
Petra Hofstedt · Salvador Abreu ·
Ulrich John · Herbert Kuchen ·
Dietmar Seipel (Eds.)

 123

LN
AI

 1
20

57

Conference on Declarative Programming, DECLARE 2019
Unifying INAP, WLP, and WFLP
Cottbus, Germany, September 9–12, 2019
Revised Selected Papers

Declarative Programming
and Knowledge Management

Lecture Notes in Artificial Intelligence 12057

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Petra Hofstedt • Salvador Abreu •

Ulrich John • Herbert Kuchen •

Dietmar Seipel (Eds.)

Declarative Programming
and Knowledge Management
Conference on Declarative Programming, DECLARE 2019
Unifying INAP, WLP, and WFLP
Cottbus, Germany, September 9–12, 2019
Revised Selected Papers

123

Editors
Petra Hofstedt
Brandenburgische Technische Universität
Cottbus-Senftenberg
Cottbus, Germany

Salvador Abreu
Universidade de Évora
Évora, Portugal

Ulrich John
hwtk Berlin
Berlin, Germany

Herbert Kuchen
Westfälische Wilhelms-Universität Münster
Münster, Germany

Dietmar Seipel
Universität Würzburg
Würzburg, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-46713-5 ISBN 978-3-030-46714-2 (eBook)
https://doi.org/10.1007/978-3-030-46714-2

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1613-4631
https://orcid.org/0000-0003-0587-5298
https://orcid.org/0000-0002-6057-3551
https://doi.org/10.1007/978-3-030-46714-2

Preface

These proceedings contain a selection of reworked papers of the DECLARE 2019
conference that took place during September 9–12, 2019, at the Brandenburg
University of Technology (BTU) Cottbus-Senftenberg in Cottbus, Germany.

A central topic were methods, technologies, and applications of declarative pro-
gramming and modeling, a fundamental subdomain in the area of artificial intelligence.
The conference consisted of three events, each with a long-standing tradition: INAP –

22nd International Conference on Applications of Declarative Programming and
Knowledge Management, WLP – 33rd Workshop on (Constraint) Logic Programming,
and WFLP – 27th International Workshop on Functional and Logic Programming.

INAP covers all aspects of applications of important methods and technologies
around declarative programming, constraint problem solving, and related computing
paradigms. It comprehensively contemplates the impact of data and knowledge engi-
neering, programmable logic solvers on the internet society, its underlying technolo-
gies, and leading edge applications in industry, commerce, government, and societal
services. Previous INAP conferences have been held in Japan, Germany, Portugal, and
Austria.

WLP serves as a scientific forum of the annual meeting of the Society of Logic
Programming (GLP, Gesellschaft für Logische Programmierung e.V.). They bring
together researchers (not only from Germany) interested in logic programming, con-
straint programming, and related areas such as databases, non-monotonic reasoning,
knowledge representation, and operations research. WLP focuses on research in the-
oretical foundations, implementation, and applications of logic-based programming
systems. Previous workshops have been held in Germany, Austria, Switzerland, Egypt,
Japan, Denmark, Spain, Brazil, Italy, and France.

WFLP aims at bringing together researchers, students, and practitioners interested in
functional programming, logic programming, and their integration. WFLP has a rep-
utation for being a lively and friendly forum, and it is open for presenting and dis-
cussing work in progress, technical contributions, experience reports, experiments,
reviews, and system descriptions. Previous WFLP editions took place in Germany,
Japan, Denmark, Spain, Brazil, Italy, France, and Estonia.

Declarative programming as the main topic of the conference is an advanced
paradigm for modeling and solving complex problems. With their contributions, par-
ticipants presented current research activities in the areas of declarative languages and
compilation techniques, in particular for constraint-based, logical and functional lan-
guages and their extensions, as well as discussed new approaches and key findings in
constraint-solving, knowledge representation, and reasoning techniques. Furthermore,
academic and industrial applications were subjects of the scientific exchange.

DECLARE 2019 was jointly organized by the BTU Cottbus-Senftenberg and the
Society for Logic Programming (GLP e.V.). We would like to thank the authors of the
submitted papers, the presenters of the invited talks, and all conference participants for

their fruitful and interesting contributions and discussions. Furthermore, we thank the
members of the Program Committee and the reviewers for their time, effort, and
contributed expertise. We also would like to thank the BTU Cottbus-Senftenberg for
hosting the conference. Ultimately, we specifically thank the local organization team at
BTU Cottbus-Senftenberg: Sven Löffler, Katrin Ebert, Denny Schneeweiß, Gudrun
Pehle, Daniela Schramm, and Ilja Becker. The event would not have been possible
without them.

February 2020 Petra Hofstedt
Salvador Abreu

Ulrich John
Herbert Kuchen
Dietmar Seipel

vi Preface

Organization

Program Chair

Petra Hofstedt BTU Cottbus-Senftenberg, Germany

Program Committee of INAP

Salvador Abreu (Co-chair) Universidade de Évora, Portugal
Christoph Beierle FernUniversität in Hagen, Germany
François Bry Ludwig-Maximilian-University of Munich, Germany
Vitor Santos Costa University of Porto, Portugal
Agostino Dovier University of Udine, Italy
Thom Frühwirth University of Ulm, Germany
Ulrich Geske University of Potsdam, Germany
Gopal Gupta UT Dallas, USA
Michael Hanus University of Kiel, Germany
Petra Hofstedt (Co-chair) BTU Cottbus-Senftenberg, Germany
Tomi Janhunen Tampere University, Finland
Gabriele Kern-Isberner TU Dortmund University, Germany
Herbert Kuchen University of Münster, Germany
Sven Löffler BTU Cottbus-Senftenberg, Germany
Vitor Beires Nogueira Universidade de Évora, Portugal
Ricardo Rocha University of Porto, Portugal
Dietmar Seipel (Co-chair) University of Würzburg, Germany
Helmut Simonis University College Cork, Ireland
Theresa Swift Universidade Nova de Lisboa, Portugal
Hans Tompits Vienna University of Technology, Austria
Masanobu Umeda Kyushu Institute of Technology, Japan
Armin Wolf Fraunhofer FOKUS Berlin, Germany

Program Committee of WLP

Slim Abdennadher German University in Cairo, Egypt
Christoph Beierle FernUniversität in Hagen, Germany
Thomas Eiter Vienna University of Technology, Austria
Daniel Gall University of Ulm, Germany
Ulrich Geske University of Potsdam, Germany
Michael Hanus University of Kiel, Germany
Petra Hofstedt (Co-chair) BTU Cottbus-Senftenberg, Germany
Steffen Hölldobler TU Dresden, Germany
Tomi Janhunen Tampere University, Finland
Ulrich John (Co-chair) hwtk Berlin, Germany

Ke Liu BTU Cottbus-Senftenberg, Germany
Sven Löffler BTU Cottbus-Senftenberg, Germany
Falco Nogatz University of Würzburg, Germany
Torsten Schaub University of Potsdam, Germany
Sibylle Schwarz HTWK Leipzig, Germany
Dietmar Seipel University of Würzburg, Germany
Hans Tompits Vienna University of Technology, Austria
Janis Voigtländer Universität Duisburg-Essen, Germany
Armin Wolf Fraunhofer FOKUS Berlin, Germany

Program Committee of WFLP

Maria Alpuente Frasnedo Universitat Politècnica de València, Spain
Sergio Antoy Portland State University, USA
Olaf Chitil University of Kent, UK
Sandra Dylus University of Kiel, Germany
Moreno Falaschi Università di Siena, Italy
Michael Hanus University of Kiel, Germany
Herbert Kuchen (Chair) University of Münster, Germany
Julio Mariño Carballo Universidad Politécnica de Madrid, Spain
Manuel Montenegro Montes Universidad Complutense Madrid, Spain
Konstantinos Sagonas Uppsala University, Sweden
Sibylle Schwarz HTWK Leipzig, Germany
Dietmar Seipel University of Würzburg, Germany
Josep Silva Galiana Universitat Politécnica de Valencia, Spain
Johannes Waldmann HTWK Leipzig, Germany

Local Organization

Ilja Becker
Katrin Ebert
Petra Hofstedt
Sven Löffler
Gudrun Pehle
Denny Schneeweiß
Daniela Schramm

Additional Reviewers of WFLP

Joachim Breitner
Jan C. Dageförde
David Feuer
Daniel Weidner

viii Organization

Contents

Invited Talks

GPU-Based Parallelism for ASP-Solving . 3
Agostino Dovier, Andrea Formisano, and Flavio Vella

A Process Calculus for Formally Verifying Blockchain
Consensus Protocols . 24

Wolfgang Jeltsch

22nd International Conference on Applications of Declarative
Programming and Knowledge Management - INAP 2019

Modular Modeling and Optimized Scheduling of Building Energy Systems
Based on Mixed Integer Programming . 43

Armin Wolf

Finding Maximal Non-redundant Association Rules in Tennis Data 59
Daniel Weidner, Martin Atzmueller, and Dietmar Seipel

From Textual Information Sources to Linked Data in the Agatha Project 79
Paulo Quaresma, Vitor Beires Nogueira, Kashyap Raiyani, Roy Bayot,
and Teresa Gonçalves

Allen’s Interval Algebra Makes the Difference . 89
Tomi Janhunen and Michael Sioutis

Exploring Properties of Icosoku by Constraint Satisfaction Approach. 99
Ke Liu, Sven Löffler, and Petra Hofstedt

The Regularization of Small Sub-Constraint Satisfaction Problems 106
Sven Löffler, Ke Liu, and Petra Hofstedt

33rd Workshop on (Constraint) Logic Programming - WLP 2019

Declarative Programming for Microcontrollers - Datalog on Arduino. 119
Mario Wenzel and Stefan Brass

Towards Constraint Logic Programming over Strings for Test Data
Generation . 139

Sebastian Krings, Joshua Schmidt, Patrick Skowronek,
Jannik Dunkelau, and Dierk Ehmke

Facets of the PIE Environment for Proving, Interpolating and Eliminating
on the Basis of First-Order Logic . 160

Christoph Wernhard

KBSET – Knowledge-Based Support for Scholarly Editing and Text
Processing with Declarative LATEX Markup and a Core Written
in SWI-Prolog . 178

Jana Kittelmann and Christoph Wernhard

27th International Workshop on Functional and Logic
Programming - WFLP 2019

Structured Traversal of Search Trees in Constraint-Logic
Object-Oriented Programming. 199

Jan C. Dageförde and Finn Teegen

Performance Analysis of Zippers. 215
Vít Šefl

Adding Data to Curry . 230
Michael Hanus and Finn Teegen

Free Theorems Simply, via Dinaturality . 247
Janis Voigtländer

Improving the Performance of the Paisley Pattern-Matching EDSL
by Staged Combinatorial Compilation . 268

Baltasar Trancón y Widemann and Markus Lepper

ICurry . 286
Sergio Antoy, Michael Hanus, Andy Jost, and Steven Libby

Author Index . 309

x Contents

Invited Talks

GPU-Based Parallelism for ASP-Solving

Agostino Dovier1, Andrea Formisano1,2(B), and Flavio Vella3

1 Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine,
Udine, Italy

{agostino.dovier,andrea.formisano}@uniud.it
2 Dipartimento di Matematica e Informatica, Università di Perugia, Perugia, Italy

3 Facoltà di Scienze e Tecnologie Informatiche, Libera Università di Bolzano,
Bolzano, Italy

flavio.vella@unibz.it

Abstract. Answer Set Programming (ASP) has become the paradigm
of choice in the field of logic programming and non-monotonic reason-
ing. With the design of new and efficient solvers, ASP has been suc-
cessfully adopted in a wide range of application domains. Recently, with
the advent of GPU Computing, which allowed the use of modern paral-
lel Graphical Processing Units (GPUs) for general-purpose computing,
new opportunities for accelerating ASP computation has arisen. In this
paper, we describe a new approach for solving ASP that exploits the
parallelism provided by GPUs. The design of a GPU-based solver poses
various challenges due to the peculiarities of GPU in terms of both pro-
grammability and architecture capabilities with respect to the intrinsic
nature of the satisfiability problems, which exposes poor parallelism.

Keywords: ASP solvers · ASP computation · SIMT parallelism ·
GPU computing

Introduction

Answer Set Programming (ASP) is an expressive and purely declarative frame-
work developed in the last decades in the Logic Programming and Knowledge
Representation communities. Thanks to its extensively studied mathematical
foundations and the continuous improvement of efficient and competitive solvers,
ASP has become one of the most popular paradigms in many fields of AI. It has
been fruitfully employed in many areas, such as knowledge representation and
reasoning, planning, bioinformatics, multi-agent systems, data integration, lan-
guage processing, declarative problem solving, semantic web, robotics among the
others [5,9,10].

The clear and highly declarative nature of ASP enables excellent opportuni-
ties for the introduction of parallelism and concurrency in implementations of

This research is partially supported by INdAM-GNCS-20 project and by Univ. of Udine
PRID ENCASE. The authors are member of the INdAM Research group GNCS.

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 3–23, 2020.
https://doi.org/10.1007/978-3-030-46714-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-46714-2_1

4 A. Dovier et al.

ASP-solvers. Steps have been made in the last decades toward the paralleliza-
tion of the basic components of Logic Programming systems [15]. Such imple-
mentations aimed at exploiting multicore architectures, distributed systems, or
portfolio in order to provide efficient ASP solvers [6]. In this direction, a recent
new stream of research concerns the design and development of parallel ASP
systems that can take advantage of the massive degree of parallelism offered by
modern Graphical Processing Units (GPUs) [7,8].

GPUs are many-multicore devices designed to execute a very large num-
ber of concurrent threads on multiple data. They also exhibit a hierarchical
memory organization which strongly impact on memory-intensive problems like
ASP-solving. Therefore, to take full advantage of GPU architecture, one has
to adhere to specific programming directives, in order to proficiently distribute
the workload among the computing units and achieve the highest throughput in
memory accesses. This makes the model of parallelization used on GPUs deeply
different from those employed in more “conventional” parallel architectures. For
these reasons, existing parallel solutions are not directly applicable in the context
of GPUs.

This paper illustrates the design and implementation of a conflict-driven
ASP-solver that is capable of exploiting the Single-Instruction Multiple-Thread
parallelism offered by GPUs. The overall structure of the GPU-based solver
is reminiscent of the conventional structure of sequential conflict-driven ASP
solvers (such as, for example, the state-of-the-art solver clasp [13]). How-
ever, substantial differences lay in both the implemented algorithms and in the
adopted programming model. Moreover, we avoid two hardly parallelizable and
intrinsically sequential algorithms usually present in existing solvers. On the one
hand, we exploit ASP computations to avoid the introduction of loop formulas
and the need of performing unfounded set checks [13]. On the other hand, we
adopt a parallel conflict analysis procedure as an alternative to the sequential
resolution-based technique used in clasp.

The paper is organized as follows. Section 1 recalls basic notions on ASP,
GPU-computing, and the CUDA framework. The approach to ASP solving based
on conflict-driven nogood learning is described in Sect. 2. Section 3 illustrates
the difficulties inherent in parallelizing irregular applications, such as ASP, on
GPUs. The software architecture of the CUDA-based ASP-solver yasmin is out-
lined in Sect. 4. In particular, the new parallel learning procedure is presented in
Sect. 4.2. Section 4.3 outlines an extension of the basic ASP-solver to exploit the
asynchronous concurrency enabled by CUDA streams. An experimental section
(Sect. 5) compares the new learning procedure against the standard resolution-
like procedure. Finally, conclusions are drawn in the closing section.

1 Preliminaries

We briefly recall the basic notions on ASP needed in the rest of the paper (for
a detailed treatment see [13,14] and the references therein). Similarly, we also
recall few needed notions on CUDA parallelism [21,22].

GPU-Based Parallelism for ASP-Solving 5

Answer Set Programming. An ASP program Π is a set of ASP rules of the
form:

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn

where n ≥ 0 and each pi is an atom (i.e., a propositional basic unit). If n = 0,
the rule is a fact. If p0 is missing, the rule is a constraint. Notice that, under the
answer set semantics (described below), such a constraint can be rewritten as a
headed rule of the form q ← p1, . . . , pm,not pm+1, . . . ,not pn,not q, where q is
a fresh atom. Hence, constraints do not increase the expressive power of ASP.

A rule including first-order atoms (i.e., involving variables) is simply seen as
a shorthand for the set of its ground instances. Without loss of generality, in
what follows we consider the case of ground programs only. (Hence, each pi is a
propositional atom.)

Given a rule r, p0 is referred to as the head of the rule (head(r)), while the
set {p1, . . . , pm,not pm+1, . . . ,not pn} is referred to as the body of r (body(r)).
Moreover, we put body+(r) = {p1, . . . , pm}, body−(r) = {pm+1, . . . , pn}, ϕ+(r) =
p1 ∧ · · ·∧pm and ϕ−(r) = ¬pm+1 ∧ · · ·∧¬pn. We will denote the set of all atoms
in Π by atoms(Π) and the set of all rules defining the atom p by rules(p) = {r |
head(r) = p}. The completion Πcc of a program Π is defined as the formula:

Πcc =
∧

p∈atoms(Π)

(
p ↔

∨

r∈rules(p)

(
ϕ+(r) ∧ ϕ−(r)

))
.

Semantics of ASP programs is expressed in terms of answer sets. An inter-
pretation is a set M of atoms; p ∈ M (resp. p �∈ M) denotes that p is true
(resp. false). An interpretation is a model of a rule r if head(r) ∈ M , or
body+(r)\M �= ∅, or body−(r) ∩ M �= ∅. M is a model of a program Π if it
is a model of each rule in Π. M is an answer set of Π if it is the subset-minimal
model of the reduct program ΠM .

An important connection exists between the answer sets of Π and the min-
imal models of Πcc. In fact, any answer set of Π is a minimal model of Πcc.
The converse is not true, but it can be shown [17] that the answer sets of Π are
the minimal models of Πcc satisfying the loop formulas of Π. The number of
loop formulas can be, in general, exponential in the size of Π. Hence, modern
ASP solvers adopt some form of lazy approach to generate loop formulas only
“when needed”. We refer the reader to [13,17] for the details; in what follows we
will describe an alternative approach to answer set computation that avoids the
generation of loop formulas. The new approach exploits ASP computations to
avoid the introduction of loop formulas and the need of performing unfounded
set checks [13] during the search of answer sets.

The notion of ASP computations originates from a computation-based char-
acterization of answer sets [4,18] based on an incremental construction process,
where at each step choices determine which rules are actually applied to extend
the partial answer set. More specifically, for a program Π let TΠ be the imme-
diate consequence operator of Π. Namely, if I is an interpretation, then

TΠ(I) =
{
head(r) | r ∈ Π ∧ body+(r) ⊆ I ∧ body+(r) ∩ I = ∅}.

6 A. Dovier et al.

An ASP Computation for Π is a sequence of interpretations I0, I1, I2, . . .
(where I0 can be any set of atoms that are logical consequences of Π) satisfying
these conditions:

persistence of beliefs: Ii ⊆ Ii+1 for all i ≥ 0
convergence: I∞ =

⋃∞
i=0 Ii is such that TΠ(I∞) = I∞;

revision: Ii+1 ⊆ TΠ(Ii) for all i ≥ 0;
persistence of reason: if p ∈ Ii+1\Ii then there is r ∈ rules(p) such that Ij

is a model of body(r) for each j ≥ i.

Following [18], an interpretation I is an answer set of Π if and only if there
exists an ASP computation such that I =

⋃∞
i=0 Ii.

GPU-Computing and the CUDA Framework. Graphical Processing Units
(GPUs) are massively parallel devices, originally developed to efficiently imple-
ment the graphics pipeline for the rendering of 2D and 3D scenes. The use of such
multicore systems has become pervasive in general-purpose applications that are
not directly related to computer graphics, but demand massive computational
power. The term GPU-computing indicates the use of the modern GPUs for such
general-purpose computing. NVIDIA is one of the pioneering manufacturers in
promoting GPU-computing, especially through the support to its Computing
Unified Device Architecture (CUDA) [22]. A GPU contains hundreds or thou-
sands of identical computing units (cores) and provides access to both on-chip
memory (used for registers and shared memory) and off-chip memory (used for
cache and global memory). Cores are grouped in a collection of Streaming Mul-
tiProcessors (SMs). In turn, each SM contains fixed number of computing cores
(up to 64 in the latest generation of GPUs). The SMs are responsible for creat-
ing, scheduling, and executing threads organized in groups of 32 parallel threads
called warps. Threads in the same warp follow the same program address which
means that program branches potentially introduce thread serialization. When-
ever two (or more) groups of threads belonging to the same warp fetch/execute
different instructions, thread divergence occurs. In this case the execution of the
different groups is serialized and the overall performance decreases. Hence, the
maximum efficiency is achieved when all 32 threads execute the same instruction.

The underlying conceptual parallel model is defined as Single-Instruction
Multiple-Thread (SIMT), where the same instruction is executed by different
threads that run on cores, while data and operands may differ from thread to
thread. A logical view of computations is introduced by CUDA, in order to
define abstract parallel work and to schedule it among different hardware con-
figurations. A typical CUDA program is a C/C++ program that includes parts
meant for execution on the CPU (referred to as the host) and parts meant for
parallel execution on the GPU (referred to as the device). The CUDA frame-
work supports interaction, synchronization, and communication between host
and device. Each device computation is described as a collection of concurrent
threads, each executing the same device function (called a kernel, in CUDA ter-
minology). These threads are hierarchically organized in blocks of threads and

GPU-Based Parallelism for ASP-Solving 7

Fig. 1. Different memory-access patterns on an array data-structure by a group of four
threads t0 − t3. Coalesced access pattern (top) and strided access pattern (bottom).

grids of blocks. The host program contains instructions for data initialization,
grids/blocks/threads management, and kernel execution. Each thread in a block
executes an instance of the kernel, and has a thread ID within its block. A grid is
a 3D array of blocks that execute the same kernel, read/write data input from/to
the global memory. When a CUDA program on the host launches a kernel, the
blocks of the grid are scheduled to the SMs with available execution capacity.
The threads in the same block can share data, using high-throughput on-chip
shared memory, while threads belonging to different blocks can only share data
through the global memory. Thus, the block size allows the programmer to define
the granularity of threads cooperation.

It should be noticed that the most efficient access pattern to be adopted
by threads in reading/storing data depends on the kind of memory. We briefly
mention here two possibilities (see [21] for a comprehensive description). Shared
memory is organized in banks. In case threads of the same block access loca-
tions in the same bank, a bank conflict occurs and the accesses are serialized.
To avoid bank conflicts, strided access pattern has to be adopted. On the con-
trary, concerning global memory, coalesced accesses allows to reach the highest
throughput since it minimizes the number of memory transactions. Intuitively,
this can be achieved if consecutive threads access contiguous global memory
locations. Figure 1 shows a simple example where a group of four threads t0 − t3
performs two steps (emphasized in different colors) in reading the elements of
an array.

8 A. Dovier et al.

A simple CUDA application presents the following basic components:1

memory allocation and data transfer. Before being processed by kernels,
data must be copied to the global memory of the device. The CUDA API
supports memory allocation and data transfer to/from the host.

kernels definition. Kernels are defined as standard C functions; the annota-
tion used to communicate to the CUDA compiler that a function should be
treated as kernel has the form:

global void kernelName(Formal Arguments).

kernels execution. A kernel can be launched from the host program using:
kernelName <<< GridDim, TPB >>> (Actual Arguments)

where GridDim describes the number of blocks of the grid and TPB specifies
the number of threads in each block.

data retrieval. After the execution of the kernel, the host retrieves the results
with a transfer operation from global memory to host memory.

2 Conflict-Driven ASP-Solving

Conflict-driven nogood learning (CDNL) is one of the techniques successfully
used by ASP-solvers, such as the clingo system [13]. The first attempt in
exploiting GPU parallelism for conflict-driven ASP solving has been made
in [7,8]. The approach adopts a conventional architecture of an ASP solver which
starts by translating the completion Πcc of a given ground program Π into a
collection of nogoods (see below). Then, the search for the answer sets of Π is
performed by exploring a search space composed of all interpretations for the
atoms in Π, organized as a binary tree. Branches of the tree correspond to (par-
tial) assignments of truth values to program atoms (i.e., partial interpretations).
The computation of an answer set proceeds by alternating decision steps and
propagation phases. Intuitively: (1) A decision consists in selecting an atom and
assigning it a truth value. (This step is usually guided by powerful heuristics
analogous to those developed for SAT [2].) (2) Propagation extends the cur-
rent partial assignment by adding all consequences of the decision. The process
repeats until a model is found (if any). It may be the case that inconsistent
truth values are propagated for the same atom after i decisions (i.e., while vis-
iting a node at depth i in the tree-shaped search space). In such cases a conflict
arises at decision level i testifying that the current partial assignment cannot be
extended to a model of the program. Then, a conflict analysis procedure is run to
detect the reasons of the failure. The analysis identifies which decisions should
be undone in order to restore consistency of the assignment. It also produces
a new learned nogood to be added to the program at hand, so as to exclude
repeating the same failing sequence of decisions, in the subsequent part of the
computation. Consequently, the program is extended with the learned nogood

1 Notice that, for the sake of simplicity, we are ignoring many aspects of CUDA pro-
gramming and advanced techniques such as dynamic parallelism, cooperative groups,
multi-device programming, etc. We refer the reader to [21] for a detailed treatment.

GPU-Based Parallelism for ASP-Solving 9

and the search backjumps to a previous (consistent) point in the search space,
at a decision level j < i. Whenever a conflict occurs at the top decision level
(i = 1), the computation ends because no (more) solutions exist.

Following [7,8], let us outline how CDNL can be combined with ASP com-
putation in order to obtain a solver that does not need to use loop formulas. We
describe both assignments A and nogoods δ as sets of signed atoms—i.e., entities
of the form Tp or Fp, denoting that p ∈ atoms(Π) has been assigned true or
false, respectively. Plainly, an assignment contains at most one element between
Tp and Fp for each atom p. Given an assignment A, let AT = {p | Tp ∈ A}.
Note that AT is an interpretation for Π. A total assignment A is such that, for
every atom p, {Tp, Fp} ∩ A �= ∅. Given a (possibly partial) assignment A and
a nogood δ, we say that δ is violated if δ ⊆ A. In turn, A is a solution for a
set of nogoods Δ if no δ ∈ Δ is violated by A. Nogoods can be used to perform
deterministic propagation (unit propagation) and extend an assignment. Given a
nogood δ and a partial assignment A such that δ\A = {Fp} (resp., δ\A = {Tp}),
then we can infer the need to add Tp (resp., Fp) to A in order to avoid violation
of δ.

Given a program Π, a set of completion nogoods ΔΠcc
is derived from Πcc

as follows. For each rule r ∈ Π and each atom p ∈ atoms(Π), we introduce the
formulas:

br ↔ tr ∧ nr tr ↔ ϕ+(r) nr ↔ ϕ−(r) p ↔
∨

r∈rules(p)
br

where br, tr, nr are new atoms (if rules(p) = ∅, then the last formula reduces
to ¬ p). The completion nogoods reflect the structure of the implications in these
formulas:

– from the first formula we have the nogoods: {Fbr, T tr, Tnr}, {Tbr, F tr}, and
{Tbr, Fnr}.

– From the second and third formulas we have the nogoods: {Ttr, Fp} for each
p ∈ body+(r); {Tnr, T q} for each q ∈ body−(r); {Ftr} ∪ {Tp | p ∈ body+(r)};
and {Fnr} ∪ {Fq | q ∈ body−(r)}.

– From the last formula we have the nogoods: {Fp, Tbr} for each r ∈ rules(p)
and {Tp} ∪ {Fbr | r ∈ rules(p)}.

Moreover, for each constraint ← p1, . . . , pm,not pm+1, . . . ,not pn in Π we intro-
duce a constraint nogood of the form {Tp1, . . . , Tpm, Fpm+1, . . . , Fpn}. The set
ΔΠcc

is the set of all the nogoods so defined.
The basic CDNL procedure described earlier can be easily combined with

the notion of ASP computation. Indeed, it suffices to apply a specific heuristic
during the selection steps to satisfy the four properties defined in Sect. 1. This
can be achieved by assigning true value to a selected atom only if this atom
is supported by a rule with true body. More specifically, let A be the current
partial assignment, the selection step acts as follows. For each unassigned atom
p occurring as head of a rule in the original program, all nogoods reflecting the
rule br ← tr, nr, such that r ∈ rules(p) are analyzed to check whether Ttr ∈ A
and Fnr /∈ A (i.e., the rule is applicable [18]). One of the rules r that pass

10 A. Dovier et al.

this test is selected. Then, Tbr is added to A. In the subsequent propagation
phase Tp and Fnr are also added to A and Fnr imposes that all the atoms of
body−(r) are set to false. This, in particular, ensures the persistence of beliefs
of the ASP computation. (In the real implementation (see Sect. 4) all applicable
rules r, and their heads, are evaluated according to a heuristic weight and the
rule r with highest ranking is selected.) It might be the case that no selection is
possible because no unassigned atom p exists such that there is an applicable r ∈
rules(p). In this situation the computation ends by assigning false value to all
unassigned heads in Π. This completes the assignment, which is validated by a
final propagation step in order to check that no constraint nogoods are violated.
In the positive case the assignment so obtained is an answer set of Π.

3 ASP as an Irregular Application

The design of GPU-based ASP-solvers poses various challenges due to the
structure and intrinsic nature of the satisfiability problem. The same holds
for GPU-based approaches to SAT [3]. As a matter of fact, the paralleliza-
tion of SAT/ASP-solving shares many aspects with other applications of GPU-
computing where problems/instances are characterized by the presence of large,
sparse, and unstructured data. Parallel graph algorithms constitute significant
examples, that, like SAT/ASP solving, exhibit irregular and low-arithmetic
intensity combined with data-dependent control flow and memory access pat-
terns. Typically, in these contexts, large instances/graphs have to be mod-
eled and represented using sparse data structures (e.g., matrices in Compressed
Sparse Row/Column formats). The parallelization of such algorithms struggles
to achieve scalability due to lack of data locality, irregular access patterns, and
unpredictable computation [19]. Although, in the case of some graph algorithms,
several techniques have been established in order to improve performance on par-
allel architectures [16] and accelerators [1], the different character of the algo-
rithms used in SAT/ASP might prevent from obtaining comparable impact on
performance by directly applying the same techniques. This is because, first, the
time-to-solution of a SAT/ASP problem is dominated by heuristic selection and
learning procedures able to cut the exponential search space. In several cases,
smart heuristics might be most effective than advanced parallel solutions. Sec-
ond, because of intrinsic data-dependencies, procedures like propagation or learn-
ing often require to access large parts of the data/graph, sequentially. Similarly to
what experienced in other complex graph-based problems [11], the kind of com-
putation involved differs from that of traversal-like algorithms (such as, Breadth-
First Search) which process a subset of the graph in iterative/incremental man-
ners and for which advanced GPU-solutions exist. Furthermore, aspect specific
to the underlying architecture enters into play, such as coalesced memory access
and CUDA-thread balancing, which are major objectives in parallel algorithm
design. In this scenario, our GPU-based proposal to ASP solving also imple-
ments:
– efficient parallel propagation able to maximize memory throughput and min-

imize thread divergence.

GPU-Based Parallelism for ASP-Solving 11

– Fast parallel learning algorithm which avoids the bottleneck represented by
the intrinsically sequential resolution-like learning procedures commonly used
in CDNL solvers.

– Specific thread-data mapping solutions able to regularize the access to data
stored in global, local, and shared memories.

In what follows we will describe how to achieve these requirements in the GPU-
based solver for ASP.

4 The CUDA-Based ASP-Solver Yasmin

In this section, we present a solver that exploits ASP computation, nogoods
handling, and GPU parallelism. The ground program Π, as produced by the
grounder gringo [13], is read by the CPU. The CPU also computes the com-
pletion nogoods ΔΠcc

and transfers them to the device. The rest of the com-
putation is performed completely on the GPU. During this process, the only
memory transfers between the host and device involve control-flow flags (e.g.,
an “exit” flag, used to communicate whether the computation is terminated)
and the computed answer-set (from the GPU to the CPU).

As concerns representation and storing of data on the device, each atom a
in Π is uniquely identified by an integer index, say p (consequently, the signed
atom Ta, Fa are represented by p and −p, respectively).

Nogoods are stored using Compressed Sparse Row (CSR) format, usually
exploited to store sparse matrices. Namely, the (signed) atoms of each nogood
are stored contiguously and all nogoods are stored in consecutive locations of
an array allocated in global memory. An indexing array contains the offset of
each nogood, to enable direct accesses to them. The positions in the indexing
array are used as identifiers for the corresponding nogoods. Moreover, nogoods
are sorted in increasing order, depending on their length. Figure 2 shows the
representation of four nogoods ng0, . . . , ng3 (identified by their indices 0 − 3)
involving the atoms {a1, a2, a3, a4, a7, a11}.

An array A of integers is used to store in global memory the set of assigned
atoms (with their truth values) in this manner:

– A[p] = 0 if and only if the atom p is unassigned;
– A[p] = i, i > 0 (resp., A[p] = −i) means that atom p has been assigned true

(resp., false) at the decision level i.

The basic structure of the yasmin solver is shown in Algorithm 1. We adopt
the following notation: for each signed atom p, let p represent the same atom
with opposite sign. Moreover, let us refer to the stored set of nogoods simply
by the variable Δ. The variable cdl (initialized in line 1) represents the current
decision level. As mentioned, cdl acts as a counter that keeps track of the current
number of decisions that have been made.

Since the set of input nogoods may include some unitary nogoods, a prelim-
inary parallel computation partially initializes A accordingly (line 2). It may be

12 A. Dovier et al.

Algorithm 1: Host code of the ASP-solver yasmin (simplified)

procedure yasmin(Δ: SetOfNogoods, P : GroundProgram)
1 cdl ← 1 ; reset (A) /* set initial decision level and empty assignment */
2 InitialPropagation<<<b,t>>>(A, Δ, Viol) /* check input units satisfaction */
3 if Viol then return no-answer-set
4 else loop
5 PropagateAndCheck(A, Δ, cdl, Viol) /* updateA and flag Viol */
6 if Viol ∧ (cdl = 1) then return no-answer-set /* Violation at first dec.level */
7 else if Viol then /* Violation at level cdl>1 */
8 Learning<<<b,t>>>(Δ, A, cdl) /* conflict analysis: update Δ and cdl */
9 Backjump<<<b,t>>>(A, cdl) /* update A and cdl */

end
10 if (A is not total) then

/* rank selectable literals and applicable rules. If possible, select Lit,
extend A, update cdl. Otherwise, Lit ← nil : */

11 Decision<<<b,t>>>(Δ, A, Lit)
12 if Lit = nil then /* no applicable rules */
13 CompleteAssignment<<<b,t>>>(A) /* falsify unassigned atoms */

14 else return AT ∩ atom(P) /* stable model found */

the case that inconsistent assignments occur in this phase. In such case a flag
Viol is set, the given program Π in declared unsatisfiable (line 3) and the compu-
tation ends. Notice that the algorithm can be restarted several times—typically,
this happens when more than one solution is requested or if restart strategy is
activated by command-line options. (For simplicity, we did not include the code
for restarting the solver in Algorithm1.) In such cases, InitialPropagation()
also handles unit nogoods that have been learned in the previous execution. The
kernel invocation in line 2 specifies a grid of b blocks each composed of t threads.
The mapping is one-to-one between threads and unitary nogood. In particular,
if k is the number of unitary nogoods, b=�k/TPB and t=TPB, where TPB
is the number of threads-per-block specified via command-line option. The loop
in lines 4–14 computes the answer set, if any. Propagation is performed by the
procedure PropagateAndCheck() in line 5, which also checks whether nogood
violations occur. To better exploit the SIMT parallelism and maximize the num-
ber of concurrently active threads, in each device computation the workload has
to be divided among the threads of the grid as uniformly as possible. To this
aim, PropagateAndCheck() launches multiple kernels: one kernel deals with all

Fig. 2. Representation in memory of the nogoods ng0 = {Ta1, Ta2}, ng1 =
{Ta3, Fa4}, ng2 = {Fa3, Ta4, Fa7}, ng3 = {Ta2, Ta7, Ta11},... using the Compressed
Sparse Row (CSR) format. Signed atoms are represented by signed integers.

GPU-Based Parallelism for ASP-Solving 13

nogoods with exactly two literals; a second one processes the nogoods composed
of three literals, and a further kernel processes all remaining nogoods. In this
manner, threads of the same grid process a uniform number of atoms, reducing
the divergence between them and minimizing the number of inactive threads.
Moreover, because, as mentioned, nogoods of the same length are stored con-
tiguously, threads of the same grid are expected to realize coalesced accesses to
global memory. A more detailed description of the third of such device functions
is given in Sect. 4.1. A similar technique is used in PropagateAndCheck() to
process those nogoods that are learned at run-time through the conflict analysis
step (cf. Sect. 4.2). These nogoods are partitioned depending on their cardinality
and processed by different kernels, accordingly. In general, if n is the number of
nogoods of one partition, the corresponding kernel has b= �n/TPB blocks of
t= TPB threads each. Each thread processes one learned nogood.

Propagation stops because either a fixpoint is reached (no more propagations
are possible) or one or more conflicts occur. In the latter case, if the current deci-
sion level is the top one the solver ends: no solution exists (line 6). Otherwise,
(lines 7–9) conflict analysis (Learning()) is performed and then the solver back-
jumps to a previous decision point (line 9). The learning procedure is described
in Sect. 4.2. A specific kernel Backjump() takes care of updating the value of
cdl and the array that stores the assignment. A mapping one-to-one between
threads and atoms in A is used.

On the other hand, if no conflict occurs and A is not complete, a new
Decision() is made (line 11). As mentioned, the purpose of this kernel is to
determine an unassigned atom p which is head of an applicable rule r. All
candidates p and applicable r are evaluated in parallel according to a typi-
cal heuristics to rank the atoms. Possible criteria, selectable by command-line
options, use the number of positive/negative occurrences of atoms in the pro-
gram (by either simply counting the occurrences or by applying the Jeroslow-
Wang heuristics) or the “activity” of atoms [2]. The first access to global mem-
ory to retrieve needed data is done in coalesced manner (a mapping one-to-
one between threads and rules is used). Then, a logarithmic parallel reduction
scheme, implemented using thread-shuffling to avoid further accesses to global
memory, yields the rule r with highest ranking. Its head is selected and set true in
the assignment. Decision() also communicates to the solver whether no appli-
cable rule exists (line 12). In this case all unassigned heads in Π are assigned
false (by the kernel CompleteAssignment() in line 13). A successive invocation
of PropagateAndCheck() validates the answer set and the solver ends in line 14.

4.1 The Propagate-and-Check Procedure

After each assignment of an atom of the current partial assignment A, each
nogood δ needs to be analyzed to detect whether: (1) it is violated, or (2) there
is exactly one literal p in it that is unassigned in A, in which case an inference
step adds p to A (cf., Sect. 2). The procedure is repeated until a fixpoint is
reached. As seen earlier, this task is performed by the kernels launched by the
procedure PropagateAndCheck().

14 A. Dovier et al.

Algorithm 2 shows the device code of the generic kernel dealing with nogoods
of length greater than three (the others are simpler). The execution of each itera-
tion is driven by the atoms that have been assigned a truth value in the previous
iteration (array Last in Algorithm 2). Thus, each kernel involves a number of
blocks that is equal to the number of such assigned atoms. The threads in each
block process the nogoods that share the same assigned atom. The number of
threads of each block is established by considering the number of occurrences
of each assigned atom in the input nogoods. Observe that the dimension of the
grid may change between two consecutive invocations of the same kernel, and, as
such, it is evaluated each time. Specific data structures (initialized once during
a pre-processing phase and stored in the sparse matrix Map[][] in Algorithm2)
are used in order to determine, after each iteration and for each assigned atom,
which are the input nogoods to be considered. A further technique is adopted to
improve performance. Namely, the processing of nogoods is realized by imple-
menting a standard technique based on watched literals [2]. In this case, each
thread accesses the watched literals of a nogood and acts accordingly. The com-
bination of nogood sorting and the use of watched literals, improves the workload
balancing among threads and mitigates thread divergence. (Watched literals are
exploited also for learned nogoods.)

Concerning Algorithm2, each thread of the grid first retrieves one of the
atoms propagated during the previous step (line 1). Threads of the same block
obtain the same atom L. In line 2, threads accesses the data structure Map,
mentioned earlier, to retrieve the number ngInBlock of nogoods to be processed
by the block. In line 5 each thread of the block determines which nogood has to be
processed and retrieves its watched literals (lines 6–7). In case one or both literals
belongs to the current assignment A, suitable substitutes are sought for (lines 10
and 14). Violation might be detected (lines 12 and 19, resp.) or propagation
might occur (lines 16–18). Notice that, concurrent threads might try to propagate
the same atom (possibly with different sign), originating race conditions. The
use of atomic functions (line 16) allows one nondeterministically chosen thread
t to perform the propagation. Other threads may discover agreement or detect
inconsistency w.r.t. the value set by t (line 19). In line 17 the thread t updates
the set Next of propagated atoms (to be used in the subsequent iteration) and
stores (line 18) information needed in future conflict analysis steps (by means of
mk dl bitmap(), to be described in Sect. 4.2) and concerning the causes of the
propagation.

4.2 The Learning Procedure

As mentioned, the Learning() procedure is used to resolve a conflict detected by
PropagateAndCheck() and to identify a decision level the computation should
backjump to, in order to remove the violation. The analysis usually performed
in ASP solvers such as clingo [13] demonstrated rather unsuitable to SIMT
parallelism. This is due to the fact that a sequential sequence of resolution-like
steps must be encoded.

GPU-Based Parallelism for ASP-Solving 15

Algorithm 2: Device code implementing propagation and nogood check (simplified)

procedure nogood check(Last, Next: ArrayOfLits, Map: AtomsNogoodsMatrix, A:
Assignment)

1 L ← Last[blockIdx.x] /* each block processes one of the propagated lits */
2 ngInBlock ← |Map[L]| /* get the number of nogoods in which L occurs */
3 i ← threadIdx .x /* each nogood in which L occurs is treated by a thread */
4 if i < ngInBlock then
5 δ ← Map[L][i] /* get the nogood */
6 w1 ← watched1[δ] /* copy the two watched lits in registers */
7 w2 ← watched2[δ]
8 if w1 ∈ A ∨ w2 ∈ A then return /* satisfied nogood, thread exits */
9 if w1 ∈ A ∧ w2 ∈ A then

10 if exists w ∈ δ such that w 	∈ A ∧ w 	∈ A then
11 w1 ← w

12 else Viol ← true /* nogood violation */

13 if w1 	∈ A ∧ w2 ∈ A then /* the case w2 	∈ A ∧ w1 ∈ A is analogous (omitted) */
14 if exists u ∈ δ such that w1 	= u ∧ u 	∈ A ∧ u 	∈ A then
15 w2 ← u

else /* first thread propagates (others may agree or cause violation) */
16 if atomicSet(A, w1, cdl) then /* returns true if found not disagreeing */
17 Next ← Next ∪ {w1} /* update set of propagated lits */
18 Deps[w1] = mk dl bitmap(w1, δ) /* set dependencies of w1 */

19 else Viol ← true /* if disagreeing, it is a violation */

20 watched1[δ] ← w1 ; watched2[δ] ← w2 /* update the two nogoods */

end

inline procedure mk dl bitmap(w: Literal, δ: Nogood)
21 reset(res) /* empty set = null bitmap */
22 foreach x ∈ δ \ {w, w} do /* collect causes of propagation of w ∈ δ */
23 if dl(x) > 1 then res ← res | Deps[x] /* if dl(x) > 1, x is not an input unit */

24 return res

Algorithm 3: Resolution based learning schema in clasp [13]

procedure res-learning(δ: Nogood, Δ: SetOfNogoods, A: Assignment)
1 while exists σ ∈ δ such that δ \ A = {σ} do

/* get the decision level κ of the last but one assigned literal in δ */
2 κ ← max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
3 if κ = dl(σ) then /* there is another lit in δ decided at level dl(σ) */
4 let ε ∈ Δ such that ε \ A = {σ} in
5 δ ← (δ \ {σ}) ∪ (ε \ {σ}) /* resolution step between δ and ε */

6 else return(δ, κ)

In the case of the parallel solver yasmin, more than one conflict might be
detected by PropagateAndCheck(). The solver selects one or more of them
(heuristics can be applied to perform such a selection, for instance, priority
can be assigned to shorter nogoods.) For each selected conflict, a grid of a single
block, to facilitate synchronization, is run to perform a sequence of resolution
steps, starting from the conflicting nogood (say, δ), and proceeding backward,
by resolving upon the last but one assigned atom σ ∈ δ. The step involves δ and
a nogood ε including σ. Resolution steps end as soon as the last two assigned
atoms in δ correspond to different decision levels. This approach identifies the
first UIP (Unique Implication Point [2]). Algorithm 3 shows the pseudo-code of
such procedure (see also [2,13] for the technical details). The block contains a

16 A. Dovier et al.

Algorithm 4: CUDA device code using warp-shuffling for fwd-learning (simplified)

procedure fwd-learning(δ: Nogood, Δ: SetOfNogoods, A: Assignment, Deps:
ArrayOfBitmaps)

1 i ← threadIdx .x /* id of the thread (for simplicity in D1 grid) */
2 shared sh bitmap[warpSize] /* array of bitmaps shared among threads */
3 lane ← i % warpSize /* lane of the thread in its warp */
4 wid ← i/warpSize /* id of thread’s warp */
5 reset (vbitmap) /* each thread resets its private bitmap */
6 syncthreads () /* synchronization barrier */
7 while i <| δ | do /* collect dependencies of all atoms in δ from global memory */
8 atom ← the i-th atom in δ /* strided access to memory */
9 vbitmap ← vbitmap | Deps[atom] /* bit-a-bit disjunction: collects deps */

10 i ← i + blockDim.x /* next stride */

11 syncthreads ()
/* logarithmic reduction using shuffling within each warp: */

12 for (offset ← warpSize/2; offset > 0; offset/ = 2) do
13 vbitmap ← vbitmap | shfl down sync(0xFFFFFFFF, vbitmap, offset)

14 if lane=0 then sh bitmap[wid] ← vbitmap /* store reduced value in shared memory */
15 syncthreads () /* wait for all partial reductions */

/* read from shared memory only if that warp participates: */
16 vbitmap ← (threadIdx .x < blockDim.x/warpSize) ? sh bitmap[lane] : 0
17 if wid=0 then /* the first warp performs the final reduction */
18 for (offset ← warpSize/2; offset > 0; offset/ = 2) do
19 vbitmap ← vbitmap | shfl down sync(0xFFFFFFFF, vbitmap, offset)

20 syncthreads ()
/* Here vbitmap encodes all dependencies of all literals in δ \ {σ} */

21 if threadIdx .x = 0 then /* add deps for σ in ε (gathered during propagation) */
22 sh bitmap[0] ← vbitmap | Deps[σ]
23 backjump dl ← leftmost set bit (sh bitmap[0]) /* gets the level to backjump to */

24 syncthreads ()
/* Store the learned nogood: the threads of the first warp store in global memory, in

coalesced way, the relevant decision literals */
25 if threadIdx .x < warpSize then
26 i ← threadIdx .x
27 while i < max dl do /* for all decision levels */

28 if (sh bitmap[0] & 2i+1) then /* if conflict depends on the i-th decision */
29 new nogood ← new nogood ∪ get ith decision(i)

30 i ← i + warpSize

fixed number (e.g., 1024) of threads and every thread takes care of one atom (if
there are more atoms than threads involved in the learning, atoms are equally
partitioned among threads). For each analyzed conflict, a new nogood is learned
and added to Δ. In case of multiple learned nogoods involving different “target”
decision levels, the lowest level is selected.

In order to remove the computational bottleneck represented by this kind
of learning strategy we designed an alternative, parallelizable, technique. The
basic idea consists in collecting, during the propagation phase, information use-
ful to speed up conflict analysis, affecting as little as possible, performance of
propagation. A bitmap Deps[p] is associated to each atom p. The i-th bit of
Deps[p] is set 1 if the assignment of p depends (either directly or transitively)
on the atom decided at level i. Hence, when an atom q is decided at level
j, Deps[q] is assigned the value 2j−1 (by the procedure Decision()). When-
ever propagation of an atom w1 occurs (see Algorithm 2, line 18) the function
mk dl bitmap() computes the bit-a-bit disjunction of all bitmaps associated to

GPU-Based Parallelism for ASP-Solving 17

all other atoms in δ. To maximize efficiency this computation is performed by a
group of threads, exploiting shuffling, through a logarithmic parallel reduction
scheme. Algorithm 4 shows the code of the new learning procedure. The kernel
fwd learning() is run by a grid of a single block, where each thread processes
an atom of the conflicting nogood δ. Initially, each thread determines the index
of its warp (line 4) and its relative position in the warp (line 3). After a syn-
chronization barrier (line 6) each thread retrieves the bitmaps of one or more
atoms of δ. The disjunction of these bitmaps is stored in the private variable
vbitmap. Then, each warp executes a logarithmic reduction scheme (lines 12–14)
to compute a partial result in shared memory (allocated in line 2). At this point,
the first warp performs a last logarithmic reduction (lines 17–19) combining all
partial results. After a synchronization barrier, thread 0 adds the dependencies
relative to σ in ε (line 22) and determines the decision level to backjump to
(line 23). Finally, the learned nogood in built up using the bitmap sh bitmap[0]
and stored in global memory in coalesced way (lines 25–30).

4.3 Exploiting Stream-Based Parallelism

In a CUDA application, all operations (memory transferts, kernel launches, etc)
issued by the host for execution on the device are associated to a stream. A
default stream is provided by the CUDA framework, but the programmer can
create and manage different streams in the same application. The operations
within a stream are guaranteed to execute in the order in which they are issued.
However, different streams may execute their commands out of order with respect
to one another or even concurrently, depending on the way device’s control-logic
performs their scheduling to the available SMs (see [21] for a detailed treatment).
Hence, the host can issue operations in different streams, in order to overlap their
execution and, consequently, to better exploit the computing power of the GPU
and maximize the usage of all SMs.

In the rest of this section we outline a possible way to extend the ASP
solver yasmin so as to take advantage of the asynchronous concurrent execu-
tion enabled by streams. Recall that, roughly speaking, the parallel CUDA-
based solver described in the previous sections proceeds by exploring a search
space, guided by decision steps and nogoods learned through conflict analysis.
We envisage now the introduction of a further level of parallelism, obtained by
partitioning the search space and running several copies of the basic solver, each
one exploring one portion of the search space.

Algorithm 5 shows the host code of the multi-pthread2 procedure
multi yasmin which first splits (line 1) the given ASP-program/problem into
a number Np of subproblems, possibly, by applying some heuristics and user
options. Various alternatives can be considered to generate the collection of sub-
problems. One of the simplest possibility consists in splitting the search space by

2 For the sake of simplicity, we will refer to host POSIX threads by using the term
pthread, so as to distinguish them from device CUDA threads.

