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Abstract. Allen’s Interval Algebra constitutes a framework for reason-
ing about temporal information in a qualitative manner. In particu-
lar, it uses intervals, i.e., pairs of endpoints, on the timeline to repre-
sent entities corresponding to actions, events, or tasks, and binary rela-
tions such as precedes and overlaps to encode the possible configurations
between those entities. Allen’s calculus has found its way in many aca-
demic and industrial applications that involve, most commonly, planning
and scheduling, temporal databases, and healthcare. In this paper, we
present a novel encoding of Interval Algebra using answer-set program-
ming (ASP) extended by difference constraints, i.e., the fragment abbre-
viated as ASP(DL), and demonstrate its performance via a preliminary
experimental evaluation. Although our ASP encoding is presented in the
case of Allen’s calculus for the sake of clarity, we suggest that analogous
encodings can be devised for other point-based calculi, too.

Keywords: Answer set programming · Difference constraints ·
Qualitative constraints · Spatial and Temporal Reasoning · Symbolic
AI

1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a Symbolic AI app-
roach that deals with the fundamental cognitive concepts of space and time
in a qualitative, human-like, manner [10,20]. As an illustration, the first con-
straint language to deal with time on a qualitative level was proposed by Allen
in [1], called Interval Algebra. Allen wanted to define a framework for reason-
ing about time in the context of natural language processing that would be
reliable and efficient enough for reasoning about temporal information in a qual-
itative manner. In particular, Interval Algebra uses intervals on the timeline to
represent entities corresponding to actions, events, or tasks, and relations such
as precedes and overlaps to encode the possible configurations between those
entities. Interval Algebra has become one of the most well-known qualitative
constraint languages, due to its use for representing and reasoning about tem-
poral information in various applications. More specifically, typical applications
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of Interval Algebra involve planning and scheduling [2,3,9,26,29], natural lan-
guage processing [8,33], temporal databases [7,32], multimedia databases [22],
molecular biology [13] (e.g., arrangement of DNA segments/intervals along a
linear chain involves particular temporal-like problems [4]), workflow [23], and
healthcare [18,25,30].

Answer-set programming (ASP) is a declarative programming paradigm
[6,17] designed for solving computationally hard search and optimization prob-
lems from the first two levels of polynomial hierarchy. Typically, one encodes the
solutions of a given problem as a logic program and then uses an answer-set solver
for their computation. The idea of representing Allen’s Interval Algebra in terms
of rules is not new; existing encodings can be found in [5,19]. However, these
encodings do not scale well when the number of intervals is increased beyond
20 [5, Section 6]. The likely culprit for decreasing performance is the explicit rep-
resentation of compositions of base relations, which tends to cause cubic blow-ups
when instantiating the encoding for a particular problem instance. In this paper,
we circumvent such negative effects by using an appropriate extension of ASP
to encode the underlying constraints of Allen’s calculus. The crucial primitive
is provided by difference logic (DL) [28] featuring difference constraints of form
x−y ≤ k. The respective fragment of ASP is known as ASP(DL) [16] and it has
been efficiently implemented within the clingo solver family. When encoding
Allen’s calculus in ASP(DL), the transitive effects of relation composition can be
delegated to propagators implementing difference constraints. Hence, no blow-
ups result when instantiating the ASP rules for a particular constraint network
and the resulting ground logic program remains linear in network size.

The rest of this article is organized as follows. The basic notions of qualita-
tive constraint networks (QCNs) and, in particular, Allen’s Interval Algebra are
first recalled in Sect. 2. Then, difference constrains are introduced in Sect. 3 and
we also show how they are available in ASP, i.e., the fragment abbreviated as
ASP(DL). The actual encodings of QCNs in ASP(DL) are presented in Sect. 4.
The preliminary experimental evaluation of the resulting encodings takes place
in Sect. 5. Finally, we present our conclusions and future directions in Sect. 6.

2 Preliminaries

A binary qualitative constraint language is based on a finite set B of jointly
exhaustive and pairwise disjoint relations, called the set of base relations [21],
that is defined over an infinite domain D. These base relations represent definite
knowledge between two entities with respect to the level of granularity provided
by the domain D; indefinite knowledge can be specified by a union of possible base
relations, and is represented by the set containing them. The set B contains the
identity relation Id, and is closed under the converse operation (−1). The total set
of relations 2B is equipped with the usual set-theoretic operations of union and
intersection, the converse operation, and the weak composition operation denoted
by � [21]. For all r ∈ 2B, r−1 =

