, y〉

)2t
)1/2t

.

Since z follows an isotropic log-concave distribution, it follows from Lemma 1.15

that
(
Ez2t

)1/2t ≤ 4t . For the second term we notice that when x is fixed, the random
variable 1√

n
〈x, y〉 follows a one-dimensional log-concave distribution with variance
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‖x‖2
2

n
. Using Lemma 1.15 again, we have

E

(
1√
n
〈x, y〉

)2t

≤ Ex∼p

(
Ey∼q

(
1√
n
〈x, y〉

)2t
)

≤ (4t)2t · Ex∼p

‖x‖2t
2

nt
≤ (4t)4t .

We therefore have

E

(
1√
n
〈x, y〉 − z

)2t

≤
(

4t + 16t2
)2t

.

Now we bound P

[∣∣∣ 1√
n
〈x, y〉 − z

∣∣∣ ≥ R
]

as follows. For some constant c2, CR >

0, whenever R > CR we have

P

[∣∣∣∣
1√
n
〈x, y〉 − z

∣∣∣∣ ≥ R

]
≤ P

[∣∣∣∣
1√
n
〈x, y〉

∣∣∣∣ ≥ R/2

]
+ P [|z| ≥ R/2]

≤ P

[∣∣∣∣
1√
n
〈x, y〉

∣∣∣∣ ≥ R/2

]
+ exp(−c2R).

Since x follows an isotropic log-concave distribution, we have from Theo-
rem 1.20 that whenever R > CR , there exist constants c1, C > 0 such that

P[‖x‖2 ≥ √
Cn] ≤ exp(−c1

√
n).

Whenever ‖x‖2 <
√
Cn for fixed vector x, the random variable 1√

n
〈x, y〉 follows a

one-dimensional log-concave distribution with variance at most C. Therefore when
the universal constant CR is large enough and when R > CR , we have

P

[∣∣∣∣
1√
n

〈x, y〉
∣∣∣∣ ≥ R/2

]
≤ exp(−c1

√
n) + exp(−c2R).

Combining everything we have that when R > CR ,

Wt

(
1√
n
〈x, y〉, z

)t

≤ Rt−sWs

(
1√
n
〈x, y〉, z

)s

+ (4t + 16t2)t ·
√

2
(
exp(−c2R) + exp(−c1

√
n)
)
.
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Optimizing over R, for some constant c ≥ 0 we have

Wt

(
1√
n
〈x, y〉, z

)t

≤ c · Ws

(
1√
n
〈x, y〉, z

)s

· logt−s

⎛
⎜⎝ ct t2t

Ws

(
1√
n
〈x, y〉, z

)s

⎞
⎟⎠

+ ct t2t exp(−c
√
n).

This finishes the proof of Lemma 1.23. ��

Appendix 2: Missing Proofs in Sect. 1.4.1

In this section, we give proofs of the lemmas in Sect. 1.4.1. Here we repeatedly use
the elementary facts that Tr(AB) = Tr(BA) and xT Ay = Tr

(
AyxT

)
.

Lemma 1.53 For any isotropic log-concave distribution p and symmetric matrices
A and B, we have that

Tp(A,B, I) =
∑
i

Tr(A�iB�i) and Tp(A,B, I) =
∑
i,j

AijTr(�iB�j),

where �i = Ex∼pxx
T xi .

Proof Direct calculation shows that

Tp(A,B, I) = Ex,y∼px
T AyxT ByxT y =

∑
i

Ex,y∼px
T AyxT Byxiyi

=
∑
i

Ex,y∼pTr
(
AxxT ByyT xiyi

)
=
∑
i

Tr(A�iB�i),

and

Tp(A,B, I) = Ex,y∼px
T AyxT ByxT y =

∑
i,j

AijEx,y∼pxiyjx
T ByxT y

=
∑
i,j

AijEx,y∼pTr
(
xxT ByyT xiyj

)
=
∑
i,j

AijTr(�iB�j).

��
Lemma 1.39 For any A1, A2, A3 � 0, we have that T (A1, A2, A3) ≥ 0 and for
any symmetric matrices B1, B2, B3, we have that

T (B1, B2, B3) ≤ T (|B1| , |B2| , |B3|) .
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Proof Fix any isotropic log-concave distribution p. We define �i = Ex∼pxx
T xT

A
1/2
3 ei which is well defined since A3 � 0. Then, we have that

Tp(A1, A2, A3) = Ex,y∼px
T A1yx

T A2yx
T A3y =

∑
i

Tr(A1�iA2�i).

Since �i is symmetric and A1, A2 � 0, we have that A1/2
1 �iA2�iA

1/2
1 � 0 and

Tr(A1�iA2�i) ≥ 0. Therefore, T (A1, A2, A3) ≥ Tp(A1, A2, A3) ≥ 0.

For the second part, we write B1 = B
(1)
1 − B

(2)
1 where B

(1)
1 � 0, B(2)

1 � 0 and

|B1| = B
(1)
1 + B

(2)
1 . We define B

(1)
2 , B

(2)
2 , B

(1)
3 , B

(2)
3 similarly. Note that

T (B1, B2, B3) = T
(
B

(1)
1 , B

(1)
2 , B

(1)
3

)
− T

(
B

(1)
1 , B

(1)
2 , B

(2)
3

)

− T
(
B

(1)
1 , B

(2)
2 , B

(1)
3

)
+ T

(
B

(1)
1 , B

(2)
2 , B

(2)
3

)

− T
(
B

(2)
1 , B

(1)
2 , B

(1)
3

)
+ T

(
B

(2)
1 , B

(1)
2 , B

(2)
3

)

+ T
(
B

(2)
1 , B

(2)
2 , B

(1)
3

)
− T

(
B

(2)
1 , B

(2)
2 , B

(2)
3

)
.

Since B
(i)
j � 0, the first part of this lemma shows that every term

T
(
B

(i)
1 , B

(j)

2 , B
(k)
3

)
≥ 0. Hence, we have that

T (B1, B2, B3) ≤ T
(
B

(1)
1 , B

(1)
2 , B

(1)
3

)
+ T

(
B

(1)
1 , B

(1)
2 , B

(2)
3

)

+ T
(
B

(1)
1 , B

(2)
2 , B

(1)
3

)
+ T

(
B

(1)
1 , B

(2)
2 , B

(2)
3

)

+ T
(
B

(2)
1 , B

(1)
2 , B

(1)
3

)
+ T

(
B

(2)
1 , B

(1)
2 , B

(2)
3

)

+ T
(
B

(2)
1 , B

(2)
2 , B

(1)
3

)
+ T

(
B

(2)
1 , B

(2)
2 , B

(2)
3

)

= T (|B1| , |B2| , |B3|) .

��
Lemma 1.54 Suppose that ψk ≤ αkβ for all k ≤ n for some 0 ≤ β ≤ 1

2 and α ≥ 1.
Given an isotropic log-concave distribution p and a unit vector v, the following two
statements hold for � = Ex∼pxx

T xT v:

1. For any orthogonal projection matrix P with rank r , we have that

Tr(�P�) ≤ O
(
ψ2

min(2r,n)

)
.
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2. For any symmetric matrix A, we have that

Tr(�A�) ≤ O
(
α2 logn

)
·
(

Tr |A|1/(2β)
)2β

.

Proof We first bound Tr(�P�). This part of the proof is generalized from a proof
by Eldan [10]. Note that Tr(�P�) = Ex∼px

T P�xxT v. Since ExT v = 0, we have
that

Tr(�P�)≤
√
E
(
xT v

)2
√

Var
(
xT P�x

) Lem 1.18≤ O
(
ψrank(P�+�P)

) ·√Tr (�P�).

This gives Tr(�P�) ≤ O
(
ψ2

min(2r,n)

)
.

Now we bound Tr(�A�). Since Tr(�A�) ≤ Tr(� |A|�), we can assume
without loss of generality that A � 0. We write A = ∑

i Ai + B where each Ai has
eigenvalues between

( ‖A‖op 2i/n, ‖A‖op 2i+1/n
]

and B has eigenvalues smaller
than or equals to ‖A‖op /n. Clearly, we only need at most �log(n) + 1� many such
Ai . Let Pi be the orthogonal projection from R

n to the span of the range of Ai .
Using ‖Ai‖op Pi � Ai , we have that

Tr(�Ai�) ≤ ‖Ai‖op Tr(�Pi�)

≤ O
(
ψ2

min(2rank(Ai),n)

)
· ‖Ai‖op ≤ O(α2) ·

∑
i

rank(Ai)
2β ‖Ai‖op ,

where we used the first part of this lemma in the last inequality.
Similarly, we have that

Tr(�B�) ≤ O
(
ψ2

n

)
· ‖B‖op ≤ O(n ‖B‖op) ≤ O(1) · ‖A‖op .

Combining the bounds on Tr(�Ai�) and Tr(�B�), we have that

Tr(�A�) ≤ O(α2) ·
∑
i

rank(Ai)
2β ‖Ai‖op + O(1) · ‖A‖op

≤ O(α2) ·
(∑

i

rank(Ai) ‖Ai‖1/(2β)
op

)2β

log(n)1−2β

≤ O(α2 logn) ·
(

Tr |A|1/(2β)
)2β

.

��
In the next lemma, we collect tensor inequalities that will be useful for later

proofs.



38 H. Jiang et al.

Lemma 1.40 Suppose that ψk ≤ αkβ for all k ≤ n for some fixed 0 ≤ β ≤ 1
2 and

α ≥ 1. For any isotropic log-concave distribution p in R
n and symmetric matrices

A and B, we have that

1. T (A, I, I) ≤ T (I, I, I ) · ‖A‖op.
2. T (A, I, I) ≤ O

(
ψ2

n

) · Tr |A|.
3. T (A,B, I) ≤ O

(
ψ2

r

) · ‖B‖op Tr |A| where r = min(2 · rank(B), n).

4. T (A,B, I) ≤ O
(
α2 logn

) · (Tr |B|1/(2β))2β Tr |A|.
5. T (A,B, I) ≤ (

T
(|A|s , I, I))1/s · (T (|B|t , I, I))1/t , for any s, t ≥ 1 with

s−1 + t−1 = 1.

Proof Without loss of generality, we can assume A is diagonal by rotating space.
In particular, if we want to prove something for Tr(Aα�Aβ�) where A,� are
symmetric matrices, we use the spectral decomposition A = U�UT to rewrite
this as

Tr
(
U�αUT �U�βUT�

)
= Tr

(
�α

(
UT�U

)
�β

(
UT�U

))
,

which puts us back in the same situation, but with a diagonal matrix A. For all
inequalities listed above, it suffices to upper bound T by upper bounding Tp for any
isotropic log-concave distribution p.

For inequality 1, we note that

Tp(A, I, I )
Lem 1.53=

∑
i

AiiTr(�2
i ) ≤ ‖A‖op

∑
i

Tr
(
�2

i

)
Lem 1.53= ‖A‖op T (I, I, I ),

where the last inequality is from the third moment assumption.
For inequality 2, we note that

Tp(A, I, I)
Lem 1.53=

∑
i

AiiTr(�2
i )

Lem 1.54≤
∑
i

|Aii | · O
(
ψ2

n

)
= O

(
ψ2

n

)
· Tr |A| .

For inequality 3, we let P be the orthogonal projection from R
n to the span of

the range of B. Then, we have that

Tp(A,B, I) ≤ Tp(|A|, |B|, I ) (Lem 1.39)

=
∑
i

|Aii | Tr(�i |B|�i) (Lem 1.53)

1©≤ ‖B‖op

∑
i

|Aii | Tr(�iP�i)

≤ O
(
ψ2

r

)
· Tr|A| ‖B‖op . (Lem 1.54)

where we used that |B| � ‖B‖op P in 1©.
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For inequality 4, we note that

Tp(A,B, I )
Lem 1.53=

∑
i

AiiTr(�iB�i)
Lem 1.54≤ O(α2 log n) · Tr |A|

(
Tr |B|1/(2β)

)2β
.

For inequality 5, we note that

Tp(A,B, I) ≤ Tp(|A| , |B| , I ) (Lem 1.39)

=
∑
i

Tr(|A|�i |B|�i) (Lem 1.53)

≤
∑
i

Tr(|A| |�i | |B| |�i |)

=
∑
i

Tr
(
|�i |1/s |A| |�i |1/s |�i |1/t |B| |�i |1/t

)

≤
∑
i

(
Tr
((

|�i |1/s |A| |�i |1/s
)s))1/s

·
(

Tr

((
|�i |1/t |B| |�i |1/t

)t))1/t

(Lem 1.24)

≤
∑
i

(
Tr
(|�i | |A|s |�i |

))1/s · (Tr
(|�i | |B|t |�i |

))1/t

(Lem 1.25)

=
∑
i

(
Tr
(
|A|s �2

i

))1/s ·
(

Tr
(
|B|t �2

i

))1/t

≤
(∑

i

Tr
(
|A|s �2

i

))1/s

·
(∑

i

Tr
(
|B|t �2

i

))1/t

= (
Tp

(|A|s , I, I))1/s · (Tp

(|B|t , I, I))1/t . (Lem 1.53)

��
Lemma 1.41 For any positive semi-definite matrices A,B,C and any α ∈ [0, 1],
then

T
(
B1/2AαB1/2, B1/2A1−αB1/2, C

)
≤ T

(
B1/2AB1/2, B,C

)
.

Proof Fix any isotropic log-concave distributionp. Let �i =Ex∼pB
1/2xxT B1/2xT

C1/2ei . Then, we have that
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Tp(B
1/2AαB1/2, B1/2A1−αB1/2, C)

= Ex,y∼px
T B1/2AαB1/2yxT B1/2A1−αB1/2yxT Cy

=
∑
i

E

((
yT B1/2AαB1/2x

)(
xT B1/2A1−αB1/2y

)
xT C1/2eiy

T C1/2ei

)

=
∑
i

E

(
Tr
(
AαB1/2xxT B1/2A1−αB1/2yyT B1/2

) (
xT C1/2ei

) (
yT C1/2ei

))

=
∑
i

Tr(Aα�iA
1−α�i).

Using Lemma 1.26, we have that

∑
i

Tr
(
Aα�iA

1−α�i

)
≤
∑
i

Tr
(
A�2

i

)
= Ex,y∼px

T B1/2AB1/2yxT ByxT Cy

= Tp

(
B1/2AB1/2, B,C

)
.

Taking the supremum over all isotropic log-concave distributions, we get the result.
��
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Chapter 2
The Lower Bound for Koldobsky’s
Slicing Inequality via Random Rounding

Bo’az Klartag and Galyna V. Livshyts

Abstract We study the lower bound for Koldobsky’s slicing inequality. We show
that there exists a measure μ and a symmetric convex body K ⊆ R

n, such that for
all ξ ∈ S

n−1 and all t ∈ R,

μ+(K ∩ (ξ⊥ + tξ)) ≤ c√
n
μ(K)|K|− 1

n .

Our bound is optimal, up to the value of the universal constant. It improves slightly
upon the results of the first named author and Koldobsky, which included a doubly-
logarithmic error. The proof is based on an efficient way of discretizing the unit
sphere.

2.1 Introduction

We shall work in the Euclidean n-dimensional space R
n. The unit ball shall be

denoted by Bn
2 and the unit sphere by S

n−1. The Lebesgue volume of a measurable
set A ⊂ R

n is denoted by |A|. Throughout the paper, c, C, C′ etc stand for positive
absolute constants whose value may change from line to line.

Given a measure μ with a continuous density f on R
n and a set A ⊆ R

n of
Hausdorff dimension n − 1, we write

μ+(A) =
∫

A

f (x)dx,
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where the integration is with respect to the (n− 1)-dimensional Hausdorff measure.
For a measure μ on R

n with a continuous density and for an origin symmetric
convex body K in R

n (i.e., K = −K), define the quantity

Sμ,K = inf
ξ∈Sn−1

μ(K)

|K| 1
n μ+(K ∩ ξ⊥)

,

where ξ⊥ = {x ∈ R
n , 〈x, ξ〉 = 0} is the hyperplane orthogonal to ξ . We let

Sn = sup
μ

sup
K⊂Rn

Sμ,K,

where the suprema run over measures μ with a continuous density f in R
n and all

origin-symmetric convex bodies K ⊆ R
n

Koldobsky in a series of papers [12–14] investigated the question how large
can Sn be? The discrete version of this question was studied by Alexander, Henk,
Zvavitch [1] and Regev [19]. In [12], where the question has first arisen, Koldobsky
gave upper and lower bounds on S(μ,K), that are independent of the dimension
in the case when K is an intersection body. In [13], he established the general
bound Sn ≤ √

n. In [14], he has shown that Sμ,K is bounded from above by an
absolute constant in the case when K is an unconditional convex body (invariant
under coordinate reflections). Further, Koldobsky and Pajor [15] have shown that
Sμ,K ≤ C

√
p when K is the unit ball of an n-dimensional section of Lp.

In the case when μ is the Lebesgue measure, it was conjectured by Bourgain
[5, 6] that Sμ,K ≤ C, for an arbitrary origin-symmetric convex body K . The best

currently known bound in this case is Sμ,K ≤ Cn
1
4 , established by the first named

author [10], slightly improving upon Bourgain’s estimate from [7]. However, it was

shown by the first named author and Koldobsky [11] that Sn ≥ c
√
n√

log logn
. Moreover,

it was shown there that for every n there exists a measure μ with continuous density
and a symmetric convex body K ⊆ R

n such that for all ξ ∈ S
n−1 and for all t ≥ 0,

μ+(K ∩ (ξ⊥ + tξ)) ≤ C

√
log logn√

n
μ(K)|K|− 1

n , (2.1)

where C > 0 is some absolute constant. Here A + x = {y + x ; y ∈ A} for a set
A ⊆ R

n and a vector x ∈ R
m. In this note we improve the bound (2.1), and obtain:

Theorem 2.1.1 For every n there exists a measure μ and a convex symmetric body
L ⊆ R

n such that for all ξ ∈ S
n−1 and for all t ≥ 0,

μ+(L ∩ (ξ⊥ + tξ)) ≤ C√
n
μ(L)|L|− 1

n , (2.2)

where C > 0 is a universal constant.
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In [4], the first named author, Bobkov and Koldobsky explored the connections
of (2.1) and the maximal “distance” of convex bodies to subspaces of Lp. Write Ln

p

for the collection of origin-symmetric convex bodies in R
n that are linear images of

unit balls of n-dimensional subspaces of the Banach space Lp. The outer volume
ratio of a symmetric convex body K in R

n to the subspaces of Lp is defined as

dovr(K,Ln
p) := inf

D∈Ln
p :K⊂D

( |D|
|K|

) 1
n

.

John’s theorem, and the fact that ln2 embeds in Lp, entails that dovr(K,Ln
p) ≤ √

n,
for any symmetric convex body K . Combined with the consideration from [4],
Theorem 2.1.1 implies a doubly-logarithmic improvement of a result of [4]:

Corollary 2.1.2 There exists an absolute constant c > 0 and an origin-symmetric
convex body L in R

n such that for any p ≥ 1,

dovr(L,Ln
p) ≥ c

√
n√
p
.

The construction of μ and K is randomized, and follows the idea from [11]. The
question boils down to estimating the supremum of a certain random function. The
method of the proof is based on an efficient way of discretizing the unit sphere.
We consider, for every point in S

n−1, a “rounding” to a point in a scaled integer
lattice, chosen at random, see Raghavan and Thompson [17]. This construction was
recently used in [2] for efficiently computing sketches of high-dimensional data. It
is somewhat reminiscent of the method used in discrepancy theory, called jittered
sampling. For instance, using this method, Beck [3] has obtained strong bounds for
the L2-discrepancy.

In Sect. 2.2 we describe the net construction. In Sect. 2.3 we derive the key esti-
mate for our random function. In Sect. 2.4 we conclude the proof of Theorem 2.1.1.
In Sect. 2.5 we briefly outline some further applications, in particular in relation to
random matrices; this discussion in detail shall appear in a separate paper.

We use the notation log(k)(·) for the logarithm iterated k times, and log∗ n for the
smallest positive integer m such that log(m) n ≤ 1. Denote ‖x‖p = (∑

i |xi|p
)1/p

for x ∈ R
n, and also ‖x‖∞ = maxi |xi| and |x| = ‖x‖2 = √〈x, x〉. Write Bn

p =
{x ∈ R

n ; ‖x‖p ≤ 1}. We also write A + B = {x + y ; x ∈ A, y ∈ B} for the
Minkowski sum.

2.2 The Random Rounding and the Net Construction

We fix a dimension n and a parameter ρ ∈ (0, 1/2). We define Fρ as the set of all
vectors of Euclidean norm between 1 − 2ρ and 1 + ρ in which every coordinate is
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an integer multiple of ρ/
√
n. That is,

Fρ = (
(1 + ρ)Bn

2 \ (1 − 2ρ)Bn
2

) ∩ ρ√
n
Z
n.

Lemma 2.2.1 The set Fρ satisfies #Fρ ≤
(
C
ρ

)n
, where C is a universal constant.

Moreover, let ξ ∈ S
n−1, and suppose that η ∈ (ρ/

√
n)Zn satisfies ‖ξ − η‖∞ ≤

ρ/
√
n. Then η ∈ Fρ .

Proof Any x ∈ Fρ satisfies ‖x‖1 ≤ √
n|x| ≤ 2

√
n. Hence all vectors in the scaled

set (
√
n/ρ) · Fρ have integer coordinates whose absolute values sum to a number

which is at most 2n/ρ. Recall that the number of vectors x ∈ R
n with non-negative,

integer coordinates and ‖x‖1 ≤ R equals

(
R + n

n

)
≤
(
e
R + n

n

)n

where R is a non-negative integer. Consequently,

#Fρ ≤ 2n ·
(
e

2ρ−1n + n

n

)n

≤
(
C

ρ

)n

.

We move on to the “Moreover” part. We have |ξ−η| ≤ √
n‖ξ−η‖∞ ≤ ρ. Therefore

1 − 2ρ < |η| ≤ ρ and consequently η ∈ ((1 + ρ)Bn
2 \ (1 − 2ρ)Bn

2 ) ∩ ρ√
n
Z
n = Fρ .

��
Definition 2.2.2 For ξ ∈ S

n−1 consider a random vector ηξ ∈ (ρ/
√
n)Zn with

independent coordinates such that ‖ξ − ηξ‖∞ ≤ ρ/
√
n with probability one and

Eηξ = ξ . Namely, for i = 1, . . . , n, writing ξi = ρ√
n
(ki + pi) for an integer ki and

pi ∈ [0, 1),

η
ξ
i =

⎧
⎨
⎩

ρ√
n
ki, with probability 1 − pi

ρ√
n
(ki + 1), with probability pi.

For any ξ ∈ S
n−1, the random vector ηξ belongs to Fρ with probability one,

according to Lemma 2.2.1. The random vector ηξ − ξ is a centered random vector
with independent coordinates, all belonging to the interval [−ρ/

√
n, ρ/

√
n]. We

shall make use of Hoeffding’s inequality for bounded random variables (see, e.g.,
Theorem 2.2.6 and Theorem 2.6.2 in Vershynin [20]).
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Lemma 2.2.3 (Hoeffding’s Inequality) Let X1, . . . , Xn be independent random
variables taking values in [mi,Mi ], i = 1, . . . , n. Then for any β > 0,

P

(∣∣∣∣∣
n∑

i=1

Xi − EXi

∣∣∣∣∣ ≥ β

)
≤ 2e

− cβ2
∑n

i=1(Mi−mi )
2
,

where c > 0 is an absolute constant.

The next Lemma follows immediately from Hoeffding’s inequality with Xi =
(η

ξ
i − ξi)θi and [mi,Mi ] = [− ρ√

n
θi,

ρ√
n
θi]:

Lemma 2.2.4 For any ξ ∈ S
n−1, β > 0 and θ ∈ R

n,

P (|〈ηξ − ξ, θ〉| ≥ β) ≤ 2 exp

(
− cnβ2

|θ |2ρ2

)
.

Here c > 0 is an absolute constant.

2.3 The Key Estimate

Let N be a positive integer, and consider independent random vectors θ1, . . . , θN
uniformly distributed on the unit sphere S

n−1. Unless specified otherwise, the
expectation and the probability shall be considered with respect to their distribution.

For r > 0, abbreviate

ϕ(r) = e− r2
2 .

The main result of this section is the following Proposition.

Proposition 2.3.1 There exist absolute constants C1, . . . , C5 > 0 with the follow-
ing property. Let n ≥ 5, consider r ∈ [C2

√
n, n] and suppose that N ≥ n satisfies

N ∈ [C1n log Nr
n
√
n
, n10]. Then with probability at least 1 − e−5n, for all ξ ∈ S

n−1,

and for all t ∈ R,

1

N

N∑
k=1

ϕ(r〈ξ, θk〉 + t) ≤ C3

√
n log Nr

n
√
n

N
+
(

1 + C4
√
n

r

) √
n

r
ϕ

(
q
√
n

r
t

)
,

where q ≥ 1 − C5
√
n

r
.

We shall require a few Lemmas, before we proceed with the proof of Proposi-
tion 2.3.1.
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2.3.1 Asymptotic Estimates

For a fixed vector η ∈ R
n and t ∈ R, denote

F(η, t) = 1

N

N∑
k=1

ϕ(r〈η, θk〉 + t). (2.3)

Observe that F(η, t) ≤ 1 with probability one. First, we shall show a sharpening of
[11, Lemma 3.2].

Lemma 2.3.2 Let n ≥ 1. Let θ be a random vector uniformly distributed on S
n+2.

For any r > 0, for any t ∈ R, for any fixed η ∈ R
n+3, one has

Eϕ(r〈θ, η〉 + t) ≤
(

1 + c(logn)2

n

) √
n√

n + r2|η|2 ϕ
(

t
√
n√

n + r2|η|2

)
.

Here c > 0 is an absolute constant.

Proof Observe that the formulation of the Lemma allows to assume, without loss of
generality, that |η| = 1: indeed, in the case η = 0 the statement is straight-forward,
and otherwise it follows from the case |η| = 1 by scaling. The random variable
〈θ, η〉 is distributed on [−1, 1] according to the density

(1 − s2)
n
2

∫ 1
−1(1 − s2)

n
2 ds

.

Recall that for any x ∈ [0, 1],

log(1 − x) = −x − x2

2
+ O(x3), (2.4)

and hence there is an absolute constant C > 0 such that for any x ∈ [0, 2 logn
n

],

log(1 − x) ≥ −x − C(log n)2

n2 . (2.5)

Applying (2.5) with x = s2, we estimate

∫ 1

−1
(1 − s2)

n
2 ds ≥

∫ √
2 logn

n

−
√

2 logn
n

(1 − s2)
n
2 ds

≥
∫ √

2 logn
n

−
√

2 logn
n

e− ns2
2 −C(logn)2

2n ds
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≥
(

1 − c′(logn)2

n

)∫ √
2 logn

n

−
√

2 logn
n

e− ns2
2 ds

= 1√
n

(
1 − c′(logn)2

n

)∫ √
2 logn

−√
2 logn

e− s2
2 ds. (2.6)

Recall that for any a > 0, one has

∫ ∞

a

e− y2

2 dy ≤ 1

a
e− a2

2 , (2.7)

and therefore

∫ √
2 logn

−√
2 logn

e− s2
2 ds ≥ √

2π −
√

2

n
√

logn
. (2.8)

By (2.8) and (2.6), we conclude that there exists an absolute constant c̃ > 0 such
that

∫ 1

−1
(1 − s2)

n
2 ds ≥

√
2π√
n

(
1 − c̃(logn)2

n

)
. (2.9)

We remark that the second order term estimate is of course not sharp, yet it is more
than sufficient for our purposes.

Next, using the inequality 1 − x ≤ e−x for x = s2, we estimate from above

∫ 1

−1
(1 − s2)

n
2 e− (rs+t)2

2 ds ≤
∫ ∞

−∞
e− ns2+(rs+t)2

2 ds. (2.10)

It remains to observe that

ns2 + (rs + t)2 =
(√

n + r2s + tr√
n + r2

)2

+ nt2

n + r2 ,

and to conclude, by (2.10), that

∫ 1

−1
(1 − s2)

n
2 e− (rs+t)2

2 ds ≤ √
2π

1√
n + r2

ϕ

( √
nt√

n + r2

)
. (2.11)

From (2.9) and (2.11) we note, for every unit vector η :

Eϕ(r〈θ, η〉 + t) ≤
(

1 + c(logn)2

n

) √
n√

n + r2
ϕ

(
t
√
n√

n + r2

)
. (2.12)

��
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As an immediate corollary of Lemma 2.3.2 and Hoeffding’s inequality, we get:

Lemma 2.3.3 Let N ≥ n ≥ 4, r ≥ √
n and ρ ∈ (0, 1

3 ). There exist absolute
constants c, C,C′ > 0 such that for all η ∈ (1 + ρ)Bn

2 \ (1 − 2ρ)Bn
2 and t ∈

R, β > 0,

P

(
F(η, t) > β + (1 + c(ρ + (logn)2

n
+ n

r2 ))

√
n

r
ϕ

(
qt

√
n

r

))
≤ e−Cβ2N,

where q ≥ 1 − C′(ρ + n

r2 ).

Proof In view of Lemma 2.2.3 (Hoeffding’s inequality), it suffices to show that
under the assumptions of the Lemma,

Eϕ(r〈θ, η〉 + t) ≤ (1 + c(ρ + (logn)2

n
+ n

r2
))

√
n

r
ϕ

(
qt

√
n

r

)
. (2.13)

Indeed, by Lemma 2.3.2, for some c1 > 0,

Eϕ(r〈θ, η〉 + t) ≤
(

1 + c1(logn)2

n

) √
n√

n + r2|η|2 ϕ
(

t
√
n√

n + r2|η|2
)
.

It remains to observe, that since r ≥ √
n,

|t|√n√
n + r2|η|2 ≥ q|t|√n

r
,

where q = 1 + O(ρ + n
r2 ), and

(
1 + c1(logn)2

n

) √
n√

n + r2|η|2 ≤
(

1 + c(ρ + (logn)2

n
+ n

r2 )

) √
n

r
,

with an appropriate constant c > 0. ��

2.3.2 Union Bound

Given ρ > 0, recall the notation Fρ for the net from Lemma 2.2.1. Our next Lemma
is a combination of the union bound with Lemma 2.3.3.

Lemma 2.3.4 (Union Bound) There exist absolute constants C1, C2, C
′ > 0 such

that the following holds. Let ρ ∈ (0, 1
3 ). Let N ∈ [C1n log 1

ρ
, n10] be an integer. Fix
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r ∈ [C2
√
n, n]. Then with probability at least 1 − e−5n, for every η ∈ Fρ , and for

every t ∈ R,

F(η, t) ≤ C6

√
n

N
log

1

ρ
+
(

1 + C7(ρ + n

r2 + (logn)2

n
+ 1

r
)

) √
n

r
ϕ

(
q
√
nt

r

)
,

for large enough absolute constants C6, C7 > 0, which depend only on C1 and C2,

and for q ≥ 1 − C′(ρ + n
r2 ).

Proof Let

α = C6

√
n

N
log

1

ρ
+
(

1 + C7(ρ + n

r2 + (logn)2

n
+ 1

r
)

) √
n

r
ϕ

(
q
√
nt

r

)
,

where q ≥ 1 − C′(ρ + n/r2) and the constants shall be appropriately chosen later.
Note that

α ≥ C6

√
n

N
log

1

ρ
≥ n−4.5 · C6

√
log 2, (2.14)

since ρ ≤ 1
2 and N ≤ n10.

Observe also that for any pair of vectors θ ∈ S
n−1, η ∈ Fρ ⊂ 2Bn

2 and for any
t ≥ 3r , we have

|r〈η, θ〉 + t| ≥ r,

and hence

e− 1
2 (r〈η,θ〉+t )2 ≤ e− r2

2 . (2.15)

In view of (2.14), (2.15), and the fact that r ≥ √
n, we have, for t ≥ 3r:

F(η, t) ≤ e− r2
2 ≤ e− n

2 ≤ n−4.5C6
√

log 2 ≤ α,

where the inequality follows as long as C6 is chosen to be larger than 1 + o(1). This
implies the statement of the Lemma in the range t ≥ 3r .

Next, suppose t ∈ [0, 3r]. Let ε = 1
r2 . Consider an ε-net N = {t1, . . . , tm} on

the interval [0, 3r] with tj = ε · j . Note that

#N ≤ [3r3] + 1 ≤ 4r3, (2.16)

since r ≥ √
n ≥ 1.
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For any A ∈ R, for any ε > 0, and for any t1, t2 ∈ R such that |t1 − t2| ≤ ε, we
have

|A + t2|2 ≤ |A + t1|2 + 2ε|A + t1| + ε2,

and hence

ϕ(A + t1) ≤ ϕ(A + t2)e
|A+t1|ε+ ε2

2 . (2.17)

Observe that for all t ∈ [0, 3r], for an arbitrary η ∈ Fρ ⊂ 2Bn
2 , and any θ ∈

S
n−1, we have

|r〈η, θ〉 + t| ≤ 5r,

and hence

e|r〈η,θ〉+t |ε+ ε2
2 ≤ e5rε+ ε2

2 = e
5
r
+ 1

2r2 ≤ 1 + C′

r
, (2.18)

for an absolute constant C′.
By (2.17) and (2.18), for each t ∈ [0, 3r] there exists τ ∈ N , such that

F(η, t) ≤ (1 + C′

r
)F (η, τ ).

Therefore, by the union bound,

P
(∃t ∈ [0, 3r], ∃η ∈ Fρ : F(η, t) > α

)

≤ P

(
∃τ ∈ N , ∃η ∈ Fρ : F(η, τ ) >

α

1 + C ′
r

)

≤ #N · #Fρ · P
(
F(η, τ ) >

α

1 + C ′
r

)
. (2.19)

By Lemma 2.2.1 and (2.16),

#N · #Fρ ≤ 4r3
(
C

ρ

)n

≤
(
C̃

ρ

)n

. (2.20)

We used above that r ≤ n.

Let

β :=
(

1 + C′

r

)−1

C6

√
n

N
log

1

ρ
.
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Provided that C6 and C7 are chosen large enough, we have:

α

1 + C ′
r

≥ β + (1 + c(ρ + (logn)2

n
+ n

r2 ))

√
n

r
ϕ

(
qt

√
n

r

)
, (2.21)

and

Cβ2N = C(1 + C′

r
)−2C2

6n log
1

ρ
≥ 5n + n log

C̃

ρ
, (2.22)

where c and C are the constants from Lemma 2.3.3 and C̃ is the constant
from (2.20).

By Lemma 2.3.3, (2.21) and (2.22), we have

P

(
F(η, t) >

α

1 + C ′
r

)
≤ e−Cβ2N ≤ e

−5n−n log C̃
ρ . (2.23)

By (2.19), (2.20) and (2.23), we conclude that the desired event holds with
probability at least

1 −
(
C̃

ρ

)n

e
−5n−n log C̃

ρ = 1 − e−5n.

This finishes the proof. ��

2.3.3 An Application of Random Rounding and Conclusion of
the Proof of the Proposition 2.3.1

We begin by formulating a general fact about sub-Gaussian random variables, which
complements the estimate from Lemma 2.3.2.

Lemma 2.3.5 Let M ≥ 10. Let Y be a sub-Gaussian random variable with
constant 1

M
: that is, suppose for any s > 0,

P (|Y | > s) ≤ e−M2s2
. (2.24)

Then there exists an absolute constant C > 0, such that for any a ∈ R,

Eϕ(Y + a) ≥ ϕ(a) − C

M
.

Here the expectation is taken with respect to Y.
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Proof Since the condition (2.24) applies for both Y and −Y , and since ϕ is an even
function, we may assume, without loss of generality, that a ≥ 0 (alternatively, we
may replace a with |a| in the calculations below).

We begin by writing

Eϕ(Y + a) =
∫ 1

0
P(ϕ(Y + a) > λ)dλ =

∫ ∞

0
se− s2

2 P(|Y + a| < s)ds

≥
∫ ∞

a

se− s2
2 (1 − P(|Y + a| ≥ s)) ds

= e− a2
2 −

∫ ∞

a

se− s2
2 P(|Y + a| ≥ s)ds. (2.25)

Note that for s ≥ a ≥ 0, we have

P(|Y + a| ≥ s) = P(Y ≥ s − a)+P(−Y ≥ s + a) ≤ 2P(|Y | ≥ s − a). (2.26)

By (2.24) and (2.26), we estimate

∫ ∞

a

se− s2
2 P(|Y + a| ≥ s)ds ≤ 2

∫ ∞

a

se− s2
2 e−M2(s−a)2

ds

= 2
∫ ∞

0
(t + a)e− (t+a)2

2 e−M2t2
dt. (2.27)

Recall that

(t + a)e− (t+a)2
2 ≤ 1√

e
, (2.28)

and that

∫ ∞

0
e−M2t2

dt =
√
π

2M
. (2.29)

By (2.25), (2.27), (2.28) and (2.29), letting C =
√
π√
e

, we have

Eϕ(Y + a) ≥ ϕ(a) − C

M
, (2.30)

yielding the conclusion.
��

Next, we shall demonstrate the following corollary of Lemmas 2.2.4 and 2.3.5.
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Corollary 2.3.6 There exist absolute constants C, c > 0 such that for any M, r > 0

and ρ ∈ (0, c
√
n

rM
], and for any ξ ∈ S

n−1,

F (ξ, t) ≤ EηF (ηξ , t) + C

M
,

with function F defined in (2.3) and ηξ defined in Definition 2.2, and the expectation
taken with respect to ηξ .

Proof By Lemma 2.2.4, for any fixed θ ∈ S
n−1, for an absolute constant c > 0, the

random variable r〈ηξ − ξ, θ〉 is sub-Gaussian with constant rρ

c
√
n

≤ 1
M
. Therefore,

applying Lemma 2.3.5 N times with Y = r〈ηξ − ξ, θk〉 and a = r〈ξ, θk〉+ t , we get

Eη
1

N

N∑
k=1

ϕ(r〈ηξ , θk〉 + t) ≥ 1

N

N∑
k=1

ϕ(r〈ξ, θk〉 + t) − 1

N

N∑
k=1

C

M

= 1

N

N∑
k=1

ϕ(r〈ξ, θk〉 + t) − C

M
,

finishing the proof. ��
We are ready to prove Proposition 2.3.1.

Proof of the Proposition 2.3.1 Let ρ = n
√
n

Nr
. By Corollary 2.3.6, applied with

M = cN
n

, we have, for every ξ ∈ S
n−1,

1

N

N∑
k=1

ϕ(r〈ξ, θk〉 + t) ≤ Eη
1

N

N∑
k=1

ϕ
(
r〈ηξ , θk〉 + t

)+ C′n
N

≤ max
η∈Fρ

1

N

N∑
k=1

ϕ (r〈η, θk〉 + t) + C′n
N

. (2.31)

By Lemma 2.3.4 and with our choice of ρ, with probability 1 − e−5n, (2.31) is
bounded from above by

C6

√
n

N
log

Nr

n
√
n

+
(

1 + C7(
n
√
n

Nr
+ n

r2 + (logn)2

n
+ 1

r
)

) √
n

r
ϕ

(
q
√
nt

r

)
+C′n

N
,

where q = 1 − C′(ρ + n
r2 ) ≥ 1 − C5(

√
n
r
), in view of our choice of ρ. It remains to

note, in view of the fact that N ≥ nC1 log 2 and r ≥ C2
√
n, that for an appropriate
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absolute constant C3 > 0, one has

C6

√
n

N
log

Nr

n
√
n

+ C′n
N

≤ C3

√
n

N
log

Nr

n
√
n
,

and for an appropriate absolute constant C4 > 0,

C7

(
n
√
n

Nr
+ n

r2 + (logn)2

n
+ 1

r

)
≤ C4

√
n

r
.

The proposition follows. ��

2.4 Proof of Theorem 2.1.1

Let m be the largest positive integer such that log(m) n ≥ C0, for a sufficiently large
absolute constant C0 > 0 to be determined shortly. Note that, hence,

log(m) n ≤ C′
0, (2.32)

for some absolute constant C′
0.

Consider, for k = 1, . . . ,m,

N1 = n10, N2 = n(logn)5, . . . , Nk = n
(

log(k−1) n
)5

, . . .

Let also

R1 = n

logn
, . . . , Rk = n

log(k) n
, . . .

Consider independent unit random vectors θkj ∈ S
n−1, where k = 1, . . . ,m and

j = 1, . . . , Nk . Following [11], consider the convex body

K = conv{±Rkθkj ,±nei},

and the probability measures

μk = 1

Nk

Nk∑
j=1

δRkθkj , μ−k = 1

Nk

Nk∑
j=1

δ−Rkθkj ,
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where δ stands for the Dirac measure. We now set

μ = γn ∗ μ1 ∗ μ2 ∗ . . . ∗ μm + μ−1 ∗ μ−2 ∗ . . . ∗ μ−m

2
.

Here γn stands for the standard Gaussian measure on R
n. We shall show that there

exists a configuration of θkj , such that μ and L = 4K satisfy the conclusion of the
theorem.

Step 1 Firstly, we estimate the volume of the body L = 4K from above, following

the method of [11]. Note that for all k = 1, . . . ,m we have ϕ
(

5n
Rk

)
≤ c, for some

absolute constant c ∈ (0, 1), and hence there exists an absolute constant Ĉ > 0 such
that

log

[
1 − ϕ

(
5n

Rk

)]
≥ −Ĉϕ

(
5n

Rk

)
, (2.33)

for all k = 1, . . . ,m.
By Khatri-Sidak lemma (see, e.g. [9] for a simple proof), applied together with

the Blaschke-Santalo inequality, and in view of (2.33), we have

|4K|−1 ≥ cn1 |5nKo| ≥ cn2γn(5nK
o) ≥ cn

m∏
k=1

(
1 − ϕ

(
5n

Rk

))Nk

≥ cn exp

(
−Ĉ

m∑
k=1

Nke
− 25n2

2R2
k

)
. (2.34)

Plugging the values of Nk and Rk, and using 25
2 > 7, we get

m∑
k=1

Nke
− 25n2

2R2
k ≤ n10e−7(logn)2 + n

m∑
k=2

(log(k−1) n)5e−7(log(k) n)2 ≤ c′n, (2.35)

since the sum converges faster than exponentially.
By (2.34) and (2.35), we conclude that

|4K| ≤ cn0 , (2.36)

for some absolute constant c0 > 0.

Step 2 Next, we estimate the sections from above. Note that (see [11] for details),

μ+(ξ⊥ + tξ) = A + B

2
(2.37)
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where

A = 1√
2π

1

N1 . . . Nm

N1∑
j1=1

N2∑
j2=1

. . .

Nm∑
jm=1

ϕ(t + R1〈ξ, θ1j1〉 + . . . + Rm〈ξ, θmjm〉)

(2.38)

and

B = 1√
2π

1

N1 . . . Nm

N1∑
j1=1

N2∑
j2=1

. . .

Nm∑
jm=1

ϕ(−t + R1〈ξ, θ1j1〉 + . . . + Rm〈ξ, θmjm〉)

(2.39)

For r ≥ C2
√
n we set q(r) = 1 − C5

√
n/r where C5 is the constant coming

from Proposition 2.3.1. We define r1, r2, . . . , rm ∈ [C2
√
n, n] such that

r1 := R1

and for k ≥ 1,

rk+1 := q(rk)
√
nRk+1

Rk

=
⎛
⎝

k∏
j=1

q(rj )
√
n

rj

⎞
⎠ · Rk+1.

Denote

αk :=
k−1∏
j=1

[(
1 + C4

√
n

rj

)
1

q(rj )

]
≤

k−1∏
j=1

[(
1 + Ĉ

√
n

rj

)]
. (2.40)

The reason for the definition of αk , is the inequality

k−1∏
j=1

[(
1 + C4

√
n

rj

) √
n

rj

]
≤ C

αk

√
n

Rk−1
,

which we will use below in a repeated application of Proposition 2.3.1. Observe that
there exists an absolute constant C̃ > 0 such that for every k = 1, . . . ,m, we have

αk ≤ (1 + Ĉ

√
n

R1
)

k−1∏
j=2

(1 + Č
log(j) n

log(j−1) n
) ≤ Ce

C̄
∑k−1

j=2
log(j) n

log(j−1) n ≤ C̃, (2.41)

since the sum converges faster than exponentially.
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Provided that C0 > 0 is selected large enough, we have that for each k, the
pair N = Nk and r = rk satisfies the assumptions of Proposition 2.3.1. Applying
Proposition 2.3.1 consecutively m times with N = Nk and r = rk for k = 1, . . . ,m,
we get that with probability at least 1 − me−5n = 1 − o(1), for every ξ ∈ S

n−1 and
for every t ∈ R, the term A from (2.38) is bounded from above by a constant
multiple of

√√√√n log N1r1
n
√
n

N1
+ α2

√
n

R1

√√√√n log N2r2
n
√
n

N2
+ . . . + αm

√
n

Rm−1

√√√√n log Nmrm
n
√
n

Nm

+ αm+1
√
n

Rm

≤ c′
√
n

+ c′′
√
n

m∑
k=1

αk

1

log(k) n
+ αm log(m) n√

n
≤ C√

n
,

for an appropriate constant C > 0, where we used (2.41) to bound αk , and (2.32) to
bound log(m) n.

The same bound applies also to the term B from (2.39). We conclude, in view
of (2.37) that with high probability, for all ξ ∈ S

n−1 and for all t ∈ R,

μ(ξ⊥ + tξ) ≤ C√
n
. (2.42)

Step 3 Recall that μ is an average of translates of the Gaussian measure, centered at
the vertices of K . As was shown in [11, Lemma 3.8], using the fact that

√
nBn

2 ⊂ K ,
and since 4K = 2K + 2K contains 2

√
nBn

2 + 2K, one has

μ(4K) ≥ γn(2
√
nBn

2 ) ≥ 1

2
, (2.43)

where, e.g. Markov’s inequality is used in the last passage.
Combining (2.36), (2.42) and (2.43), we arrive to the conclusion of the theorem,

with L = 4K . �

2.5 Further Applications

2.5.1 Comparison via the Hilbert-Schmidt Norm for Arbitrary
Matrices

As another consequence of the Lemma 2.2.4, we have:

Lemma 2.5.1 (Comparison via the Hilbert-Schmidt Norm) Let ρ ∈ (0, 1
2 ).

There exists a collection of points N ⊂ 2Bn
2 \ 1

2B
n
2 with #N ≤ (C

ρ
)n such that
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for any matrix A : Rn → R
N , for every ξ ∈ S

n−1 there exists an η ∈ N satisfying

|Aη|2 ≤ C1|Aξ |2 + C2
ρ2

n
||A||2HS. (2.44)

Here C,C1, C2 are absolute constants.

Proof Recall that |Ax|2 = ∑N
i=1〈Xi, x〉2, where Xi are the rows of A. In order to

prove the Lemma, it suffices to show, for every vector g ∈ R
n, that

Eη〈ηξ , g〉2 ≤ C1〈ξ, g〉2 + C2
ρ2

n
|g|2; (2.45)

the Lemma shall follow by applying (2.45) to the rows of A and summing up.
We shall show (2.45). Using the inequality a2 = (a−b+b)2 ≤ 2(a−b)2 +2b2,

we see

|〈ηξ , g〉|2 ≤ 2|〈ηξ , g〉 − 〈ξ, g〉|2 + 2|〈ξ, g〉|2,

and hence

Eη|〈ηξ , g〉|2 ≤ 2Eη|〈ηξ , g〉 − 〈ξ, g〉|2 + 2|〈ξ, g〉|2. (2.46)

By Lemma 2.2.4, |〈ηξ , g〉 − 〈ξ, g〉| is sub-Gaussian with constant c′ ρ|g|√
n

, and
hence

Eη|〈ηξ , g〉 − 〈ξ, g〉|2 ≤ 2
∫ ∞

0
te

− cnt2

ρ2|g|2 dt ≤ C
ρ2|g|2

n
, (2.47)

for some absolute constant C > 0; (2.46) and (2.47) entail (2.45).
��

A fact similar to Lemma 2.5.1 was recently shown and used by Lytova and
Tikhomirov [16].

Lemma 2.5.1 shows that there exists a net of cardinality Cn, such that for any
random matrix A : Rn → R

N whose entries have bounded second moments, with
probability at least

1 − P(||A||2HS ≥ 10E||A||2HS) ≥ 9

10

one has (2.44), with E||A||2HS in place of ||A||2HS . However, such probability
estimate is unsatisfactory when studying small ball estimates for the smallest
singular values of random matrices. In the soon-to-follow paper, we significantly
strengthen Lemma 2.5.1: we employ the idea of Rebrova and Tikhomirov [18], and
in place of the covering by cubes, we consider a covering by parallelepipeds of
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sufficiently large volume. This leads us to consider the following refinement of the
Hilbert-Schmidt norm: with κ > 1, for an N × n matrix A, define

Bκ(A) = min
αi∈[0,1],∏n

i=1 αi≥κ−n

n∑
i=1

α2
i |Aei |2.

Bκ acts as an averaging on the columns of A. In a separate paper we shall show that

there exists a net N ⊂ 2Bn
2 \ 1

2B
n
2 , of cardinality

(
C
ρ

)n
, such that for all N × n

matrices A, for every ξ ∈ S
n−1 there exists an η ∈ N satisfying

|Aη|2 ≤ C1|Aξ |2 + ρ2

n
B10(A). (2.48)

The proof shall be a combination of the argument similar to the proof of
Lemma 2.5.1 along with the construction of a net on the family of admissible
nets. The bound on the cardinality of that net shall follow, in fact, again from
Lemma 2.2.1.

The advantage of (2.48) over (2.44) is the strong large deviation properties of
B10(A). For example, we shall show an elementary fact that for any random matrix
A with independent columns and E||A||2HS < ∞,

P(B10(A) ≥ 2E||A||2HS) ≤ e−cn. (2.49)

The detailed proofs of the mentioned facts, and applications to sharp estimates for
the small ball probability of the smallest singular value of heavy-tailed matrices
shall be outlined in a separate paper.

2.5.2 Covering Spheres with Strips

For θ ∈ S
n−1, τ ∈ R and α > 0, consider a strip

S(θ, α, τ ) := {ξ ∈ S
n−1 : |〈ξ, θ〉 + τ | ≤ α}.

Observe that

N∑
k=1

1S(θk,
1
r
, t
r
)(ξ) ≤ C

N∑
k=1

ϕ(r〈ξ, θk〉 + t).

Therefore, Proposition 2.3.1 implies
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Proposition 2.5.2 For any N and for any α ≤ c√
n

with N ∈ [cn log N

αn3/2 , n
10]

there exists a collection of points θ1, . . . , θN ∈ S
n−1 such that every strip of width

2α contains no more than

C̃

[√
Nn log

N

αn3/2 + N
√
nα

]

points in this collection.

We note that in view of the point-strip duality, bounding
∑N

k=1 1S(θk,
1
r
, t
r
)(ξ)

yields estimates of the form stated in Proposition 2.5.2.
The direct consideration of the characteristic functions in place of the Gaussian

functions gives exactly the same bound as an application of Proposition 2.3.1.
In [8], Frankl, Nagy and Naszodi conjecture that for every collection of N points

on S2 there exists a strip of width 2
N

containing at least f (N) points, where f (N) →
∞ as N → ∞. Proposition 2.5.2 generalizes Theorem 4.2 by Frankl, Nagy, Naszodi
[8] from the two-dimensional case to an arbitrary dimension, with good dimensional
constant, although it does not shed any light on the dependence on N .
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Chapter 3
Two-Sided Estimates for Order Statistics
of Log-Concave Random Vectors

Rafał Latała and Marta Strzelecka

Abstract We establish two-sided bounds for expectations of order statistics
(k-th maxima) of moduli of coordinates of centered log-concave random vectors
with uncorrelated coordinates. Our bounds are exact up to multiplicative universal
constants in the unconditional case for all k and in the isotropic case for
k ≤ n − cn5/6. We also derive two-sided estimates for expectations of sums of
k largest moduli of coordinates for some classes of random vectors.

3.1 Introduction and Main Results

For a vector x ∈ R
n let k- max xi (or k- min xi) denote its k-th maximum

(respectively its k-th minimum), i.e. its k-th maximal (respectively k-th minimal)
coordinate. For a random vector X = (X1, . . . , Xn), k- minXi is also called the
k-th order statistic of X.

Let X = (X1, . . . , Xn) be a random vector with finite first moment. In this note
we try to estimate Ek- maxi |Xi | and

E max|I |=k

∑
i∈I

|Xi | = E

k∑
l=1

l- max
i

|Xi |.

Order statistics play an important role in various statistical applications and there is
an extensive literature on this subject (cf. [2, 5] and references therein).

We put special emphasis on the case of log-concave vectors, i.e. random vectors
X satisfying the property P(X ∈ λK + (1 − λ)L) ≥ P(X ∈ K)λP(X ∈ L)1−λ for
any λ ∈ [0, 1] and any nonempty compact sets K and L. By the result of Borell
[3] a vector X with full dimensional support is log-concave if and only if it has
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a log-concave density, i.e. the density of a form e−h(x) where h is convex with
values in (−∞,∞]. A typical example of a log-concave vector is a vector uniformly
distributed over a convex body. In recent years the study of log-concave vectors
attracted attention of many researchers, cf. monographs [1, 4].

To bound the sum of k largest coordinates of X we define

t (k,X) := inf

{
t > 0 : 1

t

n∑
i=1

E|Xi |1{|Xi |≥t} ≤ k

}
. (3.1)

and start with an easy upper bound.

Proposition 3.1 For any random vector X with finite first moment we have

E max|I |=k

∑
i∈I

|Xi | ≤ 2kt (k,X). (3.2)

Proof For any t > 0 we have

max|I |=k

∑
i∈I

|Xi | ≤ tk +
n∑

i=1

|Xi |1{|Xi |≥t}.

��
It turns out that this bound may be reversed for vectors with independent

coordinates or, more generally, vectors satisfying the following condition

P(|Xi | ≥ s, |Xj | ≥ t) ≤ αP(|Xi | ≥ s)P(|Xj | ≥ t) for all i �= j and all s, t > 0.
(3.3)

If α = 1 this means that moduli of coordinates of X are negatively correlated.

Theorem 3.2 Suppose that a random vector X satisfies condition (3.3) with some
α ≥ 1. Then there exists a constant c(α) > 0 which depends only on α such that for
any 1 ≤ k ≤ n,

c(α)kt (k,X) ≤ E max|I |=k

∑
i∈I

|Xi | ≤ 2kt (k,X).

We may take c(α) = (288(5 + 4α)(1 + 2α))−1.

In the case of i.i.d. coordinates two-sided bounds for Emax|I |=k

∑
i∈I |aiXi | in

terms of an Orlicz norm (related to the distribution of Xi ) of a vector (ai)i≤n where
known before, see [7].

Log-concave vectors with diagonal covariance matrices behave in many aspects
like vectors with independent coordinates. This is true also in our case.



3 Order Statistics of Log-Concave Vectors 67

Theorem 3.3 Let X be a log-concave random vector with uncorrelated coordinates
(i.e. Cov(Xi,Xj ) = 0 for i �= j ). Then for any 1 ≤ k ≤ n,

ckt (k,X) ≤ E max|I |=k

∑
i∈I

|Xi | ≤ 2kt (k,X).

In the above statement and in the sequel c and C denote positive universal
constants.

The next two examples show that the lower bound cannot hold if n " k and
only marginal distributions of Xi are log-concave or the coordinates of X are highly
correlated.

Example 3.1 Let X = (ε1g, ε2g, . . . , εng), where ε1, . . . , εn, g are independent,
P(εi = ±1) = 1/2 and g has the normal N (0, 1) distribution. Then CovX = Id
and it is not hard to check that Emax|I |=k

∑
i∈I |Xi | = k

√
2/π and t (k,X) ∼

ln1/2(n/k) if k ≤ n/2.

Example 3.2 Let X = (g, . . . , g), where g ∼ N (0, 1). Then, as in the previous
example, Emax|I |=k

∑
i∈I |Xi | = k

√
2/π and t (k,X) ∼ ln1/2(n/k).

Question 3.1 Let X′ = (X′
1,X

′
2, . . . , X

′
n) be a decoupled version of X, i.e. X′

i are
independent and X′

i has the same distribution as Xi . Due to Theorem 3.2 (applied
to X′), the assertion of Theorem 3.3 may be stated equivalently as

E max|I |=k

∑
i∈I

|Xi | ∼ E max|I |=k

∑
i∈I

|X′
i |.

Is the more general fact true that for any symmetric norm and any log-concave
vector X with uncorrelated coordinates

E‖X‖ ∼ E‖X′‖?

Maybe such an estimate holds at least in the case of unconditional log-concave
vectors?

We turn our attention to bounding k-maxima of |Xi |. This was investigated in
[8] (under some strong assumptions on the function t #→ P(|Xi | ≥ t)) and in the
weighted i.i.d. setting in [7, 9, 15]. We will give different bounds valid for log-
concave vectors, in which we do not have to assume independence, nor any special
conditions on the growth of the distribution function of the coordinates of X. To this
end we need to define another quantity:

t∗(p,X) := inf

{
t > 0 :

n∑
i=1

P(|Xi | ≥ t) ≤ p

}
for 0 < p < n.
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Theorem 3.4 Let X be a mean zero log-concaven-dimensional random vector with
uncorrelated coordinates and 1 ≤ k ≤ n. Then

Ek- max
i≤n

|Xi | ≥ 1

2
Med

(
k- max

i≤n
|Xi |

)
≥ ct∗

(
k − 1

2
,X

)
.

Moreover, if X is additionally unconditional then

Ek- max
i≤n

|Xi | ≤ Ct∗
(
k − 1

2
,X

)
.

The next theorem provides an upper bound in the general log-concave case.

Theorem 3.5 Let X be a mean zero log-concaven-dimensional random vector with
uncorrelated coordinates and 1 ≤ k ≤ n. Then

P

(
k- max

i≤n
|Xi | ≥ Ct∗

(
k − 1

2
,X

))
≤ 1 − c (3.4)

and

Ek- max
i≤n

|Xi | ≤ Ct∗
(
k − 1

2
k5/6,X

)
. (3.5)

In the isotropic case (i.e. EXi = 0,CovX = Id) one may show that t∗(k/2,X) ∼
t∗(k,X) ∼ t (k,X) for k ≤ n/2 and t∗(p,X) ∼ n−p

n
for p ≥ n/4 (see Lemma 3.24

below). In particular t∗(n−k+1−(n−k+1)5/6/2,X) ∼ k/n+n−1/6 for k ≤ n/2.
This together with the two previous theorems implies the following corollary.

Corollary 3.6 Let X be an isotropic log-concave n-dimensional random vector and
1 ≤ k ≤ n/2. Then

Ek-maxi≤n|Xi | ∼ t∗(k,X) ∼ t (k,X)

and

c
k

n
≤ Ek-mini≤n|Xi | = E(n − k + 1)-maxi≤n|Xi | ≤ C

(
k

n
+ n−1/6

)
.

If X is additionally unconditional then

Ek-mini≤n|Xi | = E(n − k + 1)-maxi≤n|Xi | ∼ k

n
.

Question 3.2 Does the second part of Theorem 3.4 hold without the uncondition-
ality assumptions? In particular, is it true that in the isotropic log-concave case
Ek- mini≤n |Xi | ∼ k/n for 1 ≤ k ≤ n/2?
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Notation Throughout this paper by letters C, c we denote universal positive
constants and by C(α), c(α) constants depending only on the parameter α. The
values of constants C, c,C(α), c(α) may differ at each occurrence. If we need to
fix a value of constant, we use letters C0, C1, . . . or c0, c1, . . .. We write f ∼ g if
cf ≤ g ≤ Cg. For a random variable Z we denote ‖Z‖p = (E|Z|p)1/p. Recall that
a random vector X is called isotropic, if EX = 0 and CovX = Id.

This note is organised as follows. In Sect. 3.2 we provide a lower bound for the
sum of k largest coordinates, which involves the Poincaré constant of a vector. In
Sect. 3.3 we use this result to obtain Theorem 3.3. In Sect. 3.4 we prove Theorem 3.2
and provide its application to comparison of weak and strong moments. In Sect. 3.5
we prove the first part of Theorem 3.4 and in Sect. 3.6 we prove the second part of
Theorems 3.4, 3.5, and Lemma 3.24.

3.2 Exponential Concentration

A probability measure μ on R
n satisfies exponential concentration with constant

α > 0 if for any Borel set A with μ(A) ≥ 1/2,

1 − μ(A + uBn
2 ) ≤ e−u/α for all u > 0.

We say that a random n-dimensional vector satisfies exponential concentration if its
distribution has such a property.

It is well known that exponential concentration is implied by the Poincaré
inequality

Varμf ≤ β

∫
|∇f |2dμ for all bounded smooth functions f : Rn #→ R

and α ≤ 3
√
β (cf. [12, Corollary 3.2]).

Obviously, the constant in the exponential concentration is not linearly invariant.
Typically one assumes that the vector is isotropic. For our purposes a more natural
normalization will be that all coordinates have L1-norm equal to 1.

The next proposition states that bound (3.2) may be reversed under the assump-
tion that X satisfies the exponential concentration.

Proposition 3.7 Assume that Y = (Y1, . . . , Yn) satisfies the exponential concentra-
tion with constant α > 0 and E|Yi | ≥ 1 for all i. Then for any sequence a = (ai)

n
i=1

of real numbers and Xi := aiYi we have

E max|I |=k

∑
i∈I

|Xi | ≥
(

8 + 64
α√
k

)−1
kt (k,X),

where t (k,X) is given by (3.1).
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We begin the proof with a few simple observations.

Lemma 3.8 For any real numbers z1, . . . , zn and 1 ≤ k ≤ n we have

max|I |=k

∑
i∈I

|zi | =
∫ ∞

0
min

{
k,

n∑
i=1

1{|zi |≥s}
}
ds.

Proof Without loss of generality we may assume that z1 ≥ z2 ≥ . . . ≥ zn ≥ 0.
Then

∫ ∞

0
min

{
k,

n∑
i=1

1{|zi |≥s}
}
ds =

k−1∑
l=1

∫ zl

zl+1

lds +
∫ zk

0
kds =

k−1∑
l=1

l(zl − zl+1) + kzk

= z1 + . . . + zk = max|I |=k

∑
i∈I

|zi |.
��

Fix a sequence (Xi)i≤n and define for s ≥ 0,

N(s) :=
n∑

i=1

1{|Xi |≥s}. (3.6)

Corollary 3.9 For any k = 1, . . . , n,

E max|I |=k

∑
i∈I

|Xi | =
∫ ∞

0

k∑
l=1

P(N(s) ≥ l)ds,

and for any t > 0,

E

n∑
i=1

|Xi |1{|Xi |≥t} = tEN(t) +
∫ ∞

t

∞∑
l=1

P(N(s) ≥ l)ds.

In particular

E

n∑
i=1

|Xi |1{|Xi |≥t} ≤E max|I |=k

∑
i∈I

|Xi |+
∞∑

l=k+1

(
tP(N(t) ≥ l)+

∫ ∞

t

P(N(s)≥ l)ds

)
.

Proof We have

∫ ∞

0

k∑
l=1

P(N(s) ≥ l)ds =
∫ ∞

0
Emin{k,N(s)}ds = E

∫ ∞

0
min{k,N(s)}ds

= E max|I |=k

∑
i∈I

|Xi |,
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where the last equality follows by Lemma 3.8.
Moreover,

tEN(t) +
∫ ∞

t

∞∑
l=1

P(N(s) ≥ l)ds = tEN(t) +
∫ ∞

t

EN(s)ds

= E

n∑
i=1

(
t1{|Xi |≥t} +

∫ ∞

t

1{|Xi |≥s}ds
)

= E

n∑
i=1

|Xi |1{|Xi |≥t}.

The last part of the assertion easily follows, since

tEN(t) = t

n∑
l=1

P(N(t) ≥ l) ≤
∫ t

0

k∑
l=1

P(N(s) ≥ l)ds +
∞∑

l=k+1

tP(N(t) ≥ l).

��
Proof of Proposition 3.7 To shorten the notation put tk := t (k,X). Without loss of
generality we may assume that a1 ≥ a2 ≥ . . . ≥ an ≥ 0 and a�k/4� = 1. Observe
first that

E max|I |=k

∑
i∈I

|Xi | ≥
�k/4�∑
i=1

aiE|Yi | ≥ k/4,

so we may assume that tk ≥ 16α/
√
k.

Let μ be the law of Y and

A :=
{
y ∈ R

n :
n∑

i=1

1{|aiyi |≥ 1
2 tk} <

k

2

}
.

We have

E max|I |=k

∑
i∈I

|Xi | ≥ k

4
tkP

( k∑
i=1

1{|aiYi |≥ 1
2 tk} ≥ k

2

)
= k

4
tk(1 − μ(A)),

so we may assume that μ(A) ≥ 1/2.
Observe that if y ∈ A and

∑n
i=1 1{|aizi |≥s} ≥ l > k for some s ≥ tk then

n∑
i=1

(zi − yi)
2 ≥

n∑
i=�k/4�

(aizi − aiyi)
2 ≥ (l − 3k/4)(s − tk/2)2 >

ls2

16
.
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Thus we have

P(N(s) ≥ l) ≤ 1 − μ

(
A + s

√
l

4
Bn

2

)
≤ e− s

√
l

4α for l > k, s ≥ tk.

Therefore
∫ ∞

tk

P(N(s) ≥ l)ds ≤
∫ ∞

tk

e− s
√
l

4α ds = 4α√
l
e− tk

√
l

4α for l > k,

and

∞∑
l=k+1

(
tkP(N(tk) ≥ l) +

∫ ∞

tk

P(N(s) ≥ l)ds

)
≤

∞∑
l=k+1

(
tk + 4α√

l

)
e− tk

√
l

4α

≤
(
tk + 4α√

k + 1

)∫ ∞

k

e− tk
√
u

4α du ≤
(
tk + 4α√

k + 1

)
e
− tk

√
k

4
√

2α

∫ ∞

k

e
− tk

√
u−k

4
√

2α du

=
(
tk + 4α√

k + 1

)
64α2

t2
k

e
− tk

√
k

4
√

2α ≤
(
tk + 1

4
tk

)k
4

≤ 1

2
ktk,

where to get the next-to-last inequality we used the fact that tk ≥ 16α/
√
k.

Hence Corollary 3.9 and the definition of tk yields

ktk ≤ E

n∑
i=1

|Xi |1{|Xi |≥tk}

≤ E max|I |=k

∑
i∈I

|Xi | +
∞∑

l=k+1

(
tkP(N(tk) ≥ l) +

∫ ∞

tk

P(N(s) ≥ l)ds

)

≤ E max|I |=k

∑
i∈I

|Xi | + 1

2
ktk,

so Emax|I |=k

∑
i∈I |Xi | ≥ 1

2ktk . ��
We finish this section with a simple fact that will be used in the sequel.

Lemma 3.10 Suppose that a measure μ satisfies exponential concentration with
constant α. Then for any c ∈ (0, 1) and any Borel set A with μ(A) > c we have

1 − μ(A + uBn
2 ) ≤ exp

(
−
(u
α

+ ln c
)

+

)
for u ≥ 0.

Proof Let D := R
n \ (A + rBn

2 ). Observe that D + rBn
2 has an empty intersection

with A so if μ(D) ≥ 1/2 then

c < μ(A) ≤ 1 − μ(D + rBn
2 ) ≤ e−r/α,
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and r < α ln(1/c). Hence μ(A + α ln(1/c)Bn
2 ) ≥ 1/2, therefore for s ≥ 0,

1 − μ(A + (s + α ln(1/c))Bn
2 ) = 1 − μ((A + α ln(1/c)Bn

2 ) + sBn
2 ) ≤ e−s/α,

and the assertion easily follows. ��

3.3 Sums of Largest Coordinates of Log-Concave Vectors

We will use the regular growth of moments of norms of log-concave vectors multiple
times. By [4, Theorem 2.4.6], if f : Rn → R is a seminorm, and X is log-concave,
then

(Ef (X)p)1/p ≤ C1
p

q
(Ef (X)q)1/q for p ≥ q ≥ 1, (3.7)

where C1 is a universal constant.
We will also apply a few times the functional version of the Grünbaum inequality

(see [14, Lemma 5.4]) which states that

P(Z ≥ 0) ≥ 1

e
for any mean-zero log-concave random variable Z. (3.8)

Let us start with a few technical lemmas. The first one will be used to reduce
proofs of Theorem 3.3 and lower bound in Theorem 3.4 to the symmetric case.

Lemma 3.11 Let X be a log-concave n-dimensional vector and X′ be an indepen-
dent copy of X. Then for any 1 ≤ k ≤ n,

E max|I |=k

∑
i∈I

|Xi − X′
i | ≤ 2E max|I |=k

∑
i∈I

|Xi |,

t (k,X) ≤ et (k,X − X′) + 2

k
max|I |=k

∑
i∈I

E|Xi |, (3.9)

and

t∗(2k,X − X′) ≤ 2t∗(k,X). (3.10)

Proof The first estimate follows by the easy bound

E max|I |=k

∑
i∈I

|Xi − X′
i | ≤ E max|I |=k

∑
i∈I

|Xi | + E max|I |=k

∑
i∈I

|X′
i | = 2E max|I |=k

∑
i∈I

|Xi |.



74 R. Latała and M. Strzelecka

To get the second bound we may and will assume that E|X1| ≥ E|X2| ≥ . . . ≥
E|Xn|. Let us define Y := X − EX, Y ′ := X′ − EX and M := 1

k

∑k
i=1 E|Xi | ≥

maxi≥k E|Xi |. Obviously

k∑
i=1

E|Xi |1{|Xi |≥t} ≤ kM for t ≥ 0. (3.11)

We have EYi = 0, thus P(Yi ≤ 0) ≥ 1/e by (3.8). Hence

EYi1{Yi>t} ≤ eEYi1{Yi>t,Y ′
i≤0} ≤ eE|Yi − Y ′

i |1{Yi−Y ′
i >t} = eE|Xi − X′

i |1{Xi−X′
i>t}

for t ≥ 0. In the same way we show that

E|Yi |1{Yi<−t} ≤ eE|Yi |1{Yi<−t,Y ′
i≥0} ≤ eE|Xi − X′

i |1{X′
i−Xi>t}

Therefore

E|Yi |1{|Yi |>t} ≤ eE|Xi − X′
i |1{|Xi−X′

i |>t}.

We have

n∑
i=k+1

E|Xi |1{|Xi |>et(k,X−X′)+M} ≤
n∑

i=k+1

E|Xi |1{|Yi |>et(k,X−X′)}

≤
n∑

i=k+1

E|Yi |1{|Yi |>t(k,X−X′)} +
n∑

i=k+1

|EXi |P(|Yi | > et(k,X − X′))

≤ e

n∑
i=1

E|Xi − X′
i |1{|Xi−X′

i |>t(k,X−X′)} + M

n∑
i=1

P(|Yi | > et(k,X − X′))

≤ ekt (k,X − X′) + M

n∑
i=1

(
et (k,X − X′)

)−1
E|Yi |1{|Yi |>et(k,X−X′)}

≤ ekt (k,X − X′) + Mt(k,X − X′)−1
n∑

i=1

E|Xi − X′
i |1{|Xi−X′

i |>t(k,X−X′)}

≤ ekt (k,X − X′) + kM.

Together with (3.11) we get

n∑
i=1

E|Xi |1{|Xi |>et(k,X−X′)+M} ≤ k(et (k,X − X′) + 2M)

and (3.9) easily follows.
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In order to prove (3.10), note that for u > 0,

P(|Xi − X′
i | ≥ 2u) ≤ P

(
max{|Xi |, |X′

i |} ≥ u
) ≤ 2P

(|Xi | ≥ u
)
,

thus the last part of the assertion follows by the definition of parameters t∗. ��
Lemma 3.12 Suppose that V is a real symmetric log-concave random variable.
Then for any t > 0 and λ ∈ (0, 1],

E|V |1{|V |≥t} ≤ 4

λ
P(|V | ≥ t)1−λ

E|V |1{|V |≥λt}.

Moreover, if P(|V | ≥ t) ≤ 1/4, then E|V |1{|V |≥t} ≤ 4tP(|V | ≥ t).

Proof Without loss of generality we may assume that P(|V | ≥ t) ≤ 1/4 (otherwise
the first estimate is trivial).

Observe that P(|V | ≥ s) = exp(−N(s)) where N : [0,∞) → [0,∞] is convex
and N(0) = 0. In particular

P(|V | ≥ γ t) ≤ P(|V | ≥ t)γ for γ > 1

and

P(|V | ≥ γ t) ≥ P(|V | ≥ t)γ for γ ∈ [0, 1].

We have

E|V |1{|V |≥t} ≤
∞∑
k=0

2k+1tP(|V | ≥ 2kt) ≤ 2t
∞∑
k=0

2k
P(|V | ≥ t)2k

≤ 2tP(|V | ≥ t)

∞∑
k=0

2k41−2k ≤ 4tP(|V | ≥ t).

This implies the second part of the lemma.
To conclude the proof of the first bound it is enough to observe that

E|V |1{|V |≥λt} ≥ λtP(|V | ≥ λt) ≥ λtP(|V | ≥ t)λ.

��
Proof of Theorem 3.3 By Proposition 3.1 it is enough to show the lower bound. By
Lemma 3.11 we may assume that X is symmetric. We may also obviously assume
that ‖Xi‖2

2 = EX2
i > 0 for all i.

Let Z = (Z1, . . . , Zn), where Zi = Xi/‖Xi‖2. Then Z is log-concave, isotropic
and, by (3.7), E|Zi | ≥ 1/(2C1) for all i. Set Y := 2C1Z. Then Xi = aiYi and
E|Yi | ≥ 1. Moreover, since any m-dimensional projection of Z is a log-concave,
isotropic m-dimensional vector, we know by the result of Lee and Vempala [13],
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that it satisfies the exponential concentration with a constants Cm1/4. (In fact an
easy modification of the proof below shows that for our purposes it would be enough
to have exponential concentration with a constant Cmγ for some γ < 1/2, so one
may also use Eldan’s result [6] which gives such estimates for any γ > 1/3). So
any m-dimensional projection of Y satisfies exponential concentration with constant
C2m

1/4.
Let us fix k and set t := t (k,X), then (since Xi has no atoms)

n∑
i=1

E|Xi |1{|Xi |≥t} = kt. (3.12)

For l = 1, 2, . . . define

Il := {i ∈ [n] : βl−1 ≥ P(|Xi | ≥ t) ≥ βl},

where β = 2−8. By (3.12) there exists l such that

∑
i∈Il

E|Xi |1{|Xi |≥t} ≥ kt2−l .

Let us consider three cases.

(1) l = 1 and |I1| ≤ k. Then

E max|I |=k

∑
i∈I

|Xi | ≥
∑
i∈I1

E|Xi |1{|Xi |≥t} ≥ 1

2
kt.

(2) l = 1 and |I1| > k. Choose J ⊂ I1 of cardinality k. Then

E max|I |=k

∑
i∈I

|Xi | ≥
∑
i∈J

E|Xi | ≥
∑
i∈J

tP(|Xi | ≥ t) ≥ βkt.

(3) l > 1. By Lemma 3.12 (applied with λ = 1/8) we have

∑
i∈Il

E|Xi |1{|Xi |≥t/8} ≥ 1

32
β−7(l−1)/8

∑
i∈Il

E|Xi |1{|Xi |≥t} ≥ 1

32
β−7(l−1)/82−lkt.