18 A. Dovier et al.

assigning in different ways the truth values of a subset of the input atoms. Con-
sequently, the nogoods and the atoms of each subproblem would be obtained by
simplifying (using propagation) the input collection of nogoods. In this way the
search spaces of the Np subproblems would not overlap and their visits can pro-
ceed independently. Different strategies can be used to determine which atoms
should be used for splitting. For instance, one might exploit parallel lookahead [6]
or select atoms using heuristics similar to those used in the selection step (occur-
rence count, Jeroslow-Wang, etc). Notice that, one might also identify possibly
overlapping subproblems, intended to be explored by adopting different search
strategies and heuristics for atom decision.

The main procedure multi yasmin, in lines 2–3 of Algorithm 5, creates a
pool of POSIX threads by spawning a number Nt of host pthreads (both Np
and Nt can be specified by the user). Each pthread executes the host procedure
yasmin launcher (line 3). Finally, the main procedure waits for the termination
of all pthreads (lines 4–5) before terminating (for simplicity, in Algorithm5 we
omitted the code that outputs the results).

Each concurrent instance of the procedure yasmin launcher iterates until
all subproblems have been processed. In particular, each pthread extracts one
subproblem, S in (line 8), from the set Parts, calls an instance of the CUDA
solver described in Algorithm 1 to solve S (line 9), and waits for its termination
(line 10). Once the solver ended, the pthread proceeds to process the next avail-
able subproblem, if any. When Parts becomes empty, the pthread exits (line 11).
Notice that, the CUDA framework allows each host pthread to exploit a private
CUDA stream. Hence, the computation of each instance of the solver proceeds by
issuing commands (memory transferts, kernel launches, etc) in its own stream,
concurrently with the other solver instances.

As concerns the data structures described in the previous sections, part of
them can be safely shared among pthreads/solvers, both on the host and on the
device. In particular, this is true for the collection of input nogoods and all the
data that are not modified during the computation (such as the sparse matrix
Map, see Sect. 4.1). On the other hand, the arrays that stores the assignment,
the information needed to manage watched literals, the selected and propagated
atoms, etc, have to be replicated, because each solver needs to develop its own
computation. Such data structure are private to each solver, hence there is no
need to impose mutual exclusion in accesses. As concerns learned nogoods, the
corresponding data structure is shared among the solvers, but learned nogoods
are added by acting in mutual exclusion on the shared data. This enables a useful
form of communication between solvers: each of them benefits from the nogoods
inferred by other solvers.

5 Experimental Results

In this section we briefly report on some experiments we run to compare the two
learning techniques described in the previous section. Table 1 shows a selection
of the instances (taken from [8]) we used. For each instance the table indicates,
together with an ID, the number of nogoods and the number of atoms.

GPU-Based Parallelism for ASP-Solving 19

Table 1. Some instances used in experiments. The table shows: shorthand IDs, instance
names (taken from [8]), the numbers of nogoods/atoms given as input to the solving
phase of yasmin.

ID Instance Nogoods Atoms

I0 0001-visitall 42286 17251

I1 0003-visitall 40014 16337

I2 0167-sokoban 68585 29847

I3 0010-graphcol 37490 15759

I4 0007-graphcol 37815 15889

I5 0589-sokoban 76847 33417

I6 0482-sokoban 84421 36639

I7 0345-sokoban 119790 51959

I8 0058-labyrinth 228881 84877

I9 0039-labyrinth 228202 84633

I10 0009-labyrinth 228859 84865

I11 0023-labyrinth 228341 84677

I12 0008-labyrinth 229788 85189

I13 0041-labyrinth 228807 84853

I14 0007-labyrinth 229539 85100

I15 0128-ppm 589884 14388

ID Instance Nogoods Atoms

I16 0072-ppm 591542 14679

I17 0153-ppm 721971 16182

I18 0001-stablemarriage 975973 63454

I19 0005-stablemarriage 975945 63441

I20 0010-stablemarriage 975880 63415

I21 0004-stablemarriage 975963 63453

I22 0003-stablemarriage 975930 63438

I23 0009-stablemarriage 975954 63447

I24 0002-stablemarriage 975907 63430

I25 0006-stablemarriage 975953 63446

I26 0008-stablemarriage 975934 63439

I27 0007-stablemarriage 976047 63486

I28 0061-ppm 1577625 24465

I29 0130-ppm 1569609 24273

I30 0121-ppm 2208048 28776

I31 0129-ppm 4854372 43164

Fig. 3. Performance of the two versions of yasmin (using Res-learning and Fwd-
learning). Number of propagations per second (top) and number of decisions per sec-
ond (bottom).

20 A. Dovier et al.

Fig. 4. Learned nogoods using Res-learning and Fwd-learning. Number of learned
nogoods per second (top) and their average length (bottom).

Experiments were run on a Linux PC (running Ubuntu Linux v.19.04), used
as host machine, and using as device a Tesla K40c Nvidia GPU with these
characteristics: 2880 CUDA cores at 0.75 GHz, 12 GB of global device memory.
We used on such GPU the CUDA runtime version 10.1. The compute capability
was 3.5.

Figure 3 compares the two versions of yasmin solver, differing only on the
used learning procedure. Comparison is made w.r.t. the number of propagations
per second and the number of decisions per second performed by the solver. The
new learning strategy outperforms the resolution-based one on all instances. The
plots in Fig. 4 compare the performance of the two learning procedures in terms
of their outcomes. Also from this perspective fwd learning() exhibits better
behavior, producing smaller nogoods in shorter time. Notice that results of the
same kind have been obtained with different selection heuristics and varying the
parameters of kernel configuration (e.g., number of threads-per-block, grid and
block dimensions, etc.). Moreover, results of experiment run on different GPUs
are in line with those reported.

GPU-Based Parallelism for ASP-Solving 21

Algorithm 5: Host code of the pthreaded version of the ASP-solver yasmin (simplified)

procedure multi yasmin(Δ: SetOfNogoods, P : GroundProgram, Np: int, Nt: int)
/* Generates Np subproblems according to input options/heuristics Opts: */

1 Parts ← partition problem(Δ, Np, Opts)
/* Creates a pool of Np host POSIX threads (pthreads share host variables Δ, P,

Parts,...). Each pthread will issue commands in a private CUDA stream: */
2 for (pth ← 0; pth < Nt; pth++) do

/* Spawns a pthread. Each pthread concurrently executes an instance of the host
procedure yasmin launcher(): */

3 pths[pth] ← pthread create(yasmin launcher(pth))

/* Waits for all pthreads’ completion: */
4 for (pth ← 0; pth < Nt; pth++) do
5 pthread join(pths[pth])

6 cudaDeviceSynchronize () /* waits for termination of all issued commands before output
the results */

procedure yasmin launcher(pth: int)
/* Code executed by each host pthread to solve a sequence of subproblems */

7 while exists S ∈ Parts do /* repeat until all Np subproblem has been processed */
8 Parts ← Parts \ {S} /* selects a subproblem, in mutual exclusion */
9 yasmin(Δ, P, S, pth) /* calls basic CUDA-solver (Algorithm 1) for subproblem S */

10 cudaStreamSynchronize () /* waits for termination of commands in the stream */

11 pthread exit() /* pthread ends and joins the main pthread */

Conclusions

In this paper we described the main traits of a CUDA-based solver for Answer
Set Programming. The fact that the algorithms involved in ASP-solving present
an irregular and low-arithmetic intensity, usually combined with data-dependent
control flows, makes it difficult to achieve high performance without adopting
proper sophisticated solutions and fulfilling suitable programming directives. In
this paper we dealt with the basic software architecture of a parallel proto-
typical solver with the main aim of demonstrating that GPU-computing can be
exploited in ASP solving. Much is left to do in order to obtain a full-blown paral-
lel solver able to compete with the state-of-the-art existing solvers. First, efforts
have to be made in enhancing the parallel solver with the collection of heuristics
proficiently used to guide the search in sequential solvers. Indeed, experimental
comparisons [8] show that good heuristics might be the most effective compo-
nent of a solver. Second, the applicability of further techniques and refinements
have to be investigated. For instance, techniques such as parallel lookahead [6],
multiple learning [12], should be considered. The development of a parallel solver
that operates on multiple GPUs represents an interesting theme of research. In
this context, we observe that the multi-pthread approach outlined in Sect. 4.3
can be easily adapted to operate with multiple devices. Indeed, it would suffice
to partition/replicate input data, distribute them to the available GPUs, and
allow the host pthreads to launch the basic solver on various devices. Also the
possibility of implementing a distributed parallel solver that operates on multi-
ple GPUs installed on different hosts represents a challenging theme of research.
In this case, message passing frameworks, such as MPI [20], could be proficiently
exploited to implement communication among hosts.

22 A. Dovier et al.

References

1. Bernaschi, M., Bisson, M., Mastrostefano, E., Vella, F.: Multilevel parallelism for
the exploration of large-scale graphs. IEEE Trans. Multi-Scale Comput. Syst. 4(3),
204–216 (2018)

2. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009)

3. Dal Palù, A., Dovier, A., Formisano, A., Pontelli, E.: CUD@SAT: SAT solving on
GPUs. J. Exper. Theor. Artif. Intell. (JETAI) 27(3), 293–316 (2015)

4. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: answer set programming
with lazy grounding. Fundam. Inf. 96(3), 297–322 (2009)

5. Dovier, A., Formisano, A., Pontelli, E.: An experimental comparison of constraint
logic programming and answer set programming. In: Proceedings of the 22nd AAAI
Conference on Artificial Intelligence, pp. 1622–1625. AAAI Press (2007)

6. Dovier, A., Formisano, A., Pontelli, E.: Parallel answer set programming. In:
Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 237–
282. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3 7

7. Dovier, A., Formisano, A., Pontelli, E., Vella, F.: Parallel execution of the ASP
computation. In: de Vos, M., Eiter, T., Lierler, Y., Toni, F. (eds.) Technical Com-
munications of ICLP 2015, vol. 1433. CEUR-WS.org (2015)

8. Dovier, A., Formisano, A., Pontelli, E., Vella, F.: A GPU implementation of the
ASP computation. In: Gavanelli, M., Reppy, J. (eds.) PADL 2016. LNCS, vol. 9585,
pp. 30–47. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28228-2 3

9. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53–68 (2016)

10. Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial
applications of answer set programming. Künstliche Intelligenz 32(2), 165–176
(2018)

11. Formisano, A., Gentilini, R., Vella, F.: Accelerating energy games solvers on mod-
ern architectures. In: Proceedings of the 7th Workshop on Irregular Applications:
Architectures and Algorithms, IA3@SC, pp. 12:1–12:4. ACM (2017)

12. Formisano, A., Vella, F.: On multiple learning schemata in conflict driven solvers.
In: Bistarelli, S., Formisano, A. (eds.), Proceedings of ICTCS, vol. 1231. CEUR-
WS.org (2014)

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Morgan & Claypool Publishers, San Rafael (2012)

14. Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B.W. (eds),
Handbook of Knowledge Representation, chap. 7. Elsevier (2008)

15. Gupta, G., Pontelli, E., Ali, K.A.M., Carlsson, M., Hermenegildo, M.V.: Parallel
execution of prolog programs: a survey. ACM Trans. Program. Lang. Syst. 23(4),
472–602 (2001)

16. Hong, S., Oguntebi, T., Olukotun, K.: Efficient parallel graph exploration on multi-
core CPU and GPU. In: International Conference on Parallel Architectures and
Compilation Techniques, pp. 78–88. IEEE (2011)

17. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal
logic programs to propositional logic. In: Gottlob, G., Walsh, T. (eds.), Proceedings
of IJCAI 2003, pp. 853–858. Morgan Kaufmann (2003)

18. Liu, L., Pontelli, E., Son, T.C., Truszczynski, M.: Logic programs with abstract
constraint atoms: the role of computations. Artif. Intell. 174(3–4), 295–315 (2010)

https://doi.org/10.1007/978-3-319-63516-3_7
https://doi.org/10.1007/978-3-319-28228-2_3

GPU-Based Parallelism for ASP-Solving 23

19. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph
processing. Parallel Process. Lett. 17(01), 5–20 (2007)

20. MPI Forum. MPIForum site (2019). https://www.mpi-forum.org/
21. NVIDIA. CUDA C: Programming Guide (v.10.1). NVIDIA Press, Santa Clara

(2019)
22. NVIDIA Corporation. NVIDIA CUDA Zone (2019). https://developer.nvidia.com/

cuda-zone

https://www.mpi-forum.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone

A Process Calculus for Formally Verifying
Blockchain Consensus Protocols

Wolfgang Jeltsch1,2(B)

1 Well-Typed, London, UK
wolfgang@well-typed.com

2 IOHK, Hong Kong, Hong Kong

Abstract. Blockchains are becoming increasingly relevant in a variety
of fields, such as finance, logistics, and real estate. The fundamental task
of a blockchain system is to establish data consistency among distributed
agents in an open network. Blockchain consensus protocols are central
for performing this task.

Since consensus protocols play such a crucial role in blockchain tech-
nology, several projects are underway that apply formal methods to these
protocols. One such project is carried out by a team of the Formal Meth-
ods Group at IOHK. This project, in which the author is involved, aims at
a formally verified implementation of the Ouroboros family of consensus
protocols, the backbone of the Cardano blockchain. The first outcome of
our project is the �-calculus (pronounced “natural calculus”), a general-
purpose process calculus that serves as our implementation language.
The �-calculus is a domain-specific language embedded in a functional
host language using higher-order abstract syntax.

This paper will be a ramble through the �-calculus. First we will look
at its language and its operational semantics. The latter is unique in
that it uses a stack of two labeled transition systems to treat phenom-
ena like data transfer and the opening and closing of channel scope in
a modular fashion. The presence of multiple transition systems calls for
a generic treatment of derived concurrency concepts. We will see how
such a treatment can be achieved by capturing notions like scope open-
ing and silent transitions abstractly using axiomatically defined algebraic
structures based on functors and monads.

Keywords: Blockchain · Distributed computing · Formal verification ·
Process calculus · Functional programming · Higher-order abstract
syntax

1 Introduction

A blockchain is an open, distributed database that stores a growing list, the
ledger, and achieves security by employing advanced cryptographic methods.
Blockchains are used in finance for implementing cryptocurrencies and smart
contracts and have applications in other fields too.

A blockchain system establishes data consistency using a consensus protocol.
There are two main kinds of such protocols:
c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 24–39, 2020.
https://doi.org/10.1007/978-3-030-46714-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_2&domain=pdf
http://orcid.org/0000-0002-8068-8401
https://doi.org/10.1007/978-3-030-46714-2_2

A Process Calculus for Formally Verifying Blockchain Consensus Protocols 25

– Proof-of-work protocols require participants to solve computational puzzles
in order to contribute data to the blockchain.

– Proof-of-stake protocols make the opportunity to contribute data dependent
on the stake participants possess, such as money in a cryptocurrency.

Since the correctness of a blockchain system rests on the correctness of its
consensus protocol, several projects are underway that apply formal methods
to consensus protocols. One such project is carried out by a team of the For-
mal Methods Group at IOHK. This project, in which the author is involved,
aims at a formally verified implementation of the Ouroboros family of consensus
protocols [1,7,11], which form the backbone of the Cardano blockchain.

All protocols in the Ouroboros family use the proof-of-stake mechanism and
come with rigorous security guarantees. In fact, the original Ouroboros protocol,
dubbed Ouroboros Classic, was the first proof-of-stake protocol to have such
guarantees. The Cardano blockchain is the basis of the cryptocurrency Ada and
the smart contract languages Plutus [6] and Marlowe [12]. Both Plutus and Mar-
lowe are functional languages, but while Plutus is Turing-complete, Marlowe is
deliberately restricted in its expressivity to make implementing common con-
tracts easy.

In this paper, we report on the first outcome of our Ouroboros formalization
effort: the �-calculus (pronounced “natural calculus”). The �-calculus is a process
calculus that serves as our specification and implementation language. We make
the following contributions:

– In Sect. 2, we present the language and the operational semantics of the �-
calculus. The latter is unique in that it uses a stack of two labeled transition
systems to treat phenomena like data transfer and the opening and closing
of channel scope in a modular fashion

– The presence of multiple transition systems calls for a generic treatment of
derived concurrency concepts, such as strong and weak bisimilarity. In Sect. 3,
we develop an abstract theory of transition systems to achieve such a generic
treatment. Our theory captures notions like scope opening and silent tran-
sitions using axiomatically defined algebraic structures. In these structures,
functors and monads play a crucial role.

We conclude this paper with Sects. 4 and 5, where we discuss related work and
give a summary and an outlook.

To this end, we have formalized [10] large parts of the �-calculus and our
complete theory of transition systems in Isabelle/HOL. Furthermore, we have
produced this paper from documented Isabelle source code [9], which we have
checked against our formalization.

2 The �-Calculus

The �-calculus is a process calculus in the tradition of the π-calculus [14]. It is
not tied to blockchains in any way but is a universal language for concurrent
and distributed computing.

26 W. Jeltsch

Unlike the π-calculus, the �-calculus is not an isolated language but is embed-
ded into functional host languages. In our application scenario, we use embed-
dings into both Haskell, for execution, and Isabelle/HOL, for verification. The
user is expected to write programs as Haskell-embedded process calculus terms,
which can then be turned automatically into Isabelle-embedded process calculus
terms to make them available for verification. In this paper, we focus on the
Isabelle embedding, leaving the discussion of the Haskell embedding for another
time. Whenever we use the term “�-calculus”, we refer to either the calculus in
general or its embedding into Isabelle/HOL.

Our embedding technique uses higher-order abstract syntax (HOAS) [15],
which means we represent binding of names using functions of the host language.
An immediate consequence of this is that the host language deals with all the
issues regarding names, like shadowing and α-equivalence, which simplifies the
implementation of the calculus. Furthermore, HOAS gives us support for arbi-
trary data for free, since we can easily represent data by values of the host lan-
guage. This lifts the restriction of the π-calculus that channels are the only kind
of data. Finally, HOAS allows us to move computation, branching, and recursion
to the host language level and thus further simplify the implementation of the
calculus.

The �-calculus is similar to ψ-calculi [3] in that it adds support for arbitrary
data to the core features of the π-calculus. However, since the �-calculus uses
HOAS, we can avoid much of the complexity of ψ-calculi that comes from their
need to cope with data-related issues themselves.

2.1 Language

We define a coinductive data type process whose values are the terms of the
�-calculus. We call these terms simply processes.

In the following, we list the different kinds of processes. For describing their
syntax, we use statements of the form C x 1 . . . xn ≡ e. The left-hand side of
such a statement is an application of a data constructor of the process type to
argument variables; it showcases the ordinary notation for the respective kind of
processes. The right-hand side is a term that is equal to the left-hand side but
uses convenient notation introduced by us using Isabelle’s means for defining
custom syntax. The kinds of processes are as follows:

– Do nothing:
Stop ≡ 0

– Send value x to channel a:

Send a x ≡ a � x

– Receive value x from channel a and continue with P x :

Receive a P ≡ a � x . P x

A Process Calculus for Formally Verifying Blockchain Consensus Protocols 27

– Perform processes p and q concurrently:

Parallel p q ≡ p ‖ q

– Create a new channel a and continue with P a:

NewChannel P ≡ ν a. P a

The binders (� and ν) bind stronger than the infix operator (‖), which is not
what the reader might have expected but is typical for process calculi.

There are a few interesting points to note regarding processes and their nota-
tion:

– Our use of HOAS manifests itself in the Receive and NewChannel cases. In
both of them, the respective data constructor takes an argument P that is
a continuation which maps a received value or a newly created channel to a
remainder process.

– Although dependencies on received values and newly created channels are
encoded using functions, we can still use convenient binder notation for
Receive andNewChannel processes. A term e in a � x . e or ν a. e does not have
to be an application of a function P to the bound variable. Every term that pos-
sibly mentions the bound variable is fine. For example, a � x . (b � x ‖ c � x) is
a valid term, which is equal to Receive a (λx . b � x ‖ c � x).

– HOAS gives us the opportunity to construct processes that include
computation and branching, despite the process calculus not hav-
ing dedicated constructs for these things. For example, the process
a � y . (if y �= x then b � y else 0), which performs a kind of conditional for-
warding, carries the inequality test and the branching inside the continuation
argument of Receive.

– Send does not have a continuation argument. This is to make communica-
tion effectively asynchronous. The operational semantics defines communi-
cation in the usual way, making it actually synchronous, but without Send
continuations, synchrony cannot be observed. This approach is common for
asynchronous process calculi and is used, for example, in the asynchronous
π-calculus [5]. We use asynchronous communication, because it is sufficient
for our use case and easier to implement in common programming languages,
like Haskell.

– The �-calculus does not have a construct for nondeterministic choice, because
execution of nondeterministic choice is difficult to implement.

– The �-calculus does not have a construct for replication. We do not need such
a construct, since the process type is coinductive and thus allows us to form
infinite terms. The replication of a process p can be defined as the infinite
term p ‖ p ‖ . . ., that is, the single term p∞ for which p∞ = p ‖ p∞.

2.2 Operational Semantics

We define the operational semantics of the �-calculus as a labeled transition
system. We write p →�ξ� q to say that p can transition to q with label ξ.

28 W. Jeltsch

We handle isolated sending and receiving as well as communication in the
standard manner. We introduce labels a � x , a � x , and τ, which denote sending
of a value x to a channel a, receiving of a value x from a channel a, and internal
communication, respectively, and call these labels actions. Then we introduce
the following rules:

– Sending:
a � x →�a � x� 0

– Receiving:
a � x. P x →�a � x� P x

– Communication:

� p →�a � x� p ′; q →�a � x� q ′� =⇒ p ‖ q →�τ � p ′ ‖ q ′

– Acting within a subsystem:

p →�ξ� p ′ =⇒ p ‖ q →�ξ� p ′ ‖ q

The last two of these rules have symmetric versions, which we do not show here
for the sake of simplicity.

Channels created by NewChannel are initially local. However, such channels
can later be made visible by sending them to other subsystems. Let us see how
this is captured by the transition system of the π-calculus. Besides ordinary
sending labels a � b, the π-calculus has labels a � ν b. b that additionally bind
the variable b. The bound variable denotes a channel not yet known to the
outside. Using it as the value being sent thus conveys the information that a local
channel is being published by sending it to a. When used as part of a transition
statement, the scope of the binder includes the target process, so that the target
process can depend on the published channel. Therefore, the general form of a
transition statement with local channel publication is p →�a � ν b. b� Q b. The
following rules are HOAS versions of the π-calculus rules that deal with local
channels:

– Scope opening:

(
∧

b. P b →�a � b� Q b) =⇒ ν b. P b →�a � ν b. b� Q b

– Communication with scope closing:

� p →�a � ν b. b� P b;
∧

b. q →�a � b� Q b � =⇒ p ‖ q →�τ � ν b. (P b ‖ Q b)

– Acting inside scope:

(
∧

a. P a →�δ� Q a) =⇒ ν a. P a →�δ� ν a. Q a

For the �-calculus, these rules are unfortunately not enough. Unlike the π-
calculus, the �-calculus permits arbitrary data to be sent, which includes values
that contain several channels, like pairs of channels and lists of channels. As a
result, several local channels can be published at once. Variants of the above
rules that account for this possibility are complex and hard to get right. The
complexity has two reasons:

A Process Calculus for Formally Verifying Blockchain Consensus Protocols 29

– Some labels deal with multiple concepts, namely scope opening and send-
ing. In the �-calculus, these labels are not necessarily of the relatively simple
form a � ν b. b discussed above, but generally of the more complex form
ν b1 . . . bn . a � f b1 . . . bn , because arbitrary values depending on multiple
local channels can be sent.

– Some rules deal with multiple concepts, namely the rule about communication
with scope closing, which deals with precisely these two things, and the rule
about acting inside scope, which essentially adds scope opening before and
scope closing after the given action.

To tame this complexity, we conduct the definition of the transition system
in two steps:

1. We define a transition system that uses distinct transitions for opening scopes,
so that each label and each rule deals with a single concept only. We call this
transition system the basic transition system and write a transition in this
system p →�{|ξ|} q .

2. We define the transition system that describes the actual semantics of the �-
calculus by adding a layer on top of the basic transition system that bundles
scope opening and sending transitions. We call this transition system the
proper transition system and write a transition in this system p →��ξ� q .

The basic transition system has action labels a � x , a � x , and τ as well
as opening labels ν a, the latter binding their variables in any following target
process. The rules for sending, receiving, and communication are the ones we
have seen at the beginning of Sect. 2.2. For dealing with local channels, the basic
transition system contains the following rules:

– Scope opening:
ν a. P a →�{|ν a|} P a

– Scope closing after acting:

� p →�{|ν a|} Q a;
∧

a. Q a →�{|α|} R a � =⇒ p →�{|α|} ν a. R a

– Scope closing after another scope opening:

� p →�{|ν a|} Q a;
∧

a. Q a →�{|ν b|} R a b � =⇒ p →�{|ν b|} ν a. R a b

– Scope opening within a subsystem:

p →�{|ν a|} P a =⇒ p ‖ q →�{|ν a|} P a ‖ q

The last rule has a symmetric version, which we do not show here for the sake
of simplicity.

The proper transition system has labels a � x , τ , and a � ν b1 . . . bn . f b1 . . . bn ,
the latter binding their variables also in any following target process. The rules
for sending, receiving, and communication just refer to the basic transition
system:

30 W. Jeltsch

– Sending:
p →�{|a � x|} q =⇒ p →��a � x� q

– Receiving:
p →�{|a � x|} q =⇒ p →��a � x� q

– Communication:
p →�{|τ |} q =⇒ p →��τ � q

For scope opening, we have a series of facts, one for each number of published
channels. The facts for one and two published channels are as follows:

– One channel:

� p →�{|ν b|} Q b;
∧

b. Q b →��a � f b� R b � =⇒ p →��a � ν b. f b� R b

– Two channels:

� p →�{|ν b|} Q b;
∧

b. Q b →��a � ν c. f b c� R b c � =⇒
p →��a � ν b c. f b c� R b c

The facts for more published channels are analogous. All of these facts can be
captured by a single rule, which we do not show here for the sake of simplicity.

As it stands, the proper transition system has the issue that a scope can
also be opened when the respective channel is not published. For example,
ν b. a � x →��a � ν b. x � 0 is a possible transition. We are currently investi-
gating ways to fix this issue. That said, this issue is of little relevance for the
rest of this paper, where we discuss the effects of transitions involving scope
opening in a way that is largely independent of the particularities of concrete
transition systems.

A key issue with both the basic and the proper transition system is that,
whenever a label contains a binder, the scope of this binder includes any following
target process. As a result, we can treat neither of the two transition relations as a
ternary relation, where source processes, labels, and target processes are separate
entities. As a solution, we consider the combination of a label and an associated
target process a single entity, which we call a residual. Our transition relations
then become binary, relating source processes and residuals. This approach has
been taken in the formalization of ψ-calculi [3], for example.

We define an inductive data type whose values are the residuals of the basic
transition system. There are two kinds of such residuals:

– Acting:
Acting α p ≡ {|α|} p

– Opening:
Opening P ≡ {|ν a|} P a

Note that in the Opening case we use HOAS and binder notation again.

A Process Calculus for Formally Verifying Blockchain Consensus Protocols 31

Actually we do not just define a single data type for residuals but a type
constructor basic-residual that is parametrized by the type of the target. As a
result, terms {|ξ|} e can be formed from terms e of any type α, with the result-
ing type being α basic-residual . This permits us to construct nested residuals,
residuals with two labels, which have type process basic-residual basic-residual .
Nested residuals will play a role in Subsect. 3.2.

We also introduce an analogous type constructor proper -residual for the
proper transition system. The definition of proper -residual is considerably more
complex than the definition of basic-residual , which is why we do not show it
here. However, its general approach to capturing scope opening is the same.

2.3 Behavioral Equivalence

Ultimately, we are interested in proving that different processes behave in the
same way or at least in similar ways. The standard notion of behavioral equiv-
alence is bisimilarity. A typical approach to define bisimilarity is the following
one:

1. We define the predicate sim on binary relations between processes as follows:

sim X ←→ (∀ p q ξ p ′. X p q ∧ p →�ξ� p ′ −→ (∃ q ′. q →�ξ� q ′ ∧ X p ′ q ′))

A relation X for which sim X holds is called a simulation relation.
2. We define the predicate bisim on binary relations between processes as fol-

lows:1
bisim X ←→ sim X ∧ sim X−1−1

A relation X for which bisim X holds is called a bisimulation relation.
3. We define bisimilarity as the greatest bisimulation relation:

(∼) = (GREATEST X . bisim X)

The above definition of sim refers to labels and target processes separately
and assumes each transition has exactly one target process. This is a problem
in the presence of scope opening, where labels and target processes have to
be considered together and where a single transition may have different target
processes depending on published channels.

Let us see how we can solve this problem for the basic transition system. We
develop a definition of the notion of simulation relation that retains the essence of
the above definition but is able to deal with the peculiarities of opening residuals.
First, we define an operation basic-lift that turns a relation between processes
into a relation between basic residuals. The general idea is that basic-lift X
relates two residuals if and only if their labels are the same and their target
processes are in relation X . This idea can be tweaked in an obvious way to work
with opening residuals. We define basic-lift inductively using the following rules:

1 Note that -−1−1 is Isabelle/HOL syntax for conversion of relations that are repre-
sented by binary boolean functions.

32 W. Jeltsch

– Acting case:
X p q =⇒ basic-lift X ({|α|} p) ({|α|} q)

– Opening case:

(
∧

a. X (P a) (Q a)) =⇒ basic-lift X ({|ν a|} P a) ({|ν a|} Q a)

Using basic-lift, we define the notion of simulation relation for the basic transition
system as follows:

basic.sim X ←→ (∀ p q c. X p q ∧ p →� c −→ (∃ d. q →� d ∧ basic-lift X c d))

For the proper transition system, we can define a lifting operation proper-lift
in an analogous way. Afterwards we can define the notion of simulation relation
for the proper transition system in exactly the same way as for the basic transition
system, except that we have to replace basic-lift by proper-lift.

3 Residuals Axiomatically

As it stands, we have to develop the theory of bisimilarity separately for the basic
and the proper transition system. This means, we have to essentially duplicate
definitions of concepts like simulation relation, bisimulation relation, and bisimi-
larity and also proofs of various properties of these concepts. The reason is that
these two transition systems use different notions of residual and consequently
different lifting operations.

However, we can develop the theory of bisimilarity also generically. We
describe axiomatically what a lifting operation is and construct all definitions
and proofs of our theory with reference to a lifting operation parameter that
fulfills the respective axioms. Whenever we want our theory to support a new
notion of residual, we just have to define a concrete lifting operation for it and
prove that this lifting operation has the necessary properties.

Note that this approach not only allows for a common treatment of the basic
and the proper transition system but also captures transition systems of other
process calculi. In particular, it also works with transition systems that do not
allow scope opening, like CCS [13], as there is a trivial lifting operation for such
systems.

3.1 Residuals in General

As indicated in Subsect. 2.3, a lifting operation lift should generally behave such
that lift X relates two residuals if and only if their labels are the same and their
target processes are in relation X . The axioms for lifting operations should be
in line with this behavior and should at the same time be specific enough to
allow us to develop the theory of bisimilarity solely based on a lifting operation
parameter. It turns out that the following axioms fulfill these requirements:2

2 Note that - OO - is Isabelle/HOL syntax for composition of relations that are rep-
resented by binary boolean functions.

A Process Calculus for Formally Verifying Blockchain Consensus Protocols 33

– Equality preservation:
lift (=) = (=)

– Composition preservation:

lift (X OO Y) = lift X OO lift Y
– Conversion preservation:

lift X−1−1 = (lift X)−1−1

The presence of the equality preservation and composition preservation
axioms means that lifting operations are functors. However, they are not func-
tors in the Haskell sense. Haskell’s functors are specifically endofunctors on the
category of types and functions, but lifting operations are endofunctors on the
category of types and relations.3

With the additional conversion preservation axiom, the axioms for lifting
operations are precisely the axioms for relators [4, Sect. 5.1]. Therefore, we can
say that a residual structure is just an endorelator on the category of types
and relations – no problem here. Luckily, Isabelle/HOL automatically generates
relator-specific constructs for every data type, namely the lifting operation and
various facts about it, including the instances of the axioms. As a result, instan-
tiating our theory of bisimilarity to a new notion of residual is extremely simple.

3.2 Weak Residuals

Our axiomatic treatment of lifting operations allows us to handle ordinary bisim-
ilarity, which is also known as strong bisimilarity. In practice, however, we are
more interested in weak bisimilarity. Weak bisimilarity cares only about observ-
able behavior; it treats internal communication as silent and ignores it.

Normally, weak bisimilarity can be elegantly defined as the bisimilarity of
the weak transition relation (⇒), which is derived from the original transition
relation (→) using the following equivalences:4

– Silent:
p ⇒�τ � q ←→ p →�τ �∗∗ q

– Observable:

ξ �= τ =⇒ p ⇒�ξ� q ←→ (∃ s t. p ⇒�τ � s ∧ s →�ξ� t ∧ t ⇒�τ � q)

Unfortunately, the above definition of (⇒) refers to a dedicated silent label
and thus cannot be applied to our setting, where we treat residuals as black
boxes. To resolve this issue, we modify the definition of (⇒) such that it is

3 The analogy to functors in the Haskell sense can be seen from the fact that replacing
lift, (=), and (OO) in the equality preservation and composition preservation axioms
by Haskell’s fmap, id, and (.) yields Haskell’s functor axioms.

4 The notation - →�τ �∗∗ - stands for the reflexive and transitive closure of - →�τ � -.

34 W. Jeltsch

based on two relations that together identify silence. We define these relations
differently for different notions of residual but specify their general properties
by a set of axioms.

The first of the relations that identify silence relates each process with the
residual that extends this process with the silent label. For basic-residual , we
define this relation inductively using the following rule:

basic-silent p ({|τ |} p)

For proper -residual and other residual type constructors, we can define the cor-
responding relation in an analogous way.

The second of the relations that identify silence relates each nested resid-
ual that contains the silent label at least once with the ordinary residual that
is obtained by dropping this label. For basic-residual , we define this relation
inductively using the following rules:

– Silent–acting case:
basic-fuse ({|τ |}{|α|} p) ({|α|} p)

– Silent–opening case:

basic-fuse ({|τ |}{|ν a|} P a) ({|ν a|} P a)

– Acting–silent case:
basic-fuse ({|α|}{|τ |} p) ({|α|} p)

– Opening–silent case:

basic-fuse ({|ν a|}{|τ |} P a) ({|ν a|} P a)

For proper -residual and other residual type constructors, we can define the cor-
responding relation in an analogous way.

We define the weak transition relation (⇒) of a given transition relation (→)
generically based on two parameters silent and fuse. The definition of (⇒) is
inductive, using the following rules:

– Strong transitions:
p → c =⇒ p ⇒ c

– Empty transitions:
silent p c =⇒ p ⇒ c

– Compound transitions:

� p ⇒ c; lift (⇒) c z; fuse z d � =⇒ p ⇒ d

As indicated above, the behavior of silent and fuse should generally be such
that silent adds a silent label to a process and fuse removes a silent label from a
nested residual. The following axioms are in line with this behavior and are at the
same time specific enough to allow us to develop the theory of weak bisimilarity
solely based on the silent and fuse parameters:

A Process Calculus for Formally Verifying Blockchain Consensus Protocols 35

– Silent naturality:
X OO silent = silent OO lift X

– Fuse naturality:
lift (lift X) OO fuse = fuse OO lift X

– Left-neutrality:
silent OO fuse = (=)

– Right-neutrality:
lift silent OO fuse = (=)

– Associativity:
fuse OO fuse = lift fuse OO fuse

The above axioms are precisely the axioms for monads.5 Therefore, we can
say that a weak residual structure is just a monad in the category of types and
relations – a completely unproblematic specification.

The monadic approach to weak residuals is actually very general. In particu-
lar, it makes non-standard notions of silence possible, for example, by allowing
multiple silent labels. Despite this generality, typical properties of weak bisimi-
larity can be proved generically. Concretely, we have developed formal proofs of
the following statements:

– Weak bisimilarity is the same as “mixed” bisimilarity, a notion of bisimilarity
where ordinary transitions are simulated by weak transitions.

– Strong bisimilarity is a subrelation of weak bisimilarity.

Furthermore, the generic definition of the weak transition relation (⇒) is
simpler than the traditional definition shown at the beginning of Sect. 3.2 in that
it does not distinguish between silent and observable transitions; this distinction
is pushed into the definitions of the silent and fuse relations of the individual
notions of weak residual. The simple structure of the definition of (⇒) encourages
a simple structure of generic proofs about weak transitions.

3.3 Normal Weak Residuals

The monadic approach to weak residuals forces us to implement the two relations
silent and fuse and prove their properties for every notion of residual. This
usually takes quite some effort, in particular because the definition of the fuse
relation is typically non-trivial, which also affects the proofs of its properties. The
reward is that we can use non-standard notions of silence. However, we rarely
need this additional power, because we are usually fine with having normal

5 The analogy to monads in the Haskell sense can be seen from the fact that replacing
lift, silent , fuse, (=), and (OO) in these axioms by Haskell’s fmap, return, join, id,
and (.) yields the naturality properties of return and join, which hold automati-
cally because of parametricity [18], as well as Haskell’s join-based monad axioms.

36 W. Jeltsch

weak residuals, weak residuals that use a dedicated label to indicate silence. We
introduce a more specific algebraic structure for normal weak residuals, which is
much easier to instantiate than the monad structure of arbitrary weak residuals.

We identify silence using just a silent relation that has the following
properties:

– Naturality:
X OO silent = silent OO lift X

– Left-uniqueness and left-totality:

silent OO silent−1−1 = (=)

– Right-uniqueness:
silent−1−1 OO silent ≤ (=)

Note that in fact these axioms ensure that silent identifies a single label, our
silent label. This shows that, although we do not have first-class labels explicitly,
we can nevertheless have first-class representations of those labels that do not
involve scope opening.

From a silent relation we can derive a relation fuse as follows:

fuse = silent−1−1 lift silent−1−1

This derivation captures exactly the idea that fuse removes a silent label from a
nested residual: since silent adds a silent label, silent−1−1 removes a silent label,
and consequently lift silent−1−1 removes a silent label under another label.

A silent relation with the above properties and the fuse relation derived from
it together fulfill the monad axioms, which shows that normal weak residuals are
in fact weak residuals.

4 Related Work

We are not the first ones to formalize a process calculus using HOAS. Hon-
sell et al. [8], for example, define a HOAS-version of the π-calculus in Coq and
prove considerable parts of its metatheory. Their formalization does not allow the
construction of exotic terms, that is, processes whose structure depends on data.
In our formalization, we use exotic terms deliberately for branching. However, we
actually want process structure to depend on ordinary data only; dependence
on channels, especially local channels, is something we would like to prevent.
The approach of Honsell et al. for ruling out exotic terms is to declare the type
of channels as a parameter. Unfortunately, we cannot adopt this approach for
our formalization, since the classical nature of Isabelle/HOL makes exotic terms
possible even if the channel type is abstract.

Röckl and Hirschkoff [17] develop a HOAS-based implementation of the lan-
guage of the π-calculus in Isabelle/HOL and show that it is adequate with respect
to an ordinary, first-order implementation. They prove several syntactic proper-
ties but do not deal with transitions and bisimilarity at all. Their definition

A Process Calculus for Formally Verifying Blockchain Consensus Protocols 37

of processes includes exotic terms, but they define a separate wellformedness
predicate that identifies those processes that are not exotic.

Neither of the two works described uses an abstract theory of transition
systems like we do. However, there is also no real demand for that, as these
developments only deal with one or even no transition system.

We use HOAS, because we can avoid the difficulties of name handling this
way. Another approach is to keep names explicit but use nominal logic [16] to
make name handling easier. Bengtson follows this approach in his dissertation [2].
He formalizes several process calculi, namely CCS, the π-calculus, and ψ-calculi,
in Isabelle/HOL, making use of its support for nominal logic.

5 Summary and Outlook

We have presented the language and the operational semantics of the �-calculus, a
general-purpose process calculus embedded into functional host languages using
HOAS. Since the operational semantics of the �-calculus is defined using two
transition systems, we have developed an abstract theory of transition systems
to treat concepts like bisimilarity generically. We have formalized [10] large parts
of the �-calculus and our complete theory of transition systems in Isabelle/HOL.

Because of our use of HOAS, the �-calculus allows process structure to depend
on channels. An important task for the future is the development of techniques
that allow us to prevent channel-dependent behavior while continuing to use
HOAS for expressing binding of names.

We plan to very soon start using our process calculus for developing a formally
verified implementation of the Ouroboros family of consensus protocols. Our
hope is to gain valuable feedback about our process calculus work this way, which
can potentially lead to improvements of the calculus and its implementation.

Acknowledgements. I want to thank my colleagues at Well-Typed and IOHK for
their encouraging and helpful feedback on this work. Special thanks go to Javier Dı́az
for stress-testing the �-calculus in his proofs of network equivalences, pointing me to
some important related work, and proofreading this paper. Furthermore, I want to par-
ticularly thank Duncan Coutts and Philipp Kant for providing guidance and feedback
concerning our efforts towards a verified implementation of the Ouroboros family of
consensus protocols as well as Edsko de Vries for his help with process calculi and in
particular for putting me on the HOAS path.

References

1. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 913–930. ACM, New York (2018). https://doi.org/10.1145/
3243734.3243848. https://iohk.io/en/research/library/papers/ouroboros-genesis
composable-proof-of-stake-blockchains-with-dynamic-availability/

https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://iohk.io/en/research/library/papers/ouroboros-genesiscomposable-proof-of-stake-blockchains-with-dynamic-availability/
https://iohk.io/en/research/library/papers/ouroboros-genesiscomposable-proof-of-stake-blockchains-with-dynamic-availability/

38 W. Jeltsch

2. Bengtson, J.: Formalising process calculi. Ph.D. thesis, Uppsala Universitet, Upp-
sala, Sweden (2010). http://www.itu.dk/people/jebe/my-phd.html

3. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework
for mobile processes with nominal data and logic. Log. Methods Comput. Sci.
7(1), (2011). https://doi.org/10.2168/LMCS-7(1:11)2011. https://arxiv.org/abs/
1101.3262

4. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall International Series
in Computer Science. Prentice Hall, Upper Saddle River (1997)

5. Boudol, G.: Asynchrony and the pi-calculus. Technical report RR-1702, INRIA,
Rocquencourt, France, May 1992. https://hal.inria.fr/inria-00076939

6. Chakravarty, M., et al.: Functional blockchain contracts, May 2019. https://iohk.io/
en/research/library/papers/functional-blockchain-contracts/. Unpublished draft

7. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3. https://iohk.io/en/research/library/
papers/ouroboros-praosan-adaptively-securesemi-synchronous-proof-of-stake-proto
col/

8. Honsell, F., Miculan, M., Scagnetto, I.: π-calculus in (co)inductive type the-
ory. Theor. Comput. Sci. 253(2), 239–285 (2001). https://doi.org/10.1016/S0304-
3975(00)00095-5. https://users.dimi.uniud.it/ marino.miculan/Papers/TCS99.pdf

9. Jeltsch, W.: A process calculus for formally verifying blockchain consensus pro-
tocols, November 2019. https://github.com/jeltsch/wflp-2019. Source code of this
paper

10. Jeltsch, W., Dı́az, J.: Towards a formalization of the Ouroboros protocol
family, November 2019. https://github.com/input-output-hk/fm-ouroboros/tree/
bbeec3136ae68e7bb6800680e216b12db6c1113a/Isabelle. Current version of the
source code of the formalization

11. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 12. https://iohk.io/en/research/library/papers/
ouroborosa-provably-secure-proof-of-stake-blockchain-protocol/

12. Lamela Seijas, P., Thompson, S.: Marlowe: financial contracts on blockchain.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp.
356–375. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-
6 27. https://iohk.io/en/research/library/papers/marlowefinancial-contracts-on-
blockchain/

13. Milner, R.: Communication and Concurrency. Prentice Hall International Series in
Computer Science. Prentice HallPrentice Hall, Upper Saddle River (1989)

14. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

15. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementa-
tion, pp. 199–208. ACM, New York (1988). https://doi.org/10.1145/53990.54010

16. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput.
186(2), 165–193 (2003). https://doi.org/10.1016/S0890-5401(03)00138-X

http://www.itu.dk/people/jebe/my-phd.html
https://doi.org/10.2168/LMCS-7(1:11)2011
https://arxiv.org/abs/1101.3262
https://arxiv.org/abs/1101.3262
https://hal.inria.fr/inria-00076939
https://iohk.io/en/research/library/papers/functional-blockchain-contracts/
https://iohk.io/en/research/library/papers/functional-blockchain-contracts/
https://doi.org/10.1007/978-3-319-78375-8_3
https://iohk.io/en/research/library/papers/ouroboros-praosan-adaptively-securesemi-synchronous-proof-of-stake-protocol/
https://iohk.io/en/research/library/papers/ouroboros-praosan-adaptively-securesemi-synchronous-proof-of-stake-protocol/
https://iohk.io/en/research/library/papers/ouroboros-praosan-adaptively-securesemi-synchronous-proof-of-stake-protocol/
https://doi.org/10.1016/S0304-3975(00)00095-5
https://doi.org/10.1016/S0304-3975(00)00095-5
https://users.dimi.uniud.it/~marino.miculan/Papers/TCS99.pdf
https://github.com/jeltsch/wflp-2019
https://github.com/input-output-hk/fm-ouroboros/tree/bbeec3136ae68e7bb6800680e216b12db6c1113a/Isabelle
https://github.com/input-output-hk/fm-ouroboros/tree/bbeec3136ae68e7bb6800680e216b12db6c1113a/Isabelle
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://iohk.io/en/research/library/papers/ouroborosa-provably-secure-proof-of-stake-blockchain-protocol/
https://iohk.io/en/research/library/papers/ouroborosa-provably-secure-proof-of-stake-blockchain-protocol/
https://doi.org/10.1007/978-3-030-03427-6_27
https://doi.org/10.1007/978-3-030-03427-6_27
https://iohk.io/en/research/library/papers/marlowefinancial-contracts-on-blockchain/
https://iohk.io/en/research/library/papers/marlowefinancial-contracts-on-blockchain/
https://doi.org/10.1145/53990.54010
https://doi.org/10.1016/S0890-5401(03)00138-X

A Process Calculus for Formally Verifying Blockchain Consensus Protocols 39

17. Röckl, C., Hirschkoff, D.: A fully adequate shallow embedding of the π-calculus in
Isabelle/HOL with mechanized syntax analysis. J. Funct. Program. 13(2), 415–451
(2003). https://doi.org/10.1017/S0956796802004653

18. Wadler, P.: Theorems for free! In: Proceedings of the Fourth International Con-
ference on Functional Programming Languages and Computer Architecture, pp.
347–359. ACM, New York (1989). https://doi.org/10.1145/99370.99404

https://doi.org/10.1017/S0956796802004653
https://doi.org/10.1145/99370.99404

22nd International Conference on
Applications of Declarative

Programming and Knowledge
Management - INAP 2019

Modular Modeling and Optimized
Scheduling of Building Energy Systems
Based on Mixed Integer Programming

Armin Wolf(B)

IT4Energy Center, Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31,
10589 Berlin, Germany

armin.wolf@fokus.fraunhofer.de

Abstract. Almost climate neutral buildings are one of the core goals in
terms of sustainability. Beside the support of the necessary design deci-
sions for an integrated, interoperable, ecological and economical oper-
ation of building energy systems, innovative management solutions for
scheduling the operation of decentralized energy systems are of great
importance. The challenge is an optimal interaction between energy sys-
tem components in terms of own consumption, energy efficiency and
resource consumption as well as greenhouse gas emissions. To achieve
these goals a modular optimization approach based on Mixed Integer
Programming is proposed. In detail, and to our knowledge the first time,
a MIP model for the dynamic behavior of fuel cell Combined Heat and
Power plants is presented. Our approach is evaluated for the operation
of heat pumps showing that their energy efficiency can be increased sig-
nificantly.

Keywords: Building energy systems · Constraint-based scheduling
and optimization · Cross-sector coupling · Energy efficiency · Mixed
Integer Programming

1 Introduction

In the context of the energy transformation, known as the “Energiewende”, and
global warming almost climate neutral buildings are one of the core goals. Beside
the support of the necessary design decisions for an integrated, interoperable,
ecological and economical operation of building energy systems, innovative man-
agement solutions for scheduling the operation of decentralized energy systems
are of great importance. The challenge is the optimal interaction between energy
system components in terms of own consumption, energy efficiency and resource
consumption as well as greenhouse gas emissions. To achieve these goals, a Mixed
Integer Programming (MIP) based optimization tool for the combination of

The presented work was funded by the German Federal Ministry for Economic Affairs
and Energy within the project “WaveSave” (BMWi, funding number 03ET1312A).

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 43–58, 2020.
https://doi.org/10.1007/978-3-030-46714-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_3&domain=pdf
http://orcid.org/0000-0003-3940-0792
https://doi.org/10.1007/978-3-030-46714-2_3

44 A. Wolf

energy system components like Combined Heat and Power plants (CHPs) and
the operation of integrated energy systems was developed, using real or virtual
costs in an overall objective function and taking into account the uncertainties
caused by weather, volatility of renewable energies as well as the behavior and
spontaneity of residents. This tool prototype was implemented and evaluated
using previously defined application scenarios.

The paper is organized as follows. In the next section some related work
is presented. In Sect. 3 a modular modeling approach for optimal operation of
building energy systems based on MIP is presented. In detail, the linear modeling
of the dynamic behavior of fuel cell CHPs (fcCHPs) is shown using some specific
“modeling tricks”. Then, in Sect. 4 some implementation issues of our “MIP
Optimizer” are given. Finally, in Sect. 5 our approach is successfully evaluated:
It is shown how the operation of heat pumps can be optimized significantly
while reducing electric energy demand and cost without loss of comfort. The
last section concludes and points to some future work to be done.

2 Related Work

For scheduling and optimization of decentralized energy systems MIP is an ade-
quate approach [2–4] which we also use when modeling building energy systems.
In [2] microCHPs based on combustion engines are used in two different schedul-
ing scenarios: In the Single House Planning Problem (SHPP), the focus is on
satisfying the heat demand of residents. The second scenario combines many
microCHPs into a Fleet Planning Problem (FPP) in order to satisfy some elec-
tric power demands, still considering domestic heat demands. Both problems are
modeled as MIP problems. There, the MIP model of the microCHPs is rather
simple compared to our MIP model for fcCHPs (cf. Sect. 3.1). However, it is
shown that for large fleets the MIP approach is impractical. Therefore a local
search method was developed for the FPP, based on a dynamic programming
formulation of the SHPP.

For additional flexibility to freely combine components in a modular MIP
model of an energy system and to add sub-models of further energy system
components we categorized the energy system components and used some con-
ventions in our modular and extendable MIP modeling approach (cf. Sect. 3).
This approach was motivated by [9].

