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Abstract. This paper describes a new approach on optimization of con-
straint satisfaction problems (CSPs) by means of substituting sub-CSPs
with locally consistent regular membership constraints. The purpose of
this approach is to reduce the number of fails in the resolution process,
to improve the inferences made during search by the constraint solver
by strengthening constraint propagation, and to maintain the level of
propagation while reducing the cost of propagating the constraints. Our
experimental results show improvements in terms of the resolution speed
compared to the original CSPs and a competitiveness to the recent tabu-
lation approach [1,15]. Besides, our approach can be realized in a prepro-
cessing step, and therefore wouldn’t collide with redundancy constraints
or parallel computing if implemented.

Keywords: Constraint programming · CSP · Refinement ·
Optimizations · Regular membership constraint · Regular CSPs

1 Introduction

A CSP can be often described in several ways, each of which might consist of
different types and combinations of constraints, which leads to various statistical
results of the resolution, including the execution time, the number of fails, the
number of backtracks, the number of nodes etc. The reason for this is, that the
combination of constraints and their propagators have a significant impact on
the shape and the size of the search tree. Therefore, the diversity of models and
constraints for a given CSP offers us an opportunity to improve the resolution
process by using another model in which fewer fails occur during the resolution
process. Based on this idea, previous works show that the performance of a
constraint problem often can be improved by converting a sub-problem into a
single constraint [1–4,15].

In this paper, we propose an algorithm which substitutes parts of CSPs by
singleton, locally consistent constraints. In contrast to [15], the replacement is
based on the regular membership constraint instead of the table constraint. Since
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our algorithm can be applied at the pre-processing stage, other approaches which
accelerate the resolution process such as redundant modeling [6], parallel search
[21], or parallel consistency [12] can be used in combination with ours.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
necessary notions for the approach. In Sect. 3, the substitution of small sub-CSPs
with the regular membership constraint is explained. In Sect. 4, the benefit of
our regularization approach is shown in two case studies based on the Solitaire
Battleships Problem [9] and the Black Hole Problem [17]. Furthermore, we com-
pare our results with the tabulation approach presented in [15]. Finally, Sect. 5
concludes and proposes research directions for the future.

Remark 1. In this paper we will use the notion of a “regular constraint” synonym
for “regular membership constraint”.

2 Preliminaries

In this section, we introduce necessary definitions and methods for our regular-
ization approach. We consider CSPs which are defined in the following way:

CSP [7]. A constraint satisfaction problem (CSP) is defined as a 3-tuple P =
(X,D,C) with X = {x1, x2, . . . , xn} is a set of variables, D = {D1,D2, . . ., Dn}
is a set of finite domains where Di is the domain of xi and C = {c1, c2, . . . , cm}
is a set of primitive or global constraints covering between one and all variables
in X.

Additionally, we define a sub-CSP Psub as a part of a CSP P = (X,D,C)
which covers only a part of the constraints and their variables.

Sub-CSP. Let P = (X,D,C) be a CSP. For C ′ ⊆ C we define Psub = (X ′,D′, C ′)
such that X ′ =

⋃
c∈C′ scope(c) with corresponding domains D′ = {Di | xi ∈

X ′} ⊆ D, where the scope of a constraint c is defined as the set of variables
which are part of the constraint c [7].

After we defined CSPs and sub-CSPs, we need a measure for the size of such
a CSP or sub-CSP.

size(P ). We define the maximal size size(P ) of a CSP P = (X,D,C) as the
product of the cardinalities of the domains of the CSP P , see Eq. 1.

size(P ) =
|X|∏

i=1

|Di| (1)

The regular constraint, its propagation [13,18,19] and deterministic finite
automatons (DFAs) [14] provide the basis of our approach. We briefly review
the notion of a deterministic finite automaton (DFA) and of the regular con-
straint.

DFA [14]. A deterministic finite automaton (DFA) is a quintuple M = (Q, Σ,
δ, q0, F ), where Q is a finite set of states, Σ is the finite input alphabet, δ is
a transformation function Q × Σ → Q, q0 ∈ Q is the initial state, and F ⊆ Q
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is the set of final or accepting states. A word w ∈ Σ∗ is accepted by M , i.e.
w ∈ L(M), if the corresponding DFA M with the input w stops in a final state
f ∈ F .