(3.13)

Moreover for i ∈ Il , P(|Xi | ≥ t) ≤ βl−1 ≤ 1/4, so the second part of
Lemma 3.12 yields

4t|Il |βl−1 ≥
∑
i∈Il

E|Xi |1{|Xi |≥t} ≥ kt2−l

and |Il | ≥ β1−l2−l−2k = 27l−10k ≥ k.



3 Order Statistics of Log-Concave Vectors 77

Set k′ := β−7l/82−lk = 26lk. If k′ ≥ |Il | then, using (3.13), we estimate

E max|I |=k

∑
i∈I

|Xi | ≥ k

|Il |
∑
i∈Il

E|Xi | ≥ β7l/82l
∑
i∈Il

E|Xi |1{|Xi |≥t/8} ≥ 1

32
β7/8kt

= 2−12kt.

Otherwise set X′ = (Xi)i∈Il and Y ′ = (Yi)i∈Il . By (3.12) we have

kt ≥
∑
i∈Il

E|Xi |1{|Xi |≥t} ≥ |Il |tβl,

so |Il | ≤ kβ−l and Y ′ satisfies exponential concentration with constant α′ =
C2k

1/4β−l/4. Estimate (3.13) yields

∑
i∈Il

E|Xi |1{|Xi |≥2−12t} ≥
∑
i∈Il

E|Xi |1{|Xi |≥t/8} ≥ 2−12k′t,

so t (k′,X′) ≥ 2−12t . Moreover, by Proposition 3.7 we have (since k′ ≤ |Il |)

E max
I⊂Il ,|I |=k′

∑
i∈I

|Xi | ≥ 1

8 + 64α′/
√
k′ k

′t (k′,X′).

To conclude observe that

α′
√
k′ = C22−lk−1/4 ≤ C2

4

and since k′ ≥ k,

E max|I |=k

∑
i∈I

|Xi | ≥ k

k′E max
I⊂Il ,|I |=k′

∑
i∈I

|Xi | ≥ 1

8 + 16C2
2−12tk.

��

3.4 Vectors Satisfying Condition (3.3)

Proof of Theorem 3.2 By Proposition 3.1 we need to show only the lower bound.
Assume first that variables Xi have no atoms and k ≥ 4(1 + α).

Let tk = t (k,X). Then E
∑n

i=1 |Xi |1{|Xi |≥tk} = ktk . Note, that (3.3) implies that
for all i �= j we have

E|XiXj |1{|Xi |≥tk,|Xj |≥tk} ≤ αE|Xi |1{|Xi |≥tk}E|Xj |1{|Xj |≥tk}. (3.14)
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We may assume that Emax|I |=k

∑
i∈I |Xi | ≤ 1

6ktk , because otherwise the lower
bound holds trivially.

Let us define

Y :=
n∑

i=1

|Xi |1{ktk≥|Xi |≥tk} and A := (EY 2)1/2.

Since

E max|I |=k

∑
i∈I

|Xi | ≥ E

[
1

2
ktk1{Y≥ktk/2}

]
= 1

2
ktkP

(
Y ≥ ktk

2

)
,

it suffices to bound below the probability that Y ≥ ktk/2 by a constant depending
only on α.

We have

A2 = EY 2 ≤
n∑

i=1

EX2
i 1{ktk≥|Xi |≥tk} +

∑
i �=j

E|XiXj |1{|Xi |≥tk,|Xj |≥tk}

(3.14)≤ ktkEY + α
∑
i �=j

E|Xi |1{|Xi |≥tk}E|Xj |1{|Xj |≥tk}

≤ ktkA + α

( n∑
i=1

E|Xi |1{|Xi |≥tk}
)2

≤ 1

2
(k2t2

k + A2) + αk2t2
k .

Therefore A2 ≤ (1 + 2α)k2t2
k and for any l ≥ k/2 we have

EY1{Y≥ktk/2} ≤ ltkP(Y ≥ ktk/2) + 1

ltk
EY 2

≤ ltkP(Y ≥ ktk/2) + (1 + 2α)k2l−1tk. (3.15)

By Corollary 3.9 we have (recall definition (3.6))

n∑
i=1

E|Xi |1{|Xi |≥ktk} ≤ E max|I |=k

∑
i∈I

|Xi |

+
∞∑

l=k+1

(
ktkP(N(ktk) ≥ l) +

∫ ∞

ktk

P(N(s) ≥ l)ds

)

≤ 1

6
ktk +

∞∑
l=k+1

(
ktkEN(ktk)

2l−2 +
∫ ∞

ktk

EN(s)2l−2ds

)

≤ 1

6
ktk + 1

k

(
ktkEN(ktk)

2 +
∫ ∞

ktk

EN(s)2ds

)
. (3.16)
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Assumption (3.3) implies that

EN(s)2 =
n∑

i=1

P(|Xi | ≥ s) +
∑
i �=j

P(|Xi| ≥ s, |Xj | ≥ s)

≤
n∑

i=1

P(|Xi | ≥ s) + α

(
n∑

i=1

P(|Xi | ≥ s)

)2

.

Moreover for s ≥ ktk we have

n∑
i=1

P(|Xi | ≥ s) ≤ 1

s

n∑
i=1

E|Xi |1{|Xi |≥s} ≤ ktk

s
≤ 1,

so

EN(s)2 ≤ (1 + α)

n∑
i=1

P(|Xi | ≥ s) for s ≥ ktk.

Thus

ktkEN(ktk)
2 ≤ ktk(1 + α)

n∑
i=1

P(|Xi | ≥ ktk) ≤ (1 + α)

n∑
i=1

E|Xi |1{|Xi |≥ktk},

and

∫ ∞

ktk

EN(s)2ds ≤ (1 + α)

n∑
i=1

∫ ∞

ktk

P(|Xi| ≥ s)ds ≤ (1 + α)

n∑
i=1

E|Xi |1{|Xi |≥ktk}.

This together with (3.16) and the assumption that k ≥ 4(1 + α) implies

n∑
i=1

E|Xi |1{|Xi |≥ktk} ≤ 1

3
ktk

and

EY =
n∑

i=1

E|Xi |1{|Xi |≥tk} −
n∑

i=1

E|Xi |1{|Xi |≥ktk} ≥ 2

3
ktk.

Therefore

EY1{Y≥ktk/2} ≥ EY − 1

2
ktk ≥ 1

6
ktk.
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This applied to (3.15) with l = (12 + 24α)k gives us P(Y ≥ ktk/2) ≥ (144 +
288α)−1 and in consequence

E max|I |=k

∑
i∈I

|Xi | ≥ 1

288(1 + 2α)
kt (k,X).

Since k #→ kt (k,X) is non-decreasing, in the case k ≤ �4(1 + α)� =: k0 we
have

E max|I |=k
|Xi | ≥ k

k0
E max|I |=k0

|Xi | ≥ k

5 + 4α
· 1

288(1 + 2α)
k0t (k0,X)

≥ 1

288(5 + 4α)(1 + 2α)
kt (k,X).

The last step is to loose the assumption that Xi has no atoms. Note that both
assumption (3.3) and the lower bound depend only on (|Xi |)ni=1, so we may assume
that Xi are nonnegative almost surely. Consider Xε := (Xi + εYi)

n
i=1, where

Y1, . . . , Yn are i.i.d. nonnegative r.v’s with EYi < ∞ and a density g, independent
of X. Then for every s, t > 0 we have (observe that (3.3) holds also for s < 0 or
t < 0).

P(Xε
i ≥ s,Xε

j ≥ t)

=
∫ ∞

0

∫ ∞

0
P(Xi + εyi ≥ s, Xj + εyj ≥ t)g(yi)g(yj )dyidyj

(3.3)≤ α

∫ ∞

0

∫ ∞

0
P(Xi ≥ s − εyi)P(Xj ≥ t − εyj )g(yi)g(yj )dyidyj

= αP(Xε
i ≥ s)P(Xε

j ≥ t).

Thus Xε satisfies assumption (3.3) and has the density function for every ε > 0.
Therefore for all natural k we have

E max|I |=k

n∑
i=1

Xε
i ≥ c(α)kt (k,Xε) ≥ c(α)kt (k,X).

Clearly,Emax|I |=k

∑n
i=1 X

ε
i → Emax|I |=k

∑n
i=1 Xi as ε → 0, so the lower bound

holds in the case of arbitrary X satisfying (3.3). ��
We may use Theorem 3.2 to obtain a comparison of weak and strong moments

for the supremum norm:

Corollary 3.13 Let X be an n-dimensional centered random vector satisfying
condition (3.3). Assume that

‖Xi‖2p ≤ β‖Xi‖p for every p ≥ 2 and i = 1, . . . , n. (3.17)
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Then the following comparison of weak and strong moments for the supremum norm
holds: for all a ∈ R

n and all p ≥ 1,

(
Emax

i≤n
|aiXi |p

)1/p ≤ C(α, β)
[
Emax

i≤n
|aiXi | + max

i≤n

(
E|aiXi |p

)1/p]
,

where C(α, β) is a constant depending only on α and β.

Proof Let X′ = (X′
i )i≤n be a decoupled version of X. For any p > 0 a random

vector (|aiXi |p)i≤n satisfies condition (3.3), so by Theorem 3.2

(
Emax

i≤n
|aiXi |p

)1/p ∼ (
Emax

i≤n
|aiX′

i |p
)1/p

for all p > 0, up to a constant depending only on α. The coordinates of X′
are independent and satisfy condition (3.17), so due to [11, Theorem 1.1] the
comparison of weak and strong moments of X′ holds, i.e. for p ≥ 1,

(
Emax

i≤n
|aiX′

i |p
)1/p ≤ C(β)

[
Emax

i≤n
|aiX′

i | + max
i≤n

(
E|aiX′

i |p
)1/p]

,

where C(β) depends only on β. These two observations yield the assertion. ��

3.5 Lower Estimates for Order Statistics

The next lemma shows the relation between t (k,X) and t∗(k,X) for log-concave
vectors X.

Lemma 3.14 Let X be a symmetric log-concave random vector in R
n. For any

1 ≤ k ≤ n we have

1

3

(
t∗(k,X) + 1

k
max|I |=k

∑
i∈I

E|Xi |
)

≤ t (k,X) ≤ 4

(
t∗(k,X) + 1

k
max|I |=k

∑
i∈I

E|Xi |
)
.

Proof Let tk := t (k,X) and t∗k := t∗(k,X). We may assume that any Xi is not
identically equal to 0. Then

∑n
i=1 P(|Xi | ≥ t∗k )= k and

∑n
i=1 E|Xi |1{|Xi |≥tk} = ktk .

Obviously t∗k ≤ tk . Also for any |I | = k we have

∑
i∈I

E|Xi | ≤
∑
i∈I

(
tk + E|Xi |1{|Xi |≥tk}

)≤|I |tk + ktk = 2ktk.

To prove the upper bound set

I1 := {i ∈ [n] : P(|Xi | ≥ t∗k ) ≥ 1/4}.
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We have

k ≥
∑
i∈|I1|

P(|Xi | ≥ t∗k ) ≥ 1

4
|I1|,

so |I1| ≤ 4k. Hence

∑
i∈I1

E|Xi |1{|Xi |≥t∗k } ≤
∑
i∈I1

E|Xi | ≤ 4 max|I |=k

∑
i∈I

E|Xi |.

Moreover by the second part of Lemma 3.12 we get

E|Xi |1{|Xi |≥t∗k } ≤ 4t∗kP(|Xi | ≥ t∗k ) for i /∈ I1,

so

∑
i /∈I1

E|Xi |1{|Xi |≥t∗k } ≤ 4t∗k
n∑

i=1

P(|Xi | ≥ t∗k ) ≤ 4kt∗k .

Hence if s = 4t∗k + 4
k

max|I |=k

∑
i∈I E|Xi | then

n∑
i=1

E|Xi |1{|Xi |≥s} ≤
n∑

i=1

E|Xi |1{|Xi |≥t∗k } ≤ 4 max|I |=k

∑
i∈I

E|Xi | + 4kt∗k = ks,

that is tk ≤ s. ��
To derive bounds for order statistics we will also need a few facts about log-

concave vectors.

Lemma 3.15 Assume that Z is an isotropic one- or two-dimensional log-concave
random vector with a density g. Then g(t) ≤ C for all t . If Z is one-dimensional,
then also g(t) ≥ c for all |t| ≤ t0, where t0 > 0 is an absolute constant.

Proof We will use a classical result (see [4, Theorem 2.2.2, Proposition 3.3.1,
Proposition 3.3.2, and Proposition 2.5.9]): ‖g‖sup ∼ g(0) ∼ 1 (note that here we use
the assumption that Z is isotropic, in particular that EZ = 0, and that the dimension
of Z is 1 or 2). This implies the upper bound on g.

In order to get the lower bound in the one-dimensional case, it suffices to prove
that g(u) ≥ c for |u| = εE|Z| ≥ (2C1)

−1ε, where 1/4 > ε > 0 is fixed and its
value will be chosen later (then by the log-concavity we get g(u)sg(0)1−s ≤ g(su)

for all s ∈ (0, 1)). Since −Z is again isotropic we may assume that u ≥ 0.
If g(u) ≥ g(0)/e, then we are done. Otherwise by log-concavity of g we get

P(Z ≥ u)=
∫ ∞

u

g(s)ds ≤
∫ ∞

u

g(u)s/ug(0)−s/u+1ds ≤ g(0)
∫ ∞

u

e−s/uds ≤C0u≤C0ε.
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On the other hand, Z has mean zero, so E|Z| = 2EZ+ and by the Paley–Zygmund
inequality and (3.7) we have

P(Z ≥ u) = P(Z+ ≥ 2εEZ+) ≥ (1 − 2ε)2 (EZ+)2

EZ2+
≥ 1

16

(E|Z|)2

EZ2 ≥ c0.

For ε < c0/C0 we get a contradiction. ��
Lemma 3.16 Let Y be a mean zero log-concave random variable and let
P(|Y | ≥ t) ≤ p for some p > 0. Then

P

(
|Y | ≥ t

2

)
≥ 1√

ep
P(|Y | ≥ t).

Proof By the Grünbaum inequality (3.8) we have P(Y ≥ 0) ≥ 1/e, hence

P

(
Y ≥ t

2

)
≥ √

P(Y ≥ t)P(Y ≥ 0) ≥ 1√
e

√
P(Y ≥ t) ≥ 1√

ep
P(Y ≥ t).

Since −Y satisfies the same assumptions as Y we also have

P

(
−Y ≥ t

2

)
≥ 1√

ep
P(−Y ≥ t).

��
Lemma 3.17 Let Y be a mean zero log-concave random variable and let
P(|Y | ≥ t) ≥ p for some p > 0. Then there exists a universal constant C

such that

P(|Y | ≤ λt) ≤ Cλ√
p
P(|Y | ≤ t) for λ ∈ [0, 1].

Proof Without loss of generality we may assume that EY 2 = 1. Then by
Chebyshev’s inequality t ≤ p−1/2. Let g be the density of Y . By Lemma 3.15
we know that ‖g‖∞ ≤ C and g(t) ≥ c on [−t0, t0], where c, C and t0 ∈ (0, 1) are
universal constants. Thus

P(|Y | ≤ t) ≥ P(|Y | ≤ t0
√
pt) ≥ 2ct0

√
pt,

and

P(|Y | ≤ λt) ≤ 2‖g‖∞λt ≤ 2Cλt ≤ Cλ

ct0
√
p
P(|Y | ≤ t).

��
Now we are ready to give a proof of the lower bound in Theorem 3.4. The next

proposition is a key part of it.
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Proposition 3.18 Let X be a mean zero log-concave n-dimensional random vector
with uncorrelated coordinates and let α > 1/4. Suppose that

P
(|Xi | ≥ t∗(α,X)

) ≤ 1

C3
for all i.

Then

P

(
$4α%- max

i
|Xi | ≥ 1

C4
t∗(α,X)

)
≥ 3

4
.

Proof Let t∗ = t∗(α,X), k := $4α% and L = $
√
C3

4
√
e
%. We will choose C3 in such a

way that L is large, in particular we may assume that L ≥ 2. Observe also that α =∑n
i=1 P(|Xi| ≥ t∗(α,X)) ≤ nC−1

3 , thus Lk ≤ C
1/2
3 e−1/2α ≤ e−1/2C

−1/2
3 n ≤ n if

C3 ≥ 1 > 1
e
. Hence

k- max
i

|Xi | ≥ 1

k(L − 1)

Lk∑
l=k+1

l- max
i

|Xi |

= 1

k(L − 1)

(
max|I |=Lk

∑
i∈I

|Xi | − max|I |=k

∑
i∈I

|Xi |
)
. (3.18)

Lemma 3.16 and the definition of t∗(α,X) yield

n∑
i=1

P

(
|Xi | ≥ 1

2
t∗
)

≥
√
C3√
e

α ≥ Lk.

This yields t (Lk,X) ≥ t∗(Lk,X) ≥ t∗
2 and by Theorem 3.3 we have

E max|I |=Lk

∑
i∈I

|Xi | ≥ c1Lk
t∗

2
.

Since for any norm P(‖X‖ ≤ tE‖X‖) ≤ Ct for t > 0 (see [10, Corollary 1]) we
have

P

(
max|I |=Lk

∑
i∈I

|Xi | ≥ c2Lkt∗
)

≥ 7

8
. (3.19)

Let X′ be an independent copy of X. By the Paley-Zygmund inequality and (3.7),

P(|Xi | ≥ 1
2E|Xi |) ≥ (E|Xi |)2

4E|Xi |2 > 1
C3

if C3 > 16C2
1 , so 1

2E|Xi | ≤ t∗. Moreover it
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is easy to verify that k = $4α% > α for α > 1/4, thus t∗(k,X) ≤ t∗(α,X) = t∗.
Hence Proposition 3.1, Lemma 3.14, and inequality (3.10) yield

E max|I |=k

∑
i∈I

|Xi | = E max|I |=k

∑
i∈I

|Xi − EX′
i | ≤ E max|I |=k

∑
i∈I

|Xi − X′
i |

≤ E max|I |=2k

∑
i∈I

|Xi − X′
i |

≤ 4kt (2k,X − X′) ≤ 16k
(
t∗(2k,X − X′) + max

i
E|Xi − X′

i |
)

≤ 16k
(
2t∗(k,X) + 2 max

i
E|Xi |

) ≤ 96kt∗.

Therefore

P

(
max|I |=k

∑
i∈I

|Xi | ≥ 800kt∗
)

≤ 1

8
. (3.20)

Estimates (3.18)–(3.20) yield

P

(
k- max

i
|Xi | ≥ 1

L − 1
(c2L − 800)t∗

)
≥ 3

4
,

so it is enough to choose C3 in such a way that L ≥ 1600/c2. ��
Proof of the First Part of Theorem 3.4 Let t∗ = t∗(k − 1/2,X) and C3 be as in
Proposition 3.18. It is enough to consider the case when t∗ > 0, then P(|Xi | =
t∗) = 0 for all i and

∑n
i=1 P(|Xi| ≥ t∗) = k − 1/2. Define

I1 :=
{
i ≤ n : P(|Xi | ≥ t∗) ≤ 1

C3

}
, α :=

∑
i∈I1

P(|Xi | ≥ t∗),

I2 :=
{
i ≤ n : P(|Xi | ≥ t∗) > 1

C3

}
, β :=

∑
i∈I2

P(|Xi | ≥ t∗).

If β = 0 then α = k − 1/2, |I1| = {1, . . . , n}, and the assertion immediately
follows by Proposition 3.18 since 4α ≥ k.

Otherwise define

Ñ(t) :=
∑
i∈I2

1{|Xi |≤t}.

We have by Lemma 3.17 applied with p = 1/C3

EÑ(λt∗) =
∑
i∈I2

P(|Xi| ≤ λt∗) ≤ C5λ
∑
i∈I2

P(|Xi | ≤ t∗) = C5λ(|I2| − β).
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Thus

P

(
�β�- max

i∈I2
|Xi | ≤ λt∗

)
= P(Ñ(λt∗) ≥ |I2| + 1 − �β�)

≤ 1

|I2| + 1 − �β�EÑ(λt∗) ≤ C5λ.

Therefore

P

(
�β�- max

i∈I2
|Xi | ≥ 1

4C5
t∗
)

≥ 3

4
.

If α < 1/2 then �β� = k and the assertion easily follows. Otherwise Proposi-
tion 3.18 yields

P

(
$4α%- max

i∈I1
|Xi | ≥ 1

C4
t∗
)

≥ 3

4
.

Observe that for α ≥ 1/2 we have $4α% + �β� ≥ 4α − 1 + β ≥α + 1/2 + β = k, so

P

(
k- max

i
|Xi | ≥ min

{
t∗

C4
,

t∗

4C5

})

≥ P

(
$4α%- max

i∈I1
|Xi | ≥ 1

C4
t∗, �β�- max

i∈I2
|Xi | ≥ 1

4C5
t∗
)

≥ 1

2
.

��
Remark 3.19 A modification of the proof above shows that under the assumptions
of Theorem 3.4 for any p < 1 there exists c(p) > 0 such that

P

(
k- max

i≤n
|Xi | ≥ c(p)t∗(k − 1/2,X)

)
≥ p.

3.6 Upper Estimates for Order Statistics

We will need a few more facts concerning log-concave vectors.

Lemma 3.20 Suppose that X is a mean zero log-concave random vector with
uncorrelated coordinates. Then for any i �= j and s > 0,

P(|Xi | ≤ s, |Xj | ≤ s) ≤ C6P(|Xi | ≤ s)P(|Xj | ≤ s).

Proof Let C7, c3 and t0 be the constants from Lemma 3.15. If s > t0‖Xi‖2 then,
by Lemma 3.15, P(|Xi | ≤ s) ≥ 2c3t0 and the assertion is obvious (with any C6 ≥
(2c3t0)

−1). Thus we will assume that s ≤ t0 min{‖Xi‖2, ‖Xj‖2}.
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Let X̃i = Xi/‖Xi‖2 and let gij be the density of (X̃i , X̃j ). By Lemma 3.15 we
know that ‖gi,j ‖∞ ≤ C7, so

P(|Xi| ≤ s, |Xj | ≤ s) = P(|X̃i| ≤ s/‖Xi‖2, |X̃j | ≤ s/‖Xj‖2) ≤ C7
s2

‖Xi‖2‖Xj‖2
.

On the other hand the second part of Lemma 3.15 yields

P(|Xi | ≤ s)P(|Xj | ≤ s) ≥ 4c2
3s

2

‖Xi‖2‖Xj‖2
.

��
Lemma 3.21 Let Y be a log-concave random variable. Then

P(|Y | ≥ ut) ≤ P(|Y | ≥ t)(u−1)/2 for u ≥ 1, t ≥ 0.

Proof We may assume that Y is non-degenerate (otherwise the statement is
obvious), in particular Y has no atoms. Log-concavity of Y yields

P(Y ≥ t) ≥ P(Y ≥ −t)
u−1
u+1P(Y ≥ ut)

2
u+1 .

Hence

P(Y ≥ ut) ≤
(

P(Y ≥ t)

P(Y ≥ −t)

) u+1
2

P(Y ≥ −t) =
(

1 − P(|Y | ≤ t)

P(Y ≥ −t)

) u+1
2

P(Y ≥ −t)

≤ (1 − P(|Y | ≤ t))
u+1

2 P(Y ≥ −t) = P(|Y | ≥ t)
u+1

2 P(Y ≥ −t).

Since −Y satisfies the same assumptions as Y , we also have

P(Y ≤ −ut) ≤ P(|Y | ≥ t)
u+1

2 P(Y ≤ t).

Adding both estimates we get

P(|Y | ≥ ut) ≤ P(|Y | ≥ t)
u+1

2 (1 + P(|Y | ≤ t)) = P(|Y | ≥ t)
u−1

2 (1 − P(|Y | ≤ t)2).

��
Lemma 3.22 Suppose that Y is a log-concave random variable and P(|Y | ≤ t) ≤
1

10 . Then P(|Y | ≤ 21t) ≥ 5P(|Y | ≤ t).

Proof Let P(|Y | ≤ t) = p then by Lemma 3.21

P(|Y | ≤ 21t) = 1 − P(|Y | > 21t) ≥ 1 − P(|Y | > t)10 = 1 − (1 − p)10

≥ 10p − 45p2 ≥ 5p.
��
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Let us now prove (3.4) and see how it implies the second part of Theorem 3.4.
Then we give a proof of (3.5).

Proof of (3.4) Fix k and set t∗ := t∗(k − 1/2,X). Then
∑n

i=1 P(|Xi| ≥ t∗) =
k − 1/2. Define

I1 :=
{
i ≤ n : P(|Xi| ≥ t∗) ≤ 9

10

}
, α :=

∑
i∈I1

P(|Xi | ≥ t∗), (3.21)

I2 :=
{
i ≤ n : P(|Xi | ≥ t∗) > 9

10

}
, β :=

∑
i∈I2

P(|Xi | ≥ t∗). (3.22)

Observe that for u > 3 and 1 ≤ l ≤ |I1| we have by Lemma 3.21

P(l- max
i∈I1

|Xi | ≥ ut∗) ≤ E
1

l

∑
i∈I1

1{|Xi |≥ut∗} = 1

l

∑
i∈I1

P(|Xi | ≥ ut∗) (3.23)

≤ 1

l

∑
i∈I1

P(|Xi| ≥ t∗)(u−1)/2 ≤ α

l

(
9

10

)(u−3)/2

.

Consider two cases.

Case 1 β > |I2| − 1/2. Then |I2| < β + 1/2 ≤ k, so k − |I2| ≥ 1 and

α = k − 1

2
− β ≤ k − |I2|.

Therefore by (3.23)

P
(
k- max |Xi | ≥ 5t∗

) ≤ P

(
(k − |I2|)- max

i∈I1
|Xi | ≥ 5t∗

)
≤ 9

10
.

Case 2 β ≤ |I2| − 1/2. Observe that for any disjoint sets J1, J2 and integers l,m

such that l ≤ |J1|, m ≤ |J2| we have

(l + m − 1)- max
i∈J1∪J2

|xi | ≤ max

{
l- max

i∈J1
|xi |,m- max

i∈J2
|xi |
}

≤ l- max
i∈J1

|xi | + m- max
i∈J2

|xi |. (3.24)

Since

�α� + �β� ≤ α + β + 2 < k + 2

we have �α� + �β� ≤ k + 1 and, by (3.24),

k- max
i

|Xi | ≤ �α�- max
i∈I1

|Xi | + �β�- max
i∈I2

|Xi |.
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Estimate (3.23) yields

P

(
�α�- max

i∈I1
|Xi | ≥ ut∗

)
≤
(

9

10

)(u−3)/2

for u ≥ 3.

To estimate �β�- maxi∈I2 |Xi | = (|I2| + 1 − �β�)- mini∈I2 |Xi | observe that by
Lemma 3.22, the definition of I2 and assumptions on β,

∑
i∈I2

P(|Xi | ≤ 21t∗) ≥ 5
∑
i∈I2

P(|Xi | ≤ t∗) = 5(|I2| − β) ≥ 2(|I2| + 1 − �β�).

Set l := (|I2| + 1 − �β�) and

Ñ(t) :=
∑
i∈I2

1{|Xi |≤t}.

Note that we know already thatEÑ(21t∗) ≥ 2l. Thus the Paley-Zygmund inequality
implies

P

(
�β�- max

i∈I2
|Xi | ≤ 21t∗

)
= P

(
l- min

i∈I2
|Xi | ≤ 21t∗

)
≥ P(Ñ(21t∗) ≥ l)

≥ P

(
Ñ(21t∗) ≥ 1

2
EÑ(21t∗)

)
≥ 1

4

(EÑ(21t∗))2

EÑ(21t∗)2
.

However Lemma 3.20 yields

EÑ(21t∗)2 ≤ EÑ(21t∗) + C6(EÑ(21t∗)))2 ≤ (C6 + 1)(EÑ(21t∗))2.

Therefore

P

(
k- max

i
|Xi | > (21 + u)t∗

)
≤ P

(
�α�- max

i∈I1
|Xi | ≥ ut∗

)

+ P

(
�β�- max

i∈I2
|Xi | > 21t∗

)

≤
(

9

10

)(u−3)/2

+1 − 1

4(C6 + 1)
≤ 1− 1

5(C6 + 1)

for sufficiently large u. ��
The unconditionality assumption plays a crucial role in the proof of the next

lemma, which allows to derive the second part of Theorem 3.4 from estimate (3.4).
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Lemma 3.23 Let X be an unconditional log-concave n-dimensional random vec-
tor. Then for any 1 ≤ k ≤ n,

P

(
k- max

i≤n
|Xi | ≥ ut

)
≤ P

(
k- max

i≤n
|Xi | ≥ t

)u

for u > 1, t > 0.

Proof Let ν be the law of (|X1|, . . . , |Xn|). Then ν is log-concave on R
+
n . Define

for t > 0,

At :=
{
x ∈ R

+
n : k- max

i≤n
|xi| ≥ t

}
.

It is easy to check that 1
u
Aut + (1 − 1

u
)Rn+ ⊂ At , hence

P

(
k- max

i≤n
|Xi | ≥ t

)
= ν(At)≥ ν(Aut )

1/uν(Rn+)1−1/u = P

(
k- max

i≤n
|Xi | ≥ ut

)1/u

.

��
Proof of the Second Part of Theorem 3.4 Estimate (3.4) together with Lemma
3.23 yields

P

(
k- max

i≤n
|Xi | ≥ Cut∗(k − 1/2,X)

)
≤ (1 − c)u for u ≥ 1,

and the assertion follows by integration by parts. ��
Proof of (3.5) Define I1, I2, α and β by (3.21) and (3.22), where this time t∗ =
t∗(k − k5/6/2,X). Estimate (3.23) is still valid so integration by parts yields

El- max
i∈I1

|Xi | ≤
(

3 + 20
α

l

)
t∗.

Set

kβ :=
⌈
β + 1

2
k5/6

⌉
.

Observe that

�α� + kβ < α + β + 1

2
k5/6 + 2 = k + 2.

Hence �α� + kβ ≤ k + 1.
If kβ > |I2|, then k − |I2| ≥ �α� + kβ − 1 − |I2| ≥ �α�, so

Ek- max
i

|Xi | ≤ E(k − |I2|)- max
i∈I1

|Xi | ≤ E�α�- max
i∈I1

|Xi | ≤ 23t∗.

Therefore it suffices to consider case kβ ≤ |I2| only.
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Since �α� + kβ − 1 ≤ k and kβ ≤ |I2|, we have by (3.24),

Ek- max
i

|Xi | ≤ E�α�- max
i∈I1

|Xi | + Ekβ - max
i∈I2

|Xi | ≤ 23t∗ + Ekβ - max
i∈I2

|Xi |.

Since β ≤ k − 1
2k

5/6 and x → x − 1
2x

5/6 is increasing for x ≥ 1/2 we have

β ≤ β + 1

2
k5/6 − 1

2

(
β + 1

2
k5/6

)5/6

≤ kβ − 1

2
k

5/6
β .

Therefore, considering (Xi)i∈I2 instead of X and kβ instead of k it is enough to
show the following claim:

Let s > 0, n ≥ k and let X be an n-dimensional log-concave vector with
uncorrelated coordinates. Suppose that

∑
i≤n

P(|Xi | ≥ s) ≤ k − 1

2
k5/6 and min

i≤n
P(|Xi| ≥ s) ≥ 9/10

then

Ek- max
i≤n

|Xi | ≤ C8s.

We will show the claim by induction on k. For k = 1 the statement is obvious
(since the assumptions are contradictory). Suppose now that k ≥ 2 and the assertion
holds for k − 1.

Case 1 P(|Xi0 | ≥ s) ≥ 1 − 5
12k

−1/6 for some 1 ≤ i0 ≤ n. Then

∑
i �=i0

P(|Xi | ≥ s) ≤ k − 1

2
k5/6 −

(
1 − 5

12
k−1/6

)
≤ k − 1 − 1

2
(k − 1)5/6,

where to get the last inequality we used that x5/6 is concave on R+, so (1 − t)5/6 ≤
1 − 5

6 t for t = 1/k. Therefore by the induction assumption applied to (Xi)i �=i0 ,

Ek- max
i

|Xi | ≤ E(k − 1)- max
i �=i0

|Xi | ≤ C8s.

Case 2 P(|Xi| ≤ s) ≥ 5
12k

−1/6 for all i. Applying Lemma 3.15 we get

5

12
k−1/6 ≤ P

( |Xi |
‖Xi‖2

≤ s

‖Xi‖2

)
≤ C

s

‖Xi‖2
,

so maxi ‖Xi‖2 ≤ Ck1/6s. Moreover n ≤ 10
9 k. Therefore by the result of Lee and

Vempala [13] X satisfies the exponential concentration with α ≤ C9k
5/12s.
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Let l = �k− 1
2 (k

5/6 −1)� then s ≥ t∗(l−1/2,X) and k− l+1 ≥ 1
2 (k

5/6 −1) ≥
1
9k

5/6. Let

A :=
{
x ∈ R

n : l- max
i

|xi | ≤ C10s

}
.

By (3.4) (applied with l instead of k) we have P(X ∈ A) ≥ c4. Observe that

k- max
i

|xi | ≥ C10s + u ⇒ dist(x,A) ≥ √
k − l + 1u ≥ 1

3
k5/12u.

Therefore by Lemma 3.10 we get

P

(
k- max

i
|Xi | ≥ C10s + 3C9us

)
≤ exp (−(u + ln c4)+) .

Integration by parts yields

Ek- max
i

|Xi | ≤ (C10 + 3C9(1 − ln c4)) s

and the induction step is shown in this case provided that C8 ≥ C10+3C9(1−ln c4).
��

To obtain Corollary 3.6 we used the following lemma.

Lemma 3.24 Assume that X is a symmetric isotropic log-concave vector in R
n.

Then

t∗(p,X) ∼ n − p

n
for n > p ≥ n/4. (3.25)

and

t∗(k/2,X) ∼ t∗(k,X) ∼ t (k,X) for k ≤ n/2. (3.26)

Proof Observe that

n∑
i=1

P(|Xi| ≤ t∗(p,X)) = n − p.

Thus Lemma 3.15 implies that for p ≥ c5n (with c5 ∈ ( 1
2 , 1)) we have t∗(p,X) ∼

n−p
n

. Moreover, by the Markov inequality

n∑
i=1

P(|Xi | ≥ 4) ≤ n

16
,
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so t∗(n/4,X) ≤ 4. Since p #→ t∗(p,X) is non-increasing, we know that
t∗(p,X) ∼ 1 for n/4 ≤ p ≤ c5n.

Now we will prove (3.26). We have

t∗(k,X) ≤ t∗(k/2,X) ≤ t (k/2,X) ≤ 2t (k,X),

so it suffices to show that t∗(k,X) ≥ ct (k,X). To this end we fix k ≤ n/2. By (3.25)
we know that t := C11t

∗(k,X) ≥ C11t
∗(n/2,X) ≥ e, so the isotropicity of X and

Markov’s inequality yield P(|Xi | ≥ t) ≤ e−2 for all i. We may also assume that
t ≥ t∗(k,X). Integration by parts and Lemma 3.21 yield

E|Xi |1{|Xi |≥t} ≤ 3tP(|Xi | ≥ t) + t

∫ ∞

0
P(|Xi | ≥ (s + 3)t)ds

≤ 3tP(|Xi | ≥ t) + t

∫ ∞

0
P(|Xi | ≥ t)e−sds ≤ 4tP(|Xi | ≥ t).

Therefore

n∑
i=1

E|Xi |1{|Xi |≥t} ≤ 4t
n∑

i=1

P(|Xi | ≥ t) ≤ 4t
n∑

i=1

P(|Xi | ≥ t∗(k,X)) ≤ 4kt,

so t (k,X) ≤ 4C11t
∗(k,X). ��
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Chapter 4
Further Investigations of Rényi Entropy
Power Inequalities and an Entropic
Characterization of s-Concave Densities

Jiange Li, Arnaud Marsiglietti, and James Melbourne

Abstract We investigate the role of convexity in Rényi entropy power inequalities.
After proving that a general Rényi entropy power inequality in the style of Bobkov
and Chistyakov (IEEE Trans Inform Theory 61(2):708–714, 2015) fails when the
Rényi parameter r ∈ (0, 1), we show that random vectors with s-concave densities
do satisfy such a Rényi entropy power inequality. Along the way, we establish the
convergence in the Central Limit Theorem for Rényi entropies of order r ∈ (0, 1)
for log-concave densities and for compactly supported, spherically symmetric and
unimodal densities, complementing a celebrated result of Barron (Ann Probab
14:336–342, 1986). Additionally, we give an entropic characterization of the class
of s-concave densities, which extends a classical result of Cover and Zhang (IEEE
Trans Inform Theory 40(4):1244–1246, 1994).

4.1 Introduction

Let X be a random vector in R
d . Suppose that X has the density f with respect to

the Lebesgue measure. For r ∈ (0, 1) ∪ (1,∞), the Rényi entropy of order r (or
simply, r-Rényi entropy) is defined as

hr(X) = 1

1 − r
log
∫

Rd

f (x)rdx. (4.1)
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For r ∈ {0, 1,∞}, the r-Rényi entropy can be extended continuously such that the
RHS of (4.1) is log |supp(f )| for r = 0; − ∫

Rd f (x) log f (x)dx for r = 1; and
− log ‖f ‖∞ for r = ∞. The case r = 1 corresponds to the classical Shannon
differential entropy. Here, we denote by |supp(f )| the Lebesgue measure of the
support of f , and ‖f ‖∞ represents the essential supremum of f . The r-Rényi
entropy power is defined by

Nr(X) = e2hr(X)/d.

In the following, we drop the subscript when r = 1.
The classical Entropy Power Inequality (henceforth, EPI) of Shannon [39] and

Stam [41], states that the entropy power N(X) is super-additive on the sum of
independent random vectors. There has been recent success in obtaining extensions
of the EPI from the Shannon differential entropy to r-Rényi entropy. In [7, 8],
Bobkov and Chistyakov showed that, at the expense of an absolute constant c > 0,
the following Rényi EPI of order r ∈ [1,∞] holds

Nr(X1 + · · · + Xn) ≥ c

n∑
i=1

Nr(Xi). (4.2)

Ram and Sason soon after gave a sharpened constant depending on the number of
summands [36]. Madiman, Melbourne, and Xu sharpened constants in the r = ∞
case by identifying extremizers in [31, 32]. Savaré and Toscani [38] showed that
a modified Rényi entropy power is concave along the solution of a nonlinear heat
equation, which generalizes Costa’s concavity of entropy power [19]. Bobkov and
Marsiglietti [10] proved the following variant of Rényi EPI

Nr(X + Y )α ≥ Nr(X)α + Nr(Y )α (4.3)

for r > 1 and some exponent α only depending on r . It is clear that (4.3) holds for
more than two summands. Improvement of the exponent α was given by Li [27].

One of our goals is to establish analogues of (4.2) and (4.3) when the Rényi
parameter r ∈ (0, 1). Both (4.2) and (4.3) can be derived from Young’s convolution
inequality in conjunction with the entropic comparison inequality hr1(X) ≥ hr2(X)

for any 0 ≤ r1 ≤ r2. The latter fact is an immediate consequence of Jensen’s
inequality. When the Rényi parameter r ∈ (0, 1), analogues of (4.2) and (4.3)
require a converse of the entropic comparison inequality aforementioned. This
technical issue prevents a general Rényi EPI of order r ∈ (0, 1) for generic random
vectors. Our first result shows that a general Rényi EPI of the form (4.2) indeed fails
for all r ∈ (0, 1).
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Theorem 4.1 For any r ∈ (0, 1) and ε > 0, there exist independent random vectors
X1, · · · ,Xn in R

d , for some d ≥ 1 and n ≥ 2, such that

Nr(X1 + · · · + Xn) < ε

n∑
i=1

Nr(Xi). (4.4)

We have an explicit construction of such random vectors. They are essentially
truncations of some spherically symmetric random vectors with finite covariance
matrices and infinite Rényi entropies of order r ∈ (0, 1). The key point is the con-
vergence along the Central Limit Theorem (henceforth, CLT) for Rényi entropies
of order r ∈ (0, 1); that is, the r-Rényi entropy of their normalized sum converges
to the r-Rényi entropy of a Gaussian. This implies that, after appropriate normal-
ization, the LHS of (4.4) is finite, but the RHS of (4.4) can be as large as possible.
The entropic CLT has been studied for a long time. A celebrated result of Barron
[3] shows the convergence in the CLT for Shannon differential entropy (see [26]
for a multidimensional setting). The recent work of Bobkov and Marsiglietti [11]
studies the convergence in the CLT for Rényi entropy of order r > 1 for real-valued
random variables (see also [12] for convergence in Rényi divergence, which is not
equivalent to convergence in Rényi entropy unless r = 1). In Sect. 4.2, we establish
the analogue of [11, Theorem 1.1] in higher dimensions and we prove convergence
along the CLT for Rényi entropies of order r ∈ (0, 1) for a large class of densities.

As mentioned above, the reverse entropic comparison inequality prevents Rényi
EPIs of order r ∈ (0, 1) for generic random vectors. However, a large class of
random vectors with the so-called s-concave densities do satisfy such a reverse
entropic comparison inequality. Our next results show that Rényi EPI of order
r ∈ (0, 1) holds for such densities. This extends the earlier work of Marsiglietti
and Melbourne [33, 34] for log-concave densities (which corresponds to the s = 0
case).

Let s ∈ [−∞,∞]. A function f : Rd → [0,∞) is called s-concave if the
inequality

f ((1 − λ)x + λy) ≥ ((1 − λ)f (x)s + λf (y)s)1/s (4.5)

holds for all x, y ∈ R
d such that f (x)f (y) > 0 and λ ∈ (0, 1). For

s ∈ {−∞, 0,∞}, the RHS of (4.5) is understood in the limiting sense; that is
min{f (x), f (y)} for s = −∞, f (x)1−λf (y)λ for s = 0, and max{f (x), f (y)}
for s = ∞. The case s = 0 corresponds to log-concave functions. The study
of measures with s-concave densities was initiated by Borell in the seminal work
[13, 14]. One can think of s-concave densities, in particular log-concave densities,
as functional versions of convex sets. There has been a recent stream of research on
a formal parallel relation between functional inequalities of s-concave densities and
geometric inequalities of convex sets.

Theorem 4.2 For any s ∈ (−1/d, 0) and r ∈ (−sd, 1), there exists c =
c(s, r, d, n) such that for all independent random vectors X1, · · · ,Xn with s-
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concave densities in R
d , we have

Nr(X1 + · · · + Xn) ≥ c

n∑
i=1

Nr(Xi).

In particular, one can take

c = r
1

1−r

(
1 + 1

n|r ′|
)1+n|r ′| ( d∏

k=1

(1 + ks)|r ′|(n−1)(1 + ks
r
)1+|r ′|

(1 + ks(1 + 1
n|r ′| ))1+n|r ′|

) 2
d

,

where r ′ = r/(r − 1) is the Hölder conjugate of r .

Theorem 4.3 Given s ∈ (−1/d, 0), there exist 0 < r0 < 1 and α = α(s, r, d) such
that for r ∈ (r0, 1) and independent random vectors X and Y in R

d with s-concave
densities,

Nr(X + Y )α ≥ Nr(X)α + Nr(Y )α.

In particular, one can take

r0 =
(

1 − 2

1 + √
3

(
1 + 1

sd

))−1

α =
(

1 + log r + (r + 1) log r+1
2r + C(s)

(1 − r) log 2

)−1

,

where

C(s) = 2

d

d∑
k=1

(
log

(
1 + ks

r

)
+ r log(1 + ks) − (r + 1) log

(
1 + ks(r + 1)

2r

))
.

Owing to the convexity, random vectors with s-concave densities also satisfy
a reverse EPI, which was first proved by Bobkov and Madiman [9]. This can be
seen as the functional lifting of Milman’s well known reverse Brunn–Minkowski
inequality [35]. Motivated by Busemann’s theorem [17] in convex geometry, Ball et
al. [2] conjectured that the following reverse EPI

N(X + Y )1/2 ≤ N(X)1/2 + N(Y )1/2 (4.6)

holds for any symmetric log-concave random vector (X, Y ) ∈ R
2. The r-Rényi

entropy analogue was asked in [30], and the r = 2 case was soon verified in [27].
It was also observed in [27] that the r-Rényi entropy analogue is equivalent to the
convexity of p-cross-section body in convex geometry introduced by Gardner and
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Giannopoulos [23]. The equivalent linearization of (4.6) reads as follows. Let (X, Y )

be a symmetric log-concave random vector in R
2 such that h(X) = h(Y ). Then for

any λ ∈ [0, 1] we have

h((1 − λ)X + λY ) ≤ h(X).

Cover and Zhang [20] proved the above inequality under the stronger assumption
that X and Y have the same log-concave distribution. They also showed that
this provides a characterization of log-concave distributions on the real line. The
following theorem extends Cover and Zhang’s result from log-concave densities to
a more general class of s-concave densities. This gives an entropic characterization
of s-concave densities and implies a reverse Rényi EPI for random vectors with the
same s-concave density.

Theorem 4.4 Let r > 1 − 1/d . Let f be a probability density function on R
d . For

any fixed integer n ≥ 2, the identity

sup
Xi∼f

hr

(
n∑

i=1

λiXi

)
= hr(X1)

holds for all λi ≥ 0 such that
∑n

i=1 λi = 1 if and only if the density f is (r − 1)-
concave.

The paper is organized as follows. In Sect. 4.2, we explore the convergence along
the CLT for r-Rényi entropies. For r > 1, the convergence is fully characterized
for densities on R

d , while for r ∈ (0, 1) sufficient conditions are obtained for
a large class of densities. More precisely, we prove the convergence for log-
concave densities and for compactly supported, spherically symmetric and unimodal
densities. As an application, we prove in Sect. 4.3 that a general r-Rényi EPI fails
when r ∈ (0, 1), thus establishing Theorem 4.1. We also complement this result
by proving Theorems 4.2 and 4.3. In the last section, we provide an entropic
characterization of the class of s-concave densities, and include a reverse Rényi
EPI as an immediate consequence.

4.2 Convergence Along the CLT for Rényi Entropies

Let {Xn}n∈N be a sequence of independent identically distributed (henceforth, i.i.d.)
centered random vectors in R

d with finite covariance matrix. We denote by Zn the
normalized sum

Zn = X1 + · · · + Xn√
n

. (4.7)
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An important tool used to prove various forms of CLT is the characteristic function.
Recall that the characteristic function of a random vector X is defined by

ϕX(t) = E
[
ei〈t,X〉], t ∈ R

d .

Before providing sufficient conditions for the convergence along the CLT for Rényi
entropy of order r ∈ (0, 1), we first extend [11, Theorem 1.1] to higher dimensions.

Theorem 4.5 Let r > 1. Let X1, · · · ,Xn be i.i.d. centered random vectors in R
d .

We denote by ρn the density of Zn defined in (4.7). The following statements are
equivalent.

1. hr(Zn) → hr(Z) as n → +∞, where Z is a Gaussian random vector with mean
0 and the same covariance matrix as X1.

2. hr(Zn0) is finite for some integer n0.
3.
∫
Rd |ϕX1(t)|ν dt < +∞ for some ν ≥ 1.

4. Zn0 has a bounded density ρn0 for some integer n0.

Proof 1 '⇒ 2: Assume that hr (Zn) → hr(Z) as n → +∞. Then there exists an
integer n0 such that

hr(Z) − 1 < hr(Zn0) < hr(Z) + 1.

Since hr(Z) is finite, we conclude that hr(Zn0) is finite as well.
2 '⇒ 3: Assume that hr(Zn0) is finite for some integer n0. Then Zn0 has a

density ρn0 ∈ Lr(Rd).

Case 1 If r ≥ 2, we have ρn0 ∈ L2(Rd). Using Plancherel’s identity, we have
ϕZn0

∈ L2(Rd). It follows that

∫

Rd

|ϕZn0
(t)|2 dt =

∫

Rd

|ϕX1

(
t/

√
n0
) |2n0 dt < +∞.

For ν = 2n0, we have

∫

Rd

|ϕX1(t)|ν dt < +∞.

Case 2 If r ∈ (1, 2), we apply the Hausdorff–Young inequality to obtain

‖ϕZn0
‖
Lr′ ≤ 1

(2π)d/r
′ ‖ρn0‖Lr ,

where r ′ is the conjugate of r such that 1/r + 1/r ′ = 1. Hence, for ν = r ′n0, we
have

∫

Rd

|ϕX1(t)|ν dt < +∞.
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3 '⇒ 4: Since
∫
Rd |ϕX1(t)|ν dt < +∞ for some ν ≥ 1, one may apply

Gnedenko’s local limit theorems (see [24]), which is valid in arbitrary dimensions
(see [5]). In particular, we have

lim
n→+∞ sup

x∈Rd

|ρn(x) − φ�(x)| = 0, (4.8)

where φ� denotes the density of a Gaussian random vector with mean 0 and the
same covariance matrix as X1. We deduce that there exists an integer n0 and a
constant M > 0 such that ρn ≤ M for all n ≥ n0.

4 '⇒ 1: Since ρn0 is bounded, then ρn0 ∈ L2, and we deduce by Plancherel’s
identity that

∫
Rd |ϕX1(t)|ν dt < +∞ for ν = 2n0. Hence, (4.8) holds and there

exists M > 0 such that ρn ≤ M for all n ≥ n0. Let us show that
∫
Rd ρn(x)

rdx →∫
Rd φ�(x)rdx as n → +∞, where φ� denotes the density of a Gaussian random

vector with mean 0 and the same covariance matrix as X1. By the CLT, for any
ε > 0, there exists T > 0 such that for all n large enough,

∫

|x|>T

ρn(x)dx < ε,

which implies that

∫

|x|>T

ρn(x)
rdx ≤ Mr−1

∫

|x|>T

ρn(x)dx < Mr−1ε.

The function φ� satisfies similar inequalities. Hence, for any δ > 0, there exists
T > 0 such that for all n large enough,

∣∣∣∣
∫

|x|>T

ρn(x)
rdx −

∫

|x|>T

φ�(x)rdx

∣∣∣∣ < δ.

On the other hand, by (4.8), for all T > 0, the function ρr
n(x)1{|x|≤T } converges

everywhere to φr
�(x)1{|x|≤T } as n → +∞. Since ρr

n(x)1{|x|≤T } is dominated by the
integrable function Mr1{|x|≤T }, one may use the Lebesgue dominated theorem to
conclude that

lim
n→+∞

∣∣∣∣
∫

|x|≤T

ρn(x)
rdx −

∫

|x|≤T

φ�(x)rdx

∣∣∣∣ = 0.

��
Remark 4.6 Theorem 4.5 fails for r ∈ (0, 1). For example, one can consider i.i.d.
random vectors with a bounded density ρ(x) such that

∫
Rd ρ(x)

rdx = +∞ (e.g.,
Cauchy-type distributions). The implication 4 '⇒ 2 (and thus 4 '⇒ 1) will not
hold since by Jensen inequality hr(Zn) ≥ hr(X1/

√
n) = ∞ for all n ≥ 1. As

observed by Barron [3], the implication 1 '⇒ 4 does not necessarily hold in the
Shannon entropy case r = 1.
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The following result yields a sufficient condition for convergence along the CLT
to hold for Rényi entropies of order r ∈ (0, 1) for a large class of random vectors in
R

d .

Theorem 4.7 Let r ∈ (0, 1). Let X1, · · · ,Xn be i.i.d. centered log-concave random
vectors in R

d . Then we have hr(Zn) < +∞ for all n ≥ 1, and

lim
n→∞ hr (Zn) = hr(Z),

where Zn is the normalized sum in (4.7) and Z is a Gaussian random vector with
mean 0 and the same covariance matrix as X1.

Proof Since log-concavity is preserved under independent sum, Zn is log-concave
for all n ≥ 1. Hence, for all n ≥ 1, Zn has a bounded log-concave density ρn, which
satisfies

ρn(x) ≤ e−an|x|+bn,

for all x ∈ R
d , and for some constants an > 0, bn ∈ R possibly depending on the

dimension (see, e.g., [16]). Hence, for all n ≥ 1, we have

∫

Rd

ρn(x)
r dx ≤

∫

Rd

e−r(an|x|+bn) dx < +∞.

We deduce that hr(Zn) < +∞ for all n ≥ 1.
The boundedness of ρn implies that (4.8) holds, and thus there exists an integer

n0 such that for all n ≥ n0,

ρn(0) >
1

2
φ�(0),

where � is the covariance matrix of X1 (and thus does not depend on n). Moreover,
since ρn is log-concave, one has for all x ∈ R

d that

ρn(rx) = ρn((1 − r)0 + rx) ≥ ρn(0)1−rρn(x)
r ≥ 1

21−r
φ�(0)1−rρn(x)

r .

Hence, for all T > 0, we have

∫

|x|>T

ρn(x)
r dx ≤ 21−r

φ�(0)1−r

∫

|x|>T

ρn(rx) dx

= 21−r

rdφ�(0)1−r
P (|Zn| > rT )

≤ 1

T 2

21−r
E[|X1|2]

rd+2φ�(0)1−r
,
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where the last inequality follows from Markov’s inequality and the fact that

E[|Zn|2] = E[|X1|2] + · · · + E[|Xn|2]
n

= E[|X1|2].

Hence, for every ε > 0, one may choose a positive number T such that for all n
large enough,

∫

|x|>T

ρn(x)
rdx < ε,

∫

|x|>T

φ�(x)rdx < ε,

and hence
∣∣∣∣
∫

|x|>T

ρn(x)
rdx −

∫

|x|>T

φ�(x)rdx

∣∣∣∣ < ε.

On the other hand, from (4.8), we conclude as in the proof of Theorem 4.5 that for
all T > 0,

lim
n→+∞

∣∣∣∣
∫

|x|≤T

ρn(x)
rdx −

∫

|x|≤T

φ�(x)rdx

∣∣∣∣ = 0.

��
A function f : Rd → R is called unimodal if the super-level sets {x ∈ R

d :
f (x) > t} are convex for all t ∈ R. Next, we provide a convergence result
for random vectors in R

d with unimodal densities under additional symmetry
assumptions. First, we need the following stability result.

Proposition 4.8 The class of spherically symmetric and unimodal random vari-
ables is stable under convolution.

Proof Let f1 and f2 be two spherically symmetric and unimodal densities. By
assumption, fi satisfy that fi(T x) = fi(x) for an orthogonal map T and |x| ≤ |y|
implies fi(x) ≥ fi(y). By the layer cake decomposition, we write

fi(x) =
∫ ∞

0
1{(u,v):fi(u)>v}(x, λ)dλ.

Apply Fubini’s theorem to obtain

f1 � f2(x) =
∫

Rd

f1(x − y)f2(y)dy

=
∫ ∞

0

∫ ∞

0

(∫

Rd

1{(u,v):f1(u)>v}(x − y, λ1)1{(u,v):f2(u)>v}(y, λ2)dy

)

×dλ1dλ2. (4.9)
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Notice that by the spherical symmetry and decreasingness of fi , the super-level set

Lλi = {u : fi(u) > λi}

is an origin symmetric ball. Thus we can write the integrand in (4.9) as

∫

Rd

1Lλ1
(x − y)1Lλ2

(y)dy = 1Lλ1
� 1Lλ2

(x).

This quantity is clearly dependent only on |x|, giving spherical symmetry. In
addition, as the convolution of two log-concave functions, 1Lλ1

�1Lλ2
is log-concave

as well. It follows that for every λ1, λ2, and |x| ≤ |y| we have

1Lλ1
� 1Lλ2

(x) ≥ 1Lλ1
� 1Lλ2

(y).

Integrating this inequality completes the proof. ��
Let us establish large deviation and pointwise inequalities for compactly sup-

ported, spherically symmetric and unimodal densities.

Theorem 4.9 (Hoeffding [25]) Let X1, · · · ,Xn be independent random variables
with mean 0 and bounded in (ai, bi), respectively. One has for all T > 0,

P

(
n∑

i=1

Xi > T

)
≤ exp

(
− 2T 2
∑n

i=1(bi − ai)2

)
.

The following result is Hoeffding’s inequality in higher dimensions.

Lemma 4.10 Let X1, · · · ,Xn be centered independent random vectors in R
d

satisfying P(|Xi | > R) = 0 for some R > 0. One has for all T > 0 that

P

(∣∣∣∣
X1 + · · · + Xn√

n

∣∣∣∣ > T

)
≤ 2d exp

(
− T 2

2d2R2

)
.

Proof Let Xi,j be the j -th coordinate of the random vector Xi . Then we have

P

(∣∣∣∣
X1 + · · · + Xn√

n

∣∣∣∣ > T

)
≤ P

⎛
⎝

d⋃
j=1

{
|X1,j + · · · + Xn,j | > T

√
n

d

}⎞
⎠ (4.10)

≤
d∑

j=1

P

(
|X1,j + · · · + Xn,j | > T

√
n

d

)
(4.11)

≤ 2d exp

(
− T 2

2d2R2

)
, (4.12)
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where inequality (4.10) follows from the pigeon-hole principle, (4.11) from a union
bound, and (4.12) follows from applying Theorem 4.9 to X1,j + · · · + Xn,j and
(−X1,j ) + · · · + (−Xn,j ). ��

We deduce the following pointwise estimate for unimodal spherically symmetric
and bounded random variables.

Corollary 4.11 Let X1, · · · ,Xn be i.i.d. random vectors with spherically symmet-
ric, unimodal density supported on the Euclidean ball BR = {x : |x| ≤ R} for some
R > 0. Let ρn denote the density of the normalized sum Zn. Then there exists cd > 0
such that for all n ≥ 1 and |x| > 2,

ρn(x) ≤ cd exp

(
− (|x| − 1)2

2d2R2

)
.

Proof Stating Lemma 4.10 in terms of ρn, we have

∫

|w|>T

ρn(w)dw ≤ 2d exp

(
− T 2

2d2R2

)
. (4.13)

Since the class of spherically symmetric unimodal random variables is stable
under independent summation by Proposition 4.8, ρn is spherically symmetric and
unimodal, so that

ρn(x) ≤
∫
B|x|\B|x|−1

ρn(w)dw

Vol(B|x|\B|x|−1)

≤
∫
|w|≥|x|−1 ρn(w)dw

(2d − 1)ωd

(4.14)

where B|x| represents the Euclidean ball of radius |x| centered at the origin and ωd

is the volume of the unit ball. Note that

Vol(B|x|\B|x|−1) = (|x|d − (|x| − 1)d)ωd ≥ (2d − 1)ωd,

since t #→ td − (t − 1)d is increasing, so that (4.14) follows. Now applying (4.13)
we have

ρn(x) ≤
∫
|w|≥|x|−1 ρn(w)dw

(2d − 1)ωd

≤ 2d

(2d − 1)ωd

exp

(
− (|x| − 1)2

2d2R2

)
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and our result holds with

cd = 2d

(2d − 1)ωd

.

��
We are now ready to establish a convergence result for bounded spherically

symmetric unimodal random vectors.

Theorem 4.12 Let r ∈ (0, 1). Let X1, · · · ,Xn be i.i.d. random vectors in R
d with

a spherically symmetric unimodal density with compact support. Then we have

lim
n→∞ hr(Zn) = hr(Z),

where Zn is the normalized sum in (4.7) and Z is a Gaussian random vector with
mean 0 and the same covariance matrix as X1.

Proof Let us denote by ρn the density of Zn. Since ρ1 is bounded, one may
apply (4.8) together with Lebesgue dominated convergence to conclude that for all
T > 0,

lim
n→+∞

∣∣∣∣
∫

|x|≤T

ρn(x)
rdx −

∫

|x|≤T

φ�(x)rdx

∣∣∣∣ = 0.

On the other hand, by Corollary 4.11, one may choose T > 0 such that for all n ≥ 1,

∫

|x|>T

ρn(x)
rdx < ε,

∫

|x|>T

φ�(x)rdx < ε,

and hence
∣∣∣∣
∫

|x|>T

ρn(x)
rdx −

∫

|x|>T

φ�(x)rdx

∣∣∣∣ < ε.

��

4.3 Rényi EPIs of Order r ∈ (0, 1)

A striking difference between Rényi EPIs of orders r ∈ (0, 1) and r ≥ 1 is the lack
of an absolute constant. Indeed, it was shown in [8] that for r ≥ 1 Rényi EPI of the
form (4.2) holds for generic independent random vectors with an absolute constant

c ≥ 1
e
r

1
r−1 . In the following subsection, we show that such a Rényi EPI does not

hold for r ∈ (0, 1).
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4.3.1 Failure of a Generic Rényi EPI

Definition 4.13 For r ∈ [0,∞], we define cr as the largest number such that for all
n, d ≥ 1 and any independent random vectors X1, · · · ,Xn in R

d , we have

Nr(X1 + · · · + Xn) ≥ cr

n∑
i=1

Nr(Xi). (4.15)

Then we can rephrase Theorem 4.1 as follows.

Theorem 4.14 For r ∈ (0, 1), the constant cr defined in (4.15) satisfies cr = 0.

The motivating observation for this line of argument is the fact that for r ∈
(0, 1), there exist distributions with finite covariance matrices and infinite r-Rényi
entropies. One might anticipate that this could contradict the existence of an r-Rényi
EPI, as the CLT forces the normalized sum of i.i.d. random vectors X1, · · · ,Xn

drawn from such a distribution to become “more Gaussian”. Heuristically, one
anticipates that Nr(X1 + · · · + Xn)/n = Nr(Zn) should approach Nr(Z) for large
n, where Zn is the normalized sum in (4.7) and Z is a Gaussian vector with the same
covariance matrix as X1, while

∑n
i=1 Nr(Xi)/n = Nr(X1) is infinite.

Proof of Theorem 4.14 Let us consider the following density

fR,p,d (x) = CR(1 + |x|)−p1BR(x) x ∈ R
d,

with p,R > 0 and CR implicitly determined to make fR,p,d a density. Since the
density is spherically symmetric, its covariance matrix can be rewritten as σ 2

RI for
some σR > 0, where I is the identity matrix. Computing in spherical coordinates
one can check that limR→∞ CR is finite for p > d , and we can thus define a density
f∞,p,d . What is more, when p > d + 2, the limiting density f∞,p,d has a finite
covariance matrix, and has finite Rényi entropy if and only if p > d/r .

For fixed r ∈ (0, 1), we take p ∈ (d∗ + 2, d∗/r], where d∗ = min{d ∈ N :
d > 2r/(1 − r)} guarantees the existence of such p. In this case, the limiting
density f∞,p,d∗ is well defined and it has finite covariance matrix σ 2∞I , but the
corresponding r-Rényi entropy is infinite. Now we select independent random
vectors X1, · · · ,Xn from the distribution fR,p,d∗ . Since fR,p,d∗ is a spherically
symmetric and unimodal density with compact support, we can apply Theorem 4.12
to conclude that

lim
n→∞ Nr(Zn) = σ 2

RNr(ZId),

where Zn is the normalized sum in (4.7) and ZId is the standard d-dimensional
Gaussian. Since limR→∞ σR = σ∞ < ∞, we can take R large enough such that
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|σ 2
R − σ 2∞| ≤ 1. Then we can take n large enough such that

Nr(Zn) ≤ (σ 2∞ + 2)Nr(ZId). (4.16)

Since the limiting density f∞,p,d∗ has infinite r-Rényi entropy, given M > 0, we
can take R large enough such that

Nr(X1) ≥ M. (4.17)

Combining (4.16) and (4.17), we conclude that for inequality (4.15) to hold we must
have

cr ≤ (σ 2∞ + 2)Nr(ZId)

M

for all M > 0. Then the statement follows from taking the limit M → ∞. ��
Remark 4.15 Random vectors in our proof has identical s-concave density with
s ≤ −r/d . In the following section, we provide a complementary result by showing
that Rényi EPI of order r ∈ (0, 1) does hold for s-concave densities when −r/d <

s < 0.

4.3.2 Rényi EPIs for s-Concave Densities

As showed above, a generic Rényi EPI of the form (4.2) fails for r ∈ (0, 1). In this
part, we establish Rényi EPIs of the forms (4.2) and (4.3) for an important class of
random vectors with s-concave densities (see (4.5)).

Following Lieb [29], we prove Theorems 4.2 and 4.3 by showing their equivalent
linearizations. The following linearization of (4.2) and (4.3) is due to Rioul [37]. The
c = 1 case was used in [27].

Theorem 4.16 ([37]) Let X1, · · · ,Xn be independent random vectors in R
d . The

following statements are equivalent.

1. There exist a constant c > 0 and an exponent α > 0 such that

Nα
r

(
n∑

i=1

Xi

)
≥ c

n∑
i=1

Nα
r (Xi). (4.18)

2. For any λ1, · · · , λn ≥ 0 such that
∑n

i=1 λi = 1, one has

hr

(
n∑

i=1

√
λiXi

)
−

n∑
i=1

λihr (Xi) ≥ d

2

(
log c

α
+
(

1

α
− 1

)
H(λ)

)
, (4.19)
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where H(λ) � H(λ1, · · · , λn) is the discrete entropy defined as

H(λ) = −
n∑

i=1

λi logλi.

Inequality (4.19) is the linearized form of inequality (4.18). One of the ingre-
dients used to establish (4.19) is Young’s sharp convolution inequality [4, 15]. Its
information-theoretic formulation was given in [21], which we recall below. We
denote by r ′ the Hölder conjugate of r such that 1/r + 1/r ′ = 1.

Theorem 4.17 ([15, 21]) Let r > 0. Let λ1, · · · , λn ≥ 0 such that
∑n

i=1 λi =
1, and let r1, · · · , rn be positive reals such that λi = r ′/r ′

i . For any independent
random vectors X1, · · · ,Xn in R

d , one has

hr

(
n∑

i=1

√
λiXi

)
−

n∑
i=1

λihri (Xi) ≥ d

2
r ′
(

log r

r
−

n∑
i=1

log ri

ri

)
. (4.20)

The second ingredient is a comparison between Rényi entropies hr and hri . When
r > 1, we have 1 < ri < r , and Jensen’s inequality implies that hr ≤ hri . In this
case, one can deduce (4.19) from (4.20) with hri replaced by hr . However, when
r ∈ (0, 1), the order of r and ri are reversed, i.e., 0 < r < ri < 1, and we need a
reverse entropy comparison inequality. The so-called s-concave densities do satisfy
such a reverse entropy comparison inequality. The following result of Fradelizi et
al. [22] serves this purpose.

Theorem 4.18 ([22]) Let s ∈ R. Let f : Rd → [0,+∞) be an integrable s-
concave function. The function

G(r) = C(r)

∫

Rd

f (x)r dx

is log-concave for r > max{0,−sd}, where

C(r) = (r + s) · · · (r + sd). (4.21)

We deduce the following Rényi entropic comparison for random vectors with
s-concave densities.

Corollary 4.19 Let X be a random vector in R
d with a s-concave density. For

−sd < r < q < 1, we have

hq(X) ≥ hr(X) + log
C(r)

1
1−r C(1)

q−r
(1−q)(1−r)

C(q)
1

1−q

.
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Proof Write q = (1 − λ) · r + λ · 1. Using the log-concavity of the function G in
Theorem 4.18, we have

G(q) ≥ G(r)1−λG(1)λ = G(r)
1−q
1−r G(1)

q−r
1−r .

The above inequality can be rewritten in terms of entropy power as follows

C(q)
2
d
· 1

1−q Nq(X) ≥ C(r)
2
d
· 1−q

1−r
· 1

1−q Nr(X)C(1)
2
d
· q−r

1−r
· 1

1−q .

The desired statement follows from taking the logarithm of both sides of the above
inequality. ��

Theorem 4.17 together with Corollary 4.19 yields the following Rényi EPI with
a single Rényi parameter r ∈ (0, 1) for s-concave densities.

Theorem 4.20 Let s ∈ (−1/d, 0) and r ∈ (−sd, 1). Let X1, · · · ,Xn be indepen-
dent random vectors in R

d with s-concave densities. For all λ = (λ1, · · · , λn) ∈
[0, 1]n such that

∑n
i=1 λi = 1, we have

hr

(
n∑

i=1

√
λiXi

)
−

n∑
i=1

λihr (Xi) ≥ d

2
A(λ) +

d∑
k=1

gk(λ),

where

A(λ) = r ′
((

1 − 1

r ′

)
log

(
1 − 1

r ′

)
−

n∑
i=1

(
1 − λi

r ′

)
log

(
1 − λi

r ′

))
,

gk(λ) = (1 − n)r ′ log(1 + ks) + (1 − r ′) log
(

1 + ks

r

)
+ r ′

n∑
i=1

(
1 − λi

r ′

)

× log

(
1 + ks

(
1 − λi

r ′

))
.

Proof Let ri be defined by λi = r ′/r ′
i , where r ′ and r ′

i are Hölder conjugates of r
and ri , respectively. Combining Theorem 4.17 with Corollary 4.19, we have

hr

(
n∑

i=1

√
λiXi

)
−

n∑
i=1

λihr (Xi) ≥ d

2
r ′
(

log r

r
−

n∑
i=1

log ri

ri

)

+
n∑

i=1

λi log
C(r)

1
1−r C(1)

ri−r

(1−ri )(1−r)

C(ri)
1

1−ri

. (4.22)
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Notice that C(r) = rdD(r), where C(r) is given in (4.21) and D(r) = (1 +
s/r) · · · (1 + sd/r). Thus,

n∑
i=1

λi log
C(r)

1
1−r C(1)

ri−r

(1−ri )(1−r)

C(ri)
1

1−ri

=
n∑

i=1

λi

(
logD(r)

1 − r
+
(

1

1 − ri
− 1

1 − r

)
logD(1)− logD(ri)

1 − ri

)

+d

(
log r

1 − r
−

n∑
i=1

λi
log ri

1 − ri

)
. (4.23)

Using the identities 1/(1 − r) = 1 − r ′ and λi/(1 − ri ) = λi − r ′, we have

n∑
i=1

λi

(
logD(r)

1 − r
+
(

1

1 − ri
− 1

1 − r

)
logD(1) − logD(ri)

1 − ri

)

= (1 − r ′) logD(r) + (1 − n)r ′ logD(1) +
d∑

k=1

n∑
i=1

(r ′ − λi) log

(
1 + ks

ri

)

=
d∑

k=1

(
(1 − r ′) log

(
1 + ks

r

)
+ (1 − n)r ′ log(1 + ks)

+
n∑

i=1

(r ′ − λi) log

(
1 + ks

ri

))
=

d∑
k=1

gk(λ). (4.24)

The last identity follows from 1/ri = 1 − λi/r
′. Using (4.24) and (4.23), the RHS

of (4.22) can be written as

d

2
r ′
(

log r

r
−

n∑
i=1

log ri

ri

)
+ d

(
log r

1 − r
−

n∑
i=1

λi
log ri

1 − ri

)

+
d∑

k=1

gk(λ) = d

2
A(λ) +

d∑
k=1

gk(λ).

This concludes the proof. ��
Having Theorems 4.16 and 4.20 at hand, we are ready to prove Theorems 4.2

and 4.3.
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4.3.2.1 Proof of Theorem 4.2

Put Theorems 4.16 and 4.20 together. Then it suffices to find c such that the
following inequality

d

2
A(λ) +

d∑
k=1

gk(λ) ≥ d

2
log c

holds for all λ = (λ1, · · · , λn) ∈ [0, 1]n such that
∑n

i=1 λi = 1. Hence, we can set

c = inf
λ

exp

(
A(λ) + 2

d

d∑
k=1

gk(λ)

)
,

where the infimum runs over all λ = (λ1, · · · , λn) ∈ [0, 1]n such that
∑n

i=1 λi = 1.
For fixed r , both A(λ) and gk(λ) are sum of one-dimensional convex functions of
the form (1 + x) log(1 + x). Furthermore, both A(λ) and gk(λ) are permutation
invariant. Hence, the minimum is achieved at λ = (1/n, · · · , 1/n). This yields the
numerical value of c in Theorem 4.2.

4.3.2.2 Proof of Theorem 4.3

The following lemma in [33] serves us in the proof of Theorem 4.3.

Lemma 4.21 ([33]) Let c > 0. Let L,F : [0, c] → [0,∞) be twice differentiable
on (0, c], continuous on [0, c], such that L(0) = F(0) = 0 and L′(c) = F ′(c) = 0.
Let us also assume that F(x) > 0 for x > 0, that F is strictly increasing, and that
F ′ is strictly decreasing. Then L′′

F ′′ increasing on (0, c) implies that L
F

is increasing
on (0, c) as well. In particular,

max
x∈[0,c]

L(x)

F (x)
= L(c)

F (c)
.

Proof of Theorem 4.3 Apply Theorems 4.16 and 4.20 with n = 2. Then it suffices
to find α such that for all λ ∈ [0, 1] we have

d

2
A(λ) +

d∑
k=1

gk(λ) ≥ d

2

(
1

α
− 1

)
H(λ),
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where

A(λ) = r ′
((

1− 1

r ′

)
log

(
1− 1

r ′

)
−
(

1− λ

r ′

)
log

(
1− λ

r ′

)
−
(

1− 1−λ

r ′

)

× log

(
1− 1−λ

r ′

))
,

gk(λ) = (1 − r ′) log
(

1 + ks

r

)
− r ′ log(1 + ks)

+r ′
((

1− λ

r ′

)
log

(
1+ks

(
1− λ

r ′

))
+
(

1− 1−λ

r ′

)

× log

(
1+ks

(
1− 1−λ

r ′

)))
.

We can set

α =
(

1 − sup
0≤λ≤1

(
− A(λ)

H(λ)
− 2

d

d∑
k=1

gk(λ)

H(λ)

))−1

. (4.25)

We will show that the optimal value is achieved at λ = 1/2. Since the function is
symmetric about λ = 1/2, it suffices to show that

− A(λ)

H(λ)
− 2

d

n∑
k=1

gk(λ)

H(λ)
(4.26)

is increasing on [0, 1/2]. It has been shown in [27] that −A(λ)/H(λ) is increasing
on [0, 1/2]. We will show that for each k = 1, · · · , n the function −gk(λ)/H(λ)

is also increasing on [0, 1/2]. One can check that −gk(λ) and H(λ) satisfy the
conditions in Lemma 4.21. Hence, it suffices to show that −g′′

k (λ)/H
′′(λ) is

increasing on [0, 1/2]. Elementary calculation yields that

H ′′(λ) = − 1

λ(1 − λ)
.

Define x = λ
|r ′| and y = 1−λ

|r ′| = 1
|r ′| − x. Then one can check that

−g′′
k (λ) = ks

|r ′|
(

1

1 + ks(1 + x)
+ 1

1 + ks(1 + y)
+ 1

(1 + ks(1 + x))2

+ 1

(1 + ks(1 + y))2

)
.
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Hence, we have

− g′′
k (λ)

H ′′(λ)
= ksr ′W(x),

where

W(x) = xy

(
1

1 + ks(1 + x)
+ 1

1 + ks(1 + y)
+ 1

(1 + ks(1 + x))2

+ 1

(1 + ks(1 + y))2

)
.

Since s, r ′ < 0, it suffices to show that W(x) is increasing on [0, 1
2|r ′| ]. We rewrite

W as follows

W(x) = W1(x) + W2(x),

where

W1(x) = xy

(
1

1 + ks(1 + x)
+ 1

1 + ks(1 + y)

)
,

W2(x) = xy

(
1

(1 + ks(1 + x))2 + 1

(1 + ks(1 + y))2

)
. (4.27)

We will show that both W1(x) and W2(x) are increasing on [0, 1
2|r ′| ].

Now let us focus on W1. Since y = 1
|r ′| − x, one can check that

W ′
1(x) =

(
1

|r ′| −2x

)(
1

1+ks(1+x)
+ 1

1+ks(1+y)

)

− ksxy

(
1

(1+ks(1+x))2 − 1

(1+ks(1+y))2

)
.