In [8] the optimal configuration and operation of combined cooling, heat-
ing, and power (CCHP) microgrids are considered. Similar to our approach the
uncertainty of cooling, heating, and power load is predicted, however, be aware
the energy consumption can still deviate from the predicted values. The compo-
nents of the microgrid considered in [8] and by us overlap in photovoltaic (PV)
systems, (gas) boilers, thermal storage tanks (TSTs), absorption chillers, electric
chillers, as well as in cooling, heating, and power loads. In [8] gas turbines and
electric chillers are part of the microgrid while we take fcCHPs, batteries and
heat or cold pumps into account, too. However, for optimization in [8] a nonlin-
ear programming model is proposed, which aims to minimize the total costs of
the CCHP system.

Modular Modeling and Optimized Scheduling of Building Energy Systems 45

3 Developing Extendible, Modular Optimization Models

In order to realize the optimizing component of an energy management system,
we carried out an extendible, modular modeling approach of building energy
systems. Therefore combinable MIP sub-models of the energetic behavior of
plant components (cf. Sect. 2) are developed. The optimization component gen-
erates corresponding mathematical optimization problems from problem-specific
descriptions of building energy systems. Their solutions result in timetables resp.
operation schedules for the components of the respective building energy system,
where the supply, use and conversion of the various forms of energy is deter-
mined. Real or fictitious costs (e.g., for CO2 emissions) can be minimized by this
component.

A modular modeling approach is chosen where each component is character-
ized by whether it is an electrical, warming, cooling or financial source, sink or
reservoir.1 For example, energetic sources provide power, energetic sinks draw it.
Energetic reservoirs have an energy level and can both draw and deliver power
within minimum and maximum levels. With this knowledge, it is then deter-
mined for each time unit in the scheduling horizon that the sum of power sup-
plies and demands must be balanced, i.e., zero, for electricity, heat and cold. The
sum of the yields and costs of the financial sources and sinks form the objective
function for the optimization. With these conditions, the specific sub-models of
the energy system components are combined to form an overall model. The sub-
models, which are to be defined for each component under consideration of these
conventions, describe the plant-specific energetic behavior as well as the associ-
ated financial effects. This approach was motivated by [9]. Within this approach
energy storage devices such as batteries or TSTs are reservoirs. Energy convert-
ers such as heat pumps are both electrical sinks and thermal sources (either cold
or heat, depending on the operating mode). In order to join the sub-models of
the energy system components into an overall model of the energy system, a
naming convention is used for decision variables that define the consumption or
production of the respective energy type in a discrete unit of time. For exam-
ple, any electrical source p has a variable “electricOutputPowerp(t)” specifying
the (average) electric power supply (output) during time unit t. The integration
of all electrical sinks and sources in an energy system model then takes place
depending on the relevant system components with the help of the equation

∀t :
∑

p∈ElectricalSource

electricOutputPowerp(t) =
∑

c∈ElectricalSink

electricInputPowerc(t),

which states that the sum of electrical energy consumption and production must
be balanced at all times. Similar equations are used to integrate system com-
ponents via other types of energy. Since components are included in several
equations, a quasi-automatic cross-sector coupling occurs across the considered
energy types.
1 In this context “modular” means that the MIP sub-models can be combined in

accordance to any building energy system specification – not in the sense of [11].

46 A. Wolf

Since costs but also yields were used to optimize energy system operations,
we have supplemented the chosen approach with financial sources and sinks.
Their outputs (yields) and inputs (costs) are added together over the scheduling
horizon

∑

t∈horizon

(∑

p∈FinancialSource

financialOutputp(t) +
∑

c∈FinancialSink

financialInputc(t)
)
,

such that the optimization of an energy system is done either by minimizing the
total costs or by maximizing the total yields, depending on whether the costs are
represented by positive values and the yields by negative values or vice versa.

Taking these characterizations and conventions into account, a set of
extendible and connectable MIP sub-models were created for the following
energy system components:

– User behavior with time-variable electricity, heat/cooling and hot water
requirements,

– Mains connections with power limitations, time-variable electricity prices and
refunds,

– Mechanical block-type CHPs with switchable peak load boilers with efficiency
factors,

– Heat/cooling pumps with variable (outdoor temperature-dependent) Coeffi-
cients of Performance (COP),

– Heat/cold storages with charging losses and efficiency factors,
– Battery storages with charging losses and efficiency factors,
– Absorption chillers with efficiency factors,
– Heating rods and burners with efficiency factors,
– Photovoltaic (PV) systems with predicted power supply,
– fcCHPs with their special characteristics.

In this context efficiency factors (∈ [0, 1]) are reflecting energy conversion losses.
Modeling approaches from [3] and useful suggestions for MIP modeling coming
from [1] are adopted. In addition to the characteristic energetic behavior, cost
factors such as (variable) primary energy costs or costs for emissions as well
as wear and tear costs during start-up and shut-down of plants, i.e., operating
and maintenance costs, were also taken into account. The most challenging part
was the modeling of fcCHPs with their special characteristics. With the help of a
fcCHP manufacturer, we created a mathematical model to describe the energetic
relationships in fcCHPs. This will be presented in detail in the next section.

3.1 A MIP Model for Fuel Cell Combined Heat and Power Plants

FcCHPs have characteristic physical parameters (constant values) and charac-
teristic curves for broad electrical energy, thermal energy and primary energy
supply on the basis of monitoring data from practical tests. For fcCHPs their
processing phases such as cold start, warm start etc. as well as their power mod-
ulation opportunities are typical. The individual phases within downtime and

Modular Modeling and Optimized Scheduling of Building Energy Systems 47

Fig. 1. Schematic power profile and according state phases of a fcCHP.

operating time are shown in Fig. 1. For example, the provision of thermal and
electrical energy is delayed by a warm-up phase with a duration depending on
the length of the immediately preceding downtime. Furthermore, typical con-
sumption data for primary energy (e.g., natural gas) and electric energy were
given by the manufacturer on the basis of measurements during the individ-
ual phases. On the basis of characteristic parameters and curves of fcCHPs as
well as explanations of the corresponding energetic correlations, we developed a
general mathematical model which formally describes the relationship between
primary energy demand as well as thermal and electrical energy supply. There-
fore, the model distinguishes between different phases and explains the temporal
dependencies between these phases. Within our model of a fcCHP we used the
following physical parameters (constant values) of such power plants:

– A thermal efficiency factor 0 < ηth < 1 and an electric efficiency factor
0 < ηel < 1 (with respect to the primary energy source) such that ηth+ηel < 1.

– A maximal power output (thermal/electric) within the production phase Pthmax

resp. Pelmax where ηel · Pthmax = ηth · Pelmax because in general it applies that
Pth/ηth = Pprim = Pel/ηel where Pprim is the power of the primary energy
carrier.

– A minimal power output (thermal/electric) within the production phase Pthmin

resp. Pelmin where ηel · Pthmin = ηth · Pelmin .
– A minimal and maximal operation time Donmin resp. Donmax as well as a

minimal off-time Doffmin .
– a bounded, monotonically increasing function f : N+ → N

+ to determine the
warm-up time dwarmUp depending on its recent off-time doff , i.e., dwarmUp =
f(doff).

– A constant electric power input during stand-by phases: PelstandBy
.

– Some constant primary and electric power inputs during the warm-up phase:
PprwarmUp

and PelwarmUp
. There, a cold-start requires additional input power:

PprcoldStart
and PelcoldStart

.
– An additional constant electric power input during shut-down: PeladdShutDown

during the short shut-down interval Ddown. This means that electric power
input from the production phase to the stand-by phase has the power peak
PelstandBy

+ PeladdShutDown
.

48 A. Wolf

– A constant thermal and electric output power “peak” at the beginning of the
start-up phase from zero to Pthinit resp. to Pelinit within a (short) constant time
interval Dinit where ηel · Pthinit = ηth · Pelinit applies.

– A constant power enhancement within a constant start-up phase to a
final power value: It is assumed that the total duration of the start-up
phase DstartUp as well as the final power value PthstartUp

are given such that
Pthinit ≤ Pthmin < PthstartUP

≤ Pthmax applies. Thus, the constant power enhance-
ment is (PthstartUp

− Pthinit)/(DstartUp − Dinit). Consequently, the electric power
enhancement results from PelstartUp

= ηel/ηth · PthstartUp
.

– A maximal gradient for power modulation in the production phase: ΔPthprod
/1h

resp. ΔPelprod
= ηel/ηth · ΔPthprod

.

The chosen MIP model of fcCHPs uses discrete time units. Therefore, the con-
sidered scheduling horizon [0, T] is divided into N equidistant time intervals of
equal duration – typically of 15 min2, however, other time unit durations are pos-
sible, too. It is assumed that a fcCHP is either in operation or down within one
time unit. Discretization of time is a common approach in mathematical mod-
eling of dynamic processes. Further, it is compatible with the time units used
in short-term energy markets. This means that a scheduling horizon [0, T] is
divided into N time units/intervals [ti−1, ti)(i = 1, . . . , n) of the same duration,
namely T/N .

The minimum and maximum operating durations (in time units) are there-
fore Onmin = �Donmin · N/T � and Onmax = �Donmax · N/T 	 and the minimum
downtime is Offmin = �Doffmin · N/T � time units.

The decision whether a fcCHP is switched on or off (operation time vs.
downtime) is always made for a complete time unit i (i.e., for a time interval
[ti−1, ti)). For this purpose, Boolean decision variables x0, ..., xN are introduced
and xi = 1 applies if the fcCHP is on at time unit i and xi = 0 if it is off at
time unit i, where x0 indicates the on/off state at the beginning of the scheduling
horizon which is known in advance. Furthermore, for i = 2 − Onmin, . . . , N the
start variables starti are Boolean decision variables which determine whether the
fcCHP starts in time unit i (start of the operating phase) or not, i.e., xi = 1
and xi−1 = 0 applies or not. There, for j = 2 − Onmin, . . . , 0 starti indicates
any potentially interesting start event in the past which is known in advance.
Similarly, the stop variables stopi are Boolean decision variables which determine
whether the fcCHP is switched off in time unit i (begin of the down phase) or
not, i.e., xi = 0 and xi−1 = 1 applies or not.

In order to ensure that the start and stop variables are compatible with the
on/off variables, the following conditions must be met (cf. [2]). There, the status
of the fcCHP immediately before the start of the scheduling horizon, namely x0,
is relevant:

starti ≥ xi − xi−1 stopi ≥ xi−1 − xi

starti ≤ xi stopi ≤ xi−1

starti ≤ 1 − xi−1 stopi ≤ 1 − xi

for i = 1, . . . , N.

2 A one-day scheduling horizon is subdivided into 96 time units.

Modular Modeling and Optimized Scheduling of Building Energy Systems 49

In order to further ensure that neither the minimum operating times nor down-
times are undercut, the following conditions must also be fulfilled:

xi ≥
i−1∑

k=i−Onmin+1

startk ∧ xi ≤ 1 −
i−1∑

k=i−Offmin+1

stopk for i = 1, . . . , N.

Example 1. Let a fcCHP with a minimal operation time Onmin = 5 time units
be given. Further let start−3 = 1 and start−2 = start−1 = start0 = 0. Then for
any admissible schedule x1 = 1 must apply, i.e., the fcCHP must be operative
(“on”) at time unit 1, otherwise its minimal operation time is undercut.

In order to limit the operating time, further auxiliary integer variables
l1, . . . , lN are required, such that the difference li − li−1 corresponds to the dura-
tion (in time units) from the last stop or start when starting or stopping at
time unit i assuming that a stop follows a start and vice versa. For this purpose
let l0 ≤ 0 be the non-positive time unit at the last start or stop just before the
beginning of the considered scheduling horizon. For any time unit i ∈ {1, . . . , N}
the last start/stop time unit is kept if the on/off status of the fcCHP does not
change: If xi = xi−1 applies, then let li = li−1. Otherwise, if there is change of
the status the last start/stop time unit is updated: If xi �= xi−1 applies, then let
li = i. Combining both cases results in:

li = (1 − |xi − xi−1|) · li−1 + |xi − xi−1| · i for i = 1, . . . , N. (1)

Example 2. Let a fcCHP be given which runs from time unit −3 (already running
at the beginning of the scheduling horizon) to time unit 13. Consequently l0 =
−3, x0 = x1 = · · · = x13 = 1 and x14 = 0 apply. Thus, l1 = · · · = l13 = −3 but
l14 = 14 apply due to the fact that x13 = 1 and x14 = 0. Then the difference
l14 − l13 = 14 − (−3) = 17 defines the recent operation time of the fcCHP in
time units.

In general, Eq. (1) cannot be processed directly by a MIP Solver, because it
contains products of Boolean terms and decision variables. Therefore any such
product α · U with α ∈ {0, 1} and U ∈ [umin, umax] has to be replaced by a new
auxiliary decision variable V ∈ [min(0, umin), umax] and the additional linear
inequalities

umin · α ≤ V ∧ V ≤ umax · α ∧
U − umax · (1 − α) ≤ V ∧ V ≤ U − umin · (1 − α).

The replacement is correct: On the one hand it follows from α = 0 that U −
umax ≤ 0 ≤ V ≤ 0 ≤ U − umin applies and therefore V = 0. On the other hand
if follows from α = 1 that umin ≤ U ≤ V ≤ U ≤ umax applies and therefore
V = U . In summary, V = α · U applies.

Furthermore, Eq. (1) contains the absolute amount of a difference. However,
any equation X = |B −A| can be modeled by means of a new auxiliary Boolean

50 A. Wolf

variable β ∈ {0, 1} and some additional linear constraints

X ≥ 0 ∧
X = β · (B − A) + (1 − β) · (A − B).

Consequently, either X = A − B or X = B − A applies depending on the value
of β. Since X must not be negative, X = |B − A| = |A − B| applies.

In order to ensure that the maximum operating time is not exceeded, the
following condition must therefore apply:3

stopi · (li − li−1) ≤ Onmax for i = 1, . . . , N.

These auxiliary variables are also useful to determine the duration of downtimes,
which will be starti · (li − li−1) and thus the duration of warm-up times, which
will be f(starti · (li − li−1)).4

If the downtime is greater than a specified value L > 0, this is referred to
as a cold start. Auxiliary Boolean variables k1, . . . , kN are given, such that the
value of ki in the warm-up phase indicates whether this occurred after a cold
start, i.e., ki = 1 is implied:

starti · (i − li−1) − L ≤ M · ki ∧ ki−1 · (i − li) ≤ M · ki

for i = 1, . . . , N , a sufficiently large value M and a corresponding value k0, e.g.,
known from a previous scheduling horizon. If the modeled fcCHP is starting at
time unit i then starti = 1 and li = i apply. If this start event is a cold start, i.e.,
if (i − li−1) > L applies, then starti · (li − li−1) − L > 0 applies, too. If follows
that ki = 1 applies, otherwise there is a violation. If ki−1 = 1 indicates that a
downtime will require a cold-start and there is not any start event at time ti
then ki = 1 is implied further indicating a cold-start, because (i− li) > 0 applies,
otherwise there is violation.

The determination of the warm-up times requires additional auxiliary integer
variables w1, . . . , wN , such that the value of wi corresponds to the last warm-
up time. To do this, let w0 be the warm-up time from the previous scheduling
horizon. If starti = 1 applies, let wi = f(li−li−1). Otherwise, if starti = 0 applies,
let wi = wi−1. Combining both cases results in

wi = starti · f(i − li−1) + (1 − starti) · wi−1 for i = 1, . . . , N.

Due to the fact that the argument of the function f is variable, i.e., not known
in advance, the computation of f(x) for a variable x ∈ {1, . . . , N} (assuming
that the maximum downtime is shorter than the scheduling horizon) requires
additional auxiliary Boolean variables λ1, . . . , λN . Then the condition

∀i ∈ {1, . . . , N} : λi · (x − i) = 0 ∧
N∑

i=1

λi = 1

3 Here and in the following there are products of Boolean terms and decision variables,
too.

4 Remember that the function f maps downtimes to warm-up times, see above.

Modular Modeling and Optimized Scheduling of Building Energy Systems 51

ensures that x = i ⇔ λi = 1 applies for i = 1, . . . , N . Consequently, it applies

f(x) =
N∑

i=1

λi · Fi for any x ∈ {1, . . . , N},

where the supporting values F1 = f(1), . . . , Fn = f(N) are technical parameters
of the fcCHP which are known in advance.5

Furthermore, Boolean decision variables y1, ..., yN are introduced such that
yi = 1 applies if and only if the modeled fcCHP warms up in time unit i.
In particular it applies that xi ≥ yi. Additionally, stopWarmUpi are Boolean
decision variables that determine whether the fcCHP has completed the end of
the warm-up phase in time unit i (i.e., the start of the production phase) or not,
i.e., yi−1 = 1 and yi = 0 apply. In order to ensure that these “stop of warm-up”
variables are compatible with the “warm-up” variables, the following conditions
must be met, whereby the “warm-up” state of the fcCHP immediately before
the start of the scheduling horizon – determined by y0 – is relevant:

starti ≥ yi − yi−1 stopWarmUpi ≥ yi−1 − yi
starti ≤ yi stopWarmUpi ≤ yi−1

starti ≤ 1 − yi−1 stopWarmUpi ≤ 1 − yi

for i = 1, . . . , N.

A minimal duration of the warm-up phase has to be guaranteed. Therefore
for each time unit i = 1, . . . , N and for each possible warm-up duration j =
F1, . . . , Fn an auxiliary Boolean variable σi,j is defined such that σi,j = 1 if and
only if a start occured no longer than j time units before time unit i:

σi,j · M ≥
i−1∑

k=i−j+1

startk ∧ σi,j ≤
i−1∑

k=i−j+1

startk

Then the minimal warm-up time is satisfied, if

(Fn − F1 + 1) · yi ≥ (wi − j + 1) · σi,j

applies for i = 1, . . . , N and j = F1, . . . , Fn. This means that if wi − j + 1 is
positive and the start is no longer than wi time units ago, i.e., σi,j = 1, then the
fcCHP is in the warm-up phase, i.e., yi = 1 must apply.6

For an upper boundary of the warm-up time, additional auxiliary integer
variables are necessary. Let r1, . . . , rN be given such that ri represents the index
of the last (i.e., most recent) start. Therefore let r0 ≤ 0 be the time unit of
the latest start before the scheduling horizon. Now if starti = 1 then ri = i will
apply, otherwise ri = ri−1:

ri = starti · i + (1 − starti) · ri−1 (2)

5 F1 ≤ · · · ≤ Fn applies due to the fact that f is monotonically increasing, see above.
6 N.B.: (Fn − F1 + 1) ≥ (wi − j + 1) always applies, see above.

52 A. Wolf

Then the maximal warm-up time is satisfied, if

yi · i − ri ≤ wi. (3)

This means that if the fcCHP warms up at time unit i, then the latest start is
no longer than the warm-up time ago.

At the end of the warm-up phase, the start-up phase begins, the duration of
which is known in advance from the fcCHP characteristics. The same applies to
the thermal and electrical power available in the start-up phase. In detail, there
are LowerInit = �Dinit ·N/T 	 time units with power jump, in general one time unit
at UpperInit = �Dinit ·N/T � with parts of the power jump and gradual starting (if
LowerInit < UpperInit and then StartUp−UpperInit time units in which the power
increases constantly up to a given target value with StartUp = �DstartUp · N/T �.
The end of the start-up phase is thus after further StartUp time units reached.
This means that discrete power levels can be determined for primary energy and
electricity consumption as well as for thermal and electric output power (abstract
PxUp). One type is sufficient, the others behave proportionally according to their
efficiency factors:

(PxUp1
, . . . , PxUpStartUp

).

Analogously to these power steps and due to the discretization there result elec-
tric power steps from PeladdShutDown

during the shut-down phase (mostly one time
unit because the duration DDown of the shut-down phase is in general short):

(PelDown1
, . . . , PelDownShutDown

),

where ShutDown = �DDown ·N/T � is the duration of the shut-down phase in time
units.

The time units of the “jump” phases are characterized by Boolean decision
variables s1, . . . , sN where si = 1, if the fcCHP makes a performance jump in
time unit i and si = 0, if it is not the case in this time unit i:

si =
LowerInit∑

j=1

stopWarmUpi−j+1.

Boolean decision variables z1, . . . , zN are introduced for the following production
phase. zi = 1 will apply, if the fcCHP is productive in time unit i, i.e., delivering
thermal and electrical power and zi = 0 will apply, if it is not in the production
phase in time unit i, i.e., in particular, it applies that xi ≥ zi. In order to
ensure that these “productive” variables are compatible with the corresponding
start/stop variables, the following conditions must be met, whereby the status
of the fcCHP directly before the start of the scheduling horizon – determined
by z0 – is relevant:

stopWarmUpi−StartUp ≥ zi − zi−1 stopi ≥ zi−1 − zi
stopWarmUpi−StartUp ≤ zi stopi ≤ zi−1

stopWarmUpi−StartUp ≤ 1 − zi−1 stopi ≤ 1 − zi

for i = 1, . . . , N.

Modular Modeling and Optimized Scheduling of Building Energy Systems 53

Summarizing, the thermal power supply (output) of a fcCHP at time unit i
is characterized by the following equation:

thermalOutputPowerfcCHPi
=

StartUp∑

j=1

stopWarmUpi−j+1 · PthUpj
+ zi · uthi

where the values of the variable uthi must lie within a specified performance
band in the production phase, i.e., Pthmin ≤ uthi

≤ Pthmax and the gradient of
the value change is limited:7

|uthi
− uthi−1 | ≤ ΔPthprod

/[h] · T/N [h].

The electrical power supply (output) results directly from the thermal power
supply:

electricOutputPowerfcCHPi
=

ηel

ηth
· thermalOutputPowerfcCHPi

The electrical power demand (input) of a fcCHP depends on whether there is a
cold-start or a warm-start:

electricInputPowerfcCHPi
= yi · PelWarmUp

+ (yi ∧ ki) · PelColdStart

+
ShutDown∑

j=1

stopi−j+1 · PelDownj
+ (1 − xi) · PelstandBy

.

There, the conjunction of two Boolean variables (yi ∧ ki) will be represented by
an auxiliary Boolean variable γi satisfying γi ≥ yi + ki − 1 ∧ γi ≤ yi ∧ γi ≤ ki
for i = 1, . . . , N .

Analogously, the primary power demand (input) of a fcCHP over the pro-
duction phases depends also on whether there is a cold-start or a warm-start:

primaryInputPowerfcCHPi
= yi · PprWarmUp

+ γi · PprColdStart

+
StartUp∑

j=1

stopWarmUpi−j+1 · PprWarmUpj
+ zi · uthi

ηth
.

In Fig. 2, typical thermal and electric power profiles of a fcCHP are shown
according to the presented MIP model. These profiles are matching the profiles
measured by the fcCHP manufacturer giving some evidence that the energetic
behavior of fcCHP is modeled adequately. Assuming that the costs Kpri for pri-
mary energy at time unit i, as well as the costs for switching on Kon and for
switching off Koff a fcCHP, as well as the costs for the wear and tear per time
unit during heating up KwarmUp, during cold start KcoldStart and during pro-
ductive operation Kprod are known, then the costs for the operation of a fcCHP
in time unit i result directly:
7 How to model the absolute amount of a difference has already been explained. Time

values must be of the same dimension which is emphasized by the explicit use of the
dimension [h] (hour).

54 A. Wolf

Fig. 2. Typical operation of a fcCHP.

financialInputfcCHPi

= Kpri · primaryInputPowerfcCHPi
· T

N
+ Kon · starti

+Koff · stopi + KwarmUp · yi + KcoldStart · (yi ∧ ki) + Kprod · zi.

This is only a simplified approach for the consideration of wear and tear costs
of a fcCHP. For instance, aging effects are not taken into account. Although an
aging approach can be converted into a linearly approximated model, initial run-
time investigations result in very long computation times for cost optimization.
However, the resulting operational plans hardly differ qualitatively from those
with simplified models.

4 Implementing a MIP-Based Optimizing Tool

A software named “MIP Optimizer” is realized to transfer specifications of build-
ing energy systems into MIP models and then based on these models to determine
cost-minimal operation schedules for the specified energy system components,
so that predicted energy requirements for heating or cooling, domestic hot water
and electricity over a given scheduling horizon are covered. In detail, the MIP
Optimizer generates a MIP optimization problem from a formal description of
the energy system components, i.e., the configuration of the energy system and
from a formal description of the demand and the environmental and operational
situation over the scheduling period. For this purpose, both formal descriptions
determining the general configuration and the current situation are to be speci-
fied in XML files (cf. [13]) and must comply with a fixed XML schema (XSD) [14].
Energy demand profiles and other time series predicting the environmental sit-
uation (e.g., fluctuating primary energy prices or volatile PV power) shall be
provided in files in Hierarchical Data Format (HDF5) [5,7], referred to in the

Modular Modeling and Optimized Scheduling of Building Energy Systems 55

XML descriptions. Examples of the XML configuration and situation files are
presented in Sect. 5.

Then, the MIP Optimizer uses the <Coliop|Coin> Mathematical Program-
ming Language (CMPL) [12] to generate and solve the optimization problem,
since various MIP problem solvers can be used, such as the freely available Cbc [6]
or the commercial CPLEX [10]. The operation schedules of the components of
the building energy system are then extracted from the solution and stored in
the form of time series in an HDF5 file, such that these data can be further used
by a building management system to control the energy components.

The MIP Optimizer is implemented in Java and has a modular structure. Due
to the modular modeling approach (cf. Sect. 3) and its object-oriented imple-
mentation, flexible extensions including further energy systems components are
supported by design.

5 Evaluation on a Heat Pump Scenario

In order to prove the usefulness of our MIP-based optimization approach, gener-
ated operational schedules for building energy systems are considered. For this
purpose, we considered a residential building, i.e., a single family detached house,
according to the EnEV standard 2014 with 172 m2 usable area (Berlin site), an
air-to-water heat pump with thermal storage tank for heat supply.

It was investigated, how an efficient operation can be planned/scheduled
with the help of the MIP Optimizer as cost- and energy-efficient as possible by
predicting the Coefficients of Performance (COP) of the heat pump dependent on
the outside temperature and the residential heat demand. The building energy
system consists of a heat pump and a heat storage. The heat demand and COP
of the heat pump changing with the outside temperature were determined and
provided by our project partners at Berlin University of the Arts, Institute for
Architecture and Urban Planning, Department of Building Physics and Building
Technology. These partners used weather forecasts and Modelica to model and
simulate the thermal behavior of the selected building.

In the subsequent operational scheduling, partial models of a heat pump with
a constant electrical power consumption of 1.8 kW in operation (cf. the XML
element <HeatPump> below) and of a 2 m3 thermal storage tank with a charg-
ing capacity of 20.82 kWh (cf. the XML element <HeatBuffer> below) were
combined at an ambient temperature of 20 ◦C to form an overall model of the
energy system. Electricity prices, the heat demand profiles determined by sim-
ulation and time-dependent COP as well as the system status data (e.g., state
of charge of the thermal storage tank) were added. The description of the build-
ing energy system was specified in XML as a configuration with characteristic
physical parameters, which were further processed by the MIP Optimizer:
<BuildingConfiguration

xmlns="http://www.fokus.fraunhofer.de/WaveSave"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.fokus.fraunhofer.de/WaveSave BuildingSystem.xsd"
id="UDKHeatPumpScenario" powerUnit="kW" energyUnit="kWh" priceUnit="ct"
energyPriceUnit="ct/kWh">

56 A. Wolf

<Usage id="generalUsage" maxElectricPowerUse="32.0" maxHeatingPowerUse="32.0"
maxCoolingPowerUse="0.0" powerUnit="kW"/>

<Grid id="GridConnection" maxFeedInPower="0.0" maxSupplyPower="32.0"
powerUnit="kW"/>

<HeatBuffer id="HotWaterBuffer" minThermalEnergyLevel="0"
maxThermalEnergyLevel="20.82" thermalLossPerHourFactor="0.000"
maxThermalChargingPower="10.0" maxThermalDischargingPower="10.0"
powerUnit="kW" energyUnit="kWh"/>

<HeatPump id="HeatPump" electricPower="1.8" powerUnit="kW"
minOffTimeInHours="0.25" minRunTimeInHours="0.25"/>

</BuildingConfiguration>

Actual and predicted data were also transferred to the MIP Optimizer with
the help of a situation description, also in XML, whereby the time series for heat
demand, COP, electricity prices etc. were to be found in separate HDF5 files to
which references are made:
<BuildingSituation

xmlns="http://www.fokus.fraunhofer.de/WaveSave"
id="UDKHeatPumpScenario" nbsOfTimeUnits="96" hoursPerTimeUnit="0.25"
start="2016-08-17T00:00:00" fileNameHDF5="UDKHeatPumpScenario.h5">

<Usage id="generalUsage" maxInitialHeatingEnergy="0.0"
maxInitialCoolingEnergy="0.0" energyUnit="kWh">

<ElectricPowerUsage fileName="UDK Heat Pump Scenario-2017-05.h5"
dataSetPath="/ENull" powerUnit="kW"/>

<HotWaterPowerUsage fileName="UDK Heat Pump Scenario-2017-05.h5"
dataSetPath="/DHWNull" powerUnit="kW"/>

<MinHeatingPowerUsage fileName="UDK Heat Pump Scenario-2017-05.h5"
dataSetPath="/MinHeating" powerUnit="W"/>

<MaxHeatingPowerUsage fileName="UDK heat pump scenario-2017-05.h5"
dataSetPath="/MaxHeating" powerUnit="W"/>

<MinCoolingPowerUsage fileName="UDK Heat Pump Scenario-2017-05.h5"
dataSetPath="/MinCoolingNull" powerUnit="kW"/>

<MaxCoolingPowerUsage fileName="UDK Heat Pump Scenario-2017-05.h5"
dataSetPath="/MaxCoolingNull" powerUnit="kW"/>

</Usage>
<Grid id="GridConnection">

<ElectricEnergyPrice fileName="UDK Heat Pump Scenario-2017-05.h5"
dataSetPath="/ECostFix" energyPriceUnit="ct/kWh"/>

<ElectricEnergyRefund fileName="UDK Heat Pump Scenario-2017-05.h5"
dataSetPath="/ERefundFix" energyPriceUnit="ct/kWh"/>

</Grid>
<HeatBuffer id="HotWaterBuffer" initialThermalEnergyLevel="0.0"

energyUnit="kWh"/>
<HeatPump id="HeatPump" isOnAtBegin="false" lastStartStopChangeInHours="0.5"

priceUnit="ct">
<CoefficientOfPerformance fileName="UDK Heat Pump Scenario-2017-05.h5"

dataSetPath="/COP"/>
</HeatPump>

</BuildingSituation>

In detail, usage profiles are stored in HDF5 files (with file exten-
sion “.h5”), which are referenced in the respective XML elements (e.g.,
<ElectricPowerUsage>). The name of the file containing the operation
schedules must be entered as the value of the attribute fileNameHDF5 in the
XML root element <BuildingSituation>. After processing the models the
optimized schedule of the heat pump is stored in this file.

The resulting cost-minimized schedule of the operation of the building energy
system (cf. Fig. 3) shows that, in contrast to charging the thermal storage tank
during the night hours (blue), an extensive operation of the heat pump at low
outside temperatures and low COP can be avoided, if the heat demand and COP
is known in advance and the heat pump is operated accordingly (red). Covering

Modular Modeling and Optimized Scheduling of Building Energy Systems 57

the currently predicted heat demand only enables a saving of 25% electric energy,
provided that the forecasts correspond to reality. Due to the general uncertainty
of forecasts for energy supply and demand it is strongly recommended for prac-
tical applications to use some energy reservoirs, e.g., thermal storage tanks or
batteries, and parts of their charging/discharging capacities as buffers to balance
deviations.

Fig. 3. Heat pump conventional operation versus optimized operation. (Color figure
online)

6 Conclusion and Future Work

In this paper a MIP-based approach is presented to model and optimize the oper-
ation of building energy systems. In detail the modeling of the energetic behavior
of fcCHPs is presented and it is shown how sub-models of different energy com-
ponent can be combined reflecting their integration into building energy systems.
By example it is shown that the approach can be applied successfully. However,
a comprehensive analysis on the accuracy and adequacy of the MIP models
and the impact of imperfect forecasts for energy demand/production and energy
prices has the be performed in the future, maybe in a follow-up research and
development project.

References

1. Beasley, J.E.: OR Notes - Separable Programming. http://people.brunel.ac.uk/
%7Emastjjb/jeb/or/sep.html

2. Bosman, M.G.C., Bakker, V., Molderink, A., Hurink, J.L., Smit, G.J.M.: Planning
the production of a fleet of domestic combined heat and power generators. Eur. J.
Oper. Res. 216(1), 140–151 (2012)

http://people.brunel.ac.uk/%7Emastjjb/jeb/or/sep.html
http://people.brunel.ac.uk/%7Emastjjb/jeb/or/sep.html

58 A. Wolf

3. Bozchalui, M.C., Sharma, R.: Optimal operation of commercial building microgrids
using multi-objective optimization to achieve emissions and efficiency targets. In:
Power and Energy Society General Meeting, 2012, pp. 1–8. IEEE (2012)

4. Brahman, F., Honarmand, M., Jadid, S.: Optimal electrical and thermal energy
management of a residential energy hub, integrating demand response and energy
storage system. Energy Build. 90, 65–75 (2015)

5. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
HDF5 technology suite and its applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases - AD 2011 Uppsala, Sweden, pp. 36–47. ACM
Press (2011)

6. Forrest, J.: CBC User Guide. https://www.coin-or.org/Cbc/cbcuserguide.html
7. The HDF Group. HDF Home. https://www.hdfgroup.org/
8. Wei, G., Tang, Y., Peng, S., Wang, D., Sheng, W., Liu, K.: Optimal configura-

tion and analysis of combined cooling, heating, and power microgrid with thermal
storage tank under uncertainty. J. Renew. Sustain. Energy 7(1), 013104 (2015)

9. Gu, W., et al.: Modeling, planning and optimal energy management of combined
cooling, heating and power microgrid: a review. Electr. Power Energy Syst. 54,
26–37 (2014)

10. IBM. ILOG CPLEX Optimization Studio - Survey. https://www.ibm.com/
products/ilog-cplex-optimization-studio, January 2019

11. Järvisalo, M., Oikarinen, E., Janhunen, T., Niemelä, I.: A module-based framework
for multi-language constraint modeling. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 155–168. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04238-6 15

12. Steglich, M., Schleiff, T.: CMPL: Coliop Mathematical Programming Language -
Version 1.12 - March 2018 (2018)

13. W3C. Extensible Markup Language (XML). https://www.w3.org/XML/
14. W3C. XML Schema. https://www.w3.org/XML/Schema

https://www.coin-or.org/Cbc/cbcuserguide.html
https://www.hdfgroup.org/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://doi.org/10.1007/978-3-642-04238-6_15
https://www.w3.org/XML/
https://www.w3.org/XML/Schema

Finding Maximal Non-redundant
Association Rules in Tennis Data

Daniel Weidner1(B), Martin Atzmueller2, and Dietmar Seipel1

1 Department of Computer Science, University of Würzburg,
Am Hubland, 97074 Würzburg, Germany

{daniel.weidner,dietmar.seipel}@uni-wuerzburg.de
2 Department of Cognitive Science and Artificial Intelligence,

Tilburg University, Warandelaan 2, 5037 AB Tilburg, The Netherlands
m.atzmuller@uvt.nl

Abstract. The concept of association rules is well-known in data min-
ing. But often redundancy and subsumption are not considered, and stan-
dard approaches produce thousands or even millions of resulting asso-
ciation rules. Without further information or post-mining approaches,
this huge number of rules is typically useless for the domain specialist –
which is an instance of the infamous pattern explosion problem. In this
work, we present a new definition of redundancy and subsumption based
on the confidence and the support of the rules and propose post-mining
to prune a set of association rules.

In a case study, we apply our method to association rules mined from
spatio-temporal data. The data represent the trajectories of the ball in
tennis matches – more precisely, the points/times the tennis ball hits
the ground. The goal is to analyze the strategies of the players and to
try to improve their performance by looking at the resulting association
rules. Here, the domain specialist was able to select useful rules during
post-mining. The proposed approach is general and could also be applied
to other spatio-temporal data with a similar structure.

Keywords: Association rule mining · Pattern mining · Post-mining ·
Declarative data mining · Prolog · Spatio-temporal data

1 Introduction

The field of artificial intelligence (AI) can be divided into symbolic and sub-
symbolic approaches, e.g., [7,19,27,33]. Symbolic, knowledge- or rule-based AI
models central cognitive abilities of humans like logic, deduction and planning
in computers; mathematically exact operations can be defined. Subsymbolic or
statistical AI tries to learn a model of a process (e.g., an optimal action of a
robot or the classification of sensor data) from the data.

Association rules declaratively and symbolically describe logical relations
with probabilities in the form of if-then-rules, thus incorporating aspects from

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 59–78, 2020.
https://doi.org/10.1007/978-3-030-46714-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-46714-2_4

60 D. Weidner et al.

both symbolic and statistical approaches. Then, using declarative specifica-
tions, e.g., using domain knowledge, specific (inductive) biases, and post-mining
approaches, the learning and mining can be supported [5,7], and post-mining on
the set of association rules – for improving their interestingness and relevancy –
can be conveniently implemented. In general, data mining aims to obtain a set of
novel, potentially useful and ultimately interesting patterns from a given (large)
data set [15]. Here, one prominent method is association rule mining. However,
many standard approaches for mining association rules – like the approaches
based on the well-known Apriori algorithm – do not consider redundancy or
subsumption.

In this paper, we tackle this problem, and demonstrate its application in the
spatio-temporal domain of tennis data. Our contributions are summarized as
follows: We introduce a new definition of redundant and subsumed association
rules to prune the set of rules we obtain from the Apriori algorithm. Furthermore,
we present a general post-mining approach for finding maximal non-redundant
association rules. Based on the results of previous mining steps, unimportant
attributes are excluded in further steps.

Fig. 1. One picture from the video of a tennis match.

From an application perspective, analyzing real-world tennis data and prun-
ing the result effectively can lead to individual training methods for the observed
players. Furthermore, using data from a video in real-time, a coach could change
the player’s strategy during a tennis match. Some pre-research had been made
in the diploma/master theses [8,35] and the technical report [31]; by getting
information directly from media-data like video-sequences (a screenshot can be
seen in Fig. 1), essentially the complete (tennis) data mining process can be
automated.

Finding Maximal Non-redundant Association Rules in Tennis Data 61

The rest of this paper is structured as follows: Sect. 2 discusses related work
on association rule mining, and Sect. 3 gives the necessary definitions of associ-
ation rules and explains association rule mining in the well-known tool Weka.
Next, we present the proposed data mining process including the new definition
of subsumption and maximality in Sect. 4. The case study about tennis data
shows its usefulness in Sect. 5; this section ends with some directions for future
work. Finally, Sect. 6 concludes with a summary.

2 Related Work

This section discusses related work on association rule mining, condensed repre-
sentations, and finally post-mining approaches on sets of association rules.

2.1 Association Rule Mining

Association rule mining [1,2] has been established as a prominent approach in
data mining and knowledge discovery in databases, cf. [22] for a survey. Several
efficient algorithms have been proposed, including, e.g., the Apriori [2] and the
FP-Growth [20] algorithms.

In the research on association rules and finding the most relevant ones, many
approaches have been discussed. In [23], the authors present a method to extract
rules on user-defined templates or time constraints. In [21], association rules are
ranked. This happens with different interestingness measures. Different formats
or properties of association rules are discussed in [12]. Finally, the pruning of
redundant rules is presented in [14]. Constraint-based data mining also tackles
the problem of redundancy in association rule mining. For example, the approach
presented in [9] presents an approach for constraint-based rule mining in large,
dense databases, focusing on the interestingness of specializations of rules relative
to their parent generalization with specific thresholds.

In contrast to the approaches discussed above, we employ a standard method
for association rule mining (e.g., Apriori) which is customized using logic pro-
gramming, such that the mining step can be re-iterated in a declarative way.

2.2 Condensed Representations and Post-mining Methods

Condensed representations of association rules for reducing redundancy mainly
focus on closed itemsets, e.g., [6,39]. Furthermore, also research in the domain
of formal concept analysis has resulted in several algorithms, e.g., [28,34]; also
cf. [10] for a survey on condensed representations. Furthermore, [16] presents a
mining approach for finding the top-k non-redundant association rules using an
approximation algorithm.

Considering post-mining methods, [40] discusses several techniques for effec-
tive knowledge extraction from association rules, while [24–26] apply ontolo-
gies to facilitate the post-processing of a set of association rules, also including
interaction with a domain expert. Logic-based post-mining approaches include a

62 D. Weidner et al.

technique where patterns are filtered using constraints formulated with answer
set programming (ASP) [18].

Similar to the approaches described above, we also apply post-mining but
using declarative techniques. We apply formalizations of subsumption and redun-
dancy for declaratively shaping the association rules. However, specifically in
contrast to the existing logic-based approaches, the presented approach is not
restricted to work on the set of association rules directly, but can further refine
the mechanism of how to discover association rules, by e.g., refining the data
representation, the parameters of the mining process, and its subsequent results
at the same time in incremental fashion.

3 Association Rules and the Apriori Algorithm

In this section, we provide an overview on the relevant background on association
rules, before briefly summarizing the Apriori algorithm.

3.1 Definitions for Association Rules

We consider a set T of transactions, where each transaction is a set of items,
called an itemset. For an itemset I, let TI be the subset of transactions containing
I, i.e.

TI = { t ∈ T | I ⊆ t },
and let the frequency be the number of these transactions, i.e. freq(I) = |TI |.
Given a lower bound f for the frequency, an itemset I is called frequent, if
freq(I) ≥ f .

An association rule r = L ⇒ R is an if-then-rule, where the antecedent L and
the conclusion R are itemsets; without loss of generality, we can assume L ∩ R =
∅. For a transaction t ∈ T , the association rule means that L ⊆ t suggests
R ⊆ t. The support of an association rule is the number of the transactions
containing both sides divided by the number of all transactions. The confidence
of an association rule expresses the likelihood that R occurs in a transaction,
if L occurs in the transaction. It is defined as the percentage of transactions
containing L ∪ R among the transactions containing L. We write sup(r) and
conf (r) for the support and confidence, respectively:

sup(r) = |TL∪R|
|T | and conf (r) = |TL∪R|

|TL| .

Note, that support and confidence do not depend on each other, and both defi-
nitions are necessary for association rule mining. There can be rules with a large
support but a small confidence, and vise versa.

Obviously, for a frequent itemset I, the support of all association rules r =
L ⇒ R, such that L ∪ R ⊆ I, exceeds f/|T |, since

sup(r) = freq(L ∪ R) /|T | ≥ freq(I) /|T | ≥ f/|T |.

Finding Maximal Non-redundant Association Rules in Tennis Data 63

3.2 Mining Association Rules with Weka

The main goal of association rule mining is to find rules having a minimum
confidence c and support s. These rules may be obvious for an expert, but we
will show in a case study for tennis data that they can also reveal new, unknown
relations.

A basic step in standard association rule mining is the Apriori algorithm
for finding frequent itemsets I first. This algorithm incrementally searches for
frequent itemsets for f = s · |T |: it starts with frequent itemsets of size 1, and
iteratively extends frequent k-itemsets by frequent 1-itemsets to obtain (k+ 1)-
itemsets (iteration k), and then it selects the frequent ones for the next iteration.
The algorithm stops after kmax iterations, if there are no frequent (kmax + 1)-
itemsets. It returns all computed frequent k-itemsets (1 ≤ k ≤ kmax), that could
not be extended to a frequent (k+1)-itemset; these itemsets are called maximal
frequent itemsets. From all maximal frequent itemsets I, the mining algorithms
create association rules r = L ⇒ R, such that L ∪ R ⊆ I and the confidence
exceeds c, i.e. conf (r) ≥ c.

In the context of this paper, we apply the algorithm of the well-known data
mining tool Weka [37] for association rule mining, which is based on the Apriori
algorithm. In Sect. 5.2, we will see, that Weka can be used with a parameter which
stands for a required number of rules. In the Apriori algorithm implemented in
Weka, the support is reduced until this number of rules is reached.

Depending on the size and characteristics of the data set, potentially be a
very large number of association rules exceeding a given minimal confidence
can be produced. Depending on the size of the table, this number of rules can
be unusably high, so that users lose track of these rules. At this point, the
process has to be run again with other parameters, or some expert needs to
filter important rules, which ends in looking for a needle in a haystack.

Since both of these methods are very time-consuming and expensive, we will
propose a new approach by pruning rules effectively. For this, we employ the idea
of redundancy and subsumption, which we define in the next section in detail.

4 Data Mining Process

The proposed declarative data mining process, which will be discussed in this
section, is implemented within the software package Declare [29] for knowledge-
based intelligent systems that is developed using Swi-Prolog [36]. We introduce a
(semi-) automatic data mining process that consists of the steps outlined below.
By repeating these steps with different parameters or transformations, we achieve
different results in each iteration, until some result is convincing enough accord-
ing to the assessment of a domain expert. Thus, the evaluation of the results
has to be supported by a domain expert or some knowledge structure like a
knowledge graph. In the latter case, the process can then also be potentially
automatized, which we plan to do in the future; so far the process workflow is
semi-automatic. The process workflow is presented in Fig. 2. In the following, we
will present the steps of an iteration.

64 D. Weidner et al.

Fig. 2. Flowchart of the data mining process.

Step 1: Selecting Attributes from the Input Data

Given an Xml-file with data to be analyzed, we want to create a structured
table. For this, some aspects should be discussed. First of all, we have to think
about which attributes of the Xml-file should be included in the table and the
data mining process. In our test data we skip some unimportant attributes by
projecting the table. By now, the selection step is not automatic at all. We use a
domain expert, who chooses attributes, which may lead to interesting association
rules. Surely, this selection can be automatized by selecting all attributes or by
selecting different pairs of attributes in every iteration. But these two extremes
would either lead to many rules with unimportant information or to many dif-
ferent iterations and also many evaluation failures. So we depend on a domain
expert or need to include knowledge such as a knowledge graph.

Step 2: The Spatio-Temporal Data Table

As it can be seen in Sect. 5.2, we did not only select attributes of the Xml-file,
we also transformed some selected attributes. More precisely, we applied two
extraction methods. First we generalized attributes, which occur with support
nearly zero. Such attributes are values, that are stored as exact values, i.e. time-
points and/or coordinates. These exact values appear only once in the whole
table and so their support is the reciprocal to the size of the table; the greater
the file and so the table, the smaller the support and therefore the probability
that this item will be observed in the Apriori algorithm. To avoid this, we create
intervals and store the interval numbers instead of the exact values.

Since all entries of exact values are different, the domain size of this attribute
is equal to the size of the table. With this information an automatized algorithm

Finding Maximal Non-redundant Association Rules in Tennis Data 65

can compare all domains with the table size to detect the exact values. With
minimum and maximum, default intervals can be created.

Another transformation is done to create a spatio-temporal data scheme. In
our tennis-data, we have sequences of the same event in the whole table, i.e.
tennis hits. Instead of considering one event in each row, we combine pairs of
events in each row. It is also possible to consider more than two events, namely
three of more hits and re-hits for tennis data.

Both transformations may be applicable to other Xml-files, but it is impos-
sible to guide this full automatically. Nevertheless, if users are familiar with the
used file, they should think about such transformations, since attributes with a
probability near to zero will only reach a small support and confidence, and a
spatio-temporal data table allows other data mining methods too, see [3].

Step 3: From a Table to Association Rules (via Weka)

As discussed in Sect. 3.2, we use the tool Weka to compute association rules
based on the Apriori algorithm. This step includes two thresholds that can be
modified in each iteration: first the number of required rules can be increased,
and second the value of the minimum confidence can be decreased. This may
lead to a greater number of rules: so the bigger the search space of rules, the
higher is the chance to find very interesting rules. But on the other hand, every
iteration is very time consuming for itself and will be slower when considering
more rules. In total, finding the optimal parameters is very complicated.

In Listing 2, we can see how to call Weka from the command line of a shell.
It is getting even more complicated when we consider optional parameters of
Weka, e.g. a starting value -U and a stopping value -M for the minimum support
of frequent itemsets. Also metrics different from the confidence can be used to
sort rules. In our tennis data, we focus only on the number of required rules and
the minimum confidence. We discuss the Weka call and the output in detail in
Subsect. 5.2.

Step 4: Pruning Non-maximal Redundant Association Rules

After all computed association rules are loaded into the system, we want to get
rid of redundant and non-maximal association rules. For this, we need a new
definition of redundancy, where an association rule r1 = L1 ⇒ R1 is called
redundant, if there is another association rule r2 = L2 ⇒ R2, such that

L2 ⊆ L1, R1 ⊆ R2 and conf (r2) = 1.

Note that, if a rule r1 is redundant, then its confidence does not have to be 1 in
general; e.g., for a redundant rule r1 = L1 ⇒ R1 and a rule r2 = L2 ⇒ R2 with
conf (r2) = 1, such that L2 = L1 and R1 � R2, we have ∅ = L2 ∩R2 = L1 ∩R2,
and we get

1 = conf (r2) =
|L2∪R2|

|L2| = |L1∪R2|
|L1| > |L1∪R1|

|L1| = conf (r1) .

Our definition of redundancy is different from related literature [16,17,23].
We say that an association rule r1 = L1 ⇒ R1 subsumes another association

rule r2 = L2 ⇒ R2, if

66 D. Weidner et al.

L1 ⊆ L2, R2 ⊆ R1 and sup(r1) ≥ sup(r2) , conf (r1) ≥ conf (r2) .

A rule r is called maximal, if it is not subsumed by any other rule r′
= r. Both
definitions have first appeared in the lecture on Advanced Databases [32]; As we
have seen in Subsect. 3.1, redundancy implies subsumption but not vice versa.
After applying these definitions, we hope to finally obtain a small number of
maximal non-redundant rules.

The case study, which will be presented in Sect. 5, will motivate that these
definitions are useful for finding interesting association rules. This is shown in
Fig. 3, where we ran Weka with the initial table of Fig. 4, but searching for all
possible association rules. This means the minimum confidence is increased by
0.1, and we count the number of all association rules found by Weka. For the
tennis data, which will be presented in detail in Sect. 5, we found about 22 000
rules, even if we required a minimum confidence of 1. And with a standard min-
imum confidence of 0.50 or 0.75, we reach 70 000 or 40 000 rules. As said before,
detecting the most interesting rules in this large rule set is nearly impossible; but
it is reasonable to work with a small number of maximal non-redundant rules to
obtain unknown relations.

Fig. 3. Relation between minimum confidence and number of computed association
rules in the tested tennis data set.

Step 5: Iterating the Process with New Parameters

After one iteration, some evaluation of the result has to be done. Depending on
the quality of the evaluation, the system should repeat the process with different
parameters, starting with those for Weka. This is because these thresholds need

Finding Maximal Non-redundant Association Rules in Tennis Data 67

no information about the initial data. It can be increased and decreased, respec-
tively, to create more association rules. If all these iterations fail the evaluation,
then some modification of the starting table and attributes should be done. For
this, the user needs information or knowledge about the data to guide the data
mining process, i.e., in- and excluding the right attributes and changing the right
parameters correctly.

Another way to create a successful evaluation is creating queries to the max-
imal non-redundant association rules. For this some searching items are needed.
As said before, a domain expert can guide the analysis. This time-consuming
effort is also discussed in Subsect. 5.4.