Regular Constraint [19]. Let M = (Q, Σ, δ, q0, F ) be a DFA and let X =
{x1, x2, ..., xn} be a set of variables with D(xi) ⊆ Σ for 1 ≤ i ≤ n. Then

regular(X,M) = {(d1, ..., dn)|∀i di ∈ Di, d1 ◦ d2 ◦ ... ◦ dn ∈ L(M)}, (2)

i.e. every sequence d1...dn of values for x1, ..., xn must be a word of the regular
language recognized by the DFA M , where ◦ is the concatenation of two words.

3 Substitution of Constraints by Regular Constraints

Previous work [4] has shown that each CSP can be transformed into an equivalent
one with only one regular constraint (rCSP), theoretically. In this section, we
present a practical algorithm to transform the constraints of a sub-CSP Psub

of a given CSP P into a regular constraint. For the reason of effectiveness the
sub-CSP Psub should be much smaller than the original CSP P (size(Psub) �
size(P )).

It is the aim to detect and substitute such sub-CSPs, which are preferably
as big as possible but can be represented by a DFA which is as small as possible
at the same time. An algorithm to detect such sub-CSPs must be developed
in the future. Currently, we use the heuristics to find sub-CSPs given in [1].
Alternatively, an algorithm like Gottlobs hypertree decomposition [11] or Ke
Lius det-k-CP [16] can be used.

Our transformation algorithm obtains a sub-CSP Psub = (X ′,D′, C ′) from
CSP P = (X, D, C) as input, where C ′ ⊂ C, X ′ = {x1, . . . , xn} =

⋃
c∈C′

scope(c) ⊂ X, |X ′| � |X| and D′ = {D1, . . . , Dn} ⊂ D, where Di is the
domain of variable xi,∀i ∈ {1, 2, . . . , n}, and returns a regular constraint which is
equivalent to the constraints in C ′. Our regularization algorithm has two phases:

1. Solve the detected/given sub CSP Psub.
2. Transform all solutions S = {s1, s2, . . . , sk} of the sub-CSP Psub into a regular

constraint.

The first phase is obvious. Notice that the sub-CSP Psub should be much smaller
than the original CSP P , otherwise the solving step would be too time consum-
ing.

We continue with a description of the second phase. Let S = {s1, s2, . . . , sk}
be the set of all solutions of Psub calculated in step one. Every solution sj ,
j ∈ {1, 2, . . . , k} consists of n values si,j , i ∈ {1, 2, . . . , n}, cf. Table 1.

To define a deterministic finite automaton as the basis for the regular con-
straint, we need the set T = {T1, . . . , Tn} of prefix sets of all solutions of Psub,
where all elements in Ti are concatenations of the i first values of a solution
s ∈ S (see Eq. 3):

Ti =
k⋃

l=1

{s1,l ◦ s2,l ◦ . . . ◦ si,l | ∀i ∈ {1, . . . , n}} (3)
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Table 1. The solutions s1, ..., sk of the sub-CSP Psub

S s1 s2 . . . sk

x1 s1,1 s1,2 . . . s1,k

x2 s2,1 s2,2 . . . s2,k
...

...
...

. . .
...

xn sn,1 sn,2 . . . sn,k

This results in e.g. T1 = {s1,1, s1,2, . . . , s1,k}, T2 = {s1,1◦s2,1, s1,2◦s2,2, . . . , s1,k◦
s2,k}, Tn = S. Note that we enumerate the elements in each Ti from 1 to k but
actually they mostly have fewer elements then k for the reason that multiple
occurrences of elements do not occur in sets. It follows |T1| ≤ |T2| ≤ . . . ≤
|Tn| = k.

For each element t of each set Ti, i ∈ {1, . . . , n − 1} a state qt for the DFA
is created, which represents the solution prefix t. Furthermore, the initial state
qstart and the final state qend (representing all solutions S = Tn of Psub) are
added to Q. Thus, the set of states Q of the DFA is

Q = {qt | t ∈ Ti, i ∈ {1, 2, . . . , n − 1}} ∪ {qstart, qend}.

The initial state is qstart and F = {qend} is the set of final states.
The alphabet Σ of the DFA is the union of all domains of the variables of X ′:

Σ =
⋃

Di∈D′
Di (4)

Finally, we define the transition function δ as follows:

– Let t ∈ T1. Then it holds
δ(qstart, t) = qt (5)

– Let ti−1 be an element in Ti−1, ti be an element in Ti, i ∈ {2, . . . , n − 1} and
w ∈ Di with ti = ti−1 ◦ w. Then it holds

δ(qti−1 , w) = qti (6)

– Let tn−1 be an element in Tn−1, tn be an element in Tn = S and w ∈ Dn

with tn = tn−1 ◦ w. Then it holds

δ(qtn−1 , w) = qend (7)

This altogether provides the DFA M = (Q,Σ, δ, qstart, {qend}). The constraint
regular(X ′,M) can be used as a replacement for the constraints of C ′ in the
original CSP P .