Let us denote

a � a(x) = 1 + ks(1 + x), (4.28)

b � b(x) = 1 + ks(1 + y) = 1 + ks

(
1

|r ′| − x + 1

)
. (4.29)
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The condition r > −sd implies that a, b ≥ 0. With these notations, we have

W ′
1(x) =

(
1

a
+ 1

b

)(
1

|r ′| − 2x − ksxy

(
1

a
− 1

b

))

=
(

1

a
+ 1

b

)(
1

|r ′| − 2x

)(
1 − (ks)2 xy

ab

)
.

The last identity follows from

1

a
− 1

b
= ks

ab

(
1

|r ′| − 2x

)
.

Since a, b ≥ 0 and x ∈ [0, 1
2|r ′| ], it suffices to show that

ab − (ks)2xy ≥ 0.

Using (4.28) and (4.29), we have

ab − (ks)2xy = (1 + ks)

(
1 + ks

r

)
.

Then the desired statement follows from that s > −1/d and r > −sd . We conclude
that W1 is increasing on [0, 1

2|r ′| ].
It remains to show that W2(x) is increasing on [0, 1

2|r ′| ]. Recall the definition of
W2(x) in (4.27), one can check that

W ′
2(x) =

(
1

|r ′| − 2x

)(
1

a2
+ 1

b2

)
− 2ksxy

(
1

a3
− 1

b3

)

= b − a

ks

(
1

a2 + 1

b2

)
− 2ksxy

(
1

a3 − 1

b3

)

= b − a

ksa3b3 T (x),

where a and b are defined in (4.28) and (4.29), and

T (x) = ab(a2 + b2) − 2k2s2xy(a2 + ab + b2).

Since

b − a

ks
= 1

|r ′| − 2x ≥ 0, x ∈ [0, 1

2|r ′| ],
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it suffices to show that T (x) ≥ 0 for [0, 1
2|r ′| ]. Using the identity

a′(x)b(x)+ a(x)b′(x) = ks(b − a) = −a(x)a′(x) − b(x)b′(x),

one can check that

T ′(x) = ks(a − b)U(x),

where

U(x) = a2 + b2 + 4ab − 2k2s2xy.

Notice that U ′(x) ≡ 0, which implies that U(x) is a constant. Since a, b ≥ 0, we
have

U(0) = a2 + b2 + 4ab > 0.

Hence, T ′(x) ≤ 0, i.e., T (x) is decreasing. Therefore, since a = b when x = 1
2|r ′| ,

we have

T (x) ≥ T

(
1

2|r ′|
)

= 2a2(a2 − 3k2s2x2) at x = 1

2|r ′| .

It suffices to have

a2 ≥ 3k2s2x2, x = 1

2|r ′| ,

which is equivalent to

1

|r ′| ≤ 2

1 + √
3

(
1

k|s| − 1

)
.

This finishes the proof that every −gk(λ)/H(λ) is also increasing on [0, 1/2]. Then
the numerical value of α in Theorem 4.3 follows from setting λ = 1/2 in (4.25). ��
Remark 4.22 Our optimization argument heavily relies on the fact that
−A(λ)/H(λ) and −gk(λ)/H(λ) are monotonically increasing for λ ∈ [0, 1/2].
As observed in [27], the monotonicity of −A(λ)/H(λ) does not depend on the
value of r . Numerical examples show that −gk(λ)/H(λ), even the whole quantity
in (4.26), is not monotone when r is small. This is one of the reasons for the
restriction r > r0.
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Remark 4.23 Note that the condition r > −sd of Theorem 4.18 can be rewritten as

1

|r ′| <

(
1

d|s| − 1

)
.

We do not know whether Theorem 4.3 holds when

2

1 + √
3

(
1

d|s| − 1

)
<

1

|r ′| <

(
1

d|s| − 1

)
.

4.4 An Entropic Characterization of s-Concave Densities

Let X and Y be real-valued random variables (possibly dependent) with the identical
density f . Cover and Zhang [20] proved that

h(X + Y ) ≤ h(2X)

holds for every coupling of X and Y if and only if f is log-concave. This yields an
entropic characterization of one-dimensional log-concave densities. We will extend
Cover and Zhang’s result to Rényi entropies of random vectors with s-concave
densities (defined in (4.5)), which particularly include log-concave densities as a
special case. This was previously proved in [28] when f is continuous.

Firstly, we introduce some classical variations of convexity and concavity which
will be needed in our proof.

Definition 4.24 Let λ ∈ (0, 1) be fixed. A function f : Rd → R with convex
support is called almost λ-convex if the following inequality

f ((1 − λ)x + λy) ≤ (1 − λ)f (x) + λf (y) (4.30)

holds for almost every pair x, y in the domain of f . We say that f is λ-convex if
the above inequality holds for every pair x, y in the domain of f . Particularly, for
λ = 1/2, it is usually called mid-convex or Jensen convex. We say that f is convex
if f is λ-convex for any λ ∈ (0, 1).

One can define almost λ-concavity, λ-concavity and concavity by reversing
inequality (4.30). Adamek [1, Theorem 1] showed that an almost λ-convex function
is identical to a λ-convex function except on a set of Lebesgue measure 0. (To apply
the theorem there, one can take the ideals I1 and I2 as the family of sets with
Lebesgue measure 0 in R

d and R
2d , respectively). In general, λ-convexity is not

equivalent to convexity, as it is not a strong enough notion to imply continuity,
at least not in a logical framework that accepts the axiom of choice. Indeed,
counterexamples can be constructed using a Hamel basis for R as a vector space
over Q. However, in the case that f is Lebesgue measurable, a classical result of
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Blumberg [6] and Sierpinski [40] (see also [18] in more general setting) shows that
λ-convexity implies continuity, and thus convexity.

Theorem 4.25 Let s > −1/d and we define r = 1 + s. Let f be a probability
density on R

d . The following statements are equivalent.

1. The density f is s-concave.
2. For any λ ∈ (0, 1), we have hr(λX+ (1−λ)Y ) ≤ hr(X) for any random vectors

X and Y with the identical density f .
3. We have hr

(
X+Y

2

) ≤ hr(X) for any random vectors X and Y with the identical
density f .

Proof We only prove the statement for s > 0, or equivalently r > 1. The proof for
−1/d < s < 0, or equivalently 1 − 1/d < r < 1, is similar and sketched below.

1 '⇒ 2: The proof is taken from [28]. We include it for completeness. Let g be
the density of λX + (1 − λ)Y . Then we have

hr(X) = 1

1 − r
logEf r−1(X)

= 1

1 − r
log(λEf r−1(X) + (1 − λ)Ef r−1(Y )) (4.31)

≥ 1

1 − r
logEf r−1(λX + (1 − λ)Y ) (4.32)

= 1

1 − r
log
∫

Rd

f (x)r−1g(x)dx

≥ 1

1 − r
log

(∫

Rd

f (x)rdx

)1− 1
r
(∫

Rd

g(x)rdx

) 1
r

(4.33)

= r − 1

r
hr (X) + 1

r
hr (λX + (1 − λ)Y ).

This is equivalent to the desired statement. Identity (4.31) follows from the
assumption that X and Y have the same distribution. In inequality (4.32), we use
the concavity of f r−1 and the fact that 1

1−r
log x is decreasing when r > 1.

Inequality (4.33) follows from Hölder’s inequality and the fact that 1
1−r

log x is
decreasing when r > 1. For 1 − 1/d < r < 1, the statement follows from the
same argument in conjunction with the convexity of f r−1, the converse of Hölder’s
inequality and the fact that 1

1−r
log x is increasing when 0 < r < 1.

2 '⇒ 3: Obvious by taking λ = 1
2 .

3 '⇒ 1: We will prove the statement by contradiction. We first show an example
borrowed from Cover and Zhang [20] to illustrate the “mass transferring” argument
used in our proof. Consider the density f (x) = 3/2 in the intervals (0, 1/3) and
(2/3, 1). It is clear that f is not (r−1)-concave. The joint distribution of (X, Y ) with
Y ≡ X is supported on the diagonal line y = x. The Radon-Nikodym derivative
g with respect to the one-dimensional Lebesgue measure on the line y = x exists
and is shown in Fig. 4.1. We remove some “mass” from the diagonal line y = x to
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Fig. 4.1 g y
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1/3

2/3

1

the lines y = x − 2/3 and y = x + 2/3. The new Radon–Nikodym derivative ĝ is
shown in Fig. 4.2. Let (X̂, Ŷ ) be a pair of random variables whose joint distribution
possesses this new Radon–Nikodym derivative. It is easy to see that X̂ and Ŷ still
have the same density f . But X̂ + Ŷ is uniformly distributed on (0, 2), and thus
hr(X̂ + Ŷ ) = log 2. One can check that hr(2X) = log(4/3).

Now we turn to the general case. Suppose that f is not (r − 1)-concave, i.e.,
f r−1 is not concave (for r > 1). We claim that there exists a set A ⊆ R

2d of
positive Lebesgue measure on R

2d such that the inequality

2f r−1
(
x + y

2

)
< f r−1(x) + f r−1(y) (4.34)

holds for all (x, y) ∈ A. Otherwise, the converse of (4.34) holds for almost every
pair (x, y), and thus f r−1 is an almost mid-concave function (i.e., 1/2-concave).
By Theorem 1 in [1], f r−1 is identical to a mid-concave function except on a set
of Lebesgue measure 0. Without changing the distribution, we can modify f such
that f r−1 is mid-concave. Using the equivalence of mid-concavity and concavity
(under the Lebesgue measurability), after modification, f r−1 is concave, i.e., f is
(r − 1)-concave. This contradicts our assumption. Hence, there exists such a set A
with positive Lebesgue measure on R

2d . Then there exists y such that (4.34) holds
for a set of x with positive Lebesgue measure on R

d . We rephrase this statement in
a form suitable for our purpose. There is x0 �= 0 such that the set

� = {
x ∈ R

d : 2f (x)r−1 < f (x + x0)
r−1 + f (x − x0)

r−1} (4.35)
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has positive Lebesgue measure on R
d . For ε > 0, we denote by �(ε) a ball of radius

ε whose intersection with � has positive Lebesgue measure on R
d . Consider (X, Y )

such that X ≡ Y , where X and Y have the identical density f . Let g(x, y) be the
Radon-Nikodym derivative of (X, Y ) with respect to the d-dimensional Lebesgue
measure on the “diagonal line” y = x. Now we build a new density ĝ by translating
a small amount of “mass” from “diagonal points” (x−x0, x−x0) and (x+x0, x+x0)

to “off-diagonal points” (x − x0, x + x0) and (x + x0, x − x0). To be more precise,
we define the new joint density ĝ as

ĝ(x, y) = g(x, y)1{x=y} −√
d/2δ(1{(x−x0,x−x0):x∈�(ε)} + 1{(x+x0,x+x0):x∈�(ε)})

+√d/2δ(1{(x−x0,x+x0):x∈�(ε)} + 1{(x+x0,x−x0):x∈�(ε)}),

where δ > 0 and 1S is the indicator function of the set S. The function ĝ is supported
on the “diagonal line” y = x and “off-diagonal segments” {(x − x0, x + x0) :
x ∈ �(ε)} and {(x + x0, x − x0) : x ∈ �(ε)}, which are disjoint for sufficiently
small ε > 0. (This is similar to Fig. 4.2.) When δ > 0 is small enough, ĝ(x, y) is
non-negative everywhere. Furthermore, our construction preserves the “total mass”.
Hence, the function ĝ(x, y) is indeed a probability density with respect to the
d-dimensional Lebesgue measure on the “diagonal line” and two “off-diagonal
segments”. Let (X̂, Ŷ ) be a pair with the joint density ĝ(x, y). The marginals X̂ and
Ŷ have the same distribution as that of X, since the “positive mass” on “off-diagonal
points” complements the “mass deficit” on “diagonal points” when we project in the

x and y directions. We claim that X̂+Ŷ
2 has larger entropy than X̂. One can check

that the density of X̂+Ŷ
2 is

f̂ (x) = f (x) + δ(21�(ε) − 1�(ε)+x0 − 1�(ε)−x0).

Let � denote the union of �(ε), �(ε) + x0 and �(ε) − x0. Then we have

hr

(
X̂ + Ŷ

2

)
= 1

1 − r
log

(∫

�

f̂ (x)rdx +
∫

�c

f r(x)dx

)
. (4.36)

Since x0 �= 0, for ε > 0 small enough, � is the union of disjoint translates of �(ε).
When δ > 0 is sufficiently small, we have

∫

�

f̂ (x)rdx =
∫

�(ε)

[
(f (x) + 2δ)r + (f (x + x0) − δ)r + (f (x − x0) − δ)r

]
dx

<

∫

�(ε)

[
f (x)r + f (x + x0)

r + f (x − x0)
r
]
dx (4.37)

=
∫

�

f (x)rdx, (4.38)
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where inequality (4.37) follows from the observation that for x ∈ �(ε) ⊂ �

(see (4.35)) the derivative of the integrand at δ = 0 is

r[2f (x)r−1 − f (x − x0)
r−1 − f (x + x0)

r−1] < 0. (4.39)

Since r > 1, (4.36) together with (4.38) implies that

hr

(
X̂ + Ŷ

2

)
>

1

1 − r
log

(∫

�

f (x)rdx +
∫

�c

f (x)rdx

)
= h(X) = h(X̂).

This is contradictory to our assumption. Hence, f has to be (r − 1)-concave. For
1 − 1/d < r < 1, we redefine the set � by reversing inequality (4.35), and
inequality (4.37) will be also reversed. We will arrive at the same conclusion. ��
Remark 4.26 The proof of 1 '⇒ 2 is an immediate consequence of Theorem 3.36
in [30]. The theorem there draws heavily on the ideas of [42], where a related
study, deriving the Schur convexity of Rényi entropies under the assumption of
exchangeability and s-concavity of the random variables, generalizing Yu’s results
in [43] on the entropies of sums of i.i.d. log-concave random variables. Although
we state Theorem 4.25 for two random vectors, the argument also works for more
than two random vectors. Hence, it implies the seemingly stronger Theorem 4.4.

As an immediate consequence of Theorem 4.25, we have the following reverse
Rényi EPI for random vectors with the same distribution.

Corollary 4.27 Let s > −1/d and let r = 1 + s. Let X and Y be (possibly
dependent) random vectors in R

d with the same density f being s-concave. Then
we have

Nr(X + Y ) ≤ 4Nr(X).
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Chapter 5
Small Ball Probability for the Condition
Number of Random Matrices

Alexander E. Litvak, Konstantin Tikhomirov,
and Nicole Tomczak-Jaegermann

Abstract Let A be an n × n random matrix with i.i.d. entries of zero mean, unit
variance and a bounded sub-Gaussian moment. We show that the condition number
smax(A)/smin(A) satisfies the small ball probability estimate

P
{
smax(A)/smin(A) ≤ n/t

} ≤ 2 exp(−ct2), t ≥ 1,

where c > 0 may only depend on the sub-Gaussian moment. Although the estimate
can be obtained as a combination of known results and techniques, it was not noticed
in the literature before. As a key step of the proof, we apply estimates for the singular
values of A, P

{
sn−k+1(A) ≤ ck/

√
n
} ≤ 2 exp(−ck2), 1 ≤ k ≤ n, obtained

(under some additional assumptions) by Nguyen.

5.1 Introduction

We say that a random variable ξ has sub-Gaussian moment bounded above by
K > 0 if

P{|ξ | ≥ t} ≤ exp
(
1 − t2/(2K2)

)
, t ≥ 0.
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Let A be an n × n random matrix with i.i.d. entries of zero mean, unit variance
and sub-Gaussian moment bounded above by K , and denote by si (A), 1 ≤ i ≤
n, its singular values arranged in non-increasing order. We will write smax(A) and
smin(A) for s1(A) and sn(A), respectively. Estimating the magnitude of the condition
number,

κ(A) = smax(A)/smin(A),

is a well studied problem, with connections to numerical analysis and computation
of the limiting distribution of the matrix spectrum; we refer, in particular, to [20] for
discussion. Since the largest singular value smax(A) is strongly concentrated (see the
proof of Corollary 5.1.2 below), estimating κ(A) is essentially reduced to estimating
smin(A) from above and below.

The main result of [12] provides small ball probability estimates for smin(A) of
the form

P
{
smin(A) ≤ t/

√
n
} ≤ Ct + e−cn, t ≤ 1,

for some C, c > 0 depending only on the sub-Gaussian moment. It seems natural to
investigate the complementary regime—the large deviation estimates for smin(A). It
was shown in [13] that

P
{
smin(A) ≥ t/

√
n
} ≤ C ln t

t
+ e−cn, t ≥ 2

(see also [21] for an extension of this result to distributions with no assumptions on
moments higher than 2). The probability estimate was improved in [10] to

P
{
smin(A) ≥ t/

√
n
} ≤ e−ct , t ≥ 2,

for c > 0 depending only on the sub-Gaussian moment. The existing results on the
distribution of the singular values of random Gaussian matrices [4, 18] suggest that
the optimal dependence on t in the exponent on the right hand side is quadratic,
i.e. the variable

√
n smin(A) is sub-Gaussian. Specifically, it is shown in [18] that

smin(G) for the standard n × n Gaussian matrix G satisfies two-sided estimates

exp(−Ct2) ≤ P
{
smin(G) ≥ t/

√
n
} ≤ exp(−ct2), t ≥ C1,

where C,C1, c > 0 are some universal constants. The main result of our note
provides matching upper estimate for matrices with sub-Gaussian entries:

Theorem 5.1.1 Let A be an n × n random matrix with i.i.d. entries of zero mean,
unit variance, and sub-Gaussian moment bounded above by K > 0. Then the
smallest singular value smin(A) satisfies

P
{
smin(A) ≥ t/

√
n
} ≤ 2 exp(−ct2), t ≥ 1,
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where c > 0 is a constant depending only on K .

As a simple corollary of the theorem, we obtain small ball probability estimates
for the condition number:

Corollary 5.1.2 Let A be an n × n random matrix with i.i.d. entries of zero mean,
unit variance, and sub-Gaussian moment bounded above by K > 0. Then the
condition number κ(A) satisfies

P
{
κ(A) ≤ n/t

} ≤ 2 exp(−ct2), t ≥ 1,

where c > 0 is a constant depending only on K .

Theorem 5.1.1 is a consequence of the following theorem, which is of indepen-
dent interest.

Theorem 5.1.3 Under conditions of Theorem 5.1.1 one has

P
{‖A−1‖HS ≤ min(n/t,

√
n/t)

} ≤ 2 exp(−ct2), t ≥ 0,

where c > 0 is a constant depending only on K .

The proof of Theorem 5.1.3 uses, as a main step, the estimates

P
{
sn−k+1(A) ≤ ck/

√
n
} ≤ 2 exp(−ck2), 1 ≤ k ≤ n,

for the singular values of the matrix A. These estimates, based on the restricted
invertibility of matrices and certain averaging arguments, were recently obtained by
Nguyen [9] under some additional assumptions (which will be discussed in the next
section).

5.2 Preliminaries

Given a matrix A, it singular values si = si (A), i ≥ 1, are square roots of
eigenvalues of AA∗. We always assume that s1 ≥ s2 ≥ . . . By ‖A‖ and ‖A‖HS

we denote the operator �2 → �2 norm of A (also called the spectral norm) and the
Hilbert–Schmidt norm respectively. Note that

‖A‖ = s1 and ‖A‖2
HS =

∑
i≥1

s2
i .

The columns and rows of A are denoted by Ci (A) and Ri (A), i ≥ 1, respectively.
Given J ⊂ [m], the coordinate projection in R

m onto R
J is denoted by PJ . For

convenience, we often write AJ instead of APJ . Given m ≥ 1, the identity operator
R

� → R
� we denote by Im. Given x, y ∈ R

n by 〈x, ·〉 y we denote the operator
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z #→ 〈x, z〉 y (in the literature it is often denoted by x ⊗ y or yx*). The canonical
Euclidean norm in R

m is denoted by ‖ · ‖2 and the unit Euclidean sphere by Sm−1.
As the most important part of our argument, we will use the following result.

Theorem 5.2.1 Let A be an n × n random matrix with i.i.d. entries of zero mean,
unit variance, and sub-Gaussian moment bounded above by K > 0. Then for any
1 ≤ k ≤ n one has

P
{
sn−k+1(A) ≤ ck/

√
n
} ≤ 2 exp(−ck2),

where c > 0 is a constant depending only on K .

The above theorem, up to some minor modifications, was proved by Nguyen in [9].
Specifically, in the case k ≥ C logn, the theorem follows from [9, Theorem 1.7]
(or [9, Corollary 1.8]) if one additionally assumes either that the entries of A are
uniformly bounded by a constant, or that the distribution density of the entries is
bounded. Removing these conditions requires a minor change of the proof in [9].
Further, in the case k ≤ C logn, the above result (in fact, in a stronger form) is stated
as formula (4) in [9, Theorem 1.4]. However, [9, Theorem 3.6], which is used to
derive [9, formula (4)], provides a non-trivial probability estimate only for the event
{sn−k+1(A) ≤ cγ k

1−γ /
√
n} (for any given γ ∈ (0, 1) and cγ depending on γ ), see

[9, formula (31)]. Again, a minor update of the argument of [9] provides the result
needed for our purposes. In view of the above and for the reader’s convenience, we
provide a proof of Theorem 5.2.1 in the last section.

The following result was proved in [17] as an extension of the classical Bourgain–
Tzafriri restricted invertibility theorem [2]. With worse dependence on ε, the
theorem was earlier proved in [22]. See also recent papers [1, 8] for further
improvements and discussions.

Theorem 5.2.2 ([17]) Let T be n × n matrix. Then for any ε ∈ (0, 1) there is a set
J ⊂ [n] such that

� := |J | ≥
⌊
ε2‖T ‖2

HS

‖T ‖2

⌋
and s�(TJ ) ≥ (1 − ε)‖T ‖HS√

n
.

We will use two following results by Rudelson–Verhsynin. The first one was
one of the key ingredients in estimating the smallest singular value of rectangular
matrices. The second one is an immediate consequence of the Hanson–Wright
inequality [5, 23] generalized in [15].

Theorem 5.2.3 ([14, Theorem 4.1]) Let X be a vector in R
n, whose coordinates

are i.i.d. mean-zero, sub-Gaussian random variables with unit variance. Let F be a
random subspace in R

n spanned by n − � vectors, 1 ≤ � ≤ c′n, whose coordinates
are i.i.d. mean-zero, sub-Gaussian random variables with unit variance, jointly
independent with X. Then, for every ε > 0, one has

P
{
dist(X, F ) ≤ ε

√
�
} ≤ (Cε)� + exp(−cn).
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where C > 0, c, c′ ∈ (0, 1) are constants depending only on the sub-Gaussian
moments.

Theorem 5.2.4 ([15, Corollary 3.1]) Let X be a vector in R
n, whose coordinates

are i.i.d. mean-zero random variables with unit variance and with sub-Gaussian
moment bounded by K . Let F be a fixed subspace in R

n of dimension n − �. Then,
for every t > 0, one has

P
{|dist(X, F ) − √

�| ≥ t
} ≤ 2 exp(−ct2/K4).

where c > 0 is an absolute constant.

We will also need the following standard claim, which can be proved by
integrating the indicator functions (see e.g., [9, Claim 3.4], cf. [7, Claim 4.9]).

Claim 5.2.5 Let α, p ∈ (0, 1). Let E be an event. Let Z be a finite index set, and
{Ez}z∈Z be a collection of |Z| events satisfying P(Ez) ≤ p for every z ∈ Z. Assume
that at least α|Z| of events Ez hold whenever the event E occurs. Then P(E) ≤ p/α.

5.3 Proofs of Main Results

Proof of Theorem 5.1.1 In the case t > n we have

P
{
smin(A) ≥ t/

√
n
} = P

{
s1(A

−1) ≤ √
n/t
}

≤ P

{ n∑
i=1

si (A
−1)2 ≤ n2/t2

}

and the result follows from Theorem 5.1.3.
Now we consider the case 1 ≤ t ≤ n. Let L ≥ 1 be a parameter which we will

choose later. Then

P
{
smin(A) ≥ t/

√
n
} = P

{
s1(A

−1) ≤ √
n/t
}

≤ P

{
s1(A

−1)2 ≤ n/t2 and
∑
i≥�t�

si(A
−1)2 ≥ Ln/t

}

+ P

{
s1(A

−1)2 ≤ n/t2 and
∑
i≥�t�

si(A
−1)2 < Ln/t

}

≤ P

{ ∑
i≥�t�

si (A
−1)2 ≥ Ln/t

}

+ P

{ n∑
i=1

si (A
−1)2 ≤ n/t + Ln/t

}
.
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For the first summand in the last expression, we apply Theorem 5.2.1. Since∑∞
i=$t% 1

i2 ≤ 2
t
, we obtain

P

{ n∑
i=�t�

si(A
−1)2 ≥ Ln/t

}
≤

n∑
i=�t�

P
{
si (A

−1)2 ≥ Ln/(2i2)
}

=
n∑

i=�t�
P
{
sn−i+1(A) ≤ √

2i/
√
Ln
}
.

Choosing L so that
√

2/L is equal to the constant from Theorem 5.2.1, we get

n∑
i=$t%

P
{
sn−i+1(A) ≤ √

2i/
√
Ln
} ≤ 2

n∑
i=$t%

exp(−ci2) ≤ 3 exp(−c′t2)

for some c′ > 0 depending only on K . The bound on the second summand follows
from Theorem 5.1.3 applied with t/(L + 1) instead of t . This completes the proof.

��
Proof of Corollary 5.1.2 Theorem 5.2.4 implies that there exists an absolute con-
stant c1 > 0 depending only on K such that for every i ≤ n

P(‖Ci (A)‖2 ≤ √
n/2) ≤ exp(−c1n)

(this can be shown by direct calculations as well, see e.g. Fact 2.5 in [6]). Since the
entries of A are independent, we obtain

P(‖A‖ ≤ √
n/2) ≤

n∏
i=1

P(‖Ci (A)‖2 ≤ √
n/2) ≤ exp(−c1n

2).

Note that if ‖A‖ ≥ √
n/2 and κ(A) ≤ n/2t then sn(A) = ‖A‖/κ(A) ≥ t/

√
n.

Therefore, by Theorem 5.1.1,

P{κ(A) ≤ n/2t} ≤ 2 exp(−ct2) + exp(−c1n
2).

By adjusting constants, this implies the conclusion for t ≤ n. Since κ(A) ≥ 1, the
case t > n is trivial. ��
Proof of Theorem 5.1.3 Adjusting the constant in the exponent if needed, without
loss of generality, we assume that t ≥ C0, where C0 > 0 is a large enough constant
depending only on K . Denote

E0 :=
{ n∑

i=1

si (A
−1)2 ≤ n/t

}
.
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We first consider the case t ≤ n. Applying the negative second moment identity
(see e.g. Exercise 2.7.3 in [19]),

n∑
i=1

si (A
−1)2 =

n∑
i=1

dist
(
Ci (A), span{Cj (A), j �= i})−2

,

we observe that on the event E0,

∣∣{i ≤ n : dist
(
Ci (A), span{Cj (A), j �= i}) ≥ √

t/2
}∣∣ ≥ n/2.

For each subset I ⊂ [n] of cardinality k ≤ n/2 (the actual value of k will be defined
later), let 1I be the indicator of the event

{
dist
(
Ci (A), span{Cj (A), j ∈ [n] \ I }) ≥ √

t/2 for all i ∈ I
}
.

Then, in view of the above, everywhere on the event E0 we have

∑
I⊂[n], |I |=k

1I ≥
(�n/2�

k

)
≥
(

n

2k

)k

≥ (2e)−k

(
n

k

)
.

Hence, by Markov’s inequality and permutation invariance of the matrix distribu-
tion,

P(E0) ≤ (2e)k E 1[k].

As the last step of the proof, we estimate the expectation of 1[k] (with a suitable
choice of k). In view of independence and equidistribution of the matrix columns,
we have

E 1[k] =
(
P
{
dist
(
C1(A), span{Cj (A), j ∈ [n] \ [k]}) ≥ √

t/2
})k

.

Choose k := $t/4% ≤ n/2 and denote

D := dist
(
C1(A), span{Cj (A), j ∈ [n] \ [k]}).

Using independence of columns of the matrix A and applying Theorem 5.2.4 with
� = k and F = span{Cj (A), j ∈ [n] \ [k]}, we obtain

P

{
D ≥ √

t/2
}

≤ P

{
D − √

k ≥ (
√

2 − 1)
√
t/4
}

≤ 2 exp(−c̄ t)

for some c̄ > 0 depending only on K . Hence,

P(E0) ≤ (2e)k 2k exp(−c̄ t k) ≤ exp(−c̄t2/16),
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provided that t is larger than a certain constant depending only on K . This implies
the desired result for t ≤ n.

In the case t > n we essentially repeat the argument along the same lines. Define

E ′
0 :=

{ n∑
i=1

si (A
−1)2 ≤ n2/t2

}
.

Observe that on the event E ′
0,

∣∣{i ≤ n : dist
(
Ci (A), span{Cj (A), j �= i}) ≥ t/

√
2n
}∣∣ ≥ n/2.

Repeating the above computations with the same notation and with k = $n/4% we
obtain

P

{
D ≥ t/

√
2n
}

≤ P

{
D − √

k ≥ t/(5
√
n)
}

≤ 2 exp(−c̄ t2/n),

which leads to

P(E ′
0) ≤ (2e)k 2k exp(−c̄ kt2/n) ≤ exp(−c̄t2/16),

provided that t > Cn for large enough C depending only on K . For n < t ≤ Cn

the result follows by adjusting the absolute constants. ��

5.4 Small Ball Estimates for Singular Values

The goal of this section is to prove Theorem 5.2.1. As we have noted, the argument
essentially reproduces that of [9]. An important part of the proof is the use of
restricted invertibility (see also [3] and [11] for some recent applications of restricted
invertibility in the context of random matrices).

We will use a construction from [9]. Given an integer k and an n × n matrix A

define a k × n matrix Z = Z(A, k) in the following way. Consider singular value
decomposition A = ∑n

i=1 si 〈vi, ·〉wi , where si = si(A) are singular values of A

(arranged in non-increasing order) and {vi}i , {wi}i are two orthonormal systems in
R

n. For i ≤ k denote zi = vn−i+1. Let Z be the matrix whose rows are Ri (Z) = zi .
Clearly, the rows of Z are orthonormal and for every i ≤ k,

‖Azi‖2 = sn−i+1 ≤ sn−k+1. (5.1)

Moreover,

‖Z‖ = 1 and ‖Z‖HS = √
k.
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The matrix Z is not uniquely defined when some of the k smallest singular values
of A have non-trivial multiplicity; we will however assume that for each realization
of A, a single admissible Z is chosen in such a way that Z is a (measurable) random
matrix.

5.4.1 Proof of Theorem 5.2.1, the Case k ≥ ln n

Let C, c, c′ be constants from Theorem 5.2.3. Let γ = √
c′. Note that C, c, c′, γ

depend only on K . Let Z = Z(A, k) be the k × n matrix constructed above.
Applying Theorem 5.2.2 to Z (one can add zero rows to make it an n × n matrix),
there exists J ⊂ [n] such that

|J | = � := $γ 2k
⌋ ≤ c′k and s�(ZJ ) ≥ (1 − γ )

√
k/n.

Fix a (small enough, depending on K) constant c0 > 0. Define the event

Ek := {
sn−k+1(A) ≤ c0k/

√
n
}
.

Consider the n×k matrix B = AZ*. Using property (5.1), on the event Ek , we have
for every i ≤ k,

‖Ci (B)‖2 = ‖Azi‖2 ≤ c0k/
√
n,

hence ‖B‖HS ≤ c0k
3/2/

√
n. Now, since s�(ZJ ) > 0, there exists a k × � matrix M

such that Z*
J M = I�. Then

‖M‖ = 1/s�(Z) ≤ (1 − γ )−1
√
n/k.

Therefore,

‖BM‖HS ≤ ‖B‖HS ‖M‖ ≤ c0(1 − γ )−1k.

Writing B = AJ (ZJ )
* + AJc(ZJ c)*, we also have BM = AJ + AJc(ZJ c)*M .

Next denote

F = F(A, J ) := span{Ci (AJ c)}i∈J c ,

and let P be the orthogonal projection on F⊥. Then, on the event Ek ,

c2
0(1 − γ )−2k2 ≥ ‖PBM‖2

HS ≥ ‖PAJ ‖2
HS =

∑
i∈J

‖P Ci (AJ )‖2
2

=
∑
i∈J

dist2(Ci (A), F ).
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Therefore, for at least �/2 indices i ∈ J , one has

dist(Ci (A), F ) ≤ √
2c0(1 − γ )−1k/

√
� ≤ 2c0

√
�/((1 − γ )γ 2).

Note that the subspace F is spanned by n − � random vectors, it is independent
of columns Ci (A), i ∈ J , and that columns of A are independent. Therefore, by
Theorem 5.2.3 and the union bound we obtain

P(Ek) ≤
∑
J⊂[n]
|J |=�

∑
J1⊂J

|J |=��/2�

P

{
∀i ∈ J1 dist(Ci (A), F ) ≤ 2c0

√
�/((1 − γ )γ 2)

}

≤
(
n

�

)
2�
(
(2Cc0/((1 − γ )γ 2))� + exp(−cn)

)�/2

≤
(

4en

�
max

{( √
2Cc0

γ
√

1 − γ

)�

, exp(−cn/2)

})�

Choosing small enough c0 and using k ≥ lnn, we obtain P(Ek) ≤ exp(−c3�
2),

where c3 > 0 depends only on K . By adjusting constants this proves the desired
result for k ≥ ln n. ��

5.4.2 Proof of Theorem 5.2.1, the Case k ≤ ln n

Let A be as in Theorem 5.2.1. It is well known (see e.g. Fact 2.4 in [6]) that there is
an absolute constant C1 > 0 such that

P
{‖A‖ ≤ C1K

√
n
} ≥ 1 − e−n. (5.2)

Let Ebd denote the event from this equation. Further, from [16, Theorem 1.5] one
infers that for any γ > 0 there are γ1, γ2, γ3 > 0 depending only on γ and K such
that, denoting

Einc(γ ) := {∀x ∈ Sn−1 with ‖Ax‖2 ≤ γ1
√
n, ∀I ⊂ [n]

with |I | ≥ γ n one has ‖PI x‖2 ≥ γ2
}
,

the event satisfies

P(Einc(γ )) ≥ 1 − 2e−γ3n. (5.3)

The following statement was proved by Nguyen ([9, Corollary 3.8]).
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Proposition 5.4.1 For any K > 0 there are C, c1, c2, γ > 0 depending only on
K with the following property. Let A be an n × n random matrix with i.i.d. entries
of zero mean, unit variance, and sub-Gaussian moment bounded above by K . Let
2 ≤ k ≤ n/(C lnn), and let the random k × n matrix Z = Z(A, k) be defined as
above. Then everywhere on the event

{
sn−k+1(A) ≤ c1k/

√
n
} ∩ Einc(γ ) ∩ Ebd one

has

∣∣{J ⊂ [n] : |J | = $k/2%, s$k/2%(ZJ ) ≥ c1
√
k/n

}∣∣ ≥ ck ln k
2 n$k/2%.

Now assume that k ≤ lnn. Without loss of generality we may also assume that k
is bounded below by a large constant. Let C, c, c′ be constants from Theorem 5.2.3
and c1, c2, γ from Proposition 5.4.1. Fix for a moment any realization of A from the
event

{
sn−k+1(A) ≤ c0k/

√
n
} ∩ Einc(γ ) ∩ Ebd , where c0 ∈ (0, c1] will be chosen

later. Let � := $k/2% and

J := {
J ⊂ [n] : |J | = $k/2%, s$k/2%(ZJ ) ≥ c1

√
k/n

}
.

Fix J ∈ J and repeat the procedure used in Sect. 5.4.1 with J and �. We obtain that
for at least �/2 indices i ∈ J , one has

dist(Ci (A), F ) ≤ √
2c0k/(c1

√
�) ≤ 4c0

√
�/c1, (5.4)

where F = span{Ci (AJ c)}i∈J c . For any fixed subset J ⊂ [n] of cardinality �

consider the event

EJ := {
for at least �/2 indices i ∈ J inequality (5.4) holds

}
.

Applying Theorem 5.2.3 and the union bound we observe

P(EJ ) ≤ 2�
(
(4c0C/c1)

� + exp(−cn)
)�/2

≤
(

4 max
{
(4c0C/c1)

� , exp(−cn)
})�/2

.

Choosing c0 to be small enough we obtain that P(EJ ) ≤ exp(−c4k
2), where c4 > 0

depends only on K . Combining this with Claim 5.2.5 and Proposition 5.4.1 we
obtain

P
({
sn−k+1(A) ≤ c0k/

√
n
} ∩ Einc(γ ) ∩ Ebd

) ≤ c−k ln k
2 exp(−c4k

2) ≤ exp(−c5k
2)

provided that k ≥ C2, where C2 ≥ 1 ≥ c5 > 0 are constants depending on on K

only. By Eqs. (5.2) and (5.3) this completes the proof in the case k ≤ ln n. ��
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Chapter 6
Concentration of the Intrinsic Volumes
of a Convex Body

Martin Lotz, Michael B. McCoy, Ivan Nourdin, Giovanni Peccati,
and Joel A. Tropp

Abstract The intrinsic volumes are measures of the content of a convex body. This
paper applies probabilistic and information-theoretic methods to study the sequence
of intrinsic volumes. The main result states that the intrinsic volume sequence
concentrates sharply around a specific index, called the central intrinsic volume.
Furthermore, among all convex bodies whose central intrinsic volume is fixed, an
appropriately scaled cube has the intrinsic volume sequence with maximum entropy.
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6.1 Introduction and Main Results

Intrinsic volumes are the fundamental measures of content for a convex body. Some
of the most celebrated results in convex geometry describe the properties of the
intrinsic volumes and their interrelationships. In this paper, we identify several new
properties of the sequence of intrinsic volumes by exploiting recent results from
information theory and geometric functional analysis. In particular, we establish
that the mass of the intrinsic volume sequence concentrates sharply around a specific
index, which we call the central intrinsic volume. We also demonstrate that a scaled
cube has the maximum-entropy distribution of intrinsic volumes among all convex
bodies with a fixed central intrinsic volume.

6.1.1 Convex Bodies and Volume

For each natural number m, the Euclidean space R
m is equipped with the �2 norm

‖·‖, the associated inner product, and the canonical orthonormal basis. The origin
of Rm is written as 0m.

Throughout the paper, n denotes a fixed natural number. A convex body in R
n

is a compact and convex subset, possibly empty. Throughout this paper, K will
denote a nonempty convex body in R

n. The dimension of the convex body, dim K,
is the dimension of the affine hull of K; the dimension takes values in the range
{0, 1, 2, . . . , n}. When K has dimension j , we define the j -dimensional volume
Volj (K) to be the Lebesgue measure of K, computed relative to its affine hull. If
K is zero-dimensional (i.e., a single point), then Vol0(K) = 1.

For sets C ⊂ R
n and D ⊂ R

m, we define the orthogonal direct product

C × D := {(x, y) ∈ R
n+m : x ∈ C and y ∈ D}.

To be precise, the concatenation (x, y) ∈ R
n+m places x ∈ R

n in the first n

coordinates and y ∈ R
m in the remaining (n−m) coordinates. In particular, K×{0m}

is the natural embedding of K into R
n+m.

Several convex bodies merit special notation. The unit-volume cube is the set
Qn := [0, 1]n ⊂ R

n. We write Bn := {x ∈ R
n : ‖x‖ ≤ 1} for the Euclidean unit

ball. The volume κn and the surface area ωn of the Euclidean ball are given by the
formulas

κn := Voln(Bn) = πn/2

�(1 + n/2)
and ωn := nκn = 2πn/2

�(n/2)
. (6.1.1)

As usual, � denotes the gamma function.
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6.1.2 The Intrinsic Volumes

In this section, we introduce the intrinsic volumes, their properties, and connections
to other geometric functionals. A good reference for this material is [32]. Intrinsic
volumes are basic tools in stochastic and integral geometry [33], and they appear in
the study of random fields [2].

We begin with a geometrically intuitive definition.

Definition 6.1.1 (Intrinsic Volumes) For each index j = 0, 1, 2, . . . , n, let P j ∈
R

n×n be the orthogonal projector onto a fixed j -dimensional subspace of Rn. Draw
a rotation matrix Q ∈ R

n×n uniformly at random (from the Haar measure on the
compact, homogeneous group of n × n orthogonal matrices with determinant one).
The intrinsic volumes of the nonempty convex body K ⊂ R

n are the quantities

Vj (K) :=
(
n

j

)
κn

κj κn−j
EQ

[
Volj (P jQK)

]
. (6.1.2)

We write E for expectation and EX for expectation with respect to a specific random
variable X. The intrinsic volumes of the empty set are identically zero: Vj (∅) = 0
for each index j .

Up to scaling, the j th intrinsic volume is the average volume of a projec-
tion of the convex body onto a j -dimensional subspace, chosen uniformly at
random. Following Federer [11], we have chosen the normalization in (6.1.2) to
remove the dependence on the dimension in which the convex body is embedded.
McMullen [25] introduced the term “intrinsic volumes”. In her work, Chevet [10]
called Vj the j -ième épaisseur or the “j th thickness”.

Example 6.1.2 (The Euclidean Ball) We can easily calculate the intrinsic volumes
of the Euclidean unit ball because each projection is simply a Euclidean unit ball of
lower dimension. Thus,

Vj (Bn) =
(
n

j

)
κn

κn−j

for j = 0, 1, 2, . . . , n.

Example 6.1.3 (The Cube) We can also determine the intrinsic volumes of a cube:

Vj(Qn) =
(
n

j

)
for j = 0, 1, 2, . . . , n.

See Sect. 6.5 for the details of the calculation. A classic reference is [30, pp. 224–
227].
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6.1.2.1 Geometric Functionals

The intrinsic volumes are closely related to familiar geometric functionals. The
intrinsic volume V0 is called the Euler characteristic; it takes the value zero for
the empty set and the value one for each nonempty convex body. The intrinsic
volume V1 is proportional to the mean width, scaled so that V1([0, 1]×{0n−1}) = 1.
Meanwhile, Vn−1 is half the surface area, and Vn coincides with the ordinary volume
measure, Voln.

6.1.2.2 Properties

The intrinsic volumes satisfy many important properties. Let C,K ⊂ R
n be

nonempty convex bodies. For each index j = 0, 1, 2, . . . , n, the intrinsic volume
Vj is. . .

1. Nonnegative: Vj (K) ≥ 0.
2. Monotone: C ⊂ K implies Vj (C) ≤ Vj (K).
3. Homogeneous: Vj (λK) = λjVj (K) for each λ ≥ 0.
4. Invariant: Vj (T K) = Vj (K) for each proper rigid motion T . That is, T acts by

rotation and translation.
5. Intrinsic: Vj (K) = Vj (K × {0m}) for each natural number m.
6. A Valuation: Vj(∅) = 0. If C ∪ K is also a convex body, then

Vj (C ∩ K) + Vj (C ∪ K) = Vj (C) + Vj (K).

7. Continuous: If Km → K in the Hausdorff metric, then Vj (Km) → Vj (K).

With sufficient energy, one may derive all of these facts directly from Defini-
tion 6.1.1. See the books [14, 20, 30, 32, 33] for further information about intrinsic
volumes and related matters.

6.1.2.3 Hadwiger’s Characterization Theorems

Hadwiger [15–17] proved several wonderful theorems that characterize the intrinsic
volumes. To state these results, we need a short definition. A valuation F on R

n is
simple if F(K) = 0 whenever dim K < n.

Fact 6.1.4 (Uniqueness of Volume) Suppose that F is a simple, invariant, contin-
uous valuation on convex bodies in R

n. Then F is a scalar multiple of the intrinsic
volume Vn.

Fact 6.1.5 (The Basis of Intrinsic Volumes) Suppose that F is an invariant,
continuous valuation on convex bodies in R

n. Then F is a linear combination of
the intrinsic volumes V0, V1, V2, . . . , Vn.
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Together, these theorems demonstrate the fundamental importance of intrinsic
volumes in convex geometry. They also construct a bridge to the field of integral
geometry, which provides explicit formulas for geometric functionals defined by
integrating over geometric groups (e.g., the family of proper rigid motions).

6.1.2.4 Quermassintegrals

With a different normalization, the mean projection volume appearing in (6.1.2) is
also known as a quermassintegral. The relationship between the quermassintegrals
and the intrinsic volumes is

(
n

j

)
W

(n)
j (K) := κjVn−j (K) for j = 0, 1, 2, . . . , n.

The notation reflects the fact that the quermassintegral W(n)
j depends on the ambient

dimension n, while the intrinsic volume does not.

6.1.3 The Intrinsic Volume Random Variable

In view of Example 6.1.3, we see that the intrinsic volume sequence of the cube Qn

is sharply peaked (around index n/2). Example 6.1.2 shows that intrinsic volumes
of the Euclidean ball Bn drop off quickly (starting around index

√
2πn). This

observation motivates us to ask whether the intrinsic volumes of a general convex
body also exhibit some type of concentration.

It is natural to apply probabilistic methods to address this question. To that
end, we first need to normalize the intrinsic volumes to construct a probability
distribution.

Definition 6.1.6 (Normalized Intrinsic Volumes) The total intrinsic volume of
the convex body K, also known as the Wills functional [18, 25, 37], is the quantity

W(K) :=
n∑

j=0

Vj (K). (6.1.3)

The normalized intrinsic volumes compose the sequence

Ṽj (K) := Vj (K)

W(K)
for j = 0, 1, 2, . . . , n.

In particular, the sequence {Ṽj (K) : j = 0, 1, 2, . . . , n} forms a probability
distribution.
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In spite of the similarity of notation, the total intrinsic volume W should not be
confused with a quermassintegral.

We may now construct a random variable that reflects the distribution of the
intrinsic volumes of a convex body.

Definition 6.1.7 (Intrinsic Volume Random Variable) The intrinsic volume ran-
dom variable ZK associated with a convex body K takes nonnegative integer values
according to the distribution

P {ZK = j } = Ṽj (K) for j = 0, 1, 2, . . . , n. (6.1.4)

The mean of the intrinsic volume random variable plays a special role in the
analysis, so we exalt it with its own name and notation.

Definition 6.1.8 (Central Intrinsic Volume) The central intrinsic volume of the
convex body K is the quantity

�(K) := EZK =
n∑

j=0

j · Ṽj (K). (6.1.5)

Equivalently, the central intrinsic volume is the centroid of the sequence of intrinsic
volumes.

Since the intrinsic volume sequence of a convex body K ⊂ R
n is supported on

{0, 1, 2, . . . , n}, it is immediate that the central intrinsic volume satisfies �(K) ∈
[0, n]. The extreme n is unattainable (because a nonempty convex body has Euler
characteristic V0(K) = 1). But it is easy to construct examples that achieve values
across the rest of the range.

Example 6.1.9 (The Scaled Cube) Fix s ∈ [0,∞). Using Example 6.1.3 and the
homogeneity of intrinsic volumes, we see that total intrinsic volume of the scaled
cube is

W(sQn) =
n∑

j=0

(
n

j

)
· sj = (1 + s)n.

The central intrinsic volume of the scaled cube is

�(sQn) = 1

(1 + s)n

n∑
j=0

j ·
(
n

j

)
· sj =

n∑
j=0

j ·
(
n

j

)
·
(

s

1 + s

)j (
1 − s

1 + s

)n−j

= ns

1 + s
.

We recognize the mean of the random variable BIN(s/(1 + s), n) to reach the last
identity. Note that the quantity �(sQn) = ns/(1 + s) sweeps through the interval
[0, n) as we vary s ∈ [0,∞).
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Example 6.1.10 (Large Sets) More generally, we can compute the limits of the
normalized intrinsic volumes of a growing set:

lim
s→∞ Ṽj (sK) → 0 for j < dim K;

lim
s→∞ Ṽj (sK) → 1 for j = dim K.

This point follows from the homogeneity of intrinsic volumes, noted in Sect. 6.1.2.2.

6.1.4 Concentration of Intrinsic Volumes

Our main result states that the intrinsic volume random variable concentrates sharply
around the central intrinsic volume.

Theorem 6.1.11 (Concentration of Intrinsic Volumes) Let K ⊂ R
n be a

nonempty convex body with intrinsic volume random variable ZK. The variance
satisfies

Var[ZK] ≤ 4n.

Furthermore, in the range 0 ≤ t ≤ √
n, we have the tail inequality

P
{|ZK − EZK| ≥ t

√
n
} ≤ 2e−3t2/28.

To prove this theorem, we first convert questions about the intrinsic volume
random variable into questions about metric geometry (Sect. 6.2). We reinterpret the
metric geometry formulations in terms of the information content of a log-concave
probability density. Then we can control the variance (Sect. 6.3) and concentration
properties (Sect. 6.4) of the intrinsic volume random variable using the analogous
results for the information content random variable.

A general probability distribution on {0, 1, 2, . . . , n} can have variance higher
than n2/3. In contrast, the intrinsic volume random variable has variance no greater
than 4n. Moreover, the intrinsic volume random variable behaves, at worst, like a
normal random variable with mean EZK and variance less than 5n. Thus, most of
the mass of the intrinsic volume sequence is concentrated on an interval of about
O(

√
n) indices.

Looking back to Example 6.1.3, concerning the unit-volume cube Qn, we see that
Theorem 6.1.11 gives a qualitatively accurate description of the intrinsic volume
sequence. On the other hand, the bounds for scaled cubes sQn can be quite poor;
see Sect. 6.5.3.
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6.1.5 Concentration of Conic Intrinsic Volumes

Theorem 6.1.11 and its proof parallel recent developments in the theory of conic
intrinsic volumes, which appear in the papers [3, 13, 22]. Using the concentration
of conic intrinsic volumes, we were able to establish that random configurations
of convex cones exhibit striking phase transitions; these facts have applications in
signal processing [3, 21, 23, 24]. We are confident that extending the ideas in the
current paper will help us discover new phase transition phenomena in Euclidean
integral geometry.

6.1.6 Maximum-Entropy Convex Bodies

The probabilistic approach to the intrinsic volume sequence suggests other questions
to investigate. For instance, we can study the entropy of the intrinsic volume random
variable, which reflects the dispersion of the intrinsic volume sequence.

Definition 6.1.12 (Intrinsic Entropy) Let K ⊂ R
n be a nonempty convex body.

The intrinsic entropy of K is the entropy of the intrinsic volume random variable
ZK:

IntEnt(K) := Ent[ZK] = −
n∑

j=0

Ṽj (K) · log Ṽj (K).

We have the following extremal result.

Theorem 6.1.13 (Cubes Have Maximum Entropy) Fix the ambient space R
n,

and let d ∈ [0, n). There is a scaled cube whose central intrinsic volume equals
d:

�(sd,nQn) = d when sd,n = d

n − d
.

Among convex bodies with central intrinsic volume d , the scaled cube sd,nQn has
the maximum intrinsic entropy. Among all convex bodies, the unit-volume cube has
the maximum intrinsic entropy. In symbols,

max{IntEnt(K) : �(K) = d} = IntEnt(sd,nQn) ≤ IntEnt(Qn).

The maximum takes place over all nonempty convex bodies K ⊂ R
n.

The proof of Theorem 6.1.13 also depends on recent results from information
theory, as well as some deep properties of the intrinsic volume sequence. This
analysis appears in Sect. 6.6.
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Theorem 6.1.13 joins a long procession of results on the extremal properties of
the cube. In particular, the cube solves the (affine) reverse isoperimetric problem for
symmetric convex bodies [5]. That is, every symmetric convex body K ⊂ R

n has an
affine image whose volume is one and whose surface area is not greater than 2n, the
surface area of Qn. See Sect. 6.1.7.2 for an equivalent statement.

Remark 6.1.14 (Minimum Entropy) The convex body consisting of a single point
x0 ∈ R

n has the minimum intrinsic entropy: IntEnt({x0}) = 0. Very large convex
bodies also have negligible entropy:

lim
s→∞ IntEnt(sK) = 0 for each nonempty convex body K ⊂ R

n.

The limit is a consequence of Example 6.1.10.

6.1.7 Other Inequalities for Intrinsic Volumes

The classic literature on convex geometry contains a number of prominent inequal-
ities relating the intrinsic volumes, and this topic continues to arouse interest. This
section offers a short overview of the main results of this type. Our presentation is
influenced by [26, 28]. See [32, Chap. 7] for a comprehensive treatment.

Remark 6.1.15 (Unrelated Work) Although the title of the paper [1] includes the
phrase “concentration of intrinsic volumes,” the meaning is quite different. Indeed,
the focus of that work is to study hyperplane arrangements via the intrinsic volumes
of a random sequence associated with the arrangement.

6.1.7.1 Ultra-Log-Concavity

The Alexandrov–Fenchel inequality (AFI) is a profound result on the behavior of
mixed volumes; see [32, Sec. 7.3] or [34]. We can specialize the AFI from mixed
volumes to the particular case of quermassintegrals. In this instance, the AFI states
that the quermassintegrals of a convex body K ⊂ R

n compose a log-concave
sequence:

W
(n)
j (K)2 ≥ W

(n)
j+1(K) · W(n)

j−1(K) for j = 1, 2, 3, . . . , n − 1. (6.1.6)

As Chevet [10] and McMullen [26] independently observed, the log-concavity
(6.1.6) of the quermassintegral sequence implies that the intrinsic volumes form
an ultra-log-concave (ULC) sequence:

j · Vj (K)2 ≥ (j + 1) · Vj+1(K) · Vj−1(K) for j = 1, 2, 3, . . . , n − 1. (6.1.7)
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This fact plays a key role in the proof of Theorem 6.1.13. For more information on
log-concavity and ultra-log-concavity, see the survey article [31].

From (6.1.7), Chevet and McMullen both deduce that all of the intrinsic volumes
are controlled by the first one, and they derive an estimate for the total intrinsic
volume:

Vj (K) ≤ 1

j !V1(K)j for j = 1, 2, 3, . . . , n, hence W(K) ≤ eV1(K).

This estimate implies some growth and decay properties of the intrinsic volume
sequence. An interesting application appears in Vitale’s paper [35], which derives
concentration for the supremum of a Gaussian process from the foregoing bound on
the total intrinsic volume.

It is possible to establish a concentration result for intrinsic volumes as a
direct consequence of (6.1.7). Indeed, it is intuitive that a ULC sequence should
concentrate around its centroid. This point follows from Caputo et al. [9, Sec. 3.2],
which transcribes the usual semigroup proof of a log-Sobolev inequality to the
discrete setting. When applied to intrinsic volumes, this method gives concentration
on the scale of the mean width V1(K) of the convex body K. This result captures a
phenomenon different from Theorem 6.1.11, where the scale for the concentration
is the dimension n.

6.1.7.2 Isoperimetric Ratios

Another classical consequence of the AFI is a sequence of comparisons for the
isoperimetric ratios of the volume of a convex body K ⊂ R

n, relative to the
Euclidean ball Bn:

(
Vn(K)

Vn(Bn)

)1/n

≤
(

Vn−1(K)

Vn−1(Bn)

)1/(n−1)

≤ · · · ≤ V1(K)

V1(Bn)
. (6.1.8)

The first inequality is the isoperimetric inequality, and the inequality between Vn

and V1 is called Urysohn’s inequality [32, Sec. 7.2]. Isoperimetric ratios play a
prominent role in asymptotic convex geometry; for example, see [4, 6, 29].

Some of the inequalities in (6.1.8) can be inverted by applying affine transforma-
tions. For example, Ball’s reverse isoperimetric inequality [5] states that K admits
an affine image K̂ for which

(
Vn−1(K̂)

Vn−1(Bn)

)1/(n−1)

≤ constn ·
(

Vn(K̂)

Vn(Bn)

)1/n

.

The sharp value for the constant is known; equality holds when K is a simplex. If
we restrict our attention to symmetric convex bodies, then the cube is extremal.
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The recent paper [28] of Paouris et al. contains a more complete, but less precise,
set of reversals. Suppose that K is a symmetric convex body. Then there is a
parameter β� := β�(K) for which

V1(K)

V1(Bn)
≤
[

1 + const ·
(
β�j log

(
e

jβ�

))1/2
]

·
(

Vj (K)

Vj (Bn)

)1/j

for j = 1, 2, 3, . . . , const/β�. (6.1.9)

The constants here are universal but unspecified. This result implies that the prefix
of the sequence of isoperimetric ratios is roughly constant. The result (6.1.9) leaves
open the question about the behavior of the sequence beyond the distinguished point.

It would be interesting to reconcile the work of Paouris et al. [28] with
Theorem 6.1.11. In particular, it is unclear whether the isoperimetric ratios remain
constant, or whether they exhibit some type of phase transition. We believe that our
techniques have implications for this question.

6.2 Steiner’s Formula and Distance Integrals

The first step in our program is to convert questions about the intrinsic volume
random variable into questions in metric geometry. We can accomplish this goal
using Steiner’s formula, which links the intrinsic volumes of a convex body to its
expansion properties. We reinterpret Steiner’s formula as a distance integral, and we
use this result to compute moments of the intrinsic volume random variable. This
technique, which appears to be novel, drives our approach.

6.2.1 Steiner’s Formula

The Minkowski sum of a nonempty convex body and a Euclidean ball is called a
parallel body. Steiner’s formula gives an explicit expansion for the volume of the
parallel body in terms of the intrinsic volumes of the convex body.

Fact 6.2.1 (Steiner’s Formula) Let K ⊂ R
n be a nonempty convex body. For each

λ ≥ 0,

Voln(K + λBn) =
n∑

j=0

λn−j κn−j Vj (K).

In other words, the volume of the parallel body is a polynomial function of the
expansion radius. Moreover, the coefficients depend only on the intrinsic volumes
of the convex body. The proof of Fact 6.2.1 is fairly easy; see [14, 32].
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Remark 6.2.2 (Steiner and Kubota) Steiner’s formula can be used to define the
intrinsic volumes. The definition we have given in (6.1.2) is usually called Kubota’s
formula; it can be derived as a consequence of Fact 6.2.1 and Cauchy’s formula for
surface area. For example, see [4, Sec. B.5].

6.2.2 Distance Integrals

The parallel body can also be expressed as the set of points within a fixed distance of
the convex body. This observation motivates us to introduce the distance to a convex
set.

Definition 6.2.3 (Distance to a Convex Body) The distance to a nonempty convex
body K is the function

dist(x,K) := min
{ ‖y − x‖ : y ∈ K

}
where x ∈ R

n.

It is not hard to show that the distance, dist(·,K), and its square, dist2(·,K), are both
convex functions.

Here is an alternative statement of Steiner’s formula in terms of distance
integrals [18].

Proposition 6.2.4 (Distance Integrals) Let K ⊂ R
n be a nonempty convex body.

Let f : R+ → R be an absolutely integrable function. Provided that the integrals
on the right-hand side converge,

∫

Rn

f (dist(x,K)) dx = f (0) · Vn(K) +
n−1∑
j=0

(
ωn−j

∫ ∞

0
f (r) · rn−j−1 dr

)
· Vj(K).

This result is equivalent to Fact 6.2.1.

Proof For r > 0, Steiner’s formula gives an expression for the volume of the locus
of points within distance r of the convex body:

Voln{x ∈ R
n : dist(x,K) ≤ r} =

n∑
j=0

rn−j κn−j Vj (K).

The rate of change in this volume satisfies

d

dr
Voln{x ∈ R

n : dist(x,K) ≤ r} =
n−1∑
j=0

rn−j−1ωn−j Vj (K). (6.2.1)

We have used the relation (6.1.1) that ωn−j = (n − j)κn−j .
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Let μ be the push-forward of the Lebesgue measure on R
n to R+ by the function

dist(·; K). That is,

μ (A) := Voln{x ∈ R
n : dist(x; K) ∈ A} for each Borel set A ⊂ R+.

This measure clearly satisfies μ ({0}) = Vn(K). Beyond that, when 0 < a < b,

μ ((a, b]) = Voln{x ∈ R
n : a < dist(x; K) ≤ b}

= Voln{x ∈ R
n : dist(x; K) ≤ b} − Voln{x ∈ R

n : dist(x; K) ≤ a}

=
∫ b

a

d

dr
Voln{x ∈ R

n : dist(x; K) ≤ r} dr.

Therefore, by definition of the push-forward,

∫

Rn

f (dist(x; K)) dx =
∫

R+
f (r) dμ (r)

= f (0) · Vn(K)

+
∫ ∞

0
f (r) · d

dr
Voln{x ∈ R

n : dist(x; K) ≤ r} dr.

Introduce (6.2.1) into the last display to arrive at the result. ��

6.2.3 Moments of the Intrinsic Volume Sequence

We can compute moments (i.e., linear functionals) of the sequence of intrinsic
volumes by varying the function f in Proposition 6.2.4. To that end, it is helpful
to make another change of variables.

Corollary 6.2.5 (Distance Integrals II) Let K ⊂ R
n be a nonempty convex body.

Let g : R+ → R be an absolutely integrable function. Provided the integrals on the
right-hand side converge,

∫

Rn

g(π dist2(x,K)) · e−π dist2(x,K) dx

= g(0) · Vn(K) +
n−1∑
j=0

(
1

�((n − j)/2)

∫ ∞

0
g(r) · r−1+(n−j)/2e−r dr

)
· Vj (K).

Proof Set f (r) = g(πr2) · e−πr2
in Proposition 6.2.4 and invoke (6.1.1). ��

We are now prepared to compute some specific moments of the intrinsic volume
sequence by making special choices of g in Corollary 6.2.5.
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Example 6.2.6 (Total Intrinsic Volume) Consider the case where g(r) = 1. We
obtain the appealing formula

∫

Rn

e−π dist2(x,K) dx =
n∑

j=0

Vj (K) = W(K).

The total intrinsic volume W(K) was defined in (6.1.3). This identity appears in [18,
25].

Example 6.2.7 (Central Intrinsic Volume) The choice g(r) = 2r/W(K) yields

1

W(K)

∫

Rn

2π dist2(x,K)·e−π dist2(x,K) dx = 1

W(K)

n∑
j=0

(n−j)·Vj (K) = n−EZK.

We have recognized the total intrinsic volume (6.1.3) and the central intrinsic
volume (6.1.5).

Example 6.2.8 (Generating Functions) We can also develop an expression for the
generating function of the intrinsic volume sequence by selecting g(r) = e(1−λ2)r .
Thus,

∫

Rn

e−λ2π dist2(x,K) dx = λ−n
n∑

j=0

λjVj (K). (6.2.2)

This expression is valid for all λ > 0. See [18] or [33, Lem. 14.2.1].
We can reframe the relation (6.2.2) in terms of the moment generating function of

the intrinsic volume random variable ZK. To do so, we make the change of variables
λ = eθ and divide by the total intrinsic volume W(K):

E eθ(ZK−n) = 1

W(K)

∫

Rn

e−e2θ π dist2(x,K) dx. (6.2.3)

This expression remains valid for all θ ∈ R.

Remark 6.2.9 (Other Moments) In fact, we can compute any moment of the intrin-
sic volume sequence by selecting an appropriate function f in Proposition 6.2.4.
Corollary 6.2.5 is designed to produce gamma integrals. Beta integrals also arise
naturally and lead to other striking relations. For instance,

∫

Rn

dx

(1 + λ dist(x,K))n+1 = κnλ
−n

n∑
j=0

λj Vj (K)

Vj (Bn)
for λ > 0.

The intrinsic volumes of the Euclidean ball are computed in Example 6.1.2.
Isoperimetric ratios appear naturally in convex geometry (see Sect. 6.1.7.2), so this
type of result may have independent interest.
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6.3 Variance of the Intrinsic Volume Random Variable

Let us embark on our study of the intrinsic volume random variable. The main
result of this section states that the variance of the intrinsic volume random variable
is significantly smaller than its range. This is a more precise version of the variance
bound in Theorem 6.1.11.

Theorem 6.3.1 (Variance of the Intrinsic Volume Random Variable) Let K ⊂
R

n be a nonempty convex body with intrinsic volume random variable ZK. We have
the inequalities

Var[ZK] ≤ 2(n + EZK) ≤ 4n.

The proof of Theorem 6.3.1 occupies the rest of this section. We make a
connection between the distance integrals from Sect. 6.2 and the information content
of a log-concave probability measure. By using recent results on the variance of
information, we can develop bounds for the distance integrals. These results, in turn,
yield bounds on the variance of the intrinsic volume random variable. A closely
related argument, appearing in Sect. 6.4, produces exponential concentration.

Remark 6.3.2 (An Alternative Argument) Theorem 6.3.1 can be sharpened using
variance inequalities for log-concave densities. Indeed, it holds that

Var[ZK] ≤ 2(n − EZK).

To prove this claim, we apply the Brascamp–Lieb inequality [8, Thm. 4.1] to a
perturbation of the log-concave density (6.3.4) described below. It is not clear
whether similar ideas lead to normal concentration (because the density is not
strongly log-concave), so we have chosen to omit this development.

6.3.1 The Varentropy of a Log-Concave Distribution

First, we outline some facts from information theory about the information content
in a log-concave random variable. Let μ : Rn → R+ be a log-concave probability
density; that is, a probability density that satisfies the inequalities

μ(τx + (1 − τ )y) ≥ μ(x)τμ(y)1−τ for x, y ∈ R
n and τ ∈ [0, 1].

We define the information content Iμ of a random point drawn from the density μ

to be the random variable

Iμ := − logμ(y) where y ∼ μ. (6.3.1)
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The symbol ∼ means “has the distribution.” The terminology is motivated by the
operational interpretation of the information content of a discrete random variable
as the number of bits required to represent a random realization using a code with
minimal average length [7].

The expected information content E Iμ is usually known as the entropy of the
distribution μ. The varentropy of the distribution is the variance of information
content:

VarEnt[μ] := Var[Iμ] = E (Iμ − E Iμ)
2. (6.3.2)

Here and elsewhere, nonlinear functions bind before the expectation.
Bobkov and Madiman [7] showed that the varentropy of a log-concave distribu-

tion on R
n is not greater than a constant multiple of n. Other researchers quickly

determined the optimal constant. The following result was obtained independently
by Nguyen [27] and by Wang [36] in their doctoral dissertations.

Fact 6.3.3 (Varentropy of a Log-Concave Distribution) Let μ : Rn → R+ be a
log-concave probability density. Then

VarEnt[μ] ≤ n.

See Fradelizi et al. [12] for more background and a discussion of this result.
For future reference, note that the varentropy and related quantities exhibit a

simple scale invariance. Consider the shifted information content

Icμ := − log(cμ(y)) where c > 0 and y ∼ μ.

It follows from the definition that

Icμ − E Icμ = Iμ − E Iμ for each c > 0. (6.3.3)

In particular, Var[Icμ] = Var[Iμ].

6.3.2 A Log-Concave Density

Next, we observe that the central intrinsic volume is related to the information
content of a log-concave density. For a nonempty convex body K ⊂ R

n, define

μK(x) := 1

W(K)
e−π dist2(x,K) for x ∈ R

n. (6.3.4)
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The density μK is log-concave because the squared distance to a convex body is a
convex function. The calculation in Example 6.2.6 ensures that μK is a probability
density.

Introduce the (shifted) information content random variable associated with K:

HK := − log(W(K) · μK(y)) = π dist2(y,K) where y ∼ μK. (6.3.5)

Up to the presence of the factor W(K), the random variable HK is the information
content of a random draw from the distribution μK. In view of (6.3.2) and (6.3.3),

Var[HK] = Var[IμK ] = VarEnt[μK]. (6.3.6)

More generally, all central moments and cumulants of HK coincide with the
corresponding central moments and cumulants of IμK :

E f (HK − EHK) = E f (IμK − E IμK). (6.3.7)

This expression is valid for any function f : R → R such that the expectations
exist.

6.3.3 Information Content and Intrinsic Volumes

We are now prepared to connect the moments of the intrinsic volume random
variable ZK with the moments of the information content random variable HK.
These representations allow us to transfer results about information content into
data about the intrinsic volumes.

Using the notation from the last section, Example 6.2.7 gives a relation between
the expectations:

EZK = n − 2EHK. (6.3.8)

The next result provides a similar relationship between the variances.

Proposition 6.3.4 (Variance of the Intrinsic Volume Random Variable) Let K ⊂
R

n be a nonempty convex body with intrinsic volume random variable ZK and
information content random variable HK. We have the variance identity

Var[ZK] = 4 (Var[HK] − EHK).
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Proof Apply Corollary 6.2.5 with the function g(r) = 4r2/W(K) to obtain

4EH 2
K = 1

W(K)

∫

Rn

4π2 dist4(x,K) · e−π dist2(x,K) dx

= 1

W(K)

n−1∑
j=0

(n − j)((n − j) + 2) · Vj (K)

= E(n − ZK)
2 + 2E[n − ZK]

= Var[n − ZK] + (E[n − ZK])2 + 2E[n − ZK]
= Var[ZK] + 4(EHK)

2 + 4EHK.

We have used the definition (6.1.4) of the intrinsic volume random variable to
express the sum as an expectation. In the last step, we used the relation (6.3.8)
twice to pass to the random variable HK. Finally, rearrange the display to complete
the proof. ��

6.3.4 Proof of Theorem 6.3.1

We may now establish the main result of this section. Proposition 6.3.4 yields

Var[ZK] = 4 (Var[HK]−EHK) = 4 VarEnt[μK]−2(n−EZK) ≤ 2n+2EZK ≤ 4n.

We have invoked (6.3.6) to replace the variance of HK with the varentropy
and (6.3.8) to replace EHK by the central intrinsic volume EZK. The inequality
is a consequence of Fact 6.3.3, which controls the varentropy of the log-concave
density μK. We obtain the final bound by noting that EZK ≤ n.

Here is an alternative approach to the final bound that highlights the role of the
varentropy:

Var[ZK] ≤ 4 Var[HK] = 4 VarEnt[μK] ≤ 4n.

The first inequality follows from Proposition 6.3.4, and the second inequality is
Fact 6.3.3.

6.4 Concentration of the Intrinsic Volume Random Variable

The square root of the variance of the intrinsic volume random variable ZK gives the
scale for fluctuations about the mean. These fluctuations have size O(

√
n), which

is much smaller than the O(n) range of the random variable. This observation
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motivates us to investigate the concentration properties of ZK. In this section, we
develop a refined version of the tail bound from Theorem 6.1.11.

Theorem 6.4.1 (Tail Bounds for Intrinsic Volumes) Let K ⊂ R
n be a nonempty

convex body with intrinsic volume random variable ZK. For all t ≥ 0, we have the
inequalities

P {ZK − EZK ≥ t} ≤ exp

{
−(n + EZK) · ψ∗

(
t

n + EZK

)}
;

P {ZK − EZK ≤ −t} ≤ exp

{
−(n + EZK) · ψ∗

( −t

n + EZK

)}
.

The function ψ∗(s) := ((1 + s) log(1 + s) − s)/2 for s > −1.

The proof of this result follows the same pattern as the argument from Theo-
rem 6.3.1. In Sect. 6.4.5, we derive Theorem 6.4.1 as an immediate consequence.

6.4.1 Moment Generating Function of the Information
Content

In addition to the variance, one may study other moments of the information content
random variable. In particular, bounds for the moment generating function (mgf) of
the centered information content lead to exponential tail bounds for the information
content. Bobkov and Madiman [7] proved the first result in this direction. More
recently, Fradelizi et al. [12] have obtained the optimal bound.

Fact 6.4.2 (Information Content mgf) Let μ : R
n → R+ be a log-concave

probability density. For β < 1,

E eβ(Iμ−E Iμ) ≤ enϕ(β),

where ϕ(s) := −s − log(1 − s) for s < 1. The information content random variable
Iμ is defined in (6.3.1).

6.4.2 Information Content and Intrinsic Volumes

We extract concentration inequalities for the intrinsic volume random variable ZK
by studying its (centered) exponential moments. Define

mK(θ) := E eθ(ZK−EZK) for θ ∈ R.
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The first step in the argument is to represent the mgf in terms of the information
content random variable HK defined in (6.3.5).

Proposition 6.4.3 (mgf of Intrinsic Volume Random Variable) Let K ⊂ R
n be a

nonempty convex body with intrinsic volume random variable ZK and information
content random variable HK. For θ ∈ R,

mK(θ) = e−ϕ(β)EHK · E eβ(HK−EHK) where β := 1 − e2θ .

The function ϕ is defined in Fact 6.4.2.

Proof The formula (6.2.3) from Example 6.2.8 yields the identity

E eθ(ZK−n) = 1

W(K)

∫

Rn

e(1−e2θ )·π dist2(x,K) · e−π dist2(x,K) dx = E e(1−e2θ )HK .

We can transfer this result to obtain another representation for mK. First, use the
identity (6.3.8) to replace EZK with EHK. Then invoke the last display to reach

mK(θ) = E eθ(ZK−EZK) = e2θ EHK E eθ(ZK−n)

= e2θ EHK E e(1−e2θ )HK

= e(1+2θ−e2θ )EHK E e(1−e2θ )(HK−EHK)

= e(β+log(1−β))EHK E eβ(HK−EHK).

In the last step, we have made the change of variables β = 1 − e2θ . Finally, identify
the value −ϕ(β) in the first exponent. ��

6.4.3 A Bound for the mgf

We are now prepared to bound the mgf mK. This result will lead directly to
concentration of the intrinsic volume random variable.

Proposition 6.4.4 (A Bound for the mgf) Let K ⊂ R
n be a nonempty convex body

with intrinsic volume random variable ZK. For θ ∈ R,

mK(θ) ≤ eψ(θ)(n+EZK),

where ψ(s) := (e2s − 2s − 1)/2 for s ∈ R.
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Proof For the parameter β = 1 − e2θ , Proposition 6.4.3 yields

mK(θ) = e−ϕ(β)EHK E eβ(HK−EHK)

= e−ϕ(β)EHK E eβ(IμK−E IμK )

≤ e−ϕ(β)EHK · enϕ(β)

= e−ϕ(β)(n−EZK)/2 · enϕ(β) = eϕ(β)(n+EZK)/2.

To reach the second line, we use the equivalence (6.3.7) for the central moments.
The inequality is Fact 6.4.2, the mgf bound for the information content IμK of the
log-concave density μK. Afterward, we invoke (6.3.8) to pass from the information
content random variable HK to the intrinsic volume random variable ZK. The next
step is algebraic. The result follows when we return from the variable β to the
variable θ , leading to the appearance of the function ψ . ��

6.4.4 Proof of Theorem 6.4.1

The Laplace transform method, combined with the mgf bound from Proposi-
tion 6.4.4, produces Bennett-type inequalities for the intrinsic volume random
variable. In brief,

P {ZK − EZK ≥ t} ≤ inf
θ>0

e−θt · mK(θ)

≤ inf
θ>0

e−θt+ψ(θ)(n+EZK)

= exp

{
−(n + EZK) · ψ∗

(
t

n + EZK

)}
.

The Fenchel–Legendre conjugate ψ∗ of the function ψ has the explicit form given
in the statement of Theorem 6.4.1. The lower tail bound follows from the same
argument.

6.4.5 Proof of Theorem 6.1.11

The concentration inequality in the main result, Theorem 6.4.1, follows when we
weaken the inequalities obtained in the last section. Comparing derivatives, we can
verify that ψ∗(s) ≥ (s2/4)/(1 + s/3) for all s > −1. For the interesting range,
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0 ≤ t ≤ n, we have

P {ZK − EZK ≥ t} ≤ exp

{ −t2/4

n + EZK + t/3

}
;

P {ZK − EZK ≤ −t} ≤ exp

{ −t2/4

n + EZK − t/3

}
.