5 Case Study: Analysis of Tennis Data

A system for the management and analysis of tennis data had been started in
Swi-Prolog in the diploma thesis [35], where an Xml representation had been
developed (see Listing 1 below), and some simple analysis had been done. Later,
this analysis had been extended with a functionality to query the data [31] using
the Prolog-based Xml processing utilities of [30]. Prolog is very useful here,
since knowledge bases with semi-structured, symbolic data, such as relational,
deductive, Xml or semantic web data can be handled nicely with Prolog [11,13].

In the following subsections, we are refining the proposed data mining process
for deriving suitable association rules. First, the Xml file with the tennis data
is transformed into a relational table. Columns are created from the attributes
of the file; attributes can be omitted, if they should not be involved in the
data mining process. This initial table is transformed into a modified, temporal
table; some of these modifications are not universally applicable, but key ideas
may be portable to other types of data. First, we create a spatial tessellation
for the tennis court, see Fig. 5, since exact coordinates will be repeated with a
probability near to zero. Second, we duplicate a part of the table in order to
model the data in a special way, such that traditional data mining is lifted to
temporal data mining.

Then, the association rules are computed using the Apriori algorithm for
frequent itemsets of the tool Weka. After wrapping the Weka output text file of
the rules into Prolog facts and consulting them, the interesting association rules
could be selected by suitable queries from the maximal non-redundant rules.

5.1 Preparing the Data: Creating and Duplicating the Table

We start with a given Xml-file in the format of [35]; an example is given in
Listing 1. Here the main information is saved in the (sub-) elements set, game,
point and hit. These attributes will mostly form the columns of our table. For
a different file, a similar approach is conceivable.

68 D. Weidner et al.

Listing 1. Xml File of a Tennis Match.

<?xml version=’1.0’ encoding=’ISO -8859 -1’ ?>
<match >

<player id="A" name="Sampras"/>
<player id="B" name="Agassi"/>
<result >

<score set="1" player_A="6" player_B="3"/> ...
</result >
<match_facts >

<tournament >US Open 2002</tournament > ...
</match_facts >
<set id="1" score_A="5" score_B="3">

<game id="1" service="A" score_A="0" score_B="0">
<point id="1" top="B" service="A" score_A="0"

score_B="0" winner="A" error="0">
<hit id="1" hand="forehand" type="ground"

time="00 :00:42" x="0.17" y=" -12.07"/>
<hit id="2" hand="backhand" type="ground"

time="00 :00:44" x=" -0.49" y="5.89"/>
<hit id="3" hand="backhand" type="ground"

time="00 :00:46" x=" -3.92" y=" -3.42"/>
<hit id="4" hand="forehand" type="ground"

time="00 :00:48" x="3.56" y="2.06"/>
</point > ...

</game> ...
</set> ...

</match >

This file is transformed into a relational table, see Fig. 4.

Fig. 4. Part of the initial relational table for the tennis data.

As said in Sect. 4, we do not consider exact values. In our tennis data we
saved coordinates where the ball hits the ground. At this point we transform
this information and create a tessellation of the court in N × M tiles (regions),
since an exact spot will not be hit twice and so the probability of this coordinates
are nearly zero. It can both be useful to combine x- and y-coordinates to one
attribute or to consider them separately. In Fig. 5, we illustrate the regions: for

Finding Maximal Non-redundant Association Rules in Tennis Data 69

Fig. 5. Tessellation of a tennis court.

example the green tiles 1_1 and 4_2 inside the court or the red tile 0_1 outside
the court, where a service can be take place. Figure 6 shows a spatio-temporal
table, where the derived attributes Ix_1, Iy_1, Ix_2 and Iy_2 give the values
for the tiles. Another issue is the optimal number of intervals in both x- and
y-directions. This is also discussed in Subsect. 5.4.

Next, we create the spatio-temporal table, by duplicating part of the table
of Fig. 4. Here, we save the information for a hit and the next hit, if there is one
for this point. This means, that if a point has a hit order 1-2-3, then we have
the rows of hit pairs (1, 2) and (2, 3) . In the resulting rows, all attributes are
saved. But, since not all information is useful, we omit some which might not
be interesting for the data mining process; from Listing 1: we omit set, game,
top, service, score_A, score_B; also attributes for the spatio-temporal data,
namely type_{1,2}, time_{1,2}, x_{1,2}, y_{1,2}, are omitted, too. Thus,
we obtain the table of Fig. 6. Here the red boxes show the spatio-temporal data.
Note that the first attribute hit stands for hit pairs; for example in the fourth
point with the hits 1-2-3-4-5, we get the four hit pairs (1, 2), (2, 3), (3, 4) and
(4, 5) (see the blue boxes).

This transformation could be modified, such that we combine triples of hit.
Also different tessellations with different x- and y- intervals lead to different
association rules. The modification of the table may be supported by a domain
expert. In future work, we plan to involve some knowledge at this point.

70 D. Weidner et al.

Fig. 6. Part of the spatio-temporal tennis data. (Color figure online)

5.2 From Table to Association Rules

The input file tennis.arff of the data mining tool Weka describes the
attributes, their domain and the rows of the table. This file is created after the
selection and extraction step, i.e. the spatio-temporal database is transformed to
this file. The other additional parameters -N 4000 and -C 0.5 in the Weka call
given in Listing 2 denote the number of required association rules (here 4000)
and the minimum confidence (here 0.5), respectively; their default values would
be 10 and 0.9.

Listing 2. Shell Command to Call Weka.

java -cp ./weka.jar weka.associations.Apriori -t
tennis.arff -N 4000 -C 0.5 -M 0.05 > rules

We call this shell command via the built-in predicate unix/1 of Swi-Prolog to
create the output text file rules shown in Listing 3. Weka sorts the association
rules r by the confidence conf (r) and stops once the number N of required rules
is reached. Behind the antecedent of a rule L ⇒ R, freq(L) is given, and behind
the consequent, freq(L ∪ R) is given.

Listing 3. Fragment of the Output File from Weka.

Apriori
=======
Minimum support: 0.02 (18 instances)
Minimum metric <confidence >: 0.05
Number of cycles performed: 20
Generated sets of large itemsets:
Size of set of large itemsets L(1): 20
Size of set of large itemsets L(2): 16
Best rules found:

1. Txy_1 =2_0 61 ==> Txy_2 =4_2 44 conf :(0.72)
2. Txy_1 =3_0 64 ==> Txy_2 =2_2 38 conf :(0.59)

Finding Maximal Non-redundant Association Rules in Tennis Data 71

11. Txy_1 =3_0 64 ==> Txy_2 =1_2 25 conf :(0.39)

3. Txy_1 =2_3 76 ==> Txy_2 =3_1 38 conf :(0.5)
4. Txy_1 =3_3 75 ==> Txy_2 =2_1 36 conf :(0.48)
5. Txy_1 =2_3 76 ==> Txy_2 =4_1 35 conf :(0.46)
6. Txy_1 =3_3 75 ==> Txy_2 =1_1 34 conf :(0.45)

14. Txy_1 =1_1 106 ==> Txy_2 =4_2 37 conf :(0.35)
18. Txy_1 =2_1 65 ==> Txy_2 =4_2 20 conf :(0.31)
28. Txy_1 =1_1 106 ==> Txy_2 =1_2 20 conf :(0.19)

10. Txy_1 =4_2 116 ==> Txy_2 =1_1 46 conf :(0.4)
12. Txy_1 =1_2 68 ==> Txy_2 =4_1 25 conf :(0.37)
16. Txy_1 =3_2 66 ==> Txy_2 =1_1 21 conf :(0.32)
19. Txy_1 =3_2 66 ==> Txy_2 =4_1 20 conf :(0.3)
21. Txy_1 =2_2 73 ==> Txy_2 =2_1 21 conf :(0.29)
24. Txy_1 =2_2 73 ==> Txy_2 =1_1 19 conf :(0.26)

...

The players in the file tennis.arff are Sampras (top) and Agassi (bottom).
From the 4000 best rules found, we show the fragment of the 16 rules that were
interesting for us, namely the rules with Txy_1 in the body and Txy_2 in the
head; the derived attributes Txy_1 and Txy_2 refer to the combination of the
derived tile attributes:Txy_i = A_B means Ix_i = A and Iy_i = B.

Services (Groups 1 and 2): The rules 1, 2 and 11 refer to services of Agassi
(Txy_1: left side 2_0; right side 3_0) to Sampras (Txy_2: backhand 4_2 and
2_2; forehand 1_2), while the rules 3–6 refer to services of Sampras (Txy_1:
right side 2_3; left side 3_3) to Agassi (Txy_2: backhand 3_1 and 1_1; fore-
hand 2_1 and 4_1).

Ground Hits (Groups 3 and 4): The rules 14, 18 and 28 describe how Agassi plays
his backhand balls (Txy_1: 1_1 and 2_1): he plays 35% cross to the extreme
backhand of Sampras (Txy_2=4_2 in rule 14), 31% cross to the extreme back-
hand of Sampras (Txy_2=4_2 in rule 18), and 19% longline to the forehand of
Sampras (Txy_2=1_2 in rule 28). The rules for Sampras are 10, 12, 16, 19, 21
and 24. It turns out that Sampras plays fewer longline balls, since the associ-
ation rules Txy_1=1_2 ==> Txy_2=1_1 and Txy_1=4_2 ==> Txy_2=4_1 are
not produced.

From the output file obtained by Weka, we create corresponding Prolog facts
for the computed association rules. Since an association rule has four character-
istic attributes, namely antecedent, consequent, support and the confidence, we
save them in addition to a unique identifier. In particular we get facts of the
form

association_rule(Id, Ant, Cons, Sup, Conf),

72 D. Weidner et al.

where Ant and Cons are lists that represent the itemsets. These facts are obtained
using the Prolog-based parsing and Xml processing utilities of Declare. After
loading them into the system, the user can query them in Prolog. Currently,
we are also experimenting with other programming languages like Python for
working with strings and text files.

5.3 From Facts to Maximal Non-redundant Rules

From the facts for the association rules, we compute the redundancy and sub-
sumption in Declare. Listing 4 defines in Prolog when the rule with the identifier
Id_1 is redundant because of the rule Id_2, and when the rule with Id_1 is
subsumed by the rule Id_2:

Listing 4. Definition of Redundant and Subsumed Rules in Declare.

redundant_association_rule(Id_1 , Id_2) :-
association_rule(Id_1 , Ant_1 , Cons_1 , _, _),
association_rule(Id_2 , Ant_2 , Cons_2 , _, 1),
Id_1 =\= Id_2 ,
subset(Ant_2 , Ant_1), subset(Cons_1 , Cons_2).

subsumed_association_rule(Id_1 , Id_2) :-
association_rule(Id_1 , Ant_1 , Cons_1 , Sup_1 , Conf_1),
association_rule(Id_2 , Ant_2 , Cons_2 , Sup_2 , Conf_2),
Id_1 =\= Id_2 , Sup_2 > Sup_1 , Conf_2 > Conf_1 ,
subset(Ant_2 , Ant_1), subset(Cons_1 , Cons_2).

In Subect. 5.5, we test many parameters and compare them with the number
of maximal non-redundant association rules, for example, whether it has an
impact on the number of maximal non-redundant association rules if we choose
a dense or coarse tessellation. Nevertheless it is an advanced task for the domain
expert to select the rules, which are useful for trainers or players. Here, domain
knowledge has to be included.

5.4 Manual Workflow for Domain Experts

The domain expert had to experiment with different sets of attributes and dif-
ferent tessellations. Unfortunately, the interesting association rules were not the
ones with a high confidence or support.

If too few association rules were required in the call to Weka, then no inter-
esting results were obtained, since only rules with a high confidence or sup-
port were produced. If more association rules were required, then the user was
overwhelmed by the result, and interesting association rules had to be selected
suitably with queries; e.g. only the association rules with the derived attribute
Txy_1 in the head and Txy_2 in the body were selected in Declare, c.f. Listing 5.
These derived attributes Txy_1 and Txy_2 had been added to denote the tiles
of a pair of successive hits.

Finding Maximal Non-redundant Association Rules in Tennis Data 73

Listing 5. Selection of Suitable Association Rules in Declare.

tennis_association_rules_filter (Rules_1 , Rules_2) :-
findall(Rule ,

(member(Rule , Rules_1),
Rule = association_rule(_, Ant , Cons , _, _),
member(’Txy_1 ’:_, Ant),
member(’Txy_2 ’:_, Cons)),

Rules),
sort(Rules , Rules_2).

Although Txy_i = A_B is equivalent to the combination of Ix_i = A and
Iy_i = B, no interesting results had been produced, when Ix_i and Iy_i were
in the set of input attributes (for i=1,2). Only after introducing the new, derived
attributes Txy_i and excluding Ix_i and Iy_i from the input attributes, inter-
esting association rules could be found.

After many attempts without interesting results, the parameters N = 4
and M = 2 were detected to produce a tessellation resulting in useful asso-
ciation rules. If Txy_i, Ix_i and Iy_i were in the set of input attributes and
in the selected association rules, then further subsumption rules could be used
to reflect the equivalence of Txy_i = A_B and Ix_i = A, Iy_i = B. E.g., in an
association rule, the conjunction Txy_i = A_B, Ix_i = A could be reduced to
Txy_i = A_B.

During the case study, which included a domain expert that was also a Prolog
expert, a collection of useful Prolog operations for transforming the input relation
with the tennis data (selecting attributes, adding additional derived attributes)
and for selecting suitable produced association rules has been developed and
implemented in Declare. In the future, we are planning to automatize the iterative
process of searching for suitable transformations of the input relation, applying
useful tessellations and selecting a subset of the produced association rules; thus,
we would like to refine our currently presented manual workflow to an iterative
and automatic workflow for declarative data mining.

5.5 Experimental Results

In the following, some experiments and their results are discussed. Concerning
the subsumption and the redundancy of association rules, we first compare the
number of maximal non-redundant rules with the maximal number of rules and
the minimum confidence in the Apriori algorithm of Weka. Then, we take a look
at the time the process costs us. As a last example, we check whether different
tessellations lead to different association rules or not.

Table 1 shows that the 4 × 2-tessellation leads to a small (and so manageable)
number of rules together with our definitions of redundancy and subsumption.
In the case of 7500 or 10000 rules, we had to reduce the minimum confidence
to 0.4 and 0.2, respectively, because otherwise we would not find 7500 or 10000
rules at all. Our definition of pruning decreases the number of association rules

74 D. Weidner et al.

massively. Despite of the 10000 required rules and 0.2 minimum confidence case,
in all other cases the percentage of maximal non-redundant rules among all rules
is less than 10%.

Table 1. Number of required association rules, minimum confidence, Number of max-
imal non-redundant association rules (MNR rules)

Required rules Minimum confidence MNR rules

1000 0.5 61
5000 0.5 354
7500 0.4 640

10000 0.2 1297
1000 1.0 11
5000 1.0 12
7500 1.0 12

10000 1.0 12

In a second test, we have compared how much time it costs to create max-
imal non-redundant rules, see Table 2, where MNR Rules, stands for maximal
non-redundant association rules. Here we can see that creating maximal non-
redundant rules – and so the whole iteration – is very fast, and the main problem
is the evaluation.

Table 2. Time experimental results.

Required rules MNR rules Time

25 7 0.4 s
50 10 0.4 s
100 10 0.5 s
200 54 0.5 s
1.000 61 1 s
2.000 19 1.2 s
10.000 457 9.6 s

For testing the effect of the tessellation on the number of maximal non-
redundant rules – i.e. for finding parameters leading to a lower number of rules –
we choose a maximal number of required rules of 5000 and a minimum confidence
of 0.5. Then we get the result of Table 3. We can see, that the number of rules
varies only a little bit. This shows that a domain expert is very helpful to evaluate
the result, since the final number of maximal non-redundant association rules is

Finding Maximal Non-redundant Association Rules in Tennis Data 75

not really effected by the tessellation; a computer scientist does not know the
right parameters in the first place.

Table 3. Relationship of tessellation and maximal non-redundant association rules. N
and M is the number of x and y intervals, respectively.

N M MNR rules

2 4 354
2 6 202
4 4 298
4 6 308
4 8 267
6 8 238

Summarizing, we have manually tested many different parameters for
required rules, minimum confidence and the tessellations. We have also seen
that the process is very fast, such that evaluation is the main issue to autom-
atize to create a fast framework. In the future, we would like to automatize
the whole process of searching for suitable parameters for convincing association
rules, which can be used as initial parameters in further experiments. This will
increase our experience about parameters leading to good results.

5.6 Future Work on Data Mining for Tennis Data

In the following, we will give an overview about some ideas which we want to
explore in the future in the tennis domain; these ideas may then confirm the
results of Subsect. 5.5. There are many different interesting questions which we
want to analyze and solve in the future with our data mining workflow.

Temporal Data Analysis of Different Matches. It will be very interesting to find
out if and how a player changes his playing style; we can consider many different
matches in different seasons. Then we can create a spatio-temporal database to
explore the players’ way of playing. Maybe different dates in the season will give
different association rules, and therefore we conclude information we do not get
by looking at one game per data mining workflow. Then, we can make predictions
of how the next game will look like, and a tennis trainer could prepare his player
to prevail against his opponent.

As a special case, it is very interesting how one tennis player performs in
different matches against the same opponent. In this case we take a look on a
sequence of tennis matches of the same two players.

Influence of the Court Surface on the Players. During a tennis season, the players
compete on different types of surfaces; four main of them are clay, grass, hard
and carpet courts. All of them have their own characteristics and properties, that

76 D. Weidner et al.

playing on different surfaces lead to different styles of playing. The international
tennis federation (ITF) classifies the courts into the one of five pace settings.
For analyzing how different surfaces effect the players, we need different matches
from a player, which are close together. So matches only have to differ in the
surface to make a statement.

Classification of the Players by their Style of Playing. This last new approach
can be seen as a classification by association rules. On the basis of the resulting
association rules, we want to classify a player’s style: if an association rule L1 ⇒
R1 appears, then we have a player of style 1, and if there is in addition an
association rule L2 ⇒ R2, then it is a player of style 2. This approach is very
interesting, because it uses two data mining methods in one process. First, we
need association rules, and then we classify the players due to this rules into
classes of styles.

6 Conclusions

In this paper, we have introduced new definitions of redundant and subsumed
association rules, respectively. With these definitions, we have discussed a data
mining process. In a case study with spatio-temporal tennis data, the defini-
tions have proven useful and led to results, which improve the results based on
association rule mining with the standard Apriori algorithm.

In the future, we are considering to use logic programming (e.g. Prolog,
Datalog and answer set programming) for guiding an automatized data mining
process. The handling of the symbolic data (relations, deduction or association
rules) can be done nicely in logic programming. In particular, we are planning
to automatize parts of the data mining workflow given in Fig. 2 to decide on
suitable parameters for the next iteration based on an analysis of the previously
derived association rules.

We will also consider other pattern mining approaches, such as, e.g., subgroup
discovery [4,38].

Finally, we might extend the subsumption and redundancy theory for asso-
ciation rules, e.g., by combining computed rules to new rules.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD Conference
on Management of Data, Washington D.C., vol. 22, pp. 207–216. ACM (1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceed-
ings of the 20th VLDB Conference, Santiago de Chile, pp. 487–499 (1994)

3. Antunes, C.M., Oliveira, A.L.: Temporal data mining: an overview. In: KDD Work-
shop on Temporal Data Mining, vol. 1, pp. 1–13 (2001)

4. Atzmueller, M.: Subgroup discovery. WIREs DMKD 5(1), 35–49 (2015)

Finding Maximal Non-redundant Association Rules in Tennis Data 77

5. Atzmueller, M., Seipel, D.: Declarative specification of ontological domain knowl-
edge for descriptive data mining. In: Proceedings of the International Conference
on Applications of Declarative Programming and Knowledge Management (INAP),
pp. 158–170 (2007)

6. Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining minimal
non-redundant association rules using frequent closed itemsets. In: Lloyd, J., et al.
(eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44957-4_65

7. Battaglia, P.W., et al.: Relational Inductive Biases, Deep Learning, and Graph
Networks. arXiv preprint arXiv:1806.01261 (2018)

8. Baumgart, M.: Erkennung von Spielstand, Schlagposition und Spielertrajektorien
beim Tennis. Master Thesis, University of Würzburg (2019)

9. Bayardo Jr., R.J., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in
large, dense databases. Data Min. Knowl. Discov. 4(2–3), 217–240 (2000). https://
doi.org/10.1023/A:1009895914772

10. Boulicaut, J.-F.: Condensed representations for data mining. In: Encyclopedia of
Data Warehousing and Mining, pp. 207–211. Idea Group (2005)

11. Bratko, I.: Prolog Programming for Artificial Intelligence, 4th edn. Addison-Wesley
Longman, Boston (2011)

12. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing associa-
tion rules to correlations. In: Proceedings of the ACM Conference on Management
of Data (SIGMOD), pp. 265–276 (1997)

13. Clocksin, W., Mellish, C.S.: Programming in Prolog. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-642-55481-0

14. Cristofor, L., Simovici, D.: Generating an informative cover for association rules.
In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp.
597–613 (2002)

15. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases. AI Mag. 17(3), 37–54 (1996)

16. Fournier-Viger, P., Tseng, V.S.: Mining top-k non-redundant association rules. In:
Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS (LNAI), vol.
7661, pp. 31–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
34624-8_4

17. Fournier-Viger, P., Tseng, V.S.: TNS: mining top-k non-redundant sequential rules.
In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp.
164–166. ACM (2013)

18. Gebser, M., Guyet, T., Quiniou, R., Romero, J., Schaub, T.: Knowledge-based
sequence mining with ASP. In: 5th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 8–15 (2016)

19. Goertzel, B.: Perception processing for general intelligence: bridging the symbol-
ic/subsymbolic gap. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS
(LNAI), vol. 7716, pp. 79–88. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35506-6_9

20. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Proceedings of ACM SIGMOD International Conference on Management of
Data, pp. 1–12. ACM Press (2000)

21. Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measures of Interest,
vol. 638. Springer (1999)

22. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining -
a general survey and comparison. SIGKDD Explor. 2(1), 58–64 (2000)

https://doi.org/10.1007/3-540-44957-4_65
http://arxiv.org/abs/1806.01261
https://doi.org/10.1023/A:1009895914772
https://doi.org/10.1023/A:1009895914772
https://doi.org/10.1007/978-3-642-55481-0
https://doi.org/10.1007/978-3-642-34624-8_4
https://doi.org/10.1007/978-3-642-34624-8_4
https://doi.org/10.1007/978-3-642-35506-6_9
https://doi.org/10.1007/978-3-642-35506-6_9

78 D. Weidner et al.

23. Kotsiantis, S., Kanellopoulos, D.: Association rules mining: a recent overview.
GESTS Int. Trans. Comput. Sci. Eng. 32(1), 71–82 (2006)

24. Mansingh, G., Osei-Bryson, K.-M., Reichgelt, H.: Using ontologies to facilitate
post-processing of association rules by domain experts. Inf. Sci. 181(3), 419–434
(2011)

25. Marinica, C., Guillet, F.: Knowledge-based interactive postmining of association
rules using ontologies. IEEE Trans. Knowl. Data Eng. 22(6), 784–797 (2010)

26. Marinica, C., Guillet, F., Briand, H.: Post-processing of discovered association
rules using ontologies. In: 2008 IEEE International Conference on Data Mining
Workshops, pp. 126–133. IEEE (2008)

27. McMillan, C., Mozer, M.C., Smolensky, P.: Rule induction through integrated sym-
bolic and subsymbolic processing. In: Advances in Neural Information Processing
Systems, vol. 4, pp. 969–976 (1992)

28. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-49257-7_25

29. Seipel, D.: Declare - A Declarative Toolkit for Knowledge-Based Systems and
Logic Programming. http://www1.pub.informatik.uni-wuerzburg.de/databases/
research.html

30. Seipel, D.: Processing XML-documents in Prolog. In: Workshop on Logic Program-
ming, WLP 2002 (2002)

31. Seipel, D.: Analyse von Tennismatches am Beispiel des Finales der US Open 2002:
Pete Sampras - Andre Agassi (2004)

32. Seipel, D.: Advanced Databases. Lecture Notes of a Course at the University of
Würzburg (since 2015)

33. Smolensky, P.: Connectionist AI, symbolic AI, and the brain. Artif. Intell. Rev.
1(2), 95–109 (1987). https://doi.org/10.1007/BF00130011

34. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with Titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

35. Wehner, J.: Verwaltung und Analyse von Zeitreihen zu Videosequenzen. Diploma
Thesis, University of Würzburg (2003)

36. Wielemaker, J.: SWI-Prolog Reference Manual 7.6. Technical report (2017)
37. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools with Java

Implementations. Morgan Kaufmann, Burlington (2000)
38. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In:

Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9_108

39. Zaki, M.J.: Generating non-redundant association rules. In: 6th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 34–43
(2000)

40. Zhao, H.: Post-Mining of Association Rules: Techniques for Effective Knowledge
Extraction. Information Science Reference, Hershey (2009)

https://doi.org/10.1007/3-540-49257-7_25
https://doi.org/10.1007/3-540-49257-7_25
http://www1.pub.informatik.uni-wuerzburg.de/databases/research.html
http://www1.pub.informatik.uni-wuerzburg.de/databases/research.html
https://doi.org/10.1007/BF00130011
https://doi.org/10.1007/3-540-63223-9_108

From Textual Information Sources
to Linked Data in the Agatha Project

Paulo Quaresma , Vitor Beires Nogueira(B) , Kashyap Raiyani ,
Roy Bayot , and Teresa Gonçalves

LISP - Laboratory of Informatics, Systems and Parallelism,
Universidade de Évora, Evora, Portugal
{pq,vbn,kshyp,rkbayot,tcg}@uevora.pt

Abstract. Automatic reasoning about textual information is a challeng-
ing task in modern Natural Language Processing (NLP) systems. In this
work we describe our proposal for representing and reasoning about Por-
tuguese documents by means of Linked Data like ontologies and thesauri.
Our approach resorts to a specialized pipeline of natural language pro-
cessing (part-of-speech tagger, named entity recognition, semantic role
labeling) to populate an ontology for the domain of criminal investiga-
tions. The provided architecture and ontology are language independent.
Although some of the NLP modules are language dependent, they can
be built using adequate AI methodologies.

Keywords: Linked data · Ontology · Natural Language Processing ·
Events

1 Introduction

The automatic identification, extraction and representation of the information
conveyed in texts is a key task nowadays. In fact, this research topic is increasing
its relevance with the exponential growth of social networks and the need to have
tools that are able to automatically process them [10].

Some of the domains where it is more important to be able to perform this
kind of action are the juridical and legal ones. Effectively, it is crucial to have
the capability to analyse open access text sources, like social nets (Twitter and
Facebook, for instance), blogs, online newspapers, and to be able to extract the
relevant information and represent it in a knowledge base, allowing posterior
inferences and reasoning.

In the context of this work, we will present results of the R&D project
Agatha1, where we developed a pipeline of processes that analyses texts (in
Portuguese, Spanish, or English) and is able to populate a specialized ontology
[16] (related to criminal law) for the representation of events, depicted in such

1 http://www.agatha-osi.com/en/.

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 79–88, 2020.
https://doi.org/10.1007/978-3-030-46714-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_5&domain=pdf
http://orcid.org/0000-0002-5086-059X
http://orcid.org/0000-0002-0793-0003
http://orcid.org/0000-0002-6166-2038
http://orcid.org/0000-0002-1290-0239
http://orcid.org/0000-0002-1323-0249
http://www.agatha-osi.com/en/
https://doi.org/10.1007/978-3-030-46714-2_5

80 P. Quaresma et al.

texts. Events are represented by objects having associated actions, agents, ele-
ments, places and time. After having populated the event ontology, we have an
automatic process linking the identified entities to external referents, creating,
this way, a linked data knowledge base.

It is important to point out that, having the text information represented
in an ontology allows us to perform complex queries and inferences, which can
detect patterns of typical criminal actions.

Another axe of innovation in this research is the development, for the Por-
tuguese language, of a pipeline of Natural Language Processing (NLP) pro-
cesses, that allows us to fully process sentences and represent their content in
an ontology. Although there are several tools for the processing of the Por-
tuguese language, the combination of all these steps in a integrated tool is a new
contribution.

Moreover, we have already explored other related research path, namely
author profiling [18], aggression identification [17] and hate-speech detection [20]
over social media, plus statute law retrieval and entailment for Japanese [21].

The remainder of this paper is organized as follows: Sect. 2 describes our pro-
posed architecture together with the Portuguese modules for its computational
processing. Section 3 discusses different design options and Sect. 4 provides our
conclusions together with some pointers for future work.

2 Framework for Processing Portuguese Text

The framework for processing Portuguese texts is depicted in Fig. 1, which illus-
trates how relevant pieces of information are extracted from the text. Namely,
input files (Portuguese texts) go through a series of modules: part-of-speech
tagging, named entity recognition, dependency parsing, semantic role labeling,
subject-verb-object triple extraction, and lexicon matching.

The main goal of all the modules except lexicon matching is to identify events
given in the text. These events are then used to populate an ontology.

The lexicon matching, on the other hand, was created to link words that are
found in the text source with the data available not only on the Eurovoc [2]
thesaurus but also on the EU’s terminology database IATE [6] (see Sect. 2.7 for
details).

Most of these modules are deeply related and are detailed in the subsequent
subsections.

2.1 Part-Of-Speech Tagging

Part-of-speech tagging happens after language detection. It labels each word
with a tag that indicates its syntactic role in the sentence. For instance, a word
could be a noun, verb, adjective or adverb (or other syntactic tag). We used
the Freeling [13] library to provide the tags. This library resorts to a Hidden
Markov Model as described by Brants [11]. The end result is a tag for each word
as described by the EAGLES tagset2.
2 https://talp-upc.gitbook.io/freeling-4-0-user-manual/tagsets/tagset-pt.

https://talp-upc.gitbook.io/freeling-4-0-user-manual/tagsets/tagset-pt

From Textual Information Sources to Linked Data in the Agatha Project 81

Fig. 1. System overview.

2.2 Named Entity Recognition

We use the named entity recognition module after part-of-speech tagging. This
module labels each part of the sentence into different categories such as “PER-
SON”, “LOCATION”, “ORGANIZATION”. We also used the Freeling to label
the named entities and the details of the algorithm are shown in the paper by
Carreras et al. [14]. Aside from the three aforementioned categories, we also
extracted “DATE/TIME” and “CURRENCY” values by looking at the part-of-
speech tags: date/time words have a tag of “W”, while currencies have “Zm”.

2.3 Dependency Parsing

Dependency parsing involves tagging a word based on different features to indi-
cate if it is dependent on another word. The Freeling library also has dependency
parsing models for Portuguese. Since we wanted to build a SRL (Semantic Role
Labeling) module on top of the dependency parser and the current released ver-
sion of the Freeling does not have an SRL module for Portuguese, we trained a
different Portuguese dependency parsing model that was compatible (in terms
of used tags) with the available annotated.

We used the dataset from System-T [7], which has SRL tags, as well as,
the other preceding tags. It was necessary to do some pre-processing and tag
mapping in order to make it viable to train a Portuguese model.

82 P. Quaresma et al.

We made 589 tag conversions over 14 different categories. The breakdown of
tag conversions per category is given by Table 1. These rules can be further seen
in the corresponding Github repository [1]. The modified training and devel-
opment datasets are also available on another Github repository [9] for further
research and comparison purposes.

Table 1. Training and development - tag set details.

Category Number of tags

NOUN 20

VERB 101

PROPN 39

PRON 121

ADJ 70

DET 62

AUX 149

ADP 3

NUM 1

PUNCT 18

CCONJ 1

SCONJ 1

INTJ 1

ADV 2

2.4 Semantic Role Labeling

We execute the SRL (Semantic Role Labeling) module after obtaining the word
dependencies. This module aims at giving a semantic role to a syntactic con-
stituent of a sentence. The semantic role is always in relation to a verb and
these roles could either be an actor, object, time, or location, which are then
tagged as A0, A1, AM-TMP, AM-LOC, respectively. We trained a model for this
module on top of the dependency parser described in the previous subsection
using the modified dataset from System-T. The module also needs co-reference
resolution to work and, to achieve this, we adapted the Spanish co-reference
modules for Portuguese, changing the words that are equivalent (in total, we
changed 253 words).

2.5 SVO Extraction

From the yield of the SRL (Semantic Role Labeling) module, our framework
can distinguish actors, actions, places, time and objects from the sentences. Uti-
lizing this extracted data, we can distinguish subject-verb-object (SVO) triples

From Textual Information Sources to Linked Data in the Agatha Project 83

using the SVO extraction algorithm [19]. The algorithm finds, for each sen-
tence, the verb and the tuples related to that verb using Semantic Role Labeling
(Subsect. 2.4). After the extraction of SVOs from texts, they are inserted into a
specific event ontology (see Sect. 2.7 for the creation of a knowledge base).

2.6 Lexicon Matching

The sole purpose of this module is to find important terms and/or concepts from
the extracted text. To do this, we use the Eurovoc [2], a multilingual thesaurus
that was developed for and by the European Union. The Euvovoc has 21 fields
and each field is further divided into a variable number of micro-thesauri. Here,
due to the application of this work in the Agatha project (mentioned in Sect. 1),
we use the terms of the criminal law [3] micro-thesaurus. Further, we classified
each term of the criminal law micro-thesaurus into four categories namely, actor,
event, place and object. The term classification can be seen in Table 2.

Table 2. Eurovoc criminal law - term classification.

Classification # Terms

Actor 9

Event 133

Place 22

Object 3

After the classification of these terms, we implemented two different matching
algorithms between the extracted words and the criminal law micro-thesaurus
terms. The first is an exact string match wherein lowercase equivalents of the
words of the input sentences are matched exactly with lower case equivalents of
the predefined terms. The second matching algorithm uses Levenshtein distance,
allowing some near-matches that are close enough to the target term.

2.7 Linked Data: Ontology, Thesaurus and Terminology

In the computer science field, an ontology can be defined has:

– a formal specification of a conceptualization;
– shared vocabulary and taxonomy which models a domain with the definition

of objects and/or concepts and their properties and relations;
– the representation of entities, ideas, and events, along with their properties

and relations, according to a system of categories.

A knowledge base is one kind of repository typically used to store answers
to questions or solutions to problems enabling rapid search, retrieval, and reuse,
either by an ontology or directly by those requesting support. For a more detailed
description of ontologies and knowledge bases, see for instance [15].

84 P. Quaresma et al.

For designing the ontology adequate for our goals, we referred to the Simple
Event Model (SEM) [22] as a baseline model. A pictorial representation of this
ontology is given in Fig. 2.

Fig. 2. The Simple Event Model [22]

Considering the criminal law domain case study, we made a few changes to
the original Simple Event Model ontology. The entities of the model are:

– Actor: person involved with event
– Place: location of the event
– Time: time of the event
– Object: that actor act upon
– Organization: organization involved with event
– Currency: money involved with event

The proposed ontology was designed in such a manner that it can incorporate
information extracted from multiple documents. In this context, suppose that the
source of documents is a police department, where each document is under the
hood of a particular case/crime; furthermore, a single case can have documents
from multiple languages. Now, considering case 1 has 100 documents and case 2
has 100 documents then there is not only a connection among the documents of a
single case but rather among all the cases with all the combined 200 documents.
In this way, the proposed method is able to produce a detailed and well-connected
knowledge base.

Figure 3 shows the proposed ontology, which, in our evaluation procedure,
was populated with 3121 events entries from 51 documents.

Protege [8] tool was used for creating the ontology and GraphDB [5] for pop-
ulating & querying the data. GraphDB is an enterprise-ready Semantic Graph

From Textual Information Sources to Linked Data in the Agatha Project 85

Fig. 3. Ontology diagram.

Database, compliant with W3C Standards. Semantic Graph Databases (also
called RDF triplestores) provide the core infrastructure for solutions where mod-
eling agility, data integration, relationship exploration, and cross-enterprise data
publishing and consumption are important. GraphDB has a SPARQL (SQL-like
query language) interface for RDF graph databases with the following types:

– SELECT: returns tabular results
– CONSTRUCT: creates a new RDF graph based on query results
– ASK: returns “YES”, if the query has a solution, otherwise “NO”
– DESCRIBE: returns RDF data about a resource. This is useful when the

RDF data structure in the data source is not known
– INSERT: inserts triples into a graph
– DELETE: deletes triples from a graph

Furthermore, we have extended the ontology [4] to connect the extracted
terms with the Eurovoc criminal law (discussed in Subsect. 2.6) and IATE [6]
terms. IATE (Interactive Terminology for Europe) is the EU’s general termi-
nology database and its aim is to provide a web-based infrastructure for all
EU terminology resources, enhancing the availability and standardization of the
information. The extended ontology has a number of sub-classes for Actor, Event,
Object and Place classes detailed in Table 3. This extension could be regarded
has an extra Level (4) of Fig. 3 where Level 3 classes are mapped to Level 4
sub-classes.

86 P. Quaresma et al.

Table 3. Extended ontology [4] - sub-classes.

Class No. of Terms

sub-classes

Actor 6 Victim, Inmate, Prisoner, Hostage, Hijacker, Accomplice

Event 64 Slavery, Trade, Tax, Evasion, Spoofing, Slander, Shady,
Violence, Sexual, Scam, Repentance, Rehabilitation,
Refoulement, Rape, Punishment, Ponzi, Piracy, Aggression,
Phishing, Trafficking, Pardon, Harassment, Mobbing,
Misdemeanour, Libel, Trading, Imprisonment, Restraint,
Theft, Arrest, Homicide, Hit-and-run, Hijacking, Forgery,
Forfeiture, Fraud, Fight, Falsification, Extradition,
Expulsion, Elimination, Offence, Drug, Detention,
Deprivation, Deportation, Defamation, Penalty, Negligence,
Execution, Counterfeit, Corruption, Confiscation,
Conditional, Con, Order, Complicity, Campaign, Bully,
Breach, Banish, Aggravate, Crime, Abduction

Object 3 Fine, Invoice, Bill

Place 11 Facility, Institution, Center, Confinement, Reformatory
Penitentiary, Penal, Prison, Jail, Isolation, Banco

3 Discussion

We have defined a major design principle for our architecture: it should be
modular and not rely on human made rules allowing, as much as possible, its
independence from a specific language. In this way, its potential application to
another language would be easier, simply by changing the modules or the models
of specific modules. In fact, we have explored the use of already existing modules
and adopted and integrated several of these tools into our pipeline.

It is important to point out that, as far as we know, there is no integrated
architecture supporting the full processing pipeline for the Portuguese language.
We evaluated several systems like Rembrandt [12] or LinguaKit: the former only
has the initial steps of our proposal (until NER) and the later performed worse
than our system.

This framework, developed within the context of the Agatha project
(described in Sect. 1) has the full processing pipeline for Portuguese texts: it
receives sentences as input and outputs ontological information: (a) first per-
forms all NLP typical tasks until semantic role labelling; (b) then, it extracts
subject-verb-object triples; (c) and, then, it performs ontology matching pro-
cedures. As a final result, the obtained output is inserted into a specialized
ontology.

We are aware that each of the architecture modules can, and should, be
improved but our main goal was the creation of a full working text processing
pipeline for the Portuguese language.

From Textual Information Sources to Linked Data in the Agatha Project 87

4 Conclusions and Future Work

Besides the end–to–end NLP pipeline for the Portuguese language, the other
main contributions of this work can be summarized as follows:

– Development of an ontology for the criminal law domain;
– Alignment of the Eurovoc thesaurus and IATE terminology with the ontology

created;
– Representation of the extracted events from texts in the linked knowledge

base defined.

The obtained results support our claim that the proposed system can be used
as a base tool for information extraction for the Portuguese language. Being
composed by several modules, each of them with a high level of complexity, it
is certain that our approach can be improved and an overall better performance
can be achieved.

As future work we intend, not only to continue improving the individual
modules, but also plan to extend this work to the:

– automatic creation of event timelines;
– incorporation in the knowledge base of information obtained from videos or

pictures describing scenes relevant to criminal investigations.

Acknowledgments. The authors would like to thank COMPETE 2020, PORTUGAL
2020 Program, the European Union, and ALENTEJO 2020 for supporting this research
as part of Agatha Project SI & IDT number 18022 (Intelligent analysis system of open
of sources information for surveillance/crime control). The authors would also like to
thank LISP - Laboratory of Informatics, Systems and Parallelism.

References

1. Automated event extraction model for multiple linked portuguese documents.
https://github.com/kraiyani/Automated-Event-Extraction-Model-for-Multiple-
Linked-Portuguese-Documents/blob/master/Universal to eagle tagset.xlsx. Acc-
essed 06 May 2019

2. Eu vocabularies. https://publications.europa.eu/en/web/eu-vocabularies. Acces-
sed 06 May 2019

3. Eu vocabularies, thesauri, 1216 criminal law. https://publications.europa.eu/en/
web/eu-vocabularies/th-concept-scheme/-/resource/eurovoc/100180?target=Bro
wse. Accessed 06 May 2019

4. Extended ontology. http://owlgred.lumii.lv/online visualization/e9fh. Accessed 25
June 2019

5. Graphdb. http://graphdb.ontotext.com/. Accessed 06 May 2019
6. Iate (interactive terminology for Europe). https://iate.europa.eu/home. Accessed

06 May 2019
7. Portuguese universal propositions. https://github.com/System-T/UniversalPropos

itions/tree/master/UP Portuguese-Bosque. Accessed 06 May 2019
8. Protege. https://protege.stanford.edu/. Accessed 06 May 2019

https://github.com/kraiyani/Automated-Event-Extraction-Model-for-Multiple-Linked-Portuguese-Documents/blob/master/Universal_to_eagle_tagset.xlsx
https://github.com/kraiyani/Automated-Event-Extraction-Model-for-Multiple-Linked-Portuguese-Documents/blob/master/Universal_to_eagle_tagset.xlsx
https://publications.europa.eu/en/web/eu-vocabularies
https://publications.europa.eu/en/web/eu-vocabularies/th-concept-scheme/-/resource/eurovoc/100180?target=Browse
https://publications.europa.eu/en/web/eu-vocabularies/th-concept-scheme/-/resource/eurovoc/100180?target=Browse
https://publications.europa.eu/en/web/eu-vocabularies/th-concept-scheme/-/resource/eurovoc/100180?target=Browse
http://owlgred.lumii.lv/online_visualization/e9fh
http://graphdb.ontotext.com/
https://iate.europa.eu/home
https://github.com/System-T/UniversalPropositions/tree/master/UP_Portuguese-Bosque
https://github.com/System-T/UniversalPropositions/tree/master/UP_Portuguese-Bosque
https://protege.stanford.edu/

88 P. Quaresma et al.

9. Training and development dataset for automated event extraction model for multi-
ple linked portuguese documents. https://github.com/kraiyani/Automated-Event-
Extraction-Model-for-Multiple-Linked-Portuguese-Documents. Accessed 06 May
2019

10. Amato, F., Moscato, V., Picariello, A., Sperl̀ı, G.: Extreme events management
using multimedia social networks. Future Gener. Comp. Syst. 94, 444–452 (2019).
https://doi.org/10.1016/j.future.2018.11.035

11. Brants, T.: TnT: a statistical part-of-speech tagger. In: Proceedings of the Sixth
Conference on Applied Natural Language Processing, pp. 224–231. Association for
Computational Linguistics (2000)

12. Cardoso, N.: Rembrandt - a named-entity recognition framework. In: Proceed-
ings of the Eighth International Conference on Language Resources and Evalu-
ation (LREC-2012), pp. 1240–1243. European Language Resources Association
(ELRA), Istanbul, May 2012. http://www.lrec-conf.org/proceedings/lrec2012/
pdf/409 Paper.pdf

13. Carreras, X., Chao, I., Padró, L., Padro, M.: Freeling: an open-source suite of lan-
guage analyzers. In: Proceedings of the 4th International Conference on Language
Resources and Evaluation (LREC 2004) (2004)

14. Carreras, X., Màrquez, L., Padró, L.: A simple named entity extractor using
AdaBoost. In: Proceedings of the Seventh Conference on Natural Language Learn-
ing at HLT-NAACL 2003 (2003)

15. Guarino, N., Giaretta, P.: Ontologies and knowledge bases: towards a terminolog-
ical clarification. In: Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing, pp. 25–32. IOS Press (1995)

16. Guarino, N., Oberle, D., Staab, S.: What Is an Ontology?, pp. 1–17, May 2009
17. Raiyani, K., Gonçalves, T., Quaresma, P., Nogueira, V.B.: Fully connected neural

network with advance preprocessor to identify aggression over Facebook and Twit-
ter. In: Proceedings of the First Workshop on Trolling, Aggression and Cyberbul-
lying (TRAC-2018), pp. 28–41. Association for Computational Linguistics (2018).
http://aclweb.org/anthology/W18-4404

18. Raiyani, K., Gonçalves, T., Quaresma, P., Nogueira, V.B.: Multi-language neu-
ral network model with advance preprocessor for gender classification over social
media: notebook for PAN at CLEF 2018. In: Working Notes of CLEF 2018 - Con-
ference and Labs of the Evaluation Forum, Avignon, France, September 10–14,
2018. (2018). http://ceur-ws.org/Vol-2125/paper 105.pdf

19. Raiyani, K., Gonçalves, T., Quaresma, P., Nogueira, V.B.: Automated event extrac-
tion model for linked Portuguese documents. In: Proceedings of Text2Story – Sec-
ond Workshop on Narrative Extraction from Texts Co-located with 41th European
Conference on Information Retrieval (ECIR 2019), Cologne, Germany, 14 April
(2019). http://ceur-ws.org/Vol-2342/paper2.pdf

20. Raiyani, K., Gonçalves, T., Quaresma, P., Nogueira, V.B.: Vista.ue at semeval-
2019 task 5: single multilingual hate speech detection model. In: Proceedings of
the 13th International Workshop on Semantic Evaluation (SemEval-2019), pp. 520–
524. Association for Computational Linguistics (2019)

21. Raiyani, K., Quaresma, P.: Keyword & machine learning based Japanese statute
law retrieval and entailment task at COLIEE-2019. In: Proceedings of Competi-
tion on Legal Information Retrieval and Entailment Workshop (COLIEE 2019) in
Association with the 17th International Conference on Artificial Intelligence and
Law 2019 (ICAIL 2019). Easychair (2019)

22. Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and
use of the simple event model (SEM). Web Semant. Sci. Serv. Agents World Wide
Web 9(2), 128–136 (2011)

https://github.com/kraiyani/Automated-Event-Extraction-Model-for-Multiple-Linked-Portuguese-Documents
https://github.com/kraiyani/Automated-Event-Extraction-Model-for-Multiple-Linked-Portuguese-Documents
https://doi.org/10.1016/j.future.2018.11.035
http://www.lrec-conf.org/proceedings/lrec2012/pdf/409_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/409_Paper.pdf
http://aclweb.org/anthology/W18-4404
http://ceur-ws.org/Vol-2125/paper_105.pdf
http://ceur-ws.org/Vol-2342/paper2.pdf

Allen’s Interval Algebra
Makes the Difference

Tomi Janhunen1,2(B) and Michael Sioutis1

1 Department of Computer Science, Aalto University, Espoo, Finland
{tomi.janhunen,michael.sioutis}@aalto.fi

2 Computing Sciences Unit, Tampere University, Tampere, Finland

Abstract. Allen’s Interval Algebra constitutes a framework for reason-
ing about temporal information in a qualitative manner. In particu-
lar, it uses intervals, i.e., pairs of endpoints, on the timeline to repre-
sent entities corresponding to actions, events, or tasks, and binary rela-
tions such as precedes and overlaps to encode the possible configurations
between those entities. Allen’s calculus has found its way in many aca-
demic and industrial applications that involve, most commonly, planning
and scheduling, temporal databases, and healthcare. In this paper, we
present a novel encoding of Interval Algebra using answer-set program-
ming (ASP) extended by difference constraints, i.e., the fragment abbre-
viated as ASP(DL), and demonstrate its performance via a preliminary
experimental evaluation. Although our ASP encoding is presented in the
case of Allen’s calculus for the sake of clarity, we suggest that analogous
encodings can be devised for other point-based calculi, too.

Keywords: Answer set programming · Difference constraints ·
Qualitative constraints · Spatial and Temporal Reasoning · Symbolic
AI

1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a Symbolic AI app-
roach that deals with the fundamental cognitive concepts of space and time
in a qualitative, human-like, manner [10,20]. As an illustration, the first con-
straint language to deal with time on a qualitative level was proposed by Allen
in [1], called Interval Algebra. Allen wanted to define a framework for reason-
ing about time in the context of natural language processing that would be
reliable and efficient enough for reasoning about temporal information in a qual-
itative manner. In particular, Interval Algebra uses intervals on the timeline to
represent entities corresponding to actions, events, or tasks, and relations such
as precedes and overlaps to encode the possible configurations between those
entities. Interval Algebra has become one of the most well-known qualitative
constraint languages, due to its use for representing and reasoning about tem-
poral information in various applications. More specifically, typical applications

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 89–98, 2020.
https://doi.org/10.1007/978-3-030-46714-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_6&domain=pdf
http://orcid.org/0000-0002-2029-7708
http://orcid.org/0000-0001-7562-2443
https://doi.org/10.1007/978-3-030-46714-2_6

90 T. Janhunen and M. Sioutis

of Interval Algebra involve planning and scheduling [2,3,9,26,29], natural lan-
guage processing [8,33], temporal databases [7,32], multimedia databases [22],
molecular biology [13] (e.g., arrangement of DNA segments/intervals along a
linear chain involves particular temporal-like problems [4]), workflow [23], and
healthcare [18,25,30].

Answer-set programming (ASP) is a declarative programming paradigm
[6,17] designed for solving computationally hard search and optimization prob-
lems from the first two levels of polynomial hierarchy. Typically, one encodes the
solutions of a given problem as a logic program and then uses an answer-set solver
for their computation. The idea of representing Allen’s Interval Algebra in terms
of rules is not new; existing encodings can be found in [5,19]. However, these
encodings do not scale well when the number of intervals is increased beyond
20 [5, Section 6]. The likely culprit for decreasing performance is the explicit rep-
resentation of compositions of base relations, which tends to cause cubic blow-ups
when instantiating the encoding for a particular problem instance. In this paper,
we circumvent such negative effects by using an appropriate extension of ASP
to encode the underlying constraints of Allen’s calculus. The crucial primitive
is provided by difference logic (DL) [28] featuring difference constraints of form
x−y ≤ k. The respective fragment of ASP is known as ASP(DL) [16] and it has
been efficiently implemented within the clingo solver family. When encoding
Allen’s calculus in ASP(DL), the transitive effects of relation composition can be
delegated to propagators implementing difference constraints. Hence, no blow-
ups result when instantiating the ASP rules for a particular constraint network
and the resulting ground logic program remains linear in network size.