Remark 2. This algorithm is only useful for sub-CSPs Psub which are proper
subsets of the original CSP P (size(Psub) � size(P )). Solving a sub-problem
Psub and finding all solutions is also an NP-hard problem. Nevertheless, due to
the exponential growth of constraint problems, sub-problems with smaller size
than the original problem can be solved significantly faster.
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4 Examples and Experimental Results

After presenting our approach to transform the constraints of small sub-CPSs
into a regular constraint, we want to show two case studies to underline its ben-
efits. For this, we use the Black Hole Problem [17] and the Solitaire Battleships
Problem [9] from the CSPlib.

All the experiments are set up on a DELL laptop with an Intel i7-4610M
CPU, 3.00 GHz, with 16 GB 1600 MHz DDR3 and running under Windows 7
professional with service pack 1. The algorithms are implemented in Java under
JDK version 1.8.0 191 and Choco Solver [20]. We used the DowOverWDeg
search strategy which is explained in [5] and is used as default search strategy
in the Choco Solver [20].

4.1 The Black Hole Problem

Black Hole is a common card game, where all 52 cards are played one after the
other from seventeen face-up fans of three cards into a discard pile named ‘black
hole’, which contains at the beginning only the card A♠. All cards are visible at
all times. A card can be played into the ‘black hole’ if it is adjacent in rank to
the previous card (colors are not important). The goal is to play all cards into
the Black Hole.

Black Hole was modelled for a variety of solvers by Gent et al. [10]. We use
the simplest and most declarative model of Dekker et al. [8], where two variables
a and b represent adjacent cards if |a − b| mod 13 ∈ {1, 12}.

The heuristic Weak Propagation, presented in [1], detects the adjacency con-
straints as replaceable1. For our benchmark suite we computed 50 different
instances of the Black Hole Problem, where 49 instances are randomly created
(so the position of every card in the 17 fans is random) and the remaining
instance has an enumerated card distribution (1♠, 2♠, ..., K♠, A♣, 1♣,..., K♣,
A♥, 1♥, ..., K♥, A♦, 1♦, ..., K♦).

For all instances, we limited the solution time to 10 min and each problem
was solved in 4 ways:

1. Original : The problem was modelled as described in [8].
2. Table: The detected adjacency constraints were substituted by table con-

straints.
3. Regular : The detected adjacency constraints were substituted by regular con-

straints.
4. RegularIntersected : The detected adjacency constraints were substituted by

only one regular constraint. The single regular constraint was created by
the intersection of the underlying automatons of the substituted regular con-
straints from item (3) Regular as given above.

1 In [1], the detected constraints are substituted by table constraints, in contrast to
the here presented approach; we will substitute them with regular constraints.
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Fig. 1. The time improvements (in %) of the Table, Regular and RegularIntersected
models for finding the first solution of each instance of the Black Hole Problem in
comparison to the Original model (0%).

Table 2. Overview of the Black Hole benchmark.

Ave. solution time Ave. imp. in % # Fastest # Sol. instances

Original 516.432 s – 1 7

Table 58.796 s 83.413% 25 47

Regular 63.679 s 82.054% 2 47

RegularIntersected 54.883 s 84.165% 19 47

Figure 1 shows the time improvements (in %) of the three substituted models
(Table, Regular and RegularIntersected) in comparison to the Original model
when the first solution is searched. In 49 of 50 cases all modified models are
better than the original. The only exception is sample case 8, where the original
approach is 62–95% faster than the substituted ones2. Table 2 shows that the
Table approach was 25 times, the RegularIntersected approach was 19 times,
the Regular approach was two times and the Original approach was one time
the fastest. In average we could reach the first solution 83.413%, 82.054% or
84.165% faster than the Original approach and we could solve many more prob-
lem instances with the substitution approaches in the time limit in comparison
to the Original model (47 instead of 7).

2 For case 8 exists a deterioration of 65% (90%, 95%) for the RegularIntersected (Table
and Regular) approach. To keep the graphic small the negative values were drawn
in 1

10
of the real distance. In cases 5, 25 and 46 none of the four models found a

solution in the time bounds of 10min.
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4.2 The Solitaire Battleships Problem

The Solitaire Battleships Problem is a famous symbol puzzle, where several ships
with different sizes must be placed on a two-dimensional grid. The ships may be
oriented horizontally or vertically, and no two ships will occupy adjacent grid
squares, not even diagonally. Numerical values along the right hand side of and
below the grid indicate the number of grid squares in the corresponding rows
and columns that are occupied by vessels (see more details in [9]).