We may combine this pair of inequalities into a single bound:

P {|ZK − EZK| ≥ t} ≤ 2 exp

( −t2/4

n + EZK + t/3

)
.

Make the estimate EZK ≤ n, and bound the denominator using t ≤ n. This
completes the argument.

6.5 Example: Rectangular Parallelotopes

In this section, we work out the intrinsic volume sequence of a rectangular
parallelotope. This computation involves the generating function of the intrinsic
volume sequence. Because of its elegance, we develop this method in more depth
than we need to treat the example at hand.

6.5.1 Generating Functions and Intrinsic Volumes

To begin, we collect some useful information about the properties of the generating
function of the intrinsic volumes.

Definition 6.5.1 (Intrinsic Volume Generating Function) The generating func-
tion of the intrinsic volumes of the convex body K is the polynomial

GK(λ) :=
n∑

j=0

λjVj (K) = W(λK) for λ > 0.

We can use the generating function to read off some information about a convex
body, including the total intrinsic volume and the central intrinsic volume. This is a
standard result [38, Sec. 4.1], so we omit the elementary argument.



6 Concentration of the Intrinsic Volumes of a Convex Body 161

Proposition 6.5.2 (Properties of the Generating Function) For each nonempty
convex body K ⊂ R

n,

W(K) = GK(1) and �(K) = G′
K(1)

GK(1)
= (logGK)

′(1).

As usual, the prime ′ denotes a derivative.

It is usually challenging to compute the intrinsic volumes of a convex body, but
the following fact allows us to make short work of some examples.

Fact 6.5.3 (Direct Products) Let C ⊂ R
n1 and K ⊂ R

n2 be nonempty convex
bodies. The generating function of the intrinsic volumes of the convex body C×K ⊂
R

n1+n2 takes the form

GC×K(λ) = GC(λ) · GK(λ).

For completeness, we include a short proof inspired by Hadwiger [18]; see [33,
Lem. 14.2.1].

Proof Abbreviate n := n1 + n2. For a point x ∈ R
n, write x = (x1, x2) where

xi ∈ R
ni . Then

dist2(x,C × K) = dist2(x1,C) + dist2(x2,K).

Invoke the formula (6.2.2) from Example 6.2.8 for the generating function of the
intrinsic volumes (three times!). For λ > 0,

λ−n
n∑

j=0

λjVj (C × K) =
∫

Rn

e−λ2π dist2(x,C×K) dx

=
∫

R
n1

∫

R
n2

e−λ2π dist2(x1,C) · e−λ2π dist2(x2,K) dx1 dx2

=
⎛
⎝λ−n1

n1∑
j=0

λjVj (C)

⎞
⎠
⎛
⎝λ−n2

n2∑
j=0

λjVj (K)

⎞
⎠ .

Cancel the leading factors of λ to complete the argument. ��
As a corollary, we can derive an expression for the central intrinsic volume of a

direct product.

Corollary 6.5.4 (Central Intrinsic Volume of a Product) Let C ⊂ R
n1 and K ⊂

R
n2 be nonempty convex bodies. Then

�(C × K) = �(C) + �(K).
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Proof According to Proposition 6.5.2 and Fact 6.5.3,

�(C × K) = (logGC×K)
′(1) = (log(GCGK))

′(1)

= (logGC + logGK)
′(1) = (logGC)

′(1) + (logGK)
′(1)

= �(C) + �(K).

This is what we needed to show. ��

6.5.2 Intrinsic Volumes of a Rectangular Parallelotope

Using Fact 6.5.3, we quickly compute the intrinsic volumes and related statistics for
a rectangular parallelotope.

Proposition 6.5.5 (Rectangular Parallelotopes) For parameters s1, s2, . . . , sn ≥
0, construct the rectangular parallelotope

P := [0, s1] × [0, s2] × · · · × [0, sn] ⊂ R
n.

The generating function for the intrinsic volumes of the parallelotope P satisfies

GP(λ) =
n∏

i=1

(1 + λsi).

In particular, Vj (K) = ej (s1, . . . , sn), where ej denotes the j th elementary
symmetric function. The total intrinsic volume and central intrinsic volume satisfy

W(P) =
n∏

i=1

(1 + si ) and �(P) =
n∑

i=1

si

1 + si
.

Proof Let s ≥ 0. By direct calculation from Definition 6.1.1, the intrinsic volumes
of the interval [0, s] ⊂ R

1 are V0([0, s]) = 1 and V1([0, s]) = s. Thus,

G[0,s](λ) =
1∑

j=0

λjVj ([0, s]) = 1 + λs.

Fact 6.5.3 implies that the generating function for the intrinsic volumes of the
parallelotope P is

GP(λ) :=
n∑

j=0

λjVj(P) =
n∏

i=0

(1 + λsi).
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We immediately obtain formulas for the total intrinsic volume and the central
intrinsic volume from Proposition 6.5.2. Alternatively, we can compute the central
intrinsic volume of an interval [0, s] and use Corollary 6.5.4 to extend this result to
the parallelotope P. ��

6.5.3 Intrinsic Volumes of a Cube

As an immediate consequence of Proposition 6.5.5, we obtain a clean result on the
intrinsic volumes of a scaled cube.

Corollary 6.5.6 (Cubes) Let Qn ⊂ R
n be the unit cube. For s ≥ 0, the normalized

intrinsic volumes of the scaled cube sQn coincide with a binomial distribution. For
each j = 0, 1, 2, . . . , n,

Ṽj (sQn) =
(
n

j

)
· pj (1 − p)n−j where p = s

1 + s
.

In particular, the central intrinsic volume of the scaled cube is

�(sQn) = np = ns

1 + s
.

Corollary 6.5.6 plays a starring role in our analysis of the intrinsic volume
sequences that attain the maximum entropy.

We can also use Corollary 6.5.6 to test our results on the variance and concen-
tration properties of the intrinsic volume sequence by comparing them with exact
computations for the cube. Fix a number s ≥ 0, and let p = s/(1 + s). Then

Var[ZsQn
] = np(1 − p) = ns

(1 + s)2 .

Meanwhile, Theorem 6.3.1 gives the upper bound

Var[ZsQn
] ≤ 2(n + np) = 2n(1 + 2s)

1 + s
.

For s = 1, the ratio of the upper bound to the exact variance is 12. For s ≈ 0
and s → ∞, the ratio becomes arbitrarily large. Similarly, Theorem 6.4.1 gives a
qualitatively good description for s = 1, but its predictions are far less accurate for
small and large s. There remains more work to do!
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6.6 Maximum-Entropy Distributions of Intrinsic Volumes

We have been using probabilistic methods to study the intrinsic volumes of a convex
body, and we have seen that the intrinsic volume sequence is concentrated, as
reflected in the variance bound (Theorem 6.3.1) and the exponential tail bounds
(Theorem 6.4.1). Therefore, it is natural to consider other measures of the dispersion
of the sequence. We recall Definition 6.1.12, of the intrinsic entropy, which is the
entropy of the normalized intrinsic volume sequence. This concept turns out to be
interesting.

In this section, we will establish Theorem 6.1.13. This result states that, among
all convex bodies with a fixed central intrinsic volume, a scaled cube has the largest
entropy. Moreover, the unit-volume cube has the largest intrinsic entropy among
all convex bodies in a fixed dimension. We prove this theorem using some recent
observations from information theory.

6.6.1 Ultra-Log-Concavity and Convex Bodies

The key step in proving Theorem 6.1.13 is to draw a connection between intrinsic
volumes and ultra-log-concave sequences. We begin with an important definition.

Definition 6.6.1 (Ultra-Log-Concave Sequence) A nonnegative sequence {aj :
j = 0, 1, 2, . . . } is called ultra-log-concave, briefly ULC, if it satisfies the relations

j · a2
j ≥ (j + 1) · aj+1aj−1 for j = 1, 2, 3, . . . .

It is equivalent to say that the sequence {j ! aj : j = 0, 1, 2, . . . } is log-concave.

Among all finitely supported ULC probability distributions, the binomial dis-
tributions have the maximum entropy. This result was obtained by Yaming Yu [39]
using methods developed by Oliver Johnson [19] for studying the maximum-entropy
properties of Poisson distributions.

Fact 6.6.2 (Binomial Distributions Maximize Entropy) Let p ∈ [0, 1], and fix a
natural number n. Among all ULC probability distributions with mean pn that are
supported on {0, 1, 2, . . . , n}, the binomial distribution BIN(p, n) has the maximum
entropy.

These facts are relevant to our discussion because the intrinsic volumes of a
convex body form an ultra-log-concave sequence.

Fact 6.6.3 (Intrinsic Volumes are ULC) The normalized intrinsic volumes of a
nonempty convex body in R

n compose a ULC probability distribution supported on
{0, 1, 2, . . . , n}.
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This statement is a consequence of the Alexandrov–Fenchel inequalities [32,
Sec. 7.3]; see the papers of Chevet [10] and McMullen [26].

6.6.2 Proof of Theorem 6.1.13

With this information at hand, we quickly establish the main result of the section.
Recall that Qn denotes the unit-volume cube in R

n. Let K ⊂ R
n be a nonempty

convex body. Define the number p ∈ [0, 1) by the relation pn = �(K). According
to Corollary 6.5.6, the scaled cube sQn satisfies

�(sQn) = pn = �(K) when s = p

1 − p
.

Fact 6.6.3 ensures that the normalized intrinsic volume sequence of the convex body
K is a ULC probability distribution supported on {0, 1, 2, . . . , n}. Since EZK =
�(K) = pn, Fact 6.6.2 now delivers

IntEnt(K) = Ent[ZK] ≤ Ent[BIN(p, n)] = Ent[ZsQn
] = IntEnt(sQn).

We have used Corollary 6.5.6 again to see that ZsQn
∼ BIN(p, n). The remaining

identities are simply the definition of the intrinsic entropy. In other words, the scaled
cube has the maximum intrinsic entropy among all convex bodies that share the
same central intrinsic volume.

It remains to show that the unit-volume cube has maximum intrinsic entropy
among all convex bodies. Continuing the analysis in the last display, we find that

IntEnt(K) ≤ Ent[BIN(p, n)] ≤ Ent[BIN(1/2, n)] = Ent[ZQn
] = IntEnt(Qn).

Indeed, among the binomial distributions BIN(p, n) for p ∈ [0, 1], the maximum
entropy distribution is BIN(1/2, n). But this is the distribution of ZQn

, the intrinsic
volume random variable of the unit cube Qn. This observation implies the remaining
claim in Theorem 6.1.13.
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Chapter 7
Two Remarks on Generalized Entropy
Power Inequalities

Mokshay Madiman, Piotr Nayar, and Tomasz Tkocz

Abstract This note contributes to the understanding of generalized entropy power
inequalities. Our main goal is to construct a counter-example regarding monotonic-
ity and entropy comparison of weighted sums of independent identically distributed
log-concave random variables. We also present a complex analogue of a recent
dependent entropy power inequality of Hao and Jog, and give a very simple
proof.
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7.1 Introduction

The differential entropy of a random vector X with density f (with respect to
Lebesgue measure on R

d ) is defined as

h (X) = −
∫

Rd

f log f,

provided that this integral exists. When the variance of a real-valued random
variable X is kept fixed, it is a long known fact [11] that the differential entropy
is maximized by taking X to be Gaussian. A related functional is the entropy power

of X, defined by N(X) = e
2h(X)

d . As is usual, we abuse notation and write h(X) and
N(X), even though these are functionals depending only on the density of X and
not on its random realization.

The entropy power inequality is a fundamental inequality in both Information
Theory and Probability, stated first by Shannon [34] and proved by Stam [36]. It
states that for any two independent random vectors X and Y in R

d such that the
entropies of X,Y and X + Y exist,

N(X + Y ) ≥ N(X) + N(Y ).

In fact, it holds without even assuming the existence of entropies as long as we set
an entropy power to 0 whenever the corresponding entropy does not exist, as noted
by Bobkov and Chistyakov [6]. One reason for the importance of this inequality in
Probability Theory comes from its close connection to the Central Limit Theorem
(see, e.g., [21, 25]). It is also closely related to the Brunn–Minkowski inequality,
and thereby to results in Convex Geometry and Geometric Functional Analysis (see,
e.g., [7, 31]).

An immediate consequence of the above formulation of the entropy power
inequality is its extension to n summands: if X1, . . . , Xn are independent random
vectors, then N(X1 +· · ·+Xn) ≥ ∑n

i=1 N(Xi). Suppose the random vectors Xi are
not merely independent but also identically distributed, and that Sn = 1√

n

∑n
i=1 Xi ;

these are the normalized partial sums that appear in the vanilla version of the Central
Limit Theorem. Then one concludes from the entropy power inequality together
with the scaling property N(aX) = a2N(X) that N(Sn) ≥ N(S1), or equivalently
that

h(Sn) ≥ h(S1). (7.1)

There are several refinements or generalizations of the inequality (7.1) that
one may consider. In 2004, Artstein et al. [2] proved (see [13, 26, 35, 38] for
simpler proofs and [27, 28] for extensions) that in fact, one has monotonicity of
entropy along the Central Limit Theorem, i.e., h(Sn) is a monotonically increasing
sequence. If N(0, 1) is the standard normal distribution, Barron [4] had proved
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much earlier that h(Sn) → h(N(0, 1)) as long as X1 has mean 0, variance 1, and
h(X1) > −∞. Thus one has the monotone convergence of h(Sn) to the Gaussian
entropy, which is the maximum entropy possible under the moment constraints.
By standard arguments, the convergence of entropies is equivalent to the relative
entropy between the distribution of Sn and the standard Gaussian distribution
converging to 0, and this in turn implies not just convergence in distribution but
also convergence in total variation. This is the way in which entropy illuminates the
Central Limit Theorem.

A different variant of the inequality (7.1) was recently given by Hao and Jog
[20], whose paper may be consulted for motivation and proper discussion. A random
vector X = (X1, . . . , Xn) in R

n is called unconditional if for every choice of signs
η1, . . . , ηn ∈ {−1,+1}, the vector (η1X1, . . . , ηnXn) has the same distribution as
X. Hao and Jog [20] proved that if X is an unconditional random vector in R

n,

then 1
n
h (X) ≤ h

(
X1+···+Xn√

n

)
. If X has independent and identically distributed

components instead of being unconditional, this is precisely h(Sn) ≥ h(S1) for real-
valued random variables Xi (i.e., in dimension d = 1).

The goal of this note is to shed further light on both of these generalized entropy
power inequalities. We now explain precisely how we do so.

To motivate our first result, we first recall the notion of Schur-concavity. One
vector a = (a1, . . . , an) in [0,∞)n is majorised by another one b = (b1, . . . , bn),
usually denoted a ≺ b, if the nonincreasing rearrangements a∗

1 ≥ . . . ≥ a∗
n and

b∗
1 ≥ . . . ≥ b∗

n of a and b satisfy the inequalities
∑k

j=1 a
∗
j ≤ ∑k

j=1 b
∗
j for each 1 ≤

k ≤ n − 1 and
∑n

j=1 aj = ∑n
j=1 bj . For instance, any vector a with nonnegative

coordinates adding up to 1 is majorised by the vector (1, 0, . . . , 0) and majorises the
vector ( 1

n
, 1
n
, . . . , 1

n
). Let � : �n → R, where �n = {a ∈ [0, 1]n : a1 + · · · + an =

1} is the standard simplex. We say that � is Schur-concave if �(a) ≥ �(b) when
a ≺ b. Clearly, if � is Schur-concave, then one has �( 1

n
, 1
n
, . . . , 1

n
) ≥ �(a) ≥

�(1, 0, . . . , 0) for any a ∈ �n.
Suppose X1, . . . , Xn are i.i.d. copies of a random variable X with finite entropy,

and we define

�(a) = h
(∑√

aiXi

)
(7.2)

for a ∈ �n. Then the inequality (7.1) simply says that �( 1
n
, 1
n
, . . . , 1

n
) ≥

�(1, 0, . . . , 0), while the monotonicity of entropy in the Central Limit Theorem
says that �( 1

n
, 1
n
, . . . , 1

n
) ≥ �( 1

n−1 , . . . ,
1

n−1 , 0). Both these properties would be
implied by (but in themselves are strictly weaker than) Schur-concavity. Thus one
is led to the natural question: Is the function � defined in (7.2) a Schur-concave
function? For n = 2, this would imply in particular that h(

√
λX1 + √

1 − λX2)

is maximized over λ ∈ [0, 1] when λ = 1
2 . The question on the Schur-concavity

of � had been floating around for at least a decade, until [3] constructed a
counterexample showing that � cannot be Schur-concave even for n = 2. It was
conjectured in [3], however, that for n = 2, the Schur-concavity should hold
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if the random variable X has a log-concave distribution, i.e., if X1 and X2 are
independent, identically distributed, log-concave random variables, the function

λ #→ h
(√

λX1 + √
1 − λX2

)
should be nondecreasing on [0, 1

2 ]. More generally,

one may ask: if X1, . . . , Xn are n i.i.d. copies of a log-concave random variable
X, is it true that h

(∑
aiXi

) ≥ h
(∑

biXi

)
when (a2

1, . . . , a
2
n) ≺ (b2

1, . . . , b
2
n)?

Equivalently, is � Schur-concave when X is log-concave?
Our first result implies that the answer to this question is negative. The way we

show this is the following: since (1, 1
n
, . . . , 1

n
, 1
n
) ≺ (1, 1

n−1 , . . . ,
1

n−1 , 0), if Schur-

concavity held, then the sequence h
(
X1 + X2+···+Xn+1√

n

)
would be nondecreasing.

If we moreover establish convergence of this sequence to h (X1 + G), where G is
an independent Gaussian random variable with the same variance as X1, we would

have in particular that h
(
X1 + X2+···+Xn+1√

n

)
≤ h (X1 + G). We construct examples

where the opposite holds.

Theorem 7.1 There exists a symmetric log-concave random variable X with
variance 1 such that if X0,X1, . . . are its independent copies and n is large enough,
we have

h

(
X0 + X1 + · · · + Xn√

n

)
> h (X0 + Z) ,

where Z is a standard Gaussian random variable, independent of the Xi . Moreover,
the left hand side of the above inequality converges to h(X0 + Z) as n tends
to infinity. Consequently, even if X is drawn from a symmetric, log-concave
distribution, the function � defined in (7.2) is not always Schur-concave.

Here by a symmetric distribution, we mean one whose density f satisfies
f (−x) = f (x) for each x ∈ R.

In contrast to Theorem 7.1, � does turn out to be Schur-concave if the
distribution of X is a symmetric Gaussian mixture, as recently shown in [15]. We
suspect that Schur-concavity also holds for uniform distributions on intervals (cf.
[1]).

Theorem 7.1 can be compared with the afore-mentioned monotonicity of entropy
property of the Central Limit Theorem. It also provides an example of two
independent symmetric log-concave random variables X and Y with the same
variance such that h (X + Y ) > h (X + Z), where Z is a Gaussian random variable
with the same variance as X and Y , independent of them, which is again in contrast
to symmetric Gaussian mixtures (see [15]). The interesting question posed in [15]
of whether, for two i.i.d. summands, swapping one for a Gaussian with the same
variance increases entropy, remains open.

Our proof of Theorem 7.1 is based on sophisticated and remarkable Edgeworth
type expansions recently developed by Bobkov et al. [9] en route to obtaining
precise rates of convergence in the entropic central limit theorem, and is detailed
in Sect. 7.2.
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The second contribution of this note is an exploration of a technique to prove
inequalities akin to the entropy power inequality by using symmetries and invariance
properties of entropy. It is folklore that when X1 and X2 are i.i.d. from a symmetric
distribution, one can deduce the inequality h(S2) ≥ h(S1) in an extremely simple
fashion (in contrast to any full proof of the entropy power inequality, which tends to
require relatively sophisticated machinery– either going through Fisher information
or optimal transport or rearrangement theory or functional inequalities). In Sect. 7.3,
we will recall this simple proof, and also deduce some variants of the inequality
h(S2) ≥ h(S1) by playing with this basic idea of using invariance, including
a complex analogue of a recent entropy power inequality for dependent random
variables obtained by Hao and Jog [20].

Theorem 7.2 Let X = (X1, . . . , Xn) be a random vector in C
n which is complex-

unconditional, that is for every complex numbers z1, . . . , zn such that |zj | = 1 for
every j , the vector (z1X1, . . . , znXn) has the same distribution as X. Then

1

n
h (X) ≤ h

(
X1 + · · · + Xn√

n

)
.

Our proof of Theorem 7.2, which is essentially trivial thanks to the existence of
complex Hadamard matrices, is in contrast to the proof given by Hao and Jog [20]
for the real case that proves a Fisher information inequality as an intermediary step.

We make some remarks on complementary results in the literature. Firstly, in
contrast to the failure of Schur-concavity of � implied by Theorem 7.1, the function
! : �n → R defined by !(a) = h

(∑
aiXi

)
for i.i.d. copies Xi of a random

variable X, is actually Schur-convex when X is log-concave [41]. This is an instance
of a reverse entropy power inequality, many more of which are discussed in [31].
Note that the weighted sums that appear in the definition of � are relevant to the
Central Limit Theorem because they have fixed variance, unlike the weighted sums
that appear in the definition of !.

Secondly, motivated by the analogies with Convex Geometry mentioned earlier,
one may ask if the function " : �n → R defined by "(a) = vold(

∑n
i=1 aiB),

is Schur-concave for any Borel set B ⊂ R
d , where vold denotes the Lebesgue

measure on R
d and the notation for summation is overloaded as usual to also denote

Minkowski summation of sets. (Note that unless B is convex, (a1 + a2)B is a
subset of, but generally not equal to, a1B+a2B.) The Brunn–Minkowski inequality
implies that "( 1

n
, 1
n
, . . . , 1

n
) ≥ "(1, 0, . . . , 0). The inequality "( 1

n
, 1
n
, . . . , 1

n
) ≥

"( 1
n−1 , . . . ,

1
n−1 , 0), which is the geometric analogue of the monotonicity of

entropy in the Central Limit Theorem, was conjectured to hold in [8]. However,
it was shown in [16] (cf. [17]) that this inequality fails to hold, and therefore "

cannot be Schur-concave, for arbitrary Borel sets B. Note that if B is convex, " is
trivially Schur-concave, since it is a constant function equal to vold(B).

Finally, it has recently been observed in [32, 33, 40] that majorization ideas are
very useful in understanding entropy power inequalities in discrete settings, such as
on the integers or on cyclic groups of prime order.
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7.2 Failure of Schur-Concavity

Recall that a probability density f on R is said to be log-concave if it is of
the form f = e−V for a convex function V : R → R ∪ {∞}. Log-concave
distributions emerge naturally from the interplay between information theory and
convex geometry, and have recently been a very fruitful and active topic of research
(see the recent survey [31]).

This section is devoted to a proof of Theorem 7.1, which in particular falsifies
the Schur-concavity of � defined by (7.2) even when the distribution under
consideration is log-concave.

Let us denote

Zn = X1 + · · · + Xn√
n

and let pn be the density of Zn and let ϕ be the density of Z. Since X0 is assumed to
be log-concave, it satisfies E|X0|s < ∞ for all s > 0. According to the Edgeworth-
type expansion described in [9, (Theorem 3.2 in Chapter 3)], we have (with any
m ≤ s < m + 1)

(1 + |x|m)(pn(x) − ϕm(x)) = o(n− s−2
2 ) uniformly in x,

where

ϕm(x) = ϕ(x) +
m−2∑
k=1

qk(x)n
−k/2.

Here the functions qk are given by

qk(x) = ϕ(x)
∑

Hk+2j (x)
1

r1! . . . rk!
(γ3

3!
)r1

. . .

(
γk+2

(k + 2)!
)rk

,

where Hn are Hermite polynomials,

Hn(x) = (−1)nex
2/2 dn

dxn
e−x2/2,

and the summation runs over all nonnegative integer solutions (r1, . . . , rk) to the
equation r1 + 2r2 + · · · + krk = k, and one uses the notation j = r1 + · · · + rk . The
numbers γk are the cumulants of X0, namely

γk = i−k dk

dtk
logEeitX0

∣∣
t=0.
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Let us calculate ϕ4. Under our assumption (symmetry of X0 and EX2
0 = 1), we

have γ3 = 0 and γ4 = EX4
0 − 3. Therefore q1 = 0 and

q2 = 1

4!γ4ϕH4 = 1

4!γ4ϕ
(4), ϕ4 = ϕ + 1

n
· 1

4! (EX
4
0 − 3)ϕ(4). (7.3)

We get that for any ε ∈ (0, 1)

(1 + x4)(pn(x) − ϕ4(x)) = o(n− 3−ε
2 ), uniformly in x. (7.4)

Let f be the density of X0. Let us assume that it is of the form f = ϕ + δ, where
δ is even, smooth and compactly supported (say, supported in [−2,−1] ∪ [1, 2])
with bounded derivatives. Moreover, we assume that 1

2ϕ ≤ f ≤ 2ϕ, in particular
|δ| ≤ 1/4. Multiplying δ by a very small constant we can ensure that f is log-
concave.

We are going to use Theorem 1.3 from [10]. To check the assumptions of this
theorem, we first observe that for any α > 1 we have

Dα(Z1||Z) = 1

α − 1
log

(∫ (
ϕ + δ

ϕ

)α

ϕ

)
< ∞,

since δ has bounded support. We have to show that for sufficiently big α� = α
α−1

there is

EetX0 < eα
�t2/2, t �= 0.

Since X0 is symmetric, we can assume that t > 0. Then

EetX0 = et
2/2 +

∞∑
k=1

t2k

(2k)!
∫

x2kδ(x)dx ≤ et
2/2 +

∞∑
k=1

t2k

(2k)!2
2k
∫ 2

−2
|δ(x)|dx

< et
2/2 +

∞∑
k=1

(2t)2k

(2k)! = 1 +
∞∑
k=1

(
t2k

2kk! + (2t)2k

(2k)!
)

≤ 1 +
∞∑
k=1

(
t2k

k! + (2t)2k

k!
)

≤
∞∑
k=0

t2k42k

k! = e16t2
,

where we have used the fact that
∫
δ(x)dx = 0, δ has a bounded support contained

in [−2, 2] and |δ| ≤ 1/4. We conclude that

|pn(x) − ϕ(x)| ≤ C0

n
e−x2/64 (7.5)
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for some constant C0 independent of n. (In this proof, C0, C1, . . . denote sufficiently
large constants that may depend on the distribution of X0.) Thus

pn(x) ≤ ϕ(x) + C0

n
e−x2/64 ≤ C1e

−x2/64. (7.6)

Another consequence of (7.5) is the inequality

pn(x) ≥ 1

10
for |x| ≤ 1 (7.7)

and large enough n.
We now prove the convergence part of the theorem. From (7.5) we get that pn →

ϕ pointwise. Moreover, from (7.6) and from the inequality f ≤ 2ϕ we get, by using
Lebesgue’s dominated convergence theorem, that f ∗pn → f ∗ϕ. In order to show
that

∫
f ∗pn log f ∗pn → ∫

f ∗ϕ log f ∗ϕ it is enough to bound f ∗pn| logf ∗pn|
by some integrable function m0 independent of n and use Lebesgue’s dominated
convergence theorem. To this end we observe that by (7.6) we have

(f ∗ pn)(x) ≤ 2(ϕ ∗ pn)(x) ≤ 2C1√
2π

∫
e−t2/2e−(x−t )2/64dt ≤ 2C1e

−x2/66.

(7.8)

Moreover, by (7.7)

(f ∗ pn)(x) ≥ 1

2
(ϕ ∗ pn)(x) ≥ 1

20

∫ 1

−1
ϕ(x − t)dt ≥ 1

10
ϕ(|x| + 1). (7.9)

Combining (7.8) with (7.9) we get

| log(f ∗ pn)(x)| ≤ max

{
| log 2C1|, 1

10
| logϕ(|x| + 1)|

}
≤ C2(1 + x2).

(7.10)

From (7.10) and (7.8) we see that the function m0(x) = 2C1C2e
−x2/66(1 + x2) is

the required majorant.
Let us define hn = pn − ϕ4. Note that by (7.3) we have ϕ4 = ϕ + c1

n
ϕ(4), where

c1 = 1
4! (EX

4
0 − 3). We have

∫
f ∗ pn log f ∗ pn =

∫ (
f ∗ ϕ + c1

n
f ∗ ϕ(4) + f ∗ hn

)
log f ∗ pn

=
∫

f ∗ ϕ log f ∗ pn + c1

n

∫
f ∗ ϕ(4) log f ∗ pn
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+
∫

f ∗ hn log f ∗ pn

= I1 + I2 + I3.

We first bound I3. Note that using (7.4) with ε = 1/2 we get

|(f ∗ hn)(x)| ≤ 2(ϕ ∗ |hn|)(x) ≤ C3n
−5/4

∫
e−y2/2 1

1 + (x − y)4 dy (7.11)

for sufficiently large n. Assuming without loss of generality that x > 0, we have

∫
e−y2/2 1

1 + (x − y)4
dy ≤

∫

y∈[ 1
2 x,2x]

e−y2/2 1

1 + (x − y)4
dy

+
∫

y /∈[ 1
2 x,2x]

e−y2/2 1

1 + (x − y)4 dy

≤
∫

y∈[ 1
2 x,2x]

e−x2/8dy

+ 1

1 + 1
16x

4

∫

y /∈[ 1
2 x,2x]

e−y2/2dy

≤ 3

2
xe−x2/8 +

√
2π

1 + 1
16x

4
≤ C4

1 + x4 .

Combining this with (7.11) one gets for large n

|(f ∗ hn)(x)| ≤ C3C4n
−5/4 1

1 + x4 . (7.12)

Inequalities (7.12) and (7.10) give for large n,

|I3| ≤ C3C4C2n
−5/4

∫
1 + x2

1 + x4
dx ≤ 5C3C4C2n

−5/4. (7.13)

We now take care of I2 by showing that

I2 = c1

n

∫
f ∗ ϕ(4) log f ∗ pn = c1

n

∫
f ∗ ϕ(4) log f ∗ ϕ + o(n−1). (7.14)

To this end it suffices to show that
∫
f ∗ ϕ(4) log f ∗ pn → ∫

f ∗ ϕ(4) logf ∗
ϕ. As we already observed f ∗ pn → f ∗ ϕ pointwise. Taking into account the
bound (7.10), to find a majorant m1 of f ∗ ϕ(4) log f ∗pn, it suffices to observe that
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|ϕ(4)(t)| ≤ C5e
−t2/4 and thus

|f ∗ ϕ(4)|(x) ≤ 2(ϕ ∗ |ϕ(4)|)(x) ≤ 2C5

∫
e−(x−t )2/2e−t2/4dt ≤ 8C5e

−x2/6.

One can then take m1(x) = 8C5C2e
−x2/6(1 + x2).

By Jensen’s inequality,

I1 =
∫

f ∗ ϕ log f ∗ pn ≤
∫

f ∗ ϕ log f ∗ ϕ = −h(X0 + Z). (7.15)

Putting (7.15), (7.14) and (7.13) together we get

∫
f ∗ pn log f ∗ pn ≤

∫
f ∗ ϕ log f ∗ ϕ + c1

n

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) + o(n−1).

This is

h(X0 + Z) ≤ h(X0 + Zn) + 1

n
· 1

4! (EX
4
0 − 3)

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) + o(n−1).

It is therefore enough to construct X0 (satisfying all previous conditions) such that

(EX4
0 − 3)

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) < 0.

It actually suffices to construct a smooth compactly supported even function g

such that
∫
g = ∫

gx2 = ∫
gx4 = 0 and the function f = ϕ + εg satisfies

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) > 0

for some fixed small ε. We then perturb g a bit to get EX4
0 < 3 instead of EX4

0 = 3.
This can be done without affecting log-concavity.

Let ϕ2(x) = (ϕ ∗ ϕ)(x) = 1
2
√
π
e−x2/4. Note that ϕ(4)

2 (x) = ϕ2(x)(
3
4 − 3

4x
2 +

1
16x

4). We have

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) =

∫
(ϕ2 + εϕ ∗ g)(4) log(ϕ2 + εϕ ∗ g)

=
∫

(ϕ2 + εϕ ∗ g)(4)
(

log(ϕ2) + ε
ϕ ∗ g

ϕ2

−1

2
ε2
(
ϕ ∗ g

ϕ2

)2

+ rε(x)

)
dx.
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We shall show that
∫ |(ϕ2 + εϕ ∗ g)(4)||rε| ≤ C8|ε|3. To justify this we first observe

that by Taylor’s formula with the Lagrange reminder, we have

| log(1 + a) − a + a2/2| ≤ 1

3

|a|3
(1 − |a|)3 |a| < 1. (7.16)

Due to the fact that g is bounded and compactly supported, we have

|ϕ ∗ g|(x) ≤ C6

∫ C6

−C6

ϕ(x − t)dt ≤ 2C2
6ϕ((|x| − C6)+) ≤ 2C2

6e
−(|x|−C6)

2+/2.

Thus

|ϕ ∗ g|(x)
ϕ2(x)

≤ 4
√
πC2

6e
x2/4e−(|x|−C6)

2+/2 ≤ C7.

Using (7.16) with a = ε
ϕ∗g
ϕ2

and |ε| < 1
2C7

(in which case |a| ≤ 1/2) we get

|rε(x)| =
∣∣∣∣∣log

(
1 + ε

ϕ ∗ g

ϕ2

)
− ε

ϕ ∗ g

ϕ2
+ 1

2
ε2
(
ϕ ∗ g

ϕ2

)2
∣∣∣∣∣ ≤ |ε|3

3
C3

7
1

(1 − 1
2 )

3
.

Thus

∫
|(ϕ2 + εϕ ∗ g)(4)||rε| ≤ 8

3
C3

7 |ε|3
∫ (

|ϕ(4)
2 | + 1

2C7
ϕ ∗ |g(4)|

)
≤ C8|ε|3.

Therefore

∫
(f ∗ ϕ)(4) log(f ∗ ϕ) =

∫
(ϕ2 + εϕ ∗ g)(4)

(
log(ϕ2) + ε

ϕ ∗ g

ϕ2

−1

2
ε2
(
ϕ ∗ g

ϕ2

)2
)

+ o(ε2).

Integrating by parts we see that the leading term in the above equation is

∫
ϕ
(4)
2 logϕ2 =

∫
ϕ
(4)
2 (x) log

(
1

2
√
π
e−x2/4

)
dx

= −
∫

ϕ
(4)
2 (x)

(
log(2

√
π) + 1

4
x2
)

dx

= −
∫

ϕ2(x)

(
log(2

√
π) + 1

4
x2
)(4)

dx = 0.
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The term in front of ε vanishes. Indeed,
∫
ϕ
(4)
2

ϕ∗g
ϕ2

= ∫
( 3

4 − 3
4x

2+ 1
16x

4)(ϕ∗g) which
can be seen to vanish after using Fubini’s theorem thanks to g being orthogonal to

1, x, . . . , x4. Moreover,
∫
(ϕ ∗ g)(4) log(ϕ2) = ∫

(ϕ ∗ g)(log 1
2
√
π

− x2

4 )(4) = 0. The

term in front of ε2 is equal to

J =
∫

(ϕ ∗ g)(4)(ϕ ∗ g)

ϕ2
− 1

2

∫
ϕ
(4)
2 (ϕ ∗ g)2

ϕ2
2

= J1 − J2.

The first integral is equal to

J1 =
∫ ∫ ∫

2
√
πex

2/4g(4)(s)g(t)
1

2π
e−(x−s)2/2e−(x−t )2/2dxdsdt .

Now,

∫
2
√
πex

2/4 1

2π
e−(x−s)2/2e−(x−t )2/2dx = 2e

1
6

(−s2+4st−t2
)

√
3

.

Therefore,

J1 = 2√
3

∫ ∫
e

1
6

(−s2+4st−t2
)
g(4)(s)g(t)dsdt .

If we integrate the first integral four times by parts we get

J1 = 2

81
√

3

∫ ∫
e

1
6 (−s2+4st−t2)

[
27 + s4 − 8s3t − 72t2

+ 16t4 − 8st (−9 + 4t2) + 6s2(−3 + 4t2)
]
g(s)g(t)dsdt

Since ϕ
(4)
2 /ϕ2

2 =
√
π

8 (12 − 12x2 + x4)ex
2/4, we get

J2 =
∫ ∫ ∫ √

π

16
(12 − 12x2 + x4)ex

2/4g(s)g(t)
1

2π
e−(x−s)2/2e−(x−t )2/2dxdsdt .

Since

∫ √
π

16
(12 − 12x2 + x4)ex

2/4 1

2π
e−(x−s)2/2e−(x−t )2/2dx

= 1

81
√

3
e

1
6 (−s2+4st−t2)

[
27 + (s + t)2(−18 + (s + t)2)

]
,
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we arrive at

J2 =
∫ ∫

1

81
√

3
e

1
6 (−s2+4st−t2)

[
27 + (s + t)2(−18 + (s + t)2)

]
g(s)g(t)dsdt .

Thus J = J1 − J2 becomes

J = J (g) = 1

81
√

3

∫ ∫
e

1
6 (−s2+4st−t2)

[
27 + s4 − 20s3t − 126t2 + 31t4

+ 6s2(−3 + 7t2) + s(180t − 68t3)
]
g(s)g(t)dsdt .

The function

g(s) =
(

7280

69
|s|3 − 11025

23
s2 + 49000

69
|s| − 7875

23

)
1[1,2](|s|)

is compactly supported and it satisfies
∫
g = ∫

gx2 = ∫
gx4 = 0. Numerical

computations show that for this g we have J (g) > 0.003. However, this function is
not smooth. To make it smooth it is enough to consider gε = g ∗ 1

ε
ψ(·/ε) where ψ

is smooth, compactly supported and integrates to 1. Then for any ε > 0 the function
gε is smooth, compactly supported and satisfies

∫
gε = ∫

gεx
2 = ∫

gεx
4 = 0. To

see this denote for simplicity h = 1
ε
ψ(·/ε) and observe that, e.g.,

∫
gε(x)x

4dx =
∫

g(t)h(s)(s + t)4dsdt

=
∫

g(t)h(s)(s4 + 4s3t + 6s2t2 + 4st3 + t4)dtds = 0,

since the integral with respect to t vanishes because of the properties of g. Taking
ε → 0+, the corresponding functional J (gε) converges to J (g) due to the
convergence of gε to g is L1 and uniform boundedness of gε . As a consequence,
for small ε > 0 we have J (gε) > 0.001. It suffices to pick one particular ε with this
property.

��

7.3 Entropy Power Inequalities Under Symmetries

The heart of the folklore proof of h(S2) ≥ h(S1) for symmetric distributions (see,
e.g., [39]) is that for possibly dependent random variables X1 and X2, the SL(n,R)-
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invariance of differential entropy combined with subadditivity imply that

h(X1,X2) = h

(
X1 + X2√

2
,
X1 − X2√

2

)

≤ h

(
X1 + X2√

2

)
+ h

(
X1 − X2√

2

)
.

If the distribution of (X1,X2) is the same as that of (X1,−X2), we deduce that

h

(
X1 + X2√

2

)
≥ h(X1,X2)

2
. (7.17)

If, furthermore, X1 and X2 are i.i.d., then h(X1,X2) = 2h(X1), yielding h(S2) ≥
h(S1). Note that under the i.i.d. assumption, the requirement that the distributions of
(X1,X2) and (X1,−X2) coincide is equivalent to the requirement that X1 (or X2)
has a symmetric distribution.

Without assuming symmetry but assuming independence, we can use the fact
from [23] that h(X − Y ) ≤ 3h(X + Y ) − h(X) − h(Y ) for independent random
variables X,Y to deduce 1

2 [h(X1) + h(X2)] ≤ h
(
X1+X2√

2

) + 1
4 log 2. In the i.i.d.

case, the improved bound h(X − Y ) ≤ 2h(X + Y ) − h(X) holds [29], which
implies h(X1) ≤ h

(
X1+X2√

2

) + 1
6 log 2. These bounds are, however, not particularly

interesting since they are weaker than the classical entropy power inequality; if they
had recovered it, these ideas would have represented by far its most elementary
proof.

Hao and Jog [20] generalized the inequality (7.17) to the case where one
has n random variables, under a natural n-variable extension of the distributional
requirement, namely unconditionality. However, they used a proof that goes through
Fisher information inequalities, similar to the original Stam proof of the full entropy
power inequality. The main observation of this section is simply that under certain
circumstances, one can give a direct and simple proof of the Hao–Jog inequality, as
well as others like it, akin to the 2-line proof of the inequality (7.17) given above.
The “certain circumstances” have to do with the existence of appropriate linear
transformations that respect certain symmetries– specifically Hadamard matrices.

Let us first outline how this works in the real case. Suppose n is a dimension for
which there exists a Hadamard matrix– namely, a n × n matrix with all its entries
being 1 or −1, and its rows forming an orthogonal set of vectors. Dividing each row
by its length

√
n results in an orthogonal matrix O , all of whose entries are ± 1√

n
.

By unconditionality, each coordinate of the vector OX has the same distribution as
X1+···+Xn√

n
. Hence

h (X) = h (OX) ≤
n∑

j=1

h
(
(OX)j

) = nh

(
X1 + · · · + Xn√

n

)
,
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where the inequality follows from subadditivity of entropy. This is exactly the Hao-
Jog inequality for those dimensions where a Hadamard matrix exists. It would be
interesting to find a way around the dimensional restriction, but we do not currently
have a way of doing so.

As is well known, other than the dimensions 1 and 2, Hadamard matrices may
only exist for dimensions that are multiples of 4. As of this date, Hadamard matrices
are known to exist for all multiples of 4 up to 664 [22], and it is a major open
problem whether they in fact exist for all multiples of 4. (Incidentally, we note that
the question of existence of Hadamard matrices can actually be formulated in the
entropy language. Indeed, Hadamard matrices are precisely those that saturate the
obvious bound for the entropy of an orthogonal matrix [19].)

In contrast, complex Hadamard matrices exist in every dimension. A complex
Hadamard matrix of order n is a n × n matrix with complex entries all of which
have modulus 1, and whose rows form an orthogonal set of vectors in C

n. To
see that complex Hadamard matrices always exist, we merely exhibit the Fourier
matrices, which are a well known example of them: these are defined by the entries
Hj,k = exp{ 2πi(j−1)(k−1)

n
}, for j, k = 1, . . . , n, and are related to the discrete

Fourier transform (DFT) matrices. Complex Hadamard matrices play an important
role in quantum information theory [37]. They also yield Theorem 7.2.

Proof of Theorem 7.2 Take any n × n unitary matrix U which all entries are
complex numbers of the same modulus 1√

n
; such matrices are easily constructed

by multiplying a complex Hadamard matrix by n−1/2. (For instance, one could take
U = 1√

n
[e2πikl/n]k,l .) By complex-unconditionality, each coordinate of the vector

UX has the same distribution, the same as X1+···+Xn√
n

. Therefore, by subadditivity,

h (X) = h (UX) ≤
n∑

j=1

h
(
(UX)j

) = nh

(
X1 + · · · + Xn√

n

)
,

which finishes the proof. ��
Let us mention that the invariance idea above also very simply yields the

inequality

D(X) ≤ 1

2
|h(X1 + X2) − h(X1 − X2)|,

where D(X) denotes the relative entropy of the distribution of X from the closest
Gaussian (which is the one with matching mean and covariance matrix), and X1,X2
are independent copies of a random vector X in R

n. First observed in [30, Theorem
10], this fact quantifies the distance from Gaussianity of a random vector in terms
of how different the entropies of the sum and difference of i.i.d. copies of it are.

Finally, we mention that the idea of considering two i.i.d. copies and using
invariance (sometimes called the “doubling trick”) has been used in sophisticated
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ways as a key tool to study both functional inequalities [5, 12, 24] and problems in
network information theory (see, e.g., [14, 18]).
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Chapter 8
On the Geometry of Random Polytopes

Shahar Mendelson

Abstract We present a simple proof to a fact recently established in Guédon et
al. (Commun Contemp Math (to appear, 2018). arXiv:1811.12007): let ξ be a
symmetric random variable that has variance 1, let � = (ξij ) be an N × n random
matrix whose entries are independent copies of ξ , and set X1, . . . , XN to be the
rows of �. Then under minimal assumptions on ξ and as long as N ≥ c1n, with
high probability

c2
(
Bn∞ ∩√log(eN/n)Bn

2

) ⊂ absconv(X1, . . . , XN).

8.1 Introduction

Let ξ be a symmetric random variable that has variance 1 and let X = (ξ1, . . . , ξn)

be the random vector whose coordinates are independent copies of ξ . Consider a
random matrix � whose rows X1, . . . , XN are independent copies of X. In this note
we explore the geometry of the random polytope

K = absconv(X1, . . . , XN) = �∗BN
1 ;

specifically, we study whether K is likely to contain a large canonical convex body.

One of the first results in this direction is from [4], where it is shown that if ξ is
the standard Gaussian random variable, 0 < α < 1 and N ≥ c0(α)n, then

c1(α)
√

log(eN/n)Bn
2 ⊂ absconv(X1, . . . , XN) (8.1.1)
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with probability at least 1−2 exp(−c2N
1−αnα). It should be noted that this estimate

cannot be improved—up to the dependence of the constants on α (see, for example,
the discussion in Section 4 of [9]).

The proof of (8.1.1) relies heavily on the tail behaviour of the Gaussian random
variable. It is therefore natural to try and extend (8.1.1) beyond the Gaussian case,
to random polytopes generated by more general random variables that still have
‘well-behaved’ tails. The problem was studied in [3] where X was assumed to be
uniformly distributed in {−1, 1}n and it was shown that if N ≥ n log2 n then with
high probability

c
(
Bn∞ ∩√log(eN/n)Bn

2

) ⊂ absconv(X1, . . . , XN). (8.1.2)

Remark 8.1.1 Note that here, the body that absconv(X1, . . . , XN) contains is
slightly smaller than in (8.1.1), as one has to intersect the Euclidean ball from (8.1.1)
with the unit cube.

The optimal sub-Gaussian estimate was established in [9]:

Theorem 8.1.2 Let ξ be a mean-zero random variable that has variance 1 and is
L-sub-Gaussian.1 Let 0 < α < 1 and set N ≥ c0(α)n. Then with probability at
least 1 − 2 exp(−c1N

1−αnα)

c2(α)
(
Bn∞ ∩√log(eN/n)Bn

2

) ⊂ absconv(X1, . . . , XN), (8.1.3)

where c0 and c2 are constants that depend on α and c1 is an absolute constant.

While Theorem 8.1.2 resolves the problem when ξ is sub-Gaussian, the situation
is less clear when ξ is heavy-tailed. That naturally leads to the following question:

Question 8.1.3 Under what conditions on ξ one still has that for N ≥ c1n,

c2(B
n∞ ∩√log(eN/n)Bn

2 ) ⊂ absconv(X1, . . . , XN) (8.1.4)

with high probability?

Following the progress in [7], where Question 8.1.3 had been studied under
milder moment assumptions on ξ than in Theorem 8.1.2, Question 8.1.3 was
answered in [5] under a minimal small-ball condition on ξ .

Definition 8.1.4 A mean-zero random variable ξ satisfies a small-ball condition
with constants κ and δ if

Pr(|ξ | ≥ κ) ≥ δ. (8.1.5)

1A centred random variable is L-sub-Gaussian if for every p ≥ 2, ‖ξ‖Lp
≤ L

√
p‖ξ‖L2 .
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Theorem 8.1.5 ([5]) Let ξ be a symmetric, variance 1 random variable that
satisfies (8.1.5) with constants κ and δ. For 0 < α < 1 there are constants c1, c2
and c3 that depend on κ, δ and α for which the following holds. If N ≥ c1n then
with probability at least 1 − 2 exp(−c2N

1−αnα),

c3(B
n∞ ∩√log(eN/n)Bn

2 ) ⊂ absconv(X1, . . . , XN ).

Remark 8.1.6 In [5] the random variables (ξij ) are only assumed to be independent,
symmetric and variance 1, with each one of the ξij ’s satisfying (8.1.5) with the
same constants κ and δ. In what follows we consider only the case in which ξij are
independent copies of a single random variable ξ , though extending the presentation
to the independent case is straightforward.

The original proof of Theorem 8.1.5 is based on the construction of a well-
chosen net, and that construction is rather involved. Here we present a much simpler
argument that is based on the small-ball method (see, e.g., [10–12]). As an added
value, the method presented here gives more information than the assertion of
Theorem 8.1.5, as is explained in what follows.

The starting point of the proof of Theorem 8.1.5 is straightforward: let

K = absconv(X1, . . . , Xn) = �∗BN
1

and set

L = Bn∞ ∩√log(eN/n)Bn
2 .

By comparing the support functions of L and of K , one has to show that with
the wanted probability, for every z ∈ R

n, hL(z) ≤ hcK(z). And, since hcK(z) =
c‖�z‖∞, Theorem 8.1.5 can be established by showing that for suitable constants
c0 and c1,

Pr(∃z ∈ ∂L◦ ‖�z‖∞ ≤ c0) ≤ 2 exp(−c1N
1−αnα). (8.1.6)

What we actually show is a stronger statement than (8.1.6): not only is there a
high probability event on which

inf
z∈∂L◦ ‖�z‖∞ ≥ c0,

but in fact, on that “good event”, for each z ∈ ∂L◦, �z has ∼ N1−αnα large
coordinates, with each one of these coordinates satisfying that | 〈z,Xi〉 | ≥ c0. Thus,
the fact that ‖�z‖∞ ≥ c0 is exhibited by many coordinates and not just by a single
one.



190 S. Mendelson

Proving that indeed, with high probability the smallest cardinality

inf
z∈∂L◦ |{i : | 〈z,Xi〉 | ≥ c0}|

is large is carried out in two steps:

Controlling a Single Point—See Corollary 8.2.4 For 0 < α < 1 and a well
chosen c0 = c0(α) one establishes an individual estimate: that for every fixed z ∈
∂L◦,

Pr(| 〈z,X〉 | ≥ 2c0) ≥ 4
( n

N

)α
.

In particular, if X1, . . . , XN are independent copies of X then with probability at
least 1 − 2 exp(−c2N

1−αnα),

∣∣{i : | 〈z,Xi〉 | ≥ 2c0}
∣∣ ≥ 2N1−αnα. (8.1.7)

From a Single Function to Uniform Control Thanks to the high probability
estimate with which (8.1.7) holds, it is possible to control uniformly any subset of
∂L◦ whose cardinality is at most exp(c2N

1−αnα/2). Let T be a minimal ρ-cover of
∂L◦ with respect to the �2 norm, and of the allowed cardinality. For every z ∈ ∂L◦,
let πz ∈ T that satisfies ‖z−πz‖2 ≤ ρ. The wanted uniform control is achieved by
showing that

sup
z∈∂L◦

∣∣{i : | 〈z − πz,Xi〉 | ≥ c0}
∣∣ ≤ N1−αnα

with probability at least 1 − 2 exp(−c3(α)N
1−αnα).

Indeed, combining the two estimates it follows that with probability at least

1 − 2 exp(−c(α)N1−αnα),

for every z ∈ ∂L◦, one has that

∣∣{i : | 〈πz,Xi〉 | ≥ 2c0}| ≥ 2N1−αnα

and

∣∣{i : | 〈z − πz,Xi〉 | ≥ c0}
∣∣ ≤ N1−αnα.

Hence, on that event, for every z ∈ ∂L◦ there is Jz ⊂ {1, . . . , n} of cardinality at
least N1−αnα , and for every j ∈ Jz,

| 〈z,Xi〉 | ≥ | 〈πz,Xi〉 | − | 〈z − πz,Xi〉 | ≥ c0,
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implying that

inf
z∈∂L◦

∣∣{i : | 〈z,Xi〉 | ≥ c0}
∣∣ ≥ N1−αnα;

in particular, infz∈∂L◦ ‖�z‖∞ ≥ c0 as required.
In the next section this line of reasoning is used to prove Theorem 8.1.5.

8.2 Proof of Theorem 8.1.5

Before we begin the proof, let us introduce some notation. Throughout, absolute
constant are denoted by c, c1, c

′ etc. Unless specified otherwise, the value of these
constants may change from line to line. Constants that depend on some parameter
α are denoted by c(α). We write a � b if there is an absolute constant c such that
a ≤ cb; a �α b implies that a ≤ c(α)b; and a ∼ b if both a � b and b � a.

The required estimate for a single point follows very closely ideas from [13],
which had been developed for obtaining lower estimates on the tails of marginals of
the Rademacher vector (εi)ni=1, that is, on

Pr(|
n∑

i=1

εizi | > t)

as a function of the ‘location’ in R
n of (zi)ni=1.

Fix 1 ≤ r ≤ n and consider the interpolation body Lr = Bn∞∩√
rBn

2 and its dual
L◦

r = conv(Bn
1 ∪ (1/

√
r)Bn

2 ). The key estimate one needs to establish the wanted
individual control is:

Theorem 8.2.1 There exist constants c′ and c′′ that depend only on the small-ball
constants of ξ (κ and δ) such that if z ∈ ∂L◦

r then

Pr
(| 〈z,X〉 | ≥ c′) ≥ 2 exp(−c′′r).

Just as in [13], the proof of Theorem 8.2.1 is based on some well-known facts on
the interpolation norm ‖ ‖L◦

r
.

Lemma 8.2.2 There exists an absolute constant c0 such that for every z ∈ R
n,

‖z‖L◦
r

≤
r∑

i=1

z∗
i + √

r
(∑
i>r

(z2
i )

∗)1/2 ≤ c0‖z‖L◦
r
,

where (z∗
i )

n
i=1 is the nonincreasing rearrangement of (|zi |)ni=1.
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Moreover, for very z ∈ R
n there is a partition of {1, . . . , n} to r disjoint blocks

I1, . . . , Ir such that

‖z‖L◦
r√

2
≤

r∑
j=1

(∑
i∈Ij

z2
i

)1/2 ≤ ‖z‖L◦
r
.

The first part of Lemma 8.2.2 is due to Holmstedt (see Theorem 4.1 in [6]) and it
gives useful intuition on the nature of the norm ‖ ‖L◦

r
. The second part is Lemma 2

from [13] and it plays an essential role in what follows.
Before proving Theorem 8.2.1, we require an additional observation that is based

on the small-ball condition satisfies by ξ .

Lemma 8.2.3 Let J ⊂ {1, . . . , n} and set Y = ∑
j∈J zj ξj for z = (zi)

n
i=1. Then

E|Y | ≥ c(κ, δ)
(∑
j∈J

z2
j

)1/2
,

where c(κ, δ) < 1 is a constant the depends only on ξ ’s small-ball constants κ and
δ.

Proof Let (εj )j∈J be independent, symmetric, {−1, 1}-valued random variables
that are also independent of (ξj )j∈J . Recall that ξ is symmetric and therefore
(ξj )j∈J has the same distribution as (εj ξj )j∈J . By Khintchine’s inequality it is
straightforward to verify that

E|Y | = EξEε

∣∣∑
j∈J

εjzj ξj
∣∣ � Eξ

(∑
j∈J

z2
j ξ

2
j

)1/2
.

For j ∈ J let ηj = 1{|ξj |≥κ}; thus, the ηj ’s are iid {0, 1}-valued random variables
whose mean is at least δ, and point-wise

(∑
j∈J

z2
j ξ

2
j

)1/2 ≥ κ
(∑
j∈J

ηj z
2
j

)1/2
.

Hence, all that is left to complete the proof is to show that

E
(∑
j∈J

ηj z
2
j

)1/2 ≥ c(δ)
(∑
j∈J

z2
j

)1/2
.

Let aj = z2
j /(
∑

j∈J z2
j ) and in particular, ‖(aj )j∈J ‖1 = 1. Assume without loss

of generality that J = {1, . . . , �} and that the aj ’s are non-increasing, let γ > 0 be
a parameter to be specified in what follows, and set p = Eη1 ≥ δ.
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Consider two cases:

• If a1 ≥ γp then with probability at least p,
∑�

j=1 ηjaj ≥ a1 ≥ γp. In that case

E
( �∑
j=1

ηj aj
)1/2 ≥ √

γp3/2 ≥ √
γ δ3/2.

• Alternatively, a1 ≤ γp, implying that

A =
�∑

j=1

a2
j ≤ a1

�∑
j=1

aj ≤ γp

because ‖(aj )�j=1‖1 = 1.

By Bernstein’s inequality,

Pr
(∣∣

�∑
j=1

(ηj − p)aj
∣∣≥ p

2

)
≤ 2 exp

(
−c0 min

{ (p/2)2

pA
,
p/2

a1

})

≤ 2 exp(−c1/γ ) ≤ 1

2

provided that γ is a small-enough absolute constant. Using, once again, that
‖(aj )�j=1‖1 = 1 it is evident that with probability at least 1/2,

∑�
j=1 ηj aj ≥ (1/2)p

and therefore

E
( �∑
j=1

ηj aj
)1/2 ≥

√
p

4
≥

√
δ

4
.

Thus, setting c(κ, δ) ∼ κδ3/2 one has that

E
( �∑
j=1

z2
j ξ

2
j

)1/2 ≥ c(κ, δ)
( �∑
j=1

z2
j

)1/2
,

as claimed. �
Proof of Theorem 8.2.1 Fix z ∈ ∂L◦

r and recall that by Lemma 8.2.2 there is a
decomposition of {1, . . . , n} to disjoint blocks (Ij )

r
j=1 such that

r∑
j=1

(∑
i∈Ij

z2
i

)1/2 ≥ 1√
2
. (8.2.1)
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Let Yj = ∑
i∈Ij ziξi ; observe that Y1, . . . , Yr are independent random variables and

that by Lemma 8.2.3,

E|Yj | ≥ c(κ, δ)
(∑
i∈Ij

z2
i

)1/2

for a constant 0 < c(κ, δ) < 1.
At the same time,

EY 2
j =

∑
i∈Ij

z2
iEξ

2
i =

∑
i∈Ij

z2
i .

Therefore, by the Paley-Zygmund inequality (see, e.g., [2]), for any 0 < θ < 1,

Pr(|Yj | ≥ θE|Yj |) ≥ (1 − θ2)
(E|Yj |)2

EY 2
j

.

Setting θ = 1/2,

Pr
(
|Yj | ≥ 1

2
c(κ, δ)

(∑
i∈Ij

z2
i

)1/2
)

≥ 3

4
c2(κ, δ),

and since Yj is a symmetric random variable (because the ξi ’s are symmetric), it
follows that

Pr
(
Yj ≥ 1

2
c(κ, δ)

(∑
i∈Ij

z2
i

)1/2
)

≥ 3

8
c2(κ, δ) ≡ c1(κ, δ).

For 1 ≤ j ≤ r let

Bj =
{
Yj ≥ 1

2
c(κ, δ)

(∑
i∈Ij

z2
i

)1/2
}

which are independent events. Hence,

Pr
( n∑
i=1

ξizi ≥ 1

2
c(κ, δ)

r∑
j=1

(∑
i∈Ij

z2
i

)1/2
)

=Pr
( r∑
j=1

Yj ≥ 1

2
c(κ, δ)

r∑
j=1

(∑
i∈Ij

z2
i

)1/2
)

≥
r∏

j=1

Pr(Bj ) ≥ cr1(κ, δ).
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Thus, by (8.2.1), if c′ = 1
4c(κ, δ) and c′′ = log(1/c1(κ, δ)) > 0, one has

Pr
( n∑
i=1

ξizi ≥ c′) ≥ exp(−c′′r).

�
From here on, the constants c′ and c′′ denote the constants from Theorem 8.2.1.

Corollary 8.2.4 For 0 < α < 1, κ and δ there are constants c0 and c1 that
depend on α, κ and δ, and an absolute constant c2 for which the following holds.
If N ≥ c0n, r ≤ c1 log(eN/n) and z ∈ ∂L◦

r then with probability at least
1 − 2 exp(−c2N

1−αnα),

∣∣{i : | 〈z,Xi〉 | ≥ c′}∣∣ ≥ 2N1−αnα.

Proof Let z ∈ ∂L◦
r , and invoking Theorem 8.2.1,

Pr
(| 〈z,X〉 | ≥ c′) ≥ exp(−c′′r)

where c′ and c′′ depend only on κ and δ.
Set r0 = c1 log(eN/n) such that exp(−c′′r0) ≥ 4(n/N)α ; thus, c1 = c1(α, κ, δ).

If r ≤ r0, X1, . . . , XN are independent copied of X and ηi = 1{|〈z,Xi〉|≥c′}, then
Eηi ≥ 4(n/N)α . Hence, by a standard concentration argument (e.g. Bernstein’s
inequality), with probability at least 1 − 2 exp(−c2N

1−αnα),

∣∣{i : | 〈z,Xi〉 | ≥ c′}∣∣ ≥ 2N1−αnα,

where c2 is an absolute constant. �
Thanks to the high probability estimate with which Corollary 8.2.4 holds,

one can control uniformly all the elements of a set T ⊂ ∂L◦
r as long as

|T | ≤ exp(c0N
1−αnα) for a suitable absolute constant c0, and as long as r ≤

c(α, κ, δ) log(eN/n). In that case, there is an event of probability at least 1 −
2 exp(−c1N

1−αnα) such that for every z ∈ T ,

∣∣{i : | 〈z,Xi〉 | ≥ c′}| ≥ 2N1−αnα. (8.2.2)

The natural choice of a set T is a minimal ρ-cover of ∂L◦
r with respect to the �2

norm. Note that L◦
r = conv(Bn

1 ∪ r−1/2Bn
2 ) ⊂ Bn

2 , and so there is a ρ-cover of the
allowed cardinality for

ρ ≤ 5 exp(−c2(N/n)1−α),

where c2 is an absolute constant.
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Clearly, {z − πz : z ∈ ∂L◦
r } ⊂ ρBn

2 , and as was explained in the introduction, to
complete the proof of Theorem 8.1.5 it suffices to prove the following lemma:

Lemma 8.2.5 Using the above notation, with probability at least 1 −
2 exp(−c3N

1−αnα), one has

Q = sup
u∈ρBn

2

∣∣{i : | 〈u,Xi〉 | ≥ c′/2}∣∣ ≤ N1−αnα. (8.2.3)

Proof Observe that Q is the supremum of an empirical process indexed by a class
of binary valued functions

F = {
fz = 1{|〈z,·〉|≥c′/2} : z ∈ ρBn

2

};

in particular, for every fz ∈ F ,

‖fz‖L2 = Pr1/2(| 〈z,X〉 | ≥ c′/2) ≤ 2‖ 〈z,X〉 ‖L2

c′ ≤ 2ρ

c′

= c4(κ, δ) exp(−c2(N/n)1−α).

By Talagrand’s concentration inequality for bounded empirical processes ([14], see
also [1, Chapter 12]), with probability at least 1 − 2 exp(−t),

Q �EQ + √
t
√
N sup

fz∈F
‖fz‖L2 + t sup

fz∈F
‖fz‖L∞

�EQ + √
t
√
Nc4(κ, δ) exp(−c2(N/n)1−α) + t

=(1) + (2) + (3).

Let us show that for the right choice of t and N large enough, Q ≤ N1−αnα .
The required estimate on (2) and (3) clearly holds as long as

t �κ,δ N1−αnα and N �α n.

As for EQ, note that point-wise

sup
u∈ρBn

2

∣∣{i : | 〈u,Xi〉 | ≥ c′/2}∣∣ ≤ 2

c′ sup
u∈ρBn

2

N∑
i=1

| 〈u,Xi〉 |.

Let (εi)
N
i=1 be independent, symmetric, {−1, 1}-valued random variables that are

independent of (Xi)
N
i=1. The Giné–Zinn symmetrization theorem (see, for example,
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[15, Chapter 2.3]) implies that

E sup
u∈ρBn

2

∣∣∣
N∑
i=1

(| 〈u,Xi〉 | − E| 〈u,Xi〉 |)
∣∣∣ ≤ 2E sup

u∈ρBn
2

∣∣∣
N∑
i=1

εi | 〈u,Xi〉 |
∣∣∣,

and since φ(t) = |t| is a 1-Lipschitz function that satisfies φ(0) = 0, it follows from
the contraction inequality for Bernoulli processes (see, e.g., [8, Chapter 4]) that

E sup
u∈ρBn

2

∣∣∣
N∑
i=1

εi | 〈u,Xi〉 |
∣∣∣ ≤ 2E sup

u∈ρBn
2

∣∣∣
N∑
i=1

εi 〈u,Xi〉
∣∣∣.

Therefore,

EQ ≤ 2

c′E sup
u∈ρBn

2

N∑
i=1

| 〈u,Xi〉 |

≤ 4

c′E sup
u∈ρBn

2

∣∣∣
N∑
i=1

εi | 〈u,Xi〉 |
∣∣∣+ 2N

c′ sup
u∈ρBn

2

E| 〈u,Xi〉 |

≤ 8

c′E sup
u∈ρBn

2

〈
N∑
i=1

εiXi, u

〉
+ 2N

c′ ρ

≤8ρ

c′ (
√
Nn + N) �κ,δ N exp(−c2(N/n)1−α),

which is sufficiently small as long as N �α,κ,δ n. �

8.3 Concluding Remarks

This proof of Theorem 8.1.5 is based on the small-ball method and follows an
almost identical path to previous results that use the method: first, one obtains an
individual estimate that implies that for each v in a fine-enough net, many of the
values (| 〈Xi, v〉 |)Ni=1 are in the ‘right range’; and then, that the ‘oscillation vector’
(| 〈Xi, z − v〉 |)Ni=1 does not spoil too many coordinates when v is ‘close enough’ to
z. Thus, with high probability and uniformly in z, many of the values (| 〈Xi, z〉 |)Ni=1
are in the right range.

Having said that, there is one substantial difference between this proof and other
instances in which the small-ball method had been used. Previously, individual
estimates had been obtained in the small-ball regime; here the necessary regime
is different: one requires a lower estimate on the tails of marginals of X = (ξi)

n
i=1.

And indeed, the core of the proof is the individual estimate from Theorem 8.2.1,
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where one shows that if ξ satisfies a small-ball condition and X has iid coordinates
distributed as ξ then its marginals exhibit a ‘super-Gaussian’ behaviour at the right
level.
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Chapter 9
Reciprocals and Flowers in Convexity

Emanuel Milman, Vitali Milman, and Liran Rotem

Abstract We study new classes of convex bodies and star bodies with unusual
properties. First we define the class of reciprocal bodies, which may be viewed
as convex bodies of the form “1/K”. The map K #→ K ′ sending a body to its
reciprocal is a duality on the class of reciprocal bodies, and we study its properties.

To connect this new map with the classic polarity we use another construction,
associating to each convex body K a star body which we call its flower and denote
by K♣. The mappingK #→ K♣ is a bijection between the class Kn

0 of convex bodies
and the class Fn of flowers. Even though flowers are in general not convex, their
study is very useful to the study of convex geometry. For example, we show that
the polarity map ◦ : Kn

0 → Kn
0 decomposes into two separate bijections: First our

flower map ♣ : Kn
0 → Fn, followed by a slight modification � of the spherical

inversion which maps Fn back to Kn
0 . Each of these maps has its own properties,

which combine to create the various properties of the polarity map.
We study the various relations between the four maps ′, ◦, ♣ and � and use these

relations to derive some of their properties. For example, we show that a convex
body K is a reciprocal body if and only if its flower K♣ is convex.

We show that the class Fn has a very rich structure, and is closed under many
operations, including the Minkowski addition. This structure has corollaries for the
other maps which we study. For example, we show that if K and T are reciprocal
bodies so is their “harmonic sum” (K◦ + T ◦)◦. We also show that the volume∣∣∣(∑i λiKi

)♣∣∣∣ is a homogeneous polynomial in the λi ’s, whose coefficients can be
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called “♣-type mixed volumes”. These mixed volumes satisfy natural geometric
inequalities, such as an elliptic Alexandrov–Fenchel inequality. More geometric
inequalities are also derived.

9.1 Introduction

In this paper we study new classes of convex bodies and star bodies in R
n with

some unusual properties. We will provide precise definitions below, but let us first
describe the general program of what will follow.

One of our new classes, “reciprocal” bodies, may be viewed as bodies of the
form “ 1

K
” for a convex body K . They appear as the image of a new “quasi-duality”

operation on the class Kn
0 of convex bodies. We denote this new map by K #→

K ′. This operation reverses order (with respect to inclusions) and has the property
K ′′′ = K ′. Hence the map ′ is indeed a duality on its image.

This new operation is connected to the classical operation of polarity ◦ : K #→
K◦ via another construction, which we call simply the “flower” of a body K and
denote by ♣ : K #→ K♣. We provide the definition of K♣ in Definition 9.3 below,
but an equivalent description which sheds light on the “flower” nomenclature is

K♣ =
⋃{

B

(
x

2
,
|x|
2

)
: x ∈ K

}

(see Proposition 9.19). Here B(y, r) is the Euclidean ball with center y ∈ R
n and

radius r ≥ 0. In other words, K♣ is the union of all balls having diameter [0, x]
with x ∈ K .

In general, K♣ is a star body which is not necessarily convex. The flower of
a convex body was previously studied for very different reasons in the field of
stochastic geometry—see Remark 9.7. We show that our new map ′ is precisely
K ′ = (

K♣)◦. We also show that K belongs to the image of ′, i.e. K is a reciprocal
body, if and only if K♣ is convex. This means that such reciprocal bodies are in
some sense “more convex” than other convex bodies, and can also be called “doubly
convex” bodies.

Interestingly, the flower map ♣ is also connected to the n-dimensional spherical
inversion � when applied to star bodies (� is defined by applying the pointwise
map I(x) = x

|x|2 and taking set complement—see Definition 9.11). We describe the

class of convex bodies on which � preserves convexity.
The method of study of these questions looks novel and some of the results are

not intuitive. Just as an example, we show that if �(A) and �(B) are convex (for
some star bodies A and B) then �(A + B) is convex as well, where A + B is the
Minkowski addition (see Corollary 9.37).

The family Fn of flowers should play a central role in the study of convexity. It
has a very rich structure. For example, it is closed under the Minkowski addition, and
is also preserved by orthogonal projections and sections. “Flower mixed volumes”
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also exist and, perhaps most interestingly, we have a decomposition of the classical
polarity operation as

Kn
0

♣−→ Fn �−→ Kn
0 .

Here the maps ♣ and � are 1–1 and onto, and we have ◦ = �♣ in the sense that
K◦ = �

(
K♣) for all K ∈ Kn

0 .
The class of reciprocal bodies also looks interesting. No polytope belongs to

this class, and no centrally symmetric ellipsoids (besides Euclidean balls centered
at 0). At the same time this class is clearly important, as seen from its properties
and the fact that it coincides with the “doubly convex” bodies. We provide several
two-dimensional pictures to help create some intuition about this class of reciprocal
bodies and about the class of flowers.

To make the above claims more precise, let us now give some basic definitions
and fix our notation. The reader may consult [14] for more information. By a convex
body in R

n we mean a set K ⊆ R
n which is closed and convex. We will always

assume further that 0 ∈ K , but we do not assume that K is compact or has non-
empty interior. We denote the set of all such bodies by Kn

0 . The support function of
K is the function hK : Sn−1 → [0,∞] defined by hK(θ) = supx∈K 〈x, θ〉. Here
Sn−1 = {θ ∈ R

n : |θ | = 1} is the unit Euclidean sphere, and 〈·, ·〉 is the standard
scalar product on R

n. The function hK uniquely defines the body K .
The Minkowski sum of two convex bodies is defined by

K + T = {x + y : x ∈ K, y ∈ T }

(the closure is not needed if K or T is compact). The homothety operation is defined
by λK = {λx : x ∈ K}. These operations are related to the support function by the
identity hλK+T = λhK + hT .

We say that A ⊆ R
n is a star set if A is non-empty and x ∈ A implies that

λx ∈ A for all 0 ≤ λ ≤ 1. The radial function rA : Sn−1 → [0,∞] of A is defined
by rA(θ) = sup {λ ≥ 0 : λθ ∈ A}. For us, a star body is simply a star set which is
radially closed, in the sense that rA(θ)θ ∈ A for all directions θ ∈ Sn−1 satisfying
rA(θ) < ∞. For such bodies rA uniquely defines A.

The polarity map ◦ : Kn
0 → Kn

0 maps every body K to its polar

K◦ = {
y ∈ R

n : 〈x, y〉 ≤ 1 for all x ∈ K
}
. (9.1.1)

It follows that hK = 1
rK◦ . The polarity map is a duality in the following sense:

• It is order reversing: If K ⊆ T then K◦ ⊇ T ◦.
• It is an involution: K◦◦ = K for all K ∈ Kn

0 (if A is only a star body, then A◦◦ is
the closed convex hull of A).
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In fact, it was proved in [1] that the polarity map is essentially the only duality on Kn
0

(see also [15] which proves a strengthening of this fact). Similar results on different
classes of convex bodies were proved earlier in [6] and [3].

The structure of a set equipped with a duality relation is common in mathematics.
A basic example is the set [0,∞] equipped with the inversion x #→ x−1 (we set of
course 0−1 = ∞ and ∞−1 = 0). Following this analogy, one may think of K◦ as
a certain inverse “K−1”. This point of view can indeed be useful—see for example
[12] and [9].

However, in recent works ([10, 11]), the authors discussed the application of
functions such as x #→ xα (0 ≤ α ≤ 1) and x #→ log x to convex bodies. Applying
the same idea to the inversion x #→ 1

x
, we obtain a new notion of the reciprocal

body “K−1”. Recall that given a function g : Sn−1 → [0,∞], its Alexandrov body,
or Wulff shape, is defined by

A [g] =
{
x ∈ R

n : 〈x, θ〉 ≤ g(θ) for all θ ∈ Sn−1
}
.

In other words, A [g] is the biggest convex body such that hA[g] ≤ g. In particular,
for every convex body K we have K = A [hK ]. We may now define:

Definition 9.1 Given K ∈ Kn
0 , the reciprocal body K ′ ∈ Kn

0 is defined by K ′ =
A
[

1
hK

]
.

More explicitly, we have

K ′ =
⋂

θ∈Sn−1

H− (θ, hK(θ)−1
)
,

where H−(θ, c) = {x ∈ R
n : 〈x, θ〉 ≤ c} .

The idea of constructing new interesting convex bodies as Alexandrov bodies
is not new. As one important recent example, Böröczky, Lutwak, Yang and Zhang

consider in [4] the body A
[
h1−λ
K hλ

L

]
, which they call the λ-logarithmic mean of K

and L.
Figure 9.1 depicts some simple convex bodies in R

2 and their reciprocal. Some
basic properties of the reciprocal map K #→ K ′ are immediate from the definition:

Proposition 9.2 For all K,T ∈ Kn
0 we have:

1. K ′ ⊆ K◦, with an equality if and only if K is a Euclidean ball.
2. If K ⊇ T then K ′ ⊆ T ′.
3. K ′′ ⊇ K .
4. K ′′′ = K ′.

Proof For (1), note that for every θ ∈ Sn−1 we have 1 = 〈θ, θ〉 ≤ hK(θ)hK◦(θ).

Hence K◦ = A [hK◦] ≥ A
[

1
hK

]
= K ′. An equality K ′ = K◦ implies that hK◦ =

1
hK

, or equivalently rK = 1
hK◦ = hK . This implies that K is a ball.
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Fig. 9.1 Convex bodies (solid) and their reciprocals (dashed)

Property (2) is obvious from the definition.

For property (3), we know that hK ′ ≤ 1
hK

so K ′′ = A
[

1
hK′

]
≥ A [hK ] = K .