The rest of this article is organized as follows. The basic notions of qualita-
tive constraint networks (QCNs) and, in particular, Allen’s Interval Algebra are
first recalled in Sect. 2. Then, difference constrains are introduced in Sect. 3 and
we also show how they are available in ASP, i.e., the fragment abbreviated as
ASP(DL). The actual encodings of QCNs in ASP(DL) are presented in Sect. 4.
The preliminary experimental evaluation of the resulting encodings takes place
in Sect. 5. Finally, we present our conclusions and future directions in Sect. 6.

2 Preliminaries

A binary qualitative constraint language is based on a finite set B of jointly
exhaustive and pairwise disjoint relations, called the set of base relations [21],
that is defined over an infinite domain D. These base relations represent definite
knowledge between two entities with respect to the level of granularity provided
by the domain D; indefinite knowledge can be specified by a union of possible base
relations, and is represented by the set containing them. The set B contains the
identity relation Id, and is closed under the converse operation (−1). The total set
of relations 2B is equipped with the usual set-theoretic operations of union and
intersection, the converse operation, and the weak composition operation denoted
by � [21]. For all r ∈ 2B, r−1 =

⋃{b−1 | b ∈ r}. The weak composition (�) of
two base relations b, b′ ∈ B is defined as the smallest (i.e., strongest) relation

Allen’s Interval Algebra Makes the Difference 91

x1 x2

x3x4

{p, m}

B
{d, s, fi} {oi}

{oi, m}

{pi, e}

(a) A satisfiable QCN N

x1

x2

x3

x4

(b) A solution σ of N

Fig. 1. Examples of QCN terminology using Interval Algebra; symbols p, e, m, o, d, s,
and f correspond to the base relations precedes, equals, meets, overlaps, during, starts,
and finishes respectively, with ·i denoting the converse of · (note that ei = e)

r ∈ 2B that includes b ◦ b′, or, formally, b � b′={b′′ ∈ B | b′′∩(b ◦ b′) �= ∅}, where
b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈ b ∧ (z, y) ∈ b′} is the (true)
composition of b and b′. For all r, r′ ∈ 2B, r � r′ =

⋃{b � b′ | b ∈ r, b′ ∈ r′}.
As an illustration, consider the well-known qualitative temporal constraint

language of Interval Algebra (IA), introduced by Allen in [1]. The domain D
of Interval Algebra is defined to be the set of intervals on the line of rational
numbers, i.e., D = {x = (x−, x+) ∈ Q×Q | x− < x+}. Each base relation can be
defined by appropriately constraining the endpoints of the two intervals at hand,
which yields a total of 13 base relations comprising the set B = {e, p, pi, m, mi,
o, oi, s, si, d, di, f , fi}; these symbols are explained in the caption of Fig. 1.
For example, d is defined as d = {(x, y) ∈ D × D | x− > y− and x+ < y+}. The
identity relation Id of Interval Algebra is e and its converse is again e.

Definition 1. A qualitative constraint network (QCN) is a tuple (V,C) where:

– V = {v1, . . . , vn} is a non-empty finite set of variables, each representing an
entity of an infinite domain D;

– and C is a mapping C : V × V → 2B such that C(v, v) = {Id} for all v ∈ V
and C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V .

An example of a QCN of IA is shown in Fig. 1a; for clarity, neither converse
relations nor Id loops are mentioned or shown in the figure.

Given a QCN N = (V,C), a solution of N is a mapping σ : V → D such that
∀(u, v) ∈ V × V , ∃b ∈ C(u, v) so that (σ(u), σ(v)) ∈ b (see Fig. 1b).

3 Difference Constraints for Answer-Set Programming

We assume that the reader is already familiar with the basics of ASP (cf. [6,17])
and merely concentrate on extending ASP in terms of difference constraints.
Such a constraint is an expression of the form x − y ≤ k where x and y are
variables and k is a constant. Intuitively, the difference of x and y should be

92 T. Janhunen and M. Sioutis

less than or equal to k. Potential domains for x and y are integers and reals,
for instance. The domain is usually determined by the application and, for the
purposes of this paper, the set of integers is assumed in the sequel. The given
form of difference constraints can be taken as a normal form for such constraints.
However, with a little bit of elaboration some other and very natural constraints
concerning x and y become expressible. While x ≤ y is equivalent to x − y ≤ 0,
the strict difference x < y translates into x−y ≤ −1. To state the equality x = y,
two difference constraints emerge, since x = y ⇐⇒ x − y ≤ 0 and y − x ≤ 0.

Difference constraints can be implemented very efficiently, since they enable
a linear-time check for unsatisfiability. Given a set S of such constraints, one can
use the Bellman-Ford algorithm to check if S has a loop of variables x1, . . . , xn

where xn = x1 along with difference constraints x2 − x1 ≤ d1, . . . , xn − xn−1 ≤
dn−1 such that

∑n−1
i=1 di < 0. When carrying out the check for satisfiability, it

is not necessary to find concrete values for the variables in S. This is in perfect
line with the idea of reasoning about QCNs on a qualitative, symbolic, level.

Example 1. The set of difference constraints S1 = {y − x ≤ 1, z − y ≤ 1, x − z ≤
−3} is unsatisfiable, since 1 + 1 − 3 < 0. However, if the second difference
constraint is revised to z − y ≤ 2, the resulting set of difference constraints S2

is satisfiable, as witnessed by an assignment with x = 0, y = 1, and z = 3. �

More formally, an assignment τ is a mapping from variables to integers and
a difference constraint x − y ≤ k is satisfied by τ , denoted τ |= x − y ≤ k, if
τ(x) − τ(y) ≤ k. Also, we write τ |= S for a set of difference constraints S, if
τ |= x − y ≤ k for every constraint x − y ≤ k in S. If τ |= S, we also say that
S is satisfiable and that τ is a solution to S. Moreover, it is worth pointing out
that if τ |= S then also τ ′ |= S where τ ′(x) = τ(x)+k for some integer k. Thus
S has infinitely many solutions if it has at least one solution. If S is satisfiable,
it is easy to compute one concrete solution by using a particular variable z as a
point of reference via the intuitive assignment τ(z) = 0.1

Difference logic (DL) extends classical propositional logic in the satisfiability
modulo theories (SMT) framework [28]. A propositional formula φ in DL is
formed in terms of usual atomic propositions a and difference constraints x −
y ≤ k. A model of φ is a pair 〈ν, τ〉 such that (i) ν, τ |= a iff ν(a) = �, (ii)
ν, τ |= x − y ≤ k iff τ |= x − y ≤ k, and (iii) ν, τ |= φ by the recursive rules
of propositional logic. Difference logic lends itself for applications where integer
variables are needed in addition to Boolean ones. Thus, it serves as a potential
target formalism when it comes to implementing ASP via translations [14,15].

The rule-based language of ASP can be generalized in an analogous way by
using difference constraints as additional conditions in rules. The required theory
extension of the clingo solver is documented in [12]. For instance, a difference
constraint x − y ≤ 5 can be expressed as &diff{x-y} <= 5 where x and y are
constants in the syntax of ASP but understood as integer variables of difference
logic. However, using such fixed names for variables is often too restrictive from
1 This distinguished variable z can be used as a name for 0 in other difference con-

straints. Then, e.g., x − z ≤ k and z − x ≤ −k express together that x = k.

Allen’s Interval Algebra Makes the Difference 93

Listing 1.1. Choice of Base Relations

1 % Domains

2 var(X) :- brel(X,Y,R).

3 var(Y) :- brel(X,Y,R).

4 arc(X,Y) :- brel(X,Y,R).

5
6 % Intervals for every variable X: sp(X) <= ep(X)

7 &diff{ sp(X)-ep(X) } <= 0 :- var(X).

8
9 % Choose base relations

10 { chosen(X,Y,R): brel(X,Y,R) } = 1 :- arc(X,Y).

Listing 1.2. Difference Constraints Expressing Base Relations

1 % Relation eq(X,Y): sp(X) = sp(Y) and ep(X) = ep(Y)

2 &diff{ sp(X)-sp(Y) } <= 0 :- chosen(X,Y,eq).

3 &diff{ sp(Y)-sp(X) } <= 0 :- chosen(X,Y,eq).

4 &diff{ ep(X)-ep(Y) } <= 0 :- chosen(X,Y,eq).

5 &diff{ ep(Y)-ep(X) } <= 0 :- chosen(X,Y,eq).

6
7 % Relation during(X,Y): sp(Y) < sp(X) and ep(X) < ep(Y)

8 &diff{ sp(Y)-sp(X) } <= -1 :- chosen(X,Y,d).

9 &diff{ ep(X)-ep(Y) } <= -1 :- chosen(X,Y,d).

application perspective. It is possible to use function symbols to introduce collec-
tions of integer variables for a particular application. For instance, if the arcs of
a digraph are represented by the predicate arc/2, we could introduce a variable
w(X,Y) for the weight for each pair of first-order variables X and Y satisfying
arc(X,Y). Recall that free variables in rules are universally quantified in ASP.
More details about the theory extension corresponding to difference logic can be
found in [16] whereas its implementation is known as the clingo-dl solver.2

4 Encoding Temporal Networks in ASP(DL)

In what follows, we present our novel encoding of temporal networks using ASP
extended by difference constraints. To encode base relations from B in a system-
atic fashion, we introduce constants eq, p, pi, m, mi, o, oi, s, si, d, di, f, and
fi as names for the base relations (see again Sect. 2). The structure of networks
themselves is described in terms of predicate brel/3 whose first two arguments
are variables from the network and the third argument is one possible base rela-
tion for the pair of variables in question. Then, for instance, the base relations
associated with variables x1 and x2 in Fig. 1a could be encoded in terms of facts

2 https://potassco.org/labs/clingodl/.

https://potassco.org/labs/clingodl/

94 T. Janhunen and M. Sioutis

brel(1,2,p) and brel(1,2,m). Given any such collection of facts, some basic
inferences are made using the ASP rules in Listing 1.1. First, the rules in lines
2–3 extract the identities of variables for later reference. Secondly, the rule in
line 4 defines the arc relation for the underlying digraph of the network. Given
these pieces of information, we are ready to formalize the solutions of the tem-
poral network. For each interval X, we introduce integer variables sp(X) and
ep(X) to capture the respective starting and ending points of the interval. The
relative order of theses points is then determined using the difference constraint
expressed by the rule in line 7. Interestingly, there is no need to constrain the
domain of time points otherwise, e.g., by specifying lower and upper bounds;
arbitrary integer values are assumed. In addition, the choice rule in line 10 picks
exactly one base relation for each arc of the constraint network.

The satisfaction of the chosen base relations is enforced by further difference
constraints, which are going to be detailed next. Rather than covering all 13, we
picked two representatives for more detailed discussion (see Listing 1.2). In case
of equality, the starting and ending points of intervals X and Y must coincide.
The difference constraints introduced in lines 2–3, whenever activated by the
satisfaction of chosen(X,Y,eq), enforce the equality of the starting points and
those of lines 4–5 cover the respective ending points. The case of the during
relation is simpler since the relationships of starting/ending points are strict and
only two rules are needed for a pair of intervals X and Y. The rule in line 8 orders
the starting points. The rule in line 9 puts the ending points in the opposite
order. The encodings for the remaining base relations are obtained similarly.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20

Runtime in Seconds vs. d=2..20

Maximum
Average
Median

Minimum

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20

Runtime in Seconds vs. d=2..20

Maximum
Average
Median

Minimum

Fig. 2. Runtime scaling: checking satisfiability vs computing intersection of solutions

5 Experimental Evaluation

We generated QCN instances using model A(n = 100, 2 ≤ d ≤ 20, s = 6.5) [27],
where n denotes the number of variables, d the average degree, and s the aver-
age size (number of base relations) of a constraint of a given instance. For each
d ∈ {2, . . . , 20}, we report runtimes based on 10 random instances because the
runtime distribution is heavy tailed, i.e., the severity of outliers encountered

Allen’s Interval Algebra Makes the Difference 95

increases along the number of instances generated. As a consequence, the max-
imum and average runtimes tend to infinity as can be seen from the plots in
Fig. 2. The graphs have been smoothened using gnuplot’s option bezier.

Table 1. Median runtimes for IA instances with 100 variables

d 9 10 11 12 13 14 15 16 17 18 19

Satisfiability 4.7 34.9 60.9 163.0 180.7 543.8 157.3 38.0 32.5 86.5 56.4

Backbone 24.7 67.8 210.0 483.5 658.8 1488.4 223.0 382.9 64.6 44.1 55.2

The graph on the left shows the runtime scaling for checking the existence of a
solution, and the graph on the right concerns the computation of the intersection
of solutions, which amounts to the identification of backbones for QCNs [31].
The clingo-dl solver supports the computation of the intersection as one of
its command-line options. It is also worth noting a phase transition around
the value d = 14 where instances turn from satisfiable to unsatisfiable, which
affects the complexity of reasoning. Moreover, due to outliers, it is perhaps more
informative to check the median runtimes as given in Table 1. It is clear that
intersection of solutions computation is more demanding, but the difference is
not tremendous. Moreover, to contrast the performance of our encoding with
respect to [5], we note that only 10% of 190 instances exceeded the timeout of
300 s (this same timeout was used in that work). In addition, the experiments of
[5] covered instances from 20 to 50 variables only and the encodings were already
performing poorly by the time 50 variables were considered. On the other hand,
our encoding still underperforms with respect to native QSTR tools and, at
least as far as satisfiability checking is concerned, the state-of-the-art qualitative
reasoner gqr [11] tackles each of the 190 instances in a few seconds on average.
To the best of our knowledge, there is no native QSTR tool for calculating
intersection of solutions and in this way the advanced reasoning modes of the
clingo-dl solver enable new kinds of inference and for free, since the same
encoding can be used and no further implementation work is incurred.

Our second experiment studies the scalability of our ASP(DL) encoding when
the number of variables is gradually increased from 50 to 90. The results are
illustrated in Fig. 3. The plots on the left illustrate the scaling of the backbone
computation, i.e., the intersection of solutions. It turned out that this kind of
reasoning is easier than computing the union of solutions, also known as the
minimum labeling problem [24], as depicted by the graphs on the right. The
random instances used so far are relatively easy, and for that reason we take
into consideration a modified scheme H(n, 2 ≤ d ≤ 20) [27] that yields much
harder network instances. The difference with respect to model A used above
is that constraints are picked from a set of relations expressible in 3-CNF when
transformed into first-order formulae. As a consequence, we are only able to
analyze instances up to n = 50 variables in reasonable time. Table 2 shows
the performance difference when computing the intersection and the union of
solutions. In most cases, the intersection of solutions can be computed faster.

96 T. Janhunen and M. Sioutis

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20

Runtime in Seconds vs. d=2..20

90
80
70
60
50

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20

Runtime in Seconds vs. d=2..20

90
80
70
60
50

Fig. 3. Runtime scaling (median): computing intersection of solutions vs computing
union of solutions

Although d = 15 is kind of an exception, its significance is diminished by the
most demanding instances encountered: 8 477 vs 24 199 s spent on computing
the intersection and the union, respectively.

Table 2. Median runtimes for IA instances with 50 variables

d 9 10 11 12 13 14 15 16 17 18 19

Intersection 4.8 8.7 19.8 50.8 122.3 940.7 1738.0 758.5 384.4 258.0 155.9

Union 25.6 46.9 105.5 298.5 7226.3 5636.5 749.8 1585.5 438.9 93.8 169.3

6 Conclusion and Future Work

In this paper, we encoded qualitative constraint networks (QCNs) based on
Allen’s Interval Algebra in ASP(DL), which is an extension of answer set pro-
gramming (ASP) by difference constraints. Due to native implementation of such
constraints as propagators in the clingo-dl solver, the transitive effects of rela-
tion composition are avoided when it comes to the space complexity of represent-
ing QCN instances. This contrasts with existing encodings in pure ASP [5,19]
and favors computational performance, which rises to a new level due to our
ASP(DL) encoding. As regards other positive signs, it seems that the presented
encoding scales for other reasoning modes as well. Since ASP encodings are
highly elaboration tolerant, we expect that it is relatively easy to modify and
extend our basic encodings for other reasoning tasks as well. As regards future
work, we aim to investigate more thoroughly the performance characteristics of
our ASP(DL) encoding, and to use it for establishing collaborative frameworks
among ASP-based and native QSTR tools.

Acknowledgments. This research was partially supported by the project Ethical AI
for the Governance of Society (ETAIROS, grant #327352) funded by the Academy of
Finland.

Allen’s Interval Algebra Makes the Difference 97

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26,
832–843 (1983)

2. Allen, J.F.: Planning as temporal reasoning. In: KR (1991)
3. Allen, J.F., Koomen, J.A.G.M.: Planning using a temporal world model. In: IJCAI

(1983)
4. Benzer, S.: On the topology of the genetic fine structure. Proc. Natl. Acad. Sci.

U.S.A. 45, 1607–1620 (1959)
5. Brenton, C., Faber, W., Batsakis, S.: Answer set programming for qualitative

spatio-temporal reasoning: methods and experiments. In: ICLP (Technical Com-
munications) (2016)

6. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54, 92–103 (2011)

7. Chen, C.X., Zaniolo, C.: Universal temporal data languages. In: DDLP (1998)
8. Denis, P., Muller, P.: Predicting globally-coherent temporal structures from texts

via endpoint inference and graph decomposition. In: IJCAI (2011)
9. Dorn, J.: Dependable reactive event-oriented planning. Data Knowl. Eng. 16, 27–

49 (1995)
10. Dylla, F., et al.: A survey of qualitative spatial and temporal calculi: algebraic and

computational properties. ACM Comput. Surv. 50, 7:1–7:39 (2017)
11. Gantner, Z., Westphal, M., Wölfl, S.: GQR-A fast reasoner for binary qualitative

constraint calculi. In: AAAI Workshop on Spatial and Temporal Reasoning (2008)
12. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:

Theory solving made easy with clingo 5. In: ICLP (Technical Communications)
(2016)

13. Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time:
a graph-theoretic approach. J. ACM 40, 1108–1133 (1993)

14. Janhunen, T.: Cross-translating answer set programs using the ASPTOOLS col-
lection. Künstliche Intelligenz 32, 183–184 (2018)

15. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing stable models via reductions
to difference logic. In: LPNMR (2009)

16. Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., Schaub, T.:
Clingo goes linear constraints over reals and integers. TPLP 17, 872–888 (2017)

17. Janhunen, T., Niemelä, I.: The answer set programming paradigm. AI Mag. 37,
13–24 (2016)

18. Kostakis, O., Papapetrou, P.: On searching and indexing sequences of temporal
intervals. Data Min. Knowl. Disc. 31(3), 809–850 (2017). https://doi.org/10.1007/
s10618-016-0489-3

19. Li, J.J.: Qualitative spatial and temporal reasoning with answer set programming.
In: ICTAI (2012)

20. Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley, Hoboken (2013)
21. Ligozat, G., Renz, J.: What is a qualitative calculus? A general framework. In:

PRICAI (2004)
22. Little, T.D.C., Ghafoor, A.: Interval-based conceptual models for time-dependent

multimedia data. IEEE Trans. Knowl. Data Eng. 5, 551–563 (1993)
23. Lu, R., Sadiq, S.W., Padmanabhan, V., Governatori, G.: Using a temporal con-

straint network for business process execution. In: ADC (2006)
24. Montanari, U.: Networks of constraints: fundamental properties and applications

to picture processing. Inf. Sci. 7, 95–132 (1974)

https://doi.org/10.1007/s10618-016-0489-3
https://doi.org/10.1007/s10618-016-0489-3

98 T. Janhunen and M. Sioutis

25. Moskovitch, R., Shahar, Y.: Classification of multivariate time series via tempo-
ral abstraction and time intervals mining. Knowl. Inf. Syst. 45(1), 35–74 (2014).
https://doi.org/10.1007/s10115-014-0784-5

26. Mudrová, L., Hawes, N.: Task scheduling for mobile robots using interval algebra.
In: ICRA (2015)

27. Nebel, B.: Solving hard qualitative temporal reasoning problems: evaluating the
efficiency of using the ORD-Horn class. Constraints 1, 175–190 (1997)

28. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and
its application to difference logic. In: CAV (2005)

29. Pelavin, R.N., Allen, J.F.: A model for concurrent actions having temporal extent.
In: AAAI (1987)

30. Sioutis, M., Alirezaie, M., Renoux, J., Loutfi, A.: Towards a synergy of qualita-
tive spatio-temporal reasoning and smart environments for assisting the elderly at
home. In: IJCAI Workshop on Qualitative Reasoning (2017)

31. Sioutis, M., Janhunen, T.: Towards leveraging backdoors in qualitative constraint
networks. In: KI, pp. 308–315 (2019)

32. Snodgrass, R.T.: The temporal query language TQuel. ACM Trans. Database Syst.
12, 247–298 (1987)

33. Song, F., Cohen, R.: The interpretation of temporal relations in narrative. In:
IJCAI (1988)

https://doi.org/10.1007/s10115-014-0784-5

Exploring Properties of Icosoku
by Constraint Satisfaction Approach

Ke Liu(B) , Sven Löffler, and Petra Hofstedt

Department of Mathematics and Computer Science, MINT,
Brandenburg University of Technology Cottbus-Senftenberg,

Konrad-Wachsmann-Allee 5, 03044 Cottbus, Germany
{liuke,sven.loeffler,hofstedt}@b-tu.de

Abstract. Icosoku is a challenging and interesting puzzle that exhibits
highly symmetrical and combinatorial nature. In this paper, we pose the
questions derived from the puzzle, but with more difficulty and general-
ity. In addition, we also present a constraint programming model for the
proposed questions, which can provide the answers to our first two ques-
tions. The purpose of this paper is to share our preliminary result and
problems to encourage researchers in both group theory and constraint
communities to consider this topic further.

Keywords: Constraint programming · Group theory · Constraint
modelling · Icosoku

1 Introduction

Icosoku is a three-dimensional puzzle on a regular icosahedron block consisting
of 20 tiles and 12 pegs (see Fig. 1), where every vertex of a triangular tile has four
possible number of black dots {0, . . . , 3} and each peg takes on distinct values
from {1, . . . , 12}. To solve the puzzle, one needs to arrange the pegs and place
the tiles. A feasible solution of the puzzle is that the value of any peg on the
icosahedron is equal to the number of black dots surrounding itself. For example,
the numeral 12 is surrounded by 12 black dots in Fig. 1.

Fig. 1. An icosoku (Figure reproduced from Amazon.com.)

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 99–105, 2020.
https://doi.org/10.1007/978-3-030-46714-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_7&domain=pdf
http://orcid.org/0000-0002-5256-9253
https://www.amazon.com/Recent-Toys-IcoSoKu-Brainteaser-Puzzle-x/dp/B003AIKTPU
https://doi.org/10.1007/978-3-030-46714-2_7

100 K. Liu et al.

Fig. 2. The three symmetries of a triangular tile with values {1, 2, 3}. Here, we use
numbers to replace the black dots.

There exists 43 possible triangular tiles since each of the three vertices of a
triangle has four choices. However, because of the rotational symmetry, three
assignments for the vertices of a triangle might represent the same triangular
tile. For instance, we can rotate a tile about the triangle center by 120 and
240◦ in a clockwise direction, as shown in Fig. 2. Therefore, there are only 24
different types of triangular tiles after breaking these symmetries. The original
icosoku puzzle only uses 14 different types of triangular tiles and claims that any
arrangement of 12 pegs on the 12 vertices of the icosahedron can lead to a feasible
solution. But the questions raised by the icosoku are far more than solving
the puzzle itself. We believe that the icosoku is a proper research object for
both constraint programming and group theory because of its combinatorial and
symmetrical nature. And, thus, the following questions deserve to be explored:

1. Does there exist a feasible solution that the triangular tiles placed on the
faces of the icosahedron are pairwise distinct? That is to say, the value at
each vertex of the icosahedron is equal to the sum of values of the five vertices
of the five faces that meet at this vertex of the icosahedron. And moreover,
the 20 faces of the icosahedron are all different because of the values assigned
to the vertices of triangular faces. In this paper, we call this kind of feasible
solution all different triangular solution (ADTS).

2. Can any permutation of {1, . . . , 12} assigned to the 12 vertices of the icosa-
hedron lead to at least one ADTS?

3. Can any 20-combination from the 24 different types of triangular tiles lead
to an ADTS?

4. Is it possible to find a 20-combination from the 24 triangular tiles that can
produce a set of feasible solutions (ADTSs) which contains all the permuta-
tions of the set {1, . . . , 12} arranged on the 12 vertices of the icosahedron?

5. If the answer to the previous question is affirmative, how many such 20-
combinations are there?

6. How many non-isomorphic ADTSs are there if the ADTS exists?

In this paper, we present a constraint model that can answer the first two
questions and discuss the difficulty encountered when solving the other problems.
The rest of the paper is organized as follows. In Sect. 2, we give a brief intro-
duction to the constraint programming. Afterward, in Sect. 3, we describe our
constraint model. Then, we present the experimental results in Sect. 4. Finally,
we conclude in Sect. 5.

Exploring Properties of Icosoku by Constraint Satisfaction Approach 101

2 Preliminaries

In this section, we give some basic definitions and concepts of constraint pro-
gramming (CP) and the constraints relevant to the model of the icosoku puzzle.

The CP is a powerful technique to tackle combinatorial problems, gener-
ally NP-complete or NP-hard. A constraint satisfaction problem (CSP) can be
expressed as a triple 〈X,D,C〉, where X = {x1, . . . , xn} is a set of decision
variables, D = {D(x1), . . . , D(xn)} contains associated finite domains for each
variable in X, and C = {c1, . . . , ct} is a collection of constraints. Each con-
straint ci is a relation defined over a subset of X, and restricts the values that
can be simultaneously assigned to these variables. A solution of a CSP P is a
complete instantiation satisfying all constraints of the CSP P.

The allDifferent constraint is the most influential global constraint in con-
straint programming and widely implemented in almost every constraint solver,
such as Choco solver [7], Gecode [10], and JaCoP [4]. Formally, let Xa denote a
subset of variables of X, the allDifferent constraint, which acts on Xa, can be
defined as:

∀xi ∈ Xa∀xj ∈ Xa(xi �= xj)

The table constraint is another one of the most frequently-used constraints in
practice. For an ordered subset of variables Xo = {xi, . . . , xj} ⊆ X, a positive
(negative) table constraint defines that any solution of the CSP P must (not)
be explicitly assigned to a tuple in the tuples that consists of the allowed (disal-
lowed) combinations of values for Xo. For a given list of tuples T , we can state
the positive table constraint as:

{
(xi, . . . , xj) | xi ∈ D(xi), . . . , xj ∈ D(xj)

} ⊆ T

The scalar constraint1 is also a common global constraint, which is defined as
follows:

c1 ∗ xi + c2 ∗ xj + . . . + cn ∗ xk 	 sum

where (c1, c2, . . . , cn) is a collection of integer coefficients, (xi, xj , . . . , xk) and
sum are the variables on which the constraint restricts the relationship. The 	
is an operator in {=, <,>, �=,≤,≥}. Besides, the arithm constraint is used to
enforce relations between integer variables or between integer variables and inte-
ger values. For example, an integer value can be assigned to an integer variable
by using the arithm constraint. We refer to [1,5,9] for more comprehensive and
profound introduction to the CP.

3 The Constraint Programming Model

To solve the problem, we first should identify the decision variables for the CSP
model. Then we impose constraints on these variables based on the problem
1 This paper follows the naming convention of Choco solver. The other solvers might

use a different name for the same constraint. For instance, the scalar constraint is
called the linear and LinearInt constraint in Geode and JaCoP, respectively.

102 K. Liu et al.

definition. Focusing on the Icosoku since it has 12 vertices, a list of 12 integer
variables V = (v1, v2, . . . , v12) is used to represent these vertices, each of which
has domain 1..12. Since the set of values {1, . . . , 12} has to be assigned to the
12 vertices in an ADTS, the 12 integer variables must all take distinct values.
Therefore, (v1, v2, . . . , v12) must satisfy the allDifferent constraint, given by:

allDifferent(v1, v2, . . . , v12) (1)

Similarly, since there are 20 faces on a regular icosahedron, we can define
a 20×4 matrix F with integer variables for the 20 faces, where the first three
elements of each row represent the three vertices of a triangular face; and the
last element of each row stands for the corresponding type of the triangular tile
determined by values of the first three elements of that row. For this reason, the
domains of the first three columns and the last column of the matrix F are 0..3
and 1..24, respectively. The first question posed in the Introduction (Sect. 1)
asks whether or not a feasible solution with 20 different types of triangular tiles
exist. Hence, we can also introduce the allDifferent constraint to restrict that
the values taken by the last column of the matrix F are pairwise different, which
can be expressed by:

allDifferent(F [0, 3], F [1, 3], . . . , F [19, 3]) (2)

As mentioned before, only 24 distinct types of triangular tiles exist after
eliminating the symmetries. However, all combinations of values that can be
assigned to every row of the matrix F are 64 4 -tuples, each of which consists of
the first three values for a triangular face and the last value which indicates the
type of that face. For example, as we have shown in Fig. 2, assigning the following
values [(1, 2, 3), (3, 1, 2), (2, 3, 1)] to the three vertexes of a triangle in turn
results in the same triangular tile. Thus, the tuples [(1, 2, 3, 23), (3, 1, 2, 23),
(2, 3, 1, 23)] contain the same type value (Table 1). Because every Platonic solid
has a different number of faces, we do not present the algorithm that generates
all 64 tuples. Let Tfaces denote the 64 tuples. We utilize the table constraint

Table 1. A partial list of tuples. We do not list all 64 tuples due to the limited space.

∣
∣
∣
∣
∣
∣
∣

0 0 0 1

1 1 1 2

2 2 2 3

∣
∣
∣
∣
∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣
∣

0 0 2 7

0 2 0 7

2 0 0 7

∣
∣
∣
∣
∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣
∣

0 3 3 10

3 0 3 10

3 3 0 10

∣
∣
∣
∣
∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣
∣

1 2 3 23

3 1 2 23

2 3 1 23

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

3 2 1 24

2 1 3 24

1 3 2 24

∣
∣
∣
∣
∣
∣
∣

specified with Tfaces to limit possible combinations of values for each row of the
matrix F, which can be stated as:

I = {i ∈ Z| 0 ≤ i ≤ 19} , ∀i ∈ I(table(F [i, ∗], Tfaces)) (3)

Exploring Properties of Icosoku by Constraint Satisfaction Approach 103

where F [i, ∗] stands for a row in the matrix F. By using these 20 table con-
straints, we can associate the values at the vertices of a triangular face with
its corresponding type so that the Constraint (2) can restrict the number of
triangular types to be exactly 20.

The last property that an ADTS must satisfy is that the value assigned to
any vertex of the icosahedron must be equal to the sum of values assigned to
the vertices of the triangle surrounding this vertex of the icosahedron. To ensure
this property, we can impose the scalar constraints on the CP model, given by:

I = {i ∈ Z| 0 ≤ i ≤ 11} , ∀i ∈ I(scalar(Fsubset, coefficients,=, vi)) (4)

where Fsubset is a subset of the matrix F with cardinality five, coefficients is
an array with 5 ones, and vi denotes the decision variable for the vertices of
the icosahedron. Obviously, the Constraint (4) guarantees that

∑
Fsubset = vi

where Fsubset consists of the five vertices of the five triangular faces meeting at
vi. Please note that we do not explicitly specify the five elements in the Fsubset

because they depend on how the triangular faces and the variables representing
their vertices on the icosahedron are labelled in practice.

To partially break value symmetry [8], which preserves the solution with
regard to the permutation of values, we can set the first vertex in V to one.
Thus, we have the constraint:

arithm(v0,=, 1) (5)

In summary, Constraints (1), (2), (3), (4), and (5) form the model used to
answer the question 1 in the Introduction (Sect. 1). It is easy to calculate that
the total number of constraints and variables are 35 and 92, respectively.

4 Experiments

In this section, we present the experimental results that can answer the first
two questions posed in the Introduction. We implemented the model in the
Java library Choco 4.10.0 [7] running on JVM 11.0.2. All the experiments
were executed on a Linux laptop with Intel i7-3720QM 2.60 GHz CPU and
8 GB DDR3 memory. The results of our first experiment for obtaining the first
ADTS is summarized in Table 2. Besides, we specified the filtering algorithms FC
and GAC3rm+ for all the allDifferent and table constraints; and the search
strategy was set to the minDomLBSearch.

Table 2. Result for obtaining the first ADTS

Visited nodes Backtracks CPU time (ms)

48 1 32

In order to answer the second question in the Introduction (Sect. 1), we
conducted the experiment that exhaustively tests the possible permutations of
the set {1, . . . , 12} for the 12 vertices of the icosahedron by fixing the values of

104 K. Liu et al.

the V in each iteration. Moreover, to reduce the computational effort, we avoid
evaluating the symmetries that are generated by rotating about the vertex v0
of the icosahedron (see Fig. 3). Consequently, (12−1)!

5 permutations of the set
{1, . . . , 12} were tested since Constraint (5) fixes the value of v0 and four-fifths
of the symmetries are removed. The total CPU time is 7.03e5 s (8.13 days). Thus,
all permutations of {1, . . . , 12} arranged on the 12 vertices of the icosahedron
can lead to at least one ADTS.

v0

Fig. 3. The view from the top of the vertex v0 of the icosahedron

5 Conclusions and Future Work

By means of constraint programming approach, we have proved the existence of
the ADTS, and any permutation of {1 . . . 12} for the vertices of the icosahedron
can produce at least one ADTS. But the rest of questions posed in the Intro-
duction (Sect. 1) remain open to us. Even the third question requires non-trivial
efforts. Because when we enforce a set of 20 types of triangular, which is chosen
from the 24 triangular tiles, on the model, the upper bound of traversing the
entire search tree is 460 if we do not take account of constraint propagation.
Hence, to find the 20 different tiles whose corresponding ADTSs cover all the
permutations of {1 . . . 12} arranged on the vertices of the icosahedron (Question
4) is even more difficult.

As future work, we plan to employ parallel constraint solving to seek to
answer the rest of the questions. Furthermore, we believe that Question 4
(Sect. 1) requires a well-designed nogood recording mechanism to avoid explor-
ing the search space including the permutations of {1 . . . 12} already visited.
Finally, we propose that the icosoku problem can be a standard benchmark for
CSPLib [3], which is a library of test problems for constraint solvers. Because
we believe it has the advantages as an excellent CSP benchmark should have,
which are summarized as follows: (1) The constraints required by the CSP model
of the benchmark are widely implemented in the state-of-art constraint solvers.
(2) The benchmark can be readily generalized and scaled from easy instance to
difficult instances, e.g., increasing the number of golfers from 15 to 18 results in
the Social Golfer Problem [2] more difficult to be solved [6]. Indeed, the regu-
lar icosahedron has the highest number of faces among the five Platonic solids,
which limits its scalability to increase the difficulty of the problem. But the prob-
lem can be expanded to other polyhedra such as Kepler–Poinsot polyhedron or

Exploring Properties of Icosoku by Constraint Satisfaction Approach 105

higher dimensions (e.g., four-dimensional Platonic Solids). (3) The benchmark
does not rely on third party data (e.g., the Travelling Salesman Problem needs
maps of instances), which is more convenient to make comparisons.

Acknowledgment. We should like to thank our colleague Ekkehard Köhler for draw-
ing our attention to the icosoku problem.

References

1. Dechter, R.: Constraint Processing. Elsevier Morgan Kaufmann (2003). http://
www.elsevier.com/wps/find/bookdescription.agents/678024/description

2. Harvey, W.: CSPLib problem 010: social golfers problem (2002). http://www.
csplib.org/Problems/prob010. Accessed 28 Apr 2019

3. Jefferson, C., Akgün, Ö.: CSPLib: a problem library for constraints (1999). http://
www.csplib.org/. Accessed 28 Apr 2019

4. Kuchcinski, K., Szymanek, R.: JaCoP Documentation. Lund University (2017).
https://osolpro.atlassian.net/wiki/spaces/JACOP/pages/24248322/JaCoP+Over-
view

5. Lecoutre, C.: Constraint Networks: Techniques and Algorithms. Wiley, London
(2009)

6. Liu., K., Löffler., S., Hofstedt., P.: Solving the social golfers problems by constraint
programming in sequential and parallel. In: Proceedings of the 11th International
Conference on Agents and Artificial Intelligence - Volume 2: ICAART. INSTICC,
pp. 29–39. SciTePress (2019). https://doi.org/10.5220/0007252300290039

7. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. (2017). http://www.choco-solver.org

8. Puget, J.: Symmetry breaking revisited. Constraints 10(1), 23–46 (2005). https://
doi.org/10.1007/s10601-004-5306-8

9. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Program-
ming, Foundations of Artificial Intelligence, vol. 2. Elsevier (2006). http://www.
sciencedirect.com/science/bookseries/15746526/2

10. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode.
Gecode Team (2017). https://www.gecode.org/

http://www.elsevier.com/wps/find/bookdescription.agents/678024/description
http://www.elsevier.com/wps/find/bookdescription.agents/678024/description
http://www.csplib.org/Problems/prob010
http://www.csplib.org/Problems/prob010
http://www.csplib.org/
http://www.csplib.org/
https://osolpro.atlassian.net/wiki/spaces/JACOP/pages/24248322/JaCoP+Over-view
https://osolpro.atlassian.net/wiki/spaces/JACOP/pages/24248322/JaCoP+Over-view
https://doi.org/10.5220/0007252300290039
http://www.choco-solver.org
https://doi.org/10.1007/s10601-004-5306-8
https://doi.org/10.1007/s10601-004-5306-8
http://www.sciencedirect.com/science/bookseries/15746526/2
http://www.sciencedirect.com/science/bookseries/15746526/2
https://www.gecode.org/

The Regularization of Small
Sub-Constraint Satisfaction Problems

Sven Löffler(B), Ke Liu, and Petra Hofstedt

Department of Mathematics and Computer Science,
MINT, Programming Languages and Compiler Construction Group,

Brandenburg University of Technology Cottbus-Senftenberg,
Konrad-Wachsmann-Allee 5, 03044 Cottbus, Germany

{sven.loeffler,liuke,hofstedt}@b-tu.de

Abstract. This paper describes a new approach on optimization of con-
straint satisfaction problems (CSPs) by means of substituting sub-CSPs
with locally consistent regular membership constraints. The purpose of
this approach is to reduce the number of fails in the resolution process,
to improve the inferences made during search by the constraint solver
by strengthening constraint propagation, and to maintain the level of
propagation while reducing the cost of propagating the constraints. Our
experimental results show improvements in terms of the resolution speed
compared to the original CSPs and a competitiveness to the recent tabu-
lation approach [1,15]. Besides, our approach can be realized in a prepro-
cessing step, and therefore wouldn’t collide with redundancy constraints
or parallel computing if implemented.

Keywords: Constraint programming · CSP · Refinement ·
Optimizations · Regular membership constraint · Regular CSPs

1 Introduction

A CSP can be often described in several ways, each of which might consist of
different types and combinations of constraints, which leads to various statistical
results of the resolution, including the execution time, the number of fails, the
number of backtracks, the number of nodes etc. The reason for this is, that the
combination of constraints and their propagators have a significant impact on
the shape and the size of the search tree. Therefore, the diversity of models and
constraints for a given CSP offers us an opportunity to improve the resolution
process by using another model in which fewer fails occur during the resolution
process. Based on this idea, previous works show that the performance of a
constraint problem often can be improved by converting a sub-problem into a
single constraint [1–4,15].

In this paper, we propose an algorithm which substitutes parts of CSPs by
singleton, locally consistent constraints. In contrast to [15], the replacement is
based on the regular membership constraint instead of the table constraint. Since
c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 106–115, 2020.
https://doi.org/10.1007/978-3-030-46714-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-46714-2_8

The Regularization of Sub-CSPs 107

our algorithm can be applied at the pre-processing stage, other approaches which
accelerate the resolution process such as redundant modeling [6], parallel search
[21], or parallel consistency [12] can be used in combination with ours.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
necessary notions for the approach. In Sect. 3, the substitution of small sub-CSPs
with the regular membership constraint is explained. In Sect. 4, the benefit of
our regularization approach is shown in two case studies based on the Solitaire
Battleships Problem [9] and the Black Hole Problem [17]. Furthermore, we com-
pare our results with the tabulation approach presented in [15]. Finally, Sect. 5
concludes and proposes research directions for the future.

Remark 1. In this paper we will use the notion of a “regular constraint” synonym
for “regular membership constraint”.

2 Preliminaries

In this section, we introduce necessary definitions and methods for our regular-
ization approach. We consider CSPs which are defined in the following way:

CSP [7]. A constraint satisfaction problem (CSP) is defined as a 3-tuple P =
(X,D,C) with X = {x1, x2, . . . , xn} is a set of variables, D = {D1,D2, . . ., Dn}
is a set of finite domains where Di is the domain of xi and C = {c1, c2, . . . , cm}
is a set of primitive or global constraints covering between one and all variables
in X.

Additionally, we define a sub-CSP Psub as a part of a CSP P = (X,D,C)
which covers only a part of the constraints and their variables.

Sub-CSP. Let P = (X,D,C) be a CSP. For C ′ ⊆ C we define Psub = (X ′,D′, C ′)
such that X ′ =

⋃
c∈C′ scope(c) with corresponding domains D′ = {Di | xi ∈

X ′} ⊆ D, where the scope of a constraint c is defined as the set of variables
which are part of the constraint c [7].

After we defined CSPs and sub-CSPs, we need a measure for the size of such
a CSP or sub-CSP.

size(P). We define the maximal size size(P) of a CSP P = (X,D,C) as the
product of the cardinalities of the domains of the CSP P , see Eq. 1.

size(P) =
|X|∏

i=1

|Di| (1)

The regular constraint, its propagation [13,18,19] and deterministic finite
automatons (DFAs) [14] provide the basis of our approach. We briefly review
the notion of a deterministic finite automaton (DFA) and of the regular con-
straint.

DFA [14]. A deterministic finite automaton (DFA) is a quintuple M = (Q, Σ,
δ, q0, F), where Q is a finite set of states, Σ is the finite input alphabet, δ is
a transformation function Q × Σ → Q, q0 ∈ Q is the initial state, and F ⊆ Q

108 S. Löffler et al.

is the set of final or accepting states. A word w ∈ Σ∗ is accepted by M , i.e.
w ∈ L(M), if the corresponding DFA M with the input w stops in a final state
f ∈ F .

Regular Constraint [19]. Let M = (Q, Σ, δ, q0, F) be a DFA and let X =
{x1, x2, ..., xn} be a set of variables with D(xi) ⊆ Σ for 1 ≤ i ≤ n. Then

regular(X,M) = {(d1, ..., dn)|∀i di ∈ Di, d1 ◦ d2 ◦ ... ◦ dn ∈ L(M)}, (2)

i.e. every sequence d1...dn of values for x1, ..., xn must be a word of the regular
language recognized by the DFA M , where ◦ is the concatenation of two words.

3 Substitution of Constraints by Regular Constraints

Previous work [4] has shown that each CSP can be transformed into an equivalent
one with only one regular constraint (rCSP), theoretically. In this section, we
present a practical algorithm to transform the constraints of a sub-CSP Psub

of a given CSP P into a regular constraint. For the reason of effectiveness the
sub-CSP Psub should be much smaller than the original CSP P (size(Psub) �
size(P)).

It is the aim to detect and substitute such sub-CSPs, which are preferably
as big as possible but can be represented by a DFA which is as small as possible
at the same time. An algorithm to detect such sub-CSPs must be developed
in the future. Currently, we use the heuristics to find sub-CSPs given in [1].
Alternatively, an algorithm like Gottlobs hypertree decomposition [11] or Ke
Lius det-k-CP [16] can be used.

Our transformation algorithm obtains a sub-CSP Psub = (X ′,D′, C ′) from
CSP P = (X, D, C) as input, where C ′ ⊂ C, X ′ = {x1, . . . , xn} =

⋃
c∈C′

scope(c) ⊂ X, |X ′| � |X| and D′ = {D1, . . . , Dn} ⊂ D, where Di is the
domain of variable xi,∀i ∈ {1, 2, . . . , n}, and returns a regular constraint which is
equivalent to the constraints in C ′. Our regularization algorithm has two phases:

1. Solve the detected/given sub CSP Psub.
2. Transform all solutions S = {s1, s2, . . . , sk} of the sub-CSP Psub into a regular

constraint.

The first phase is obvious. Notice that the sub-CSP Psub should be much smaller
than the original CSP P , otherwise the solving step would be too time consum-
ing.

We continue with a description of the second phase. Let S = {s1, s2, . . . , sk}
be the set of all solutions of Psub calculated in step one. Every solution sj ,
j ∈ {1, 2, . . . , k} consists of n values si,j , i ∈ {1, 2, . . . , n}, cf. Table 1.

To define a deterministic finite automaton as the basis for the regular con-
straint, we need the set T = {T1, . . . , Tn} of prefix sets of all solutions of Psub,
where all elements in Ti are concatenations of the i first values of a solution
s ∈ S (see Eq. 3):

Ti =
k⋃

l=1

{s1,l ◦ s2,l ◦ . . . ◦ si,l | ∀i ∈ {1, . . . , n}} (3)

The Regularization of Sub-CSPs 109

Table 1. The solutions s1, ..., sk of the sub-CSP Psub

S s1 s2 . . . sk

x1 s1,1 s1,2 . . . s1,k

x2 s2,1 s2,2 . . . s2,k
...

...
...

. . .
...

xn sn,1 sn,2 . . . sn,k

This results in e.g. T1 = {s1,1, s1,2, . . . , s1,k}, T2 = {s1,1◦s2,1, s1,2◦s2,2, . . . , s1,k◦
s2,k}, Tn = S. Note that we enumerate the elements in each Ti from 1 to k but
actually they mostly have fewer elements then k for the reason that multiple
occurrences of elements do not occur in sets. It follows |T1| ≤ |T2| ≤ . . . ≤
|Tn| = k.

For each element t of each set Ti, i ∈ {1, . . . , n − 1} a state qt for the DFA
is created, which represents the solution prefix t. Furthermore, the initial state
qstart and the final state qend (representing all solutions S = Tn of Psub) are
added to Q. Thus, the set of states Q of the DFA is

Q = {qt | t ∈ Ti, i ∈ {1, 2, . . . , n − 1}} ∪ {qstart, qend}.

The initial state is qstart and F = {qend} is the set of final states.
The alphabet Σ of the DFA is the union of all domains of the variables of X ′:

Σ =
⋃

Di∈D′
Di (4)

Finally, we define the transition function δ as follows:

– Let t ∈ T1. Then it holds
δ(qstart, t) = qt (5)

– Let ti−1 be an element in Ti−1, ti be an element in Ti, i ∈ {2, . . . , n − 1} and
w ∈ Di with ti = ti−1 ◦ w. Then it holds

δ(qti−1 , w) = qti (6)

– Let tn−1 be an element in Tn−1, tn be an element in Tn = S and w ∈ Dn

with tn = tn−1 ◦ w. Then it holds

δ(qtn−1 , w) = qend (7)

This altogether provides the DFA M = (Q,Σ, δ, qstart, {qend}). The constraint
regular(X ′,M) can be used as a replacement for the constraints of C ′ in the
original CSP P .

Remark 2. This algorithm is only useful for sub-CSPs Psub which are proper
subsets of the original CSP P (size(Psub) � size(P)). Solving a sub-problem
Psub and finding all solutions is also an NP-hard problem. Nevertheless, due to
the exponential growth of constraint problems, sub-problems with smaller size
than the original problem can be solved significantly faster.

110 S. Löffler et al.

4 Examples and Experimental Results

After presenting our approach to transform the constraints of small sub-CPSs
into a regular constraint, we want to show two case studies to underline its ben-
efits. For this, we use the Black Hole Problem [17] and the Solitaire Battleships
Problem [9] from the CSPlib.

All the experiments are set up on a DELL laptop with an Intel i7-4610M
CPU, 3.00 GHz, with 16 GB 1600 MHz DDR3 and running under Windows 7
professional with service pack 1. The algorithms are implemented in Java under
JDK version 1.8.0 191 and Choco Solver [20]. We used the DowOverWDeg
search strategy which is explained in [5] and is used as default search strategy
in the Choco Solver [20].

4.1 The Black Hole Problem

Black Hole is a common card game, where all 52 cards are played one after the
other from seventeen face-up fans of three cards into a discard pile named ‘black
hole’, which contains at the beginning only the card A♠. All cards are visible at
all times. A card can be played into the ‘black hole’ if it is adjacent in rank to
the previous card (colors are not important). The goal is to play all cards into
the Black Hole.

Black Hole was modelled for a variety of solvers by Gent et al. [10]. We use
the simplest and most declarative model of Dekker et al. [8], where two variables
a and b represent adjacent cards if |a − b| mod 13 ∈ {1, 12}.

The heuristic Weak Propagation, presented in [1], detects the adjacency con-
straints as replaceable1. For our benchmark suite we computed 50 different
instances of the Black Hole Problem, where 49 instances are randomly created
(so the position of every card in the 17 fans is random) and the remaining
instance has an enumerated card distribution (1♠, 2♠, ..., K♠, A♣, 1♣,..., K♣,
A♥, 1♥, ..., K♥, A♦, 1♦, ..., K♦).

For all instances, we limited the solution time to 10 min and each problem
was solved in 4 ways:

1. Original : The problem was modelled as described in [8].
2. Table: The detected adjacency constraints were substituted by table con-

straints.
3. Regular : The detected adjacency constraints were substituted by regular con-

straints.
4. RegularIntersected : The detected adjacency constraints were substituted by

only one regular constraint. The single regular constraint was created by
the intersection of the underlying automatons of the substituted regular con-
straints from item (3) Regular as given above.

1 In [1], the detected constraints are substituted by table constraints, in contrast to
the here presented approach; we will substitute them with regular constraints.

The Regularization of Sub-CSPs 111

0 5 10 15 20 25 30 35 40 45 50

0

50

100

Table Regular RegularIntersected

Fig. 1. The time improvements (in %) of the Table, Regular and RegularIntersected
models for finding the first solution of each instance of the Black Hole Problem in
comparison to the Original model (0%).

Table 2. Overview of the Black Hole benchmark.

Ave. solution time Ave. imp. in % # Fastest # Sol. instances

Original 516.432 s – 1 7

Table 58.796 s 83.413% 25 47

Regular 63.679 s 82.054% 2 47

RegularIntersected 54.883 s 84.165% 19 47

Figure 1 shows the time improvements (in %) of the three substituted models
(Table, Regular and RegularIntersected) in comparison to the Original model
when the first solution is searched. In 49 of 50 cases all modified models are
better than the original. The only exception is sample case 8, where the original
approach is 62–95% faster than the substituted ones2. Table 2 shows that the
Table approach was 25 times, the RegularIntersected approach was 19 times,
the Regular approach was two times and the Original approach was one time
the fastest. In average we could reach the first solution 83.413%, 82.054% or
84.165% faster than the Original approach and we could solve many more prob-
lem instances with the substitution approaches in the time limit in comparison
to the Original model (47 instead of 7).

2 For case 8 exists a deterioration of 65% (90%, 95%) for the RegularIntersected (Table
and Regular) approach. To keep the graphic small the negative values were drawn
in 1

10
of the real distance. In cases 5, 25 and 46 none of the four models found a

solution in the time bounds of 10min.