⋃{b−1 | b ∈ r}. The weak composition (�) of
two base relations b, b′ ∈ B is defined as the smallest (i.e., strongest) relation
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Fig. 1. Examples of QCN terminology using Interval Algebra; symbols p, e, m, o, d, s,
and f correspond to the base relations precedes, equals, meets, overlaps, during, starts,
and finishes respectively, with ·i denoting the converse of · (note that ei = e)

r ∈ 2B that includes b ◦ b′, or, formally, b � b′={b′′ ∈ B | b′′∩(b ◦ b′) �= ∅}, where
b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈ b ∧ (z, y) ∈ b′} is the (true)
composition of b and b′. For all r, r′ ∈ 2B, r � r′ =

⋃{b � b′ | b ∈ r, b′ ∈ r′}.
As an illustration, consider the well-known qualitative temporal constraint

language of Interval Algebra (IA), introduced by Allen in [1]. The domain D
of Interval Algebra is defined to be the set of intervals on the line of rational
numbers, i.e., D = {x = (x−, x+) ∈ Q×Q | x− < x+}. Each base relation can be
defined by appropriately constraining the endpoints of the two intervals at hand,
which yields a total of 13 base relations comprising the set B = {e, p, pi, m, mi,
o, oi, s, si, d, di, f , fi}; these symbols are explained in the caption of Fig. 1.
For example, d is defined as d = {(x, y) ∈ D × D | x− > y− and x+ < y+}. The
identity relation Id of Interval Algebra is e and its converse is again e.

Definition 1. A qualitative constraint network (QCN) is a tuple (V,C) where:

– V = {v1, . . . , vn} is a non-empty finite set of variables, each representing an
entity of an infinite domain D;

– and C is a mapping C : V × V → 2B such that C(v, v) = {Id} for all v ∈ V
and C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V .

An example of a QCN of IA is shown in Fig. 1a; for clarity, neither converse
relations nor Id loops are mentioned or shown in the figure.

Given a QCN N = (V,C), a solution of N is a mapping σ : V → D such that
∀(u, v) ∈ V × V , ∃b ∈ C(u, v) so that (σ(u), σ(v)) ∈ b (see Fig. 1b).

3 Difference Constraints for Answer-Set Programming

We assume that the reader is already familiar with the basics of ASP (cf. [6,17])
and merely concentrate on extending ASP in terms of difference constraints.
Such a constraint is an expression of the form x − y ≤ k where x and y are
variables and k is a constant. Intuitively, the difference of x and y should be
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less than or equal to k. Potential domains for x and y are integers and reals,
for instance. The domain is usually determined by the application and, for the
purposes of this paper, the set of integers is assumed in the sequel. The given
form of difference constraints can be taken as a normal form for such constraints.
However, with a little bit of elaboration some other and very natural constraints
concerning x and y become expressible. While x ≤ y is equivalent to x − y ≤ 0,
the strict difference x < y translates into x−y ≤ −1. To state the equality x = y,
two difference constraints emerge, since x = y ⇐⇒ x − y ≤ 0 and y − x ≤ 0.

Difference constraints can be implemented very efficiently, since they enable
a linear-time check for unsatisfiability. Given a set S of such constraints, one can
use the Bellman-Ford algorithm to check if S has a loop of variables x1, . . . , xn

where xn = x1 along with difference constraints x2 − x1 ≤ d1, . . . , xn − xn−1 ≤
dn−1 such that

∑n−1
i=1 di < 0. When carrying out the check for satisfiability, it

is not necessary to find concrete values for the variables in S. This is in perfect
line with the idea of reasoning about QCNs on a qualitative, symbolic, level.

Example 1. The set of difference constraints S1 = {y − x ≤ 1, z − y ≤ 1, x − z ≤
−3} is unsatisfiable, since 1 + 1 − 3 < 0. However, if the second difference
constraint is revised to z − y ≤ 2, the resulting set of difference constraints S2

is satisfiable, as witnessed by an assignment with x = 0, y = 1, and z = 3. �

More formally, an assignment τ is a mapping from variables to integers and
a difference constraint x − y ≤ k is satisfied by τ , denoted τ |= x − y ≤ k, if
τ(x) − τ(y) ≤ k. Also, we write τ |= S for a set of difference constraints S, if
τ |= x − y ≤ k for every constraint x − y ≤ k in S. If τ |= S, we also say that
S is satisfiable and that τ is a solution to S. Moreover, it is worth pointing out
that if τ |= S then also τ ′ |= S where τ ′(x) = τ(x)+k for some integer k. Thus
S has infinitely many solutions if it has at least one solution. If S is satisfiable,
it is easy to compute one concrete solution by using a particular variable z as a
point of reference via the intuitive assignment τ(z) = 0.1

Difference logic (DL) extends classical propositional logic in the satisfiability
modulo theories (SMT) framework [28]. A propositional formula φ in DL is
formed in terms of usual atomic propositions a and difference constraints x −
y ≤ k. A model of φ is a pair 〈ν, τ〉 such that (i) ν, τ |= a iff ν(a) = �, (ii)
ν, τ |= x − y ≤ k iff τ |= x − y ≤ k, and (iii) ν, τ |= φ by the recursive rules
of propositional logic. Difference logic lends itself for applications where integer
variables are needed in addition to Boolean ones. Thus, it serves as a potential
target formalism when it comes to implementing ASP via translations [14,15].