Finally, (4) is a formal consequence of (2) and (3): We know that K ′′ ⊇ K , so
K ′′′ ⊆ K ′. On the other hand applying (3) to K ′ gives K ′′′ ⊇ K ′. ��
Let us write

Rn = {
K ′ : K ∈ Kn

0

}
.

Note that properties (2) and (4) above imply that ′ is a duality on the class Rn. Also
note that K ∈ Rn if and only if K ′′ = K .

Our next goal is to give an alternative description of the reciprocal body K ′.
Towards this goal we define:

Definition 9.3

1. For a convex body K ∈ Kn
0 we denote by K♣ the star body with radial function

rK♣ = hK .

2. We say that a star body A ⊆ R
n is a flower if A = ⋃

x∈C B
(
x
2 ,

|x|
2

)
, where

C ⊆ R
n is some closed set. The class of all flowers in R

n is denoted by Fn.

The two parts of the definition are related by the following:

Theorem 9.4 For every K ∈ Kn
0 we have K♣ ∈ Fn. Moreover, the map ♣ : Kn

0 →
Fn is a bijection. Equivalently, every flower A is of the form A = K♣ for a unique

K ∈ Kn
0 ; We have A = ⋃

x∈K B
(
x
2 ,

|x|
2

)
, and we simply say that A is the flower of

K .

This theorem is a combination of Proposition 9.17(2), Proposition 9.19, and
Remark 9.21.

As we will see flowers play an important role in connecting the reciprocity map
to the polarity map. Note that in general K♣ is not convex. Figure 9.2 depicts the
flowers of some convex bodies in R

2. Another example that will be important in the
sequel is the following:
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Fig. 9.2 Convex bodies (solid) and their flowers (dashed)

Example 9.5 For x ∈ R
n write [0, x] = {λx : 0 ≤ λ ≤ 1}. Also denote the

Euclidean ball with center x and radius r > 0 by B(x, r), and write Bx =
B
(
x
2 ,

|x|
2

)
. Then [0, x]♣ = Bx . Indeed, a direct computation gives

h[0,x](θ) = rBx (θ) = max {〈x, θ〉 , 0} .

The identity [0, x]♣ = Bx is also a classical theorem in geometry sometimes
referred to as Thales’s theorem: If an interval [a, b] ⊆ R

n is a diameter of a ball
B, then ∂B is precisely the set of points y such that �ayb = 90◦.

The polarity map, the reciprocal map and the flower are all related via the following
formula:

Proposition 9.6 For every K ∈ Kn
0 we have

(
K♣)◦ = K ′.

Note that even though in general K♣ /∈ Kn
0 , we may still compute its polar using

(9.1.1).

Proof By definition x ∈ (
K♣)◦ if and only if 〈x, y〉 ≤ 1 for all y ∈ K♣. It is

obviously enough to check this for y ∈ ∂K♣, i.e. y = rK♣(θ)θ = hK(θ)θ for some
θ ∈ Sn−1.

Hence x ∈ (K♣)◦ if and only if for all θ ∈ Sn−1 we have 〈x, hK(θ)θ〉 ≤ 1, or

〈x, θ〉 ≤ 1
hK(θ)

. This means that x ∈ A
[

1
hK

]
= K ′. ��

Remark 9.7 The flower of a convex body was studied in stochastic geometry under
the name “Voronoi Flower” (see e.g. [16]). The reason for the name is the following
relation to Voronoi tessellations: For a discrete set of points P ⊆ R

n, consider the
(open) Voronoi cell

Z = {
x ∈ R

n : |x − 0| < |x − y| for all y ∈ P
}
.

Then for any convex body K we have Z ⊇ K if and only if P ∩ (2K♣) = ∅. It
follows that if for example P is chosen according to a homogeneous Poisson point
process, then the probability that Z ⊇ K is computable from the volume of K♣.
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In Sect. 9.2 we discuss basic properties of the flower map ♣ and prove representation
formulas for both K♣ and K ′. We also study the pre-images of a body K ∈ Rn

under the reciprocity map. Since ′ is not a duality on all of Kn
0 , the set of pre-images

{
A ∈ Kn

0 : A′ = K
}

may in general contain more than one body. We study this set, and prove the
following results:

Theorem 9.8

1. If K ∈ Rn is a smooth convex body then K = A′ for a unique A ∈ Kn
0 .

2. For a general K ∈ Rn, the set
{
A ∈ Kn

0 : A′ = K
}

is a convex subset of Kn
0 .

The main goal of Sect. 9.3 is to prove the following theorem, characterizing the class
Rn of reciprocal bodies:

Theorem 9.9 K ∈ Rn if and only if K♣ is convex.

As a corollary we obtain:

Corollary 9.10 For every K ∈ Rn and every subspace E ⊆ R
n one has(

ProjE K
)′ = ProjE K ′, where ProjE denotes the orthogonal projection onto E.

As we will see, this corollary is false without the assumption that K ∈ Rn. We
will prove Theorem 9.9 by connecting the various maps we constructed so far with
another duality on the class of star-bodies:

Definition 9.11

1. Let I : Rn \ {0} → R
n \ {0} denote the spherical inversion I(x) = x

|x|2 .

2. Given a star body A, we denote by �(A) the star body with radial function
r�(A) = 1

rA
.

The map A #→ �(A) is obviously a duality on the class of star bodies. It is
sometimes called star duality and denoted by A∗ (see [13]), but we will prefer the
notation �(A). Note that � is “essentially the same” as the pointwise map I in the
sense that ∂�(A) = I (∂A), but I maps the interior of A to the exterior of �(A)

and vice versa. Here by the boundary ∂A of a star body A we mean

∂A =
{
rA(θ)θ : θ ∈ Sn−1 such that 0 < rA(θ) < ∞

}
.

One interesting relation between � and our previous definitions is the following (see
Propositions 9.28(2) and 9.33):
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Theorem 9.12 � is a bijection between Kn
0 and Fn. Moreover, the polarity map

decomposes as

◦ : Kn
0

♣−→ Fn �−→ Kn
0 ,

in the sense that �
(
K♣) = K◦ for all K ∈ Kn

0 .

In Sect. 9.4 we use the results of Sect. 9.3 to further study the class of flowers, with
applications to the study of reciprocity and the map �. First we understand when
the map � preserves convexity. By Theorem 9.12, as � is an involution, we know
that �(A) is convex if and only if A is a flower. When A is in addition convex, we
have:

Theorem 9.13 If K ∈ Kn
0 then �(K) is convex if and only if K◦ ∈ Rn.

(See Proposition 9.33). We then show that the class Fn has a lot of structure:

Theorem 9.14 Fix A,B ∈ Fn and a linear subspace E ⊆ R
n. Then A + B and

convA are flowers in R
n, and A ∩ E and ProjE A are flowers in E.

(See Propositions 9.35, 9.39 and 9.40). As corollaries we obtain:

Corollary 9.15

1. If K,T ∈ Rn then (K◦ + T ◦)◦ ∈ Rn.
2. If K,T are convex bodies then �(�(K) + �(T )) is also convex.

As another corollary we construct a new addition ⊕ on Kn
0 such that the class

Rn is closed under ⊕. Moreover, when restricted to Rn, this new addition has all
properties one may expect: it is associative, commutative and monotone, it has {0}
as an identity element, and it satisfies λK ⊕ μK = (λ + μ)K .

The final Sect. 9.5 is devoted to the study of inequalities. We begin by showing
that the maps ♣,� and ′ are all convex in appropriate senses. We also study
the functional K #→ ∣∣K♣∣∣, where |·| denotes the volume. We prove results that
are analogous to Minkowski’s theorem of polynomiality of volume and to the
Alexandrov–Fenchel inequality:

Theorem 9.16 Fix K1,K2, . . . ,Km ∈ Kn
0 . Then

∣∣∣(λ1K1 + λ2K2 + · · · + λmKm)♣
∣∣∣=

m∑
i1,i2,...,in=1

V ♣(Ki1 ,Ki2 , . . . ,Kin ) · λi1λi2 · · · λin ,

where the coefficients are given by

V ♣(K1,K2, . . . ,Kn) = ∣∣Bn
2

∣∣ ·
∫

Sn−1
hK1(θ)hK2(θ) · · · hKn(θ)dσ(θ)
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(Here Bn
2 denotes the unit Euclidean ball). Moreover, for every K1,K2, . . . ,Kn ∈

Kn
0 we have

V♣(K1,K2,K3, . . . ,Kn)
2 ≤ V ♣ (K1,K1,K3, . . .Kn)·V ♣ (K2,K2,K3, . . . ,Kn) .

These results and their proofs are similar in spirit to the dual Brunn–Minkowski
theory which was developed by Lutwak in [8]. We also prove a Kubota type formula
for the new ♣-quermassintegrals, and use it to compare them with the classical
definition.

9.2 Properties of Reciprocity and Flowers

We begin this section with some basic properties of flowers:

Proposition 9.17

1. For every K ∈ Kn
0 we have K♣ ⊇ K , with equality if and only if K is an

Euclidean ball.
2. If K♣ = T ♣ for K,T ∈ Kn

0 then K = T .

3. Let {Ki}i∈I be a family of convex bodies. Then
(
conv

(⋃
i∈I Ki

))♣ = ⋃
i∈I K

♣
i .

4. For every K ∈ Kn
0 and every subspace E ⊆ R

n we have
(
ProjE K

)♣ = K♣ ∩ E

(where the ♣ on the left hand side is taken inside the subspace E).

Proof For (1) we have rK♣ = hK ≥ rK . The equality case is the same as in
Proposition 9.2(1).

(2) is obvious since hK uniquely defines K . For (3), write A = conv
(⋃

i∈I Ki

)
and B = ⋃

i∈I K
♣
i . Then

rA♣ = hA = max
i∈I hKi = max

i∈I r
K

♣
i

= rB,

so A♣ = B.
Finally, for (4), since both bodies are inside E it is enough to check that their

radial functions coincide in E. But if θ ∈ Sn−1 ∩ E then

r
(ProjE K)

♣(θ) = hProjE K(θ) = hK(θ) = rK♣(θ) = rK♣∩E(θ),

proving the claim. ��
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We will also need the following computation:

Lemma 9.18 Let Bx = B
(
x
2 ,

|x|
2

)
be the ball with center x

2 and radius |x|
2 . Let Px

be the paraboloid,

Px =
{
y ∈ R

n : 〈y, x〉 ≤ 1 − 1

4
|x|2 ∣∣Projx⊥y

∣∣2
}
,

where Projx⊥ denotes the orthogonal projection to the hyperplane orthogonal to x.
Then B◦

x = Px .

Proof It is enough to prove the result for x = en = (0, 0, . . . , 0, 1). Indeed, we can
a write x = λ · u(en) for some orthogonal matrix u and some λ > 0, and then

(Bx)
◦ = (

λ · u (Ben

))◦ = 1

λ
· u (B◦

en

) = 1

λ
· u (Pen

) = Px.

Write a general point y ∈ R
n as y = (z, t) ∈ R

n−1 × R. Since Bx = [0, x]♣ we
know that

rBen
(z, t) = h[0,en](z, t) = max {t, 0} .

Hence we have

hBen
(z, t) = max

θ∈Sn−1

〈
(z, t), rBen

(θ)θ
〉 = max

(u,s)∈Sn−1
〈(z, t), (u, s)〉 max {s, 0}

= max
(u,s)∈Rn−1×R

( 〈z, u〉 + ts

|u|2 + s2
· max {s, 0}

)
.

It is obviously enough to maximize over s > 0, and by homogeneity we may take
s = 1. It is also clear that the maximum is attained when u = r · z

|z| for some r .
Therefore

hBen
(z, t) = max

r

(
r |z| + t

r2 + 1

)
.

We see that (z, t) ∈ B◦
en

if and only if for all r we have r |z|+t

r2+1
≤ 1, or r2 − |z| r +

1 − t ≥ 0. This happens exactly when |z|2 − 4(1 − t) ≤ 0, or t ≤ 1 − |z|2
4 . Hence

B◦
en

= Pen like we wanted. ��
Hence we obtain the following descriptions of K♣ and K ′:

Proposition 9.19 For every K ∈ Kn
0 we have K♣ = ⋃

x∈K Bx , and K ′ =⋂
x∈K Px .
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Proof Since K = conv
(⋃

x∈K[0, x]), Proposition 9.17(3) implies that K♣ =⋃
x∈K Bx . Hence

K ′ =
(
K♣)◦ =

⋂
x∈K

B◦
x =

⋂
x∈K

Px.

��
Remark 9.20 If K is compact, the same proof shows that it is enough to consider
only x ∈ ∂K . In fact we can do a bit more: recall that x ∈ ∂K is an extremal point
for K if any representation x = (1 − λ)y + λz for 0 < λ < 1 and y, z ∈ K

implies that y = z = x. Denote the set of extremal points by Ext(K). By the Krein–

Milman theorem1 we have K = conv
(⋃

x∈Ext(K)[0, x]
)

, so K♣ = ⋃
x∈Ext(K) Bx

and K ′ = ⋂
x∈Ext(K) Px . In particular if K is a polytope then K♣ is the union of

finitely many balls and K ′ is the intersection of finitely many paraboloids.

Remark 9.21 The formulas of Proposition 9.19 can be used to define K♣ and K ′ for
non-convex sets (say compact). However, it turns out that under such definitions we
have K♣ = (convK)♣ and K ′ = (convK)′, so essentially nothing new is gained.
To see that K♣ = (convK)♣ note that by the remark above

(convK)♣ =
⋃

x∈Ext(convK)

Bx ⊆
⋃
x∈K

Bx = K♣.

Let us now give one application of Proposition 9.19. We say that K ∈ Kn
0 is smooth

if K is compact, 0 ∈ intK , and at every point x ∈ ∂K there exists a unique
supporting hyperplane to K . We say that K ∈ Kn

0 is strictly convex if K is compact,
0 ∈ intK and Ext(K) = ∂K . It is a standard fact in convexity that K is smooth if
and only if its polar K◦ is strictly convex (see, e.g. Proposition 1.e.2 of [7]).

Theorem 9.22 Assume K ∈ Kn
0 is compact and 0 ∈ intK . Then K ′ is strictly

convex.

Ideologically, the theorem follows from the fact that for every 0 < r < R < ∞ the
family

{Px ∩ B(0, R) : r < |x| < R}

is “uniformly convex”, i.e. has a uniform lower bound on its modulus of convexity.
It then follows that an arbitrary intersection of such bodies will be strictly
convex as well. In particular, since for R > 0 large enough we have K ′ =⋂

x∈∂K (Px ∩ B(0, R)), it follows that K ′ is strictly convex. Since filling in the

1In the finite dimensional case the Krein–Milman theorem was first proved by Minkowski. See
[14] and in particular the first note of Section 1.4.
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computational details is tedious and not very illuminating, we will omit the formal
proof.

Instead, let us now fix a reciprocal body K ∈ Rn, and discuss the class of
“pre-reciprocals”

{
A ∈ Kn

0 : A′ = K
}
. It is obvious that such pre-reciprocals are

in general not unique. For example, if A /∈ Rn then A and A′′ are two different
pre-reciprocals of A′.

However, sometimes it is true that the pre-reciprocal is unique:

Proposition 9.23 Let K be a smooth convex body. Then there exists at most one
body A such that A′ = K .

Proof Assume A′ = B ′ = K . Then
(
A♣)◦ = (

B♣)◦ = K , which implies that
conv

(
A♣) = conv

(
B♣) = K◦.

Since conv
(
A♣) = K◦ we have A♣ ⊇ Ext(K◦). Since K is smooth its polar is

strictly convex, so A♣ ⊇ ∂K◦. But A♣ is a star body, so we must have A♣ = K◦.
Similarly B♣ = K◦, and since A♣ = B♣ we conclude that A = B. ��
When K is not smooth it may have many pre-reciprocals, but something can still be
said: The set D(K) = {

A ∈ Kn
0 : A′ = K

}
is a convex subset of Kn

0 .

Theorem 9.24

1. Fix K ∈ Kn
0 such that 0 ∈ intK . If A,B ∈ D(K) then λA + (1 − λ)B ∈ D(K)

for all 0 ≤ λ ≤ 1.
2. If K ∈ Kn

0 and D(K) �= ∅ then K ′ is the largest body in D(K).

For the proof we need the following lemma:

Lemma 9.25 Let X,Y ⊆ R
n be compact sets such that convX = convY = T .

Then conv (X ∩ Y ) = conv (X ∪ Y ) = T .

Proof For the union this is trivial: On the one hand conv (X ∪ Y ) ⊇ convX = T .
On the other hand X ∪ Y ⊆ T and T is convex, so conv (X ∪ Y ) ⊆ T .

For the intersection, the inclusion conv (X ∩ Y ) ⊆ T is again obvious. Con-
versely, since convX = convY = T it follows that X,Y ⊇ Ext(T ), so
X ∩ Y ⊇ ExtT . It follows from the Krein--Milman theorem that conv (X ∩ Y ) ⊇
conv (ExtT ) = T . ��
Proof of Theorem 9.24 For (1), fix A,B ∈ D(K). Since A′ = B ′ = K we have
conv

(
A♣) = conv

(
B♣) = K◦. Since 0 ∈ intK we know that K◦ is compact, and

hence A♣ and B♣ are compact as well.
Write C = λA + (1 − λ)B. We have

rC♣ = hC = λhA + (1 − λ)hB ≤ max {hA, hB} = max
{
rA♣, rB♣

} = rA♣∪B♣ .



9 Reciprocals and Flowers in Convexity 211

Hence C♣ ⊆ A♣ ∪ B♣, and similarly C♣ ⊇ A♣ ∩ B♣. It follows that

K◦ = conv
(
A♣ ∩ B♣) ⊆ convC♣ ⊆ conv

(
A♣ ∪ B♣) = K◦,

so C′ = (
C♣)◦ = K◦◦ = K .

For (2), D(K) �= ∅ exactly means that K ∈ Rn, so K ′′ = K and K ′ ∈ D(K).
For any other A ∈ D(K) we have A ⊆ A′′ = K ′ so K ′ is indeed the largest body in
D(K). ��
Note that Theorem 9.24 gives us a partition of the family of compact convex bodies
in R

n into convex sub-families, where A and B belong to the same sub-family if and
only if A′ = B ′.

We conclude this section by turning our attention to Theorem 9.9. For the full
proof we will need some new ideas, presented in the next section. But the ideas
we developed so far suffice to give a simple geometric proof of the theorem in
some cases. We find it worthwhile, as the proof of Sect. 9.3 is not intuitive, and the
following proof shows why convexity of K♣ plays a role. Let us show the following:

Proposition 9.26 Assume that K ∈ Rn is smooth. Then K♣ is convex.

Proof Assume by contradiction that K♣ is not convex. Then we can choose a point
x ∈ ∂K♣ ∩ int

(
convK♣) . Write x̂ = x

|x| . Since

hK

(
x̂
) = rK♣

(
x̂
) = |x| ,

we conclude that the hyperplane Hx = {z : 〈z − x, x〉 = 0} is a supporting
hyperplane for K . Fix a point y ∈ ∂K ∩ Hx .

Since y ∈ K we know that [0, y] ⊆ K , so By = [0, y]♣ ⊆ K♣. We claim that
By ∩ ∂K♣ = {x}. Indeed, by elementary geometry (see Example 9.5) we know that
w ∈ ∂By if and only if �0wy = 90◦, i.e. 〈w, y − w〉 = 0. This is also easy to check
algebraically. Since y ∈ Hx we know that 〈y − x, x〉 = 0, so x ∈ By .

Conversely, if w ∈ By ∩∂K♣ then y ∈ Hw = {z : 〈z − w,w〉 = 0}. Again since
w ∈ ∂K♣ we conclude that Hw is a supporting hyperplane for K . Since Hx and Hw

are two supporting hyperplanes passing through y, and since K is smooth, we must
have Hx = Hw, so x = w. This proves the claim.

It follows in particular that By ⊆ int
(
convK♣). Since By is compact and

int
(
convK♣) is open, it follows that Bz ⊆ int

(
convK♣) for all z close enough

to y. In particular one may take z = (1 + ε)y for a small enough ε > 0. Since
y ∈ ∂K , z /∈ K .

Define P = conv (K, z) = conv (K ∪ [0, z]). Then

P♣ = K♣ ∪ [0, z]♣ = K♣ ∪ Bz ⊆ conv
(
K♣) .

Hence conv
(
P♣) = conv

(
K♣), so P ′ = K ′. But then K ′′ = P ′′ ⊇ P � K , so

K /∈ Rn. ��
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9.3 The Spherical Inversion and a Proof of Theorem 9.9

The main goal of this section is to prove Theorem 9.9: K ∈ Rn if and only if K♣
is convex. For the proof we will use the maps I and � from Definition 9.3. We will
also use the following well-known property of I (see e.g. Theorem 5.2 of [2]):

Fact 9.27 Let A ⊆ R
n be a sphere or a hyperplane. Then I (A) is a hyperplane if

0 ∈ A , and a sphere if 0 /∈ A.

It follows that if B is any ball such that 0 ∈ B, then �(B) is either a ball (if
0 ∈ intB) or a half-space (if 0 ∈ ∂B).

Since in this section we will compose many operations, it will be more
convenient to write them in function notation, where composition is denoted by
juxtaposition. For example, by ◦�♣K we mean

(
�
(
K♣))◦. In particular ◦◦ =

conv, the (closed) convex hull operation. We have the following relations between
the different maps:

Proposition 9.28 If K ∈ Kn
0 then

1. ◦♣K = K ′.
2. �♣K = ◦K .
3. � ◦ K = ♣K .
4. ♣ ◦ K = �K.

5. (◦K)′ = ◦�K .

Proof Identity (1) is the same as Proposition 9.6.
For (2) we compare radial functions:

r�♣K = 1

r♣K

= 1

hK

= r◦K.

(3) follows from (2) by applying � to both sides.
For (4) we apply (3) to ◦K instead of K and obtain

♣ ◦ K = � ◦ ◦K = �K.

(5) is obtained from (4) by taking polar of both sides and applying (1). ��
Note that Proposition 9.28(2) provides a decomposition of the classical duality to a
“global” part (the flower) and an “essentially pointwise” part (the map �). Also note
that the identities (2) and (3) actually hold for all star bodies, since ♣A = ♣ convA

and ◦A = ◦ convA. The convexity of K is crucial however for identity (4), and for
general star bodies we only have ♣ ◦ A = � convA.
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We will also need to know the following construction and its properties, which
may be of independent interest:

Definition 9.29 The spherical inner hull of a convex body K is defined by

InnS K =
⋃

{B(x, |x|) : B(x, |x|) ⊆ K} .

Proposition 9.30 Fix K ∈ Kn
0 . Then

1. We have the identity

InnS K = � conv�K = � ◦ ◦�K (9.3.1)

2. InnS K ∈ Kn
0 . In other words, (9.3.1) always defines a convex subset of K .

3. InnS K is the largest star body A ⊆ K such that �(A) is convex. In particular
InnS K = K if and only if �(K) is convex.

Proof For (1) we should prove that � conv�K = InnS K , or equivalently that
conv�K = � InnS K . Since � is a duality on star bodies we have

� InnS K =
⋂

{�B(x, |x|) : �B(x, |x|) ⊇ �K} .

Since {B(x, |x|) : x ∈ R
n} is exactly the family of all balls having 0 on their

boundary, {�B(x, |x|) : x ∈ R
n} is the family of all affine half-spaces with 0 in

their interior. Hence

� InnS K =
⋂{

H : H is a half-space
0 ∈ intH and H ⊇ �K

}
= conv�K

which is what we wanted to prove.
To show (2), fix x, y ∈ InnS K and 0 < λ < 1. We have x ∈ B(a, |a|) ⊆ K and

y ∈ B(b, |b|) ⊆ K for some a, b ∈ R
n. Hence

(1 − λ)x + λy ∈ (1 − λ)B(a, |a|) + λB(b, |b|)
= B ((1 − λ) a + λb, (1 − λ) |a| + λ |b|) ⊆ K.

Consider the ball B = B ((1 − λ) a + λb, (1 − λ) |a| + λ |b|). Obviously 0 ∈ B.
We know that �B is either a ball or a half-space. In particular it is convex, so
InnS B = � conv�B = ��B = B. Hence (1 − λ)x + λy ∈ InnS B and we can
find c ∈ R

n such that

(1 − λ)x + λy ∈ B(c, |c|) ⊆ B ⊆ K.

It follows that (1 − λ)x + λy ∈ InnS K and the proof of (2) is complete.
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Finally we prove (3). The inequality InnS K ⊆ K is obvious from the definition.
Since

�(InnS K) = �� conv�K = conv�K,

we see that �(InnS K) is convex. Next, we fix a star body A ⊆ K such that �(A)

is convex. Then �(A) ⊇ �(K), and since �(A) is convex it follows that �(A) ⊇
conv�(K) . Hence

A = ��A ⊆ � conv�K = InnS K,

which is what we wanted to prove. ��
Now we can finally prove Theorem 9.9:

Proof of Theorem 9.9 We start with the easy implication which does not require
Proposition 9.30: Assume ♣K is convex. Then by Proposition 9.28(4) we have ♣ ◦
♣K = �♣K . Hence

K ′′ = ◦♣ ◦ ♣K = ◦�♣K = ◦ ◦ K = K,

so K ∈ Rn.
Conversely, assume that K ∈ Rn. Then K ′′ = K , meaning that ◦♣ ◦ ♣K =

K . As ♣ = �◦ we have ◦� ◦ ◦� ◦ K = K . Applying ♣ to both sides we get
♣ ◦ � ◦ ◦� ◦ K = ♣K .

Since ◦K ∈ Kn
0 , Proposition 9.30 implies that � ◦ ◦� ◦ K ∈ Kn

0 . Hence by
Proposition 9.28(4) we have

♣ ◦ � ◦ ◦� ◦ K = �� ◦ ◦� ◦ K = ◦ ◦ � ◦ K = ◦ ◦ ♣K.

We showed that ♣K = ◦ ◦ ♣K = conv (♣K), so ♣K is convex. ��
As a corollary of the theorem we have the following result about projections:

Proposition 9.31 Fix K ∈ Rn and a subspace E ⊆ R
n. Then

(
ProjE K

)′ =
ProjE K ′.

The reciprocity on the left hand side is taken of course inside the subspace E. This
identity should be compared with the standard identity

ProjE K◦ = (K ∩ E)◦ (9.3.2)

which holds for the polarity map.
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Proof Since K ∈ Rn we know that K♣ is convex. By Proposition 9.17(4) and
(9.3.2) we have

(
ProjE K

)′ =
((

ProjE K
)♣)◦ =

(
K♣ ∩ E

)◦ = ProjE
(
K♣)◦ = ProjE K ′.

��
Remark 9.32 Note that we only claimed the identity for reciprocal bodies. In fact,
if
(
ProjE K

)′ = ProjE K ′ for all one-dimensional subspaces E, then K ∈ Rn. To
see this, note K ′′ ∈ Rn and K ′ = K ′′′, so by Proposition 9.31 we have

(
ProjE K

)′ = ProjE K ′ = ProjE K ′′′ = (
ProjE K ′′)′ .

Since every one-dimensional convex body is a reciprocal body we deduce that
ProjE K = ProjE K ′′ for all one-dimensional subspaces E, so K = K ′′ ∈ Rn.

9.4 Structures on the Class of Flowers and Applications

In general, the map � does not preserve convexity. We begin this section by
understanding when �(A) is convex:

Proposition 9.33 Let A be a star body. Then �(A) is convex if and only if A is a
flower.

Furthermore, the following are equivalent for a convex body K ∈ Kn
0 :

1. �(K) is convex.
2. K◦ ∈ Rn.
3. InnS K = K .

Proof For the first statement, note that if A = T ♣ is a flower then �(A) =
�
(
T ♣) = T ◦ is convex (see Proposition 9.28(2)). Conversely, Assume �(A) = T

is convex. Then �(A) = T = �
(
(T ◦)♣

)
, so A = (T ◦)♣ is a flower.

For the second statement, the equivalence between (1) and (2) is exactly
Theorem 9.9: K◦ ∈ Rn if and only if (K◦)♣ = �(K) is convex. The equivalence
between (1) and (3) was part of Proposition 9.30. ��
Of course, since � is an involution, the first statement of Proposition 9.33 means
that the image �

(
Kn

0

)
is exactly the class of flowers. As for the second statement,

we remark that there are convex bodies K ∈ Rn such that K◦ /∈ Rn, so these are
indeed different classes of convex bodies. For example, take any compact convex
body with 0 ∈ int T and T /∈ Rn, and take K = T ′ ∈ Rn. Since K = T ′ = (

T ′′)′
but T �= T ′′ Proposition 9.23 implies that K is not smooth. Hence K◦ is not strictly
convex, so by Theorem 9.22 we have K◦ /∈ Rn.

We will now use Proposition 9.33 to study some structures on the class of
flowers. Recall that the radial sum A+̃B of two star bodies A and B is given by
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rA+̃B = rA + rB . It is immediate that if A and B are flowers then so is A+̃B, and
in fact

K♣+̃T ♣ = (K + T )♣. (9.4.1)

It is less obvious that the class of flowers is also closed under the Minkowski
addition. To prove this fact we will first need:

Proposition 9.34 Let B be any Euclidean ball with 0 ∈ B. Then B is a flower.

Proof Fact 9.27 implies that �(B) is always convex. Proposition 9.33 finishes the
proof. ��
Theorem 9.35 Assume A and B are two flowers (which are not necessarily
convex). Then A + B is also a flower, where + is the usual Minkowski sum.

Proof Write A = K♣ and B = T ♣ for K,T ∈ Kn
0 . By Proposition 9.19 we have

A =
⋃
x∈K

Bx and B =
⋃
y∈T

By.

Hence

A + B =
⋃
x∈K
y∈T

(
Bx + By

) =
⋃
x∈K
y∈T

B

(
x + y

2
,
|x| + |y|

2

)
.

Since 0 ∈ B
(
x+y

2 ,
|x|+|y|

2

)
the previous proposition implies that every such

ball is a flower. Since A + B is a union of such balls, the claim follows (see
Proposition 9.17(3)). ��
Remark 9.36 Equation (9.4.1) shows that the radial sum of flowers corresponds
to the Minkowski sum of convex bodies. Similarly, Theorem 9.35 implies that the
Minkowski sum of flowers corresponds to an addition of convex bodies, defined
implicitly by

K♣ + T ♣ = (K ⊕ T )♣ . (9.4.2)

The addition ⊕ is associative, commutative, monotone and has {0} as its identity
element. However, in general it does not satisfy K ⊕ K = 2K , and in fact K ⊕ K

is usually not homothetic to K . The identity K ⊕ K = 2K does hold if K is a
reciprocal body. Moreover, if K,T ∈ Rn then by Theorem 9.9 K♣ and T ♣ are
convex, so (K ⊕ T )♣ is convex and K ⊕ T ∈ Rn as well. In other words, Rn is
closed under ⊕.
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Theorem 9.35 can be equivalently stated in the language of the map �:

Corollary 9.37 Let A and B be star bodies such that �(A), �(B) are convex. Then
�(A + B) is convex as well.

There is also a similar statement for reciprocal bodies:

Proposition 9.38 If K,T ∈ Rn then (K◦ + T ◦)◦ ∈ Rn.

Proof Write A = K ′ and B = T ′. Then K = K ′′ = A′ = (
A♣)◦. Since A is

a reciprocal body A♣ is convex, so K◦ = (
A♣)◦◦ = A♣. In the same way we

have T ◦ = B♣. Hence K◦ and T ◦ are both flowers, so by the previous Proposition
K◦ + T ◦ is a flower. If we write K◦ + T ◦ = C♣ then (K◦ + T ◦)◦ = C′ ∈ Rn. ��
A similar phenomenon holds regarding sections and projections. If A ⊆ R

n is a
flower and E is a subspace of Rn then we already saw in Proposition 9.17(4) that
A ∩ E is a flower in E, and in fact

(
ProjE K

)♣ = K♣ ∩ E. It is less clear, but still
true, that ProjE A is a flower as well:

Proposition 9.39 If A ⊆ R
n is a flower and E is a subspace of Rn, then ProjE A is

a flower in E.

Proof If A = K♣ then A = ⋃
x∈K Bx , and then

ProjE A =
⋃
x∈K

ProjE Bx.

Each projection ProjE Bx is a Euclidean ball in E that contains the origin, so by
Proposition 9.34 is a flower. It follows that ProjE A is a flower as well. ��
The last operation we would like to mention which preserves the class of flowers is
the convex hull:

Proposition 9.40 If A ⊆ R
n is a flower so is conv (A), and in fact conv

(
K♣) =(

K ′′)♣.

Proof Using the notation of Sect. 9.3 we have
(
K ′′)♣ = ♣◦♣◦♣K . Since ◦♣K =

K ′ is obviously a reciprocal body, Theorem 9.9 implies that ♣ ◦ ♣K is convex.
Hence by Proposition 9.28 parts (4) and (2) we have

(
K ′′)♣ = ♣ ◦ (♣ ◦ ♣K) = �♣ ◦ ♣K = ◦ ◦ ♣K = conv

(
K♣) .

��
More structure on the class of flowers can be obtained by transferring known
results about the class Kn

0 of convex bodies. First let us define the “inverse flower”
operation:
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Definition 9.41 The core of a flower A is defined by

A−♣ = {
x ∈ R

n : Bx ⊆ A
}
.

In a recent paper ([17]) Zong defined the core of a convex body T to be the
Alexandrov body A [rT ]. This is equivalent to our definition, though we apply it
to flowers and not to convex bodies. The core operation −♣ is indeed the inverse
operation to ♣: For every K ∈ Kn

0 we have

(
K♣)−♣ =

{
x ∈ R

n : [0, x]♣ ⊆ K♣} = {
x ∈ R

n : [0, x] ⊆ K
} = K.

Equivalently, for every flower A the set K = A−♣ is a convex body and K♣ = A.
We already referred in the introduction to a characterization of the polarity from

[1] and [15]. Essentially the same result can also be formulated in terms of order-
preserving transformations. We say that a map T : Kn

0 → Kn
0 is order-preserving if

A ⊆ B if and only if T (A) ⊆ T (B). Then the theorem states that the only order-
preserving bijections T : Kn

0 → Kn
0 are the (pointwise) linear maps. From here we

deduce:

Proposition 9.42 Let T : Fn → Fn be an order-preserving bijection on the class
of flowers. Then there exists an invertible linear map u : R

n → R
n such that

T (A) = (
uA−♣)♣.

Proof Define S : Kn
0 → Kn

0 by S(K) = (
T
(
K♣))−♣

. Then S is easily seen to be
an order preserving bijection on the class Kn

0 . Hence by the above-mentioned result
from [1] there exists a linear map u : Rn → R

n such that S(K) = uK . It follows

that T (A) = (
uA−♣)♣ like we wanted. ��

Note that even though S in the proof above is linear, the map T is in general not even
a pointwise map. In fact, it can be quite complicated—it does not preserve convexity
for example.

With the same proof one may also characterize all dualities on flowers, i.e. all
order-reversing involutions:

Proposition 9.43 Let T : Fn → Fn be an order-reversing involution on the class
of flowers. Then there exists an invertible symmetric linear map u : Rn → R

n such

that T (A) = ((
uA−♣)◦)♣.

We conclude this section with a nice example. Let B be any Euclidean ball with
0 ∈ B. By Proposition 9.34 we know that B = K♣ for some body K . What is
K? It turns out that K is an ellipsoid. As (uK)♣ = u

(
K♣) for every orthogonal

matrix u, the body K is clearly a body of revolution. Hence the problem is actually
two-dimensional and we may assume that n = 2.
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Up to rotation, every ellipse has the form

E =
{
(x − x0)

2

a2 + (y − y0)
2

b2 ≤ 1

}
⊆ R

2

for a > b > 0. Recall that (x0, y0) is the center of the ellipse. If we write c =√
a2 − b2 then p1 = (x0 + c, y0) and p2 = (x0 − c, y0) are the foci of E, and

E =
{
q ∈ R

2 : |q − p1| + |q − p2| = 2a
}
.

The number e =
√

1 − b2

a2 is the eccentricity of E. Obviously every ellipse in R
2

is uniquely determined by its center, its eccentricity and one of its focus points. We
then have:

Proposition 9.44 Let E ⊆ R
2 be an ellipse with center at p ∈ R

2, one focus point
at 0 and eccentricity e. Then:

1. E♣ is a ball with center p and radius |p|
e

.

2. E′ is an ellipse with center p̃ = − e2

1−e2 · p

|p|2 , a focus point at 0 and eccentricity e.

Proof By rotating and scaling it is enough to assume that the center of the ellipse is
at p = (1, 0). We then have

E =
{
(x, y) : (x − 1)2

a2 + y2

a2 − 1
≤ 1

}
,

where a = 1
e
> 1. To prove (1), consider the centered ellipse Ẽ = E − p. For such

ellipses it is well-known that hẼ(x, y) = √
a2x2 + (a2 − 1)y2, and then

hE(x, y) = hẼ(x, y) + h{(1,0)}(x, y) =
√
a2x2 + (a2 − 1)y2 + x

(note that we consider hẼ and hE not as functions on Sn−1, but as 1-homogeneous
functions defined on all of Rn). Therefore

E♣ =
{
(x, y) : |(x, y)| ≤ rE♣

(
(x, y)

|(x, y)|
)}

=
{
(x, y) : hE(x, y) ≥ |(x, y)|2

}

=
{
(x, y) :

√
a2x2 + (a2 − 1)y2 + x ≥ x2 + y2

}

=
{
(x, y) : (x − 1)2 + y2 ≤ a2

}
,
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where the last equality follows from simple algebraic manipulations. We see that
E♣ is indeed a ball with center p = (1, 0) and radius |p|

e
= a.

To prove (2), recall that E′ = (
E♣)◦. Like before, if B̃ = B ((0, 0), a) is the

centered ball then

hE♣(x, y) = hB̃(x, y) + h{(1,0)}(x, y) = a

√
x2 + y2 + x.

Hence

E′ =
(
E♣)◦ = {

(x, y) : hE♣(x, y) ≤ 1
}

=
{
(x, y) : a

√
x2 + y2 + x ≤ 1

}
.

Again, some algebraic manipulations will give us the (unpleasant) canonical form

E′ =

⎧
⎪⎨
⎪⎩
(x, y) :

(
x + 1

a2−1

)2

(
a

a2−1

)2 + y2

1
a2−1

≤ 1

⎫
⎪⎬
⎪⎭

.

Hence the center of E′ is indeed at
(
− 1

a2−1
, 0
)

=
(
− e2

1−e2 , 0
)

= − e2

1−e2 · p

|p|2 .

The distance from the center to the foci is

√(
a

a2 − 1

)2

− 1

a2 − 1
= 1

a2 − 1
= e2

1 − e2 ,

so one of the focus points is indeed the origin. Finally, the eccentricity of E′ is
indeed

√√√√√1 −
1

a2−1(
a

a2−1

)2 = 1

a
= e.

��
This proposition also gives a nice example of the addition ⊕ defined in (9.4.2): For
every x1, x2, . . . , xm ∈ R

n the body
⊕m

i=1[0, xi] is an ellipsoid. Indeed, we have

(
m⊕
i=1

[0, xi]
)♣

=
m∑
i=1

[0, xi]♣ =
m∑
i=1

Bxi

which is a Euclidean ball, so by the last computation
⊕m

i=1[0, xi] is an ellipsoid of
revolution with one focus point at 0.
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9.5 Geometric Inequalities

In this final section we discuss several inequalities involving flowers and reciprocal
bodies. We begin by showing that the various operations constructed in this paper
are convex maps. A theorem of Firey from [5] implies that the polarity map ◦ :
Kn

0 → Kn
0 is convex with respect to the Minkowski addition: For every K,T ∈ Kn

0
and every 0 ≤ λ ≤ 1 one has

((1 − λ)K + λT )◦ ⊆ (1 − λ)K◦ + λT ◦.

The maps ♣ and � are also convex with respect to the Minkowski addition on
their appropriate domains:

Theorem 9.45 The map ♣ : Kn
0 → Fn is convex. The map � is convex when

applied to arbitrary star bodies.

Proof For any two star bodies A and B we have rA+B ≥ rA + rB . Hence for
K,T ∈ Kn

0 and 0 ≤ λ ≤ 1 we have

r((1−λ)K+λT )♣ = h(1−λ)K+λT = (1 − λ)hK + λhT

= (1 − λ)rK♣ + λrT ♣ ≤ r(1−λ)K♣+λT ♣ .

It follows that ((1 − λ)K + λT )♣ ⊆ (1 − λ)K♣ + λT ♣ so ♣ is convex.
For the convexity of � fix star bodies A and B and 0 ≤ λ ≤ 1, and note that

r�((1−λ)A+λB) = 1

r(1−λ)A+λB

≤ 1

(1 − λ)rA + λrB

(∗)≤ 1 − λ

rA
+ λ

rB

= (1 − λ)r�(A) + λr�(B) ≤ r(1−λ)�(A)+λ�(B),

where the inequality (∗) is the convexity of the map x #→ 1
x

on (0,∞). ��
Convexity of the reciprocal map is more delicate. For general convex bodies K,T ∈
Kn

0 the inequality

((1 − λ)K + λT )′ ⊆ (1 − λ)K ′ + λT ′

is false. It becomes true if we further assume that K and T are reciprocal bodies: If
K ∈ Rn then K♣ is convex, which means that 1

r
K♣ = 1

hK
is the support function of

a convex body. Hence hK ′ = hA[1/hK ] = 1
hK

and similarly hT ′ = 1
hT

. Therefore we
indeed have

h((1−λ)K+λT )′ ≤ 1

h(1−λ)K+λT

= 1

(1 − λ)hK + λhT

≤ 1 − λ

hK

+ λ

hT

= (1 − λ)hK ′ + λhT ′ = h(1−λ)K ′+λT ′ .
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However, one cannot really say that ′ is a convex map on Rn in the standard
sense, since the class Rn is not closed with respect to the Minkowski addition. In
Eq. (9.4.2) of the previous section we defined a new addition ⊕ which does preserve
the class Rn, and the following holds:

Proposition 9.46 The reciprocal map ′ : Rn → Rn is convex with respect to the
addition ⊕.

Proof For every K,T ∈ Rn we have

hK⊕T = r(K⊕T )♣ = rK♣+T ♣ ≥ rK♣ + rT ♣ = hK + hT = hK+T ,

so K ⊕ T ⊇ K + T . Hence by the convexity of ◦ we have

((1 − λ)K ⊕ λT )′ =
[
((1 − λ)K ⊕ λT )♣

]◦ =
(
(1 − λ)K♣ + λT ♣)◦

⊆ (1 − λ)
(
K♣)◦ + λ

(
T ♣)◦ ⊆ (1 − λ)K ′ ⊕ λT ′.

��
We now turn our attention to numerical inequalities involving flowers. To each
body K we can associate a new numerical parameter which is

∣∣K♣∣∣, the volume
of the flower of K . It was explained in Remark 9.7 why this volume is important
in stochastic geometry. We then have the following reverse Brunn-Minkowski
inequality:

Proposition 9.47 For every K,T ∈ Kn
0 one has

∣∣(K + T )♣
∣∣ 1
n ≤ ∣∣K♣∣∣ 1

n + ∣∣T ♣∣∣ 1
n .

Proof Recall that for every star body A in R
n we may integrate by polar coordinates

and deduce that |A| = ∣∣Bn
2

∣∣ · ∫
Sn−1 rA(θ)

ndσ(θ). Here σ denotes the uniform
probability measure on the sphere. It follows that for every K ∈ Kn

0 we have

∣∣∣K♣
∣∣∣ = ∣∣Bn

2

∣∣ ·
∫

Sn−1
hK(θ)ndσ(θ). (9.5.1)

In other words,
∣∣K♣∣∣ 1

n is proportional to ‖hK‖Ln(Sn−1), where Ln(Sn−1) is the rele-
vant Lp space. Therefore the required inequality is nothing more than Minkowski’s
inequality (the triangle inequality for Lp-norms, in our case for p = n). ��
Similarly, we have an analogue of Minkowski’s theorem on the polynomiality of
volume. Recall that for every fixed convex bodies K1,K2, . . . ,Km we have

|λ1K1 + λ2K2 + · · · + λmKm| =
m∑

i1,i2,...,in=1

V (Ki1 ,Ki2 , . . . ,Kin) · λi1λi2 · · · λin ,
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Where we take the coefficients V (Ki1 ,Ki2 , . . . ,Kin) to be symmetric with respect
to a permutation of the arguments. The number V (K1,K2, . . . ,Kn) is called the
mixed volume of K1,K2, . . . ,Kn and is fundamental to convex geometry. We then
have:

Proposition 9.48 Fix K1,K2, . . . ,Km ∈ Kn
0 . Then for every λ1, λ2, . . . , λm ≥ 0

one has

∣∣∣(λ1K1+λ2K2+· · ·+λmKm)♣
∣∣∣=

m∑
i1,i2,...,in=1

V ♣(Ki1 ,Ki2 , . . . ,Kin) ·λi1λi2 · · · λin ,

where the coefficients are given by

V♣(K1,K2, . . . ,Kn) = ∣∣Bn
2

∣∣ ·
∫

Sn−1
hK1(θ)hK2(θ) · · ·hKn(θ)dσ(θ). (9.5.2)

The proof is immediate from formula (9.5.1). Moreover, the new ♣-mixed volumes
satisfy a reverse (elliptic) Alexandrov-Fenchel type inequality:

Proposition 9.49 For every K1,K2, . . . ,Kn ∈ Kn
0 we have

V♣(K1,K2,K3, . . . ,Kn)
2 ≤V♣ (K1,K1,K3, . . . Kn)·V♣ (K2,K2,K3, . . . ,Kn) ,

(9.5.3)

as well as

V ♣(K1,K2, . . . ,Kn) ≤
(

n∏
i=1

∣∣∣K♣
i

∣∣∣
) 1

n

. (9.5.4)

Moreover, assume that the bodies Ki are all compact and Ki �= {0} for all 1 ≤ i ≤
n. Then equality occurs in (9.5.3) if and only if K1 and K2 are homothetic, and in
(9.5.4) if and only if K1,K2, . . . ,Kn are all homothetic.

Proof Apply Hölder’s inequality to formula (9.5.2). ��
These results and their proofs are very closely related to the dual Brunn–Minkowski
theory which was developed by Lutwak in [8].

Next we would like to compare the ♣-mixed volume V♣(K1,K2, . . . ,Kn) with
the classical mixed volume V (K1,K2, . . . ,Kn). Since

∣∣T ♣∣∣ ≥ |T | for every T ∈
Kn

0 , one may conjecture that V♣(K1,K2, . . . ,Kn) ≥ V (K1,K2, . . . ,Kn). This is
not true however, as the next example shows:

Example 9.50 Let {e1, e2} be the standard basis of R2. Define K = [−e1, e1] and
T = [−e2, e2]. Then |λK + μT | = 4λμ which implies that V (K, T ) = 2.
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On the other hand by Formula (9.5.2) we have

V♣(K, T ) =
∣∣∣B2

2

∣∣∣ ·
∫

S1
hK(θ)hT (θ)dσ(θ) = π · 1

2π

∫ 2π

0
|cos θ | |sin θ | dθ = 1,

so V (K, T ) > V ♣(K, T ).

However, in one case we can compare the ♣-mixed volume with the classical one.
Recall that for K ∈ Kn

0 and 0 ≤ i ≤ n the i’th quermassintegral of K is defined by

Wi(K) = V

⎛
⎜⎝K,K, . . . ,K︸ ︷︷ ︸

n−i times

, Bn
2 , B

n
2 , . . . , B

n
2︸ ︷︷ ︸

i times

⎞
⎟⎠ .

Kubota’s formula then states that

Wn−i (K) =
∣∣Bn

2

∣∣
∣∣Bi

2

∣∣ ·
∫

G(n,i)

∣∣ProjE K
∣∣ dμ(E),

where G(n, i) is the set of all i-dimensional linear subspaces of Rn, and μ is the
Haar probability measure on G(n, i).

We define the ♣-quermassintegrals in the obvious way as W
♣
i (K) =

V♣(K, . . . ,K︸ ︷︷ ︸
n−i

, Bn
2 , . . . , B

n
2︸ ︷︷ ︸

i

). We then have a Kubota–type formula:

Theorem 9.51 For every K ∈ Kn
0 and every 0 ≤ i ≤ n we have

W
♣
n−i (K) =

∣∣Bn
2

∣∣
∣∣Bi

2

∣∣ ·
∫

G(n,i)

∣∣∣(ProjE K
)♣∣∣∣ dμ(E),

where μ is the Haar probability measure on G(n, i) and the flower map ♣ on the
right hand side is taken inside the subspace E.

Proof If T ⊆ R
m then integrating in polar coordinates we have |T | = ∣∣Bm

2

∣∣ ·∫
Sm−1 rT (θ)

mdσm(θ), where σm denotes the Haar probability measure on Sm−1.
Therefore

∫

G(n,i)

∣∣∣(ProjE K
)♣∣∣∣ dμ(E) =

∫

G(n,i)

∣∣∣K♣ ∩ E

∣∣∣ dμ(E)

=
∣∣∣Bi

2

∣∣∣
∫

G(n,i)

∫

SE

rK♣(θ)idσE(θ)dμ(E)

=
∣∣∣Bi

2

∣∣∣
∫

Sn−1
rK♣(θ)idσn(θ)



9 Reciprocals and Flowers in Convexity 225

=
∣∣∣Bi

2

∣∣∣
∫

Sn−1
hK(θ)idσn(θ)

=
∣∣Bi

2

∣∣
∣∣Bn

2

∣∣W
♣
n−i (K).

��
And as a corollary we obtain:

Corollary 9.52 For every K ∈ Kn
0 and 0 ≤ i ≤ n we have W

♣
i (K) ≥ Wi(K).

Proof We have

Wn−i (K) =
∣∣Bn

2

∣∣
∣∣Bi

2

∣∣ ·
∫

G(n,i)

∣∣ProjE K
∣∣ dμ(E)

≤
∣∣Bn

2

∣∣
∣∣Bi

2

∣∣ ·
∫

G(n,i)

∣∣∣(ProjE K
)♣∣∣∣ dμ(E) = W

♣
n−i (K).

��
It is well known that Wn−1(K) is (up to normalization) the mean width of K .
Hence from formula (9.5.2) we immediately have W

♣
n−1(K) = Wn−1(K). The

Alexandrov-Fenchel inequality and its flower version from Proposition 9.49 then
imply that

(
|K|∣∣Bn

2

∣∣
) 1

n

≤
(
W1(K)∣∣Bn

2

∣∣
) 1

n−1

≤ · · · ≤
(
Wn−2(K)∣∣Bn

2

∣∣
) 1

2

≤ Wn−1(K)∣∣Bn
2

∣∣

= W
♣
n−1(K)∣∣Bn

2

∣∣ ≤
(
W

♣
n−2(K)∣∣Bn

2

∣∣
) 1

2

≤ · · · ≤
(
W

♣
1 (K)∣∣Bn

2

∣∣
) 1

n−1

≤
(∣∣K♣∣∣
∣∣Bn

2

∣∣
) 1

n

which gives another proof of the relation W
♣
i (K) ≥ Wi(K).

We conclude this paper with a remark regarding the distance of flowers and
reciprocal bodies to the Euclidean ball. We restrict ourselves to bodies which are
compact and contain 0 at their interior. The geometric distance between such bodies
K and T is

d(K, T ) = inf

{
b

a
: aK ⊆ T ⊆ bK

}
.

Recall that a body K is centrally symmetric if K = −K .
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Proposition 9.53

1. If a flower A is centrally symmetric and convex, then d
(
A,Bn

2

) ≤ 2.
2. If K ∈ Rn is centrally symmetric, then d(K,Bn

2 ) ≤ 2.

Proof To prove the first assertion, write A = K♣ and let R = maxx∈K |x|. Since
K ⊆ R · Bn

2 we have A ⊆ R · Bn
2 .

On the other hand, fix x ∈ K with |x| = R and note that Bx = [0, x]♣ ⊆ K♣ =
A. Since K is centrally symmetric we also have −x ∈ K , so B−x ⊆ A. Hence

R

2
· Bn

2 ⊆ conv (Bx ∪ B−x) ⊆ A,

so d
(
A,Bn

2

) ≤ 2.
For the second assertion, fix a centrally symmetric reciprocal body K and define

T = K ′. Then K = T ′ = (
T ♣)◦. Since T is a reciprocal body T ♣ is convex, so

d
(
T ♣, Bn

2

) = d(K◦, Bn
2 ) ≤ 2. Since polarity preserves the geometric distance we

also have d
(
K,Bn

2

) ≤ 2. ��
Note that this result is false if K is not centrally symmetric. For example, we already
saw in Proposition 9.44 that if E ⊆ R

2 is any ellipse with a focus point at 0 then
E ∈ R2, and the distance d(E,B2

2 ) is obviously unbounded on this class of ellipses.
In fact, even the modified distance d̃(E,B2

2 ) = infx∈R2 d
(
E + x,B2

2

)
is unbounded

on this class.
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Chapter 10
Moments of the Distance Between
Independent Random Vectors

Assaf Naor and Krzysztof Oleszkiewicz

Abstract We derive various sharp bounds on moments of the distance between two
independent random vectors taking values in a Banach space.

10.1 Introduction

Throughout what follows, all Banach spaces are tacitly assumed to be separable.
This assumption removes the need to discuss measurability side-issues; alternatively
one could consider throughout only the special case of finitely-supported random
variables, which captures all of the key ideas. We will also tacitly assume that all
Banach spaces are over the complex scalars C. This assumption is convenient for
the ensuing proofs, but the main statements (namely, those that do not mention
complex scalars explicitly) hold over the real scalars as well, through a standard
complexification procedure. All the notation and terminology from Banach space
theory that occurs below is basic and standard, as in e.g. [15].

Our starting point is the following question. What is the smallest C > 0 such that
for every Banach space (F, ‖ · ‖F ) and every two independent F -valued integrable
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random vectors X,Y ∈ L1(F ) we have

inf
z∈F E

[‖X − z‖F + ‖Y − z‖F
]
� CE

[‖X − Y‖F
]
? (10.1)

We will reason that (10.1) holds with C = 3, and that C = 3 is the sharp constant
here. More generally, we have the following theorem.

Theorem 10.1.1 Suppose that p 	 1 and (F, ‖ · ‖F ) is a Banach space. Let X,Y ∈
Lp(F) be two independent F -valued p-integrable random vectors. Then

inf
z∈F E

[‖X − z‖pF + ‖Y − z‖pF
]
� 3p

2p−1 E
[‖X − Y‖pF

]
. (10.2)

The constant 3p

2p−1 in (10.2) cannot be improved.

The Banach space F that exhibits this sharpness of (10.2) is, of course, a
subspace of �∞, but we do not know what is the optimal constant in (10.2) when
F = �∞ itself. More generally, understanding the meaning of the optimal constant
in (10.2) for specific Banach spaces is an interesting question, which we investigate
in the rest of the present work for certain special classes of Banach spaces but do
not fully resolve.

10.1.1 Geometric Motivation

Our interest in (10.1) arose from investigations of [1] in the context of Rieman-
nian/Alexandrov geometry. It is well established throughout an extensive geometric
literature that a range of useful quadratic distance inequalities for a metric space
(M, dM) arise if one imposes bounds on its curvature in the sense of Alexandrov.
The term “quadratic” here indicates that these inequalities involve squares of
distances between finite point configurations in M. A phenomenon that was
established in [1] is that any such quadratic metric inequality that holds for every
Alexandrov space of nonnegative curvature becomes valid in any metric space
whatsoever if one removes the squaring of the distances, i.e., in essence upon
“linearization” of the inequality; see [1] for a precise formulation. This led naturally
to the question whether the same phenomenon holds for Hadamard spaces (complete
simply connected spaces whose Alexandrov curvature in nonpositive); see [1] for
an extensive discussion as well as the recent negative resolution of this question
in [11]. In the context of a Hadamard space (M, dM), the analogue of (10.1) is that
independent finitely-supported M-valued random variables X,Y satisfy

inf
z∈M E

[
dM(X, z)2 + dM(Y, z)2

]
� E

[
dM(X, Y )2

]
. (10.3)
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See [1] for a standard derivation of (10.3), where z ∈ M is an appropriate
“geometric barycenter,” namely it is obtained as the minimizer of the expected
squared distance from X to z. As explained in [1], by using (10.3) iteratively one can
obtain quadratic metric inequalities that hold in any Hadamard space and serve as
obstructions for certain geometric embeddings. The “linearized” version of (10.3),
in the case of Banach spaces and allowing for a loss of a factor C, is precisely (10.1).
So, in the spirit of [1] it is natural to ask what is the smallest C for which it holds.
This is what we address here, leading to analytic questions about Banach spaces that
are interesting in their own right from the probabilistic and geometric perspective.
We note that there are questions along these lines that [1] raises and remain open;
see e.g. [1, Question 32].

10.1.2 Probabilistic Discussion

The inequality which reverses (10.1) holds trivially as a consequence of the triangle
inequality, even when X and Y are not necessarily independent. Namely, any X,Y ∈
L1(F ) satisfy

E
[‖X − Y‖F

]
� inf

z∈F E
[‖X − z‖F + ‖Y − z‖F

]
.

So, the above discussion is about the extent to which this use of the triangle
inequality can be reversed.

Since the upper bound that we seek is in terms of the distance in Lp(F) between
independent copies of X and Y , this can be further used to control from above
expressions such as E[‖X − Y‖pF ] for X and Y not necessarily independent in terms
of E[‖X′ − Y ′‖pF ], where X′ and Y ′ are independent, X′ has the same distribution as
X, and Y ′ has the same distribution as Y .

In order to analyse the inequality (10.2) in a specific Banach space (F, ‖·‖F ), we
consider the following geometric moduli. Given p 	 1 let bp(F, ‖ · ‖F ), or simply
bp(F ) if the norm is clear from the context, be the infimum over those b > 0 such
that every independent F -valued random variables X,Y ∈ Lp(F) satisfy

inf
z∈F E

[‖X − z‖pF + ‖Y − z‖pF
]
� bE

[‖X − Y‖pF
]
. (10.4)

Thus, bp(F ) is precisely the best possible constant in the Lp(F)-analogue of the
aforementioned barycentric inequality (10.3). The use of the letter “b” in this
notation is in reference to the word “barycentric.” Theorem 10.1.1 asserts that
bp(F ) � 3p/2p−1, and that this bound cannot be improved in general.

Let mp(F, ‖ · ‖F ) > 0, or simply mp(F ) if the norm is clear from the context,
be the infimum over those m > 0 such that every independent F -valued random
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variables X,Y ∈ Lp(F) satisfy

E

[∥∥∥∥X − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

F

+
∥∥∥∥Y − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

F

]
� mE

[‖X − Y‖pF
]
.

(10.5)

The use of the letter “m” in this notation is in reference to the word “mixture,”
since the left-hand side of (10.5) is equal to 2E[‖Z − E[Z]‖pF ], where Z ∈ Lp(F)

is distributed according to the mixture of the laws of X and Y , namely Z is the
F -valued random vector such that for every Borel set A ⊆ F ,

P[Z ∈ A] = 1

2
P[X ∈ A] + 1

2
P[Y ∈ A] (10.6)

Obviously bp(F ) � mp(F ), because (10.5) corresponds to choosing z = 1
2E[X] +

1
2E[Y ] ∈ F in (10.4).

While we sometimes bound mp(F ) directly, it is beneficial to refine the
considerations through the study of two further moduli that are natural in their
own right and, as we shall see later, their use can lead to better bounds. Firstly,
let rp(F, ‖ · ‖F ), or simply rp(F ) if the norm is clear from the context, be the
infimum over those r > 0 such that every independent F -valued random variables
X,Y ∈ Lp(F) satisfy

E
[‖X − X′‖pF

]+ E
[‖Y − Y ′‖pF

]
� rE

[‖X − Y‖pF
]
, (10.7)

where X′, Y ′ are independent copies of X and Y , respectively. The use of the letter
“r” in this notation is in reference to the word “roundness,” as we shall next explain.

Observe also that (10.7) is a purely metric condition, i.e., it involves only
distances between points. So, it makes sense to investigate (10.7) in any metric
space (M, dM), namely to study the inequality

E
[
dM(X,X′)p

]+ E
[
dM(Y, Y ′)p

]
� rE

[
dM(X, Y )p

]
. (10.8)

One requires (10.8) to hold for M-valued independent random variables
X,X′, Y, Y ′ (say, finitely-supported, to avoid measurability assumptions) such
that each of the pairs X,X′ and Y, Y ′ is identically distributed.

To the best of our knowledge, condition (10.8) was first studied systematically
by Enflo [10], who defined a metric space (M, dM) to have generalized roundness
p it satisfies (10.8) with r = 2. He proved that Lp has generalized roundness p for
p ∈ [1, 2], and ingeniously used this notion to answer an old question of Smirnov.
See [9] for a relatively recent example of substantial impact of Enflo’s approach. By
combining [14] with [19], a metric space (M, dM) has generalized roundness p if
and only if (M, d

p/2
M ) embeds isometrically into a Hilbert space. The case r > 2

of (10.8) arose in [2] in the context of metric embeddings.
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The final geometric modulus that we consider here is a quantity jp(F, ‖ · ‖F ),
or simply jp(F ) if the norm is clear from the context, that is defined to be the
supremum over those j 	 1 such that every independent and identically distributed
F -valued random variables Z,Z′ ∈ Lp(F) satisfy

jE
[‖Z − E[Z]‖pF

]
� E

[‖Z − Z′‖pF
]
, (10.9)

Note that (10.9) holds with j = 1 by Jensen’s inequality, so we are asking here for
an improvement of (this use of) Jensen’s inequality by a definite factor; the letter
“j” in this notation is in reference to “Jensen.”

We have the following general bounds, which hold for every Banach space (F, ‖·
‖F ) and every p 	 1.

bp(F ) � mp(F ) � 2 + rp(F )

2jp(F )
. (10.10)

Indeed, we already observed the first inequality in (10.10), and the second inequality
in (10.10) is justified by taking independent random variables X,Y ∈ Lp(F),
considering their mixture Z ∈ Lp(F) as defined in (10.6), letting X′, Y ′, Z′ be
independent copies of X,Y,Z, respectively, and proceeding as follows.

E

[∥∥∥∥X − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

F

+
∥∥∥∥Y − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

F

]

(10.6)= 2E
[‖Z − E[Z]‖pF

] (10.9)
� 2

jp(F )
E
[‖Z − Z′‖pF

]

(10.6)= 2

jp(F )

(
1

2
E
[‖X − Y‖pF

]+ 1

4
E
[‖X − X′‖pF

]+ 1

4
E
[‖Y − Y ′‖pF

])

� 2

jp(F )

(
1

2
+ 1

4
rp(F )

)
E
[‖X − Y‖pF

]
.

Recalling the definition (10.5) of mp(F ), this implies (10.10).
Here we prove the following bounds on bp(Lq),mp(Lq), rp(Lq), jp(Lq) for

p, q ∈ [1,∞).

Theorem 10.1.2 For every p, q ∈ [1,∞) we have jp(Lq) = 2c(p,q), where

c(p, q)
def= min

{
1, p − 1,

p

q
,
p(q − 1)

q

}

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

p − 1 if 1 � p � q � 2 or 1 � p � q
q−1 � 2,

p(q−1)
q

if q � p � q
q−1 ,

p
q

if q
q−1 � p � q,

1 if p 	 q
q−1 	 2 or p 	 q 	 2.

(10.11)
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We also have rp(Lq) � 2C(p,q), where

C(p, q)
def=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p − 1 if p
p−1 � q � p,

p(q−2)
q

+ 1 if q
q−1 � p � q,

2 − p
q

if q 	 2 and 1 � p � q
q−1 ,

p
q

if q � 2 and q � p � q
q−1 ,

1 if 1 � p � q � 2.

(10.12)

In fact, if p
p−1 � q � p, then rp(Lq) = 2p−1, if q

q−1 � p � q , then rp(Lq) =
2

p(q−2)
q +1, and rp(Lq) = 2 if 1 � p � q � 2. Namely, the above bound on rp(Lq)

is sharp in the first, second and fifth ranges in (10.12).
Furthermore, bp(Lq) = mp(Lq) = 22−p if p � q � 2. More generally, we have

the bound

bp(Lq) � mp(Lq) � min

⎧⎨
⎩

3p

2p−1

(√
2

3

)2c(p,q)

,
2C(p,q) + 2

2c(p,q)+1

⎫⎬
⎭ . (10.13)

The upper bound on bp(Lq) in (10.13) improves over (10.2) when F = Lq for all
values of p, q ∈ [1,∞). It would be interesting to find the exact value of bp(Lq) in
the entire range p, q ∈ [1,∞). Note that the second quantity in the minimum in the
right hand side of (10.13) corresponds to using (10.10) together with the bounds on
jp(Lq) and rp(Lq) that Theorem 10.1.2 provides; when, say, p = q , this quantity
is smaller than the first quantity in the minimum in the right hand side of (10.13) if
and only if 1 � p < 3.

Theorem 10.1.2 states that the constant C(p, q) is sharp in the first, second and
fifth ranges in (10.12). The following conjecture formulates what we expect to be
the sharp values of rp(Lq) for all p, q ∈ [1,∞).

Conjecture 10.1.3 For all p, q ∈ [1,∞) we have rp(Lq) = 2Copt(p,q), where

Copt(p, q)
def= max

{
1, p − 1,

p(q − 2)

q
+ 1

}

=

⎧
⎪⎨
⎪⎩

p − 1 if p 	 2 and 1 � q � p,
p(q−2)

q
+ 1 if q 	 2 and 1 � p � q,

1 if p, q ∈ [1, 2].
(10.14)

We will prove later that rp(Lq) 	 2Copt(p,q), so Conjecture (10.1.3) is about
improving our upper bounds on rp(Lq) in the remaining third and fourth ranges that
appear in (10.12).

Question 10.1.4 Below we will obtain improvements over (10.2) for other spaces
besides {Lq : q ∈ [1,∞)}, including e.g. the Schatten–von Neumann trace classes
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(see e.g. [20]) {Sq : q ∈ (1,∞)}. However, parts of Theorem 10.1.2 rely on
“commutative” properties of Lq which are not valid for Sq , thus leading to even
better bounds in the commutative setting. It would be especially interesting to obtain
sharp bounds in noncommutative probabilistic inequalities such as the roundness
inequality (10.7) when F = Sq . In particular, we ask what is the value of r1(S1)?
At present, we know (as was already shown by Enflo [10]) that r1(L1) = 2 while
the only bound that we have for S1 is r1(S1) � 4. Note that 4 is a trivial upper
bound here, which holds for every Banach space. Interestingly, it follows from [7]
that r1(S1) 	 2

√
2, as explained in Remark 10.3.1 below. So, there is a genuine

difference between the commutative and noncommutative settings of L1 and S1,
respectively. As a more modest question, is r1(S1) strictly less than 4?

10.1.3 Complex Interpolation

We will use basic terminology, notation and results of complex interpolation of
Banach spaces; the relevant background appears in [4, 8]. Theorem 10.1.2 is a
special case of the following more general result about interpolation spaces. As
such, it applies also to random variables that take values in certain spaces other than
Lq , including, for examples, Schatten–von Neumann trace classes (see e.g. [20])
and, by an extrapolation theorem of Pisier[18], Banach lattices of nontrivial type.

Theorem 10.1.5 Fix θ ∈ [0, 1] and 2
2−θ

� p � 2
θ

. Let (F, ‖ · ‖F ), (H, ‖ · ‖H ) be a
compatible pair of Banach spaces such that (H, ‖ · ‖H ) is a Hilbert space. Then the
following estimates hold true.

rp([F,H ]θ ) � 21+(1−θ)p and jp([F,H ]θ ) 	 2
θp
2 . (10.15)

Additionally, we have

bp([F,H ]θ ) � mp([F,H ]θ ) � min

⎧
⎨
⎩

3p

2p−1

(√
2

3

)pθ

,
1 + 2(1−θ)p

2
θp
2

⎫
⎬
⎭

=

⎧
⎪⎨
⎪⎩

3p

2p−1

(√
2

3

)pθ
if 1

1−θ
� p � 2

θ
,

1+2(1−θ)p

2
θp
2

if 2
2−θ

� p � 1
1−θ

.
(10.16)

(Note that if the first range of values of p in the right hand side of (10.16) is
nonempty, then necessarily θ � 2

3 .)

The deduction of Theorem 10.1.2 from Theorem 10.1.5 appears in Sect. 10.3
below; in most cases this deduction is nothing more than a direct substitution into
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Theorem 10.1.5, but in some cases a further argument is needed. Theorem 10.1.5
itself is a special case of the following theorem.

Theorem 10.1.6 Fix θ ∈ [0, 1] and p ∈ [1,∞] that satisfy 2
2−θ

� p � 2
θ

. Let
(F, ‖ · ‖F ), (H, ‖ · ‖H ) be a compatible pair of Banach spaces such that (H, ‖ · ‖H )

is a Hilbert space. Suppose that (X, μ) and (Y, ν) are probability spaces. Then, for
every f ∈ Lp(μ × ν; [F,H ]θ ) we have

21+(1−θ)p

∫∫

X×Y

‖f (x, y)‖p[F,H ]θ dμ(x)dν(y)

	
∫∫

X×X

∥∥∥∥
∫

Y

(
f (x, y) − f (χ, y)

)
dν(y)

∥∥∥∥
p

[F,H ]θ
dμ(x)dμ(χ)

+
∫∫

Y×Y

∥∥∥∥
∫

X

(
f (x, y) − f (x,υ)

)
dμ(x)

∥∥∥∥
p

[F,H ]θ
dν(y)dν(υ), (10.17)

and

3p

2p−1

(√
2

3

)pθ ∫∫

X×Y

‖f (x, y)‖p[F,H ]θ dμ(x)dν(y)

	
∫

X

∥∥∥∥
∫

Y

f (x, y)dν(y) − 1

2

∫∫

X×Y

f (χ,υ)dμ(χ)dν(υ)

∥∥∥∥
p

[F,H ]θ
dμ(x)

+
∫

Y

∥∥∥∥
∫

X

f (x, y)dμ(x)− 1

2

∫∫

X×Y

f (χ,υ)dμ(χ)dν(υ)

∥∥∥∥
p

[F,H ]θ
dν(y).

(10.18)

Furthermore, if g ∈ Lp(μ × μ; [F,H ]θ ), then

2

(
1− θ

2

)
p
∫∫

X×X

‖g(x, χ)‖p[F,H ]θ dμ(x)dμ(χ)

	
∫

X

∥∥∥∥
∫

X

(
g(x, χ) − g(χ, x)

)
dμ(x)

∥∥∥∥
p

[F,H ]θ
dμ(χ). (10.19)

Proof of Theorem 10.1.5 assuming Theorem 10.1.6 Let X and Y be independent
p-integrable [F,H ]θ -valued random vectors. Due to the independence assumption,
without loss of generality there are probability spaces (X, μ) and (Y, ν) such that
X and Y are elements of Lp(μ × ν; [F,H ]θ ) that depend only on the first variable
and second variable, respectively. Then (10.17) and (10.18) applied to f = X − Y

become

E

[∥∥X − X′∥∥p[F,H ]θ
]

+ E

[∥∥Y − Y ′∥∥p[F,H ]θ
]
� 21+(1−θ)pE

[
‖X − Y‖p[F,H ]θ

]
,
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and

E

[∥∥∥∥X − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

[F,H ]θ

]
+ E

[∥∥∥∥Y − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

[F,H ]θ

]

� 3p

2p−1

(√
2

3

)pθ

E

[
‖X − Y‖p[F,H ]θ

]
.

We therefore established the first inequality in (10.15) as well as the upper bound
on mp([F,H ]θ ) that corresponds to the first term in the minimum that appears
in (10.16).

Similarly, due to the fact that X and X′ are i.i.d., without loss of generality there
is a probability space (X, μ) such that X and X′ are elements of Lp(μ×μ; [F,H ]θ )
that depend only on the first variable and second variable, respectively. Then, (10.19)
applied to g = X − X′ simplifies to give

E

[∥∥X − X′∥∥p[F,H ]θ
]
	 2

θp
2 E

[
‖X − E[X]‖p[F,H ]θ

]
.

This establishes the second inequality in (10.15), as well as the upper bound on
mp([F,H ]θ ) that corresponds to the second term in the minimum that appears
in (10.16), due to (10.10). ��

The first and third inequalities of Theorem 10.1.6 are generalizations of results
that appeared in the literature. Specifically, (10.17) generalizes Lemma 6 of [2],
and (10.19) generalizes Lemma 5 of [17], which is itself inspired by a step within
the proof of Theorem 2 of [21]. The proof of Theorem 10.1.6, which appears in
Sect. 10.3 below, differs from the proofs of [2, 17, 21], but relies on the same ideas.

10.2 Proof of Theorem 10.1.1

Let (F, ‖ · ‖F ) be a Banach space. Fix p 	 1. Theorem 10.1.1 asserts that bp(F ) �
3p

2p−1 . In fact, mp(F ) � 3p

2p−1 , which is stronger by (10.10). To see this, let X,Y ∈
Lp(F) be independent random vectors and observe that

E

[∥∥∥∥X − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

F

]
= 3p

2p
E

[∥∥∥∥
2

3
(X − E[Y ]) + 1

3
(E[Y ] − E[X])

∥∥∥∥
p

F

]

� 3p

2p

(
2

3
E
[‖X − E[Y ]‖pF

]+ 1

3
E
[‖E[Y ] − E[X]‖p

F

])

� 3p

2p
E
[‖X − Y‖pF

]
,
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where the penultimate step holds due to the convexity of ‖ · ‖pF and the final step
holds because, by Jensen’s inequality, both E

[‖X − E[Y ]‖pF
] = E

[‖EY [X − Y ]‖pF
]

and E
[‖E[Y − X]‖pF

]
are at most E

[‖X − Y‖pF
]
. The symmetric reasoning with X

replaced by Y now gives

E

[∥∥∥∥X − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

F

]
+ E

[∥∥∥∥Y − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

F

]

� 2 max

{
E

[∥∥∥∥X − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

F

]
, E

[∥∥∥∥Y − 1

2
E[X] − 1

2
E[Y ]

∥∥∥∥
p

F

]}

� 3p

2p−1 E
[‖X − Y‖pF

]
.

This shows that mp(F ) � 3p

2p−1 . It remains to prove that the bound bp(F ) � 3p

2p−1 is
optimal for general F .

Fix an integer n 	 2 and consider

Fn
def=
{
x ∈ C2n :

2n∑
k=1

xk = 0

}
,

equipped with supremum norm inherited from �2n∞. We will prove that

bp(Fn) 	 2

(
3

2
− 1

n

)p

−−−→
n→∞

3p

2p−1
. (10.20)

Denote by {ek}2n
k=1 the standard coordinate basis of �2n∞. Define two n-element

sets An,Bn ⊆ Fn by

An
def=
{
(3n− 2)ej − (n+ 2)

∑
k∈{1,...,n}�{j}

ek + (n− 2)
2n∑

k=n+1

ek : j ∈ {1, . . . , n}
}
,

and

Bn
def=
{
(n−2)

n∑
k=1

ek +(3n−2)ej −(n+2)
∑

k∈{n+1,...,2n}�{j }
ek : j ∈ {n+1, . . . , 2n}

}
.