112 S. Löffler et al.

4.2 The Solitaire Battleships Problem

The Solitaire Battleships Problem is a famous symbol puzzle, where several ships
with different sizes must be placed on a two-dimensional grid. The ships may be
oriented horizontally or vertically, and no two ships will occupy adjacent grid
squares, not even diagonally. Numerical values along the right hand side of and
below the grid indicate the number of grid squares in the corresponding rows
and columns that are occupied by vessels (see more details in [9]).

We created an equivalent Choco version of the MiniZinc model given in [9]
and tested the introductory example and the 35 instances given in the “sb Mini-
Zinc Benchmarks.zip” from [9]. We indicated the “spacing constraints”, the
“ship shape constraints” and the “count number of bigger ships constraints”
as potential good candidates for a substitution by regular (or table) constraints.

For all instances we limited the solution time to 30 min and each problem
was solved in five ways:

1. Original : The problem was modelled as described in [9].
2. Table: With reference to [9], the single lines 75 to 80 of the “spacing con-

straints”, the single lines 86 to 89 and the three lines 91 to 93 together of the
“ship shape constraints” and each two lines 117 to 118 and 122 to 123 together
of the “count number of bigger ships constraints” were each substituted by
singleton table constraints.

3. Regular : The lines enumerated in Table were substituted with regular con-
straints.

4. RegularIntersected : Equivalently to Regular, except the partial constraints in
“count number of bigger ships constraints” which count the number of ships
of size s in a row, respectively in a column, were combined each to one regular
constraint.

5. TableRegularIntersected : There, we have the same combined regular con-
straints (for representing the “count number of bigger ships constraints”)
as described in RegularIntersected, but, apart from that, use the table con-
straints described in Table (for representing the “spacing constraints” and
“ship shape constraints”).

Figure 2 shows that the results for the Solitaire Battleships Problem are not
that clear as the results for the Black Hole Problem. A look into Table 3 reveals
that the improvements for finding a first solution are very streaky. The Table
approach was the best approach, if using only one substitution style (tabulation
or regularization). It found the first solution in 9 cases as fastest and was in
average 37% faster than the original approach. The Regular approach slows the
solution process down here but the RegularIntersected approach leads again to
a speed up (2 times fastest approach, 29.701% better as the Original approach),
which is not much worse than the speed up from the Table approach.

The Regularization of Sub-CSPs 113

0 5 10 15 20 25 30 35
−100

0

100

Table Regular RegularIntersected TableRegularIntersected

Fig. 2. The time improvements (in %) of the Table, Regular, RegularIntersected and
TableRegularIntersected models for finding the first solution of each instance of the
Solitaire Battleships Problem in comparison to the Original model (0%).

Table 3. Overview of the Black Hole benchmark.

Ave. sol. time Ave. imp. in % # Fastest # Sol. instances

Original 935.168 – 1 23

Table 632.955 37.303% 9 28

Regular 1120.421 −11.551% 0 17

RegularIntersected 677.923 29.701% 2 26

TableRegularIntersected 507.820 60.763% 19 30

The TableRegularIntersected approach shows that a combination of regular-
ization and tabulation can lead to a significant improvement. Here it was the
best approach. It could solve the most problems (30), could find most often as
fastest the first solution (19) and had in average the biggest time improvement
(60.763%).

Remark 3. The TableRegularIntersected approach was not calculated fully auto-
matically here, but it shows the potential of both approaches in combination.
Future work has to be done automate the combination of both approaches.

Remark 4. In the evaluation, we did not present the needed time for the trans-
formations. Depending on the specific CSPs, we observed big differences in
the necessary transformation times. In our case, the total transformation time
needed for all transformations were in all Black Hole instances less than three
and in all Solitaire Battleship instances less than four seconds. Because the trans-
formation time can be neglected in comparison to the solution time (less than
three respectively four seconds vs. 10 respectively 30 min) we did not figure out
them explicitly.

114 S. Löffler et al.

5 Conclusion and Future Work

We presented a new approach for the optimization of general CSPs using the
regular constraint. For this a suitable sub-set of constraints are detected (for
example with heuristics presented in [1]), solved separately and transformed
into a regular constraint. Two benchmarks stress the benefit of this approach in
comparison to the original problems and the competitiveness to the tabulation
approach presented in [15]. Furthermore, our benchmarks indicate the potential
of a combination of both approaches.

In the future we will research heuristics, for finding sub-CSPs which are
especially suitable for the regularization approach. Besides, we want to consider
the idea of direct transformations from several global constraints to equivalent
regular constraints [4] and the combination of regular constraints transformed
from global constraints with regular constraints transformed from sub-CSPs.
We expect that this combination approach can be applied more often than the
tabulation approach [15], because big sub-CSPs can be represented by a small
DFA often; in contrast to this a table constraint always needs to store all solution
tuples. Therefore, the regularization approach looks more promissing for big
problems.

The most obvious next step is a detailed comparison of the regularization
approach with the tabulation approach and the formulation of heuristics which
suggest when which approach is more advantageous.

References

1. Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P., Salamon, A.Z.:
Automatic discovery and exploitation of promising subproblems for tabulation. In:
Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 3–12. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98334-9 1

2. Löffler, S., Liu, K., Hofstedt, P.: The power of regular constraints in CSPs. In:
47. Jahrestagung der Gesellschaft für Informatik, Informatik 2017, Chemnitz,
Germany, 25–29 September 2017, pp. 603–614 (2017). https://doi.org/10.18420/
in2017 57

3. Löffler, S., Liu, K., Hofstedt, P.: The regularization of CSPs for rostering, planning
and resource management problems. In: Iliadis, L., Maglogiannis, I., Plagianakos,
V. (eds.) AIAI 2018. IAICT, vol. 519, pp. 209–218. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92007-8 18

4. Löffler, S., Liu, K., Hofstedt, P.: A meta constraint satisfaction optimization prob-
lem for the optimization of regular constraint satisfaction problems. In: Rocha,
A.P., Steels, L., van den Herik, J. (eds.) Proceedings of the 11th International
Conference on Agents and Artificial Intelligence, ICAART 2019, Prague, Czech
Republic, 19–21 February 2019, vol. 2, pp. 435–442. SciTePress (2019). https://
doi.org/10.5220/0007260204350442

5. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of
the 16th Eureopean Conference on Artificial Intelligence, ECAI 2004, including
Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, 22–27
August 2004, pp. 146–150. IOS Press (2004)

https://doi.org/10.1007/978-3-319-98334-9_1
https://doi.org/10.18420/in2017_57
https://doi.org/10.18420/in2017_57
https://doi.org/10.1007/978-3-319-92007-8_18
https://doi.org/10.1007/978-3-319-92007-8_18
https://doi.org/10.5220/0007260204350442
https://doi.org/10.5220/0007260204350442

The Regularization of Sub-CSPs 115

6. Cheng, B.M.W., Lee, J.H.M., Wu, J.C.K.: Speeding up constraint propagation by
redundant modeling. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 91–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2 68

7. Dechter, R.: Constraint Processing. Elsevier Morgan Kaufmann, Burlington (2003)
8. Dekker, J.J., Björdal, G., Carlsson, M., Flener, P., Monette, J.: Auto-tabling for

subproblem presolving in MiniZinc. Constraints 22(4), 512–529 (2017). https://
doi.org/10.1007/s10601-017-9270-5

9. Gent, I.: CSPLib problem 014: Solitaire battleships. http://www.csplib.org/
Problems/prob014. Accessed 07 May 2019

10. Gent, I.P., et al.: Search in the patience game ‘black hole’. AI Commun. 20(3),
211–226 (2007). http://content.iospress.com/articles/ai-communications/aic405

11. Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decompo-
sition. J. Exp. Algorithmics (JEA) 13, 1 (2008)

12. Hamadi, Y.: Optimal distributed arc-consistency. Constraints 7(3–4), 367–385
(2002). https://doi.org/10.1023/A:1020594125144

13. Hellsten, L., Pesant, G., van Beek, P.: A domain consistency algorithm for the
stretch constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 290–304.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 23

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

15. Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011). https://doi.org/10.1007/s10601-011-9107-6

16. Liu, K., Löffler, S., Hofstedt, P.: Hypertree decomposition: the first step
towards parallel constraint solving. In: Seipel, D., Hanus, M., Abreu, S. (eds.)
WFLP/WLP/INAP -2017. LNCS (LNAI), vol. 10997, pp. 81–94. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00801-7 6

17. Nightingale, P.: CSPLib problem 081: Black hole. http://www.csplib.org/
Problems/prob081. Accessed 07 May 2019

18. Pesant, G.: A filtering algorithm for the stretch constraint. In: Walsh, T. (ed.) CP
2001. LNCS, vol. 2239, pp. 183–195. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45578-7 13

19. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 36

20. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016). http://www.choco-
solver.org/. Accessed 07 May 2019

21. Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40627-0 45

https://doi.org/10.1007/3-540-61551-2_68
https://doi.org/10.1007/s10601-017-9270-5
https://doi.org/10.1007/s10601-017-9270-5
http://www.csplib.org/Problems/prob014
http://www.csplib.org/Problems/prob014
http://content.iospress.com/articles/ai-communications/aic405
https://doi.org/10.1023/A:1020594125144
https://doi.org/10.1007/978-3-540-30201-8_23
https://doi.org/10.1007/s10601-011-9107-6
https://doi.org/10.1007/978-3-030-00801-7_6
http://www.csplib.org/Problems/prob081
http://www.csplib.org/Problems/prob081
https://doi.org/10.1007/3-540-45578-7_13
https://doi.org/10.1007/3-540-45578-7_13
https://doi.org/10.1007/978-3-540-30201-8_36
http://www.choco-solver.org/
http://www.choco-solver.org/
https://doi.org/10.1007/978-3-642-40627-0_45

33rd Workshop on (Constraint) Logic
Programming - WLP 2019

Declarative Programming
for Microcontrollers - Datalog on Arduino

Mario Wenzel(B) and Stefan Brass

Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg,
Von-Seckendorff-Platz 1, 06099 Halle (Saale), Germany

{mario.wenzel,brass}@informatik.uni-halle.de

Abstract. In this paper we describe a novel approach to programming
microcontrollers based on the Arduino platform using Datalog as a clear
and concise description language for system behaviors.

The application areas of cheap and easily programmable microcon-
troller platforms, like robotics, home automation, and IoT devices hold
mainstream appeal and are often used as motivation in natural sci-
ence and technology teaching. The choice of programming languages for
microcontrollers is severely limited, especially with regard to rule-based
declarative languages.

We use an approach that is based on the Dedalus language augmented
with operations that allow for side-effects and we also take the limited
resources of a microcontroller into account.

Our compiler and runtime environment allow to run Datalog programs
on Arduino-based systems.

1 Introduction

Logic and declarative programming is successfully used for parts of desktop and
server applications. We value the declarative techniques because it is easier to
write programs that relate closely to the specification (or even write compilable
specifications) and show their correctness. Furthermore they can be more easily
optimized by a compiler to make use of new hardware developments and new
ideas in algorithms and data structures. Declarative programming has found its
place in most computer science curricula in some form (often SQL, Haskell, and
Prolog) as well. But especially in logic programming the applications often are
theoretical or only used as part of a larger system. The parts that interact with
the outside world are usually written in an imperative fashion. For embedded
systems, where rule-based interaction with the outside world is often the majority
of the application, declarative programming is an avenue not well explored.

With the advent of really cheaply produced microchips that allow for direct
hardware interaction, small and easily programmable systems have found a place
in STEM education (Science, Technology, Engineering, Math) and are used to
teach electrical engineering, signal processing, mechanical engineering, robotics,
and of course, programming in all levels of school and academia [1,13,14]. Sys-
tems like these are ubiquitous in the hobbyist realm and are most often used
c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 119–138, 2020.
https://doi.org/10.1007/978-3-030-46714-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-46714-2_9

120 M. Wenzel and S. Brass

in IoT (Internet of Things) devices and home automation. We can categorize
systems based on cheap microchips and the manner in which they can be pro-
grammed the following way:

– Single Board Computers (SBC) like the Raspberry Pi can, in principle,
be programmed using any software a traditional desktop computer can be
programmed with. While the available resources of SBCs are limited, the
available main memory is in the dozens or hundreds of megabyte and even
the slowest devices have CPUs with at least 300 MHz while the faster ones
use multicore architectures with operating frequencies in the gigahertz range.
Those CPUs are often found in phones, tablets, TVs, and other multimedia
devices as well. And since the SBCs usually also have a standard-compliant
Linux distribution installed, any programming interface suitable to work with
the GPIO (General Purpose Input Output) can be used for the described
tasks. There is hardly any mainstream programming language that can not
be used to program a Raspberry Pi or similar SBCs. Even the LEGO Mind-
storms EV3 platform falls into this category and students can engage with
this platform using (among others) Python, Java, Go, C, Ruby, Perl, and even
Prolog [15] as their programming language of choice. Almost any technology
stack for declarative logic programming can be used on these devices.

– In contrast the ways in which microcontrollers can be programmed is very
limited. Microcontrollers often use 8-bit CPUs with operating frequencies
range from 16 to 40 MHz and an operating memory of 0.5 to 8 KB. For
this kind of embedded programming there have traditionally been only two
options. The approachable method that is often used in teaching beginner
and intermediate courses is a graphical block-based programming language
like scratch that uses an approach of translating code templates that fit like
puzzle-pieces to actual C source code. The second approach that is taken on
academic or advanced level is to program C code directly. Both approaches
limit the user with regards to available programming paradigms. Imperative
programming seems to have no real alternatives, even though such systems
that can be equipped with sensors, buttons, lights, displays, etc. are, in prin-
ciple, well-suited to be programmed using other paradigms. Especially in
interactive applications like environmental sensing and robotics, event-driven
or rule-based declarative approaches are desirable.
For larger microcontrollers from the ESP-family – with 32-bit CPUs, operat-
ing frequencies of up to 240 MHz, and 520 KB of memory – there are firmwares
available for programming in MicroPython (a Python subset) Lua, Lisp, and
a few more. While there are embedded operating systems for ESP-based sys-
tems that even include network stacks for wired and wireless connections,
these devices are not powerful enough to support a modern Linux. Without
Linux kernel and userspace, they can not make use of the usual declarative
stacks.

There have been many attempts to bring declarative programming to embed-
ded systems. Some declarative approaches, like LUSTRE [9] from the early ’90s,

Datalog on Arduino 121

aim at reactive and dataflow oriented programming. Comparative experiments
with implementations of embedded applications using abstract declarative lan-
guages (Prolog, OCaml) showed that while the abstract code is shorter, the
overhead for the runtime environments is significant [16].

In the recent past there have been advances in bringing event-driven pro-
gramming in the form of functional reactive programming (FRP) to the Arduino
platform. The Juniper programming language [10] is such a language that lever-
ages the functional reactive style. The frp-arduino project1 provides a domain-
specific language that is embedded into Haskell in order to create and compile
FRP programs for the Arduino.

A similar approach to leave the imperative programming behind is taken by
Haskino [8], a Haskell library where code in a specific monad for remote IO is
evaluated on a driving computer and controls an attached Arduino microcon-
troller via the serial interface. By embedding control flow statements directly
into this monad a standalone program can be compiled.

There are other declarative programming approaches for the Arduino-based
microcontroller platform like Microscheme2, a Scheme subset for the Arduino
platform. In the home automation context there have been projects that allow
to declaratively configure microcontroller systems with common sensor setups
(like ESPHome3) but this approach is limited to this specific domain and a small
number of targeted devices and peripherals.

But in terms of logic programming the Arduino platform is sorely lacking.
Logic programming languages like Datalog allow concise and clear descriptions
of system behaviors. To use rule-based systems in the domain of robotics and
home automation is very appealing.

In this paper we propose a specific dialect of Datalog closely related to the
Dedalus language [2] (Sect. 3) that includes IO operations. We define an evalua-
tion order for the different types of rules (Sect. 4) and give a scheme to compile
the Datalog code to C code (Sect. 7). This scheme can be used to program
Arduino-based microcontrollers in an expressive and declarative fashion which
we show by providing some example programs (Sects. 5 and 6).

2 Target Platform

As our target platform we have chosen microcontrollers with the ATmega328
8-bit processor, like the Arduino Nano, Arduino UNO4, or similar devices (see
Fig. 1). The ATmega328 is comparatively cheap and widely used. This target
platform comes with a set of limitations and design challenges:

– There is only 2 KB of SRAM available that is used for both heap and stack
data. This means we are limited in operational memory for storing derived
facts and in algorithm design with regards to function call depth.

1 https://github.com/frp-arduino/frp-arduino
2 https://github.com/ryansuchocki/microscheme
3 https://esphome.io/
4 https://www.arduino.cc

https://github.com/frp-arduino/frp-arduino
https://github.com/ryansuchocki/microscheme
https://esphome.io/
https://www.arduino.cc

122 M. Wenzel and S. Brass

Fig. 1. Arduino Nano and UNO compatible boards with 1 euro cent for size comparison

– 32 KB of Flash memory can be used to store the program. This might seem a
lot in comparison but this is also used to store additional libraries for periph-
eral access that are wanted by the user. This is also quite limiting considering
the algorithm design and the amount of source code we are allowed to gen-
erate. The Arduino.h header files with pin input and output and writing to
the serial port already use 2 KB of that memory, when compiled with size
optimization enabled.

– A boot loader of about 2 KB is used for the firmware.
– The ATmega328 processor has an operational speed of 20 MHz which is a lot

compared to the amount of data we have to operate on.
– There is an additional EEPROM non-volatile storage of 1 KB. This storage is

slow and is limited in the amount of write cycles. The EEPROM is specified
to handle 100.000 write/erase cycles for each byte with one cycle taking over
three milliseconds. If the user chooses to write to or read from this storage as
an effectful operation (i.e. IO predicate, see Sect. 3), they can do so.

The chosen target platform gives us restrictions with regards to the resource
usage to aim at. Since we generate C-code and our approach to interfacing with
the rest of the system is generic our approach works for other embedded systems
and processors as well. The generic approach is also useful since there already
is a huge ecosystem for embedded development. The “PlatformIO” platform5

(self-proclaimed “open source ecosystem for IoT development”) has well over
700 different supported boards and over 6.800 libraries in its registry6. There is
no reason why this effort should be duplicated.

3 Extension to Dedalus Language

We base our work on the Dedalus0 language (from here on just Dedalus). Dedalus
is a special variant of Datalog with negation where the final attribute of every
predicate is a “timestamp” from the domain of the whole numbers. We call this
attribute the “time suffix”. This permits us to treat a time-dependent (changing)
5 https://platformio.org/
6 As of November 2019.

https://platformio.org/

Datalog on Arduino 123

state in a declarative way: In principle, a model contains the entire information
which facts hold at which point in time. The language is restricted in such a way
that in order to do deductions it suffices to access only two states: the current
and the next state. We give a quick overview over the Dedalus language [2]:

– Every subgoal of a rule that is a literal must use the same variable T as time
suffix.

– Every rule head has the variable S as a time suffix.
– A rule is deductive if S is bound to T , i.e. S = T is a subgoal of this rule.

Example: p(X,S) ← q(X,Y, T), p(Y, T),S = T .
We allow for stratified negation in the deductive rules.

– A rule is inductive if S is bound to the successor of T , i.e. successor(T ,S)
is a subgoal of this rule. The successor function is not allowed in any other
context.
Example: p(X,S) ← q(X,Y, T), p(Y, T), successor(T ,S).
We allow arbitrary negated body literals in inductive rules, because the pro-
gram is always dynamically stratified with regards to the last argument.

– All variables other than the time suffix are range restricted, i.e. appear in a
positive literal.

In Dedalus every rule is either deductive or inductive and the time suffix can
not be accessed (i.e. bound to a variable) explicitly. To make it easier to work
with those restrictions some syntactic sugar is added:

– For deductive rules the time argument is left out in the head of the rule and
every subgoal.
Example: p(X) ← q(X,Y), p(Y).

– For inductive rules the suffix “@next” is added to rule head and the time
argument is left out in the head of the rule and every subgoal.
Example: p(X)@next ← q(X,Y), p(Y).

– For facts any timestamp of the domain is allowed as S (written using the
@-notation). To keep the memory footprint low we only allow facts for the
timestamp 0 in this notation.
Example: p(5)@0.

If a fact is not transported from one timestamp to the next we have a notion
of deletion. This can be used to “table” relations that can be updated in a
stateful fashion. Consider a Dedalus program with the following rules:

table(X)@next ← add(X).
table(X)@next ← table(X),¬delete(X).

An execution with some derived add and delete facts at specific timestamps
might look like this:

124 M. Wenzel and S. Brass

Time add delete table

101 add(1)

102 table(1)

103 add(27) table(1)

104 table(1), table(27)

. . . table(1), table(27)

300 delete(1) table(1), table(27)

301 table(27)

But Dedalus is more than just Datalog with updates. With this extension
our Datalog program now has a notion of time where not everything happens at
once but the facts with some timestamp n can be seen as “happening earlier”
than the facts with timestamp m with n < m. Depending on the evaluation
strategy, any fact with an earlier timestamp may be deduced before those with
a later timestamp as derived facts can only depend on facts with the same or an
earlier timestamp. The timestamp also captures a notion of state, similar to the
Statelog language [12]. This is useful for interactions with the environment.

To facilitate this interaction we add a predicate type and two types of rules
that are used to manage effectful functions of the system (IO):

– An IO predicate is a predicate that is used with a fixed binding pattern and
that corresponds to a system function which may have effectful behavior with
regards to the environment. IO predicates do not correspond to members of
the minimal model of our program. An IO predicate can be interpreted as an
EDB relation that is a partial function from the timestamp and the bound
variables to a binding for the free variables, i.e. the timestamp, together with
the bound variables, is a superkey of this relation and the corresponding
subgoal generates exactly one ground substitution.

– An IO literal is a literal from an IO predicate.
– An input rule is a inductive rule that has exactly one subgoal that is a

positive IO literal corresponding to a system function that reads a value from
the environment, like the current time or a sensor value. The system function
is executed when its result is needed to derive a fact for the next state, so
that the partial function corresponding to the IO literal is defined wherever
it can be sampled. This is a concept similar to external atoms from Answer
Set Programming [5]. We require that input rules are inductive so that the
result of the input can be observed only in the next state. This is necessary to
prevent infinite derivation chains from fresh constants. The concrete syntax
for our language has the restriction, that the IO literal is the last literal of
the body. This is no restriction on the expressiveness of our language.

– An output rule is a deductive rule that has an IO literal as the head. The
literal corresponds to a system function that changes the environment, like
setting the output current of a pin. The system function is executed when the
literal can be derived, so that the corresponding partial function is defined

Datalog on Arduino 125

wherever its arguments are derived. This is a concept similar to action atoms
from Answer Set Programming [6].

– A rule has at most one IO literal in either head or body, as a rule can not be
both deductive and inductive at the same time.

– For all timestamps T and T ′ with T < T ′ all effects corresponding to T must
happen before all effects corresponding to T ′.

– Besides the IO predicates there is no dynamic database for EDB facts. Static
facts can be added through rules without antecedents. If a configuration or
parameterization of our program is achieved through facts, the program needs
to be recompiled when the configuration changes. A static configuration that
is compiled into the program is common practice for microcontroller applica-
tions anyway.

– We also allow arithmetic comparison of bound variables and arbitrary arith-
metic expressions within the operands of the comparison.

We call this language “Microlog”, a Datalog for microcontroller applications.

4 Program Evaluation

tn

tn+1

deduction
output

induction
input

deduction
output

induction
input

environment

tim
e

Fig. 2. Fact deduction order

Deduction of facts for the state T , the following state T+1, and scheduling and
execution of effectful functions happens in 4 phases (see Fig. 2):

1. In the deduction phase all facts for the current timestamp T are derived.
During this phase only the deductive rules (i.e. the rules that derive facts for
the current timestamp) that ore not output rules are used. In our case we
use a naive evaluation strategy (taking the strata into account) that uses the
least amount of additional memory (see Sect. 7) but any Datalog evaluation
strategy that computes the fixpoint can be used to derive the facts for the
current timestamp.

126 M. Wenzel and S. Brass

2. In the output phase IO functions that write data or affect the environ-
ment can be executed. Output rules of the form B ← A1 ∧ · · · ∧ An where
B is the single IO literal are evaluated. The function B corresponding to
every unique Bθ is evaluated for every ground substitution θ for A1 to An

where A1θ . . . Anθ is in the minimal model for that state. This means that
iff B(

#»

X, T) would be in the minimal model (i.e. can be derived), then the
corresponding system function is called with arguments

#»

X.
3. In the induction phase all facts for the next timestamp are derived. During

this phase only the inductive rules (i.e. the rules that derive facts for the
next timestamp T+1) that are not input rules are used. Since facts derived
through inductive rules may only depend on facts from the current timestamp
T , all necessary facts are known after one execution of each rule. Therefore
all inductive rules are evaluated once (and in any order) for this timestamp.

4. In the input phase IO functions that read data from the environment can
be executed. Input rules of the form B@next ← A1 ∧ · · · ∧ An, where An is
the single IO literal, are evaluated. The function A corresponding to every
unique Anθ is evaluated for every ground substitution θ for A1 to An−1 where
A1θ . . . An−1θ is in the minimal model of the current state, then derived Bθ
is in the minimal model for the following state.
Let the binding pattern for An be as such that the variables

#»

I in An(
#»

I ,
#»

O)
are bound in that context (used as input) by constants in that literal or
ground substitutions for A1 ∧ · · · ∧ An−1 while

#»

O are free (used as output).
Then bindings for

#»

O are derived by calling the corresponding system function
with the arguments

#»

I .

To guarantee that the relations describing the environment are functional
(i.e. there are no violations of the superkey constraint), for every state every
system function call is done only once. This is done by introducing additional
predicates and rules to collect arguments for calls and call-contexts, but other
deduplication schemes may be used.

Note that while we allow arithmetic comparison with arbitrary arithmetic
expressions, new constants can only introduced by input rules. Since the number
of facts for a specific timestamp generated by input rules is limited, the number
of new constants introduced is finite as well. While termination does not hold
for the whole program (and we do not want it to), the minimal model for any
specific state is always finite. We say that our program is locally terminating,
meaning that every following timestamp is reached eventually, if every call to
system functions returns eventually.

5 IO Literals and Example Programs

Our application is statically typed and we only allow primitive types for our
data values. This is why all predicates need to be declared beforehand with the
static types of their arguments. To define the datatypes of relations we use a
syntax similar to what the Soufflé system [11] uses: .decl r(unsigned long,

Datalog on Arduino 127

byte) declares the predicate r with two arguments and their respective types.
Since we have no general mechanism for textual output of relations, we do not
need to define names for the arguments.

Before we can show example programs we want to give some IO predicates
for the Arduino interface. Users can write their own IO predicates to interface
with any number of existing libraries for their system. On a most basic level,
an embedded board communicates with the outside world by means of GPIO-
pins (general purpose input/output) that are attached to sensors, actors, or other
mechanical or electrical components. Basic interface functions7 for the pins in an
Arduino-based systems (see Fig. 3) are the functions pinMode that sets whether
a pin is in input or output mode, digitalWrite that sets the output voltage
(usually one of the constants HIGH and LOW) of a pin (both persistent until the
next call), and digitalRead that reads the voltage on a pin and gives either a
LOW or HIGH value.

void pinMode(uint8_t pin, uint8_t mode);
void digitalWrite(uint8_t pin, uint8_t val);
int digitalRead(uint8_t pin);
unsigned long millis(void);

Fig. 3. Extract from Arduino.h header files

The computations that are modeled with IO predicates, as per our definition
from Sect. 3, are computations that return a single variable assignment. Com-
putations that return sets or lists of variable assignments, or computations that
might fail and do not return any variable assignment, do not fit in this model.
This is a limitation, but in the microcontroller context there is no best practice
to encode these kinds of computations with regards to types or data-structures,
that is also adhered to by a majority of external libraries. We chose this restricted
model to keep our runtime environment and the “plumbing code” for the exter-
nal libraries simple. For any timestamp this restriction is stronger than usual for
Datalog-based models, where the external database is only assumed to be finite.

We define an IO predicate, which always starts with an # to denote that it is
an IO predicate, with its arguments (left side) by arbitrary C statements (right
side). Every IO predicate may only have one definition. Within the defining
C-statements variables from the predicate arguments can be used (prepended
with # as to not overlap with constants like HIGH and LOW). Constants from the
outside C-code may also be used as constants in the Datalog-code using # as a
prefix. The hash sign can be seen as a context-switch for values between the C-
context and the Microlog context. These base functions are part of our standard
library but since there are many different community-created libraries, we allow
arbitrary C-code for interaction with our Datalog system (Fig. 4).

7 github.com/arduino/ArduinoCore-avr/blob/master/cores/arduino/Arduino.h

https://github.com/arduino/ArduinoCore-avr/blob/master/cores/arduino/Arduino.h

128 M. Wenzel and S. Brass

#pinIn(P) = {pinMode(#P, INPUT);}
#pinOut(P) = {pinMode(#P, OUTPUT);}
#digitalWrite(P, Val) = {digitalWrite(#P, #Val);}
#digitalRead(P, Val) = {int Val = digitalRead(#P);}
#millis(T) = {unsigned long T = millis();}

Fig. 4. Defined IO predicates from the standard library

IO predicates are defined with a fixed binding pattern. Consider the IO pred-
icate defined as

#digitalRead(P, Val) = {int Val = digitalRead(#P);}.

We say that the variable P is read in the definition (as its value is used in a
function call) and the variable Val is set in the definition. This corresponds to
binding pattern bf (bound for every read variable, free for every set variable).
Every variable that is not read in the definition is considered set in the definition.
The variables in bound positions have to appear positive in other body literals.
The variables only appearing in free positions may not appear negative in other
body literals. It is not syntactically checked, whether a variable that is considered
set is actually assigned a value by the C-Code, only the appearance of values to
be read is checked.

We want to insert the IO predicate definition code “as is” into the source
code (when evaluating the body from left to right) while keeping to the Data-
log semantics with the presented extensions. We define a normalized Microlog
program with the following properties:

– All IO literals are used with their specific binding pattern.
– The variable names used in the definition are distinct from the variable names

in the rules (there are no conflicts in the C-scopes).
– The variables used in the free-positions of IO literals are the only variables

in the rule (there are no duplicates).
– Every IO literal only appears in a single input rule or output rule or both

(system function calls are collected).

We generate a normalized program from the original program through the
following transformations:

– All variables of the rules are renamed if necessary.
– Every input needed to derive facts for the next state should only lead to the

corresponding function call once per timestamp as calling the same system
function at the same timestamp with the same arguments could have different
results and therefore would violate they key constraint of that relation. To
achieve this, each input rule is replaced by an inductive rule that collects the
call contexts, a deductive rule that collects the IO calls, the simplified input
rule, and a deductive rule that brings contexts and call results together again.
Let B(

#»

V)@next ← A1 ∧ · · ·∧An(
#»

X,
#»

Y) where An is the single IO literal with

Datalog on Arduino 129

the variables
#»

X being in the bound positions of the IO literal and
#»

Y in the
free positions and

#»

V being the variables in the rule head. The replacing rules
are the following:

• A′(
#»

X) ← A1 ∧ · · · ∧An−1 to deduplicate the input arguments. This is the
same A′ for all literals of the same IO predicate.

• A′′(
#»

X,
#»

Y)@next ← A′(
#»

X)∧An(
#»

X,
#»

Y) as new input rule with the dedupli-
cated arguments. This is the same A′′ for all literals of the same IO pred-
icate.

• B′(
#»

V ,
#»

X,
#»

Y)@next ← A1 ∧ · · · ∧ An−1 to capture all call contexts. If any
Yn or Vn is not range restricted, it is left out of B′ in this and the following
rule.

• B(
#»

V) ← B′(
#»

V ,
#»

X,
#»

Y) ∧ A′(
#»

X,
#»

Y) to recombine the call contexts with the
deduplicated IO.

– If the IO literal is used in an input rule, all variables read in the definition
must be bound by the other literals in the query. If some variable is set in
the definition and bound by other literals, we compile the use of p(A) with A
bound but set in the definition as p(A′), A′ = A. When the rule is rewritten
this way, the variable set in the definition is free again and we use a later
comparison to check whether the values are equal. This allows the original
program to use IO literals with more bound arguments than is specified in
the predicate definition.

– Every derived output should only lead to the corresponding function call
once per timestamp. While this would not violate key constraints, as we do
not generate variable bindings, we want to prevent side-effects happening
multiple times. Therefore any output rule B ← A1 ∧ · · · ∧ An is replaced
by deduplication rules before compilation. Let

#»

X be the variables used and
constants in the head of the rule, then a new deductive rule B′(

#»

X) ← A1 ∧
· · · ∧ An is introduced for deduplication of results and the original rule is
replaced by the output rule B(

#»

X) ← B′(
#»

X). This is the same B′ for all
literals of the same IO predicate.

% Predicates
.decl setup
.decl pressed

% Setup and Initialization
setup@0.
#pinIn(2) :- setup.
#pinOut(13) :- setup.

% Input
pressed@next :- #digitalRead(2, #HIGH).

% Output
#digitalWrite(13, #HIGH) :- pressed.
#digitalWrite(13, #LOW) :- !pressed.

Fig. 5. Program that changes the led when a connected button is pressed

We give an example program “touch” that switches an LED (the internal
LED on this example board is connected to pin 13) on when the button connected

130 M. Wenzel and S. Brass

to pin 2 (external component) is pressed, and off when it is released (see Fig. 5).
This program only has input and output rules and defines a minimal behavior
that can easily be adapted to arbitrary connected sensors (temperature, distance)
and actors (relays, motors).

We give an assignment for the partial functions corresponding to the IO pred-
icates (i.e. the environment) of an example run. The functions used as output
are defined (map to unit) and their code executed wherever their arguments can
be derived and the functions used as input are defined (mapping from bound to
free values) wherever they are sampled:

Time digitalRead digitalWrite pinIn pinOut

0 ∅ {(13, LOW) �→ ()} {2 �→ ()} {13 �→ ()}
1 {2 �→ LOW} {(13, LOW) �→ ()} ∅ ∅
2 {2 �→ LOW} {(13, LOW) �→ ()} ∅ ∅
3 {2 �→ HIGH} {(13, LOW) �→ ()} ∅ ∅
4 {2 �→ HIGH} {(13, HIGH) �→ ()} ∅ ∅
5 {2 �→ LOW} {(13, HIGH) �→ ()} ∅ ∅
6 {2 �→ LOW} {(13, LOW) �→ ()} ∅ ∅
. . . {2 �→ . . .} {(13, . . .) �→ ()} ∅ ∅

In the same manner as the “touch”-program we define the “blink”-program
(see Fig. 6) that toggles the LED every second using the system function millis
that returns the number of milliseconds since the microcontroller has been turned
on. In this example we use the deduction phase to deduce actions and depend-
ing on those actions we both affect the environment and change the following
state. The switching action (turn on and turn off) is deduced explicitly and
the current state (on since and off since) is passed into the following state
through the inductive rules until the decision to toggle is reached.

Of course, these are just very simple example programs and in the home
automation context these kinds of conditions and programs are usually express-
ible within the existing configuration languages. Using our fixpoint semantics we
can also write a program that calculates all rooms in a house that are connected
via open doors and force the heating off in all connected rooms, if a window is
open in any of them. A model train control unit could calculate all track seg-
ments that are reachable from a segment (that has a train on it) with the current
switch positions and force a crossing barrier down.

6 Macro Expansion

In the context of home automation and IoT some tasks are quite common and
need to be accomplished in many projects. Examples of these tasks are initializa-
tion of sensors or delayed deduction of facts. To facilitate this, we allow for macro

Datalog on Arduino 131

% Declarations
.decl setup
.decl now(unsigned long)
.decl offSince(unsigned long)
.decl onSince(unsigned long)
.decl turnOff
.decl turnOn

% Setup and Initialization
setup@0.
#pinOut(13) :- setup.
offSince(0)@0.
now(0)@0.

% Deduction
turnOff :- onSince(P), now(T), P+1000<T.
turnOn :- offSince(P), now(T), P+1000<T.
% Induction
onSince(P)@next :- !turnOff, onSince(P).
onSince(T)@next :- turnOn, now(T).
offSince(P)@next:- !turnOn, offSince(P).
offSince(T)@next:- turnOff, now(T).
% Input
now(T)@next :- #millis(T).
% Output
#digitalWrite(13, #HIGH) :- turnOn.
#digitalWrite(13, #LOW) :- turnOff.

Fig. 6. Blink-program

expansion in our programming language. Macros are written in square brackets
and are placed in front of a rule. The rule is then rewritten on a syntactic level
to accomplish the task. We give a few macros as an example:

– The setup-macro rewrites a rule [setup]head. to head :- setup. and adds
the fact setup@0 that marks the first state T0 with the fact setup. This can
be used for initialization of pins and sensors as well as initial state.

– The [delay:1000] macro (with any integer number) adds rules that deduces
the fact in the future (as many milliseconds in the future). The rule
[delay:X]head(Args) :- body(Args) is replaced by the following rules:

• Initial time fact: now(0)@0.
• Reading current time: now(T)@next :- #millis(T).
• Deriving the fact that is to be delayed:
delayed head(Args, Curr) :- body(Args), now(Curr).

• Deriving the delayed fact when the delay time is reached:
head(Args) :- delayed head(Args, Await),

now(Curr), Await+X <= Curr.
• Transporting the delay forward if the time is not yet reached:
delayed head(Args, Await)@next :- delayed head(Args, Await),

now(Curr), Await+X>Curr.
• New predicate declarations: .decl now(unsigned long)
.decl delayed head(<former arguments>, unsigned long)

– The persist-macro (as proposed by Alvaro et al. [2]) creates two predicates
that allow for formulation of state updates as shown in the initial Dedalus
example (see Sect. 3). The macro replaces [persist]head(Args). with the
following rules:

• head(Args)@next :- add head(Args). to add facts to the “tabled”
relation.

• head(Args)@next :- head(Args), !del head(Args). to allow dele-
tion of tabled facts.

132 M. Wenzel and S. Brass

• New predicate declarations for add head and del head:
.decl add head(<former arguments>)
.decl del head(<former arguments>)

Macros decrease the program size (but not the compiled code size) and allow
us to write programs on a higher level. Using the presented macros we can now
show the final and very concise version (without the declarations) of our blink-
program. Note that the expanded version is slightly different to the hand-crafted
version of the blink-program but behaves the same (Fig. 7).

[setup]#pinOut(13).
[delay:1000]turnOn :- turnOff.
#digitalWrite(13, #HIGH) :- turnOn.

[setup]turnOff.
[delay:1000]turnOff :- turnOn.
#digitalWrite(13, #LOW) :- turnOff.

Fig. 7. Concise blink-program using macros

7 Runtime Environment and Compilation

7.1 Memory Management

Our runtime environment uses two buffers to store deduced facts. One buffer is
for the facts in the current state and the other buffer is for the facts in the fol-
lowing state. Since we discard facts from previous states and do not dynamically
allocate memory, this scheme allows us to not store timestamp data. For the state
transition the buffers are switched and the buffer for the next state is reset. The
buffer size is given by the user during compilation as some unknown amount of
memory might be needed for the other libraries and their data structures. Our
facts are stored in the buffers in a simple manner (Fig. 8):

– Predicates are numbered (from 1) and we use the first byte to store the
predicate (up to 255 different predicates).

– Subsequent bytes are used for the arguments.
– Facts are stored one after the other in the buffer.
– The start of the empty tail of the buffers are stored.

001 003 232 002 042 000 012 001 128 012

p(1000) q(42, 12) p(−12) free memory

p 1000 −1242 12q p

Fig. 8. Mapping example with declarations .decl p(int), .decl q(byte, int)

Datalog on Arduino 133

This memory management scheme is very simple and compact. Fact access
time is linear in the number of stored facts. This is a reasonable compromise
since we can not store many facts anyways. Consider predicates with lengths
of 8 Bytes. If we want to use 800 Bytes of our RAM for fact storage we would
allocate 400 Bytes per Buffer with 50 facts until the buffer is full. Saving memory
on facts, pointers, and call stack by not using more complex data structures is
reasonable.

7.2 Target Code

The following functions are generated from the predicate definitions in the pro-
gram:

– Inserting a fact into a buffer.
– Retrieving a fact position from a buffer according to the used binding patterns

with the first argument for the start of the memory area to search in and one
additional argument for every bound value. At least the pattern where every
value is bound is used since we use it for duplicate checking on insertion of
facts. These functions return 0 if there is no matching fact in the buffer.

– Reading an argument value from a fact given the fact position in a buffer.

Additionally we compile the size and memory locations of the buffers (curr buff,
next buff), the size of the facts depending on the predicate, and the mapping
from predicates to numbers as constants into the code, effectively storing them
in the program memory.

– For every rule we generate a function without arguments that tries to execute
the rule and returns whether facts have been inserted.

– The generated function contains a nested-loop-join for every literal in the
body with variables bound in order of appearance in the rule.

– The generated function contains an if-statement for every arithmetic compar-
ison.

– Additionally we generate a duplicate check for the fact that is to be inserted,
and an insertion statement.

The code that we compile the rule p(A) ← q(A), p(B), A < B to, where all
arguments are integers, is shown in Fig. 9.

For inductive rules instead of writing the fact to the buffer corresponding to
the current timestamp, it is written into the buffer corresponding to the following
(next) timestamp. IO literals are compiled “as is” according to the rules from
Sect. 5 with their usage replaced by the C-statements they are defined with.

7.3 Compiled Source File

The end result of the compilation process is a C source file that can be compiled
to machine code using the Arduino toolchain (for example PlatformIO or the
Arduino IDE8) and has the following general format (see Fig. 10):
8 https://www.arduino.cc/en/Main/Software

https://www.arduino.cc/en/Main/Software

134 M. Wenzel and S. Brass

bool deductive_rule_1() {
bool inserted_facts = false;

q(A) size_t q1 = curr_buff;
while ((q1 = q_f(q1)) != 0) { // find next q-fact

int A = q_arg1(q1); // read first argument

p(B) size_t p1 = curr_buff;
while ((p1 = p_f(p1)) != 0) { // find next p-fact

int B = p_arg1(p1); // read first argument

A<B if (A < B) {

p(A) if (p_b(curr_buff, A) == 0) { // duplicate check
insert_p(curr_buff, A); // insertion

inserted_facts = true;

p(A) }

A<B }

p(B) p1 += size_of_p; // advance pointer past seen fact
}

q(A) q1 += size_of_q; // advance pointer past seen fact
}

return inserted_facts;
}

Fig. 9. Compiled Rule p(A) ← q(A), p(B), A < B. (Color figure online)

– Including headerfiles and defining the buffers for the states.
– Definition of constants for the types and sizes of facts.
– Defining functions to write facts to buffers and find and access facts and their

arguments from buffers, corresponding to the used binding patterns.
– setup() function that initializes the buffers and writes the facts for the initial

state.
– loop() function that executes the deductive rules according to their strata,

then it executes the output rules, the inductive rules and then the input rules,
and in the end clears the buffer for the current state and swaps the buffers
around so that the cleared buffer is now the one for the following state.

The setup and loop functions are the entrypoints for the processor. The setup
function is called once when the microcontroller is started and the loop-function
is called repeatedly once the setup has finished. The loop function executes all
the derivation steps in the proper order (see Fig. 10).

7.4 Program Sizes and Speeds

To see whether this approach is very taxing on the resource usage we measured
the size if the compiled and uploaded program code for some example programs
and compared them to equivalently behaving programs that we have crafted by
hand. The handcrafted version of the “touch” program (excluding setup) was
just digitalWrite(13, digitalRead(2));.

Datalog on Arduino 135

// includes
#include "Arduino.h"
// Buffer Declarations
static byte buffer0[bufsize]; static byte buffer1[bufsize];
// Functions for Buffer Access
...
// Reading and Writing Facts
...
void setup() {

// Buffer initialization
// Facts for timestamp 0

}
void loop() {

// deductive phase
do { added_facts = false; // stratum 1

added_facts |= deductive_rule_1();
...
added_facts |= deductive_rule_i();

} while (added_facts);
do { // stratum 2

...
} while (added_facts);
... // other strata

// output phase
output_rule_1(); ... output_rule_j();

// inductive phase
inductive_rule_1(); ... inductive_rule_n();

// input phase
input_rule_1(); ... input_rule_m();
switch_buffers();

}

Fig. 10. Simplified outline of compiled source file

program size time per 1k loop calls
handcrafted generated handcrafted generated

touch 996 Bytes 1304 Bytes 8 ms 30 ms
blink

1090 Bytes
2132 Bytes

9 ms
130 ms

blink w. macro 2294 Bytes 136 ms

Fig. 11. Comparison between hand-crafted C-programs and generated programs

136 M. Wenzel and S. Brass

For the speed comparison we measured the elapsed milliseconds (by the inter-
nal clock) after 1,000 calls of the loop function and sent the timing over the serial
interface to a computer. Adding the serial library increases code size so we have
done those measurements separately.

As we can see from Fig. 11, while the runtime increased drastically, at least
for our small example programs, the “reaction time” (i.e. the time to reach
the next state) was in the realm of 130 microseconds for the “blink” program
but only 30 ms for the “touch” program. The handcrafted programs were much
faster, with less than 10 microseconds per loop. The program memory used by
our compilation scheme did not increase by the same factor. While our program
code is twice the size as the handcrafted ones, at least for this example code, the
included mandatory library code dominates the compilation.

8 Conclusion

We have shown that programs for Arduino and similar microcontroller systems
can be written in a declarative logic language with few restrictions using a slightly
altered version of the Datalog dialect Dedalus that we call “Microlog”. The envi-
ronment is modeled in terms of partial functions that are interpreted as an exten-
sional database. Interaction with the environment through effectful operations is
facilitated by defining an evaluation scheme where local termination still holds.

The Dedalus approach seems useful as it not only captures a notion of state-
changes during the execution in an interactive environment, the captured notion
of time allows us to use IO functions depending on facts corresponding to the
state we consider as “now”.

Then we have presented a straightforward translation scheme from our pro-
gram code to Arduino-C that integrates well with existing library functions.
While the generated code corresponds to a naive evaluation scheme, it is not
algorithmically complex and does not use too much of the available program
memory.

Additionally we have shown a method for code expansion that extends the
usefulness of our language by autogenerating boilerplate code. This means that
introductory examples of Arduino programs written in Microlog are as easy, if
not easier, than the equivalent C program.

There are still a few open questions and areas for further research: Is it useful
to apply transformations like magic sets, SLDmagic [3], or our Push method [4]
with the IO rules as query goals? How well do other Datalog optimization and
compilation schemes work with the limited operating memory? With a focus on
the physical aspects of specific boards, can we analyze the program to find pins
that are used as input but defined as output and vice versa? Can we identify
otherwise incorrectly used system resources like pins that might be set differently
multiple times in the same state, or facts that may not co-occur in the same state
(like led on and led off)?

The initial state of the program is known beforehand (there is no dynamic
database for EDB facts) and fresh constants are only introduced through input

Datalog on Arduino 137

rules. Can a set of possible states for the application, parameterized in the argu-
ments of the facts, be calculated beforehand and used as program state instead
of a general purpose fact storage, creating a state machine where possible? Opti-
mizations of this kind will help decrease program size and state duration. For
example, the touch program (see Sect. 5) does not store any facts with argu-
ments. So for every timestamp the corresponding subset of the minimal model
must be a combination of the predicates (only setup and pressed), meaning
that the program is, after any timestamp, in one of (at most) four states. On
the other hand, a program that uses the persist macro (see Sect. 6) and derives
more add-facts with fresh constants than it deletes, will use up all its available
memory eventually.

Since the memory on the chip is severely limited, can we give an upper bound
on the number of facts deduced for every timestamp (e.g. the amount of memory
needed for the runtime system) using functional dependency analysis for derived
predicates [7]? If the maximum number of facts was known during compilation,
the buffers can be appropriately sized automatically. How quickly can the mini-
mal model for a state be deduced and can we give upper and lower bounds for
the duration of one timestamp? The last two questions are especially interest-
ing with regards to real-time applications and safety and liveness properties of
embedded systems.

References

1. Agatolio, F., Moro, M.: A workshop to promote Arduino-based robots as wide
spectrum learning support tools. In: Merdan, M., Lepuschitz, W., Koppensteiner,
G., Balogh, R. (eds.) Robotics in Education - Research and Practices for Robotics
in STEM Education. AISC, vol. 457, pp. 113–125. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-42975-5 11

2. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.:
Dedalus: datalog in time and space. In: de Moor, O., Gottlob, G., Furche, T.,
Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 262–281. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24206-9 16

3. Brass, S.: SLDMagic — the real magic (with applications to web queries). In:
Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 1063–1077. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44957-4 71

4. Brass, S., Stephan, H.: Pipelined bottom-up evaluation of datalog programs: the
push method. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742,
pp. 43–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4 4

5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Kael-
bling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30
July–5 August 2005, pp. 90–96. Professional Book Center (2005). http://ijcai.org/
Proceedings/05/Papers/1353.pdf

6. Eiter, T., Subrahmanian, V.S., Pick, G.: Heterogeneous active agents, I: seman-
tics. Artif. Intell. 108(1–2), 179–255 (1999). https://doi.org/10.1016/S0004-
3702(99)00005-3

https://doi.org/10.1007/978-3-319-42975-5_11
https://doi.org/10.1007/978-3-319-42975-5_11
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1007/3-540-44957-4_71
https://doi.org/10.1007/978-3-319-74313-4_4
http://ijcai.org/Proceedings/05/Papers/1353.pdf
http://ijcai.org/Proceedings/05/Papers/1353.pdf
https://doi.org/10.1016/S0004-3702(99)00005-3
https://doi.org/10.1016/S0004-3702(99)00005-3

138 M. Wenzel and S. Brass

7. Engels, C., Behrend, A., Brass, S.: A rule-based approach to analyzing database
schema objects with datalog. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR
2017. LNCS, vol. 10855, pp. 20–36. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94460-9 2

8. Grebe, M., Gill, A.: Haskino: a remote monad for programming the arduino. In:
Gavanelli, M., Reppy, J. (eds.) PADL 2016. LNCS, vol. 9585, pp. 153–168. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-28228-2 10

9. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow pro-
gramming language LUSTRE. In: Proceedings of the IEEE, pp. 1305–1320 (1991)

10. Helbling, C., Guyer, S.Z.: Juniper: a functional reactive programming language for
the Arduino. In: Janin, D., Sperber, M. (eds.) Proceedings of the 4th International
Workshop on Functional Art, Music, Modelling, and Design, FARM@ICFP 2016,
Nara, Japan, 24 September 2016, pp. 8–16. ACM (2016). https://doi.org/10.1145/
2975980.2975982

11. Jordan, H., Scholz, B., Subotić, P.: Soufflé: on synthesis of program analyzers.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 422–430.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 23

12. Lausen, G., Ludäscher, B., May, W.: On active deductive databases: the statelog
approach. In: Freitag, B., Decker, H., Kifer, M., Voronkov, A. (eds.) DYNAMICS
1997. LNCS, vol. 1472, pp. 69–106. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0055496

13. Mart́ın-Ramos, P., da Silva, M.M.L., Lopes, M.J., Silva, M.R.: Student2student:
Arduino project-based learning. In: Garćıa-Peñalvo, F.J. (ed.) Proceedings of the
Fourth International Conference on Technological Ecosystems for Enhancing Mul-
ticulturality, Salamanca, Spain, 02–04 November 2016, pp. 79–84. ACM (2016).
http://dl.acm.org/citation.cfm?id=3012500

14. Russell, I., Jin, K.H., Sabin, M.: Make and learn: A CS principles course based
on the arduino platform. In: Clear, A., Cuadros-Vargas, E., Carter, J., Túpac, Y.
(eds.) Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education, ITiCSE 2016, Arequipa, Peru, 9–13 July 2016, p.
366. ACM (2016). https://doi.org/10.1145/2899415.2925490

15. Schwarz, S., Wenzel, M.: Controlling Lego EV3 robots with Prolog. In: Seipel, D.,
Hanus, M., Abreu, S. (eds.) Declare 2017 - Conference on Declarative Program-
ming, 31st Workshop on Logic Programming (WLP 2017) (2017). https://www.
uni-wuerzburg.de/fileadmin/10030100/Publications/TR Declare17.pdf

16. Specht, E., et al.: Analysis of the use of declarative languages for enhanced embed-
ded system software development. In: Petraglia, A., Pedroni, V.A., Cauwenberghs,
G. (eds.) Proceedings of the 20th Annual Symposium on Integrated Circuits and
Systems Design, SBCCI 2007, Copacabana, Rio de Janeiro, Brazil, 3–6 September
2007, pp. 324–329. ACM (2007). https://doi.org/10.1145/1284480.1284565

https://doi.org/10.1007/978-3-319-94460-9_2
https://doi.org/10.1007/978-3-319-94460-9_2
https://doi.org/10.1007/978-3-319-28228-2_10
https://doi.org/10.1145/2975980.2975982
https://doi.org/10.1145/2975980.2975982
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1007/BFb0055496
https://doi.org/10.1007/BFb0055496
http://dl.acm.org/citation.cfm?id=3012500
https://doi.org/10.1145/2899415.2925490
https://www.uni-wuerzburg.de/fileadmin/10030100/Publications/TR_Declare17.pdf
https://www.uni-wuerzburg.de/fileadmin/10030100/Publications/TR_Declare17.pdf
https://doi.org/10.1145/1284480.1284565

Towards Constraint Logic Programming
over Strings for Test Data Generation

Sebastian Krings1(B), Joshua Schmidt2, Patrick Skowronek3,
Jannik Dunkelau2, and Dierk Ehmke3

1 Niederrhein University of Applied Sciences, Mönchengladbach, Germany
sebastian@krin.gs

2 Institut für Informatik, Heinrich-Heine-Universität, Düsseldorf, Germany
3 periplus instruments GmbH & Co. KG, Darmstadt, Germany

Abstract. In order to properly test software, test data of a certain qual-
ity is needed. However, useful test data is often unavailable because exist-
ing or hand-crafted data might not be diverse enough to enable desired
test cases. Furthermore, using production data might be prohibited due
to security or privacy concerns or other regulations. At the same time,
existing tools for test data generation are often limited.