The rule-based language of ASP can be generalized in an analogous way by
using difference constraints as additional conditions in rules. The required theory
extension of the clingo solver is documented in [12]. For instance, a difference
constraint x − y ≤ 5 can be expressed as &diff{x-y} <= 5 where x and y are
constants in the syntax of ASP but understood as integer variables of difference
logic. However, using such fixed names for variables is often too restrictive from
1 This distinguished variable z can be used as a name for 0 in other difference con-

straints. Then, e.g., x − z ≤ k and z − x ≤ −k express together that x = k.
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Listing 1.1. Choice of Base Relations

1 % Domains

2 var(X) :- brel(X,Y,R).

3 var(Y) :- brel(X,Y,R).

4 arc(X,Y) :- brel(X,Y,R).

5
6 % Intervals for every variable X: sp(X) <= ep(X)

7 &diff{ sp(X)-ep(X) } <= 0 :- var(X).

8
9 % Choose base relations

10 { chosen(X,Y,R): brel(X,Y,R) } = 1 :- arc(X,Y).

Listing 1.2. Difference Constraints Expressing Base Relations

1 % Relation eq(X,Y): sp(X) = sp(Y) and ep(X) = ep(Y)

2 &diff{ sp(X)-sp(Y) } <= 0 :- chosen(X,Y,eq).

3 &diff{ sp(Y)-sp(X) } <= 0 :- chosen(X,Y,eq).

4 &diff{ ep(X)-ep(Y) } <= 0 :- chosen(X,Y,eq).

5 &diff{ ep(Y)-ep(X) } <= 0 :- chosen(X,Y,eq).

6
7 % Relation during(X,Y): sp(Y) < sp(X) and ep(X) < ep(Y)

8 &diff{ sp(Y)-sp(X) } <= -1 :- chosen(X,Y,d).

9 &diff{ ep(X)-ep(Y) } <= -1 :- chosen(X,Y,d).

application perspective. It is possible to use function symbols to introduce collec-
tions of integer variables for a particular application. For instance, if the arcs of
a digraph are represented by the predicate arc/2, we could introduce a variable
w(X,Y) for the weight for each pair of first-order variables X and Y satisfying
arc(X,Y). Recall that free variables in rules are universally quantified in ASP.
More details about the theory extension corresponding to difference logic can be
found in [16] whereas its implementation is known as the clingo-dl solver.2

4 Encoding Temporal Networks in ASP(DL)

In what follows, we present our novel encoding of temporal networks using ASP
extended by difference constraints. To encode base relations from B in a system-
atic fashion, we introduce constants eq, p, pi, m, mi, o, oi, s, si, d, di, f, and
fi as names for the base relations (see again Sect. 2). The structure of networks
themselves is described in terms of predicate brel/3 whose first two arguments
are variables from the network and the third argument is one possible base rela-
tion for the pair of variables in question. Then, for instance, the base relations
associated with variables x1 and x2 in Fig. 1a could be encoded in terms of facts

2 https://potassco.org/labs/clingodl/.

https://potassco.org/labs/clingodl/
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brel(1,2,p) and brel(1,2,m). Given any such collection of facts, some basic
inferences are made using the ASP rules in Listing 1.1. First, the rules in lines
2–3 extract the identities of variables for later reference. Secondly, the rule in
line 4 defines the arc relation for the underlying digraph of the network. Given
these pieces of information, we are ready to formalize the solutions of the tem-
poral network. For each interval X, we introduce integer variables sp(X) and
ep(X) to capture the respective starting and ending points of the interval. The
relative order of theses points is then determined using the difference constraint
expressed by the rule in line 7. Interestingly, there is no need to constrain the
domain of time points otherwise, e.g., by specifying lower and upper bounds;
arbitrary integer values are assumed. In addition, the choice rule in line 10 picks
exactly one base relation for each arc of the constraint network.

The satisfaction of the chosen base relations is enforced by further difference
constraints, which are going to be detailed next. Rather than covering all 13, we
picked two representatives for more detailed discussion (see Listing 1.2). In case
of equality, the starting and ending points of intervals X and Y must coincide.
The difference constraints introduced in lines 2–3, whenever activated by the
satisfaction of chosen(X,Y,eq), enforce the equality of the starting points and
those of lines 4–5 cover the respective ending points. The case of the during
relation is simpler since the relationships of starting/ending points are strict and
only two rules are needed for a pair of intervals X and Y. The rule in line 8 orders
the starting points. The rule in line 9 puts the ending points in the opposite
order. The encodings for the remaining base relations are obtained similarly.
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Fig. 2. Runtime scaling: checking satisfiability vs computing intersection of solutions

5 Experimental Evaluation

We generated QCN instances using model A(n = 100, 2 ≤ d ≤ 20, s = 6.5) [27],
where n denotes the number of variables, d the average degree, and s the aver-
age size (number of base relations) of a constraint of a given instance. For each
d ∈ {2, . . . , 20}, we report runtimes based on 10 random instances because the
runtime distribution is heavy tailed, i.e., the severity of outliers encountered
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increases along the number of instances generated. As a consequence, the max-
imum and average runtimes tend to infinity as can be seen from the plots in
Fig. 2. The graphs have been smoothened using gnuplot’s option bezier.