Note that An and Bn are indeed subsets of Fn because 3n−2−(n−1)(n+2)+n(n−
2) = 0. Let X,Y be independent and uniformly distributed on An,Bn, respectively.
One checks that ‖a − b‖∞ = 2n for any a ∈ An and b ∈ Bn. So, E

[‖X − Y‖p∞
] =

(2n)p. The desired bound (10.20) will follow if we demonstrate that

∀ z ∈ Fn, E
[‖X − z‖p∞ + ‖Y − z‖p∞

]
	 2(3n − 2)p. (10.21)
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The proof of (10.21) proceeds via symmetrization. For permutations σ, ρ ∈ Sn,
define Tσ,ρ : Fn → Fn by

∀ x = (x1, . . . , x2n) ∈ Fn,

Tσ,ρ(x)
def= (

xσ(1), xσ(2), . . . , xσ(n), xn+ρ(1), xn+ρ(2), . . . , xn+ρ(n)

)
.

Tσ,ρ is a linear isometry of Fn and the sets An and Bn are Tσ,ρ-invariant. Hence, for
any z ∈ Fn,

E
[‖X − z‖p∞

] = 1

(n!)2

∑
σ,ρ∈Sn

E
[‖Tσ,ρ(X) − z‖p∞

]

= 1

(n!)2

∑
σ,ρ∈Sn

E
[‖X − Tσ−1,ρ−1(z)‖p∞

]

	 E

⎡
⎣
∥∥∥X − 1

(n!)2

∑
σ,ρ∈Sn

Tσ−1,ρ−1(z)

∥∥∥
p

∞

⎤
⎦

= E

[∥∥∥X − z1 + . . . + zn

n

n∑
k=1

ek + z1 + . . . + zn

n

2n∑
k=n+1

ek

∥∥∥
p

∞

]
.

(10.22)

Denoting u = (z1 + . . .+zn)/n, it follows from (10.22) that E
[‖X − z‖p∞

]
	 |3n−

2 − u|p, because one of the first n coordinates of any member of the support of X
equals 3n−2. The same argument with X replaced by Y gives that E

[‖Y − z‖p∞
]
	

|3n−2+u|p, because now one of the last n coordinates of any member of the support
of Y equals 3n − 2. We conclude with the following application of the convexity of
| · |p.

E
[‖X − z‖p∞ + ‖Y − z‖p∞

]
	 |3n − 2 − u|p + |3n − 2 + u|p 	 2(3n − 2)p. ��

Remark 10.2.1 It is worthwhile to examine what the above argument gives if we
take the norm on Fn to be the norm inherited from �2n

q . One computes that ‖a −
b‖q = (2n)1+1/q for every a ∈ An and b ∈ Bn. So,

E
[‖X − Y‖pq

] = (2n)
p(q+1)

q . (10.23)
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Also, it follows from the same reasoning that led to (10.22) that for every z ∈ Fn,

E
[‖X − z‖pq

]
	 E

[∥∥∥X − u

n∑
k=1

ek + u

n∑
k=n+1

ek

∥∥∥
p

q

]

= (|3n − 2 − u|q + (n − 1)|n + 2 + u|q + n|n − 2 + u|q)
p
q ,

and

E
[‖Y − z‖pq

]
	 E

[∥∥∥Y − u

n∑
k=1

ek + u

n∑
k=n+1

ek

∥∥∥
p

q

]

= (|3n − 2 + u|q + (n − 1)|n + 2 − u|q + n|n − 2 − u|q) p
q .

Hence, using the convexity of the p’th power of the �q norm on R3, we see that

E
[‖X − z‖pq

]+ E
[‖Y − z‖pq

]
	 2

(
(3n − 2)q + (n − 1)(n + 2)q + n(n − 2)q

) p
q .

(10.24)

By contrasting (10.23) with (10.24) we conclude that

bp(Fn, ‖ · ‖q) 	 2
(
(3n − 2)q + (n − 1)(n + 2)q + n(n − 2)q

) p
q (2n)−

p(q+1)
q .

In particular, if we take p = q 	 2 and n = �q�, then we conclude that bq(Fn, ‖ ·
‖q) 	 c

q

(
3
2

)q
for some universal constant c > 0. So, there is very little potential

asymptotic gain (as q → ∞) if we know that the Banach space of Theorem 10.1.1
admits an isometric embedding into Lq .

Above, and in what follows, we stated that a normed space admits an isometric
embedding into Lq without specifying whether the embedding is linear or not. Later
we will need such embeddings to be linear, so we recall that for any q 	 1, by a
classical differentiation argument (see [3, Chapter 7] for a thorough treatment of
such reductions to the linear setting), a normed space embeds isometrically into Lq

as a metric space if and only if it admits a linear isometric embedding into Lq .
Note that the phenomenon of Remark 10.2.1 is special to random variables that

have different expectations. Namely, if E[X] = E[Y ], then by Jensen’s inequality
the ratio that defines bq(F ) is at most 2 rather than the aforementioned exponential
growth as q → ∞. The following proposition shows that if F is a subspace of Lq

for q 	 3, then when E[X] = E[Y ] this ratio is at most 1, which is easily seen to be
best possible (consider any nontrivial symmetric random variable X, and take Y to
be identically 0).

Proposition 10.2.2 Let (F, ‖ · ‖F ) be a Banach space that admits an isometric
embedding into Lq for some q ∈ [3,∞). Then, for any pair of independent F -



10 Moments of the Distance Between Independent Random Vectors 241

valued random vectors X,Y ∈ Lq(F ) with E[X] = E[Y ],

inf
z∈F E

[‖X − z‖qF + ‖Y − z‖qF
]
� E

[‖X − E[X]‖qF + ‖Y − E[X]‖qF
]

� E
[‖X − Y‖qF

]
. (10.25)

Proof Lq over C embeds isometrically into Lq over R (indeed, complex Lq is, as
a real Banach space, the same as Lq(�

2
2), so this follows from the fact that Hilbert

space is isometric to a subspace of Lq ). So, in Proposition 10.2.2 we may assume
that F embeds isometrically into Lq over R, and therefore by integration/Fubini
it suffices to prove (10.25) for real-valued random variables. So, our goal is to
show that if X,Y are independent mean-zero real random variables with E [|X|q ],
E [|Y |q ] < ∞, then

E
[|X + Y |q] 	 E

[|X|q]+ E
[|Y |q] . (10.26)

The bound (10.25) would then follow by applying (10.26) to the mean-zero variables
X − E[X] and E[X] − Y .

Note in passing that the assumption q 	 3 is crucial here, i.e. (10.26) fails if
q ∈ (0, 3)� {2}. Indeed, if β ∈ (0, 1

2 ) and P[X = 1 − β] = P[Y = 1 − β] = β and
P[X = −β] = P[Y = −β] = 1 − β, then E[X] = E[Y ] = 0 but

E [|X + Y |q ]

E [|X|q ] + E [|Y |q]
= β22q(1 − β)q + (1 − β)22qβq + 2β(1 − β)(1 − 2β)q

2β(1 − β)q + 2(1 − β)βq
.

(10.27)

If q ∈ (0, 2), then the right hand side of (10.27) equals 2q−2 < 1 for β = 1
2 . If

q ∈ (2, 3), then the right hand side of (10.27) equals 1 + (2q−1 − q − 1)β + o(β),
which is less than 1 for small β since 2q−1 − q − 1 < 0 for q ∈ (2, 3).

To prove (10.26), for every s > 0 and x ∈ R, denote φs(x) = sign(x) · |x|s .
Observe that

∀ x, y ∈ R, α(x, y)
def= |x + y|q − |x|q − |y|q − qφq−1(x)y − qxφq−1(y) 	 0.

(10.28)

Once (10.28) is proved, (10.26) would follow because

0 � E [α(X, Y )] = E
[|X + Y |q]− E

[|X|q]− E
[|Y |q]− qE[Y ]E [φq−1(X)

]

− qE[X]E [φq−1(Y )
]

= E
[|X + Y |q]− E

[|X|q]− E
[|Y |q] ,

where the penultimate step uses the independence of X,Y and the last step uses
E[X] = E[Y ] = 0.



242 A. Naor and K. Oleszkiewicz

It suffices to prove (10.28) when q > 3; the case q = 3 follows by passing to the
limit. Once checks that

∂3α

∂x2∂y
= p(p − 1)(p − 2)

(
φp−3(x + y) − φp−3(x)

)

'⇒ sign

(
∂3α

∂x2∂y
(x, y)

)
= sign(y),

where the last step holds because φp−3 is increasing. Hence, y #→ ∂2α
∂x2 (x, y) is

decreasing for y < 0 and increasing for y > 0. One checks that ∂2α

∂x2 (x, 0) = 0 for

all x ∈ R, so ∂2α

∂x2 (x, y) 	 0. Thus x #→ α(x, y) is convex for every fixed y ∈ R. But

α(0, y) = ∂α
∂x

(0, y) = 0 for any y ∈ R, i.e. the tangent to the graph of x #→ α(x, y)

at x = 0 is the x-axis. Convexity implies that the graph of x #→ α(x, y) lies above
the x-axis, as required. ��

We end this section with the following simpler metric space counterpart of
Theorem 10.1.1.

Proposition 10.2.3 Fix p 	 1 and let X and Y be independent finitely supported
random variables taking values in a metric space (M, dM). Then

inf
z∈ME

[
dM(X, z)p + dM(Y, z)p

]
�
(
2p + 1

)
E
[
dM(X, Y )p

]
. (10.29)

The constant 2p + 1 in (10.29) is optimal.

Proof Let X′ have the same distribution as X and be independent of X and Y . The
point-wise inequality

dM(X,X′)p �
(
dM(X, Y ) + dM(Y,X′)

)p � 2p−1 (dM(X, Y )p + dM(X′, Y )p
)

is a consequence of the triangle inequality and the convexity of (u ≥ 0) #→ up. By
taking expectations, we obtain E

[
dM(X,X′)p

]
� 2pE [dM(X, Y )p], so that

inf
z∈M E

[
dM(X, z)p + dM(Y, z)p

]
� E

[
dM(X,X′)p + dM(Y,X′)p

]

�
(
2p + 1

)
E
[
dM(X, Y )p

]
.

To see that the constant 2p + 1 is optimal, fix n ∈ N and let M be the complete
bipartite graph Kn,n, equipped with its shortest-path metric. Equivalently, M can
be partitioned into two n-point subsets L,R, and for distinct x, y ∈ M we have
dM(x, y) = 2 if {x, y} ⊆ L or {x, y} ⊆ R, while dM(x, y) = 1 otherwise.
Let X be uniformly distributed over L and Y be uniformly distributed over R.
Then dM(X, Y ) = 1 point-wise. If z ∈ L, then dM(Y, z) = 1 point-wise, while



10 Moments of the Distance Between Independent Random Vectors 243

P [dM(X, z) = 2] = n−1
n

and P [dM(X, z) = 0] = 1
n

. Consequently,

E [dM(X, z)p + dM(Y, z)p]

E [dM(X, Y )p]
= n − 1

n
2p + 1 −−−→

n→∞ 2p + 1.

By symmetry, the same holds if z ∈ R. ��

10.3 Proof of Theorem 10.1.6 and Its Consequences

Here we prove Theorem 10.1.6 and deduce Theorem 10.1.2.

Proof of Theorem 10.1.6 The assumption 2
2−θ

� p � 2
θ

implies that 1
p

= 1−θ
q

+ θ
2

for some (unique) q ∈ [1,∞]. We will fix this value of q for the rest of the proof of
Theorem 10.1.6. All of the desired bounds (10.17)–(10.19) hold true when θ = 0,
namely for every Banach space (F, ‖ · ‖F ) and every f ∈ Lq(μ × ν;F) we have

2q+1
∫∫

X×Y

‖f (x, y)‖qF dμ(x)dν(y)

	
∫∫

X×X

∥∥∥∥
∫

Y

(
f (x, y) − f (χ, y)

)
dν(y)

∥∥∥∥
q

F

dμ(x)dμ(χ)

+
∫∫

Y×Y

∥∥∥∥
∫

X

(
f (x, y) − f (x,υ)

)
dμ(x)

∥∥∥∥
q

F

dν(y)dν(υ),

(10.30)

and

3q

2q−1

∫∫

X×Y

‖f (x, y)‖qF dμ(x)dν(y)

	
∫

X

∥∥∥∥
∫

Y

f (x, y)dν(y) − 1

2

∫∫

X×Y

f (χ,υ)dμ(χ)dν(υ)

∥∥∥∥
q

F

dμ(x)

+
∫

Y

∥∥∥∥
∫

X

f (x, y)dμ(x)− 1

2

∫∫

X×Y

f (χ,υ)dμ(χ)dν(υ)

∥∥∥∥
q

F

dν(y).

(10.31)

Furthermore, if g ∈ Lq(μ × μ;F), then

2q

∫∫

X×X

‖g(x, χ)‖qF dμ(x)dμ(χ) 	
∫

X

∥∥∥∥
∫

X

(
g(x, χ)−g(χ, x)

)
dμ(x)

∥∥∥∥
q

F

dμ(χ).

(10.32)
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Indeed, (10.30)–(10.32) are direct consequences of the triangle inequality in Lq(μ×
ν;F) and Lq(μ×μ;F) and Jensen’s inequality, with the appropriate interpretation
when q = ∞.

By complex interpolation theory (specifically, by combining [4, Theorem 4.1.2]
and [4, Theorem 5.1.2]), Theorem 10.1.6 will follow if we prove the θ = 1 case
of (10.17)–(10.19). To this end, as H is a Hilbert space and the inequalities in
question are quadratic, it suffices to prove them coordinate-wise (with respect to
any orthonormal basis of H ), i.e., it suffices to show that for every (C-valued)
f ∈ L2(μ × ν) and g ∈ L2(μ × μ),

2
∫∫

X×Y

|f (x, y)|2dμ(x)dν(y)

	
∫∫

X×X

∣∣∣∣
∫

Y

(
f (x, y) − f (χ, y)

)
dν(y)

∣∣∣∣
2

dμ(x)dμ(χ)

+
∫∫

Y×Y

∣∣∣∣
∫

X

(
f (x, y) − f (x,υ)

)
dμ(x)

∣∣∣∣
2

dν(y)dν(υ),

(10.33)

and
∫∫

X×Y

|f (x, y)|2dμ(x)dν(y)

	
∫

X

∣∣∣∣
∫

Y

f (x, y)dν(y) − 1

2

∫∫

X×Y

f (χ,υ)dμ(χ)dν(υ)

∣∣∣∣
2

dμ(x)

+
∫

Y

∣∣∣∣
∫

X

f (x, y)dμ(x)− 1

2

∫∫

X×Y

f (χ,υ)dμ(χ)dν(υ)

∣∣∣∣
2

dν(y),

(10.34)

and

2
∫∫

X×X

|g(x, χ)|2dμ(x)dμ(χ) 	
∫

X

∣∣∣∣
∫

X

(
g(x, χ) − g(χ, x)

)
dμ(x)

∣∣∣∣
2

dμ(χ).

(10.35)

The following derivation of the quadratic scalar inequalities (10.33)–(10.35) is an
exercise in linear algebra.

Let {ϕj }∞j=0 ⊆ L2(μ) and {ψk}∞k=0 ⊆ L2(ν) be any orthonormal bases
of L2(μ) and L2(ν), respectively, for which ϕ0 = 1X and ψ0 = 1Y. Then
{ϕj ⊗ ψk}∞j,k=0, {ϕj ⊗ ϕk}∞j,k=0 and {ψj ⊗ ψk}∞j,k=0 are orthonormal bases of
L2(μ × ν), L2(μ × μ) and L2(ν × ν), respectively, where for ϕ ∈ L2(μ) and
ψ ∈ L2(ν) one defines (as usual) ϕ ⊗ ψ : X× Y→ C by setting ϕ ⊗ ψ(x, y) =
ϕ(x)ψ(y) for (x, y) ∈ X× Y. We therefore have the following expansions, in the
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sense of convergence in L2(μ × ν) and L2(μ × μ), respectively.

f =
∞∑
j=0

∞∑
k=0

〈ξ, ϕj ⊗ ψk〉L2(μ×ν)ϕj ⊗ ψk and g =
∞∑
j=0

∞∑
k=0

〈ζ, ϕj ⊗ ψk〉L2(μ×ν)ϕj ⊗ ψk.

In particular, by Parseval we have

‖f ‖2
L2(μ×ν) =

∞∑
j=0

∞∑
k=0

∣∣〈f, ϕj ⊗ ψk〉L2(μ×ν)

∣∣2 and ‖g‖2
L2(μ×μ)

=
∞∑
j=0

∞∑
k=0

∣∣〈g, ϕj ⊗ ϕk〉L2(μ×μ)

∣∣2 . (10.36)

Define RXf ∈ L2(μ × μ) by

RXf
def=

∞∑
j=1

〈f, ϕj ⊗ ψ0〉L2(μ×ν)ϕj ⊗ ϕ0 −
∞∑
j=1

〈f, ϕj ⊗ ψ0〉L2(μ×ν)ϕ0 ⊗ ϕj .

So, (μ×μ)-almost surely RXf (x, χ) = ∫
Y

(
f (x, y)−f (χ, y)

)
dν(y). Also, define

RYf ∈ L2(ν × ν) by

RYf
def=

∞∑
j=1

〈f, ϕ0 ⊗ ψj 〉L2(μ×ν)ψj ⊗ ψ0 −
∞∑
j=1

〈f, ϕ0 ⊗ ψj 〉L2(μ×ν)ψ0 ⊗ ψj .

So, (ν × ν)-almost surely RYf (y,υ) = ∫
X

(
f (x, y) − f (x,υ)

)
dν(x). By Parseval

in L2(μ × μ),L2(ν × ν), L2(μ × ν),

‖RXf ‖2
L2(μ×μ) + ∥∥RYf

∥∥2
L2(ν×ν)

= 2
∞∑
j=1

(∣∣〈f, ϕj ⊗ ψ0〉L2(μ×ν)

∣∣2 + ∣∣〈f, ϕ0 ⊗ ψj 〉L2(μ×ν)

∣∣2) (10.36)
� 2‖f ‖2

L2(μ×ν).

This is precisely (10.33).
Next, for every α, β ∈ C define Sα

Xf ∈ L2(μ) and S
β

Yf ∈ L2(ν) by

Sα
Xf

def= (1 − α)〈f, ϕ0 ⊗ ψ0〉L2(μ×ν)ϕ0 +
∞∑
j=1

〈f, ϕj ⊗ ψ0〉L2(μ×ν)ϕj ,
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and

S
β

Yf
def= (1 − β)〈f, ϕ0 ⊗ ψ0〉L2(μ×ν)ϕ0 +

∞∑
j=1

〈f, ϕ0 ⊗ ψj 〉L2(μ×ν)ψj .

In other words, we have the following identities μ-almost surely and ν-almost
surely, respectively.

Sα
Xf (x) =

∫

Y

f (x, y)dν(y) − α

∫∫

X×Y

f (χ,υ)dμ(χ)dν(υ),

and

S
β

Yf (y) =
∫

X

f (x, y)dμ(x)− β

∫∫

X×Y

f (χ,υ)dμ(χ)dν(υ),

By Parseval in L2(μ), L2(ν), L2(μ × ν),

∥∥∥∥Sα
Xf

∥∥∥∥
2

L2(μ)

+
∥∥∥Sβ

Yf

∥∥∥
2

L2(ν)

=
(
|1 − α|2 + |1 − β|2

) ∣∣〈f, ϕ0 ⊗ ψ0〉L2(μ×ν)

∣∣2

+
∞∑
j=1

(∣∣〈f, ϕj ⊗ ψ0〉L2(μ×ν)

∣∣2 + ∣∣〈f, ϕ0 ⊗ ψj 〉L2(μ×ν)

∣∣2)

(10.36)
� max

{
|1 − α|2 + |1 − β|2, 1

}
‖f ‖2

L2(μ×ν).

The case α = β = 1
2 of this inequality is precisely (10.34). It is worthwhile to note

in passing that this reasoning (substituted into the above interpolation argument)
yields the following generalization of (10.18).

max

{(
|1 − α|2 + |1 − β|2

)pθ
, 1

}(
(1 + |α|) 2p(1−θ)

2−θp + (1 + |β|) 2p(1−θ)
2−θp

)1− θp
2

×
∫∫

X×Y

‖f (x, y)‖p[F,H ]θ dμ(x)dν(y)

	
∫

X

∥∥∥∥
∫

Y

f (x, y)dν(y) − α

∫∫

X×Y

f (χ,υ)dμ(χ)dν(υ)

∥∥∥∥
p

[F,H ]θ
dμ(x)

+
∫

Y

∥∥∥∥
∫

X

f (x, y)dμ(x)− β

∫∫

X×Y

f (χ,υ)dμ(χ)dν(υ)

∥∥∥∥
p

[F,H ]θ
dν(y).

(10.37)
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For the justification of the remaining inequality (10.35), define Tg ∈ L2(μ) by

Tg
def=

∞∑
j=1

(〈g, ϕ0 ⊗ ϕj 〉L2(μ×μ) − 〈g, ϕj ⊗ ϕ0〉L2(μ×μ)

)
ϕj .

In other words, μ-almost surely Tg(χ) = ∫
X

(
g(x, χ) − g(χ, x)

)
dμ(x). By

Parseval in L2(μ), L2(μ × ν),

‖Tg‖2
L2(μ) =

∞∑
j=1

∣∣〈g, ϕ0 ⊗ ϕj 〉L2(μ×μ) − 〈g, ϕj ⊗ ϕ0〉L2(μ×μ)

∣∣2

�
∞∑
j=1

2
(∣∣〈g, ϕ0 ⊗ ϕj 〉L2(μ×μ)

∣∣2 + ∣∣〈g, ϕj ⊗ ϕ0〉L2(μ×μ)

∣∣2)

(10.36)
� 2‖g‖2

L2(μ×μ),

where in the penultimate step we used the convexity of (ζ ∈ C) #→ |ζ |2. This is
precisely (10.35). ��

We will next deduce Theorem 10.1.2 from the special case of Theorem 10.1.6
that we stated as Theorem 10.1.5.

Proof of Theorem 10.1.2 The largest θ ∈ [0, 1] for which 2
2−θ

� p � 2
θ

and also
1
q

= 1−θ
r

+ θ
2 for some r 	 1 is

θmax = θmax(p, q)
def= 2 min

{
1

p
, 1 − 1

p
,

1

q
, 1 − 1

q

}
.

We then have Lq = [Lr,L2]θmax . Note that the quantity c(p, q) that is defined
in (10.11) is equal to p

2 θmax.
By (10.15) with θ = θmax and F = Lr we have jp(Lq) 	 2c(p,q). The matching

upper bound jp(Lq) � 2c(p,q) holds due to the following quick examples. If X is

uniformly distributed on {−1, 1}, then E[|X−E[X]‖p] and E|X−X′|p = 2p−1. So,
jp(R) � 2p−1. If ε ∈ (0, 1) and P[Xε = 0] = 1 − ε and P[Xε = 1] = ε, then for
p > 1,

jp(R) �
E
[‖Xε − X′

ε‖pq
]

E
[‖Xε − E[Xε]‖pq

] = 2ε(1 − ε)

(1 − ε)εp + ε(1 − ε)p
−−−→
ε→0+ 2.



248 A. Naor and K. Oleszkiewicz

If n ∈ N and Xn is uniformly distributed over {±e1, . . . ,±en}, where {ej }∞j=1 is the
standard basis of �p, then

jp(Lq) � jp(�
n
q) �

E
[‖Xn − X′

n‖pq
]

E
[‖Xn − E[Xn]‖pq

] = n − 1

n
2

p
q + 1

2n
2p −−−→

n→∞ 2
p
q .

If r1, . . . , rn are i.i.d. symmetric Bernoulli random variables viewed as elements
of Lq , e.g. they can be the coordinate functions in Lq({−1, 1}n), then let Rn be
uniformly distributed over {±r1, . . . ,±rn}. Then,

jp(Lq) �
E
[‖Rn − R′

n‖pq
]

E
[‖Rn − E[Rn]‖pq

] = n − 1

n
2

p(q−1)
q + 1

2n
2p −−−→

n→∞ 2
p(q−1)

q .

This completes the proof that jp(Lq) = 2c(p,q).
Next, an application of (10.15) with θ = θmax and F = Lr gives rp(Lq) �

21+(1−θmax)p. In other words,

E
[‖X − X′‖pq

]+ E
[‖Y − Y ′‖pq

]
� 2

max
{
p−1,3−p,1+ p(q−2)

q ,1+ p(2−q)
q

}
E
[‖X − Y‖pq

]
,

(10.38)

for every p-integrable independent Lq -valued random variables X,X′, Y, Y ′ such
that (X, Y ) and (X′, Y ′) are identically distributed. The bound (10.38) coincides
with (10.15), where C(p, q) is as in (10.12), only in the first two ranges that appear
in (10.12), namely when p

p−1 � q � p or when q
q−1 � p � q . For the remaining

ranges that appear in (10.12), the bound (10.38) is inferior to (10.15), so we reason
as follows.

For every q,Q ∈ [1,∞] satisfying Q 	 q , by [16, Remark 5.10] (the case
Q ∈ [1, 2] is an older result [6]) there exists an embedding s = sq,Q : Lq → LQ

(given by an explicit formula) such that

∀ x, y ∈ Lq, ‖s(x) − s(y)‖Q = ‖x − y‖
q
Q
q . (10.39)

Apply (10.38) to the LQ-valued random vectors s(X), s(X′), s(Y ), s(Y ′) with q

replaced by Q and p replaced with pQ
q

. The resulting estimate is

E
[‖X − X′‖pq

]+ E
[‖Y − Y ′‖pq

]

(10.39)= E

[
‖s(X) − s(X′)‖

pQ
q

Q

]
+ E

[
‖s(Y ) − s(Y ′)‖

pQ
q

Q

]

(10.38)
� 2

max
{
pQ
q −1,3− pQ

q ,1+ p(Q−2)
q ,1+ p(2−Q)

q

}
E

[
‖s(X) − s(Y )‖

pQ
q

Q

]

(10.39)= 2
max

{
pQ
q −1,3− pQ

q ,1+ p(Q−2)
q ,1+ p(2−Q)

q

}
E
[‖X − Y‖pq

]
. (10.40)
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It is in our interest to choose Q 	 q so as to minimize the right hand side of (10.40).
If 1

p
+ 1

q
� 1, then Q = q is the optimal choice in (10.40), and therefore we return

to (10.38). But, if 1
p

+ 1
q
	 1, then Q = 1 + q

p
	 q is the optimal choice in (10.40)

and we arrive at the following estimate which is better than (10.38) in the stated
range

1

p
+ 1

q
	 1 '⇒ E

[‖X − X′‖pq
]+ E

[‖Y − Y ′‖pq
]
� 2

max
{
p
q
,2− p

q

}
E
[‖X − Y‖pq

]
.

(10.41)

The bound (10.41) covers the third and fourth ranges that appear in (10.12), as well
as the case p = q ∈ [1, 2] of the fifth range that appears in (10.12). However,
(10.41) is inferior to (10.12) when 1 � p < q � 2. When this occurs, use the
fact [12] that Lq is isometric to a subspace of Lp and apply the already established
case p = q to the Lp-valued random variables i(X), i(X′), i(Y ), i(Y ′), where i :
Lq → Lp is any isometric embedding.

We will next prove that rp(Lq) 	 2Copt(p,q), where Copt(p, q) is given in (10.14).
In particular, this will justify the second sharpness assertion of Theorem 10.1.2,
namely that (10.38) is sharp when p, q belong to the first, second or fifth ranges
that appear in (10.12). Firstly, by considering the special case of (10.7) in which
X,Y are i.i.d., we see that rp(F ) 	 1 for any Banach space F . Next, fix n ∈ N

and let r1, . . . , rn, ρ1, . . . , ρn ∈ Lq be such that r1, . . . , rn and ρ1, . . . , ρn each
form a sequence of i.i.d. symmetric Bernoulli random variables, and the supports
of r1, . . . , rn are disjoint from the supports of ρ1, . . . , ρn. For example, one could
consider them as the elements of Lq({−1, 1}n) ⊕q Lq({−1, 1}n) that are given
by ri = (ω #→ ωi, 0) and ρi = (0, ω #→ ωi) for each i ∈ {1, . . . , n}. Let
X be uniformly distributed over {r1, . . . , rn} and Y be uniformly distributed over
{ρ1, . . . , ρn}. Due to the disjointness of the supports, we have ‖X−Y‖pq = (‖X‖qq +
‖Y‖qq)p/q = 2p/q point-wise. At the same time, E[‖X − X′‖pq ] + E[‖Y − Y ′‖pq ] =
2(1 − 1/n)(2q/2)p/q = (1 − 1/n)21+p(q−1)/q. By letting n → ∞, this shows that
necessarily rp(Lq) � 21+p(q−2)/q . Finally, if (10.7) holds, then in particular it holds
for scalar-valued random variables. By integrating, we see that rp(F ) 	 rp(Lp)

for any Banach space F . But, the case p = q of the above discussion gives
rp(Lp) 	 21+p(p−2)/p = 2p−1, as required.

The bound (10.13) of Theorem 10.1.2 coincides with (10.16). When p � q � 2,
we have C(p, q) = 1, c(p, q) = p − 1 and thus mp(Lq) � 22−p. It therefore
remains to check that bp(Lq) 	 22−p when p � q � 2. In fact, bp(F ) 	 22−p for
every p 	 1 and every Banach space (F, ‖ · ‖F ). Indeed, fix distinct a, b ∈ F . Let
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X,Y be independent and uniformly distributed over {a, b}. Then

bp(F ) 	
E
[‖X − z‖pF + ‖Y − z‖pF

]

E
[‖X − Y‖pF

] = ‖a − z‖pF + ‖b − z‖pF
1
2‖a − b‖pF

	
2
∥∥∥1

2 (a − z) − 1
2 (b − z)

∥∥∥
p

F
1
2‖a − b‖pF

= 22−p,

where the penultimate step is an application of the convexity of ‖ · ‖pF . ��
Remark 10.3.1 Fix n ∈ N. Following [7], for a = (a1, . . . , a2n) ∈ C2n denote
by 4(a) = (4(a1), . . . ,4(a2n)) ∈ R2n and 5(a) = (5(a1), . . . ,5(a2n)) ∈ R2n

the vectors of real parts and imaginary parts of the entries of a, respectively. Let
�(a) ∈ [0,∞) be the area of the parallelogram that is generated by 4(a) and 5(a),
i.e.,

�(a)
def=
√

‖4(a)‖2
2‖5(a)‖2

2 − 〈4(a),5(a)〉.

By [7, Lemma 5.2] there is a linear operator C : C2n → M2n(C) from C2n to the
space of 2n by 2n complex matrices, such that for any a ∈ C2n the Schatten-1 norm
of the matrix C(a) satisfies

‖C(a)‖S1 = 1

2

√
‖a‖2

2 + 2�(a) + 1

2

√
‖a‖2

2 − 2�(a). (10.42)

Let e1, . . . , e2n ∈ C2n be the standard basis of C2n and define 2n matrices
x1, . . . , xn, y1, . . . , yn ∈ M2n(C) by xk = C(ek) and yk = C(ien+k) for k ∈
{1, . . . , n}. By (10.42) we have ‖xj − xk‖S1 = ‖yj − yk‖S1 = √

2 for distinct
j, k ∈ {1, . . . , n}, while ‖xj − yk‖S1 = 1 for all j, k ∈ {1, . . . , n}. Hence, if
we let X and Y be independent and distributed uniformly over {x1, . . . , xn} and
{y1, . . . , yn}, respectively, and X′, Y ′ are independent copies of X,Y , respectively,
then for every p 	 1 we have

E

[
‖X − Y‖pS1

]
= 1 and E

[
‖X − X′‖pS1

]
= E

[
‖Y − Y ′‖pS1

]
= n − 1

n
2

p
2 .

By letting n → ∞, this implies that rp(S1) 	 2
p
2 +1. In particular, r1(S1) 	 2

√
2.

Remark 10.3.2 Fix q 	 1. Let (F, ‖ · ‖F ) be a Banach space. Assume that F has a
linear subspace G ⊆ F that is isometric to Lq (or the Schatten–von Neumann trace
class Sq ). If X,Y ∈ Lp(G) are i.i.d. random variables taking values in G, then for
c(p, q) as in (10.11), by Theorem 10.1.2 we have

E
[‖X − Y‖pF

]
	 2c(p,q) · inf

z∈F E
[‖X − z‖pF

]
. (10.43)
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We note that this inequality is optimal despite the fact that the infimum is now
taken over z in the larger super-space F . Indeed, in the proof of Theorem 10.1.2 the
random variables that established optimality of c(p, q) were symmetric when p, q

belong to the first three ranges that appear in (10.11). In these cases, by the convexity
of ‖ · ‖pF , the infimum in the right had side of (10.43) is attained at z = 0 ∈ G.
The fact that the term 2c(p,q) in the right hand side of (10.43) cannot be replaced
by any value greater than 2 needs the following separate treatment. If ε ∈ (0, 1)
and P[X = v] = ε = 1 − P[X = 0] for some v ∈ G with ‖v‖F = 1, then
E
[‖X − Y‖pF

] = 2ε(1 − ε). Next, for any z ∈ F we have

E
[‖X − z‖pF

] = (1−ε)‖z‖pF +ε‖v−z‖pF 	 (1−ε)‖z‖pF +ε
(
max

{
0, 1 − ‖z‖F

})p

	 min
r�0

(
(1 − ε)rp + ε (max {0, 1 − r})p) = ε(1 − ε)

(
ε

1
p−1 + (1 − ε)

1
p−1

)p−1
,

where the final step follows by elementary calculus. Therefore,

E
[‖X − Y‖pF

]

infz∈F E
[‖X − z‖pF

] � 2
(
ε

1
p−1 + (1 − ε)

1
p−1

)p−1 −−−→
ε→0+ 2.

Remark 10.3.3 An extrapolation theorem of Pisier [18] asserts that if (F, ‖ · ‖F ) is
a Banach lattice that is both p-convex with constant 1 and q-concave with constant
1, where 1

p
+ 1

q
= 1, then there exists a Banach lattice W , a Hilbert space H , and

θ ∈ (0, 1] such that F is isometric to the complex interpolation space [W,H ]θ .
Hence, Theorem 10.1.5 applies in this setting, implying in particular that there is
r ∈ [1,∞), namely r = 2

θ
, such that every i.i.d. F -valued random variables X,Y ∈

Lr(F ) satisfy

E
[‖X − Y‖rF

]
	 2E

[∥∥X − E[X]∥∥r
F

]
.

We will conclude by discussing further bounds in the non-convex range p < 1,
as well as their limit when p → 0+. When p ∈ (0, 1), the topological vector space
Lp is not a normed space. Despite this, when we say that a normed space (F, ‖ · ‖F )

admits a linear isometric embedding into Lp we mean (as usual) that there exists
a linear mapping T : F → Lp such that ‖T x‖p = ‖x‖F for all x ∈ F . This of
course forces the Lp quasi-norm to induce a metric on the image of T , so the use
of the term “isometric” is not out of place here, though note that it is inconsistent
with the standard metric on Lp , which is given by ‖f − g‖pp for all f, g ∈ Lp.
The following proposition treats the case p ∈ (0, 2], though later we will mainly
be interested in the non-convex range p ∈ (0, 1). Note that the case p = 1 implies
the stated inequalities for, say, any two-dimensional normed space, since any such
space admits [5] an isometric embedding into L1.
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Proposition 10.3.4 Let (F, ‖ · ‖F ) be a Banach space that admits an isometric
linear embedding into Lp for some p ∈ (0, 2]. Let X,X′, Y, Y ′ ∈ Lp(F) be
independent F -valued random vectors such that X′ has the same distribution as
X and Y ′ has the same distribution as Y . Then,

E
[∥∥X − X′∥∥p

F

]+ E
[∥∥Y − Y ′∥∥p

F

]
� 2E

[‖X − Y‖pF
]
, (10.44)

and

inf
z∈F E

[‖X − z‖pF + E‖Y − z‖pF
]
� min

{
2, 22−p

}
E
[‖X − Y‖pF

]
. (10.45)

The constants 2 and min
{
2, 22−p

}
in (10.44) and (10.45), respectively, cannot be

improved.

Proof By [6, 19] there is a mapping s : F → L2 such that ‖s(x) − s(y)‖2 = ‖x −
y‖

p
2
F for all x, y ∈ F . By the (trivial) Hilbertian case p = q = 2 of Theorem 10.1.2

applied to the L2-valued random vectors s(X), s(Y ),

E
[∥∥X − X′∥∥p

F

]+ E
[∥∥Y − Y ′∥∥p

F

] = E

[∥∥s(X) − s(X′)
∥∥2

2

]
+ E

[∥∥s(Y ) − s(Y ′)
∥∥2

2

]

� 2E
[
‖s(X) − s(Y )‖2

2

]
= 2E

[‖X − Y‖pF
]
.

This substantiates (10.44). When p < 1 we cannot proceed from here to
prove (10.45) by considering the analogue of the mixture constant m(·), namely
by bounding the left hand side of (10.5) as we did in the Introduction, since the
present Lp integrability assumption on X,Y does not imply that E[X] and E[Y ] are
well-defined elements of F . Instead, let Z′ be independent of X,Y and distributed
according to the mixture of the laws of X and Y , as in (10.6). The point z ∈ F will
be chosen randomly according to Z′, i.e.,

inf
z∈F E

[‖X − z‖pF + ‖Y − z‖pF
]
� E

[∥∥X − Z′∥∥p
F

+ ∥∥Y − Z′∥∥p
F

]

= 1

2
E
[∥∥X − X′∥∥p

F
+ ∥∥Y − Y ′∥∥p

F

]+ E
[‖X − Y‖pF

]

(10.44)
� 2E

[‖X − Y‖pF
]
. (10.46)

For p 	 1 we have rp(F ) � 2 by (10.44), and jp(F ) 	 jp(Lp) = p − 1 by

Theorem 10.1.2, so bp(F ) � 22−p, by (10.10).
The sharpness of (10.44) is seen by taking X and Y to be identically distributed.

When p 	 1, we already saw in the proof of Theorem 10.1.2 that bp(F ) 	 22−p for
any Banach space F ; thus (10.45) is sharp in this range. The same reasoning as in
the proof of Theorem 10.1.2 shows that the factor 2 in (10.45) cannot be improved
in the non-convex range p ∈ (0, 1) as well. Indeed, fix v with ‖v‖F = 1 and let
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X and Y be uniformly distributed over {0, v}. Then, E
[‖X − z‖pF + E‖Y − z‖pF

] =
‖z‖pF + ‖v − z‖pF 	 (‖z‖F + ‖v − z‖F )p 	 ‖v‖pF = 1 for every z ∈ F , while
E
[‖X − Y‖pF

] = 1
2‖v‖pF = 1

2 . ��
Proposition 10.3.5 below is the limit of Proposition 10.3.4 as p → 0+. While it

is possible to deduce it formally from Proposition 10.3.4 by passing to the limit, a
justification of this fact is quite complicated due to the singularity of the logarithm
at zero. We will instead proceed via a shorter alternative approach.

Following [13], a real Banach space (F, ‖ · ‖F ) is said to admit a linear isometric
embedding into L0 if there exists a probability space (�,μ) and a linear operator
T : F → Meas(�,μ), where Meas(�,μ) denotes the space of (equivalence
classes of) real-valued μ-measurable functions on �, such that

∀ x ∈ F, ‖x‖F = e
∫
� log |T x|dμ. (10.47)

As shown in [13], every three-dimensional real normed space admits a linear
isometric embedding into L0, so in particular the following proposition applies to
any such space.

Proposition 10.3.5 Let (F, ‖ · ‖F ) be a real Banach space that admits a linear
isometric embedding into L0. Let X,X′, Y, Y ′ be independent F -valued random
vectors such that X′ has the same distribution as X and Y ′ has the same distribution
as Y . Assume that E

[
log(1 + ‖X‖F )

]
< ∞ and E

[
log(1 + ‖Y‖F )

]
< ∞. Then,

eE[log(‖X−X′‖F ·‖Y−Y ′‖F )] � e2E[log(‖X−Y‖F )], (10.48)

and

inf
z∈F eE[log(‖X−z‖F ·‖Y−z‖F )] � e2E[log(‖X−Y‖F )]. (10.49)

The multiplicative constant 1 in both of these inequalities is optimal.

Proof (10.49) is a consequence of (10.48) by reasoning analogously to (10.46).
Due to the assumed representation (10.47), by Fubini’s theorem it suffices to
prove (10.48) for real-valued random variables.

So, suppose that X,Y are independent real-valued random variables such that
E
[
log(1 + |X|)] < ∞ and E

[
log(1 + |Y |)] < ∞. Note that every nonnegative

random variable W with E
[
log(1 + W)

]
< ∞ satisfies

E
[
logW

] =
∫ ∞

0

e−s − E
[
e−sW

]

s
ds. (10.50)
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Indeed, for every a, b ∈ [0,∞) with a � b we have

∫ ∞

0

e−as − e−bs

s
ds =

∫ ∞

0

(∫ b

a

se−t s dt

)
ds

s

=
∫ b

a

(∫ ∞

0
e−t s ds

)
dt =

∫ b

a

dt

t
= log b − log a,

so that (10.50) follows by applying this identity and the Fubini theorem separately
on each of the events {W 	 1} and {W < 1}, taking advantage of the fact that
e−s − e−sW is of constant sign on both events.

Let Z,Z′ be independent random variables whose law is the mixture of the laws
of X,Y as in (10.6). the desired inequality (10.48) is equivalent to the assertion that
E
[
log(Z − Z′)2

]
� E

[
log(X − Y )2

]
. By two applications of (10.50), once with

W = (X − Y )2 and once with W = (Z − Z′)2, it suffices to prove that

∀ s 	 0, E

[
e−s(Z−Z′)2

]
	 E

[
e−s(X−Y )2

]
.

This is so because, using the formula for the Fourier transform of the Gaussian
density, we have

E

[
e−s(Z−Z′)2

]
= E

[
1√
2π

∫ ∞

−∞
eit (Z−Z′)

√
2s− t2

2 dt

]

= 1√
2π

∫ ∞

−∞
E

[
eit

√
2sZ
]

· E
[
e−it

√
2sZ′]

e− t2
2 dt

= 1√
2π

∫ ∞

−∞

∣∣∣E
[
eit

√
2sZ
]∣∣∣

2
e− t2

2 dt (10.51)

= 1√
2π

∫ ∞

−∞

∣∣∣∣
1

2
E

[
eit

√
2sX
]

+ 1

2
E

[
eit

√
2sY
]∣∣∣∣

2

e− t2
2 dt

	 1√
2π

∫ ∞

−∞
4
(
E

[
eit

√
2sX
]

· E
[
eit

√
2sY
])

e− t2
2 dt (10.52)

= 1√
2π

4
(∫ ∞

−∞
E

[
eit

√
2s(X−Y )

]
e− t2

2 dt

)
= E

[
e−s(X−Y )2

]
,

(10.53)

where (10.51) uses Fubini and the independence of Z and Z′, (10.52) uses the fact
that for all a, b ∈ C we have |(a + b)/2|2 = |(a − b)/2|2 + 4(ab) 	 4(ab), the
first step of (10.53) uses the independence of X and Y , and the last step of (10.53)
uses once more the formula for the Fourier transform of the Gaussian density.

The fact that (10.48) is sharp follows by considering the case when X,Y are
i.i.d. and non-atomic. Note that when both X and Y have an atom at the same
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point, both sides of (10.49) equal 0. The example considered in the proof of
Proposition 10.3.4 when p > 0 is therefore of no use for establishing the optimality
of (10.49), due to the atomic nature of the distributions under consideration. Instead,
for an arbitrary v ∈ F such that ‖v‖F = 1, let us consider random vectors
X = (cos�)v and Y = (cos�′)v, where � and �′ are independent random
variables uniformly distributed on [0, 2π].

Observe that for every α ∈ R we have

E
[
log |cos� − cos α|] = E

[
log

∣∣∣∣2 sin
(
� + α

2

)
sin
(
� − α

2

)∣∣∣∣
]

= log 2 + E

[
log

∣∣∣∣sin

(
� + α

2

)∣∣∣∣
]

+ E

[
log

∣∣∣∣sin

(
� − α

2

)∣∣∣∣
]

= log 2 + 2E
[
log |cos�|] , (10.54)

where the last step of (10.54) holds because, by periodicity,
∣∣sin

(
�±α

2

)∣∣ has the
same distribution as |cos�|.

The case α = π
2 of (10.54) simplifies to give E

[
log |cos�|] = − log 2. Hence,

(10.54) becomes

∀α ∈ R, E
[
log |cos� − cosα|] = − log 2. (10.55)

Consequently,

∀ t ∈ R, E
[
log |cos� − t|] 	 − log 2. (10.56)

Indeed, if t ∈ [−1, 1], then one can write t = cosα for some α ∈ R, so
that by (10.55) the inequality in (10.56) holds as equality. If |t| > 1, then
|cos θ − t| 	 |cos θ − sign(t)| for all θ ∈ [0, 2π], thus implying (10.56). It also
follows from (10.55) that

E
[
log (‖X − Y‖F )

] = E
[
log
∣∣cos� − cos�′∣∣] (10.55)= − log 2.

Next, by the Hahn–Banach theorem, take ϕ ∈ F ∗ such that ‖ϕ‖F ∗ = 1 and ϕ(v) =
‖v‖F = 1. For any z ∈ F ,

E
[
log (‖X − z‖F )

] = E
[
log (‖Y − z‖F )

]
	 E

[
log |ϕ((cos�)v − z)|]

= E
[
log |cos� − ϕ(z)|] (10.56)

	 − log 2.

This implies the asserted sharpness of (10.49). Note that the above argument
that (10.49) cannot hold with a multiplicative constant less than 1 in the right hand
side worked for any Banach space F whatsoever. ��
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Chapter 11
The Alon–Milman Theorem
for Non-symmetric Bodies

Márton Naszódi

Abstract A classical theorem of Alon and Milman states that any d dimensional
centrally symmetric convex body has a projection of dimension m ≥ ec

√
lnd which

is either close to the m-dimensional Euclidean ball or to the m-dimensional cross-
polytope. We extended this result to non-symmetric convex bodies.

11.1 Introduction

Some fundamental results from the theory of normed spaces have been shown
to hold in the more general setting of non-symmetric convex bodies. Dvoretzky’s
theorem [3, 7] was extended in [6] and [5]; Milman’s Quotient of Subspace theorem
[8] and duality of entropy results were extended in [9]. In this note, we extend the
Alon–Milman Theorem.

A convex body is a compact convex set in R
d with non-empty interior. We denote

the orthogonal projection onto a linear subspace H or Rd by PH . For p = 1, 2,∞,
the closed unit ball of �dp centered at the origin is denoted by Bd

p. Let K and L be

convex bodies in R
d with L = −L. We define their distance as

d(K,L) = inf{λ > 0 : L ⊂ T (K − a) ⊂ λL for some a ∈ R
d and T ∈ GL(Rd )}.
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By compactness, this infimum is attained, and when K = −K , it is attained with
a = 0.

Alon and Milman [1] proved the following theorem in the case when K is
centrally symmetric.

Theorem 11.1 For every ε > 0 there is a constant C(ε) > 0 with the property that
in any dimension d ∈ Z

+, and for any convex body K in R
d , at least one of the

following two statements hold:

(i) there is an m-dimensional linear subspace H of Rd such that d(PH (K),Bm
2 ) <

1 + ε, for some m satisfying ln lnm ≥ 1
2 ln ln d , or

(ii) there is an m-dimensional linear subspace H such that d(PH (K),Bm
1 ) < 1+ε,

for some m satisfying ln lnm ≥ 1
2 ln ln d − C(ε).

The main contribution of the present note is a way to deduce Theorem 11.1 from
the original result of Alon and Milman, that is, the centrally symmetric case. By
polarity, one immediately obtains

Corollary 11.1 For every ε > 0 there is a constant C(ε) > 0 with the property that
in any dimension d ∈ Z

+, and for any convex body K in R
d containing the origin

in its interior, at least one of the following two statements hold:

(i) there is an m-dimensional linear subspace H of Rd such that d(H ∩K,Bm
2 ) <

1 + ε, for some m satisfying ln lnm ≥ 1
2 ln ln d , or

(ii) there is an m-dimensional linear subspace H such that d(H ∩K,Bm∞) < 1+ε,
for some m satisfying ln lnm ≥ 1

2 ln ln d − C(ε).

11.2 Proof of Theorem 11.1

For a convex body K in R
d , we denote its polar by K∗ = {x ∈ R

d : 〈x, y〉 ≤
1 for all y ∈ K}. The support function of K is hK(x) = sup{〈x, y〉 : y ∈ K}. For
basic properties, see [2, 12].

First in Lemma 11.2, by a standard argument, we show that if the difference body
L − L of a convex body L is close to the Euclidean ball, then so is some linear
dimensional section of L. For this, we need Milman’s theorem whose proof (cf.
[4, 7, 10]) does not use the symmetry of K even if it is stated with that assumption.
We use S

d−1 to denote the boundary of Bd
2 .

Lemma 11.1 (Milman’s Theorem) For every ε > 0 there is a constant C(ε) > 0
with the property that in any dimension d ∈ Z

+, and for any convex body K in
R

d with Bd
2 ⊆ K , there is an m-dimensional linear subspace H of Rd such that
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(1 − ε)r(Bd
2 ∩H) ⊆ K ⊆ (1 + ε)r(Bd

2 ∩H), for some m satisfying m ≥ C(ε)M2d ,
where

M = M(K) =
∫

Sd−1

||x||Kdσ(x),

and r = 1
M

.

Lemma 11.2 Let α, ε > 0 be given. Then there is a constant c = c(α, ε) with the
property that in any dimension m ∈ Z

+, and for any convex body L in R
m with

d(L−L,Bm
2 ) < 1 + α, there is a k dimensional linear subspace F of Rm such that

d(PF (L),Bk
2) < 1 + ε for some k ≥ cm.

Proof Let δ = d(L−L,Bm
2 ). We may assume that 1

δ
Bm

2 ⊆ L−L ⊆ Bm
2 . Thus, for

the support function of L − L, we have hL−L(x) ≥ 1
δ

for any x ∈ S
d−1. With the

notations of Lemma 11.1, we have

M(L∗) =
∫

Sd−1

||x||L∗dσ(x) = 1

2

∫

Sd−1

hL(x) + hL(−x)dσ(x) (11.1)

= 1

2

∫

Sd−1

hL−L(x)dσ(x) ≥ 1

2δ
≥ 1

2(1 + α)
.

Note that L∗ ⊃ (L − L)∗ ⊃ Bd
2 , thus, by Lemma 11.1 and polarity, we obtain

that L has a k dimensional projection PF with d(PFL,Bd
2 ∩ F) ≤ 1 + ε and k ≥

C(ε) 1
4(1+α)2m. Here, C(ε) is the same as in Lemma 11.1. ��

The novel geometric idea of our proof is the following. We call a convex body
T = conv (T1 ∪ {±e}) in R

m a double cone if T1 = −T1 is convex set, spanT1
is an (m − 1)-dimensional linear subspace, and e ∈ R

m \ span T1. Double cones
are irreducible convex bodies, that is, for any double cone T , if T = L − L then
L = T/2, see [11, 13]. We prove a stability version of this fact.

Lemma 11.3 (Stability of Irreducibility of Double Cones) Let L be a convex
body in R

m with m ≥ 2, and T be a double cone of the form T = conv (T1 ∪ {±e}).
Assume that T ⊆ L − L ⊆ δT for some 1 ≤ δ < 3

2 . Then

(
3

2
− δ

)
T ⊆ L − a ⊆

(
δ − 1

2

)
T .

for some a ∈ R
m.
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Proof By the assumptions, e ∈ T ⊆ L − L, thus, by translating L, we may assume
that o, e ∈ L. Thus,

L ⊆ (L − L) ∩ (L − L + e) ⊆ δT ∩ (δT + e). (11.2)

We claim that

δT ∩ (δT + e) = e

2
+
(
δ − 1

2

)
T . (11.3)

Indeed, let Hλ denote the hyperplane Hλ = λe + span T1. To prove (11.3), we
describe the sections of the right hand side and the left hand side by the hyperplanes
Hλ for all relevant values of λ. For any λ ∈ [−δ, δ], we have

δT ∩ Hλ = δ(T ∩ Hλ/δ) = λe + δ

(
1 − |λ|

δ

)
T1.

For any λ ∈ [−δ + 1, δ + 1], we have

(δT + e) ∩ Hλ = e + (δT ∩ Hλ−1) = λe + δ

(
1 − |λ − 1|

δ

)
T1.

Thus, for any λ ∈ [−δ + 1, δ], we have

δT ∩ (δT + e) ∩ Hλ = λe + δ

(
1 − 1

δ
max{|λ|, |λ − 1|}

)
T1.

On the other hand, for any λ ∈ [−δ + 1, δ], we have

(e/2 + (δ − 1/2)T ) ∩ Hλ = λe + (δ − 1/2)

(
1 − |λ − 1/2|

δ − 1/2

)
T1.

Combining these two equations yields (11.3).
Thus,

T ⊆ L − L =
(
L − e

2

)
−
(
L − e

2

)
⊆
(
L − e

2

)
−
(
δ − 1

2

)
T .

Using the fact that T = −T , and 1 ≤ δ < 3/2, we obtain

(
3

2
− δ

)
T ⊆ L − e

2
,

finishing the proof of Lemma 11.3. ��
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Now, we are ready to prove Theorem 11.1. With the notations of the theorem,
let D = K − K , and apply the symmetric version of the theorem for D in place
of K . We may assume that ε < 1/2. In case (1), we use Lemma 11.2 and loose a
linear factor in the dimension of the almost-Euclidean projection. In case (2), we
use Lemma 11.3 with T = Bm

1 and δ = 1 + ε, and obtain the same dimension for
the almost-�m1 projection.
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Chapter 12
An Interpolation Proof of Ehrhard’s
Inequality

Joe Neeman and Grigoris Paouris

Abstract We prove Ehrhard’s inequality using interpolation along the Ornstein–
Uhlenbeck semi-group. We also provide an improved Jensen inequality for Gaussian
variables that might be of independent interest.

12.1 Introduction

In [8], A. Ehrhard proved the following Brunn–Minkowski like inequality for
convex sets A,B in R

n:

�−1 (γn(λA + (1 − λ)B)) ≥ λ�−1(γn(A)) + (1 − λ)�−1(γn(B)), λ ∈ [0, 1],
(12.1)

where γn is the standard Gaussian measure in R
n (i.e. the measure with density

(2π)−n/2e−|x|2/2) and � is the Gaussian distribution function (i.e. �(x) =
γ1(−∞, x)).

This is a fundamental result of Gaussian space and it is known to have numerous
applications (see, e.g., [11]). Ehrhard’s result was extended by R. Latała [10] to the
case that one of the two sets is Borel and the other is convex. Finally, C. Borell [5]
proved that it holds for all pairs of Borel sets. Ehrhard’s original proof for convex
sets used a Gaussian symmetrization technique. Borell used the heat semi-group and
a maximum principle in his proof, which has since been further developed by Barthe
and Huet [4]; very recently Ivanisvili and Volberg [9] developed this method into a
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general technique for proving convolution inequalities. Another proof was recently
found by van Handel [14] using a stochastic variational principle.

In this work we will prove Ehrhard’s inequality by constructing a quantity that is
monotonic along the Ornstein–Uhlenbeck semi-group. In recent years this approach
has been developed into a powerful tool to prove Gaussian inequalities such as
Gaussian hypercontractivity, the log-Sobolev inequality, and isoperimetry [2]. There
is no known proof of Ehrhard inequality using these techniques and the purpose of
this note is to fill this gap.

An interpolation proof of the Lebesgue version of Ehrhard’s inequality (the
Prékopa–Leindler inequality) was presented recently in [7]. This proof uses an
“improved reverse Hölder” inequality for correlated Gaussian vectors that was
established in [7]. A generalization of the aforementioned inequality also appeared
recently [12, 13]. This inequality, while we call an “improved Jensen inequality”
for correlated Gaussian vectors, we present and actually also extend in the present
note. In Sect. 12.2 we briefly discuss how this inequality implies several known
inequalities in probability, convexity and harmonic analysis. Using a “restricted”
version of this inequality (Theorem 12.2.2), we will present a proof of Ehrhard’s
inequality.

The paper is organized as follows: In Sect. 12.2 we introduce the notation and
basic facts about the Ornstein–Uhlenbeck semi-group, and we present the proof of
the restricted, improved Jensen inequality. In Sect. 12.3 we use Jensen inequality to
provide a new proof of Prékopa–Leindler inequality. We will use the main ideas of
this proof as a guideline for our proof of Ehrhard’s inequality that we present in
Sect. 12.4.

12.2 An “Improved Jensen” Inequality

Fix a positive semi-definite D × D matrix A, and let X ∼ N (0, A). For t ≥ 0, we
define the operator PA

t on L1(R
D, γA) by

(PA
t f )(x) = Ef (e−t x +

√
1 − e−2tX).

We will use the following well-known (and easily checked) facts:

• the measure γA is stationary for PA
t ;

• for any s, t ≥ 0, PA
s PA

t = PA
s+t ;

• if f is a continuous function having limits at infinity then PA
s f converges

uniformly to PA
t f as s → t .
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We will also use the following “diffusion” formula for PA
t : let " : Rk → R be a

bounded C2 function. For any bounded, measurable f = (f1, . . . , fk) : RD → R
k ,

any x ∈ R
D and any 0 < s < t , PA

t−s"(PA
s f (x)) is differentiable in s and satisfies

∂

∂s
PA
t−s"(PA

s f ) = −PA
t−s

k∑
i,j=1

∂i∂j"(f )〈∇PA
s fi, A∇PA

s fj 〉. (12.2)

Suppose that D = ∑k
i=1 di , where di ≥ 1 are integers. We decompose R

D as∏k
i=1 R

di and write %i for the projection on the ith component. Given a k × k

matrix M , write Ed1,...,dk (M) for the D × D matrix whose i, j entry is Mk,� if∑
a<k da < i ≤ ∑

a≤k da and
∑

b<� db < j ≤ ∑
b≤� db; that is, each entry Mk,� of

M is expanded into a dk × d� block. We write ‘7’ for the element-wise product of
matrices, ‘
’ for the positive semi-definite matrix ordering, and HJ for the Hessian
matrix of the function J .

Our starting point in this note is the following inequality, which may be seen as
an improved Jensen inequality for correlated Gaussian variables.

Theorem 12.2.1 Let �1, . . . , �k be open intervals in R; let � = ∏k
i=1 �i and let

X ∼ γA. For a bounded, C2 function J : � → R, the following are equivalent:

(2.1.a) for every x ∈ �, A 7 Ed1,...,dk (HJ (x)) 
 0
(2.1.b) for every k-tuple of measurable functions fi : Rdi → �i ,

EJ (f1(X1), . . . , fk(Xk)) ≥ J (Ef1(X1), . . . ,Efk(Xk)). (12.3)

We remark that the restriction that J be bounded can often be lifted. For example,
if J is a continuous but unbounded function then one can still apply Theorem 12.2.1
on bounded domains �′

i ⊂ �i . If J is sufficiently nice (e.g. monotonic, or bounded
above) then one can take a limit as �′

i exhausts �i (e.g. using the monotone
convergence theorem, or Fatou’s lemma).

As we have already mentioned, Theorem 12.2.1 is known to have many
consequences. However, we do not know how to obtain Ehrhard’s inequality using
only Theorem 12.2.1; we will first need to extend Theorem 12.2.1 in a few ways.
To motivate our first extension, note that the usual Jensen inequality on R extends
easily to the case where some function is convex only on a sub-level set. To be more
precise, take a C2 function ψ : Rd → R and the set B = {x ∈ R

d : ψ(x) < 0}. If B
is connected and ψ is convex when restricted to B, one can show that B is convex
and hence Eψ(X) ≥ ψ(EX) for any random vector supported on B. A similar
modification may be made to Theorem 12.2.1.

Theorem 12.2.2 Take the notation and assumptions of Theorem 12.2.1, and assume
in addition that {x ∈ � : J (x) < 0} is homeomorphic to an open ball. Then the
following are equivalent:
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(2.1.a) for every x ∈ � such that J (x) < 0, A 7 Ed1,...,dk (HJ (x)) 
 0
(2.1.b) for every k-tuple of measurable functions fi : Rdi → �i that γA-a.s. satisfy

J (f1, . . . , fk) < 0,

EJ (f1(X1), . . . , fk(Xk)) ≥ J (Ef1(X1), . . . ,Efk(Xk)).

Note that the threshold of zero in the conditions J (x) < 0 and J (f1, . . . , fk) < 0
is arbitrary, since we may apply the theorem to the function J (·)− a for any a ∈ R.
Of course, taking a sufficiently large recovers Theorem 12.2.1.

Proof Suppose that (2.2.a) holds. By standard approximation arguments, it suffices
to prove (2.2.b) for a more restricted class of functions f . Indeed, let F be the set
of measurable f = (f1, . . . , fk) satisfying J (f ) < 0 γA-a.s. and let Fε ⊂ F

be those functions that are continuous, converge to a limit at infinity, and satisfy
J (f ) ≤ −ε γA-a.s. Now, every f ∈ F can be approximated in L1(γA) by a
sequence f (n) ∈ F1/n: by truncating the values of f outside of a large ball in R

D

and away from the boundary of {x : J < 0}, we can approximate f ∈ F in L1(γA)

by f̃ satisfying the latter two conditions. To ensure continuity, we can use mollifiers:
if Tg denotes the convolution of g with a smooth, compactly supported mollifier and
F is a homeomorphism from {J < 0} to a ball, then F−1◦(T (F◦f̃ )) is a continuous
approximation of f̃ that takes values in {J < 0}. With these approximations in
mind, it suffices to prove (2.2.b) for f ∈ Fε , where ε > 0 is arbitrarily small. From
now on, fix ε > 0 and fix f = (f1, . . . , fk) ∈ Fε .

Recalling that %i : Rd1 × · · · × R
dk → R

di is the projection onto the ith block
of coordinates, define gi = fi ◦ %i and Gs,t(x) = PA

t−sJ (P
A
s g(x)). Since f ∈

Fε , we have G0,0(x) ≤ −ε for every x ∈ R
D . Moreover, since f is continuous

and vanishes at infinity, PA
s g → g uniformly as s → 0. Since g is bounded, J

is uniformly continuous on the range of g and so there exists δ > 0 such that
|Gs,s(x) − Gr,r(x)| < ε for every x ∈ R

D and every |s − r| ≤ δ.
Now, fix r ≥ 0 and assume that Gr,r ≤ −ε pointwise; by the previous paragraph,

Gs,s < 0 pointwise for every r ≤ s ≤ r + δ. Now we apply the commutation
formula (12.2): with Bs = Bs(x) = A 7 Ed1,...,dk (HJ (P

A
s g)), we have

∂

∂s
Gs,t = −PA

t−s

k∑
i,j=1

〈∇PA
s gi, B∇PA

s gj 〉

(here, we have used the observation that PA
s gi(x) depends only on %ix, and so

∇PA
s gi is zero outside the ith block of coordinates). The assumption (2.2.a) implies

that Bs is positive semi-definite whenever Gs,s < 0; since Gs,s < 0 for every s ∈
[r, r+δ], we see that for such s, ∂

∂s
Gs,r+δ ≤ 0 pointwise. Since Gs,r+δ is continuous

in s and Gr,r ≤ −ε, it follows that Gs,s ≤ −ε pointwise for all s ∈ [r, r + δ].
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Next, note that r = 0 satisfies the assumption Gr,r ≤ −ε of the previous
paragraph. By induction, it follows that Gr,r ≤ −ε pointwise for all r ≥ 0. Hence,
the matrix Bs is positive semi-definite for all s ≥ 0 and x ∈ R

D , which implies that
Gs,t(x) is non-increasing in s for all t ≥ s and x ∈ R

D . Hence,

EJ (f1(X1), . . . , fk(Xk)) = lim
t→∞G0,t (0) ≥ lim

t→∞Gt,t (0) = J (Ef1, . . . ,Efk).

This completes the proof of (2.2.b).
Now suppose that (2.2.b) holds. Choose some v ∈ R

D and some y ∈ � with
J (y) < 0; to prove (2.2.a), it is enough to show that

vT (A 7 Ed1,...,dk (HJ (y)))v ≥ 0. (12.4)

Since � is open and J is continuous, there is some δ > 0 such that y + z ∈ � and
J (y + z) < 0 whenever maxi |zi | ≤ δ. For this δ, define ψ : R → R by

ψ(t) = max{−δ,min{δ, t}}.

For ε > 0, define fi,ε : Rdi → �i by

fi,ε (x) = yi + ψ(ε〈x,%iv〉).

By (2.2.b),

EJ (f1,ε (X1), . . . , fk,ε(Xk)) ≥ J (Ef1,ε(X1), . . . ,Efk,ε(Xk)).

Since ψ is odd, Efi,ε (Xi) = yi for all ε > 0; hence,

EJ (f1,ε(X1), . . . , fk,ε(Xk)) ≥ J (y). (12.5)

Taylor’s theorem implies that for any z with y + z ∈ �,

J (y + z) = J (y) +
k∑

i=1

∂J (y)

∂yi
zi +

k∑
i,j=1

∂2J (y)

∂yi∂yj
zizj + ρ(|z|),

where ρ is some function satisfying ε−2ρ(ε) → 0 as ε → 0. Now consider what
happens when we replace zi above with Zi = ψ(ε〈Xi,%iv〉) and take expectations.
One easily checks that EZi = 0, Eρ(|Z|) = o(ε2), and

EZiZj = ε2(%iv)
T
E[XiXj ](%iv) + o(ε2);
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hence,

EJ (y + Z) = J (y) + ε2
k∑

i,j=1

∂2J (y)

∂yi∂yj
(%iv)

T
E[XiXj ](%iv) + o(ε2)

= J (y) + ε2vT (A 7 Ed1,...,dk (HJ (y)))v + o(ε2).

On the other hand, EJ (y + Z) = EJ (f1,ε(X1), . . . , fk,ε(Xk)), which is at least
J (y) according to (12.5). Taking ε → 0 proves (12.4). ��

12.3 A Short Proof of Prékopa–Leindler Inequality

The Prékopa–Leindler inequality states that if f, g, h : Rd → [0,∞) satisfy

h(λx + (1 − λ)y) ≥ f (x)λg(y)1−λ

for all x, y ∈ R
d and some λ ∈ (0, 1) then

Eh ≥ (Ef )λ(Eg)1−λ,

where expectations are taken with respect to the standard Gaussian measure on
R

d . By applying a linear transformation, the standard Gaussian measure may be
replaced by any Gaussian measure; by taking a limit over Gaussian measures with
large covariances, the expectations may also be replaced by integrals with respect to
the Lebesgue measure.

As M. Ledoux brought to our attention, the Prékopa–Leindler inequality may be
seen as a consequence of Theorem 12.2.1; we will present only the case d = 1, but
the case for general d may be done in a similar way. Alternatively, one may prove
the Prékopa–Leindler inequality for d = 1 first and then extend to arbitrary d using
induction and Fubini’s theorem.

Fix λ ∈ (0, 1), let (X, Y ) ∼ N
(
0,
( 1 ρ
ρ 1

))
and let Z = λX + (1 − λ)Y . Let

σ 2 = σ 2(ρ, λ) be the variance of Z and let A = A(ρ, λ) be the covariance of
(X, Y,Z). Note that A is a rank-two matrix, and that it may be decomposed as
A = uuT + vvT where u and v are both orthogonal to (λ, 1 − λ,−1)T .

For α,R ∈ R+, define Jα,R : R3+ → R by

Jα,R(x, y, z) = (xλy1−λz−α)R.

Lemma 12.3.1 For any λ and ρ, and for any α < σ 2, there exists R ∈ R+ such
that A 7 HJα,R 
 0.

To see how the Prékopa–Leindler inequality follows from Theorem 12.2.1 and
Lemma 12.3.1, suppose that h(λx + (1 − λ)y) ≥ f λ(x)g1−λ(y) for all x, y ∈ R.
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Then Jα,R(f (X), g(Y ), h1/α(Z)) ≤ 1 with probability one (because Z = λX +
(1 −λ)Y with probability one). By Theorem 12.2.1, with the R from Lemma 12.3.1
we have

1 ≥ EJα,R(f (X), g(Y ), h(Z))

≥ Jα,R(Ef (X),Eg(Y ),Eh(Z))

=
(
(Ef (X))λ(Eg(Y ))1−λ

(Eh1/α(Z))α

)R

.

In other words, (Eh1/α(Z))α ≥ (Ef )λ(Eg)1−λ. This holds for any ρ and any α <

σ 2. By sending ρ → 1, we send σ 2 → 1 and so we may take α → 1 also. Finally,
note that in this limit Z converges in distribution to N (0, 1). Hence, we recover the
Prékopa–Leindler inequality for the standard Gaussian measure.

Proof of Lemma 12.3.1 By a computation,

HJα,R = Jα,R(x, y, z)

⎛
⎜⎜⎝

λR(λR−1)
x2

λR(1−λ)R
xy

−λαR2

xz
λR(1−λ)R

xy
(1−λ)R((1−λ)R−1)

y2 − (1−λ)αR2

yz

−λαR2

xz
− (1−λ)αR2

yz
αR(αR+1)

z2

⎞
⎟⎟⎠ .

We would like to show that A 7 HJ 
 0; since elementwise multiplication
commutes with multiplication by diagonal matrices, it is enough to show that

A 7
⎛
⎜⎝
⎛
⎝

λ

1 − λ

−α

⎞
⎠

⊗2

− 1

R

⎛
⎝
λ 0 0
0 1 − λ 0
0 0 −α

⎞
⎠
⎞
⎟⎠ ≥ 0. (12.6)

Let θ = (λ, 1 − λ,−α)T and recall that A = uuT + vvT , where u and v are both
orthogonal to (λ, 1 − λ − 1)T . Then

A 7 (θθT ) = (u 7 θ)(u 7 θ)T + (v 7 θ)(v 7 θ)T ,

where u 7 θ and v 7 θ are both orthogonal to (1, 1, 1
α
)T (call this w). In particular,

A 7 (θθT ) is a rank-two, positive semi-definite matrix whose null space is the span
of w.

On the other hand, A 7 diag(λ, 1 − λ,−α) = diag(λ, 1 − λ,−ασ 2) (call this
D). Then wT Dw = 1 − σ 2/α < 0. As a consequence of the following Lemma,

A ◦ (θθT ) − 1

R
D ≥ 0

for all sufficiently large R. ��
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Lemma 12.3.2 Let A be a positive semi-definite matrix and let B be a symmetric
matrix. If uT Bu ≥ δ|u|2 for all u ∈ ker(A) and vT Av ≥ δ|v|2 for all v ∈ ker(A)⊥
then A+ εB 
 0 for all 0 ≤ ε ≤ δ2

‖B‖2+δ‖B‖ , where ‖B‖ is the operator norm of B.

Proof Any vector w may be decomposed as w = u + v with u ∈ ker(A) and
v ∈ ker(A)⊥. Then

wT (A + εB)w = uT Au + εuT Bu + 2εuT Bv + εvT Bv

≥ δ|u|2 − ε‖B‖|u|2 − 2ε‖B‖|u||v| + εδ|v|2.

Considering the above expression as a quadratic polynomial in |u| and |v|, we see
that it is non-negative whenever (δ − ε‖B‖)δ ≥ ε‖B‖2. ��

We remark that the preceding proof of the Prékopa–Leindler inequality may be
extended in an analogous way to prove Barthe’s inequality [3].

12.4 Proof of Ehrhard’s Inequality

The parallels between the Prékopa–Leindler and Ehrhard inequalities become
obvious when they are both written in the following form. The version of Prékopa–
Leindler that we proved above may be restated to say that

exp(R(λ log f (X) + (1 − λ) log g(Y ) − α logh(Z))) ≤ 0 a.s.

implies

exp(R(λ logEf (X) + (1 − λ) logEg(Y ) − α logEh(Z))) ≤ 0.

⎫
⎪⎪⎬
⎪⎪⎭

(12.7)

On the other hand, here we will prove that

�
(
R(λ�−1(f (X)) + (1 − λ)�−1(g(Y )) − σ�−1(h(Z)))

)
≤ 0 a.s.

implies

�
(
R(λ�−1(Ef (X)) + (1 − λ)�−1(Eg(Y )) − σ�−1(Eh(Z)))

)
≤ 0.

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(12.8)

(It may not yet be clear why the α in (12.7) has become σ in (12.8); this turns
out to be the right choice, as will become clear from the example in Sect. 12.4.1.)
This implies Ehrhard’s inequality in the same way that (12.7) implies the Prékopa–
Leindler inequality. In particular, our proof of (12.7) suggests a strategy for
attacking (12.8): define the function

JR(x, y, z) = �
(
R(λ�−1(x) + (1 − λ)�−1(y) − σ�−1(z))

)
.
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(We will drop the parameter R when it can be inferred from the context.) In analogy
with our proof of Prékopa–Leindler, we might then try to show that for sufficiently
large R, A 7 HJR 
 0. Unfortunately, this is false.

12.4.1 An Example

Recall from the proof of Theorem 12.2.2 that if A 7 HJ 
 0 then

Gs,t,R(x, y) := PA
t−sJR(P

1
s f (x), P 1

s g(y), P
σ 2

s h(λx + (1 − λ)y))

is non-increasing in s for every x and y. We will give an example in which Gs,t,R

may be computed explicitly and it clearly fails to be non-increasing.
From now on, define fs = P 1

s f , gs = P 1
s g and hs = Pσ 2

s h. Let f (x) = 1{x≤a},
g(y) = 1{y≤b} and h(z) = 1{z≤c}, where c ≥ λa + (1 − λ)b. A direct computation
yields

fs(x) = �

(
a − e−sx√

1 − e−2s

)

gs(y) = �

(
b − e−sy√

1 − e−2s

)

hs(z) = �

(
c − e−sz

σ
√

1 − e−2s

)
.

Hence,

J (fs(x), gs(y), hs(λx + (1 − λy))) = �

(
R
λa + (1 − λ)b − c√

1 − e−2s

)
.

If c > λa + (1 − λ)b then the above quantity is increasing in s. Since it is also
independent of x and y, it remains unchanged when applying PA

t−s . That is,

Gs,t,R = �

(
R
λa + (1 − λ)b − c√

1 − e−2s

)

is increasing in s. On the bright side, in this example G
s,r,R

√
1−e−2s is constant.

Since Theorem 12.2.1 was not built to consider such behavior, we will adapt it so
that the function J is allowed to depend on s.
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12.4.2 Allowing J to Depend on t

Recalling the notation of Sect. 12.2, we assume from now on that �i ⊆ [0, 1] for
each i. Then A is a k × k matrix; let σ 2

1 , . . . , σ
2
k be its diagonal elements. We will

consider functions of the form J : � × [0,∞] → R. We write HJ for the Hessian
matrix of J with respect to the variables in �, and ∂J

∂t
for the partial derivative

of J with respect to the variable in [0,∞]. Let I : [0, 1] → R be the function
I (x) = φ(�−1(x)).

Lemma 12.4.1 With the notation above, suppose that J : � × [0,∞] → R is
bounded and C2, and take (X1, . . . , Xk) ∼ γA. Let λ1, . . . , λk be non-negative
numbers with

∑
i λi = 1, let D(x) be the k × k diagonal matrix with λiσ

2
i /I

2(xi)

in position i, and take some ε ≥ 0. If ∂J
∂t

(x, t) ≤ 0 and

A 7 HJ (x, t) − (e2(t+ε) − 1)
∂J (x, t)

∂t
D 
 0 (12.9)

for every x ∈ � and t > 0 then for every k-tuple of measurable functions fi : R →
�i ,

EJ (Pσ1
ε f1(X1), . . . , P

σk
ε fk(Xk), 0) ≥ J (Ef1(X1), . . . ,Efk(Xk),∞). (12.10)

Note that Lemma 12.4.1 has an extra parameter ε ≥ 0 compared to our
previous versions of Jensen’s inequality. This is for convenience when applying
Lemma 12.4.1: when ε > 0 then the function e2(t+ε) − 1 is bounded away from
zero, which makes (12.9) easier to check.