In this paper, we evaluate to what extent constraint logic program-
ming can be used to generate test data, focusing on strings in particular.
To do so, we introduce a prototypical CLP solver over string constraints.
As case studies, we use it to generate valid IBAN numbers, calendar
dates and specific data in JSON.

1 Introduction

Gaining test data for software tests is notoriously hard. Typical limitations
include lack of properly formulated requirements or the combinatorial blowup
causing an impractically large amount of test cases needed to cover the system
under test (SUT). When testing applications such as data warehouses, difficul-
ties stem from the amount and quality of test data available and the volume
of data needed for realistic testing scenarios [9]. Artificial test data might not
be diverse enough to enable desired test cases [15], whereas the use of real data
might be prohibited due to security or privacy concerns or other regulations [18],
e.g., the ISO/IEC 27001 [17]. Further challenges have been identified by Khan
and ElMadi [20].

In consequence, to properly test applications one often has to resort to arti-
ficial test data generation [18]. However, existing tools are limited as they

– generate data that does not cover the desired scenarios [15],
– are specialized and lack options for configuration and adaptation [16], and
– generate an amount of data that is unrealistic for the SUT [29].

In this paper, we evaluate to what extent constraint logic programming could
be used for test data generation, in particular for generating strings. We are not
concerned with software testing itself.
c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 139–159, 2020.
https://doi.org/10.1007/978-3-030-46714-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-46714-2_10

140 S. Krings et al.

2 Test Data

The International Software Testing Qualifications Board (ISTQB) describes test
data as data created or selected to satisfy the preconditions and inputs to execute
one or more test cases [30]. Test data may belong to the following categories:

– status data, files or surrounding systems required for a reusable start state,
– input data transferred to a test object during test execution,
– output data returned by a test object after execution,
– production data, which is deducted from the production system.

Production data is often used for testing as it provides obvious test cases and
can be gathered easily. However, using production data does not lead to thorough
testing, e.g., it never contains dates in the future. While production data can
be anonymized, it is hard to guarantee that de-anonymization is impossible.
Furthermore, production data may be biased.

Those problems can be solved by generating synthetic data. The implemen-
tation of a test data generator for each specific problem is cumbersome. One just
wants to describe the problem at hand without implementing the actual data
generation. We therefore consider constraint programming to be appropriate for
implementing general test data generators. In particular, relying on constraint
programming provides a number of further benefits common to declarative lan-
guages: specification of data and generating programs are more closely related
and maintainability is increased. Furthermore, constraint-based and logic pro-
gramming allows to easily extend given specifications by further constraints and
thus increases extensibility and combinability.

However, generating synthetic data remains a complex task as it involves
thoroughly specifying constraints the data needs to fulfill in order to derive high
quality test data.

2.1 Test Data Generators

The generation of synthetic test data can be supported by different test data
generators [30]: database-based generators synthesize data according to database
schemata or create partial copies of database contents, i.e., they rely on produc-
tion data. Interface-based generators analyze the test object’s API and determine
the definition areas of input parameters to derive test data from. In this context,
test oracles cannot be derived.

Code-based generators take the source code of the SUT into account, which
has disadvantages. For instance, it prevents oracle generation and is unable to
work with source code that is not available (e.g., for foreign libraries). Fur-
thermore, code-based generators are a weak test base, especially lacking the
intellectual redundancy necessary for testing (four-eyes principle) [27], i.e., the
understanding of how a system is supposed to work and how it is implemented
are necessarily identical if tests are generated purely based on code.

Specification-based generators generate test data and oracles based on spec-
ifications written in a formal notation. A specification-based generator could

Towards Constraint Logic Programming over Strings 141

thus generate data that replaces production data. The quality of the test data
is ensured by the model and the correctness of the solver. This includes quality
aspects such as conformity and accuracy. To build such a generator, constraint
solving over all needed data types is required.

2.2 Requirements Towards Solvers

To gain a sensible set of requirements for a string constraint solver for test data
generation, we decided to look at the feature set of Oracle SQL. The reasoning
behind this is as follows: SQL was designed for the description of complex data
flows and is therefore suited as a modeling language for test data generation [22].
It is widely used by developers, test data specialists and technical testers, i.e.,
they would be able to use it as a possible input language for generation tools.
Additionally, SQL statements can easily be extracted from source code and can
thus be used to automatically generate test data for given applications. Further-
more, SQL is declarative and offers a good level of abstraction.

There are several types of strings in Oracle SQL1, in particular, unbounded
unicode strings. In addition, other data types are required for practical test
data: integers, fixed point numbers, reals and dates. There are no booleans in
SQL, however, booleans ease encoding complex SQL conditions into constraints.
Regarding BLOBs (e.g., images stored inside the database), we are so far not
interested in supporting them, since SQL does not provide operations on them
and their semantics are usually invisible to the applications.

Oracle SQL lists 54 functions on strings2. The ones we are interested in are

– CONCAT: concatenation of strings,
– LENGTH: returns the length of a string,
– REGEXP: tests, whether a string matches a given regular expression or not,
– SUBSTRING: returns a substring with given start position and length,
– TO_NUMBER: convert a string to number and vice versa.

Other operations can often be implemented with these functions or are not
of interest for test data generation. REGEXP requires the solver to process
regular expressions. The constraint handlers for all types must interwork since
dependencies can exist between variables of different types. While we expect
correctness, we cannot expect (refutation) completeness, since once all desired
operations are added the problem becomes undecidable [7].

3 Related Work and Alternative Approaches

In the following, we will briefly present alternative approaches to constraint logic
programming. For a selection of alternative solvers, we will discuss their imple-
mentation paradigms, in order to later compare to constraint logic programming.
1 https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/tables-and-

table-clusters.html#GUID-A8F3420D-093C-449F-87E4-6C3DDFA8BCFF.
2 https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/Functions.

html#GUID-D079EFD3-C683-441F-977E-2C9503089982.

https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/tables-and-table-clusters.html#GUID-A8F3420D-093C-449F-87E4-6C3DDFA8BCFF
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/tables-and-table-clusters.html#GUID-A8F3420D-093C-449F-87E4-6C3DDFA8BCFF
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/Functions.html#GUID-D079EFD3-C683-441F-977E-2C9503089982
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/Functions.html#GUID-D079EFD3-C683-441F-977E-2C9503089982

142 S. Krings et al.

3.1 Autogen

Autogen [10] is a specification-based test data generator. autogen is able to
directly use SQL as an input language. In order to generate test data from it,
SQL is considered as specification of the SUT and is converted into constraints.
autogen uses an independently developed string constraint solver called CLPQS,
which handles all requirements stated in Sect. 2.2. To support the data types of
SQL, autogen interacts with a set of different solvers. In particular, it relies on
CLP(Q) and CLP(R) for rationals and reals, which have some limitations when
it comes to completeness. CLPQS represents domains as regular expressions.
One motivation for this paper is to experiment with different representations
and propagation algorithms.

3.2 MiniZinc

MiniZinc is a solver-independent modeling language for constraint satisfaction
and optimization problems. A MiniZinc model is compiled into a FlatZinc
instance which can be solved by a multitude of constraint solvers. An extension
of the MiniZinc modeling language with string variables and a set of built-in
constraints has been suggested by Amadini et al. [3]. String variables are defined
as words over the alphabet of ASCII characters and have a fixed, bounded or
unbounded length. Yet, strings are represented as bounded length arrays of inte-
gers when translating to FlatZinc. The MiniZinc model itself does allow strings of
unbounded length though. MiniZinc enables optimization over constraints rather
than just satisfiability and allows mixing constraints over different domains.
However, there are no direct conversions from other types to strings.

3.3 SMT Solvers

SMT solvers such as CVC4 [5] and Z3 [8] have been used for test case generation
in the context of programming languages [31]. Both solvers support constraints
over strings and regular expressions and are able to handle operations such as
concatenation, containment, replacement and constraining the length of strings.

In Z3’s original string solver, strings are represented as sequences over bit-
vectors. The solver itself is incomplete and relies on heuristics. In contrast,
Z3-str [39] introduces strings as primitive types. Z3-str leverages the incre-
mental solving approach of Z3 and can be combined with boolean and inte-
ger constraints. There have been several improvements of Z3-str in recent
years [6,33,38].

CVC4’s string solver [24,25] allows mixing constraints over strings and the
integers. The authors present a set of algebraic techniques to solve constraints
over unbounded strings, usable for arbitrary SMT solvers.

Another SMT solver for string constraints is Trau [1], which, in contrast to
CVC4 and Z3, supports context-free membership queries and transducer con-
straints by using pushdown automata. Trau implements a Counter-Example
Guided Abstraction Refinement (CEGAR) framework, computing over- and

Towards Constraint Logic Programming over Strings 143

under-approximations to improve performance. Key idea in Trau is a tech-
nique called flattening [2], leveraging that (un)satisfiability can be shown using
witnesses of simple patterns expressable as finite automata.

3.4 Other Solvers

Kiezun et al. presented Hampi [21], a constraint solver over strings of fixed
length featuring a set of built-in constraints. Hampi is able to reason over regu-
lar languages. String constraints are encoded in bit-vector logic which are then
solved by the STP [13] bit-vector solver. At the expense of expressiveness, lim-
iting the length of strings enables a more restricted encoding, increasing the
performance by several orders of magnitude. However, a bit-vector encoding has
a larger memory consumption than using finite automata.

G-Strings [4] is an extension of the Gecode constraint solver [28]. Both
solvers accept strings of bounded but possibly unknown length. In contrast to
Gecode, strings are not represented using integer arrays but as a restricted lan-
guage of finite regular expressions. This prevents the static allocation of possibly
large integer arrays and thus improves performance.

Fu et al. introduced Simple Linear String Equations (SISE) [12], a formalism
for specifying constraints on strings of unbounded length, and presented the
constraint solver Sushi using finite automata to represent domains.

3.5 Summary

In summary, several approaches have been suggested for string constraints. How-
ever, no single approach is able to satisfactorily handle the requirements posed
for test data generators described in Sect. 2.2. A comparison of different solvers
considering the features described in Sect. 2.2 is shown in Table 1. The require-
ment of a combined solver states that a direct conversion between strings and
other types is provided. As ConString has been developed specifically for this
problem domain, it naturally supports the most requirements.

4 Constraint Logic Programming over Strings

We implement a constraint logic programming system for strings using Con-
straint Handling Rules (CHR) [11] on top of SWI-Prolog [37] called ConString.
We use classic constraint propagation to reduce variable domains. The system
supports strings of unbounded length and is coupled with CLP(FD), CLP(R)
and CLP(B) to handle the integers, reals and booleans respectively. While not
all SQL string operations are implemented yet, we plan to do so in the future.
One goal is to employ different techniques than CLPQS to compare and pos-
sibly improve both solvers. We think CLP is adequate since there are many
other solvers to build up upon and since it provides access to all solutions using
backtracking.

In the following, we present our encoding of string domains and discuss
its advantages and drawbacks, followed by the currently featured constraints,
selected constraint handling rules and solver integrations.

144 S. Krings et al.

Table 1. Features of constraint solvers. (✓) indicates partial support or workaround.

Solver Strings Combined solver
Unbounded Unicode SQL operations Integer Boolean Real

CLPQS ✓ ✓ ✓ ✓ ✓ (✓)
MiniZinc ✗ ✗ (✓) ✗ ✗ ✗

CVC4 ✓ ✗ ✓ ✓ ✗ ✗

Z3-str3 ✓ ✗ (✓) ✓ ✗ ✗

S3 ✓ ✗ ✓ ✓ ✓ ✗

Hampi ✗ ✗ (✓) ✗ ✗ ✗

Sushi ✓ ✓ ✓ ✗ ✗ ✗

G-Strings ✗ ✗ (✓) ✗ ✗ ✗

Trau ✓ ✗ ✓ ✓ ✗ ✗

4.1 Domain Definition

To fulfill the requirements posed in Sect. 2.2, we decided not to enforce a fixed
length of strings and to use regular expressions as input. The employed alpha-
bet consists of ASCII characters and some special characters like umlauts and
accented characters. Dynamic character matching is possible by specifying ranges
(e.g., [0-9a-f]), or by using the dot operator. We match a whitespace in regular
expressions by \s while actual whitespace characters can be used to structure
regular expressions without being part of the accepted language.

Further, we support the usual regular expression operators on characters,
i.e., quantity operators (*, + and ?) and the alternative choice operator (|). For
convenience, our regular expressions offer more strict repetition definitions noted
by {n} (exactly n times), {m,n} (m to n times) and {m,+} (at least m times).

4.2 Domain Representation

Since ConString is supposed to handle strings of unbounded length, we repre-
sent domains as finite automata as done by Golden et al. [14]. First, this allows
for a concise specification of regular languages with low memory consumption.
Second, finite automata support basic operations such as union, intersection,
concatenation or iteration and are closed under each of these operations. In
particular, we use non-deterministic finite automata with ε-transitions.

Since SWI-Prolog does not have a native library for handling finite automata,
we encode them as a self-contained term automaton_dom/4 consisting of a set
of states, a transition relation as well as a set of initial and final states. The
states are a coherent list of the integers 1 . . . n, n ∈ N. The transition relation is
implemented as a list of triples containing a state s1, a range of characters (might
contain a single character only) and a target state s2 reached after processing a
character from the range of characters in s1, e.g., (0, a, 1).

Towards Constraint Logic Programming over Strings 145

We implement the common operations on finite automata used for regular
languages as well as basic uninformed search algorithms used to label automata,
i.e., to find a word having an accepting run. The search is backtrackable providing
access to an automaton’s complete language.

Efficiency. The chosen representation of finite automata has several drawbacks.
We use lists to store states and transitions providing linear time concatenation
and element access leading to a loss of performance, especially when labeling
automata. It would be desirable to use a data structure such as hashsets, which
provide amortized constant time performance for basic operations. However, such
a data structure is currently unavailable in SWI-Prolog3.

Another drawback is that we have to rename states when performing basic
operations on automata. For instance, the concatenation A1.A2 is implemented
by using the final states of A2 for the resulting automaton and adding an ε-
transition from all final states of A1 to all initial states of A2. In order to avoid
ambiguities, the states of A2 have to be renamed by shifting their identifier
names by the number of states in A1. This renaming is one of the main issues
for efficiency as it adds a linear time complexity component with respect to the
size of the second automaton to all the basic operations.

4.3 Constraint Handling Rules

We use CHR on top of SWI-Prolog providing the constraint store and propaga-
tion unit to reduce variable domains. Moreover, CHR serves as user interface.

The CHR language is committed-choice, i.e., once a rule is applied it cannot
be revoked by backtracking. Rules consist of three parts: a head, a guard and a
body. A rule is triggered as soon as the head matches constraints in the constraint
store. Guards allow imposing restrictions on rule execution. Finally, the body
consists of Prolog predicates and CHR constraints. Predicates are called as usual
while constraints are added to the constraint store, possibly triggering further
propagation. All available constraints are propagated until the constraint store
reaches a fix point. Solving fails if an empty string domain is discovered.

CHR provides three different kinds of rules: First, propagation rules of the
form head ==> guard | body, where the body is called if the guard is true. The
head constraints are kept. Simplification rules of the form head <=> guard |
body update the constraint store by replacing the head constraints by those
derived from the body. Simpagation rules of the form head1 \ head2 <=>
guard | body are combined rules, retaining the constraints of the first part
of the head while discarding those of the second part.

Our implementation currently supports several basic operations on regular
languages such as intersection, concatenation or iteration as well as a mem-
bership constraint, arithmetic length constraints (fixed or upper bound), string
3 While SWI-Prolog has built-in support for dictionaries, element access is logarithmic

and updates are linear in size.

146 S. Krings et al.

Listing 1. CHR rules for the membership constraint str_in/2.

1 str_in(S1 , S2) <=>
2 string(S2) | gen_dom(S2 , D), str_in(S1 , D).
3 str_in(_, D) ==> is_empty(D) | fail.
4 str_in(Var ,D) ==> D = string_dom(Cst) | Var = Cst.
5 str_in(S, D1), str_in(S, D2) <=>
6 D1 \= D2 | intersection(D1 , D2, D3), str_in(S, D3).
7 str_in(S, D1)\ str_in(S, D2) <=> D1 == D2 | true.

Listing 2. CHR rules for the concatenation constraint str_concat/3.

1 str_in(S1 , D1), str_in(S2 , D2), str_concat(S1 , S2 , S3) ==>
2 concat(D1 , D2, D3), str_in(S3 , D3).
3 str_in(S1 , D1), str_concat(S1, S1 , S3) ==>
4 concat(D1 , D1, D3), str_in(S3 , D3).

to integer conversion, prefix, suffix and infix constraints and case sensitivity
constraints. For now, we ensure arc- and path-consistency of our constraints.
Variables can be labeled using str_label(+Vars) or str_labeling(+Options,
+Vars). As options, we currently support selecting the search strategy for
automata (dfs, idfs, bfs) and any option on integer domains provided by SWI-
Prolog’s CLP(FD) library. In the following, we will describe selected constraint
handling rules in more detail.

The membership constraint is defined as shown in Listing 1. The first rule is
applied in case membership is called with a string or regular expression. Then,
a finite automaton representing the input domain is generated and the same
constraint is applied to this automaton domain. The second rule states that
whenever a domain is empty constraint solving should fail as no solution exists.
Third, in case the string domain becomes constant, we propagate the value to
the variable. The fourth rule joins two non-equal membership constraints for the
same variable by intersecting both domains and replacing the two constraints by
a single membership constraint. A final rule is used to remove one of two identical
membership constraints. Note that gen_dom/2 and intersection/3 are called
for internal domain computation and not added to the constraint store.

Concatenation is defined using two rules as shown in Listing 2. It relies on the
membership constraint by assuming that two str_in/2 refer to different vari-
ables. The first rule defines the concatenation of two different string variables
by concatenating their automata domains and adding a new membership con-
straint for the result. Analogously, the second rule defines the concatenation of
the same string variable onto itself. In order to efficiently propagate a constant
string result to the first two arguments, we add a third rule using SWI-Prolog’s
string concatenation, e.g., string_concat(A, B, “test”), providing all solu-
tions on backtracking. If a candidate has been found, it is checked upon labeling

Towards Constraint Logic Programming over Strings 147

Listing 3. CHR rules for the infix constraint str_infix/2.

1 str_infix(S, IStr) <=>
2 string(IStr) | gen_dom(IStr , IDom), str_infix(S, IDom).
3 str_infix(S, IDom) <=>
4 any_char_dom(A), repeat(A, AStar),
5 concat(IDom , AStar , T), concat(AStar , T, ResDom),
6 str_in(S, ResDom).

whether the candidate is accepted by the corresponding domains. If so, mem-
bership constraints are propagated assigning constant values to all arguments.

The iteration operation str_repeat/[2,3,4] is defined as repeated con-
catenation. Case sensitivity operations are defined by setting up membership
constraints to generated domains accepting only upper or lower case characters.

The infix operation str_infix/2 for two string variables s1 and s2 is defined
by adding a membership constraint for s1 to be an element of the regular lan-
guage L(.∗).L(s2).L(.∗) as shown in Listing 3. Again, the first rule is a wrapper
generating a finite automaton domain from a string or regular expression. Prefix
and suffix operations are defined in the same manner.

4.4 Integration of CLP(FD), CLP(R) and CLP(B)

In order to enable the generation of richer test data and allow for a greater
coverage of test scenarios, we extend ConString to support combining con-
straints over different domains. In particular, we support constraints over finite
domain integers using CLP(FD) [34], constraints over reals using CLP(R) and
constraints over booleans using CLP(B) [35,36]. As an interface, we provide the
bidirectional constraints str_to_int/2, str_to_real/2 and str_to_bool/2.

The implementation of str_to_int/2 consists of four rules as shown in List-
ing 4. In order to detect failure early we check for inequality if both arguments
are constants. If only the integer variable is a constant, we convert and assign the
value to the string. In the third rule, a constant string is assigned to the integer
variable. Note that number_string/2 removes leading zeros by default. Besides
that, we provide a rule to fail for constant strings not representing integers.

We additionally provide a second implementation str_to_intl/2 allowing
leading zeros in order for constraints such as str_to_int(“00”, 0) to hold.
This is achieved by additionally concatenating the domain of 0∗ to IDom in line
6 of Listing 4.

The integration of CLP(R) and CLP(B) is implemented analogously prop-
agating membership constraints to a specific backend if variables are constant
values. Again, alternative implementations are provided allowing an arbitrary
amount of leading zeros when converting from string to boolean or real.

148 S. Krings et al.

Listing 4. Basic rules for the integration of CLP(FD) propagating constant values.

1 str_to_int(S,I) ==>
2 string(S), integer(I), number_string (SInt , S), I \== SInt |
3 fail.
4 str_to_int(S,I) ==>
5 integer(I), number_string (I, IString) |
6 cst_str_dom(IString , IDom), str_in(S, IDom).
7 str_to_int(S,I), str_in(S,D) ==>
8 D = string_dom(CstString),
9 number_string (CstInteger , CstString) | I #= CstInteger.

10 str_to_int(S,_), str_in(S,D) ==>
11 D = string_dom(CstString), \+ number_string (_, CstString) |
12 fail.

5 Case Studies

In this section, we will present three case studies of using ConString: a genera-
tion of IBANs, calendar dates and data tables in JSON. Finally, we will conclude
this section with a discussion of the benefits from constraint logic programming
compared to typical test data generators.

5.1 Generation of IBAN Numbers

As a case study, we specify the computation of valid International Bank Account
Numbers (IBANs) as a constraint system as done by Friske and Ehmke [10]. This
example is of interest as it yields a relatively large search space and requires the
conversion between the integers and strings. Generated data can, for instance,
be used to initialize unit tests of components validating IBANs. This example is
an excerpt of a project where an interface between a SEPA credit transfer and
a micro-service managing financial push notifications has been tested.

A German IBAN consists of 22 characters which are characterized as follows:
The first two characters represent the country code (here, the constant “DE”)
while the third and fourth characters are a checksum. The remaining 18 digits
represent the Basic Bank Account Number (BBAN).

We can compute valid IBANs using a given country code as follows: Represent
the country code as a digit where “A” equals 10, “B” equals 11, etc. The German
country code “DE” is hence encoded as 1314. Concatenate two zeros to the
encoded country code (i.e., 131400) and prepend the BBAN. This forms a 24
digit number, σb. In order to compute the valid checksum σc, the constraint
98− (σb mod 97) = σc must hold. Finding a solution binds the BBAN to a value
in its domain and provides its corresponding checksum σc. To derive the actual
BBAN, remove the suffix “131400”. Finally, concatenate the computed checksum
σc with the BBAN and prepend the country code “DE” as a string.

Towards Constraint Logic Programming over Strings 149

Listing 5. Constraint system to compute all valid german IBANs.

1 iban(IBAN) :-
2 SigmaC in 0..96 ,
3 BBAN in 100000000000000000..999999999999999999 ,
4 SigmaB #= BBAN * 1000000 + 131400 ,
5 SigmaB mod 97 #= SigmaC ,
6 str_label ([SigmaB , SigmaC]),
7 str_to_int(BBANStr , BBAN),
8 CheckSum #= 98 - SigmaC ,
9 str_to_intl(CheckSumStr , CheckSum),

10 str_size(CheckSumStr , 2),
11 str_in(DE , "DE"),
12 str_concat(DE , CheckSumStr , IBANPrefix),
13 str_concat(IBANPrefix , BBANStr , IBAN),
14 str_label ([IBAN]).

Table 2. Benchmarks for generating IBANs. Walltime in seconds.

Amount 1 10 100 1,000 10,000 100,000 250,000

CLPQS 0.006 0.024 0.240 2.029 32.163 1525.457 9261.204
ConString 0.007 0.038 0.105 1.066 26.573 1342.597 9841.225

The complete constraint system is shown in Listing 5. Lines 3 and 4 define the
BBAN and the 24 digits number σb respectively. The constraint for computing
σc is set in line 5. The remaining specification is straightforward as described
above. Note that we allow leading zeros for the checksum’s string.

For benchmarking, we generate sets of IBANs of varying sizes, using
an Intel Core i7-6700K with 16GiB RAM. We used SWI-Prolog’s predicate
statistics/2 to measure the walltime. Table 2 shows the median time of five
independent runs and compares our solver with CLPQS. As can be seen, Con-

String performs overall slightly better than CLPQS with the exception of the
generation of 250,000 IBANs. Up to one thousand samples both solvers appear
to scale linearly. Notable exception is the jump from 10,000 to 100,000 gen-
erated samples. Here, both solvers scale worse: CLPQS scales with a factor
of 47, whereas ConString takes 50 times as long as for generating 10,000
IBANs instead of the expected factor of 10. At least for ConString, experi-
mental results have shown that this non-linear growth is caused by SWI-Prolog’s
CLP(FD) library.

We also encoded the example in SMT-LIB to compare ConString and
CLPQS with Z3-str3 and CVC4. Unfortunately, CVC4 did not return a result
but timed out after 600 s. Z3-str3 found a single solution in around 0.2 s. We

150 S. Krings et al.

Listing 6. Constraint system to compute diverse calendar date expressions.

1 date(Date) :-
2 WeekDay str_in "Monday|Tuesday |...| Sunday",
3 Month str_in "January|February |...| December",
4 Day str_in "[1 -9]|[1 -2][0 -9]|3[0 -1]",
5 Year str_in "[1 -9][0 -9]{0 ,3}",
6 MonthDay match Month + "_" + Day ,
7 MonthDayYear match MonthDay + ",_" + Year \/ MonthDay ,
8 FullDate match WeekDay + ",_" + MonthDayYear ,
9 Date match MonthDayYear \/ FullDate \/ WeekDay ,

10 str_label ([Date]).

Table 3. Benchmarks for generating date expressions. Walltime in seconds.

Amount 1 10 100 1,000 10,000 100,000

CLPQS 0.000 0.000 0.000 0.000 0.000 0.010
ConString 0.010 0.010 0.010 0.011 0.080 0.965

were unable to compute multiple solutions using Z3-str3 as the solver timed out
searching for further ones.

5.2 Generation of Calendar Dates

Another example is the generation of various date expressions, which is of interest
for testing for many tools which need to parse valid dates and reject invalid
ones. The accepted expressions are of either of the forms “Tuesday”, “August
30”, “Tuesday, August 30”, “August 30, 2016” or “Tuesday, August 30, 2016”.
Listing 6 shows the corresponding constraints taken from Karttunen et al. [19,
Section 3]. The constraint system consists of defining the basic building blocks
first: the weekdays, the months and valid year numbers. Thus, only the years
1 to 9999 are accepted. Further, the more complex parts are constructed each
consisting of a combination of operations on variables constrained before. This
leads up to the final definition of Date as a union of all possible notations.

Note that we employ a shorthand notation for the setup of constraints.
MonthDayYear for example has to match the language defined by the union
of the MonthDay domain and the concatenation of MonthDay, a separator and
the Year. This notation enables a more readable definition of constraint systems.

Table 3 shows a brief performance evaluation as done in Sect. 5.1. As can
be seen, CLPQS is notably faster than ConString. The automata created by
ConString are probably large due to the alternative choice operator and the
union operator leading to a lack of performance when labeling data. Reducing the
size of automata, e.g., by removing ε-transitions, will likely increase performance.

Towards Constraint Logic Programming over Strings 151

Listing 7. An exemplary dataset in JSON containing the colors black and white.

1 { "colors": [
2 { "color": "black",
3 "code": { "rgb": [0,0,0], "hex": "#000000" } },
4 { "color": "white",
5 "code": { "rgb": [255 ,255 ,255] , "hex": "#FFFFFF" } }] }

We also encoded the example in SMT-LIB to compare ConString and
CLPQS with Z3-str3 and CVC4. Z3 found a single solution in around 0.070 s
while CVC4 took around 0.084 s. Again, we were unable to compute multiple
solutions with both solvers as they timed out.

5.3 Generation of Data in JSON

As a further and more involved example, we want to generate data describing dif-
ferent colors in JavaScript Object Notation (JSON). A color should be described
by a name, a six byte hexadecimal code and a corresponding RGB color code.
An exemplary dataset in JSON containing the colors black and white is shown
in Listing 7.

For the given example, we want to ensure that the hexadecimal and RGB
code of a color match each other. Further, each color in the set of colors should
be unique. The latter requirement entails the need of two further constraints not
mentioned in this paper yet: First, we need to be able to state the difference
between two string variables (str_diff/2). This is achieved by a propagation
rule which is triggered if both string variables have been labeled, i.e., they hold
constant values, and checks for exact inequality (\==/2) between both values. If
both values are equal, ConString backtracks and searches for different values
effectively restarting the computation from the last choicepoint. Second, we need
to be able to state the difference of strings in between a list of string variables
(str_all_diff/2). This is achieved by a simplification rule propagating pairwise
inequality constraints for each pair of elements.

The constraint system used to generate datasets in JSON as described above
is shown in Listing 8. First, we generate a given amount of hexadecimal color
codes which have to be all different (lines 20 and 21). After labeling all hex-
adecimal color codes, we generate the corresponding RGB color codes using
SWI-Prolog’s predicate hex_bytes/2. We then use the labeled hexadecimal and
RGB color codes to generate the strings describing a dataset entry, which is
achieved by the predicate get_color_entry/3, and join all strings by concate-
nation (list_of_colors_concat/3). Finally, we further concatenate strings to
the generated string concatenation describing single dataset entries (line 24) to
obtain the desired data format in JSON. This last step shows the difference

152 S. Krings et al.

Listing 8. The constraint system to generate datasets in JSON containing colors.

1 get_color_entry (Hex , RgbList , Color) :-
2 term_string(RgbList , Rgb1),
3 escape_special_characters (Rgb1 , Rgb),
4 Prefix = "\\{\" color \":\" test \",\" code \":\\{\" rgb\":",
5 Color match Prefix + Rgb + " ,\"hex \":#" + Hex + "\\}\\}".
6 list_of_colors_concat_acc ([], [], Acc , Acc).
7 list_of_colors_concat_acc ([Hex|HT], [Rgb|RT], Acc , Concat) :-
8 get_color_entry (Hex , Rgb , Color),
9 NewAcc = ’+’(Acc , ’+’(",", Color)),

10 list_of_colors_concat_acc (HT , RT , NewAcc , Concat).
11 list_of_colors_concat ([], [], "").
12 list_of_colors_concat ([Hex|HT], [Rgb|RT], Concat) :-
13 get_color_entry (Hex , Rgb , Color),
14 list_of_colors_concat_acc (HT , RT , Color , Concat).
15 list_of_hex_codes (0, []) :- !.
16 list_of_hex_codes(C, [HexCode|T]) :-
17 str_in(HexCode , "([A-F]|[0 -9]) {6}"),
18 C1 is C-1, list_of_hex_codes(C1 , T).
19 json_colors(Amount , JSON) :-
20 list_of_hex_codes(Amount , LHex),
21 str_all_diff(LHex), str_label(LHex),
22 maplist(hex_bytes , LHex , RgbList),
23 list_of_colors_concat(LHex , RgbList , ColorsConcat),
24 JSON match "\\{\" colors \":\\[" + ColorsConcat + "\\]\\}",
25 str_label ([JSON]).

between test data generation and data structure generation. In theory, only the
first is needed to gain sensible test data, as the results can easily be stored in
various data structures depending on the requirements for the SUT. However,
integrating data structure generation into the constraint problem would render
data generation more self-contained and could thus be desirable for users. Both
data generation and data structure generation are strictly split inside the con-
straint system, i.e., there are two distinct blocks of constraints which are labeled
individually (see labelings in line 21 and 25 of Listing 8).

To evaluate the performance of ConString as done for the other case
studies, we generate one dataset for varying amounts of dataset entries, i.e.,
colors. We noticed several performance bottlenecks in both, ConString and
CLPQS, when trying to benchmark the JSON generation. ConString displayed
a quadratic increase in runtime with respect to the number of dataset entries.
autogen’s runtime was somewhat erratic, i.e., it was sometimes faster for a higher
(even) number of colors. Overall, autogen’s runtime was less predictable than the
one of ConString. We will discuss performance bottlenecks of both solvers and
how they can be coped with in the following three paragraphs.

Towards Constraint Logic Programming over Strings 153

Listing 9. An example showing a possible bottleneck for performance when imple-
menting str_all_diff/2.

1 str_in(X, "1|2"), str_in(Y, "1|2"),
2 str_in(Z, "[0 -9]{0 ,1000}"),
3 str_all_diff ([X,Y,Z]), str_label ([X,Y,Z]).

Order of Constraints. Although constraint systems are declarative, the order
of constraints influences performance. For instance, in the given example, we
have to ensure that the hexadecimal and RGB color codes are constant values
(lines 21 and 22) before setting up the concatenation constraints. Otherwise,
performance drops drastically since large automata domains have to be created
holding variable references. As soon as such a variable reference is labeled, con-
catenation constraints are triggered and automata have to be intersected with
their prior automata domains (see Sect. 4.3, Listing 1) containing the unlabeled
variable references, ultimately leading to bad performance. Note that within our
framework, the intersection operation on finite automata is usually the most
complex operation when solving string constraints. If we evaluate the concate-
nations after all necessary variables have been labeled (lines 23 and 24), no
intersections have to be computed on automata domains.

Performance of String Difference. Currently, str_diff/2 is only triggered
if both arguments are constant strings and does not propagate any knowledge to
an unlabeled domain of a string variable. This is a bottleneck for performance
when using the str_all_diff/1 constraint. Since we only support a linear enu-
meration order by now, the solver has to backtrack a lot for large lists of variables
between labeling a string and checking for inequality. If all variables have the
same domain (e.g., as shown in Listing 8), the domain gets enumerated linearly
for each variable in the list until finding a new value that is different to the ones
labeled so far. For ConString, this leads to a runtime that grows quadratic
with the size of the list of variables. As future work, we want to investigate
propagating knowledge to domains instead of only checking inequality between
constant strings. In SWI-Prolog’s CLP(FD) library this corresponds to the con-
straints all_different/1, which behaves similar to our implementation, and
all_distinct/1, which propagates knowledge to unlabeled domains.

In order to improve upon simple pairwise difference computation, it is essen-
tial to propagate str_diff/2 as soon as the two involved variables are constant
values instead of waiting for all variables to be labeled. For instance, consider
Listing 9 with X and Y sharing a domain and Z whose domain is considerably
larger. When labeling the variables using a linear enumeration order, the first
assignment of X and Y is the same, i.e., the string “1”. If the pairwise difference
constraints are triggered after labeling, the equality of the first two variables is
only identified after labeling all three variables, with the last choicepoint being

154 S. Krings et al.

Listing 10. Pseudocode of an IBAN test data generator.

1 bban = 100000000000000000
2 while bban <= 999999999999999999:
3 bban_country = bban * 1000000 + 131400
4 checksum = 98 - (bban_country mod 97)
5 iban = concat("DE", checksum , bban)
6 bban += 1
7 yield iban

in the labeling of Z although the variable is not involved in the conflict at all.
The solver would enumerate the domain of Z exhaustively, before detecting the
conflict. To counter this behaviour, one has to ensure that str_diff/2 is trig-
gered as soon as X and Y are labeled, possibly suspending an ongoing labeling of
variables.

Data Generation vs. Data Structure Generation. Generating a full data
structure in JSON representation drastically increased the strain put on the
constraint solvers. Within a single labeling operation, the combined generation
of data and JSON representation caused a lot of unneeded backtracking through
the two problems. With the two labeling operations split up, performance was
increased while decreasing the declarativeness of the problem statement.

Overall, including the data structure generation in the constraint satisfac-
tion problem lead to a severe performance decline. In consequence, we suggest
splitting the generation of test data from storing it inside an appropriate data
structure for testing. While this reduces self-containment of the encoding, it has
several benefits as well:

– Constraints are considerably simpler, in particular, many concatenation con-
straints are avoided at all.

– Variables are less intertwined which reduces the evaluation time of consistency
and propagation algorithms.

– Flexibility in the enumeration order is increased which could open the way
for optimization.

5.4 Comparison to Test Data Generators

In the following we will give a brief comparison between data generation tools
based on constraint solving, such as autogen and ConString, and typical test
data generators, i.e., imperative implementations of enumeration algorithms. In
this section we have seen three case studies in which we applied our approach of
constraint logic programming to test data generation. While the IBAN example
in Sect. 5.1 is motivated by a real world application (cf. Friske and Ehmke [10]),

Towards Constraint Logic Programming over Strings 155

it can easily be replicated by a typical test data generator not using a declar-
ative approach, as shown examplary in Listing 10. Such an IBAN generator
would probably also keep a linear runtime depending on the number of generated
IBANs, whereas we observed in Table 2 that ConString exhibits a non-linear
growth. However, if one is in need of generating IBANs with a certain check-
sum for testing purposes, the test data generator in Listing 10 would need to be
modified to account for the requirement. In contrast, with constraint program-
ming, e.g., as used by ConString and autogen, additional requirements can be
realized by simply adding a constraint, e.g., CheckSum #= DesiredChecksum.

The date example serves as data source to a common problem in program-
ming, that of parsing date inputs (e.g., by the user via a text field). Although the
generation itself can be done easily with a test data generator which randomly
chooses a style, a weekday and a calendar day, the implementation in Listing 6
can easily be improved to generate only valid dates (e.g., a correct weekday or
matching calendar day per month) by adding some further specifications into
the constraint system.

In our third example, the color database in JSON, we generate a more strictly
defined data set. While the hexadecimal and the RGB color code in a single
dataset entry must match, all colors in a generated dataset need to be exclusive.
In contrast to a classical imperative test data generator, in which one needs to
keep track of generated colors explicitly, our constraint-based approach enables a
more declarative implementation using difference constraints and backtracking.

In conclusion, traditional test data generators might run faster and can,
depending on the use case, be more suitable than a constraint solver. For highly
intertwined test data or requirements that are likely to change, a more declar-
ative approach based on constraint solving leads to a clearer specification of
the test data to be generated and allows for simple adaptation to requirement
changes. As seen in the calendar date example, using a declarative approach
allows constructing complex structures from simple building blocks. No further
control structures or instructions are required besides describing the data format.

Due to the intended use for test data generation, we have the strong belief
that such data driven development resonates more with the problem domain
than using, e.g., imperative programming languages. Thanks to Prolog’s off-the-
shelf backtracking capabilities, exhaustively traversing a search space is provided
by default and one does not depend on explicit loop constructs or caching of
results: each solution is found exactly once. Another benefit is the separation of
the definition of data and the search for solutions. Consider again the pseudocode
example shown in Listing 10. The enumeration order of calculated IBANs will
always be the same. To reach another order, the code again needs to be adapted.
On the other hand, the implementation for ConString shown in Listing 5
is independent of any enumeration order. The order can easily be changed by
passing a corresponding argument to str_labeling/2 as outlined in Sect. 4.3.

156 S. Krings et al.

6 Way Forward and Future Work

6.1 An Efficient Backend

For classic domain propagation to work on strings, an efficient representation of
possible values is needed. So far, we represent automata as outlined in Sect. 4.2.
As discussed, this is not the most efficient approach, as certain algorithms need
to traverse the list of states or transitions to find a particular one.

Other known automaton libraries such as dk.brics.automaton [26] feature
more efficient representations and algorithms. However, these are usually based
on using pointers or objects and cannot easily be ported to Prolog for obvious
reasons. At the same time, connecting the Java or C ports of the library to our
Prolog system leads to all kinds of difficulties when it comes to proper handling
of backtracking. Moreover, Prolog programs are no longer declarative when using
stateful data structures without cloning data after each operation.

As future work, we want to experiment with porting dk.brics.automaton or
a comparable library to Prolog while retaining its efficiency. So far, we have
different approaches in mind. First, we could implement low-level data struc-
tures outside of Prolog (e.g., in C) and render them backtrackable using a thin
Prolog layer. Second, we could mimic the internal workings of the library, e.g.,
using attributed variables to store (mutable) class variables and links to other
“objects”. While this would avoid possible backtracking issues, it would not be
as idiomatic. Furthermore, we want to evaluate whether it is more efficient to
use deterministic finite automata or, in general, ε-free automata. Additionally,
we do not provide options for labeling, e.g., concerning the enumeration order.
Additional options like enumerating a string domain in alphabetical, reversed
alphabetical or a randomized order will most likely improve performance for
some constraint satisfaction problems. This would also enable to provide dif-
ferent distributions of test data for a given domain. Especially a randomized
enumeration order enables the generation of more diverse test data. Yet, label-
ing options of integrated solvers like CLP(FD) can already be used.

6.2 Combining Solvers

Of course, a solver like the one we outlined above would still be too weak to
efficiently support the constraints we discussed in Sect. 1. In consequence, we
envision an integration of a CLP-based solver and the other solvers discussed
in Sect. 3 into a combined solving procedure. This could be done following the
approach we used for first-order logic in prior work [23].

A more simple strategy would be to use multiple solvers at once and returning
the first result computed. This will have a performance benefit, given that the
solvers described in Sect. 3 have diverse approaches and mixed performances in
certain situations. Implementing such a portfolio is somewhat complicated, since
there is no standardized interface for constraint solvers [25], leading to a large
overhead translating constraints in between solvers. However, a promising draft
for an interface [32] has been proposed recently.

Towards Constraint Logic Programming over Strings 157

7 Conclusion

In this paper, we discussed how synthetic test data can be generated and what
the common pitfalls are. We discussed currently available solvers over strings and
outlined that string constraint solving has made considerable progress recently.
However, hurdles remain and generation of artificial test data remains compli-
cated at least.

We implemented a simple prototype of a string constraint solver based on
constraint logic programming and classical domain propagation. While it does
not yet offer all features desired, our prototype shows that our approach is fea-
sible and promising.

However, we believe that no single solver will be able to handle all require-
ments sufficiently and that reimplementing features commonly found in other
solvers might not be worthwhile. In consequence, we think that an integration
of solvers such as the one discussed in Sect. 6.2 is very promising and we hope
to be able to lift our results for first-order-logic to string domains in the future.

References

1. Abdulla, P.A., et al.: Trau: SMT solver for string constraints. In: 2018 Formal
Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, 30 October–
2 November 2018, pp. 1–5 (2018)

2. Abdulla, P.A., et al.: Flatten and conquer: a framework for efficient analysis of
string constraints. In: Proceedings of PLDI 2017, pp. 602–617. ACM (2017)

3. Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: MiniZinc
with Strings. CoRR, abs/1608.03650 (2016)

4. Amadini, R., Gange, G., Stuckey, P.J., Tack, G.: A novel approach to string con-
straint solving. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 3–20. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_1

5. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

6. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: FMCAD, pp. 55–59. IEEE (2017)

7. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string
constraints with the ReplaceAll function. CoRR, abs/1711.03363 (2017)

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

9. ElGamal, N., ElBastawissy, A., Galal-Edeen, G.: Data warehouse testing. In: Pro-
ceedings of EDBT/ICDT, EDBT 2013, pp. 1–8. ACM (2013)

10. Friske, M., Ehmke, D.: Modellbasierte Testdatenspezifikation und -generierung mit-
tels Äquivalenzklassen und SQL. In: Proceedings of TAV, February 2019

11. Frühwirth, T.: Theory and practice of constraint handling rules. J. Logic Program.
37(1–3), 95–138 (1998)

12. Fu, X., Li, C.-C.: A string constraint solver for detecting web application vulnera-
bility, pp. 535–542, January 2010

https://doi.org/10.1007/978-3-319-66158-2_1
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-540-78800-3_24

158 S. Krings et al.

13. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3_52

14. Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi, F. (ed.) CP
2003. LNCS, vol. 2833, pp. 377–391. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45193-8_26

15. Haftmann, F., Kossmann, D., Lo, E.: A framework for efficient regression tests on
database applications. VLDB J. 16(1), 145–164 (2007)

16. Houkjær, K., Torp, K., Wind, R.: Simple and realistic data generation. In: VLDB
(2006)

17. Information technology – Security techniques – Information security management
systems – Requirements. Standard, International Organization for Standardiza-
tion, Geneva, CH, June 2017

18. Jeske, D.R., Lin, P.J., Rendon, C., Xiao, R., Samadi, B.: Synthetic data generation
capabilties for testing data mining tools. In: Proceedings of MILCOM, pp. 1–6,
October 2006

19. Karttunen, L., Chanod, J.-P., Grefenstette, G., Schille, A.: Regular expressions for
language engineering. Nat. Lang. Eng. 2(4), 305–328 (1996)

20. Khan, M.S.A., ElMadi, A.: Data warehouse testing an exploratory study. Master’s
thesis, School of Computing, Blekinge Institute of Technology, Karlskrona, Sweden
(2011)

21. Kieżun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver
for string constraints. Proceedings of ISSTA 2009, 21–23 July 2009

22. Klaus Franz, E.K., Tremmel, T.: Basiswissen Testdatenmanagement: Aus- und
Weiterbildung zum Test Data Specialist – Certified Tester Foundation Level nach
GTB. dpunkt (2018)

23. Krings, S., Leuschel, M.: SMT solvers for validation of B and Event-B models.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_23

24. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9_43

25. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An
efficient SMT solver for string constraints. Form. Methods Syst. Des. 48(3), 206–
234 (2016)

26. Møller, A.: dk.brics.automaton – finite-state automata and regular expressions for
Java (2017). http://www.brics.dk/automaton/

27. Pretschner, A.: Zum modellbasierten funktionalen Test reaktiver Systeme (2003).
http://mediatum.ub.tum.de/doc/601738/000006bb.pdf

28. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode.
Schulte, Christian and Tack, Guido and Lagerkvist, Mikael, 2015 (2010)

29. Singh, J., Singh, K.: Statistically analyzing the impact of automated ETL testing
on the data quality of a data warehouse. IJCEE 1(4), 488–495 (2009)

30. Spillner, A., Linz, T.: Basiswissen Softwaretest: Aus- und Weiterbildung zum Cer-
tified Tester – Foundation Level nach ISTQB-Standard, 3 edn. dpunkt (2005)

31. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9_10

32. Tinelli, C., Barret, C., Fontaine, P.: Unicode Strings (Draft 2.0) (2019). http://
smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-45193-8_26
https://doi.org/10.1007/978-3-540-45193-8_26
https://doi.org/10.1007/978-3-319-33693-0_23
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
http://www.brics.dk/automaton/
http://mediatum.ub.tum.de/doc/601738/000006bb.pdf
https://doi.org/10.1007/978-3-540-79124-9_10
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

Towards Constraint Logic Programming over Strings 159

33. Trinh, M.-T., Chu, D.-H., Jaffar, J.: S3: a symbolic string solver for vulnerability
detection in web applications. In: Proceedings of CCS, CCS 2014, pp. 1232–1243.
ACM (2014)

34. Triska, M.: The finite domain constraint solver of SWI-Prolog. In: Schrijvers, T.,
Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 307–316. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29822-6_24

35. Triska, M.: The boolean constraint solver of SWI-Prolog (system description). In:
Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 45–61. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29604-3_4

36. Triska, M.: Boolean constraints in SWI-Prolog: a comprehensive system descrip-
tion. Sci. Comput. Program. 164, 98–115 (2018)

37. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. CoRR,
abs/1011.5332 (2010)

38. Zheng, Y., et al.: Z3str2: an efficient solver for strings, regular expressions, and
length constraints. Formal Methods Syst. Des. 50(2–3), 249–288 (2017)

39. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web applica-
tion analysis. In: Proceedings of ESEC/FSE, ESEC/FSE 2013, pp. 114–124. ACM
(2013)

https://doi.org/10.1007/978-3-642-29822-6_24
https://doi.org/10.1007/978-3-319-29604-3_4

Facets of the PIE Environment
for Proving, Interpolating and Eliminating

on the Basis of First-Order Logic

Christoph Wernhard(B)

Berlin, Germany

Abstract. PIE is a Prolog-embedded environment for automated rea-
soning on the basis of first-order logic. Its main focus is on formulas,
as constituents of complex formalizations that are structured through
formula macros, and as outputs of reasoning tasks such as second-order
quantifier elimination and Craig interpolation. It supports a workflow
based on documents that intersperse macro definitions, invocations of
reasoners, and LATEX-formatted natural language text. Starting from var-
ious examples, the paper discusses features and application possibilities
of PIE along with current limitations and issues for future research.