Table 1. Median runtimes for IA instances with 100 variables

d 9 10 11 12 13 14 15 16 17 18 19

Satisfiability 4.7 34.9 60.9 163.0 180.7 543.8 157.3 38.0 32.5 86.5 56.4

Backbone 24.7 67.8 210.0 483.5 658.8 1488.4 223.0 382.9 64.6 44.1 55.2

The graph on the left shows the runtime scaling for checking the existence of a
solution, and the graph on the right concerns the computation of the intersection
of solutions, which amounts to the identification of backbones for QCNs [31].
The clingo-dl solver supports the computation of the intersection as one of
its command-line options. It is also worth noting a phase transition around
the value d = 14 where instances turn from satisfiable to unsatisfiable, which
affects the complexity of reasoning. Moreover, due to outliers, it is perhaps more
informative to check the median runtimes as given in Table 1. It is clear that
intersection of solutions computation is more demanding, but the difference is
not tremendous. Moreover, to contrast the performance of our encoding with
respect to [5], we note that only 10% of 190 instances exceeded the timeout of
300 s (this same timeout was used in that work). In addition, the experiments of
[5] covered instances from 20 to 50 variables only and the encodings were already
performing poorly by the time 50 variables were considered. On the other hand,
our encoding still underperforms with respect to native QSTR tools and, at
least as far as satisfiability checking is concerned, the state-of-the-art qualitative
reasoner gqr [11] tackles each of the 190 instances in a few seconds on average.
To the best of our knowledge, there is no native QSTR tool for calculating
intersection of solutions and in this way the advanced reasoning modes of the
clingo-dl solver enable new kinds of inference and for free, since the same
encoding can be used and no further implementation work is incurred.

Our second experiment studies the scalability of our ASP(DL) encoding when
the number of variables is gradually increased from 50 to 90. The results are
illustrated in Fig. 3. The plots on the left illustrate the scaling of the backbone
computation, i.e., the intersection of solutions. It turned out that this kind of
reasoning is easier than computing the union of solutions, also known as the
minimum labeling problem [24], as depicted by the graphs on the right. The
random instances used so far are relatively easy, and for that reason we take
into consideration a modified scheme H(n, 2 ≤ d ≤ 20) [27] that yields much
harder network instances. The difference with respect to model A used above
is that constraints are picked from a set of relations expressible in 3-CNF when
transformed into first-order formulae. As a consequence, we are only able to
analyze instances up to n = 50 variables in reasonable time. Table 2 shows
the performance difference when computing the intersection and the union of
solutions. In most cases, the intersection of solutions can be computed faster.
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Fig. 3. Runtime scaling (median): computing intersection of solutions vs computing
union of solutions

Although d = 15 is kind of an exception, its significance is diminished by the
most demanding instances encountered: 8 477 vs 24 199 s spent on computing
the intersection and the union, respectively.

Table 2. Median runtimes for IA instances with 50 variables

d 9 10 11 12 13 14 15 16 17 18 19

Intersection 4.8 8.7 19.8 50.8 122.3 940.7 1738.0 758.5 384.4 258.0 155.9

Union 25.6 46.9 105.5 298.5 7226.3 5636.5 749.8 1585.5 438.9 93.8 169.3

6 Conclusion and Future Work

In this paper, we encoded qualitative constraint networks (QCNs) based on
Allen’s Interval Algebra in ASP(DL), which is an extension of answer set pro-
gramming (ASP) by difference constraints. Due to native implementation of such
constraints as propagators in the clingo-dl solver, the transitive effects of rela-
tion composition are avoided when it comes to the space complexity of represent-
ing QCN instances. This contrasts with existing encodings in pure ASP [5,19]
and favors computational performance, which rises to a new level due to our
ASP(DL) encoding. As regards other positive signs, it seems that the presented
encoding scales for other reasoning modes as well. Since ASP encodings are
highly elaboration tolerant, we expect that it is relatively easy to modify and
extend our basic encodings for other reasoning tasks as well. As regards future
work, we aim to investigate more thoroughly the performance characteristics of
our ASP(DL) encoding, and to use it for establishing collaborative frameworks
among ASP-based and native QSTR tools.
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