We created an equivalent Choco version of the MiniZinc model given in [9]
and tested the introductory example and the 35 instances given in the “sb Mini-
Zinc Benchmarks.zip” from [9]. We indicated the “spacing constraints”, the
“ship shape constraints” and the “count number of bigger ships constraints”
as potential good candidates for a substitution by regular (or table) constraints.

For all instances we limited the solution time to 30 min and each problem
was solved in five ways:

1. Original : The problem was modelled as described in [9].
2. Table: With reference to [9], the single lines 75 to 80 of the “spacing con-

straints”, the single lines 86 to 89 and the three lines 91 to 93 together of the
“ship shape constraints” and each two lines 117 to 118 and 122 to 123 together
of the “count number of bigger ships constraints” were each substituted by
singleton table constraints.

3. Regular : The lines enumerated in Table were substituted with regular con-
straints.

4. RegularIntersected : Equivalently to Regular, except the partial constraints in
“count number of bigger ships constraints” which count the number of ships
of size s in a row, respectively in a column, were combined each to one regular
constraint.

5. TableRegularIntersected : There, we have the same combined regular con-
straints (for representing the “count number of bigger ships constraints”)
as described in RegularIntersected, but, apart from that, use the table con-
straints described in Table (for representing the “spacing constraints” and
“ship shape constraints”).

Figure 2 shows that the results for the Solitaire Battleships Problem are not
that clear as the results for the Black Hole Problem. A look into Table 3 reveals
that the improvements for finding a first solution are very streaky. The Table
approach was the best approach, if using only one substitution style (tabulation
or regularization). It found the first solution in 9 cases as fastest and was in
average 37% faster than the original approach. The Regular approach slows the
solution process down here but the RegularIntersected approach leads again to
a speed up (2 times fastest approach, 29.701% better as the Original approach),
which is not much worse than the speed up from the Table approach.
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Fig. 2. The time improvements (in %) of the Table, Regular, RegularIntersected and
TableRegularIntersected models for finding the first solution of each instance of the
Solitaire Battleships Problem in comparison to the Original model (0%).

Table 3. Overview of the Black Hole benchmark.

Ave. sol. time Ave. imp. in % # Fastest # Sol. instances

Original 935.168 – 1 23

Table 632.955 37.303% 9 28

Regular 1120.421 −11.551% 0 17

RegularIntersected 677.923 29.701% 2 26

TableRegularIntersected 507.820 60.763% 19 30

The TableRegularIntersected approach shows that a combination of regular-
ization and tabulation can lead to a significant improvement. Here it was the
best approach. It could solve the most problems (30), could find most often as
fastest the first solution (19) and had in average the biggest time improvement
(60.763%).

Remark 3. The TableRegularIntersected approach was not calculated fully auto-
matically here, but it shows the potential of both approaches in combination.
Future work has to be done automate the combination of both approaches.

Remark 4. In the evaluation, we did not present the needed time for the trans-
formations. Depending on the specific CSPs, we observed big differences in
the necessary transformation times. In our case, the total transformation time
needed for all transformations were in all Black Hole instances less than three
and in all Solitaire Battleship instances less than four seconds. Because the trans-
formation time can be neglected in comparison to the solution time (less than
three respectively four seconds vs. 10 respectively 30 min) we did not figure out
them explicitly.
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5 Conclusion and Future Work

We presented a new approach for the optimization of general CSPs using the
regular constraint. For this a suitable sub-set of constraints are detected (for
example with heuristics presented in [1]), solved separately and transformed
into a regular constraint. Two benchmarks stress the benefit of this approach in
comparison to the original problems and the competitiveness to the tabulation
approach presented in [15]. Furthermore, our benchmarks indicate the potential
of a combination of both approaches.

In the future we will research heuristics, for finding sub-CSPs which are
especially suitable for the regularization approach. Besides, we want to consider
the idea of direct transformations from several global constraints to equivalent
regular constraints [4] and the combination of regular constraints transformed
from global constraints with regular constraints transformed from sub-CSPs.
We expect that this combination approach can be applied more often than the
tabulation approach [15], because big sub-CSPs can be represented by a small
DFA often; in contrast to this a table constraint always needs to store all solution
tuples. Therefore, the regularization approach looks more promissing for big
problems.

The most obvious next step is a detailed comparison of the regularization
approach with the tabulation approach and the formulation of heuristics which
suggest when which approach is more advantageous.
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