Proof Write fi,s for P
σ 2
i

s+εfi and fs = (f1,s, . . . , fk,s). Define

Gs,t = PA
t−sJ (f1,s, . . . , fk,s , s).

We differentiate in s, using the commutation formula (12.2). Compared to the proof
of Theorem 12.2.2, an extra term appears because the function J itself depends on s:

− ∂

∂s
Gs,t = Pt−s

k∑
i,j=1

∂i∂jJ (fs, s)Aij f
′
i,sf

′
j,s − Pt−s

∂J

∂s
(fs, s)

= Pt−sv
T
s (A 7 HJ (fs, s))vs − Pt−s

∂J

∂s
(fs, s),

where vs = ∇fs . Bakry and Ledoux [1] proved that |vi,s | ≤ σ−1
i (e2(s+ε) −

1)−1/2I (fi,s ). Hence,

vTs D(fs)vs =
k∑

i=1

λi

(
σi |vi,s |
I (fi,s )

)2

≤ (e2(s+ε) − 1)−1,
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and so

− ∂

∂s
Gs,t ≥ Pt−s

(
vTs (A 7 HJ (fs, s))vs − (e2(s+ε) − 1)

∂J

∂s
(fs, s)v

T
s D(fs)vs

)
.

Clearly, the argument of Pt−s is non-negative pointwise if

A 7 HJ (x, s) 
 (e2(s+ε) − 1)
∂J (x, s)

∂s
D(x)

for all x, s. In this case, Gs,t is non-increasing in s and we conclude as in the proof
of Theorem 12.2.2. ��

By combining the ideas of Theorem 12.2.2 and Lemma 12.4.1, we obtain the
following combined version.

Corollary 12.4.2 With the notation of Lemma 12.4.1, suppose that J : � ×
[0,∞] → R is bounded and C2, and take (X1 . . . , Xk) ∼ γA. Let λ1, . . . , λk be
non-negative numbers with

∑
i λi = 1, let D(x) be the k × k diagonal matrix with

λiσ
2
i /I

2(xi) in position i, and take some ε ≥ 0. Assume that {x ∈ � : J (x, 0) < 0}
is homeomorphic to an open ball, that ∂J (x,t)

∂t
≤ 0 whenever J (x, t) < 0, and that

A 7 HJ (x, t) − (e2(t+ε) − 1)
∂J (x, t)

∂t
D 
 0

for every t ≥ 0 and every x such that J (x, t) < 0. Then for every k-tuple of

measurable functions fi : R → �i satisfying J (P
σ 2

1
ε f1, . . . , P

σ 2
k

ε fk, 0) < 0 γA-
a.s.,

EJ (P
σ 2

1
ε f1(X1), . . . , P

σ 2
k

ε fk(Xk), 0) ≥ J (Ef1(X1), . . . ,Efk(Xk),∞).

Proof As in the proof of Theorem 12.2.2, we can assume that f = (f1, . . . , fk) is
bounded, continuous, converges to a constant near infinity, and we can strengthen
the assumption

J (P
σ 2

1
ε f1, . . . , P

σ 2
k

ε fk, 0) < 0

to

J (P
σ 2

1
ε f1, . . . , P

σ 2
k

ε fk, 0) < −η

for some fixed but arbitrarily small η > 0. As in the proof of Lemma 12.4.1, we

define fi,s = P
σ 2
i

s+εfi and

Gs,t = PA
t−sJ (f1,s, . . . , fk,s , s).
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The same computation as in Lemma 12.4.1 shows that ∂
∂s
Gs,t ≤ 0 whenever Gs,s =

J (f1,s, . . . , fk,s , s) < 0 (the requirement that Gs,s < 0 is the only difference so far
compared to the proof of Lemma 12.4.1, in which it was shown that ∂

∂s
Gs,t ≤ 0

unconditionally).
Now we use the argument from the proof of Theorem 12.2.2: by uniform

continuity there exists δ > 0 such that |Gs,s(x)−Gr,r(x)| < η for every x ∈ R
k and

|s − r| < δ. Hence, if Gr,r ≤ −η pointwise then Gs,s < 0 (and hence Gs,r+δ < 0)
pointwise for every s ∈ [r, r + δ]. By the previous paragraph, Gs,r+δ is non-
increasing in s for s ∈ [r, r+δ], and so Gr+δ,r+δ ≤ Gr,r ≤ −η pointwise. Since we
assumed that G0,0 ≤ −η, it follows by induction that limt→∞ Gt,t ≤ G0,0, which
is the required conclusion. ��

12.4.3 The Hessian of J

Define JR : (0, 1)3 → 0 by

JR(x, y, z) = �
(
R
(
λ�−1(x) + (1 − λ)�−1(y) − σ�−1(z))

))
.

Let HJ = HJ (x, y, z) denote the 3 × 3 Hessian matrix of J ; let A be the 3 × 3
covariance matrix of (X, Y,Z). In order to apply Corollary 12.4.2, we will compute
the matrix A 7 HJ . First, we define some abbreviations: set

u = �−1(x) ! = λu + (1 − λ)v − σw

v = �−1(y) θ = (λ, 1 − λ,−σ)T

w = �−1(z) I = diag(φ(u), φ(v), φ(w))

We will use a subscript s to denote that any of the above quantities is evaluated at
(fs, gs, hs) instead of (x, y, z). That is us = �−1(fs), !s = λus +(1−λ)vs −σws ,
and so on.

Lemma 12.4.3 HJ = φ(R!)I−1
(
R diag(λu, (1 − λ)v,−σw) − R3!θθT

)
I−1.

Proof Noting that du
dx

= 1/φ(u), the chain rule gives

d

dx
�(R!) = Rλ

φ(R!)

φ(u)
= Rλ exp

(
−R2!2 − u2

2

)
.

Differentiating again,

d2

dx2
�(R!) = Rλ(u − R2!λ)

φ(R!)

φ2(u)
.
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For cross-derivatives,

d2

dxdy
�(R!) = −R3!λ(1 − λ)

φ(R!)

φ(u)φ(v)
.

Putting these together with the analogous terms involving differentiation by z,

HJ

φ(R!)
= −R3!

⎛
⎜⎜⎝

λ2

φ2(u)

λ(1−λ)
φ(u)φ(v)

− λσ
φ(u)φ(w)

λ(1−λ)
φ(u)φ(v)

(1−λ)2

φ2(v)
− (1−λ)σ

φ(v)φ(w)

− λσ
φ(u)φ(w)

− (1−λ)σ
φ(u)φ(v)

σ 2

φ2(w)

⎞
⎟⎟⎠

+ R

⎛
⎜⎝

λu

φ2(u)
0 0

0 (1−λ)v

φ2(v)
0

0 0 − σw

φ2(w)

⎞
⎟⎠ .

Recalling the definition of I and θ , this may be rearranged into the claimed form.
��

Having computed HJ , we need to examine A 7 HJ . Recall that A is a rank-two
matrix and so it may be decomposed as A = aaT + bbT . Moreover, the fact that
Z = λX + (1 − λ)Y means that a and b are both orthogonal to (λ, 1 − λ,−1)T .
Recalling the definition of θ , this implies that a7θ and b7θ are both orthogonal to
(1, 1, σ−1)T . This observation allows us to deal with the θθT term in Lemma 12.4.3:

A 7 θθT = (aaT ) 7 (θθT ) + (bbT ) 7 (θθT ) = (a 7 θ)⊗2 + (b 7 θ)⊗2.

To summarize:

Lemma 12.4.4 The matrix B := A 7 θθT is positive semidefinite and has rank
two. Its kernel is the span of (1, 1, 1

σ
)T .

On the other hand, the diagonal entries of A are 1, 1, and σ 2; hence,

A 7 diag(λu, (1 − λ)v,−σw) = diag(λu, (1 − λ)v,−σ 3w) =: D.

Combining this with Lemma 12.4.3, we have

A 7 HJ = Rφ(R!)I−1(D − R2!B)I−1. (12.11)

Consider the expression above in the light of our earlier proof of Prékopa–
Leindler. Again, we have a sum of two matrices (D and −R2!B), one of which
is multiplied by a factor (R2) that we may take to be large. There are two important
differences. The first is that the matrix D (whose analogue was constant in the proof
of Prékopa–Leindler) cannot be controlled pointwise in terms of B. This difference
is closely related to the example in Sect. 12.4.1; we will solve it by making J depend
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on t in the right way; the dJ
dt

term in Corollary 12.4.2 will then cancel out part of
D’s contribution.

The second difference is that in (12.11), the term that is multiplied by a
large factor (namely, −!B) is not everywhere positive semi-definite because there
exist (x, y, z) ∈ R

3 such that !(x, y, z) > 0. This is the reason that we
consider the “restricted” formulation of Jensen’s inequality in Theorem 12.2.2 and
Corollary 12.4.2.

12.4.4 Adding the Dependence on t

Recall that X and Y have variance 1 and covariance ρ, that Z = λX + (1 − λ)Y ,
and that A is the covariance of (X, Y,Z). Recall also the notations u, v,w,!, and
their subscripted variants. For R > 0, define r(t) = R

√
1 − e−2t−ε and

JR(x, y, z, t) = �
(
r(t)

(
λ�−1(x) + (1 − λ)�−1(y) − σ�−1(z))

))

= �(r(t)!). (12.12)

Let E = diag(λ, 1 − λ, σ)/(1 + σ−1).

Lemma 12.4.5 Define �ε = [�(−1/ε),�(1/ε)]3. For every ρ, λ, and ε, there
exists R > 0 such that

A 7 HJ − (e2(t+ε) − 1)
∂J

∂t
I−1EI−1 
 0

on {(x, t) ∈ �ε × [0,∞) : !(x) ≤ −ε}.
Proof We computed A 7 HJ in (12.11) already; applying that formula and noting
that I−1 
 0, it suffices to show that

r(t)φ(r(t)!)(D − r2(t)!B) − (e2(t+ε) − 1)
∂J

∂t
E 
 0

whenever ! ≤ −ε. (Recall that D = diag(λu, (1 − λ)v,−σ 3w), and that B is
a rank-two positive semidefinite matrix that depends only on ρ and λ, and whose
kernel is the span of (1, 1, σ−1)T ). We compute

∂J

∂t
= r ′(t)!φ(r(t)!) = r(t)

e2t+ε − 1
!φ(r(t)!).

Now, there is some δ = δ(ε) > 0 such that

e2(t+ε) − 1

e2t+ε − 1
≥ 1 + δ
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for all t ≥ 0. For this δ,

r(t)φ(r(t)!)(D − r2(t)!B) − (e2(t+ε) − 1)
∂J

∂t
E


 r(t)φ(r(t)!)(D − (1 + δ)!E − r2(t)!B);

Hence, it suffices to show that D − (1 + δ)!E − r2(t)!B 
 0. Since ! ≤ −ε,
it suffices to show that r2(t)εB + D − (1 + δ)!E 
 0. Now, B is a rank-two
positive semi-definite matrix depending only on λ and ρ. Its kernel is spanned by
θ = (1, 1, σ−1)T . Note that θT Dθ = ! and θT Eθ = 1. Hence,

θT (D − (1 + δ)!E)θ = −δ! ≥ δε > 0.

Next, note that we can bound the norm of D − (1 + δ)!E uniformly: on �ε ,
‖D‖ ≤ 1/ε and |!| ≤ 2/ε. All together, if we assume (as we may) that δ ≤ 1 then
‖D + (1 + δ)!E‖ ≤ 5/ε. By Lemma 12.3.2, if η > 0 is sufficiently small then

εB + η(D − (1 + δ)!E) 
 0.

To complete the proof, choose R large enough so that R2(1 − eε) ≥ 1/η; then
r2(t) ≥ 1/η for all t . ��

Finally, we complete the proof of (12.8) by a series of simple approximations.
First, let Ca denote the set of continuous functions R → [0, 1] that converge to a at
±∞, and note that it suffices to prove (12.8) in the case that f, g ∈ C0 and h ∈ C1.
Indeed, any measurable f, g : R → [0, 1] may be approximated (pointwise at γ1-
almost every point) from below by functions in C0, and any measurable h : R →
[0, 1] may be approximated from above by functions in C1. If we can prove (12.8)
for these approximations, then it follows (by the dominated convergence theorem)
for the original f, g, and h.

Now consider f, g ∈ C0 and h ∈ C1 satisfying !(f, g, h) ≤ 0 pointwise. For
δ > 0, define

fδ = �(−1/δ) ∨ f ∧ �(1/(3δ))

gδ = �(−1/δ) ∨ g ∧ �(1/(3δ))

hδ = �

(
− 1

3δ
∨ (�−1(h) + δ) ∧ 1

δ

)
.

If δ > 0 is sufficiently small then !(fδ, gδ, hδ) ≤ −δ pointwise; moreover, fδ, gδ ,
and hδ all take values in [�(−1/δ),�(1/δ)], are continuous, and have limits at
±∞. Since fδ → f as δ → 0 (and similarly for g and h), it suffices to show that

λ�−1(Efδ) + (1 − λ)�−1(Egδ) ≤ σ�−1(Ehδ) (12.13)

for all sufficiently small δ > 0.
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Since fδ has limits at ±∞, it follows that Pεfδ → fδ uniformly as ε → 0
(similarly for gδ and hδ). By taking ε small enough (at least as small as δ/2),
we can ensure that !(P 1

ε fδ, P
1
ε gδ, P

σ 2

ε hδ) < −ε pointwise. Now we apply
Corollary 12.4.2 with �i = [�(−1/ε),�(1/ε)], the function J defined in (12.12),
a = 1

2 , and with (λ1, λ2, λ3) = (λ, 1 − λ, σ−1)/(1 + σ−1). Lemma 12.4.5 implies
that the condition of Corollary 12.4.2 is satisfied. We conclude that

1

2
≥ JR(Efδ,Egδ,Ehδ,∞)

= �
(
R
(
λ�−1(Efδ) + (1 − λ)�−1(Egδ) − σ�−1(Ehδ)

))
,

which implies (12.13) and completes the proof of (12.8).
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Chapter 13
Bounds on Dimension Reduction
in the Nuclear Norm

Oded Regev and Thomas Vidick

Abstract For all n ≥ 1, we give an explicit construction of m × m matrices
A1, . . . , An with m = 2$n/2% such that for any d and d ×d matrices A′

1, . . . , A
′
n that

satisfy

‖A′
i − A′

j‖S1 ≤ ‖Ai − Aj‖S1 ≤ (1 + δ)‖A′
i − A′

j‖S1

for all i, j ∈ {1, . . . , n} and small enough δ = O(n−c), where c > 0 is a universal
constant, it must be the case that d ≥ 2$n/2%−1. This stands in contrast to the metric
theory of commutative �p spaces, as it is known that for any p ≥ 1, any n points in
�p embed exactly in �dp for d = n(n − 1)/2.

Our proof is based on matrices derived from a representation of the Clifford
algebra generated by n anti-commuting Hermitian matrices that square to identity,
and borrows ideas from the analysis of nonlocal games in quantum information
theory.
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13.1 Introduction

For p ≥ 1 let �p denote the space of real-valued sequences x ∈ R
N with finite

p-th norm ‖x‖p = (
∑

i |xi |p)1/p. For any n ≥ 1 and any x1, . . . , xn ∈ �2 there
exist y1, . . . , yn ∈ �n2 such that ‖xi − xj‖2 = ‖yi − yj‖2 for all i, j ∈ {1, . . . , n}.
This is immediate from the fact that any n-dimensional subspace of Hilbert space
is isometric to �n2. In fact, there even exist such y1, . . . , yn in �n−1

2 by considering
the n − 1 vectors x2 − x1, . . . , xn − x1. We can equivalently describe this as saying
that any n points in �2 can be isometrically embedded into �n−1

2 . By considering the
n-point set {0, e1, . . . , en−1} ⊆ R

n−1, where ei is the i-th canonical basis vector,
the dimension n− 1 is easily seen to be the best possible for isometric embeddings.

The Johnson–Lindenstrauss lemma [12] establishes the striking fact that if we
allow a small amount of error δ > 0, a much better “dimension reduction” is
possible. Namely, for any n ≥ 1, any points x1, . . . , xn ∈ �2, and any 0 < δ < 1,
there exist n points y1, . . . , yn ∈ �d2 with d = O(δ−2 logn) and such that for all
i, j ∈ {1, . . . , n},

‖yi − yj‖2 ≤ ‖xi − xj‖2 ≤ (1 + δ)‖yi − yj‖2 . (13.1)

This can be described as saying that any n points in �2 can be embedded into �d2
with (bi-Lipschitz) distortion at most 1 + δ. We remark that this bound on d was
recently shown to be tight [13] for essentially all values of δ for which the bound is
nontrivial.

The situation for other norms is not as well understood. Ball [4] showed that for
any p ≥ 1 and any integer n ≥ 1, any n points in �p embed isometrically into �dp
for d = n(n − 1)/2. He also showed that for 1 ≤ p < 2 this is essentially the best
possible result. However, if we allow some 1+δ distortion as in (13.1), the situation
again changes considerably. Specifically, for p = 1, Talagrand [26] (improving
slightly the dependence on δ in an earlier result by Schechtman [22]) showed that
for any 0 < δ < 1, one can embed any n points in �1 into �d1 with d ≤ Cδ−2n logn

where here and in what follows C is a universal constant that might vary at each
occurrence.1 See also [6, 22, 27] for extensions to other p and more details. The
bound was improved by Newman and Rabinovich [18] to d ≤ Cn/δ2 (see [16]),
and if we allow large enough distortion D > 1, the bound can be further reduced to
d ≤ Cn/D [3]. In terms of lower bounds, Brinkman and Charikar [7] showed that
there exist n points in �1 (in fact, in �n1) such that any embedding with distortion

D > 1 into �d1 requires d ≥ nC/D2
. For embeddings with distortion 1+δ, Andoni et

al. [2] showed a bound of d ≥ n1−C/ log(1/δ). See also [14, 21] for alternative proofs.

1In fact, he showed that one can even embed any n-dimensional subspace of �1 into �d1 with
distortion 1 + δ.
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Let S1 be the space of bounded linear operators on a separable Hilbert space
with finite Schatten-1 (or nuclear) norm ‖A‖S1 = ∑

i σi (A), where {σi(A)} are
the singular values of A. We also write Sm

1 for the space of linear operators acting
on an m-dimensional Hilbert space, equipped with the Schatten-1 norm. Our main
theorem shows that dimension reduction in this noncommutative analogue of �1
is strikingly different from that in �p spaces. Namely, there are n points that
require exponential dimension in any embedding with sufficiently low distortion.
In contrast, Ball’s result mentioned above [4] shows that in �p, any n points embed
isometrically into dimension n(n − 1)/2.

Theorem 13.1 For any n ≥ 1, there exist (2n+2) points in Sm
1 , where m = 2$n/2%,

such that any embedding into Sd
1 with distortion 1 + δ for 0 ≤ δ ≤ Cn−c requires

d ≥ 2$n/2%−1, where c, C > 0 are universal constants.

The space S1 is a major object of study in many areas of mathematics and
physics; see [17] for further details and references. One area where it plays
an especially important role is quantum mechanics, and specifically quantum
information. This area, and specifically the theory of Bell inequalities and nonlocal
games, served as an inspiration for our proof and the source of our techniques.

The best previously known bound on dimension reduction in S1 is due to Naor
et al. [17], who proved a result analogous to that of Brinkman and Charikar [7].
Namely, they showed that there exist n points in Sn

1 for which any embedding into

Sd
1 with distortion D > 1 requires d ≥ nC/D2

.2 The set of points they use is
Brinkman-Charikar use the diamond graph. Naor et al. use Laakso graphs, which
are very similar, and they comment that the same holds also for the diamond graphs.
I therefore think it’s OK not to say “essentially”.the one used by Brinkman and
Charikar [7] through the natural identification of �n1 with the subspace of diagonal
matrices in Sn

1. The effort then goes into showing that the bound in [7], which only
applies to embeddings into diagonal matrices, also applies to arbitrary matrices.

In Lemma 13.19 we show that for any 0 < δ < 1 the metric space induced by the
(2n+2) points from Theorem 13.1 can be embedded with distortion (1+δ) in Sd

1 for

d = nO(1/δ2). Therefore, in order to We can still hope to prove that for δ = 0.001,
our set of points requires dimension n100. Funny how in our case there really is
a threshold, where either the dimension is exponential, or we don’t get anything.
Having something more smooth seems to require “different techniques” to bound
the dimension of ε-representations of C(n) for large-ish ε. obtain exponential lower
bounds with constant δ one would have to use a different set of points.

Proof Overview Due to Ball’s upper bound [4], our set of points cannot be in
�1, and in particular, cannot be the set used in previous work [7, 17]. Instead, we

2Their result is actually much stronger, and incomparable to Theorem 13.1: they show that there is
no embedding into any nC/D2

-dimensional subspace of S1 (and in fact, they even allow quotients
of S1).
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introduce a new set of 2n + 2 points in Sm
1 , for m = 2$n/2%, and show that any

embedding with (1 + δ) distortion for small enough δ requires almost as large a
dimension. To achieve this we use metric conditions on the set of points to derive
algebraic relations on any operators that (approximately) satisfy the conditions. We
then conclude by applying results on the dimension of (approximate) representations
of a suitable algebra.

We now describe our construction. Let n be an even integer. For a matrix A and
an integer i, let A⊗i denote the tensor product of i copies of A. Let

X =
(

0 1
1 0

)
, Y =

(
0 i

−i 0

)
, and Z =

(
1 0
0 −1

)
.

For i ∈ {1, . . . , n/2} let C2i−1 = X⊗(i−1)⊗Z⊗Id⊗(n/2−i) and C2i = X⊗(i−1)⊗Y⊗
Id⊗(n/2−i). Then the matrices C1, . . . , Cn are Hermitian operators in Sd

1 , where d =
2n/2.3 Moreover,C2

i = Id for each i ∈ {1, . . . , n} and {Ci,Cj } = CiCj +CjCi = 0
for i �= j ∈ {1, . . . , n}. For i ∈ {1, . . . , n} let Pi,+ (resp., Pi,−) be the projection on
the +1 (resp., −1) eigenspace of Ci . Using that Pi,+ and Pi,− are orthogonal trace
0 projections that sum to identity, it is immediate that

∀i ∈ {1, . . . , n} ,

1

d
‖Pi,+‖S1 = 1

d
‖Id − Pi,+‖S1 = 1

d
‖Pi,−‖S1 = 1

d
‖Id − Pi,−‖S1 = 1

2
,

(13.2)

and

∀i ∈ {1, . . . , n} ,
1

d
‖Pi,+ − Pi,−‖S1 = 1 . (13.3)

Finally, using the anti-commutation property, it follows by an easy calculation that

∀i �= j ∈ {1, . . . , n}, ∀q, r ∈ {+,−} ,
1

d
‖Pi,q − Pj,r‖S1 =

√
2

2
.

(13.4)

Our main result is that (13.2)–(13.4) characterize the algebraic structure of any
operators that satisfy those metric relations, even up to distortion (1 + δ) for small
enough δ = O(n−c). Using labels O and σ to represent 0 and Id/d , and Xi and Yi

to represent Pi,+/d and Pi,−/d respectively, we show the following.

3For a construction over the reals, consider C′
2i−1 = C2i−1 ⊗ Id and C′

2i = C2i ⊗ Y . For even
values of n congruent to 4 or 6 mod 8 the doubling of the dimension is necessary [19].
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Theorem 13.2 Let n, d ≥ 1 be integers, 0 ≤ δ ≤ 1, and O,σ and
X1, Y1, . . . , Xn, Yn operators on C

d satisfying that for all i ∈ {1, . . . , n},

1 − δ ≤ ‖σ − O‖S1 ≤ 1 + δ ,

‖Xi − O‖S1 + ‖σ − Xi‖S1 ≤ 1 + δ ,

‖Yi − O‖S1 + ‖σ − Yi‖S1 ≤ 1 + δ ,

‖Xi − Yi‖S1 ≥ 1 − δ ,

and for all 1 ≤ i < j ≤ n,

min
{‖Xi − Xj‖S1 , ‖Xi − Yj‖S1, ‖Yi − Xj‖S1, ‖Yi − Yj‖S1

} ≥ (1 − δ)

√
2

2
.

(13.5)

Then there is a universal constant C > 0 and for i ∈ {1, . . . , n} orthogonal
projections Pi,+ and Pi,− on C

d ′
for some d ′ ≤ d such that Pi,+ + Pi,− = Id

such that if Ai = Pi,+ − Pi,− then

∀i �= j ∈ {1, . . . , n} ,
1

d ′
∥∥AiAj + AjAi

∥∥2
S2

≤ C n2 δ1/16 . (13.6)

Note that the theorem does not assume that the Xi and Yi are positive semidefi-
nite, nor even that they are Hermitian; our proof shows that the metric constraints are
sufficient to impose these conditions, up to a small approximation error. Similarly,
while we think of O as the zero matrix and of σ as the scaled identity matrix, these
conditions are not imposed a priori and have to be derived (which is very easy in the
case of O but less so in the case of σ ). The proof of the theorem explicitly shows
how to construct the projections Pi,+, Pi,− from Xi , Yi , O , and σ .

Theorem 13.1 follows from Theorem 13.2 by applying known lower bounds
on the dimension of (approximate) representations of the Clifford algebra that is
generated by n Hermitian anti-commuting operators4; we give an essentially self-
contained treatment in Sect. 13.6.

The proof of Theorem 13.2 is inspired by the theory of self-testing in quantum
information theory. We interpret conditions such as (13.5) as requirements on the
trace distance (which, up to a factor 2 scaling, is the name used for the nuclear
norm in quantum information) between post-measurement states that result from
the measurement of one half of a bipartite quantum entangled state. This allows us
to draw an analogy between metric conditions such as those in Theorem 13.2 and
constraints expressed by nonlocal games such as the CHSH game. Although this
interpretation can serve as useful intuition for the proof, we give a self-contained
proof that makes no reference to quantum information. We note that the relevance

4Note that the norm in (13.6) is the Schatten-2 norm.
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of dimension reduction for Schatten-1 spaces for quantum information has been
recognized before; e.g., Harrow et al. [10] show limitations on dimension reduction
maps that are restricted to be quantum channels (a result mostly superseded by [17]).

Open Questions We are currently not aware of any upper bound on the dimension
d required to embed any n points in S1 into Sd

1 with, say, constant distortion.
Proving such a bound would be interesting.

Regarding possible improvements to our main theorem, our result requires the
distortion of the embedding to be sufficiently small; specifically, δ needs to be at
most inverse polynomial in n. It is open whether our result can be extended to larger
distortions.

The connection with quantum information and nonlocal games suggests that
additional strong lower bounds may be achievable. For example, is it possible to
adapt the results from [11, 23] to construct a constant number of points in S1 such
that any embedding with distortion (1 + δ) in Sd

1 requires d ≥ 21/δc for some
constant c > 0?

We are not aware of results specifically addressing other Schatten spaces.
Nevertheless, here are some statements that follow easily from known results. First,

any set of n points in S2 trivially embeds into S�√n−1�
2 by first embedding the

points isometrically into �n−1
2 , as discussed earlier. Second, for S∞, it is well known

that any n point metric isometrically embeds in �n−1∞ and hence also in Sn−1∞ ; it
is possible that this could be improved. If we allow some distortion, a result by
Matoušek [15] shows that for D ≥ 1, an arbitrary n-point metric space embeds
with distortion D in �k∞, for some k = O(Dn1/$(D+1)/2% lnn) (see also [1] for more
general trade-offs between distortion and dimension for embedding arbitrary metric
space into �p, 1 ≤ p ≤ ∞).

13.2 Preliminaries

For a matrix A ∈ C
d×d we write ‖A‖S1 for the Schatten-1 norm (the sum of the

singular values). For the Schatten 2-norm (also known as the Frobenius norm) we
use ‖A‖F instead of ‖A‖S2 , and introduce the dimension-normalized norm ‖A‖f =
d−1/2‖A‖F . We write ‖A‖S∞ for the operator norm (the largest singular value).
We often consider terms of the form ‖T σ 1/2‖F for a Hermitian matrix T and a
positive semidefinite matrix σ ; notice that the square of this norm equals Tr(T 2σ).
For A,B square matrices we write [A,B] = AB − BA and {A,B} = AB + BA

for the commutator and anti-commutator respectively. We write U(d) for the set of
unitary matrices in C

d×d . We use the term “observable” to refer to any Hermitian
operator that squares to identity, and the term “projection” to refer to an orthogonal
projection.

We will often use that for any A and B,

‖AB‖S1 ≤ ‖A‖S∞‖B‖S1 ,
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and similarly with Schatten-1 replaced by the Frobenius norm (see, e.g., [5,
(IV.40)]).

Lemma 13.3 (Cauchy–Schwarz) For all matrices A,B,

‖AB‖S1 ≤ ‖A‖F ‖B‖F .

Proof By definition,

‖AB‖S1 = sup
U

Tr(UAB) ≤ sup
U

‖UA‖F ‖B‖F = ‖A‖F ‖B‖F ,

where the supremum is over all unitary matrices, and the inequality follows from
the Cauchy–Schwarz inequality. ��

13.3 Certifying Projections

In this section we prove Proposition 13.4, showing that metric constraints on a triple
of operators (X, Y, σ ), where σ is assumed to be positive semidefinite of trace 1, can
be used to enforce that the pair (X, Y ) is close to a “resolution of the identity,” in the
sense that there exists a pair (P,Q) of orthogonal projections such that P + Q =
Id and X ≈ σ 1/2Pσ 1/2, Y ≈ σ 1/2Qσ 1/2. The proposition also shows that P,Q

approximately commute with σ .

Proposition 13.4 Let σ be positive semidefinite with trace 1. Suppose that X, Y
satisfy the following constraints, for some 0 ≤ δ ≤ 1:

‖X‖S1 + ‖σ − X‖S1 ≤ 1 + δ , (13.7)

‖Y‖S1 + ‖σ − Y‖S1 ≤ 1 + δ , (13.8)

‖X − Y‖S1 ≥ 1 − δ . (13.9)

Then there exist orthogonal projections P,Q such that P + Q = Id and

max
{∥∥X − σ 1/2Pσ 1/2

∥∥
S1

,
∥∥Y − σ 1/2Qσ 1/2

∥∥
S1

}
= O

(
δ1/8) , (13.10)

max
{∥∥[P, σ 1/2]∥∥

F
,
∥∥[Q,σ 1/2]∥∥

F

}
= O

(
δ1/8) . (13.11)

For intuition regarding Proposition 13.4, consider the case where δ = 0, and
where X,Y, σ are one-dimensional, i.e., scalar complex numbers, X = x, Y = y,
and σ = 1. Then the first two conditions (13.7) and (13.8) imply that x, y are real
and x, y ∈ [0, 1]. The third condition (13.9) then implies that x, y ∈ {0, 1} and
x + y = 1. The proof of Proposition 13.4 follows the same outline, adapted to
higher-dimensional operators. The main idea is to argue that the projections P,Q
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on the positive and negative eigenspace of X−Y respectively approximately block-
diagonalize X, Y , and σ .

The proof is broken down into a sequence of lemmas. The first lemma shows that
X is close to its Hermitian part.

Lemma 13.5 (Hermitianity) Let σ be positive semidefinite such that Tr(σ ) = 1,
and X such that (13.7) holds, for some 0 ≤ δ ≤ 1. Then ‖X−Xh‖S1 ≤ 3

√
δ, where

Xh = 1
2 (X + X∗) is the Hermitian part of X.

Proof By (13.7),

4(Tr(X)) = 1 − 4(Tr(σ − X)) ≥ 1 − ‖σ − X‖S1 ≥ ‖X‖S1 − δ . (13.12)

Let X = Xh + Xa be the decomposition of X into Hermitian and anti-Hermitian
parts. Then 4(Tr(Xa)) = 0, so Tr(Xh) ≥ ‖X‖S1 − δ. Let W be a unitary such
that Tr(WXa) = ‖Xa‖S1 . Note that replacing W #→ (W − W∗)/2 we may assume
that W is anti-Hermitian (of operator norm at most 1), so (iW) is Hermitian. Let
0 ≤ α ≤ 1 be a parameter to be determined. Then all eigenvalues of Id + αW are
in the complex interval [1 − αi, 1 + αi] and therefore U = (Id + αW)/(1 + α2)1/2

has operator norm at most 1. Then

‖X‖S1 ≥ |Tr(UX)| ≥ 4(Tr(UXh) + Tr(UXa)
)

= 1

(1 + α2)1/2

(
Tr(Xh) + α‖Xa‖S1

)

≥ 1

(1 + α2)1/2

(‖X‖S1 − δ + α‖Xa‖S1

)
,

which shows that ‖Xa‖S1 ≤ α‖X‖S1 + δ/α. Choosing α = √
δ and using ‖X‖S1 ≤

(1 + δ) gives ‖Xa‖S1 ≤ 3
√
δ. ��

Lemma 13.6 Let X and Y be Hermitian matrices satisfying

‖X‖S1 + ‖Y‖S1 ≤ 1 + δ ,

‖X − Y‖S1 ≥ 1 − δ ,

Tr(X−) ≤ δ, and Tr(Y−) ≤ δ

for some 0 ≤ δ ≤ 1 where X− denotes the negative part of X in the decomposition
X = X+ −X− and similarly for Y . Then, if P denotes the projection on the positive
eigenspace of X − Y and Q = Id − P , we have

Tr(PX) ≥ ‖X‖S1 − 4δ , Tr(QY) ≥ ‖Y‖S1 − 4δ .
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Proof We have

1 − δ ≤ ‖X − Y‖S1 = Tr(P (X − Y )) − Tr(Q(X − Y ))

≤ Tr(PX) + Tr(QY) + 2δ

≤ Tr(PX) + ‖Y‖S1 + 2δ

≤ Tr(PX) + 1 + 3δ − ‖X‖S1 ,

where in the second inequality we used that Tr(PY ) ≥ −Tr(Y−) ≥ −δ, which
holds for any projection P , and similarly for Tr(QX). As a result, we get that

Tr(PX) ≥ ‖X‖S1 − 4δ ,

and similarly for Tr(QY). ��
Lemma 13.7 Let X be a Hermitian matrix and P a projection satisfying

‖X‖S1 ≤ 1,

Tr(X−) ≤ δ, (13.13)

Tr(PX) ≥ ‖X‖S1 − δ , (13.14)

for some 0 ≤ δ ≤ 1. Then,

‖PXP − X‖S1 ≤ O(
√
δ) .

Proof The assumption (13.13) is equivalent to ‖X − X+‖S1 ≤ δ, which implies
that ‖PXP − PX+P‖S1 ≤ δ. Therefore, by the triangle inequality, it suffices to
prove that

‖PX+P − X+‖S1 ≤ O(
√
δ) . (13.15)

Using the Cauchy–Schwarz inequality,

‖(Id − P)X+‖2
S1

≤ ‖(Id − P)(X+)1/2‖2
F ‖(X+)1/2‖2

F

= Tr
(
(Id − P)X+)‖X+‖S1

= (
Tr(X+) − Tr(PX) − Tr(PX−)

)‖X+‖S1

≤ δ‖X‖S1 ≤ δ ,

where the second line uses that (Id−P) is a projection and the fourth uses Tr(X+) ≤
‖X‖S1 for the first term and (13.14) for the second. To conclude, use the triangle
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inequality to write

‖PX+P −X+‖S1 ≤ ‖(P −Id)X+P‖S1 +‖X+(Id−P)‖S1 ≤ 2‖(Id−P)X+‖S1 .

��
Lemma 13.8 Let σ , X, and Y satisfy the assumptions of Proposition 13.4 for some
0 ≤ δ ≤ 1. Then there exist orthogonal projections P,Q such that P +Q = Id and

‖X − PσP‖S1 ≤ O(δ1/4) and ‖Y − QσQ‖S1 ≤ O(δ1/4). (13.16)

Moreover, there exists a positive semidefinite ρ that commutes with P and Q and
that satisfies ‖ρ − σ‖S1 ≤ O(δ1/4).

Proof Using Lemma 13.5, we can replace X and Y with their Hermitian parts, and
have Eqs. (13.7)–(13.9) still hold with O(

√
δ) in place of δ. By summing Eqs. (13.7)

and (13.8), and noting by the triangle inequality that ‖σ − X‖S1 + ‖σ − Y‖S1 ≥
‖X − Y‖S1 ≥ 1 − O(

√
δ), we get that ‖X‖S1 + ‖Y‖S1 ≤ 1 + O(

√
δ). Moreover,

Tr(X−) = ‖X+‖S1 − Tr(X)

≤ 1 + O(
√
δ) − ‖σ − X‖S1 − Tr(X)

≤ 1 + O(
√
δ) − Tr(σ − X) − Tr(X) = O(

√
δ)

and similarly for Y . We can therefore apply Lemma 13.6 and obtain that if P is the
projection on the positive eigenspace of X − Y and Q = Id − P ,

Tr(PX) ≥ ‖X‖S1 − O(
√
δ) and Tr(QY) ≥ ‖Y‖S1 − O(

√
δ) .

Applying Lemma 13.7 to X (scaled by a factor at most (1 + δ) so that the condition
‖X‖S1 ≤ 1 is satisfied) and P , we get that

‖PXP − X‖S1 = O(δ1/4) and ‖QYQ − Y‖S1 = O(δ1/4) . (13.17)

Notice that the set of constraints in Eqs. (13.7)–(13.9) is invariant under replacing
the pair (X, Y ) with (σ − Y, σ − X). Moreover, our assumption that X and Y are
Hermitian implies that σ − X and σ − Y are also Hermitian. Therefore, the exact
same argument as above applies also to σ − X and σ − Y and we conclude that

‖P(σ − Y )P − (σ − Y )‖S1 = O(δ1/4) and

‖Q(σ − X)Q − (σ − X)‖S1 = O(δ1/4) . (13.18)
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Notice that we used here the fact that (σ −Y )− (σ −X) = X−Y and therefore the
projections P and Q obtained when we apply Lemma 13.6 to X and Y are identical
to those obtained when we apply it to σ − Y and σ − X.

From (13.18), and since PQ = QP = 0, we obtain that

‖PσP − PXP‖S1 = ‖PQ(σ − X)QP − P(σ − X)P‖S1

≤ ‖Q(σ − X)Q − (σ − X)‖S1 = O(δ1/4) .

Together with (13.17) and the triangle inequality, this proves (13.16).
To prove the last part of the lemma, let ρ̃ = PXP +Q(σ−X)Q. Using again that

PQ = QP = 0 and that P , Q are projections, we see that ρ̃ commutes with P and
Q. By Eqs. (13.17) and (13.18) and the triangle inequality, ‖ρ̃ − σ‖S1 = O(δ1/4).
Finally, we define ρ to be the positive part of ρ̃, which due to the block diagonal
form of ρ̃ still commutes with P and Q. We have ‖ρ − σ‖S1 = O(δ1/4) since

‖ρ − ρ̃‖S1 = 1

2
(‖ρ̃‖S1 − Tr(ρ̃)) ≤ 1

2
(‖σ‖S1 − Tr(σ )) + O(δ1/4) = O(δ1/4) ,

where the last equality uses that σ is positive semidefinite. ��
We conclude by giving the proof of Proposition 13.4.

Proof of Proposition 13.4 Let P , Q, and ρ be as guaranteed by Lemma 13.8. Using
the Powers-Stormer inequality ‖√R−√

S‖F ≤ ‖R−S‖1/2
S1

for positive semidefinite
R, S (see, e.g., [5, (X.7)]), it follows that

‖ρ1/2 − σ 1/2‖F ≤ ‖ρ − σ‖1/2
S1

= O(δ1/8) . (13.19)

As a result, using the triangle inequality and Cauchy–Schwarz,

‖σ 1/2Pσ 1/2 − ρ1/2Pρ1/2‖S1 ≤ ‖(σ 1/2 − ρ1/2)Pσ 1/2‖S1

+ ‖ρ1/2P(σ 1/2 − ρ1/2)‖S1 ≤ O(δ1/8) ,

where we used that ‖Pσ 1/2‖F ≤ ‖σ 1/2‖F = 1 and ‖Pρ1/2‖F ≤ ‖ρ1/2‖F =
1 + O(δ1/4). But ρ commutes with P and therefore ρ1/2Pρ1/2 = PρP , and we
complete the proof of (13.10) by noting that

‖PρP − PσP‖S1 ≤ ‖ρ − σ‖S1 = O(δ1/4) .

To prove (13.11), notice that by (13.19) and the triangle inequality,

‖Pσ 1/2 − σ 1/2P‖F ≤ ‖Pρ1/2 − ρ1/2P‖F + O(δ1/8) ,

but the latter norm is zero since P commutes with ρ. ��
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Fig. 13.1 Vectors satisfying
the metric constraints

v1

u1

u2v2

13.4 Certifying Anti-commutation

In this section we prove Proposition 13.11. The proposition shows that assum-
ing two pairs of operators (X1, Y1) and (X2, Y2) satisfying the assumptions of
Proposition 13.4 satisfy additional metric constraints, the corresponding projections
(P1,Q1) and (P2,Q2) are such that the operators P1 − Q1 and P2 − Q2 have
small anti-commutator, in the appropriate norm. For intuition, consider the case of
operators in two dimensions, and σ = Id. Then, Proposition 13.4 shows that we can
think of (X1, Y1) and (X2, Y2) as two pairs of orthogonal projections. Assuming that
these projections are of rank 1 (as would follow from the constraint (13.22) below),
we can think of them as two pairs of orthonormal bases (u1, v1) and (u2, v2) of C2.
Suppose we were to impose that these vectors satisfy the four Euclidean conditions

‖u1 − u2‖2
2 = ‖u1 − v2‖2

2 = ‖v1 − u2‖2
2 = ‖v1 + v2‖2

2 = 2 − √
2 .

(13.20)

By expanding the squares, it is not hard to see that these conditions imply that the
bases must form an angle of π

4 as shown in Fig. 13.1.5 In particular, the reflection
operators Ai = uiu

∗
i −viv

∗
i , i ∈ {1, 2}, anti-commute. Proposition 13.11 adapts this

observation to the trace norm between matrices in any dimension, and small error.
We start with two technical claims.

Claim 13.9 Let A,B �= 0 be such that 4(Tr(A∗B)) ≥ (1 − δ)‖A‖F ‖B‖F for some
0 ≤ δ ≤ 1. Let α = ‖A‖F /‖B‖F . Then ‖A − αB‖F ≤ √

2δ‖A‖F .

Proof Expand

‖A − αB‖2
F = ‖A‖2

F + α2‖B‖2
F − 2α4(Tr(A∗B))

≤ ‖A‖2
F + α2‖B‖2

F − 2α(1 − δ)‖A‖F ‖B‖F
= 2δ‖A‖2

F .

��

5These conditions underlie the rigid properties of the famous CHSH inequality from quantum
information [25, 28].
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Claim 13.10 Let R be Hermitian and σ positive semidefinite such that Tr(σ ) = 1.
Suppose further that ‖σ 1/2Rσ 1/2‖S1 ≥ (1 − δ)

√
μ, where μ = Tr(R2σ). Then

∥∥(R2 − μId)σ 1/2
∥∥2
F

= O
(√

δ‖R‖2
S∞
)
μ .

Proof Let U be a unitary such that Uσ 1/2Rσ 1/2 = |σ 1/2Rσ 1/2| as given by the
polar decomposition. Let A = Rσ 1/2 and B = σ 1/2U , and notice that ‖A‖F = √

μ

and ‖B‖F = 1. Then

Tr
(
A∗B

) = Tr
(
σ 1/2Rσ 1/2U

) = Tr|σ 1/2Rσ 1/2| ≥ (1 − δ)
√
μ ,

by assumption. Applying Claim 13.9 it follows that

‖Rσ 1/2 − √
μσ 1/2U‖2

F ≤ 2δμ . (13.21)

By the triangle inequality,

‖RσR − μσ‖S1 ≤ ‖(Rσ 1/2 − √
μσ 1/2U)σ 1/2R‖S1

+ ‖√μσ 1/2U(
√
μU∗σ 1/2 − σ 1/2R)‖S1

≤ 2
√

2δμ ,

where the second line uses the Cauchy–Schwarz inequality and (13.21). Thus

Tr
(
(R2 − μId)2σ

) = Tr
(
R4σ

)− 2μTr
(
R2σ

)+ μ2

= Tr
(
R2(RσR − μσ)

)

≤ 2
√

2δ‖R‖2
S∞μ .

��
Proposition 13.11 Let σ be positive semidefinite such that Tr(σ ) = 1. Let X1, Y1
and X2, Y2 be operators satisfying the assumptions of Proposition 13.4 for some
0 ≤ δ ≤ 1, and P1,Q1 and P2,Q2 be as in the conclusion of the proposition.
Suppose further that6

min
{‖X1 − X2‖S1 , ‖X1 − Y2‖S1, ‖Y1 − X2‖S1 , ‖Y1 − Y2‖S1

} ≥ (1 − δ)

√
2

2
.

(13.22)

6The reason that the “+” sign in the last term in (13.20) is replaced by a “−” in (13.22) is that one
should think of Xi, Yj as the projections on ui, vj .
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For i ∈ {1, 2} let Ai = Pi − Qi . Then A1, A2 are observables7 such that

∥∥{A1, A2}σ 1/2
∥∥
F

= O
(
δ1/32) . (13.23)

Proof Using first (13.10) and then the Cauchy–Schwarz inequality and Tr(σ ) = 1,

1 − 2δ

2
≤ ‖X1 − X2‖2

S1
≤ ∥∥σ 1/2(P1 − P2)σ

1/2
∥∥2

S1
+ O

(
δ1/8)

≤ Tr
(
(P1 − P2)

2σ
)+ O

(
δ1/8) (13.24)

and similarly for the three other pairs (X1 − Y2, Y1 − X2, and Y1 − Y2). Summing
those four inequalities, we get

2(1 − 2δ) ≤ Tr
(
(P1 − P2)

2σ
)+ Tr

(
(P1 − Q2)

2σ
)+ Tr

(
(Q1 − P2)

2σ
)

+ Tr
(
(Q1 − Q2)

2σ
)+ O

(
δ1/8)

= 2
(
Tr
(
(P1 − P2)

2σ
)+ Tr

(
(P1 + P2 − Id)2σ

))+ O
(
δ1/8)

= 2 + O
(
δ1/8) ,

where the first equality uses Q1 −Q2 = P2 −P1 and Q1 −P2 = Q2 −P1, and the
second uses Tr(σ ) = 1. Therefore all inequalities in (13.24) must be equalities, up
to O(δ1/8). In particular, both

∥∥σ 1/2(P1 − P2)σ
1/2
∥∥2

S1
and Tr((P1 − P2)

2σ)

are within O(δ1/8) of 1
2 . Applying Claim 13.10 with R = P1 − P2 it follows that

∥∥((P1 − P2)
2 − 1

2
Id
)
σ 1/2

∥∥2
F

= O
(
δ1/16) , (13.25)

and similar bounds for the three other pairs. To conclude the proof, use the triangle
inequality, Eq. (13.25), and the observation that by writing A1 = 2P1 − Id and
A2 = 2P2 − Id,

{
A1, A2

} = 4P1P2 + 4P2P1 − 4P1 − 4P2 + 2Id

= 2
(
(P1 − Q2)

2 − (P1 − P2)
2) .

��

7Recall that an observable is a Hermitian operator that squares to identity.
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13.5 Replacing σ with Identity

The anti-commutation relations obtained in Proposition 13.11 involve the arbitrary
positive semidefinite operator σ . In this section we show that up to a small loss of
parameters we may without loss of generality assume that σ = Id. Intuitively, this
follows from the approximate commutation relation

∥∥[A, σ 1/2]∥∥
F

= O
(
δ1/8) , (13.26)

which follows immediately from the definition of the observable A = P − Q

and (13.11). If σ has two eigenvalues with a big gap between them, then it is not
hard to see that A satisfying (13.26) must have a corresponding approximate block
structure, in which case we can restrict to one of the blocks and obtain σ = Id
as desired. The difficulty is in carefully handling the general case, where some
eigenvalues of σ might be closely spaced. The following lemma does this, using
an elegant argument borrowed from [24].

Lemma 13.12 Let σ be a positive semidefinite matrix with trace 1, and T1, . . . , Tk

and X1, . . . , X� Hermitian operators such that X2
j = Id for all j ∈ {1, . . . , �}. Let

ε = 1

k

k∑
i=1

∥∥Tiσ
1/2
∥∥2
F

and δ = 1

�

�∑
j=1

∥∥[Xj, σ
1/2]∥∥2

F
.

Then there exists a nonzero projection R such that

1

k

k∑
i=1

∥∥TiR
∥∥2
F

= O(ε)Tr(R) and
1

�

�∑
j=1

∥∥[Xj,R]∥∥2
F

= O
(
δ1/2)Tr(R) .

Proof The proof relies on two simple claims. For a Hermitian matrix ρ and a ≥ 0,
let χ≥a(ρ) denote the projection on the direct sum of eigenspaces of ρ with
eigenvalues at least a. The first claim appears as [24, Lemma 5.6].

Claim 13.13 Let ρ be positive semidefinite. Then

∫ +∞

0
χ≥√

a(ρ) da = ρ2 .

The second is due to Connes [8, Lemma 1.2.6]. We state the claim as it appears
in [24, Lemma 5.5].

Claim 13.14 ([8], Lemma 1.2.6) Let ρ, ρ′ be positive semidefinite. Then

∫ +∞

0

∥∥χ≥√
a(ρ) − χ≥√

a(ρ
′)
∥∥2
F
da ≤ ‖ρ − ρ′‖F ‖ρ + ρ′‖F .
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Both claims can be proven by direct calculation, writing out the spectral decom-
position of ρ, ρ′ and using Fubini’s theorem (exchanging summation indices). The
proof is given in [24].

Applying Claim 13.13 with ρ = σ 1/2,

1

k

∫ +∞

0

k∑
i=1

∥∥Ti χ≥√
a

(
σ 1/2)∥∥2

F
da = 1

k

k∑
i=1

‖Tiσ
1/2
∥∥2
F

= ε

∫ +∞

0
Tr
(
χ≥√

a

(
σ 1/2)) da , (13.27)

where the first equality uses ‖Ti χ≥√
a(σ

1/2)‖2
F = Tr(T 2

i χ≥√
a(σ

1/2)) and the
second equality follows from Claim 13.13 and Tr(σ ) = 1. Applying Claim 13.14
with ρ = σ 1/2 and ρ′ = Xjσ

1/2Xj , and using that Xj is Hermitian and unitary,

1

�

∫ +∞

0

�∑
j=1

∥∥[Xj, χ≥√
a

(
σ 1/2)]∥∥2

F
da ≤ 1

�

�∑
j=1

∥∥[Xj, σ
1/2]∥∥

F

∥∥{Xj, σ
1/2}∥∥

F

≤ O
(
δ1/2)

= O
(
δ1/2)

∫ +∞

0
Tr
(
χ≥√

a

(
σ 1/2)) da ,

(13.28)

where the second inequality that by the triangle inequality, ‖{Xj , σ
1/2}‖F ≤

‖Xjσ
1/2‖F +‖σ 1/2Xj‖F = 2, and Jensen’s inequality. Adding (1/ε) times (13.27)

and (1/δ1/2) times (13.28), there exists an a ≥ 0 such that both inequalities are
satisfied simultaneously (up to a multiplicative constant factor) with a nonzero
right-hand side, for that a. Then R = χ≥√

a(σ
1/2) is a projection that satisfies the

conclusions of the lemma. ��
Combining Proposition 13.11 and Lemma 13.12, we obtain the following.

Proposition 13.15 Let n, d ≥ 1 be integers, 0 ≤ δ ≤ 1, X1, Y1, . . . , Xn, Yn

operators on C
d , and σ positive semidefinite of trace 1, such that for each

i ∈ {1, . . . , n}, σ,Xi, Yi satisfy (13.7)–(13.9), and such that for each i �=
j ∈ {1, . . . , n}, (Xi, Yi ,Xj , Yj ) satisfy (13.22). Then there exist a d ′ ≤ d and
observables A′

1, . . . , A
′
n on C

d ′
such that

2

n(n − 1)

∑
1≤i<j≤n

∥∥{A′
i, A

′
j }
∥∥2
f

= O
(
δ1/16) .
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Proof Applying Proposition 13.11 and (13.26) we deduce the existence of observ-
ables A1, . . . , An on C

d such that

∀i �= j ∈ {1, . . . , n} ,
∥∥{Ai,Aj }σ 1/2

∥∥2
F

= O
(
δ1/16) , (13.29)

∀i ∈ {1, . . . , n} ,
∥∥[Ai, σ

1/2]∥∥2
F

= O
(
δ1/4) . (13.30)

(Note that this uses that for each i ∈ {1, . . . , n}, the projections Pi,Qi used to
define Ai = Pi − Qi depend on Xi and Yi only.) Next apply Lemma 13.12 with
Tij = {Ai,Aj } and Xi = Ai . The lemma gives a projection R on C

d such that

2

n(n − 1)

∑
1≤i<j≤n

∥∥{Ai,Aj }R
∥∥2
F

= O
(
δ1/16)Tr(R) , (13.31)

1

n

∑
i∈{1,...,n}

∥∥[Ai,R]∥∥2
F

= O
(
δ1/8)Tr(R) . (13.32)

For i ∈ {1, . . . , n} let Ãi = RAiR, and define the observable A′
i = R sgn(Ãi)R.

Using the inequality (sgn(x) − x)2 ≤ (x2 − 1)2 valid for all x ∈ [−1, 1], we see
that

‖A′
i − Ãi‖F ≤ ∥∥Ã2

i − R
∥∥
F

= ∥∥R[Ai,R]AiR‖F
≤ ‖[Ai,R]‖F , (13.33)

where we used A2
i = Id and R2 = R. For any i, j , expanding

{A′
i , A

′
j } = {Ãi, Ãj } + {

A′
i − Ãi, Ãj

}+ {
A′

i , A
′
j − Ãj

}

and using ‖{A,B}‖F ≤ 2‖A‖S∞‖B‖F for any A,B, and ‖A′
i‖S∞ ≤ 1, ‖Ãj‖S∞ ≤

1, we obtain by the triangle inequality

∥∥{A′
i, A

′
j }
∥∥
F

≤ ∥∥{Ãi, Ãj }
∥∥
F

+ 2
(∥∥A′

i − Ãi

∥∥
F

+ ∥∥A′
j − Ãj

∥∥
F

)

≤ ∥∥{Ãi, Ãj }
∥∥
F

+ 2
(‖[Ai,R]‖F + ‖[Aj ,R]‖F

)

≤ ∥∥{Ai,Aj }R
∥∥
F

+ 4
(‖[Ai,R]‖F + ‖[Aj ,R]‖F

)
,

where the second inequality uses (13.33), and the third uses the definition of Ãi and
Ãj . Squaring this inequality and using Cauchy–Schwarz gives

∥∥{A′
i , A

′
j }
∥∥2
F

≤ O
(∥∥{Ai,Aj }R

∥∥2
F

+ ‖[Ai,R]‖2
F + ‖[Aj ,R]‖2

F

)
.
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Averaging over all pairs i �= j and using (13.31) and (13.32) proves the proposition.
��

Proof of Theorem 13.2 By subtracting O from all the operators, we can assume
without loss of generality that O is zero. Let U be a unitary such that σ = U |σ |,
as given by the polar decomposition. Multiplying all operators on the left by U−1,
we may further assume that σ is positive semidefinite. Dividing by ‖σ‖S1 , we may
assume that Tr(σ ) = 1, and δ is replaced by δ′ = O(δ). Equation (13.6) now follows
from Proposition 13.15. ��

13.6 Dimension Bounds

The following lemma shows that pairwise approximately anti-commuting observ-
ables only exist in large dimension. The observation is not new; see, e.g., [20, 23].
We give a proof that closely follows [23]. Theorem 13.1 follows immediately
by combining the lemma with Theorem 13.2, provided δ1/32 ≤ C/n3 for some
sufficiently small constant C.

Lemma 13.16 Let n ≥ 2 and d ≥ 1 be integers, 0 ≤ ε ≤ 1, and A1, . . . , An

observables on C
d such that

∀i �= j ∈ {1, . . . , n} ,
∥∥{Ai,Aj }

∥∥
f

≤ ε . (13.34)

Then there are universal constants c, C > 0 such that if n2ε ≤ c then d ≥ (1 −
Cn4ε2)2$n/2%.

Proof The idea for the proof is that if ε = 0, then the Ai would induce a
representation of the (finite) finitely presented group

C(n) =〈J, x1, . . . , xn : Jxi = xiJ, J
2 = x2

i = 1,

xixj = Jxjxi for all i �= j ∈ {1, . . . , n}〉

such that moreover, the representation maps J to −Id. Depending on the parity of n,
the group C(n) has either one or two irreducible representations such that J #→ −Id,
each of dimension 2$n/2%, implying a corresponding lower bound on the dimension
d of the Ai . The goal for the proof is to extend this lower bound to ε > 0. This is
done in [23] (see Lemma 3.1 and Lemma 3.4). There are two steps: first, we use
Ai satisfying (13.34) to define an approximate homomorphism on C(n) such that
J #→ −Id. Second, we use a stability theorem due to Gowers and Hatami [9] to
argue that any such approximate homomorphism is close to an exact one, and hence
must have large dimension.

The first step is given by the following claim, a slightly simplified version of [23,
Lemma 3.4].
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Claim 13.17 (Lemma 3.4 in [23]) Let A1, . . . , An satisfy the conditions of
Lemma 13.16. For any x = J axi1 · · · xik ∈ C(n), where 1 ≤ i1 < · · · < ik ≤ n,
define φ(x) = (−1)aAi1 · · ·Aik . Then φ is an η = n2ε-homomorphism from C(n)

to U(d), i.e., for every x, y ∈ C(n) it holds that ‖φ(xy) − φ(x)φ(y)‖f ≤ η.

Proof Any element of C(n) has a unique representation of the form described in
the claim. Let x, y ∈ C(n) such that x = J axi1 · · · xik and y = J bxj1 · · · xj� . To
write xy in canonical form involves at most n2 application of the anti-commutation
relations to sort the {xi, xj } (together with a number of commutations of J with the
xi , that we need not count since in our representation φ(J ) = −Id commutes with
all Ai), and finally at most n application of the relations x2

i = 1. When considering
φ(x) and φ(y), the only operation that is not exact is the anti-commutation between
different Ai,Aj . Using the triangle inequality, ‖φ(xy) − φ(x)φ(y)‖f ≤ n2ε, as
desired. ��

The second step of the proof is given by the following lemma from [23], which
builds on [9].

Lemma 13.18 (Lemma 3.1 in [23]) Let φ be a map from C(n) to the set of
unitaries in d dimensions such that φ is an η-homomorphism for some 0 ≤ η ≤ 1.
Suppose furthermore that ‖φ(J ) − Id‖f > 42η. Then d ≥ (1 − 4η2)2$n/2%.

The proof of the lemma first applies the results from [9] to argue that φ must
be close to an exact representation of C(n), and then concludes using that all
irreducible representations of C(n) that send J to (−Id) have dimension 2$n/2%.

Combining Claim 13.17 and Lemma 13.18 proves Lemma 13.16. ��
We conclude this section by showing that the metric induced by the (2n+ 2) points
from Theorem 13.1 can be embedded with constant distortion in a Schatten-1 space
of polynomial dimension. The construction is inspired by a result of Tsirelson [28]
in quantum information.

Lemma 13.19 For n ≥ 1 define the metric dn(·, ·) on the (2n + 2) points O , σ ,
X1, . . . , Xn, Y1, . . . , Yn by

dn(O, σ) = 1

dn(O,Xi) = dn(σ,Xi) = dn(O, Yi) = dn(σ, Yi) = 1/2

dn(Xi, Yi) = 1

dn(Xi,Xj ) = dn(Xi, Yj ) = dn(Yi, Yj ) = 1/
√

2 ,

for all i �= j . Then for all n ≥ 1 and 0 < δ < 1 there exists a (1 + δ) distortion
embedding of dn(·, ·) into Sd

1 with d = nO(1/δ2).

Proof For simplicity, assume that n is even. By the Johnson–Lindenstrauss
lemma [12] there are n unit vectors x1, . . . , xn ∈ R

d for d ≤ C logn/δ2 such
that the inner products |xi · xj | ≤ δ/4 for all i �= j . Let C1, . . . , Cd be a real
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representation of the Clifford algebra, i.e., real symmetric matrices such that
{Ci,Cj } = CiCj+CjCi = 2δij Id for all i, j , where δij is the Kronecker coefficient.
As already mentioned in the introduction, there always exists such a representation
of dimension 2d ′

for d ′ ≤ �d/2� + 1. For i ∈ {1, . . . , n} let A′
i = ∑d

k=1(xi)kCk . It
is easily verified that A′

i is symmetric such that (A′
i )

2 = Id, and moreover

∀i �= j ∈ {1, . . . , n} ,
(
A′

i − A′
j

)2 = (
2 − 2 xi · xj

)
Id . (13.35)

Let A′
i = P ′

i,+ − P ′
i,− be the spectral decomposition, and Xi = 2−d ′

P ′
i,+, Yi =

2−d ′
P ′
i,−. Let σ = 2−d ′

Id and O = 0. Then ‖σ − O‖S1 = 1. Using that A′
i has

trace 0, we also have

‖Xi − O‖S1 = ‖Yi − O‖S1 = ‖σ − Xi‖S1 = ‖σ − Yi‖S1 = 1

2
,

and ‖Xi −Yi‖S1 = 1, for all i ∈ {1, . . . , n}. It only remains to consider the distance
between different i and j . Using that Xi − Xj = 2−d ′−1(A′

i − A′
j ), the condition

|xi · xj | ≤ δ/4 for i �= j , and (13.35), it follows that

(
1 − δ

4

)√
2

2
≤ ‖Xi − Xj‖S1 ≤

(
1 + δ

4

)√
2

2
.

Similar bounds hold for pairs of the form (Xi − Yj ) and (Yi − Yj ). We therefore
obtain an embedding in Sd

1 with distortion at most (1 + δ/4)(1 − δ/4)−1 ≤ (1 + δ).
��
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Chapter 14
High-Dimensional Convex Sets Arising
in Algebraic Geometry

Yanir A. Rubinstein

Dedicated to Bo Berndtsson on the occasion of his 68th birthday

Abstract We introduce an asymptotic notion of positivity in algebraic geometry
that turns out to be related to some high-dimensional convex sets. The dimension
of the convex sets grows with the number of birational operations. In the case of
complex surfaces we explain how to associate a linear program to certain sequences
of blow-ups and how to reduce verifying the asymptotic log positivity to checking
feasibility of the program.

14.1 Introduction

Convex sets have long been known to appear in algebraic geometry. A well-known
example whose origins can be traced to Newton and Minding are the convex
polytopes associated to toric varieties [6, 8, 18], also known as Delzant polytopes
in the symplectic geometry literature [3]. In recent years, this notion has been
further extended to any projective variety, the so-called Newton–Okounkov bodies
(or ‘nobodies’). In the most basic level, avoiding a formal definition, such a body is
a compact convex body (not necessarily a polytope) in R

n associated to two pieces
of data: a nested sequence of subvarieties inside a projective variety of complex
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dimension n, and a line bundle over the variety. Among other things, beautiful
relations between the notion of volume in algebraic geometry and the volume of
these bodies have been proved [12, 14].

The purpose of this article, motivated by a talk in the High-dimensional Seminar
at Georgia Tech in December 2018, is to associate another type of convex bodies
to projective varieties. The main novelty is that this time the convex bodies can
have unbounded dimension while the projective variety has fixed dimension (which,
for most of the discussion, will be in fact 2 (i.e., real dimension 4)). In fact, the
asymptotic behavior of the bodies as the dimension grows (on the convex side)
corresponds to increasingly complicated birational operations such as blow-ups
(on the algebraic side). Rather than volume, we will be interested in intersection
properties of these bodies. This gives the first relation between algebraic geometry
and asymptotic convex geometry that we are aware of.

This article will be aimed at geometers on both sides of the story—convex and
algebraic. Therefore, it will aim to recall at least some elementary notions on both
sides. Clearly, a rather unsatisfactory compromise had to be made on how much
background to provide, but it is our hope that at least the gist of the ideas are
conveyed to experts on both sides of the story.

14.1.1 Organization

We start by introducing asymptotic log positivity in Sect. 14.2. It is a generalization
of the notion of positivity of divisors in algebraic geometry, and the new idea is that
it concerns pairs of divisors in a particular way. In Sect. 14.3 we associate with this
new notion of positivity a convex body, the body of ample angles. In Sect. 14.4
we explain how two previously defined classes of varieties (asymptotically log
Fano varieties and asymptotically log canonically polarized varieties) fit in with
this picture. The problem of classifying two-dimensional asymptotically log Fano
varieties has been posed in 2013 by Cheltsov and the author and is recalled
(Problem 14.4.2) as well as the progress on it so far. In Sect. 14.5 we make further
progress on this problem by making a seemingly new connection between birational
geometry and linear programming, in the process explaining how birational blow-up
operations yield convex bodies of increasingly high dimension. Our main results,
Theorems 14.5.5 and 14.5.6, first reduce the characterization of “tail blow-ups”
(Definition 14.5.3) that preserve the asymptotic log Fano property to checking the
feasibility of a certain linear program and, second, show that the linear program
can be simplified. The proof, which is the heart of this note, involves associating
a linear program to the sequence of blow-ups and characterizing when it is
feasible. The canonically polarized case will be discussed elsewhere. A much more
extensive classification of asymptotically log del Pezzo surfaces is the topic of
a forthcoming work and we refer the reader to Remark 14.5.10 for the relation
between Theorems 14.5.5 and 14.5.6 and that work.
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This note is dedicated to Bo Berndtsson, whose contributions to the modern
understanding and applications of convexity and positivity on the one hand, and
whose generosity, passion, curiosity, and wisdom on the other hand, have had a
lasting and profound influence on the author over the years.

14.2 Asymptotic Log Positivity

The key new algebraic notion that gives birth to the convex bodies alluded to above
is asymptotic log positivity. Before introducing this notion let us first pause to
explain the classical notion of positivity, absolutely central to algebraic geometry,
on which entire books have been written [13].

14.2.1 Positivity

Consider a projective manifold X, i.e., a smooth complex manifold that can be
embedded in some complex projective space P

N . In algebraic geometry, one is
often interested in notions of positivity. Incidentally, these notions are complex
generalizations/analogues of notions of convexity. In discussing these notions one
interchangeably switches between line bundles, divisors, and cohomology classes.1

Complex codimension 1 submanifolds of X are locally defined by a single equation.
Formal sums (with coefficients in Z) of such submanifolds is a divisor (when
the formal sums are taken with coefficients in Q or R this is called a Q-divisor
or a R-divisor). By the Poincaré duality between homology and cohomology, a
(homology class of a) divisor D gives rise to a cohomology class [D] in H 2(M,F)

with F ∈ {Z,Q,R}. On the other hand a line bundle is, roughly, a way to patch
up local holomorphic functions on X to a global object (a ‘holomorphic section’
of the bundle). The zero locus of such a section is then a formal sum of complex
hypersurfaces, a divisor. E.g., the holomorphic sections of the hyperplane bundle
in P

N are linear equations in the projective coordinates [z0 : . . . : zN ], whose
associated divisors are the hyperplanes PN−1 ⊂ P

N . The associated cohomology
class, denoted [H ], is the generator of H 2(PN,Z) ∼= Z. The anticanonical bundle
of PN , on the other hand, is represented by [(N+1)H ] and its holomorphic sections
are homogeneous polynomials of degree N + 1 in z0, . . . , zN . Either way, both of
these bundles are prototypes of positive ones, a notion we turn to describe.

Now perhaps the simplest way to define positivity, at least for a differential
geometer, is to consider the cohomology class part of the story. A class � in
H 2(X,Z) admits a representative ω (written � = [ω]), a real 2-form, that can

1A great place to read about this trinity is the cult classic text of Griffiths–Harris [7, §1.1] that was
written when the latter was a graduate student of the former.
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be written locally as
√−1

∑n
i,j=1 gij̄ dz

i ∧ dzj with [gij̄ ] a positive Hermitian
matrix, and z1, . . . , zn are local holomorphic coordinates on X. Since a cohomology
class can be associated to both line bundles and divisors, this gives a definition of
positivity for all three. As a matter of terminology one usually speaks of a divisor
being ‘ample’, while a cohomology class is referred to as ‘positive’. For line bundles
one may use either word. A line bundle is called negative (the divisor ‘anti-ample’)
if its dual is positive.

The beauty of positivity is that it can be defined in many equivalent ways. Starting
instead with the line bundle L, we say L is positive if it admits a smooth Hermitian
metric h with positive curvature 2-form −√−1∂∂̄ logh =: c1(L, h). By Chern–
Weil theory the cohomology class c1(L) = [c1(L, h)] is independent of h.

14.2.2 Asymptotic Log Positivity

We define asymptotic log positivity/negativity similarly, but now we will consider
pairs (L,D) and allow for asymptotic corrections along a divisor D (in algebraic
geometry the word log usually refers to considering the extra data of a divisor). Let
D = D1 + . . . + Dr be a divisor on X. We say that (L,D = D1 + . . . + Dr) is
asymptotically log positive/negative if L−∑r

i=1(1 − βi)Di is positive/negative for
all β = (β1, . . . , βr ) ∈ U ⊂ (0, 1)r with 0 ∈ U . For the record, let us give a precise
definition as well as two slight variants.

Definition 14.2.1 Let L be a line bundle over a normal projective variety X, and
let D = D1 + . . . + Dr be a divisor, where Di, i = 1, . . . , r are distinct Q-Cartier
prime Weil divisors on X.

• We call (L,D) asymptotically log positive/negative if c1(L)−∑r
i=1(1−βi)[Di]

is positive/negative for all β = (β1, . . . , βr ) ∈ U ⊂ (0, 1)r with 0 ∈ U .
• We say (L,D) is strongly asymptotically log positive/negative if c1(L) −∑r

i=1(1 − βi)[Di ] is positive/negative for all β = (β1, . . . , βr ) ∈ (0, ε)r for
some ε > 0.

• We say (L,D) is log positive/negative if c1(L) − [D] is positive/negative.

Note that log positivity implies strong asymptotic log positivity which implies
asymptotic log positivity (ALP). None of the reverse implications hold, in general.

The usual notion of positivity can be recovered (by openness of the positivity
property) if one required the βi to be close to 1. By requiring the βi to hover instead
near 0 we obtain a notion that is rather different, but more flexible and still recovers
positivity. Indeed, asymptotic log positivity generalizes positivity, as L is positive if
and only if (L,D1) is asymptotically log positive where D1 is a divisor associated
to L. However, the ALP property allows us to ‘break’ L into pieces and then put
different weights along them, so that (L,D) could be ALP even if L itself is not
positive. Let us give a simple example.
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Example 14.2.2 Let X be the blow-up of P
2 at a point p ∈ P

2. Let f be a
hyperplane containing p and let π−1(f ) denote the total transform (i.e., the pull-
back), the union of two curves: the exceptional curve Z1 ⊂ X and another curve
F ⊂ X (such that π(Z1) = p, π(F ) = f ). Downstairs f is ample, but π−1(f )

fails to be positive along the exceptional curve Z1. However, (π−1(f ), Z1) is ALP.

This example is not quite illustrative, though, since it is really encoded in a
classical object in algebraic geometric called the Seshadri constant. In fact in the
example above one does not need to take β small, rather it is really 1 − β that is the
‘small parameter’ (and, actually, any β ∈ (0, 1) works, reflecting that the Seshadri
constant is 1 here).

A better example is as follows.

Example 14.2.3 Let X = Fn be the n-th Hirzebruch surface, n ∈ N. Let −KX be
the anticanonical bundle. It is positive if and only if n = 0, 1. In general, −KX is
linearly equivalent to the divisor 2Zn + (n + 2)F where Zn is the unique −n-curve
on X (i.e., Z2

n = −n) and F is a fiber (i.e., F 2 = 0). A divisor of the form aZn+bF

is ample if and only if b > na. Thus (−KX,Zn) is ALP precisely for β ∈ (0, 2
n
).

14.3 The Body of Ample Angles

The one-dimensional convex body (0, 2
n
) of Example 14.2.3 is the simplest that

occurs in our theory. Let us define the bodies that are the topic of the present note.
Let D = ∑r

i=1 Di , and denote

Lβ,D := L −
r∑

i=1

(1 − βi)Di. (14.3.1)

The problem of determining whether a given pair (L,D = ∑r
i=1 Di) is ALP

amounts to determining whether the set

AA±(X,L,D) := {β = (β1, . . . , βr ) ∈ (0, 1)r : ±Lβ,D is ample} (14.3.2)

satisfies

0 ∈ AA±(X,L,D).

Thus, this set is a fundamental object in the study of asymptotic log positivity.
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Definition 14.3.1 We call AA+(X,L,D) the body of ample angles of (X,L,D),
and AA−(X,L,D) the body of anti-ample angles of (X,L,D).

Remark 14.3.2 The body of ample angles encodes both asymptotic log positivity
and the classical notion of nefness. Indeed, if (1, . . . , 1) ∈ AA±(X,L,D)

then ±L is numerically effective (nef). Moreover, one can define a variant of
Definitions 14.2.1 and Definitions 14.3.1 where a given α(1, . . . , 1) ∈ R

n is the
asymptotic limit instead of the origin (and this could be useful in some situations,
e.g., ‘wall-crossing’ for pairs (P n, dH), but observe that just amounts to studying
the asymptotic log positivity of (L + αD,D).

Lemma 14.3.3 When nonempty, AA±(X,L,D) is an open convex body in R
r .

Proof Suppose AA+(X,L,D) is nonempty. Openness is clear since positivity (and,
hence, ampleness) is an open condition on H 2(X,R). For convexity, suppose that
β, γ ∈ AA+(X,L,D) ⊂ R

r . Then, for any t ∈ (0, 1),

Ltβ+(1−t )γ ,D = L −
r∑

i=1

(1 − tβi − (1 − t)γi)Di

= (t + 1 − t)L −
r∑

i=1

(t + 1 − t − tβi − (1 − t)γi)Di

= t
[
L −

r∑
i=1

(1 − βi)Di

]+ (1 − t)
[
L −

r∑
i=1

(1 − γi)Di

]

is positive since the positive cone within H 2(X,R) is convex. If β, γ ∈
AA−(X,L,D) ⊂ R

r we get

−Ltβ+(1−t )γ ,D = t (−Lβ,D) + (1 − t)(−Lγ,D),

so by the same reasoning tβ + (1 − t)γ ∈ AA−(X,L,D). ��
Remark 14.3.4 One may wonder why we require AA(X,L,D) to be contained in the
unit cube. Indeed, that is not an absolute must. However, we are most interested
in the “small angle limit” as β → 0 ∈ R

r . Still, we require the coordinates to be
positive (and not, say, limit to 0 from any orthant) since, geometrically, the βi can
sometimes be interpreted as the cone angle associated to a certain class of Kähler
edge metrics. One could in principle allow the whole positive orthant, still. But in
this article we restrict to the cube for practical reasons.

There are many interesting questions one can ask about these convex bodies.
For instance, how do they transform under birational operations? We now turn to
describe a special, but important, situation where we will be able to use tools of
convex optimization to say something about this question.
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14.4 Asymptotically Log Fano/Canonically Polarized
Varieties

Perhaps the most important line bundles in algebraic geometry are the canonical
bundle of X, denoted KX, and its dual, the anticanonical bundle, denoted −KX.
These two bundles give rise to two extremely important classes of varieties:

• Fano varieties are those for which −KX is positive [5, 10],
• Canonically polarized (general type; minimal) varieties are those for which KX

is positive [16] (big; nef). Traditionally, algebraic geometers have been trying to
classify varieties with positivity properties of −KX and to characterize varieties
with positivity properties of KX. The subtle difference in terminology here stems
from the fact that positivity properties of −KX (think ‘positive Ricci curvature’)
are rare and can sometimes be classified into a list in any given dimension,
while positivity or bigness of KX is much more common, and hence a complete
list is impossible, although one can characterize such X sometimes in terms of
certain traits. Be it as it may, the importance of these two classes of varieties
stems from the fact that, in some very rough sense, the Minimal Model Program
stipulates that all projective varieties can be built from minimal/general type and
Fano pieces. Put differently, given a projective variety KX might not have a sign,
but one should be able to perform algebraic surgeries (referred to as birational
operations or birational maps) on it to eliminate the ‘bad regions’ of X where
KX is not well-behaved. Typically, these birational maps will make KX more
positive (in some sense the common case, hence the terminology ‘general type’),
except in some rare cases when KX is essentially negative to begin with.

14.4.1 Asymptotic Logarithmic Positivity Associated to
(Anti)Canonical Divisors

Thus, given the classical importance of positivity of ±KX, one may try to extend
this to the logarithmic setting.

One may pose the following question:

Question 14.4.1 What are all triples (X,D, β) such that β ∈ AA±(X,−KX,D)?

It turns out that the negative case of this question is too vast to classify, and
even the positive case is out of reach unless we make some further assumptions.
We now try to at least give some feeling for why this may be so, referring to [19,
Question 8.1] for some further discussion. At the end of the day, we will distill from
Question 14.4.1, Problem 14.4.6 which we will then take up in the rest of this article.
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First, without some restrictions on the parameter β Question 14.4.1 becomes
too vast of a generalization which does not seem to be extremely useful. For this
reason,2 we concentrate on the asymptotic logarithmic regime, where β is required
to be arbitrarily close to the origin.

Definition 14.4.2 ([1, Definition 1.1],[19, Definition 8.13]) (X,D) is (strongly)
asymptotically log Fano/canonically polarized if (−KX,D) is (strongly) asymptot-
ically log positive/negative.

Remark 14.4.3 Definition 14.4.2 is a special case, but, in fact, the main motivation
for Definition 14.2.1. The first, when L = −KX, was introduced by Cheltsov and
the author [1]. The second, when L = KX, was introduced by the author [19].

Remark 14.4.4 When (−KX,D) is log positive one says (X,D) is log Fano, a
definition due to Maeda [15]. By openness, log Fano is the most restrictive class,
a subset of strongly asymptotically log Fano (ALF), itself a subset of ALF.

Remark 14.4.5 There is a beautiful differential geometric interpretation of Defini-
tion 14.4.2 in terms of Ricci curvature: (X,D) is asymptotically log Fano/general
type if and only if X admits a Kähler metric with edge singularities of arbitrarily
small angle βi along each component Di of the complex ‘hypersurface’ D, and
moreover the Ricci curvature of this Kähler metric is positive/negative elsewhere.
The only if part is an easy consequence of the definition [4, Proposition 2.2], the
if part is a generalization of the Calabi–Yau theorem conjectured by Tian [20] and
proved in [11, Theorem 2] when D = D1, see also [9] for a different approach in the
general case (cf. [17]). When (X,D) is asymptotically log canonically polarized the
statement can even be improved to the existence of a Kähler–Einstein edge metric.
We refer to [19] for exposition and a survey of these and other results.

Thus, the most basic first step to understand Question 14.4.1 becomes the
following, posed in [1].

Problem 14.4.6 Classify all ALF pairs (X,D) with dimX = 2 and D having
simple normal crossings.

Asymptotically log Fano varieties in dimension 2 are often referred to as asymp-
totically log del Pezzo surfaces. The simple normal crossings (snc) assumption is
a standard one in birational geometry and is also the case that is of interest for the
study of Kähler edge metrics.

2Another important reason is that the asymptotic logarithmic regime is closely related to under-
standing differential-geometric limits, as β → 0, towards Calabi–Yau fibrations as conjectured in
[1, 19].
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14.4.2 Relation to the Body of Ample Angles

The problem of determining whether a given pair (X,D = ∑r
i=1 Di) is ALF

amounts to determining whether the set AA+(X,−KX,D) satisfies

0 ∈ AA+(X,−KX,D).

Thus, the body of ample angles is a fundamental object in the theory of asymp-
totically log Fano varieties. This can also be rephrased in terms of intersection
properties: there exists ε0 > 0 such that AA+(X,−KX,D) ∩ B(0, ε) �= ∅ for
all ε ∈ (0, ε0), where B(0, ε) is the ball of radius ε centered at the origin in R

r .
If one replaces “ALF” by “strongly ALF” in Problem 14.4.6 the problem has

been solved [1, Theorems 2.1,3.1]. However, it turns out that in the strong regime
AA+(X,−KX,D) ⊂ R

4 [1, Corollary 1.3]. In sum, the general case is out of reach
using only the methods of [1]: in fact, in this note we will exhibit ALF pairs (which
are necessarily not strongly ALF) for which AA+(X,−KX,D) has arbitrary large
dimension and outline a strategy for classifying all ALF pairs.

Before describing our approach to Problem 14.4.6, let us pause to state an open
problem concerning these bodies (for X of any dimension).

Problem 14.4.7 How does AA±(X,−KX,D) behave under birational maps of X?

14.5 Convex Optimization and Classification in Algebraic
Geometry

We finally get to the heart of this note where we show how birational operations on
X lead to high-dimensional convex bodies.

To emphasize that we are in dimension 2, from now on we use the notation (S, C)

instead of (X,D). Also, since we are in the ‘Fano regime’ we will drop the subscript
‘+’ and simply denote the body of ample angles

AA(S, C).

We denote the twisted canonical class by (recall (14.3.1))

Kβ,S,C := KS +
r∑

i=1

(1 − βi)Ci.

The Nakai–Moishezon criterion stipulates that β ∈ AA(S, C) if and only if

K2
β,S,C > 0 and Kβ,S,C.Z < 0 for every irreducible algebraic curve Z in X.

(14.5.1)
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The first is a single quadratic equation in β while the second is a possibly infinite
system of linear equations in β. We aim to reduce both of these to a finite system of
linear equations.

To that end let us fix some ALF surface (S, C), i.e., suppose 0 ∈ AA(S, C). We
now ask:

Question 14.5.1 What are all ALF pairs that can be obtained as blow-ups of (S, C)?

It turns out that there are infinitely-many such pairs; the complete analysis is
quite involved. In this article we will exhibit a particular type of (infinitely-many)
such blow-ups that yields bodies of ample angles of arbitrary dimension.

14.5.1 Tail Blow-Ups

A snc divisor c in a surface is called a chain if c = c1 + . . .+ cr with c1.c2 = . . . =
cr−1.cr = 1 and otherwise ci .cj = 0 for all i �= j . In our examples each ci will be a
smooth P

1. The singular points of c are the r −1 intersection points; all other points
on c are called its smooth points.

Definition 14.5.2 We say that (S, C) is a single tail blow-up of (s, c) if S is the
blow-up of s at a smooth point of c1 ∪ cr , and C = π−1(c).

Note that C has r + 1 components, the ‘new’ component being the exceptional
curve E = π−1(p) where p ∈ c1 ∪ cr . If, without loss of generality, p ∈ cr then
E.̃ci = δir , so

C = c̃1 + . . . + c̃r + E

is still a chain.
As a very concrete example, we could take S = Fn and C = Zn + F (recall

Example 14.2.3; when n = 0 this is simply S = P
1×P

1 and C = {p}×P
1+P

1×{q},
the snc divisor (with intersection point (p, q))). There are two possible single tail
blow-ups: blowing-up a smooth point either on Zn or on F .

14.5.2 Towards a Classification of Nested “Tail” Blow-Ups

In the notation of the previous paragraph, if (S, C) is still ALF we could perform
another tail blow-up, blowing up a point on c1∪E, and potentially repeat the process
any number of times. We formalize this in a definition.

Definition 14.5.3 We say that (S, C) is an ALF tail blow-up of an ALF pair (s, c)
if (S, C) is ALF and is obtained from (s, c) as an iterated sequence of single tail
blow-ups that result in ALF pairs in all intermediate steps.
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In other words, an ALF tail blow-up is a sequence of single tail blow-ups that
preserve asymptotic log positivity.

Problem 14.5.4 Classify all ALF tail blow-ups of ALF surfaces (Fn, c).

The following result reduces the characterization of ALF tail blow-ups to the
feasibility of a certain linear program.

Define

LP(S, C) := {βx ∈ (0, 1)r+x : Kβx,S,C.Z < 0

for every Z ⊂ S such that π(Z) ⊂ s is a

curve intersecting c at finitely-many points

and passing through the blow-up locus, and

Kβx,S,C.Ci < 0, i = 1, . . . , r + x.}
(14.5.2)

Theorem 14.5.5 Let (s, c) be an ALF pair. An iterated sequence of x single tail
blow-ups π : S → s of (s, c) is an ALF tail blow-up if only if (i) x ≤ (Ks + c)2,
and (ii) 0 ∈ LP(S, C).

In fact, we will also show the following complementary result that shows that
(essentially) the only obstacle to completely characterizing tail blow-ups are the
(possibly) singular curves Z passing through the blow-up locus in the definition of
LP(S, C).

Define

L̃P(S, C) := {βx ∈ (0, 1)r+x : Kβx,S,C.Ci < 0, i = 1, . . . , r + x}.
(14.5.3)

Theorem 14.5.6 One always has 0 ∈ L̃P(S, C).

Before we embark on the proofs, a few remarks are in place.

Remark 14.5.7 Observe that (Ks + c)2 ≥ 0. Indeed, since (s, c) is ALF −Ks − c is
nef (as a limit of ample divisors), so (Ks + c)2 ≥ 0.

Remark 14.5.8 The proof will demonstrate that one can drop “that result in ALF
pairs in all intermediate steps” from Definition 14.5.3, since it follows from the fact
that both (s, c) and (S, C) are ALF (a sort of ‘interpolation’ property).

Remark 14.5.9 We may assume that c is a connected chain of P1’s. Indeed, when
(s, c) is ALF, c is either a cycle or a union of disjoint chains [1, Lemma 3.5] and each
component is a P

1 [1, Lemmas 3.2]. The former is irrelevant for us since there are
no tails. For the latter, we may assume that c is connected (i.e., one chain) since the
only disconnected case, according to the classification results [1, Theorems 2.1,3.1],
is (Fn, c1 + c2) with c1 = Zn and c2 ∈ |Zn +nF | and then (KFn + c1 + c2)

2 = 0 so
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no tail blow-ups are allowed by Remark 14.5.16. To see that, let c1 ∈ |aZn + bF |
and c2 ∈ |AZn + BF |. Since c1, c2 are effective, b ≥ na,B ≥ nA. By assumption
c1 ∩ c2 = ∅ so 0 = c1.c2 = −naA + aB + bA, i.e., bA = a(nA − B). Since the
right hand side is nonpositive and the left hand side is nonnegative they must both
be zero, leading to b = 0, B = nA (A = 0 is impossible since it would force B = 0,
and a = 0 is excluded by b = 0). Thus we see c1 ∈ |aZn|, c2 ∈ |A(Zn + nF)|.
There are no smooth irreducible representatives of |aZn| unless a = 1 and similarly
for |A(Zn + nF)| unless A = 1.

Remark 14.5.10 Theorems 14.5.5 and 14.5.6 are mainly given for illustrative
reasons, i.e., to explicitly show how tools of convex programming can be used
in this context. As we show in a forthcoming extensive, but unfortunately long
and tedious, classification work the case of tail blow-ups is in fact the “worst” in
terms of preserving asymptotic log positivity. We will give there a classification of
asymptotically log del Pezzo surfaces that completely avoids tail blow-ups since
condition (ii) in Theorem 14.5.5 is difficult to control, in general. Thus, the present
note and are somewhat complementary. It is still an interesting open problem to
classify all ALF tail blow-ups.

14.5.3 The Set-Up

We start with an ALF pair (s, c = c1 + . . . + cr ) and perform v + h single tail
blow-ups of which

h (‘högra’) tail blow-ups on the “right tail” cr (14.5.4)

with associated blow-down map

πH = π1 ◦ · · · ◦ πh (14.5.5)

and exceptional curves

exc(πi) = Hi, i = 1, . . . , h, (14.5.6)

and of which

v (‘vänster’) tail blow-ups on the “left tail” c1 (14.5.7)

with blow-down map

πV = πh+1 ◦ · · · ◦ πh+v (14.5.8)
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and exceptional curves

exc(πh+j ) = Vj , i = 1, . . . , v, (14.5.9)

with new angles η ∈ (0, 1)h and ν ∈ (0, 1)v, respectively. Finally, we set

η0 := βr, ν0 := β1. (14.5.10)

An induction argument shows:

Lemma 14.5.11 With the notation (14.5.4)–(14.5.10), if v, h > 0,

−K(β,ν,η),S,(πH◦πV )−1(c)

= −π∗
V π

∗
HKβ,s,c −

h∑
i=1

(1 − ηi + ηi−1)π
∗
V π∗

h · · ·π∗
i+1Hi

−
v∑

j=1

(1 − νj + νj−1)π
∗
h+v · · ·π∗

h+1+j Vj . (14.5.11)

If v = 0,

− K
(β,η,ν),S,π−1

H (c)
= −π∗

HKβ,s,c −
h∑

i=1

(1 − ηi + ηi−1)π
∗
h · · ·π∗

i+1Hi.

(14.5.12)

If h = 0,

− K
(β,η,ν),S,π−1

V (c)
= −π∗

V π∗
HKβ,s,c −

v∑
j=1

(1 − νj + νj−1)π
∗
v+h · · ·π∗

h+1+j Vj .

(14.5.13)

Before giving the proof, let us recall two elementary facts about blow-ups. Let
π : S2 → S1 be the blow-up at a smooth point p on a surface S1. Then,

KS2 = π∗KS1 + E, (14.5.14)

where E = π−1(p) [7, p. 187], and for every divisor F ⊂ S1,

F̃ =
{
π∗F, if p �∈ F ,

π∗F − E, otherwise.
(14.5.15)
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Proof Using (14.5.14), if v = 0,

KS = π∗
h

(
π∗
h−1

( · · · (π∗
1

(
Ks+H1)+H2

)+. . .+Hh−2
)+Hh−1

)
+Hh. (14.5.16)

Similarly, if h = 0,

KS = π∗
v

(
π∗
v−1

( · · · (π∗
1

(
Ks +V1)+V2

)+ . . .+Vv−2
)+Vv−1

)
+Vv. (14.5.17)

If v, h > 0,

KS = π∗
v+h

(
π∗
v+h−1

(
· · ·
(
π∗
h+1

(
π∗
h

( · · · (π∗
1 (Ks + H1) + H2

)

+ . . . + )+ Hh

)+ V1

)
+ . . . + Vv−2

)
+ Vv−1

)
+ Vv.

(14.5.18)

Using (14.5.15) and (14.5.10), if v = 0,

r+h∑
i=1

(1 − βi)Ci =
r−1∑
i=1

(1 − βi)π
∗
Hci + (1 − βr)π

∗
h · · ·π∗

2 (π
∗
1 cr − H1)

+ (1 − η1)π
∗
h · · ·π∗

3 (π
∗
2 H1 − H2) + . . .

+ (1 − ηh−1)(π
∗
HHh−1 − Hh) + (1 − ηh)Hh

=
r∑

i=1

(1 − βi)π
∗
Hci +

h∑
i=1

(ηi−1 − ηi)π
∗
h · · ·π∗

i+1Hi, (14.5.19)

if h = 0,

r+v∑
i=1

(1 − βi)Ci = (1 − β1)π
∗
v+h · · ·π∗

h+2(π
∗
h+1c1 − V1) +

r∑
i=2

(1 − βi)π
∗
V ci

+ (1 − ν1)π
∗
v+h · · ·π∗

h+2(π
∗
h+1V1 − V2) + . . .

+ (1 − νv−1)(π
∗
v+hVv−1 − Vv) + (1 − νv)Vv

=
r∑

i=1

(1 − βi)π
∗
V ci +

v∑
i=1

(νi−1 − νi)π
∗
v · · ·π∗

i+1Vi,

(14.5.20)
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and if v, h > 0,

r+v+h∑
i=1

(1 − βi)Ci = (1 − β1)π
∗
v+h · · ·π∗

h+2(π
∗
h+1π

∗
Hc1 − V1)

+
r−1∑
i=2

(1 − βi)π
∗
V π

∗
H ci + (1 − βr)π

∗
V π∗

h · · ·π∗
2 (π

∗
1 cr − H1)

+ (1 − η1)π
∗
V π∗

h · · ·π∗
3 (π

∗
2 H1 − H2) + . . .

+ (1 − ηh−1)π
∗
V (π∗

hHh−1 − Hh) + (1 − ηh)π
∗
VHh

+ (1 − ν1)π
∗
v+h · · ·π∗

h+2(π
∗
h+1V1 − V2) + . . .

+ (1 − νv−1)(π
∗
v+hVv−1 − Vv) + (1 − νv)Vv

=
r∑

i=1

(1 − βi)π
∗
V π∗

Hci +
h∑

i=1

(ηi−1 − ηi)π
∗
V π∗

h · · ·π∗
i+1Hi

+
v∑

i=1

(νi−1 − νi)π
∗
v · · ·π∗

i+1Vi.

(14.5.21)

Thus, (14.5.18) and (14.5.21) imply (14.5.11), (14.5.16) and (14.5.19) imply
(14.5.12), and (14.5.17) and (14.5.20) imply (14.5.13). ��
Remark 14.5.12 In principle, as we will see below, the blow-ups on the left and on
the right do not interact.

14.5.4 The Easy Direction and the Sub-critical Case

We start with a simple observation. The easy direction of Theorem 14.5.5 is
contained in the next lemma:

Lemma 14.5.13 Let (s, c) be an ALF pair. Let (S, C) be obtained from (s, c) via
an iterated sequence of x single tail blow-ups of (s, c). Then (S, C) is not ALF if
x > (Ks + c)2.

Proof If c does not contain a tail, there is nothing to prove. By Remark 14.5.16, we
may assume that c is a single chain. Let π : S → s denote the blow-up of a point
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on a tail cr with exceptional curve E =: Cr+1. Then,

−K(β,βr+1),S,C+E = −π∗Ks − E −
r∑

i=1

(1 − βi )̃ci − (1 − βr+1)E

= −π∗Ks − E −
r−1∑
i=1

(1 − βi)π
∗ci

− (1 − βr)(π
∗cr − E) − (1 − βr+1)E

= −π∗Kβ,s,c − (1 + βr − βr+1)E.

In particular, since E2 = −1, K2
(0,0),S,C+E = K2

0,s,c − 1. An induction (or directly

using Lemma 14.5.11) thus shows that (KS + C)2 = (Ks + c)2 − x, which shows
that −KS − C cannot be nef if x > (Ks + c)2, so (S, C) cannot be ALF, by
Remark 14.5.7. ��

14.5.5 Dealing with the Quadratic Constraint and the Critical
Case

Let

βx = (β, βr+1, . . . , βr+x) ∈ R
r+x .

The proof of Lemma 14.5.13 also shows that

K2
βx,S,C

= K2
β,s,c − x + f (βx),

where f : Rr+x → R is a quadratic polynomial with no constant term and whose
coefficients are integers bounded by a constant depending only on r + x. Thus, we
also obtain some information regarding the converse to Lemma 14.5.13:

Corollary 14.5.14 Let (s, c) be an ALF pair. Let (S, C) be obtained from (s, c)

via an iterated sequence of x single tail blow-ups of (s, c). Then K2
β,S,C > 0 for

all sufficiently small (depending only on r, x, hence only on r, s, c) βx ∈ R
r+x if

x < (Ks + c)2.

This corollary is useful since it implies the quadratic inequality in (14.5.1) can
be completely ignored except, perhaps, in the borderline case x = (Ks + c)2.

The next result treats precisely that borderline case:

Proposition 14.5.15 Let (s, c) be an ALF pair. Let (S, C) be obtained from (s, c)

via an iterated sequence of x := (Ks + c)2 single tail blow-ups of (s, c). Then

K2
β,S,C = f (βx), (14.5.22)
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where f : R
r+x → R is a quadratic polynomial with no constant term and

whose coefficients are integers bounded by a constant depending only on r + x, and
moreover it contains linear terms with positive coefficients and no linear terms with
negative coefficients. In particular, K2

β,S,C > 0 for all sufficiently small (depending
only on r, x, hence only on r, s, c) βx ∈ (0, 1)r+x .

Remark 14.5.16 The key for later will be (14.5.22) rather than the conclusion about
K2

β,S,C > 0 for all sufficiently small angles. In fact, the latter conclusion (at the
end of Proposition 14.5.15) is not precise enough to conclude that the quadratic
inequality in (14.5.1) can be ignored as one needs that it holds simultaneously with
the intersection inequalities of (14.5.1). The exact form of (14.5.22) implies that
(14.5.22) can be satisfied together with any linear constraints on βx , which will be
the key, and the reason that, ultimately, the quadratic inequality in (14.5.1) can be
ignored.

Proof We use the notation of Sect. 14.5.3. We wish to show that

K2
(β,δ,γ ),S,(πH◦πV )−1(c)

> 0, for some small (β, δ, γ ) ∈ (0, 1)r+h+v

(14.5.23)

(recall x = h + v = (Ks + c)2). We compute,

K2
(β,δ,γ ),S,(πH◦πV )−1(c)

= Kβ,s,c −
h∑

i=1

(1 − δi + δi−1)
2 −

v∑
j=1

(1 − γj + γj−1)
2

= (Ks + c)2 − 2
r∑

i=1

βici .(Ks + c) +
r∑

i=1

β2
i c

2
i

− h + 2
h∑

i=1

δi − 2
h∑

i=1

δi−1 − v + 2
v∑

j=1

γj − 2
v∑

j=1

γj−1

−
h∑

i=1

(δi − δi−1)
2 −

v∑
j=1

(γj − γj−1)
2

= −2
r∑

i=1

βici .(Ks + c) + 2δh − 2βr

+ 2γv − 2β1 − O(β2, δ2, γ 2)

= 2β1 + 2βr + 2δh − 2βr + 2γv − 2β1 − O(β2, δ2, γ 2)

= 2δh + 2γv − O(β2, δ2, γ 2),

(14.5.24)
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since, by Remark 14.5.9, all ci are smooth rational curves and c is a single chain, so
by adjunction

ci.(Ks + c)

=

⎧⎪⎪⎨
⎪⎪⎩

ci .(Ks + ci) + ci.ci−1 + ci .ci+1 = −2 + 1 + 1 = 0, if i = 2, . . . , r − 1,

cr .(Ks + cr ) + cr .cr−1 = −2 + 1 = −1, if i = r ,

c1.(Ks + c1) + c1.c2 = −2 + 1 = −1, if i = 1.

(14.5.25)

This is clearly positive for (β, δ, γ ) = ε(1, . . . , 1) for ε small enough. This proves
the Proposition. ��
Remark 14.5.17 As alluded to in the remark preceding the proof, one indeed can
make 2δh + 2γv − O(β2, δ2, γ 2) positive under any linear constraints on β, δ, γ

without imposing any new linear constraints as the coefficients of the only non-zero
linear terms are positive.

14.5.6 Proof of Theorem 14.5.5

First, suppose either (i) or (ii) does not hold. If (i) fails then Lemma 14.5.13 shows
that (S, C) is not ALF. If (ii) fails then (S, C) is not ALF by Definition 14.4.2.

Second, if both (i) and (ii) hold then Corollary 14.5.14, Proposition 14.5.15, and
the Nakai–Moishezon criterion show that (S, C) is ALF if and only if Kβx,S,C.Z <

0 for every irreducible curve Z ⊂ S. Naturally, we distinguish between three types
of curves Z:

(a) π(Z) does not pass through the blow-up locus,
(b) π(Z) is contained in the blow-up locus,
(c) π(Z) is a curve passing through the blow-up locus.

Curves of type (a) can be ignored: Indeed, then π(Z) is a curve in s and
Z = π∗π(Z) (hence, does not intersect any of the exceptional curves) so by
Lemma 14.5.11,

Kβ,S,C.Z = π∗K(β1,...,βr ),s,c.π
∗π(Z) = K(β1,...,βr ),s,c.π(Z).

As (s, c) is ALF, this intersection number is negative.
Next, curves of type (c) are covered by condition (ii) by the definition of

LP(S, C). Finally, since curves of type (b) are, by definition of the tail blow-up,
components of the new boundary C, hence there are at most x + 2 (i.e., finitely-
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many) of them, certainly contained in the finitely-many inequalities:

Kβx,S,C.Ci < 0, i = 1, . . . , r + x, (14.5.26)

which are once again covered by the definition of LP(S, C). This concludes the
proof of Theorem 14.5.5.

14.5.7 Reduction of the Linear Intersection Constraints

In this subsection we explain how to essentially further reduce the linear intersection
constraints, i.e., we prove Theorem 14.5.6. To that purpose, we show that curves
of type (b) can be handled directly. This shows that the only potential loss of
asymptotic logarithmic positivity occurs from curves of type (c) (observe that as
in the previous subsection, curves of type (a) can be ignored).

Proof of Theorem 14.5.6 It suffices to check that the system of 2r + 2x inequalities

Kβx,S,C.Ci < 0, i = 1, . . . , r + x,

βi > 0, i = 1, . . . , r + x,
(14.5.27)

admit a solution along some ray emanating from the origin in R
r+x .

Let us first write these inequalities carefully and by doing so eliminate some
unnecessary ones.

Using Lemma 14.5.11 we compute, starting with the tails, which turn out to pose
no constraints, to wit,

−K(β,δ,γ ),S,(πH◦πV )−1(c).Vv = 1 − γv + γv−1 > 0,

−K(β,δ,γ ),S,(πH◦πV )−1(c).π
∗
VHh = 1 − δh + δh−1 > 0.

Next, we intersect with the other new boundary curves (if h, v > 0 there are h+v−2
such, if h = 0 there are v − 1 such, if v = 0 there are h − 1 such),

−K(β,δ,γ ),S,(πH◦πV )−1(c).π
∗
h+v · · ·π∗

h+j+1(π
∗
h+j Vj−1 − Vj )

= (1 − γj−1 + γj−2) − (1 − γj + γj−1)

= γj − 2γj−1 + γj−2, j = 2, . . . , v.

−K(β,δ,γ ),S,(πH◦πV )−1(c).π
∗
V π∗

h · · ·π∗
i+1(π

∗
i Hi−1 − Hi)

= (1 − δi−1 + δi−2) − (1 − δi + δi−1)

= δi − 2δi−1 + δi−2, i = 2, . . . , h. (14.5.28)
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Finally, we intersect with the two ‘old tails’ (or only one if min{h, v} = 0), and
use (14.5.25),

−K(β,δ,γ ),S,(πH◦πV )−1(c).π
∗
h+v · · ·π∗

h+2(π
∗
h+1π

∗
Hc1 − V1)

= −Kβ,s,c.c1 − (1 − γ1 + β1)

= 1 + β1c
2
1 − (1 − γ1 + β1)

= γ1 + (c2
1 − 1)β1,

−K(β,δ,γ ),S,(πH◦πV )−1(c).π
∗
V π∗

h · · ·π∗
2 (π

∗
1 cr − H1)

= −Kβ,s,c.cr − (1 − δ1 + βr)

= 1 + βrc
2
r − (1 − δ1 + βr)

= δ1 + (c2
r − 1)βr . (14.5.29)

Equations (14.5.28)–(14.5.29) are h + v linear equations that together with the r +
h + v constraints

βx = (β, δ, γ ) ∈ R
r+h+v+

can be encoded by a (r + h + v)-by-(r + 2h + 2v) matrix inequality:

(β, δ, γ )LP(S, (πH ◦ πV )−1(c)) > 0, (14.5.30)

where the inequality symbol means that each component of the vector is positive
(typical notation in linear optimization, see, e.g., [2]) with

LP(S, (πH ◦ πV )−1(c)) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
vr v1 T Ir+h+v

)
if h, v > 0,

(
vr T Ir+h

)
if h > 0, v = 0,

(
v1 T Ir+v

)
if h = 0, v > 0,

where

vr = (

r−1︷ ︸︸ ︷
0, . . . , 0, c2

r − 1, 1,

h−1︷ ︸︸ ︷
0, . . . , 0,

v︷ ︸︸ ︷
0, . . . , 0)T ∈ Z

h+v+r ,

v1 = (c2
1 − 1,

r−1︷ ︸︸ ︷
0, . . . , 0,

h︷ ︸︸ ︷
0, . . . , 0, 1,

v−1︷ ︸︸ ︷
0, . . . , 0)T ∈ Z

h+v+r ,
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T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

Tr T1

Th 0h,v−1

0v,h−1 Tv

⎞
⎟⎟⎠ ∈ Matr+h+v,h+v−2, if h, v > 0

(
Tr

Th

)
∈ Matr+h,h−1, if h > 0, v = 0

(
T1

Tv

)
∈ Matr+v,v−1, if h = 0, v > 0

with

Tr =

⎛
⎜⎜⎜⎝

0 0 . . . 0
...
... . . .

...

0 0 . . . 0
1 0 . . . 0

⎞
⎟⎟⎟⎠ ∈ Matr,h−1, T1 =

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 0 . . . 0
...
... . . .

...

0 0 . . . 0

⎞
⎟⎟⎟⎠ ∈ Matr,v−1,

Th =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 . . . 0
1 −2 . . . 0
0 1 . . . 0
...

... . . .
...

0 . . . 0 1
0 0 . . . −2
0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Math,h−1, Tv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 . . . 0
1 −2 . . . 0
0 1 . . . 0
...

... . . .
...

0 . . . 0 1
0 0 . . . −2
0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Matv,v−1,

(here, we use the convention that Tr and Th are the empty matrix if h < 2 and
similarly for T1 and Tv if v < 2).

By Gordan’s Theorem [2, p. 136], the inequalities (14.5.30) hold if and only if
the only solution y ∈ R

r+2h+2v+ to

LP(S, (πH ◦ πV )−1(c))y = 0

is y = 0 ∈ R
r+2h+2v+ . We treat first the (easy) cases

(h, v) ∈ {(1, 0), (0, 1), (2, 0), (0, 2), (1, 1), (2, 1), (1, 2)}

separately.
The case (1, 0) imposes only the inequality δ1 +(c2

r −1)βr > 0 which is feasible.
Similarly, the case (0, 1) imposes only γ1 +(c2

1 −1)β1 > 0. The case (1, 1) imposes
both of these inequalities, but they are independent, hence feasible.

The case (2, 0) imposes the inequalities

δ1 + (c2
r − 1)βr > 0, δ2 − 2δ1 + βr > 0, (14.5.31)
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which are equivalent via a Fourier–Motzkin elimination [2, §4.4] to δ2 + βr >

2(1 − c2
r )βr , i.e., δ2 > (1 − 2c2

r )βr , which is feasible. The case (0, 2) is handled
similarly. The case (2, 2) is feasible for the same reasons: both sets of inequalities
are feasible and independent. The case (2, 1) (and similarly (1, 2)) also follows
since it imposes the inequalities (14.5.31) in addition to the independent inequality
γ1 + (c2

1 − 1)β1 > 0, thus these are feasible. This idea of independence will also be
useful in the general case below.

Let us turn to the general case, i.e., suppose h, v ≥ 2. First, the r + h-th row of
LP(S, (πH ◦ πV )−1(c)) is

(

h︷ ︸︸ ︷
0, . . . , 0, 1,

v−1+r+h−1︷ ︸︸ ︷
0, . . . , 0 , 1,

v︷ ︸︸ ︷
0, . . . , 0).

This implies yh+1 = yr+2h+v−1 = 0. If h = 2 this implies y1 = yr+2h+v−2 = 0; if
h > 3 this implies yh = yr+2h+2v−2 = 0 (the −2 in the (h+1)-th spot in that row is
taken care of by the fact yh+1 = 0 from the previous step), and inductively we obtain
yh+1−i = yr+2h+2v−i = 0, i = 1, . . . , h − 2, and finally y1 = yr+h+2v+1 = 0.
Altogether, we have shown 2h of the yi’s are zero.

Second, the r + h + v-th (last) row is

(

h+v−1︷ ︸︸ ︷
0, . . . , 0, 1,

r+h+v−1︷ ︸︸ ︷
0, . . . , 0, 1).

This implies yh+v = yr+2h+2v = 0. If v > 2 this implies yh+v−1 = yr+2h+2v−1 =
0, and inductively we obtain yh+v−i = yr+2h+2v−i = 0, i = 1, . . . , v − 2, and
finally y2 = yr+2h+v+1 = 0. In this step we have shown 2v of the yi’s are zero.

So far we have shown 2h + 2v of the yi’s are zero using the last 2h + 2v rows.
Finally, we consider the first r rows. There are two special rows with possibly

positive coefficients c2
r −1 and c2

1−1, however the corresponding y1 and y2 are zero,
so as we have the full rank and identity matrix I (with nonnegative coefficients)
in LP(S, (πH ◦ πV )−1(c)) it follows that the remaining r variables yi are zero,
concluding the proof of Theorem 14.5.6. ��
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Chapter 15
Polylog Dimensional Subspaces of �N∞

Gideon Schechtman and Nicole Tomczak-Jaegermann

In memory of Jean Bourgain, the brightest mathematical mind
we have ever encountered

Abstract We show that a subspace of �N∞ of dimension n > (logN log logN)2

contains 2-isomorphic copies of �k∞ where k tends to infinity with n/(logN log
logN)2. More precisely, for every η > 0, we show that any subspace of �N∞ of
dimension n contains a subspace of dimension m = c(η)

√
n/(logN log logN) of

distance at most 1 + η from �m∞.

15.1 Introduction

The dichotomy problem of Pisier asks whether a Banach space X either contains,
for every n, a subspace K-isomorphic to �n∞, for some (equivalently all) K > 1,
or, for every n, every n-dimensional subspace of X 2-embeds in �N∞ only if N is
exponential in n. This is equivalent to the question of whether for some (equivalently
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all) absolute K > 1 and any sequence nN ≤ N with nN/ logN → ∞ when
N → ∞, every subspace of �N∞ of dimension nN contains a subspace of dimension
mN K-isomorphic to �

mN∞ where mN → ∞ when N → ∞.
We remark in passing that the equivalence between the two versions of the

problem (“some K > 1” versus “all K > 1”) is due to the fact proved by R.C.
James that, for all 1 < κ < K < ∞, a space which is K isomorphic to �n∞ contains a
subspace κ isomorphic to �m∞ where m → ∞ as n → ∞. (James proof is essentially
included in [5]. A somewhat more precise statement and proof, still due to James,
can be read e.g. in [8, p. 283].)

As is exposed in [7], Maurey proved that if X∗ has non-trivial type (Equivalently
does not contain uniformly isomorphic copies of �n1-s. This is a condition stronger
than X has non-trivial cotype; equivalently, does not contain uniformly isomorphic
copies of �n∞-s), then we get the required conclusion: For every n, every n-
dimensional subspace of X 2-embeds in �N∞ only if N is exponential in n.

Another partial result was obtained by Bourgain in [1] where he showed in
particular that the conclusion holds if nN > (logN)4.

Here we show some improvement over this result of Bourgain: The conclusion
holds if nN/(logN log logN)2 tends to ∞.

Theorem 15.1 Let n, and N be integers such that n > (logN log logN)2. Then,
for some absolute constant c > 0 and for every 0 < η < 1, any subspace of �N∞
of dimension n contains a subspace of dimension m = cη2√n/(logN log logN) of
distance at most 1 + η from �m∞.

Note that we get some specific estimates for the dimension of the contained
subspace (1 + η)-isomorphic to an �∞ space of its dimension. Although we are
interested in small n-s, the result gives some estimate in the whole range. This is
also the case in Bourgain’s result: He proved that if n ≥ Nδ than any subspace of
�N∞ of dimension n contains a subspace (1 + η)-isomorphic to an �∞ of dimension
m ≥ cη5δ2√n/ log(1/δ). Comparing the two, our result gives better estimates for m
when n � ec(η)

√
logN and worse when n is larger. Recall also that for n proportional

to N , Figiel and Johnson [3] proved earlier that m can be taken of order
√
N (and

no better). This is not recovered by our result.
The general idea of the proof of Theorem 15.1 is the same as in [1] but the

technical details are somewhat different. At the end of this note we also speculate
that, up to the (log logN)2 factor, our result may be best possible.

Our result was essentially achieved a long time ago, circa 1990. Since several
people showed interest in it lately we decided to write it up with the hope that more
modern methods (and younger minds) may be able to improve it farther.

15.2 Proofs

The main technical tool in the proof of Theorem 15.1 is the following proposition
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Proposition 15.1 Let n, and N be integers such that n > (logN)3/2 log logN . Let
[ai(j)] be an n × N matrix with ai(j) ≥ 0 for i = 1, . . . , n and j = 1, . . . , N .
Assume that

n∑
i=1

ai(j)
2 ≤ 1 for j = 1, . . . , N

and

n∑
i=1

ai(j) ≤ 3
√
logN for j = 1, . . . , N.

Moreover, assume that, for some γ > 0, for every i = 1, . . . , n there exists
1 ≤ j ≤ N such that ai(j) ≥ γ . Denote by ai the i-th row of the matrix.
Then, for some positive constants, c(γ ),K(γ ) depending only on γ and for every
0 < η < 1, there are disjoint subsets σ1, . . . , σm of {1, . . . , n} with m ≥
c(γ )η2n/(logN)3/2 log logN , Such that

‖
m∑

r=1

∑
i∈σr

ai‖∞/ min
1≤r≤m

‖
∑
i∈σr

ai‖∞ ≤ (1 + K(γ )η).

We first show how to deduce Theorem 15.1 from the proposition above.

Proof of Theorem 15.1 Let X be an n dimensional subspace of �N∞. The π2 norm of
the identity on X is equal to

√
n [4, 9] and by the main theorem of [10] (see [11]

for the constant
√

2) this quantity can be computed, up to constant
√

2 on n vectors.
This means that there are n vectors ai = (ai(1), . . . , ai(N)), i = 1, . . . , n, in X

satisfying

n∑
i=1

ai(j)
2 ≤ 1, for all j = 1, . . . , N

and

n∑
i=1

‖ai‖2∞ ≥ n/2.

The first condition implies in particular that ‖ai‖2∞ ≤ 1 for each i so necessarily for
a subset σ ′ of {1, . . . , n} of cardinality at least n/4, ‖ai‖∞ ≥ 1/2 for all i ∈ σ ′. The
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existence of a subset σ ′ of {1, . . . , n} of cardinality at least n/4 satisfying the two
conditions

∑
i∈σ ′

ai(j)
2 ≤ 1, for all j = 1, . . . , N, and ‖ai‖∞ ≥ 1/2 for all i ∈ σ ′

(15.1)

is all that we shall use from now on. In Remark 15.1 below we’ll show another way
to obtain this.

Next we would like to choose a subset σ of σ ′ of cardinality of order
√
n logN

such that the matrix [|ai(j)|], i ∈ σ , j = 1, . . . , N , will satisfy the assumptions
of Proposition 15.1. So let ξi , i ∈ σ ′, be independent {0, 1} valued random
variables with Prob(ξi = 1) = √

(logN)/n. Since for all j
∑

u∈σ ′ |ai(j)| ≤ √
n,

E
∑

u∈σ ′ |ai(j)|ξi ≤ √
logN . By the most basic concentration inequality, using the

fact that
∑

i∈σ ′ ai(j)2 ≤ 1, for all j ,

Prob(
∑
i∈σ ′

|ai(j)|ξi > 3
√

logN)

≤ Prob(
∑
i∈σ ′

|ai(j)|(ξi − Eξi) > 2
√

logN) ≤ e−2 logN = 1/N2.

It follows that with probability larger than 1 − 1/N

∑
i∈σ ′

|ai(j)|ξi ≤ 3
√

logN

for all j . Since by a similar argument also
∑

i∈σ ′ ξi ≥
√
n logN

16 with probability

tending to 1 when N → ∞ we get a subset σ of cardinality n′ ≥
√
n logN

16 satisfying

∑
i∈σ

|ai(j)| ≤ 3
√

logN for all j = 1, . . . , N.

Note that the condition n ≥ 256(logN log logN)2 implies that
n′ ≥ (logN)3/2 log logN . It follows that the matrix [|ai(j)|], i ∈ σ ′, j = 1, . . . , N
satisfies the conditions of Proposition 15.1 with n′ replacing n and γ = 1/2. We
thus get that, for some absolute positive constants c,K , there are disjoint subsets
σ1, . . . , σm of {1, . . . , n} with

m ≥ 16cη2n′/(logN)3/2 log logN ≥ cη2√n/ logN log logN,

such that

‖
m∑

r=1

∑
i∈σr

|ai |‖∞/ min
1≤r≤m

‖
∑
i∈σr

|ai |‖∞ ≤ (1 + Kη).
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Rescaling, we may assume that min1≤r≤m ‖∑i∈σr |ai |‖∞ = 1. Let jr denote the
label of (one of) the largest coordinates of

∑
i∈σr |ai|. Assume as we may that η <

1/K . Then no two r’s can share the same jr . Changing the labelling we can also
assume jr = r .

Put xr = ∑
i∈σr sign(ai(r))ai . Then for all r , ‖xr‖∞ ≥ 1 and for all j =

1, . . . , N ,

m∑
r=1

|xr(j)| ≤ 1 + Kη. (15.2)

So the sequence xr , r = 1, . . . ,m, is (1 + Kη)-dominated by the �m∞ basis; i.e.,

‖
m∑

r=1

αrxr‖∞ ≤ (1 + Kη) max
1≤r≤m

|αr | for all {αr }mr=1.

The lower estimate is achieved similarly: Assume max1≤r≤m |αr | = |αr0 | and note
that

‖
m∑

r=1,r �=r0

∑
i∈σr

|ai(r0)|‖∞ ≤ Kη.

Then,

‖
m∑

r=1

αrxr‖∞ ≥ |
m∑

r=1

αrxr(r0)|

≥ |αr0 |
∑
i∈σr0

|ai(r0)| −
m∑

r=1,r �=r0

|αr |
∑
i∈σr

|ai(r0)|

≥ ((1 − Kη) max
1≤r≤m

|αr |.

We have thus found a subspace of x of dimension m ≥ cη
√
n/(logN log logN)

whose distance to �m∞ is at most (1 + Kη)/(1 − Kη). Changing the last quantity to
1 + η, paying by changing c to another absolute constant, is standard.

In the proof of Proposition 15.1 we shall use the following Lemma which follows
immediately from Lemma 2 in [2] (but, following the proof of that lemma from [2],
is a bit easier to conclude).
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Lemma 15.1 Let ξi , i ∈ {1, . . . , n}, be independent {0, 1} valued random variables
with Prob(ξi = 1) = δ. Then for all q ≥ 1,

(E(

n∑
i=1

ξi)
q)1/q ≤ C(δn + q).

C is a universal constant.

We now pass to the

Proof of Proposition 15.1 We shall assume as we may that η < γ . We first deal
with the small ai(j)-s. Fix ε > 0 to be defined later. Let

bi(j) =
{
ai(j) if ai(j) ≤ ε

0 otherwise.

We will show that for any δ > 0, and with high probability for a random subset
σ ⊂ {1, . . . , n} of cardinality |σ | ∼ δn

∑
i∈σ

bi(j) ≤ C(δ
√

logN + ε logN) for j = 1, . . . , N, (15.3)

where C is an absolute constant.
Indeed, set p = logN . Fix δ > 0 and let ξi denote selectors with mean δ as in

Lemma 15.1. By Chebyshev inequality, (15.3) follows from the estimate

sup
j

(
E(

n∑
i=1

ξi(ω)bi(j))
p

)1/p

≤ C(δ
√

logN + ε logN). (15.4)

Indeed,

⎛
⎝E

N∑
j=1

(

n∑
i=1

ξi(ω)bi(j))
p

⎞
⎠

1/p

≤ N1/ logN sup
j

(
E(

n∑
i=1

ξi(ω)bi(j))
p

)1/p

≤ eC(δ
√

logN + ε logN).

Now apply Chebyshev’s inequality.
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Fix 1 ≤ j ≤ N and denote (bi(j))i ∈ R
n by b. Considering the level sets of b

we may assume without loss of generality that b is of the form

b =
∞∑

k=2 log(1/ε)

2−k/2χDk ,

(log is log2) where the sets Dk ⊂ {1, . . . , n} are mutually disjoint and χDk denotes
the characteristic function of the set Dk , for k = 2 log(1/ε), . . . . Thus,

⎛
⎝E(

n∑
j=1

ξj (ω)bi(j))
p

⎞
⎠

1/p

≤
∞∑

k=2 log(1/ε)

2−k/2

⎛
⎝E(

∑
j∈Dk

ξj (ω))p

⎞
⎠

1/p

≤ C

∞∑
k=2 log(1/ε)

2−k/2 (δ|Dk| + p)) by Lemma 15.1

≤ Cδ

∞∑
k=2 log(1/ε)

2−k/2|Dk| + Cp

∞∑
k=2 log(1/ε)

2−k/2. (15.5)

To estimate the first term in (15.5) note that

∞∑
k=2 log(1/ε)

2−k/2|Dk| = ‖b‖1 ≤ 3
√

logN.

The second term is clearly smaller than an absolute constant times εp.
Combining the latter two estimates with (15.5) we get (15.4) and hence

also (15.3).
To deal with the large coordinates, set, for j = 1, . . . , N ,

Aj = {1 ≤ i ≤ n; ai(j) ≥ ε}.

Since
∑n

i=1 ai(j) ≤ 3
√

logN ,

|Aj | ≤ 3
√

logN/ε for j = 1, . . . , N. (15.6)

An argument similar to the one that proved (15.4) also shows that a random set
σ ⊂ {1, . . . , n} of cardinality |σ | ∼ δn satisfies

|σ ∩ Aj | ≤ C(δ
√

logN/ε + logN). (15.7)
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Indeed, this follows easily by applying the following inequality with p = logN ,

⎛
⎝E

⎛
⎝

√
logN/ε∑
i=1

ξi

⎞
⎠

p⎞
⎠

1/p

≤ C(δ
√

logN/ε + logN).

Moreover, Chebyshev’s inequality implies that we can find a set σ ⊂ {1, . . . , n} of
cardinality at least 1

2δn which satisfies (15.3) and (15.7) simultaneously (say, with
the same absolute constant C).

Choose now δ = 2η/
√

logN and ε = η/ logN . Then we get a set σ ⊂
{1, . . . , n} of cardinality at least ηn/

√
logN . such that

∑
i∈σ

bi(j) ≤ 3Cη for j = 1, . . . , N, (15.8)

and

|σ ∩ Aj | ≤ 3C logN for j = 1, . . . , N. (15.9)

Define j1 ∈ {1, . . . , N} and s1 by

s1 =
∑

i∈σ∩Aj1

ai(j1) = max
j

∑
i∈σ∩Aj

ai(j).

For r > 1 define Sr−1 = σ \ (Aj1 ∪ · · · ∪ Ajr−1) and jr and sr by

sr =
∑

i∈Sr−1∩Ajr

ai(jr) = max
j

∑
i∈Sr−1∩Aj

ai(j).

By rearranging the columns we may assume jr = r for all r . Now, (15.9) implies
that |Sr | ≥ |σ | − 3Cr logN so Sr is not empty for 1 ≤ r ≤ ηn

3C(logN)3/2 . Also,

γ ≤ sr ≤ 3
√

logN ≤ 3 logN for 1 ≤ r ≤ ηn

3C(logN)3/2 .

The sequence sr is non-increasing, divide it into (log((3 logN)/γ ))/ log(1 + η)

intervals such that in each interval max sr/min sr is at most 1 + η. There is an

interval R with |R| ≥ (log(1+η))ηn

3C(logN)3/2 log((3 logN)/γ )
≥ η2n

6C(logN)3/2 log((3 logN)/γ )
such

that

max
r∈R sr/min

r∈R sr ≤ 1 + η.
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Put σr = Sr−1 ∩ Ar . Since minr∈R sr ≥ γ > η we are done in view of (15.8) and
the fact that sr ≥ ∑

Sr−1∩As
ai(s) for r < s.

15.3 Remarks

Remark 15.1 Here is an alternative way to get (15.1):

Let X be an n-dimensional normed space which, without loss of generality we
assume is in John’s position, i.e., the maximal volume ellipsoid inscribed in the
unit ball of X is the canonical sphere Sn−1. A weak form of the Dvoretzky–Rogers
lemma asserts that there are orthonormal vectors x1, . . . , xn such that ‖xi‖X ≥ c

for some universal positive constant c. This is proved by a simple volume argument,
see for example Theorem 3.4 in [6]. (There it is shown that there are [n/2] such
vectors. This is enough for us but it’s also easy and well known how to use these
n/2 orthonormal vectors to get n orthonormal vectors with a somewhat worse lower
bound on their norms.)

The map T : �n2 → X defined by T ei = xi is norm one. Note that

1 = ‖T ‖ = sup
‖x∗‖X∗≤1

(

n∑
i=1

(x∗(xi))2)1/2.

When X is isometric to a subspace of �N∞ there are N elements x∗
j ∈ BX∗ such that,

for all x ∈ X, ‖x‖ = max1≤j≤N x∗
j (x). From this it is easy to deduce that

sup
‖x∗‖X∗≤1

(
∑

(x∗(xi))2)1/2 = max
1≤j≤N

(

n∑
i=1

(x∗
j (xi))

2)1/2.

Denoting ai(j) = x∗
j (xi) we get (15.1).

Remark 15.2 Here we would like to suggest an approach toward showing that the
dichotomy conjecture fails and maybe even that one can’t get below the estimate
n > (logN)2 in Theorem 15.1.

Let X and Y be two l dimensional normed spaces. Put n = l2 and N = 36l . Let
{xi}6l

i=1 be a 1/2 net in the sphere of X and {y∗
i }6l

i=1 be a 1/2 net in the sphere of Y ∗.
Note that for every T : X → Y ,

max
1≤i,j≤6l

y∗
i (T xj ) ≤ ‖T ‖ ≤ 4 max

1≤i,j≤6l
y∗
i (T xj ).

Consequently, B(X, Y ), the space of operators from X to Y with the operator norm,
4-embeds into �N∞. Note that dim(B(X, Y )) = n ∼ (logN)2.
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(Un)fortunately, B(X, Y ) cannot serve as a negative example since it always
contains �∞-s with dimension going to infinity with N . This was pointed out to
us by Bill Johnson. Indeed, by Dvoretzky’s theorem, �k2 2-embeds into Y and into
X∗, for some k tending to infinity with n. Let I denote the first embedding and Q

be the adjoint of the second embedding. It is then easy to see that T → ITQ is
a 4-embedding of B(�k2, �

k
2) into B(X, Y ). Finally, B(�k2, �

k
2) contains isometrically

�k∞.
However, to get a negative answer to the dichotomy problem, it is enough to find

n dimensional X and Y and a subspace Z of B(X, Y ) of dimension m with m/n

tending to infinity with n which has good cotype, i.e., if Z contains a 2-isomorph of
�k∞ then k is bounded by a universal constant. If one can find such an example with
m ≥ cn2 for some universal positive constant c then it will even show that one can’t
get below the estimate n > (logN)2 in Theorem 15.1.
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Chapter 16
On a Formula for the Volume
of Polytopes

Rolf Schneider

Abstract We carry out an elementary proof of a formula for the volume of
polytopes, due to A. Esterov, from which it follows that the mixed volume of
polytopes depends only on the product of their support functions.

16.1 Introduction

Esterov [1] has proved the surprising fact that the mixed volume of n convex
polytopes in R

n depends only on the product of their support functions. That an
extension of this result to general convex bodies is not true, was pointed out by
Kazarnovskiı̆ [3, Remark 2]. Esterov deduced his result from a new formula for the
volume of a polytope in terms of the nth power of its support function. It is the
purpose of this note to carry out an elementary proof of this formula. A motivation
will be given after we have stated this formula, in the next section.

16.2 Formulation of the Result

First we fix some terminology. We work in n-dimensional Euclidean space R
n

with scalar product 〈· , ·〉. Its unit sphere is denoted by S
n−1. Polytopes are always

nonempty, compact, and convex. The volume of a polytope P is denoted by Vn(P ).
A polyhedral cone is the intersection of a finite family of closed halfspaces with
the origin o in their boundaries; equivalently, it is the positive hull of a finite set
of vectors. The positive hull of a set {v1, . . . , vk} of linearly independent vectors
of Rn is a simplicial cone and is denoted by <v1, . . . , vk >; this cone is said to
be generated by v1, . . . , vk . A fan in R

n is a finite family F of polyhedral cones
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with the following properties: every face of a cone in F is a cone in F , and the
intersection of two cones in F is a face of both. A fan is called simplicial if all
its cones are simplicial. A fan F ′ is a refinement of the fan F if every cone of F ′
is contained in a cone of F . Every fan has a simplicial refinement. This is easily
seen by induction with respect to the dimension, taking positive hulls with suitable
additional rays (or see [2, Thm. 2.6]). For a polytope P and a (nonempty) face F

of P , we denote by N(P,F ) the normal cone of P at F . The family of all normal
cones of P at its faces is a fan, called the normal fan of P (see, e.g., Ziegler [5, p.
193], or Ewald [2, p. 17], where it is simply called the ‘fan’ of P ).

If (v1, . . . , vn) is an ordered basis of Rn, we denote by (v⊥
1 , . . . , v⊥

n ) its Gram–
Schmidt orthonormalization. This means that (v⊥

1 , . . . , v⊥
n ) is orthonormal, the set

{v⊥
1 , . . . , v⊥

k } spans the same subspace as {v1, . . . , vk}, and 〈vk, v⊥
k 〉 > 0, for k =

1, . . . , n.
The following is a special case of a more general result of Esterov [1] (with a

corrected factor).

Theorem 16.1 (Esterov) Let P ⊂ R
n be a polytope, and let the fan � be a

simplicial refinement of the normal fan of P . Let B(�) be the set of all ordered
n-tuples of unit vectors generating cones of �. For each n-dimensional cone C ∈ �,
let fC be the restriction of the nth power of the support function of P to the interior
of C. Then

1

(n!)2

∑
(v1,...,vn)∈B(�)

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= Vn(P ). (16.1)

Esterov writes about his result: “We . . . represent it as a specialization of the
isomorphism between two well known combinatorial models of the cohomology of
toric varieties.” He also gives a brief sketch of an elementary proof, however, for
the polytope A under consideration, “assuming for simplicity that the orthogonal
complement to the affine span of every (relatively open) face B ⊂ A intersects B”.
This is too much of a simplification, since the construction becomes non-trivial if
this assumption is not satisfied. Moreover, the statement about the subdivision into
“simplices that are in one to one correspondence with the terms of the sum” (the sum
in (16.1) is meant) is not correct, since the simplices depend only on the polytope
P , whereas the sum gets more terms if the fan � is refined. That these extra terms
(which are in general not zero) add up to zero, requires an additional argument.
The author’s statement, “Independence of subdivisions of � and linearity follow by
definition“, seems unjustified.

Since Esterov’s surprising result has never been observed in the development of
the classical theory of mixed volumes, it might be desirable to have a complete proof
along classical lines. Therefore, in the following we carry out Esterov’s brief sketch
with the necessary details.
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16.3 Proof of Theorem 16.1

In the following, we use the common notations lin, pos, aff, conv for, respectively,
the linear, positive, affine, or convex hull of a set of vectors or points in R

n. Further,
vertP denotes the set of vertices of a polytope P .

First we recall the notion of an orthoscheme � in R
n. Given a base point z

(which will later be the origin, but is needed in greater generality for an induction
argument), an ordered orthonormal basis (u1, . . . , un) of R

n, and a sequence
(a1, . . . , an) of real numbers, it is defined by

� := conv{z, z1, . . . , zn}, zk := z +
k∑

i=1

aiui for k = 1, . . . , n.

This is a simplex, but it may be degenerate, since ai = 0 is allowed.
Let P ⊂ R

n be a polytope with interior points. Under the special assumption
in Esterov’s proof sketch quoted above, P can be decomposed into orthoschemes.
Without this assumption, one has to decompose the indicator function of P into the
indicator functions of signed orthoschemes.

To prepare this, we denote by H(Q, u) the supporting hyperplane of a polytope
Q ⊂ R

n with outer normal vector u ∈ R
n \ {o} (for notions from convex geometry

that are not explained here, we refer to [4]). By H−(Q, u),H+(Q, u) we denote
the two closed halfspaces bounded by H(Q, u), where H−(Q, u) contains Q. In
the following, for a point p ∈ R

n and a hyperplane H ⊂ R
n, we denote by p|H the

image of p under orthogonal projection to H .
Let (v1, . . . , vn) be a basis of Rn such that v1, . . . , vn ∈ N(P, {y}) for some

vertex y of P . Let (v⊥
1 , . . . , v⊥

n ) be the Gram–Schmidt orthonormalization of
(v1, . . . , vn). We define

S1 := P∩H(P, v⊥
1 ), S2 := S1∩H(S1, v

⊥
2 ), . . . , Sn := Sn−1∩H(Sn−1, v

⊥
n ).

Then dim Sk ≤ n − k, so that Sn = {y} for the vertex y of P , and Sk ⊇ Sk+1 for
k = 1, . . . , n − 1 (equality may hold). We say that (S1, . . . , Sn) is generated by
(v1, . . . , vn). A sequence (S1, . . . , Sn) of faces of P is called a complete tower of P
if S1 ⊃ S2 ⊃ · · · ⊃ Sn and dim Sk = n − k for k = 1, . . . , n.

Now we define the required orthoschemes. Let z ∈ R
n. Given (v1, . . . , vn) as

above and its generated sequence (S1, . . . , Sn) (so that Sn = {y}), we define a
sequence of points by

z1 := z|H(P, v⊥
1 ), z2 := z1|H(S1, v

⊥
2 ), . . . , zn := zn−1|H(Sn−1, v

⊥
n ).

We also define a sequence (a1, . . . , an) of numbers by

z1 = z + a1v
⊥
1 , z2 := z1 + a2v

⊥
2 , . . . , zn = zn−1 + anv

⊥
n .
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Here zn = y and hence y = z + a1v
⊥
1 + · · · + anv

⊥
n . Therefore,

ai = 〈y − z, v⊥
i 〉. (16.2)

We define the orthoscheme

� := conv{z, z1, . . . , zn}.

Its volume is given by

Vn(�) = 1

n! |a1 · · · an|. (16.3)

We denote by δ ∈ {−1, 0, 1} the sign of a1 · · · an and call the pair (�, δ) a signed
orthoscheme. It is said to be induced by (v1, . . . , vn) (if P and z are given).

We apply this construction from two different starting points. First, we start from
the n-dimensional polytope P and associate a signed orthoscheme with each of its
complete towers. Let (S1, . . . , Sn) be a complete tower of P . Then there is a unique
ordered orthonormal basis (u1, . . . , un) of Rn such that

S1 := P ∩ H(P, u1), S2 := S1 ∩ H(S1, u2), . . . Sn := Sn−1 ∩ H(Sn−1, un).

(16.4)

We call (u1, . . . , un) the orthonormal basis associated with the complete tower
(S1, . . . , Sn) of P . Let (�, δ) be the signed orthoscheme induced by (u1, . . . , un).
It is also said to be the signed orthoscheme induced by the complete tower
(S1, . . . , Sn).

Definition For given P and z, we denote by O(P, z) the set of all signed
orthoschemes induced by complete towers of P .

Let U be the union of the affine hulls of the facets of all orthoschemes �, for
(�, δ) ∈ O(P, z). Denoting the indicator function of a set A ⊂ R

n by 1A, we state
the following

Proposition 16.1

∑
(�,δ)∈O(P ,z)

δ1�(x) = 1P (x) for all x ∈ R
n \ U. (16.5)

Proof We set

gn(P, z, x) :=
∑

(�,δ)∈O(P ,z)

δ1�(x)
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and prove (16.5) by induction with respect to the dimension. The case n = 1 is clear.
We assume that n ≥ 2 and that the assertion has been proved in smaller dimensions,
for all polytopes and base points. Let P be an n-polytope and z a point in R

n. Let
(�, δ) ∈ O(P, z). Then (�, δ) is induced by some complete tower (S1, . . . , Sn) of
P . If F1, . . . , Fm are the facets of P , then S1 = Fi for some i ∈ {1, . . . ,m}, and
(S2, . . . , Sn) is a complete tower of Fi . We have � = conv(�′ ∪ {z}) with some
(�′, δ′) ∈ O(Fi, z|affFi) and δ = δ′σ(Fi, z), where we define, for a facet F of P
with outer unit normal vector u,

σ(F, z) :=
⎧
⎨
⎩

1 if z ∈ intH−(P, u),

0 if z ∈ H(P, u),

−1 if z ∈ intH+(P, u).

For x ∈ R
n \ {z} we define the ray

R(z, x) := {x + λ(x − z) : λ ≥ 0}.

Let x ∈ R
n \U . Then x �= z. We define q(x, Fi) as the intersection point of R(z, x)

and affFi if R(z, x) meets affFi , and as the point x otherwise. Clearly,

x ∈ � ⇔ R(z, x) meets affFi and q(x, Fi) ∈ �′

and thus 1�(x) = 1�′(q(x, Fi)). This gives

gn(P, z, x) =
∑

(�,δ)∈O(P ,z)

δ1�(x)

=
m∑
i=1

σ(Fi, z)
∑

(�′,δ′)∈O(Fi,z|affFi)

δ′1�′(q(x, Fi))

=
m∑
i=1

σ(Fi, z)gn−1(Fi, z|affFi, q(x, Fi))

=
m∑
i=1

σ(Fi, z)1{q(x, Fi) ∈ Fi},

where the induction hypothesis was applied to gn−1(Fi, ·, ·). This is possible, since
the point q(x, Fi) is not contained in the union of the affine hulls of the (n−2)-faces
of the orthoschemes �′, (�′, δ′) ∈ O(Fi , z|affFi), i = 1, . . . ,m.

If x ∈ P (recall that x /∈ U ), there is exactly one index i ∈ {1, . . . ,m} with
q(x, Fi) ∈ Fi , and we have σ(Fi, z) = 1. Therefore, gn(P, z, x) = 1. If x /∈ P

and some point q(Fi, x) ∈ Fi exists, then precisely one other index j exists with
q(Fj , x) ∈ Fj , and we have σ(Fi, z) = −σ(Fj , z). This gives gn(P, z, x) = 0. We
have proved Eq. (16.5). ��
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Integrating (16.5) with respect to Lebesgue measure, we obtain

Vn(P ) =
∑

(�,δ)∈O(P ,z)

δVn(�). (16.6)

Our second starting point for constructing signed orthoschemes is the fan �.
Let (�, δ) be the signed orthoscheme induced by (v1, . . . , vn) ∈ B(�), where
< v1, . . . , vn >⊆ N(P, {y}) for a vertex y of P . To express the volume of �

in a suitable way, we note that the restriction of the support function of P to
<v1, . . . , vn> is given by u #→ 〈y, u〉, hence

f<v1,...,vn>(u) = 〈y, u〉n for u ∈ int<v1, . . . , vn> .

Writing

u = α1v
⊥
1 + · · · + αnv

⊥
n ,

we have

f<v1,...,vn>(u) =
(
α1〈v⊥

1 , y〉 + · · · + αn〈v⊥
n , y〉

)n

and therefore

∂f<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= n!〈v⊥
1 , y〉 · · · 〈v⊥

n , y〉 = n!a1 · · · an = (n!)2δVn(�) (16.7)

by (16.3), where the numbers a1, . . . , an are those defined by (16.2) with z = o.
To utilize this, we need to know which (v1, . . . , vn) ∈ B(�) induce signed

orthoschemes from O(P, o). We introduce the following definition.

Definition Let (v1, . . . , vn) be an ordered basis of R
n such that v1, . . . , vn are

contained in a polyhedral cone C. Then (v1, . . . , vn) is called adapted to C if
there is a sequence T1 ⊂ T2 ⊂ · · · ⊂ Tn where Tk is a k-face of C and v1 ∈ T1,
vk ∈ Tk \ Tk−1 for k = 2, . . . , n.

An ordered basis (v1, . . . , vn) ∈ B(�) is called tidy if it is adapted to the
normal cone N(P, {y}) containing v1, . . . , vn. The set of all tidy ordered bases
(v1, . . . , vn) ∈ B(�) is denoted by T , and we set B(�) \ T =: U .

From now on, the point z ∈ R
n chosen earlier is the origin o.

Proposition 16.2 The signed orthoscheme induced by (v1, . . . , vn) ∈ B(�)

belongs to O(P, o) if and only if (v1, . . . , vn) is tidy. Moreover, every signed
orthoscheme from O(P, o) is induced by a unique element of B(�).

Proof We assume first that (v1, . . . , vn) ∈ B(�) induces the signed orthoscheme
that is induced by the complete tower (S1, . . . , Sn) of P , with Sn = {y}. Then
the Gram–Schmidt orthonormalization of (v1, . . . , vn) is equal to the ordered basis
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(u1, . . . , un) associated with the complete tower (S1, . . . , Sn) (that is, defined
by (16.4)). By the definition of the Gram–Schmidt orthonormalization, this implies
that v1 ∈ N(P, S1) and vk ∈ N(P, Sk) \ N(P, Sk−1) for k = 2, . . . , n. The
normal cone N(P, Sk) is a k-face of the normal cone N(P, {y}) (see, e.g., [4,
Sect. 2.4], also for the facts on normal cones used below). Thus, (v1, . . . , vn) is
adapted to N(P, {y}), and hence (v1, . . . , vn) is tidy. Conversely, suppose that
(v1, . . . , vn) ∈ B(�) is tidy, say that v1 ∈ T1 and vk ∈ Tk \ Tk−1 for k = 2, . . . , n,
where T1 ⊂ T2 ⊂ · · · ⊂ Tn are faces of N(P, {y}) (for some vertex y of P ) with
dimTk = k. Then there is a complete tower (S1, . . . , Sn) of P with N(P, Sk) = Tk

for k = 1, . . . , n. The signed orthoscheme induced by this tower is induced by
(v1, . . . , vn).

A given signed orthoscheme (�, δ) ∈ O(P, o) is induced by a unique complete
tower (S1, . . . , Sn) of P , say with Sn = {y}. Then Tk := N(P, Sk) is a k-face of
N(P, {y}) and T1 ⊂ T2 ⊂ · · · ⊂ Tn. Since N(P, {y}) is the union of simplicial
cones from �, there is a unique cone C =<v1, . . . , vn>∈ � which has k-faces Fk ,
k = 1, . . . , n, satisfying Fk ⊆ Tk. With a suitable (unique) ordering, we then have
v1 ∈ F1 and vk ∈ Fk \ Fk−1 for k = 2, . . . , n. This element (v1, . . . , vn) ∈ B(�)

induces (�, δ), and it is the only one with this property. This completes the proof of
Proposition 16.2. ��

We now see from (16.6) and (16.7) that

1

(n!)2

∑
(v1,...,vn)∈T

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= Vn(P ).

To complete the proof of (16.1), it remains to show that

∑
(v1,...,vn)∈U

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= 0. (16.8)

To prove (16.8), we state a more general version, which can be proved by induction.

Proposition 16.3 Let C ⊂ R
n be an n-dimensional polyhedral cone, and let �C be

a simplicial fan such that C is the union of its cones. Let B(�C) be the set of all
ordered n-tuples of unit vectors generating cones of �C , and let UC be the subset
of ordered n-tuples that are not adapted to C. Let y ∈ R

n and f (u) := 〈y, u〉n for
u ∈ C. Then

∑
(v1,...,vn)∈UC

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= 0. (16.9)

Proof We abbreviate

Df (v1, . . . , vn) := 1

n!
∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

for (v1, . . . , vn) ∈ B(�C),
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then

Df (v1, . . . , vn) = 〈v⊥
1 , y〉 · · · 〈v⊥

n , y〉, (16.10)

by (16.7).
We proceed by induction with respect to the dimension, starting with n = 2. Let

the data be as in the proposition, with n = 2. Let (v1, v2) ∈ UC . Then v1 ∈ intC,
since otherwise (v1, v2) would be adapted to C. Therefore, there exists precisely
one cone < v1, w2 >∈ �C with w2 independent from v2. The Gram–Schmidt
orthonormalizations of (v1, v2), (v1, w2) are, respectively, (v⊥

1 , v⊥
2 ) and (v⊥

1 ,−v⊥
2 ).

It follows from (16.10) that

Df (v1, v2) + Df (v1, w2) = 0.

Thus, the elements (v1, v2) of UC can be grouped into pairs for which the
expressions Df (v1, v2) sum to 0. Therefore, (16.9) holds for n = 2.

Now we assume that n ≥ 3 and that Proposition 16.3 has been proved in
smaller dimensions. Let the data be as in the proposition. We consider two classes
of elements (v1, . . . , vn) ∈ UC .

Class 1 contains the tuples (v1, . . . , vn) ∈ UC with pos{v1, . . . , vn−1} ∩ intC �=
∅. For (v1, . . . , vn) in this class, pos{v1, . . . , vn−1} is an (n − 1)-dimensional
face of the cone < v1, . . . , vn >∈ �C that meets intC and hence is a face of
precisely one other cone < v1, . . . , vn−1, wn >∈ �C . Let (v⊥

1 , . . . , v⊥
n ) be the

Gram–Schmidt orthonormalization of (v1, . . . , vn), and let (v⊥
1 , . . . , v⊥

n−1, w
⊥
n ) be

the Gram–Schmidt orthonormalization of (v1, . . . , vn−1, wn). Since vn and wn lie
in different halfspaces bounded by lin{v1, . . . , vn−1} = lin{v⊥

1 , . . . , v⊥
n−1}, we have

v⊥
n = −w⊥

n . It follows from (16.10) that

Df (v1, . . . , vn) + Df (v1, . . . , vn−1, wn) = 0.

Thus, the elements (v1, . . . , vn) of UC in class 1 can be grouped into pairs for which
the expressions Df (v1, . . . , vn) sum to 0.

Class 2 contains the tuples (v1, . . . , vn) ∈ UC with pos{v1, . . . , vn−1} ∩ intC =
∅. Let (v1, . . . , vn) be in this class. Then the cone pos{v1, . . . , vn−1} is contained
in an (n − 1)-dimensional face Fi of the cone C. We have vn ∈ C \ lin Fi ,
since v1, . . . , vn are linearly independent. If the (n − 1)-tuple (v1, . . . , vn−1) were
adapted to the cone Fi , then the n-tuple (v1, . . . , vn) were adapted to the cone C,
a contradiction. Thus, (v1, . . . , vn−1) is not adapted to Fi . We can now apply the
inductional hypothesis to the cone Fi and the simplicial fan induced in Fi by �C .
This yields

∑
(v1,...,vn)∈ class 2i

〈v⊥
1 , y〉 · · · 〈v⊥

n−1, y〉 = 0, (16.11)
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where class 2i contains the tuples (v1, . . . , vn) ∈ UC with pos{v1, . . . , vn−1} ⊆ Fi .
For each (v1, . . . , vn) ∈ class 2i , we have

lin{v⊥
1 , . . . , v⊥

n−1} = lin{v1, . . . , vn−1} = lin Fi,

and vn is contained in the open halfspace bounded by linFi whose closure
contains C. Therefore, v⊥

n is the same vector for all (v1, . . . , vn) ∈ class 2i .
Multiplying (16.11) by 〈v⊥

n , y〉, we obtain

∑
(v1,...,vn)∈class 2i

Df (v1, . . . , vn) = 0.

Summing this over i = 1, . . . ,m, where F1, . . . , Fm are the facets of C, we
complete the induction and thus the proof of Proposition 16.3. ��

To prove (16.8), we now apply Proposition 16.3 to the normal cone of each vertex
of P and sum over the vertices. This completes the proof of (16.1).

Formula (16.1) is useful if one has to consider a common simplicial refinement of
several normal fans, as in the next section. In a volume formula for a single polytope,
the superfluous terms may well be omitted. We state an appropriate reformulation
of the above result. Let (S1, . . . , Sn) be a complete tower of the n-polytope P . We
say that it ends at the vertex y if Sn = {y}. The orthonormal basis (u1, . . . , un)

associated with the complete tower (S1, . . . , Sn) (defined by (16.4)) is also the
unique orthonormal basis defined by

u1 ∈ N(P, S1), u2 ∈ lin{u1}+N(P, S2), . . . , un ∈ lin{u1, . . . , un−1}+N(P, Sn).

For each vertex y of P , we denote by B(y) the set of all orthonormal bases
associated with all complete towers of P ending at y. With these notations, the
volume formula obtained from (16.6) and (16.7) can also be written in the form

Vn(P ) = 1

n!
∑

y∈vertP

∑
(u1,...,un)∈B(y)

〈u1, y〉 · · · 〈un, y〉. (16.12)

Note that 〈u1, y〉 · · · 〈un, y〉 is the product of the coordinates of the vertex y with
respect to the orthonormal basis (u1, . . . , un).

16.4 Mixed Volumes

For the extension of Theorem 16.1 to mixed volumes V (·, . . . , ·), it is crucial that
the normal fans of finitely many polytopes have a common simplicial refinement.
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Theorem 16.2 Let P1, . . . , Pn ⊂ R
n be polytopes, and let the fan � be a simplicial

refinement of the normal fans of P1, . . . , Pn. Let B(�) be the set of all ordered n-
tuples of unit vectors generating cones of �. For each n-dimensional cone C ∈ �,
let gC be the restriction of the product of the support functions of P1, . . . , Pn to the
interior of C. Then

1

(n!)2

∑
(v1,...,vn)∈B(�)

∂ng<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= V (P1, . . . , Pn). (16.13)

Proof Let C ∈ �. To each i ∈ {1, . . . , n}, there is a vertex yi of Pi such that
the support function of Pi on C is given by 〈· , yi〉. Let λ1, . . . , λn ≥ 0 and P =
λ1P1 + · · · + λnPn with polytopes P1, . . . , Pn ⊂ R

n. The support function of P on
C is given by 〈· , λ1y1 + · · · + λnyn〉. With fC defined as in Theorem 16.1 for the
polytope P , we have

n∑
i1,...,in=1

λi1 · · · λinV (Pi1 , . . . , Pin ) = Vn(P )

= 1

(n!)2

∑
(v1,...,vn)∈B(�)

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

.

Here

f<v1,...,vn>(u) = 〈u, λ1y1 + · · · + λnyn〉n for u ∈ pos{v1, . . . , vn},

hence

∂nf<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

= n!〈v⊥
1 , λ1y1 + · · · + λnyn〉 · · · 〈v⊥

n , λ1y1 + · · · + λnyn〉

= n!
n∑

i1,...,in=1

λi1 · · · λin〈v⊥
1 , yi1〉 · · · 〈v⊥

n , yin〉.

By comparison we get, in particular,

V (P1, . . . , Pn) = 1

n!
∑

(v1,...,vn)∈B(�)

〈v⊥
1 , y1〉 · · · 〈v⊥

n , yn〉

= 1

(n!)2

∑
(v1,...,vn)∈B(�)

∂ng<v1,...,vn>

∂v⊥
1 · · · ∂v⊥

n

,

which completes the proof. ��
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I thank the referee for correcting an inaccuracy and for several suggestions that
improved the presentation.
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