1 Introduction

First-order logic is used widely and in many roles in philosophy, mathematics,
and artificial intelligence as well as other branches of computer science. Many
practically successful reasoning approaches can be viewed as derived from reason-
ing in first-order logic, for example, SAT solving, logic programming, database
query processing and reasoning in description logics. The overall aim of the PIE
environment is to support the practical mechanized reasoning in first-order logic.
Approaching this aim consequently leads from first-order theorem proving in the
strict sense to tasks that compute first-order formulas, in particular second-order
quantifier elimination and Craig interpolation, whose integrated support char-
acterizes PIE . The system is written and embedded in SWI-Prolog [58] and
provides, essentially as a library of Prolog predicates, a number of functionali-
ties:

– Support for a Prolog-readable syntax of first-order logic formulas.
– Formula pretty-printing in Prolog syntax and in LATEX.
– A versatile formula macro processor.
– Support for processing documents that intersperse formula macro definitions,

reasoner invocations and LATEX-formatted natural language text.
– Interfaces to external first-order and propositional reasoners.
– A built-in Prolog-based first-order theorem prover.
– Implemented reasoning techniques that compute formulas:

• Second-order quantifier elimination on the basis of first-order logic.

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 160–177, 2020.
https://doi.org/10.1007/978-3-030-46714-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-46714-2_11

Facets of the PIE Environment 161

• Computation of first-order Craig interpolants.
• Formula conversions for use in preprocessing, inprocessing and output

presentation.

The system is available as free software from its homepage

http://cs.christophwernhard.com/pie.

The distribution includes several example documents whose source files as well
as rendered LATEX presentations can also be accessed directly from the system
Web page. Inspecting Gödel’s Ontological Proof is there an advanced applica-
tion, where the interplay of elimination and modal axioms is applied in several
contexts. The system was first presented at the 2016 workshop Practical Aspects
of Automated Reasoning [55]. Here we show various application possibilities, fea-
tures and also issues for further research that become apparent with the system
by starting from a number of examples. The paper is itself written as a PIE
document and thus includes fragments generated by PIE and the included or
integrated reasoners.

The rest of this paper is structured as follows: After introducing in Sect. 2 the
document-oriented workflow supported by PIE , we show in Sect. 3 how it applies
to the invocation of second-order quantifier elimination in the system. Section 4
provides an application example of elimination, a certain form of abduction,
which is shown together with basic features of the PIE macro system. We pro-
ceed in Sect. 5 to outline how systems for theorem proving in the strict sense are
embedded into PIE . In Sect. 6 the computation of circumscription is discussed
as another example of second-order quantifier elimination with PIE , along with
further features of the macro system and the general issue of finding good presen-
tations of computed formulas that are essentially just characterized semantically.
Section 7 sketches a further application of second-order quantifier elimination:
a potential way of logic programming with second-order formulas as used for
theoretical considerations in descriptive complexity. Further features of PIE are
summarized in Sect. 9, and Sect. 10 concludes the paper.

Related work is discussed in the respective contexts. The bibliography is
somewhat extensive, reflecting that the system relates to methods as well as
implementation and application aspects in a number of areas, including first-
order theorem proving, Craig interpolation, second-order quantifier elimination
and knowledge representation.

2 PIE Documents

The main way to interact with PIE is by developing or modifying a PIE doc-
ument, a file that intersperses definitions of formula macros, specifications of
reasoning tasks, and LATEX-formatted natural language text in the fashion of lit-
erate programming [28]. Such a document can be loaded into the Prolog environ-
ment like a source code file. Reasoner invocations, where the defined macros are
available, can then be submitted as inputs on the Prolog console. The document

http://cs.christophwernhard.com/pie

162 C. Wernhard

can also be processed, which results in a generated LATEX document: Macro def-
initions are pretty-printed in LATEX, specified reasoner invocations are executed
and a pretty-printed LATEX result presentation is inserted, and LATEX fragments
are inserted directly. The generated LATEX document can then be displayed in
PDF format.

Aside of indentation, the LATEX pretty-printer can apply certain symbol con-
versions to subscripted or primed symbols. Also a compact syntax where paren-
theses to separate arguments from functors and commas between arguments are
omitted is available as an option for both Prolog and LATEX forms.

PIE source documents can be re-loaded into the Prolog environment such
that mechanized formalizations can be developed in a workflow similar to pro-
gramming in AI languages like Prolog and Lisp.

First-order reasoners are often heavily dependent on configuration settings.
A PIE document specifies all information needed to reproduce the results of
reasoner invocations in a convenient way. Effective configuration parameters are
combined from system defaults, defaults declared in the document and options
supplied with particular specifications of reasoner invocations.

3 Second-Order Quantifier Elimination in PIE

Second-order quantifier elimination is the task of computing for a given formula
with second-order quantifiers, that is, quantifiers upon predicate or function
symbols, an equivalent first-order formula. PIE so far just supports second-
order quantification upon predicate symbols, or predicate quantification. Here is
an example of PIE ’s LATEX representation of the invocation of a reasoner that
performs second-order quantifier elimination:

Input: ∃p (∀x (q(x) → p(x)) ∧ ∀x (p(x) → r(x))).
Result of elimination:

∀x (q(x) → r(x)).

The source code in the PIE document that effects this output is:
:- ppl_printtime(ppl_elim(ex2(p, (all(x, (q(x) -> p(x))),

all(x, (p(x) -> r(x))))))).

The directive ppl_printtime effects that its argument is evaluated at “print time”,
that is, at processing, when the LATEX presentation is generated.1 The argument
is an invocation of the elimination reasoner with the predicate ppl_elim. It has
a formula as argument, possibly with predicate quantifiers. If called at “print
time” it prints inputs and outputs formatted in LATEX, as shown above for the
example. It can also be invoked in the context of plain Prolog processing, where
it just effects that the output is pretty printed in Prolog syntax. The following
interaction would, for example, be possible in the Prolog console:

1 The prefix ppl_ of this and related predicates should suggest pretty-print in LATEX
format.

Facets of the PIE Environment 163

?- ppl_elim(ex2(p, (all(x, (q(x) -> p(x))), all(x, (p(x) -> r(x)))))).
all(x, (q(x)->r(x)))
true.

Printing the output is performed there as a side effect. SWI-Prolog afterwards
prints true. to indicate that the invocation of ppl_elim was successful. To access
the output formula from a program, PIE provides two alternate means: With
an option list [printing=false, r=Result] as second argument, ppl_elim does
not effect that the elimination result is printed, but instead bound to the
Prolog variable Result for further processing. The second way to access the
result formula of the last reasoner invocation is with the supplied predicate
last_ppl_result(Result). This predicate may itself be used in macro definitions.

Let us take a brief look at the syntax of the argument formula of ppl_elim
in the example. It represents a second-order formula as a Prolog ground term.
Conjunction is represented as in Prolog by ,/2 and implication by ->/2, with
standard operator settings from Prolog. The universal first-order quantifier is
expressed by all/2 and the existential second-order quantifier by ex2/2.

PIE performs second-order quantifier elimination by an included Prolog
implementation of the DLS algorithm [14], a method based on formula rewrit-
ing until second-order subformulas have a certain shape that allows elimination
in one step by rewriting with Ackermann’s lemma, an equivalence due to [1].
Implementing DLS brings about many subtle and interesting issues [10,23,54],
for example, incorporation of non-deterministic alternative courses, dealing with
un-Skolemization, simplification of formulas in non-clausal form and ensuring
success of the method for certain input classes. The current implementation
in PIE is far from optimum solutions of these issues, but can nevertheless be
used in nontrivial applications and might contribute to improvements by making
experiments possible.

Of course, second-order quantifier elimination on the basis of first-order logic
does not succeed in general. Nevertheless, along with variants termed forget-
ting, uniform interpolation or projection, it has many applications, including
deciding fragments of first-order logic [3,36], computation of frame correspon-
dence properties from modal axioms [14,19,43], computation of circumscription
[14], embedding nonmonotonic semantics in a classical setting [50,51], abduction
with respect to classical and to nonmonotonic semantics [15,32,52], forgetting in
knowledge bases [13,29,33,34,49], and approaches to modularization of knowl-
edge bases derived from the notion of conservative extension [21,22,35]. Further
applications of second-order quantifier elimination are described in the mono-
graph [20].

For second-order quantifier elimination and similar operations there are sev-
eral implementations based on modal and description logics, but very few on
first-order logic: A Web service2 invokes an implementation [17] of the SCAN
algorithm [19]. DLSForgetter [2] is a recent system that implements the DLS
algorithm [14]. An earlier implementation [23] of DLS seems to be no longer
available.

2 Available at http://www.mettel-prover.org/scan/.

http://www.mettel-prover.org/scan/

164 C. Wernhard

4 Abduction with Second-Order Quantifier Elimination –
Basic Use of PIE Macros

In the simplest case, a PIE formula macro serves as a formula label that may be
used in subformula position in other formulas and is expanded into its definiens.
Here is an example of such a PIE macro definition in the LATEX presentation:

kb1

Defined as

(sprinkler_was_on → wet(grass)) ∧
(rained_last_night → wet(grass)) ∧
(wet(grass) → wet(shoes)).

The corresponding source is:
def(kb1) ::
(sprinkler_was_on -> wet(grass)),
(rained_last_night -> wet(grass)),
(wet(grass) -> wet(shoes)).

The source statement has the form def(MacroName) :: ExpansionFormula., where
:: is an infix operator with lower precedence than the operators used as connec-
tives for logical formulas. Formula kb1 is now defined as a small knowledge base
that expresses a variant of a scenario often used to illustrate abduction. Actu-
ally, we use it now to show how a certain form of computing abductive expla-
nations can be considered as second-order quantifier elimination. It is based on
the notion of weakest sufficient condition [15,32,51], which is basically a second-
order formula that expresses the weakest formula in a given vocabulary that
needs to be conjoined to given axioms to make a given theorem candidate an
actual theorem. This second-order formula as such is not very informative as it
contains the axioms and the theorem as constituents, with disallowed symbols
bound by quantifiers and possibly renamed but still present. However, the result
of applying elimination to that second-order formula provides the weakest suf-
ficient condition in the proper sense, or, considered with respect to abduction,
the weakest explanation.

PIE allows to specify macros with parameters that are represented by Prolog
variables. We utilize this to specify schematically the weakest explanation (or
weakest sufficient condition) of observation Obs on the complement of Na as
assumables (Na should suggest non-assumables) within knowledge base Kb:

explanation(Kb,Na,Obs)

Defined as

∀Na (Kb → Obs).

The corresponding source code is:

Facets of the PIE Environment 165

def(explanation(Kb, Na, Ob)) ::
all2(Na, (Kb -> Ob)).

all2/2 represents the universal second-order quantifier in PIE ’s input formula
syntax. The first argument of all2 specifies the quantified predicates, either as
a single Prolog atom or as list of atoms. In the example, there is the macro
parameter Na that needs to be instantiated correspondingly when the macro is
expanded. The expression explanation(kb1 , [wet],wet(shoes)) expands into the
following “non-informative” version of the weakest sufficient condition:

∀p ((sprinkler_was_on → p(grass)) ∧
(rained_last_night → p(grass)) ∧
(p(grass) → p(shoes)) →
p(shoes)).

Second-order quantifier elimination applied to this formula yields the proper
weakest explanation for the observation wet(shoes) in which the predicate wet
itself does not occur, with respect to the background knowledge base kb1:

Input: explanation(kb1 , [wet],wet(shoes)).
Result of elimination:

rained_last_night ∨ sprinkler_was_on.

It was obtained by the following directive in the source document:

:- ppl_printtime(ppl_elim(explanation(kb1,[wet],wet(shoes)))).

In [52] this approach to abduction has been generalized to non-monotonic seman-
tics of logic programming, including the three-valued partial stable models
semantics.

5 Invoking Theorem Provers from PIE

The abductive explanation computed in the previous section can be validated
with a theorem prover. The presentation of the prover invocation and the result
is in PIE as follows:

This formula is valid: kb1 ∧(rained_last_night∨sprinkler_was_on) → wet(shoes).

The corresponding source directive is

The semicolon ;/2 represents disjunction, as in Prolog. The reasoner invocation
predicate ppl_valid by default first calls the model searcher Mace4 with a short
timeout, and, if it can not find a “counter”-model of the negated formula, calls
the prover Prover9, again with a short timeout.3 Correspondingly, ppl_valid

3 Prover9 and Mace4 were developed between 2005 and 2010 by William McCune.
Their homepage is https://www.cs.unm.edu/~mccune/prover9/.

https://www.cs.unm.edu/~mccune/prover9/

166 C. Wernhard

prints a representation of one of three result values: valid, not valid or failed to
validate and in LATEX “print time” mode also the input formula, as shown above.

Like ppl_elim, also ppl_valid can be called with a list of options as second
argument. This allows to obtain Prolog term representations of Prover9 ’s resolu-
tion proof or Mace4 ’s model, to skip the call to Mace4, modify the configuration
of Mace4 and Prover9, or to specify another theorem prover to be called.

Other provers can be incorporated through a generic interface to the TPTP
[47] syntax for proving problems, supported by most current first-order provers.
In addition, DIMACS and QDIMACS, the common formats of SAT and QBF
solvers, respectively, are supported by PIE . Large propositional formulas are
handled there efficiently with an internal representation implemented with
destructive term operations. Most of the support of propositional formulas is
inherited from the precursor system ToyElim [53].

PIE also includes a Prolog-based first-order prover, CM, whose calculus can
be understood as model elimination, clausal tableau construction [31], or the
connection method [6], similar to provers of the leanCoP family [26,27,40].
Its implementation follows the compilation-based Prolog Technology Theorem
Prover (PTTP) paradigm [46]. It computes proofs that are represented by Prolog
terms and can be used to compute Craig interpolants (Sect. 8). Details and eval-
uation results are available at http://cs.christophwernhard.com/pie/cmprover.

6 Computing Circumscription as Second-Order
Quantifier Elimination – PIE Macros with Prolog
Bodies, Result Simplifications

The circumscription of a predicate P in a formula F is a formula whose models
are the models I of F that are minimal with respect to P . That is, there is no
model I ′ of F that is like I except that the extension of P in I ′ is a strict subset of
the extension of P in I. Predicate circumscription can be expressed by a second-
order schema such that the computation of circumscription is second-order quan-
tifier elimination [14]. The second-order circumscription of predicate P in for-
mula F can thus be defined as a PIE macro as follows:

circ(P, F)

Defined as

F ∧ ¬∃P ′ (F ′ ∧ T1 ∧ ¬T2),

where

F ′ := F [P �→ P ′],
A := arity of P in F,
T1 := transfer clauses [P/A-n] → [P ′],
T2 := transfer clauses [P ′] → [P/A-n].

http://cs.christophwernhard.com/pie/cmprover

Facets of the PIE Environment 167

This definition utilizes that PIE macro definitions may contain a Prolog body
that permits expansions involving arbitrary computations. Utility predicates
with pretty-printing templates for use in these bodies are provided for common
tasks. The source of the above definition reads:
def(circ(P, F)) ::
F, ~ex2(P_p, (F_p, T1, ~T2)) ::-

mac_rename_free_predicate(F, P, pn, F_p, P_p),
mac_get_arity(P, F, A),
mac_transfer_clauses([P/A-n], p, [P_p], T1),
mac_transfer_clauses([P/A-n], n, [P_p], T2).

The Prolog body is introduced with the ::- operator, which is defined with a
precedence between :: and the operators used to represent logical formulas. The
unary operator ˜ represents negation in formulas.4 The suffix _p used for some
variable names is translated to the prime superscript in the LATEX, rendering.
We only indicate here the effects of the auxiliary predicates in the Prolog body
with an example: The formula circ(p, p(a)) expands into:

p(a) ∧
¬∃q (q(a) ∧ ∀x (q(x) → p(x)) ∧ ¬∀x (p(x) → q(x))).

Second-order quantifier elimination can be applied to compute the circumscrip-
tion for the example:

Input: circ(p, p(a)).
Result of elimination:

p(a) ∧ ∀x (p(x) → x = a).

As a more complex example, we consider circumscribing wet in kb1 :

Input: circ(wet, kb1).
Result of elimination:

(rained_last_night → wet(grass)) ∧
(sprinkler_was_on → wet(grass)) ∧
(wet(grass) → wet(shoes)) ∧
∀x (wet(x) → rained_last_night ∨ sprinkler_was_on) ∧
∀x (wet(x) ∧ wet(grass) → x = grass ∨ x = shoes).

The first three implications of this output form the expansion of kb1 . The last
two implications are added by the circumscription. This particular form was
actually obtained by applying a certain simplification to the formula returned
directly by the elimination method:

:- ppl_printtime(ppl_elim(circ(wet,kb1), [simp_result=[c6]])).

4 The standard Prolog negation operator \+ is not suited to represent classical negation
as it symbolizes ��, non-provability.

168 C. Wernhard

The option [simp_result=[c6]] supplied to ppl_elim effects that the elimination
result is postprocessed by equivalence preserving conversions with the aim to
make it more readable. The conversion named c6 chosen for this example con-
verts to conjunctive normal form, applies various clausal simplifications and then
converts back to a quantified first-order formula, involving un-Skolemization if
required. That the last conjunct of the result can be replaced by the more suc-
cinct ∀x (wet(x) → x = grass ∨ x = shoes) is, however, not detected by the
current implementation.

Finding good presentations of formulas, in particular in presence of opera-
tions that yield formulas with essentially semantic characterizations, is a chal-
lenging topic in general.

7 Expressing Graph Colorability by a Second-Order
Formula – PIE Macros with Parameters in Functor
Position

One of the fundamental results of descriptive complexity is the equivalence of
NP and expressibility by an existential second-order formula (with respect to
finite models), that is, a first order formula prefixed with existential predicate
quantifiers. This view allows, for example, to specify 2-colorability5 with respect
to a relation E that specifies a graph as follows:

col2 (E)

Defined as

∃r∃g (∀x (r(x) ∨ g(x)) ∧
∀x∀y (E(x , y) → ¬(r(x) ∧ r(y)) ∧ ¬(g(x) ∧ g(y)))).

The source of this definition is:

def(col2(E)) ::
ex2([r,g],

(all(x, (r(x) ; g(x))),
all([x,y], (E(x,y) -> (~((r(x), r(y))), ~((g(x), g(y)))))))).

The macro parameter E appears as a Prolog variable in predicate position.6 The
macro can then be used with instantiating E to a predicate symbol, or to a λ-
expression that describes a particular graph (we will see examples in a moment).

Specifying algorithms as (existential) second-order formulas seems very ele-
gant, but so far not established as a practical approach to logic programming.
PIE in its current implementation lets become apparent related desiderata:
Instantiation with a predicate symbol should be usable as basis for abstract rea-
5 3-colorability, which is NP-complete, can be specified analogously. We consider here

2-colorability for brevity of the involved formulas.
6 SWI-Prolog can be configured to permit variable names as functors, which are read

in as atoms with capitalized names. The macro processor of PIE compares them to
actual variable names in the macro definition.

Facets of the PIE Environment 169

soning. Instantiation with a λ-expression (or conjoining a definition of a graph),
should permit successful elimination. If adequate, the problem should then auto-
matically be converted to a form that can be processed by a SAT solver.

So far, in the current implementation of PIE , such steps just work in part,
e.g., by decomposing the overall task manually into intermediate steps with dif-
ferent manually controlled formula simplifications, as illustrated by the following
example. The following macro defines the inner, first-order, component of the
above specification of 2-colorability:

fo_col2 (E)

Defined as

∀x (r(x) ∨ g(x)) ∧
∀x∀y (E(x , y) → ¬(r(x) ∧ r(y)) ∧ ¬(g(x) ∧ g(y))).

PIE allows to instantiate E in fo_col2 (E) with a predicate constant e and
eliminate one of the color predicates:7

Input: ∃g fo_col2 (e).
Result of elimination:

∀x∀y (e(x , y) → ¬(r(y) ∧ r(x)) ∧ (r(y) ∨ r(x))).

2-colorability for a given graph represented by a λ-expression can be evaluated
by PIE currently just in two steps with different elimination configurations, as
performed by the following Prolog predicate:

Options printing=false suppress the emission of printed representations of the
two invocations of the elimination reasoner. Only the input λ-expression and
the final result are pretty-printed with calls to ppl_form. Options pre=[c6] and
pre=[d6] effect that preprocessing based on conversion to CNF and DNF, respec-
tively, is applied for elimination. Invoking

:- ppl_printtime(elim_col2(lambda([u,v],((u=1,v=2); (u=2,v=3))))).

yields the following output:

λ(u, v).(u = 1 ∧ v = 2) ∨ (u = 2 ∧ v = 3).

1 �= 2 ∧ 2 �= 3.

7 One color predicate can also be eliminated from an analogous specification of 3-
colorability.

170 C. Wernhard

It expresses that the graph described by the λ-expression is 2-colorable if and
only if node 1 is not the same as node 2 and node 2 is not the same as node 3.

8 Craig Interpolation

By Craig’s interpolation theorem [11,12], for given first-order formulas F and G
such that F entails G (or, equivalently, F → G is valid) a first-order formula H
can be constructed such that F entails H, H entails G and H contains only
symbols (predicates, functions, constants, free variables) that occur in both F
and G. PIE supports the computation of Craig interpolants H, for given valid
implications F → G. Here is a propositional example:

Input: p ∧ q → p ∨ r.
Result of interpolation:

p.

The corresponding directive in the source document is:

:- ppl_printtime(ppl_ipol((p, q -> (p ; r)))).

The predicate ppl_ipol invokes the interpolation reasoner. It takes an implication
F → G as argument and, analogously to ppl_elim (Sect. 3), prints an interpolant
of F and G.8 Here is another example of Craig interpolation, where universal
and existential quantification need to be combined:9

Input: ∀x p(a, x) ∧ q → ∃x p(x , b) ∨ r.
Result of interpolation:

∃x ∀y p(x , y).

Craig interpolation has many applications in logics and philosophy, as already
shown in [12]. Main applications in computer science are in verification [39] and
query reformulation, based on its relationship to definability and construction of
definientia in terms of a given vocabulary [4,5,48]. For these applications, actu-
ally interpolants that are further constrained, in dependency of further restric-
tions on the input formulas, are relevant. We do not consider these here, but
show how basic definability via Craig interpolation can be expressed in PIE .

A formula G is called definable in a formula F in terms of a set of predicates S
if and only if there exists a formula H whose predicates are all in S such that
F |= G ↔ H. The formula H is then called a definiens of G. Consider, for
example, the following formula:

8 In certain configurations it can also print several different interpolants.
9 This is an example which involves an inference step with a constant that occurs only

on the left side (a) and a constant that occurs only on the right side (b), which can
not be handled by certain resolution-based interpolation systems. See [7,30]. In this
particular example, the order of the quantifications in the result is not relevant.

Facets of the PIE Environment 171

kb2

Defined as

∀x (p(x) → q(x) ∧ s(x)) ∧
∀x (s(x) → r(x)) ∧
∀x (q(x) ∧ r(x) → p(x)).

We can invoke a first-order prover from PIE to verify that the formula p(a) is
definable in kb2 in terms of {q, r}:

This formula is valid: kb2 → (p(a) ↔ q(a) ∧ r(a)).

Actually, since a does not occur in kb2, we can equivalently verify the following
implication, whose right side is a universally quantified first-order definition:

This formula is valid: kb2 → ∀a (p(a) ↔ q(a) ∧ r(a)).

We can now utilize the features of PIE to formally characterize definability and
synthesize definientia:

definiens(G,F, P)

Defined as

∃P (F ∧ G) → ∀P (F → G).

The interpolants of the left and right side of definiens(G,F, P) are exactly the
definientia of G in F in terms of all predicates not in P . The implication is valid if
and only if definability holds. The second-order quantifications in the implication
are existential on the left and universal on the right side.10 Considering that
an implication can be understood as disjunction of the negated left side and
the right side, if F and G are first-order, then definiens(G,F, P) is a formula
whose second-order quantifiers are all universal. Such a second-order formula is
valid if and only if the first-order formula obtained by renaming the quantified
predicates with fresh symbols and dropping the second-order quantifiers is valid.
This translation is handled automatically by PIE such that we can now we verify
definability of p(a) by invoking a first-order prover from PIE :

This formula is valid: definiens(p(a), kb2 , [p, s]).

And, we can apply Craig interpolation to compute a definiens:

Input: definiens(p(a), kb2 , [p, s]).
Result of interpolation:

q(a) ∧ r(a).

10 We actually encountered right side of the implication before in Sect. 4 as the weakest
sufficient condition in the macro definition of explanation.

172 C. Wernhard

The implementation of the computation of Craig interpolants in PIE operates by
a novel adaption of Smullyan’s interpolation method [18,45] to clausal tableaux
[57]. Suitable clausal tableaux can be constructed by the Prolog-based prover
CM that is included in PIE . The system also supports the conversion of proof
terms returned by the hypertableau prover Hyper [41] to such tableaux and thus
to interpolants, but this is currently at an experimental stage.11

The interpolants H constructed by PIE strengthen the requirements for
Craig interpolants in that they are actually Craig-Lyndon interpolants, that
is, predicates occur in H only in polarities in which they occur in both F and G.
Symmetric interpolation [38, Sect. 5] is supported in PIE , implemented by com-
puting a conventional interpolant for each of the input formulas, corresponding
to the induction suggested with [12, Lemma 2].

It seems that most other implementations of Craig interpolation are on the
basis of propositional logic with theory extensions and specialized for applica-
tions in verification [4]. Craig interpolation for first-order logic is supported by
Princess [8,9] and by extensions of Vampire [24,25]. The incompleteness indi-
cated in footnote 9 applies to these Vampire extensions and was observed by
their authors. It also appears that the Vampire extensions do not preserve the
polarity constraints of Craig-Lyndon interpolants [4].

9 Further Features of PIE

In this section we briefly describe further features of PIE that were not illus-
trated by the examples in the previous sections. First we consider the formula
macro system. It utilizes Prolog variables to mimic further features of the pro-
cessing of λ-expressions by automatically binding a Prolog variable that is free
after computing the user-specified part of the expansion to a freshly generated
symbol. With a macro declaration, properties of its lexical environment, in par-
ticular configuration settings that affect the expansion, are recorded. Macros
with parameters are processed by pattern matching to choose the effective dec-
laration for expansion, allowing structural recursion in macro declarations.

A Craig interpolant for formulas F and G is extracted in PIE from a Prolog
term that represents a closed clausal tableau, a proof of the validity of F →
G. PIE supports the visualization of such tableaux as graph, rendered by the
Graphviz tool. Here is an example:
Input: ∀x p(x) ∧ ∀x (p(x) → q(x)) → q(c).
Result of interpolation:

∀x q(x).

The respective directive for this interpolation task in the source is:

11 Hypertableaux, either obtained from a hypertableau prover or obtained from a
clausal tableau prover like CM by restructuring the tableau seem interesting as
basis for interpolant extraction in query reformulation, as they allow to ensure that
the interpolants are range restricted. Some related preliminary results are in [57].

Facets of the PIE Environment 173

Fig. 1. A clausal tableau.

The ip_dotgraph option effects that an image repre-
senting the tableau is generated. The ip_simp_sides
option suppresses preprocessing of the interpolation
input, which, in the example, would in essence be
already sufficient to compute the interpolant, yield-
ing a trivial tableau. The generated image can then
be included into the PIE document with standard
LATEX means, here, for example as Fig. 1. Siblings in
the tableau represent a ground clause used in the
proof. As the tableau is used for interpolant extrac-
tion, decoration indicates whether the clause stems
from the left or the right side of the input formula.
The decoration of the closing marks indicate the side
of the connection partner. The Skolem constant sk1 is
converted to a quantified variable in a postprocess-
ing operation. For a description of the interpolant
extraction procedure, see [57].

Aside of the shown representation of quantified
first-order formulas by Prolog ground terms, the sys-
tem also supports a representation of clausal formu-
las as list of lists of terms (logic literals), with variables represented by Prolog
variables. The system functionality can be accessed by Prolog predicates, also
without using the document processing facilities.

Practically successful reasoners usually apply in some way conversions of
low complexity as far as possible: as preprocessing on inputs, potentially during
reasoning, which has been termed inprocessing, and to improve the syntactic
shape of output formulas as discussed in Sect. 6. Abstracting from these situa-
tions, we subsume these conversions under preprocessing operations. Also the low
complexity might be taken more or less literally and, for example, be achieved
simply by trying an operation within a threshold limit of resources. PIE includes
a number of preprocessing operations including normal form conversions, also
in variants that produce structure preserving normalizations, various simplifica-
tions of clausal formulas, and an implementation of McCune’s un-Skolemization
algorithm [37]. While some of these preserve equivalence, others preserve equiv-
alence just with respect to a set of predicates, for example, purity simplification
with respect to predicates that are not deleted or structure preserving classifi-
cation with respect to predicates that are not added. This can be understood as
preserving the second-order equivalence

∃q1 . . . ∃qn F ≡ ∃q1 . . . ∃qn G,

where F and G are inputs and outputs of the conversion and q1, . . . , qn are
those predicates that are permitted to occur in F or G whose semantics needs

174 C. Wernhard

not to be preserved. If q1, . . . , qn includes all permitted predicates, the above
equivalence expresses equi-satisfiability. Some of the simplifications implemented
in PIE allow to specify explicitly a set of predicates whose semantics is to be
preserved, which makes them applicable for Craig interpolation and second-order
quantifier elimination.

In addition to the implementation of the DLS algorithm, PIE includes fur-
ther experimental implementations of variants of second-order quantifier elimi-
nation. In particular, a variant of the method shown in [33] for elimination with
respect to ground atoms, which always succeeds on the basis of first-order logic.
A second-order quantifier is there, so-to-speak, just upon a particular ground
instance of a predicate. The Boolean solution problem or Boolean unification
with predicates is a computational task related to second-order quantifier elimi-
nation [42,44,56]. So far, PIE includes experimental implementations for special
cases: Quantifier-free formulas with a technique from [16] and a version for find-
ing solutions with respect to ground atoms, in analogy to the elimination of
ground atoms.

10 Conclusion

PIE tries to supplement what is needed to use automated first-order proving
techniques for developing and analyzing formalizations. Its main focus is not
on proofs but on formulas, as constituents of complex formalizations that are
composed and structured through macros, and as computed outputs of second-
order quantifier elimination, Craig interpolation and formula conversions that
preserve semantics with respect to given predicates. All of these operations utilize
some natural relationships between first- and second-order logic.

The system mediates between high-level logical presentation and detailed
configuration of reasoning systems: Working practically with first-order provers
typically involves experimenting with a large and developing set of related prov-
ing problems, for example with alternate axiomatizations or different candidate
theorems, and is thus often accompanied with some meta-level technique to com-
pose and relate the actual proof tasks submitted to first-order reasoners. With
the macro system, the supported document-oriented workflow, LATEX pretty-
printing, and integration into the Prolog environment, PIE offers to organize
this in a systematic way through mechanisms that remain in the spirit of first-
order logic, which in mathematics is actually often used with schemas.

Aside of the current suitability for non-trivial applications, PIE shows up
a number of challenging and interesting open issues for research, for example
improving practical realizations of second-order quantifier elimination, strength-
enings of Craig interpolation that ensure application-relevant properties such as
range restriction, and conversion of computed formulas that are basically just
semantically characterized to comprehensible presentations. Progress in these
issues can be directly experienced and verified with the system.

Facets of the PIE Environment 175

References

1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematis-
chen Logik. Math. Ann. 110, 390–413 (1935)

2. Alassaf, R., Schmidt, R.: DLS-Forgetter: an implementation of the DLS forgetting
calculus for first-order logic. In: GCAI 2019. EPiC, vol. 65, pp. 127–138 (2019)

3. Behmann, H.: Beiträge zur Algebra der Logik, insbesondere zum Entschei-
dungsproblem. Math. Ann. 86(3–4), 163–229 (1922)

4. Benedikt, M., Kostylev, E.V., Mogavero, F., Tsamoura, E.: Reformulating queries:
theory and practice. In: IJCAI 2017, pp. 837–843. ijcai.org (2017)

5. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating Plans from Proofs:
The Interpolation-Based Approach to Query Reformulation. Morgan & Claypool,
San Rafael (2016)

6. Bibel, W.: Matings in matrices. Commun. ACM 26(11), 844–852 (1983)
7. Bonacina, M.P., Johansson, M.: On interpolation in automated theorem proving.

J. Autom. Reason. 54(1), 69–97 (2015)
8. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Beyond quantifier-free inter-

polation in extensions of Presburger arithmetic. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 88–102. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-18275-4_8

9. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent cal-
culus for quantifier-free Presburger arithmetic. J. Autom. Reason. 47(4), 341–367
(2011)

10. Conradie, W.: On the strength and scope of DLS. J. Appl. Non-Classsical Logics
16(3–4), 279–296 (2006)

11. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symbolic Logic 22(3), 250–268 (1957)

12. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)

13. Delgrande, J.P.: A knowledge level account of forgetting. J. Artif. Intell. Res. 60,
1165–1213 (2017)

14. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited: a
reduction algorithm. J. Autom. Reason. 18(3), 297–338 (1997)

15. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weak-
est sufficient conditions of first-order formulas. In: IJCAI-01, pp. 145–151. Morgan
Kaufmann (2001)

16. Eberhard, S., Hetzl, S., Weller, D.: Boolean unification with predicates. J. Logic
Comput. 27(1), 109–128 (2017)

17. Engel, T.: Quantifier elimination in second-order predicate logic. Master’s thesis,
Max-Planck-Institut für Informatik, Saarbrücken (1996)

18. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4612-2360-3

19. Gabbay, D., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic.
In: KR 1992, pp. 425–435. Morgan Kaufmann (1992)

20. Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-Order Quantifier Elimina-
tion: Foundations, Computational Aspects and Applications. College Publications
(2008)

21. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for con-
servative extensions in description logics. In: KR 2006, pp. 187–197. AAAI Press
(2006)

https://doi.org/10.1007/978-3-642-18275-4_8
https://doi.org/10.1007/978-3-642-18275-4_8
https://doi.org/10.1007/978-1-4612-2360-3

176 C. Wernhard

22. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
theory and practice. J. Artif. Intell. Res. 31(1), 273–318 (2008)

23. Gustafsson, J.: An implementation and optimization of an algorithm for reduc-
ing formulae in second-order logic. Technical report LiTH-MAT-R-96-04, Univ.
Linköping (1996)

24. Hoder, K., Holzer, A., Kovács, L., Voronkov, A.: Vinter: a Vampire-based tool for
interpolation. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705,
pp. 148–156. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
35182-2_11

25. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and symbol elimination in
Vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173,
pp. 188–195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14203-1_16

26. Kaliszyk, C.: Efficient low-level connection tableaux. In: De Nivelle, H. (ed.)
TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 102–111. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24312-2_8

27. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection
prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015.
LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48899-7_7

28. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984)
29. Koopmann, P., Schmidt, R.A.: Uniform interpolation of ALC-ontologies using fix-

points. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS
(LNAI), vol. 8152, pp. 87–102. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40885-4_7

30. Kovács, L., Voronkov, A.: First-order interpolation and interpolating proof sys-
tems. In: LPAR-21, pp. 49–64. EasyChair (2017)

31. Letz, R.: First-order tableau methods. In: D’Agostino, M., Gabbay, D.M., Hähnle,
R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 125–196. Kluwer Aca-
demic Publishers (1999)

32. Lin, F.: On strongest necessary and weakest sufficient conditions. Artif. Intell. 128,
143–159 (2001)

33. Lin, F., Reiter, R.: Forget It! In: Working Notes, AAAI Fall Symposium on Rele-
vance, pp. 154–159 (1994)

34. Ludwig, M., Konev, B.: Practical uniform interpolation and forgetting for ALC
TBoxes with applications to logical difference. In: KR 2014. AAAI Press (2014)

35. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in
expressive description logics. In: IJCAI 2011, pp. 989–995. AAAI Press (2011)

36. Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Math. Ann. 76, 447–470
(1915)

37. McCune, W.: Un-Skolemizing clause sets. Inf. Process. Lett. 29(5), 257–263 (1988)
38. McMillan, K.L.: Applications of Craig interpolants in model checking. In: Halb-

wachs, N., Zuck, L.D. (eds.) TACAS 2005, pp. 1–12. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31980-1_1

39. McMillan, K.L.: Interpolation and model checking. In: Clarke, E.M., Henzinger,
T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 421–446.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-10575-8_14

40. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3),
159–182 (2010)

https://doi.org/10.1007/978-3-642-35182-2_11
https://doi.org/10.1007/978-3-642-35182-2_11
https://doi.org/10.1007/978-3-642-14203-1_16
https://doi.org/10.1007/978-3-642-14203-1_16
https://doi.org/10.1007/978-3-319-24312-2_8
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-642-40885-4_7
https://doi.org/10.1007/978-3-642-40885-4_7
https://doi.org/10.1007/978-3-540-31980-1_1
https://doi.org/10.1007/978-3-319-10575-8_14

Facets of the PIE Environment 177

41. Pelzer, B., Wernhard, C.: System description: E-KRHyper. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 508–513. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73595-3_37

42. Rudeanu, S.: Boolean Functions and Equations. Elsevier (1974)
43. Schmidt, R.A.: The Ackermann approach for modal logic, correspondence theory

and second-order reduction. J. Appl. Logic 10(1), 52–74 (2012)
44. Schröder, E.: Vorlesungen über die Algebra der Logik. Teubner (1890–1905)
45. Smullyan, R.M.: First-Order Logic. Dover Publications, New York (1995). Cor-

rected republication of the original edition by Springer-Verlag, New York (1968)
46. Stickel, M.E.: A Prolog technology theorem prover: implementation by an extended

Prolog compiler. J. Autom. Reason. 4(4), 353–380 (1988)
47. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF

to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)
48. Toman, D., Weddell, G.: Fundamentals of Physical Design and Query Compilation.

Morgan and Claypool, San Rafael (2011)
49. Wernhard, C.: Semantic knowledge partitioning. In: Alferes, J.J., Leite, J. (eds.)

JELIA 2004. LNCS (LNAI), vol. 3229, pp. 552–564. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30227-8_46

50. Wernhard, C.: Circumscription and projection as primitives of logic programming.
In: Technical Communications ICLP 2010. LIPIcs, vol. 7, pp. 202–211. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2010)

51. Wernhard, C.: Projection and scope-determined circumscription. J. Symbolic Com-
put. 47, 1089–1108 (2012)

52. Wernhard, C.: Abduction in logic programming as second-order quantifier elimi-
nation. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS
(LNAI), vol. 8152, pp. 103–119. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40885-4_8

53. Wernhard, C.: Computing with logic as operator elimination: the ToyElim system.
In: Tompits, H., et al. (eds.) INAP/WLP -2011. LNCS (LNAI), vol. 7773, pp. 289–
296. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41524-1_17

54. Wernhard, C.: Second-order quantifier elimination on relational monadic formulas
– a basic method and some less expected applications. In: De Nivelle, H. (ed.)
TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 253–269. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24312-2_18

55. Wernhard, C.: The PIE system for proving, interpolating and eliminating. In:
PAAR 2016, pp. 125–138. CEUR-WS.org (2016)

56. Wernhard, C.: The Boolean solution problem from the perspective of predicate
logic. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp.
333–350. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_19

57. Wernhard, C.: Craig interpolation and access interpolation with clausal first-order
tableaux. ArXiv e-prints (2018). https://arxiv.org/abs/1802.04982

58. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Practice
Logic Program. 12(1–2), 67–96 (2012)

https://doi.org/10.1007/978-3-540-73595-3_37
https://doi.org/10.1007/978-3-540-30227-8_46
https://doi.org/10.1007/978-3-642-40885-4_8
https://doi.org/10.1007/978-3-642-40885-4_8
https://doi.org/10.1007/978-3-642-41524-1_17
https://doi.org/10.1007/978-3-319-24312-2_18
https://doi.org/10.1007/978-3-319-66167-4_19
https://arxiv.org/abs/1802.04982

KBSET – Knowledge-Based Support
for Scholarly Editing and Text Processing

with Declarative LATEX Markup
and a Core Written in SWI-Prolog

Jana Kittelmann1 and Christoph Wernhard2(B)

1 Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
2 Berlin, Germany

Abstract. KBSET is an environment that provides support for schol-
arly editing in two flavors: First, as a practical tool KBSET/Letters that
accompanies the development of editions of correspondences (in partic-
ular from the 18th and 19th century), completely from source docu-
ments to PDF and HTML presentations. Second, as a prototypical tool
KBSET/NER for experimentally investigating novel forms of working
on editions that are centered around automated named entity recogni-
tion. KBSET can process declarative application-specific markup that
is expressed in LATEX notation and incorporate large external fact bases
that are typically provided in RDF. KBSET includes specially developed
LATEX styles and a core system that is written in SWI-Prolog , which is
used there in many roles, utilizing that it realizes the potential of Prolog
as a unifying language.

1 Introduction

In the age of Digital Humanities, scholarly editing [11,12] involves the combi-
nation of natural language text with machine processable semantic knowledge,
typically expressed as markup. The best developed machine support for scholarly
editing is the XML-based TEI format [14], a comprehensive markup language
for all sorts of text, mainly targeted at rendering for different media and extrac-
tion of metadata, which is achieved through semantics-oriented or declarative
markup. Recent efforts stretch TEIby aspects that are orthogonal to its original
ordered hierarchy of content objects (OHCO) text model, through support for
entities like names, dates, people, and places as well as structuring with link-
ing, segmentation, and alignment [14, Chap. 13 and 16]. Also ways to combine
TEIwith Semantic Web techniques, data modeling and ontologies are investi-
gated [3]. In accord with these directions we observe a number of apparently
open desiderata for the support of scholarly editing in today’s practice and in
future perspective, which we explicitly address with our environment KBSET
(Knowledge-Based Support for Scholarly Editing and Text Processing):

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 178–196, 2020.
https://doi.org/10.1007/978-3-030-46714-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-46714-2_12

KBSET – Knowledge-Based Support 179

1. It should be possible for users from the application domain to create, review,
validate and maintain source documents of the edition project. That is, docu-
ments with annotated text, with metadata, and with data on relevant entities
such as persons and locations. Text markup should be exposed to the users as
far as it is relevant and interesting for the application field. Source documents
must be stored and versioned. Since source texts with XML markup are hardly
readable, in the TEI/XML approach typically an additional user-interface
layer is added to the workflow, where apparently only a single – non-free –
software system is suitable.1 On the other hand, outside the Humanities, with
LATEX the direct use of text with markup is widespread, well supported by
many free tools and supplemented by numerous free packages of high quality.2

2. It should be possible to generate high-quality print and hypertext presenta-
tions in a reproducible way, based on published source documents created in
the edition project as well as additional documents and programs that are
freely available and can be precisely identified.

3. Not just “final” presentations should be well-supported but also internal
tools for developing the scholarly edition and intermediate presentations used
there should be of high quality. This is in particular relevant as many edition
projects take several years.

4. It should be possible to couple object text with associated information in ways
that are more flexible than in-place markup: It may be convenient to maintain
text annotations separately from the commented text sources. Markup can be
by different authors, automatically generated, or for some specific purpose.
Some queries and transformations should remain applicable also after changes
of the markup.

5. It should be possible to incorporate advanced semantics related techniques
that inherently deliver result that are fuzzy, imprecise, or incomplete. For
example, named entity recognition or tools for statistics-based text analysis.

6. Linking with external knowledge bases should be supported. These include
results of other edition projects as well as large fact bases such as author-
ity files like Gemeinsame Normdatei (GND),3 metadata repositories like
Kalliope,4 domain specific bases like GeoNames, or aggregated bases like
YAGO [5] and DBpedia [9].

1 The Oxygen XML Editor. See also https://en.wikipedia.org/wiki/Comparison of
XML editors, accessed Nov 19 2019.

2 In fact, [14, Sect. iv] notes that “the TEI encoding scheme itself does not depend
on this language [XML]; it was originally formulated in terms of SGML (the ISO
Standard Generalized Markup Language), a predecessor of XML, and may in future
years be re-expressed in other ways as the field of markup develops and matures”.

3 http://www.dnb.de/gnd. The GND is maintained by the German-speaking library
community and contains information about various entities, in particular about more
than 11 million persons in more that 160 million fact triples. It is in the public domain
(CC0) and can be downloaded as an RDF/XML document whose decompressed size
is more than 18 GB.

4 http://kalliope-verbund.info.

https://en.wikipedia.org/wiki/Comparison_of_XML_editors
https://en.wikipedia.org/wiki/Comparison_of_XML_editors
http://www.dnb.de/gnd
http://kalliope-verbund.info

180 J. Kittelmann and C. Wernhard

7. A digital edition project involves, more or less explicitly, the creation of data,
in other words, the assertion of facts about relevant entities like persons,
locations, dates, events and units of text such as, for example, letters as com-
ponents of a correspondence, or distinguished positions in texts. Such data
can be project-specific or obtained through combination with external fact
bases. As a result of an edition project, such data should be made explicit and
accessible in a way that facilitates to associate with them machine processable
semantics, that is, meanings based on some logic that is supported by tools
from automated reasoning and knowledge processing. Ontology reasoning in
description logics is important here, but, by itself, not sufficient, as classifica-
tion seems not a main operation of interest in the field. The GND fact base
on persons, institutions and works, for example, gets by with a quite small
ontology of 64 classes.

KBSET approaches these desiderata successfully through the involvement of two
technologies: LATEX and Prolog. More specifically, we defined a dedicated small
set of descriptive markup elements that is tailored to the application domain, in
our case the scholarly edition of correspondences of the 18th and 19th century,
in the form of LATEX commands and environments, and use SWI-Prolog [17] as
a single environment and language to implement all tasks that involve parsing
and composition of documents and fact bases in various formats, querying with
respect to documents and fact bases, and evaluation of complex application
constraints.

The current version of KBSET supports two flavors of application: The first,
KBSET/Letters, is a practical environment for scholarly editions of correspon-
dences. Implemented support covers in particular editions of correspondences
from the 18th and 19th century in German language. The second, KBSET/NER,
is a prototype system that allows to experiment with various advanced features
centered around named entity recognition. KBSET/Letters is currently applied
in a large project, the edition of the correspondence of philosopher and poly-
math Johann Georg Sulzer (1720–1779) with author, critic and poet Johann
Jakob Bodmer (1698–1783), which will be published in print as [13, Vol. 10] in
summer 2020. Including annotations and indexes, it spans about 2000 printed
pages. The online HTML edition, also generated with KBSET/Letters from the
same sources, will be published in parallel. In addition, KBSET is applied in
a long-term project, www.sulzer-digital.de, a digital representation of Sulzer’s
complete correspondence, edited successively with KBSET . To illustrate the use
of KBSET/Letters, the distribution of KBSET includes the edition of a small
correspondence. For KBSET/NER it includes as an example a draft edition of
a 19th century book. KBSET is available as free software from its home page

http://cs.christophwernhard.com/kbset.

The 2016 version of KBSET/NER was presented at DHd 2016 [7]. The Sulzer-
Bodmer edition project and its use of KBSET/Letters, as well as related fur-
ther interdisciplinary research topics, are described (in German) in [8]. Some

http://www.sulzer-digital.de
http://cs.christophwernhard.com/kbset.

KBSET – Knowledge-Based Support 181

components of KBSET/Letters were derived from an earlier collaboration of the
authors, www.pueckler-digital.de [6].

The rest of the paper is structured as follows: In Sect. 2 we describe KBSET/
Letters, the environment for preparing scholarly editions of correspondences in
practice, and in Sect. 3 the more experimentally oriented KBSET/NER flavor
of KBSET centered around named entity recognition. We conclude the inter-
disciplinary paper in Sect. 4 with discussions of the KBSET environment from
three different perspectives: Tools for scholarly editing, the role of SWI-Prolog
as a unifying practical technology, and some encountered issues that might be
of interest for future research on logic-based knowledge processing.

2 KBSET/Letters

The KBSET/Letters environment is at its current state of development adequate
for scholarly editions of correspondences from the 18th and 19th century that are
in German language and where the edited texts are represented in a character-
preserving (zeichengetreu) but not position-preserving (positionsgetreu) way.

2.1 Descriptive Application-Specific Markup in LATEX Notation

Figure 1 shows an overview on KBSET : Inputs, functionalities of the core system
that is implemented in SWI-Prolog , and outputs. For creating a scholarly edition
of a correspondence, the inputs are documents with domain specific markup
expressed as LATEX commands and environments, representing object texts of
the edition project, that is, letters, and annotations by the editors that refer
to the object texts, respectively (box I1 and I2 in Fig. 1). The parsimonious
set of declarative markup elements KBSET/Letters Markup5 is tailored to the
requirements of such scholarly editions. Through the specialization, creating the
markup is perceived by users as expressing statements of interest rather than
a technical burden. Through the LATEX notation, the marked-up text remains
fairly readable and can be directly created by users with any text editor that
supports LATEX, such as, for example, GNU Emacs, which is free software and
shown as representative tool in the figure.

Letters and annotations are represented by LATEX environments. Here is an
example of a letter environment:

\begin{letter}{bs:1745-02-14}{bodmer}{sulzer}{zuerich}{14. Februar 1745}

...

Der Hr.~\xperson{lange}{Pastor Lange von Laublingen}, hat mir, noch

\xl{brief:lange}{ehe er den Brief von E~Hochedl. empfangen}, berichtet,

...

\end{letter}

5 A specification draft is available from the KBSET home page.

http://www.pueckler-digital.de

182 J. Kittelmann and C. Wernhard

Inputs
I1: Object Text Documents

Format: LATEX with domain-specific
descriptive markup

Tool: GNU Emacs

I2: Annotation Documents

Annotations that are maintained
externally from object text

Format, Tool : Same as for object
text documents

I4: Assistance Documents

To configure and adjust KBSET

Format : KBSET -specific,
Prolog-readable

Tool : GNU Emacs

I3: Application Fact Bases

About, e.g., persons, works,
locations; bibliography

Formats: Prolog, LATEX markup,
BibLaTeX

Tools: GNU Emacs, JabRef

I5: Large Imported Fact Bases

E.g., GND , GeoNames, Yago,
DBPedia

Formats: E.g., RDF/XML, CSV

Core system

C1: Text Combination

• Reordering object text fragments,
e.g., letters by different writers in
chronological order

• Merging with external annotations
• Merging with automatically

generated annotations

C3: Named Entity Identification

Persons, locations, dates

C2: Consistency Checking

E.g., for void entity identifiers,
insufficient or implausible date
specifications, duplicate entries in
fact bases

C4: Register Generation

• Indexes for print presentations
• Overview and navigation

documents for Web presentation

Outputs

O1:Display of Identified Entities

Tool: GNU Emacs

O2: Fact Bases

Formats: E.g., RDF/XML, Prolog

O3: Print-Oriented Presentation

Formats: LATEX, PDF

O4: Web-Oriented Presentation

Format: HTML

Fig. 1. KBSET : overview on inputs, core system functionalities and outputs

KBSET – Knowledge-Based Support 183

Identifier bs:1745-02-14 is declared to denote the represented letter. Argu-
ments of the \begin{letter} statement provide essential meta data: Identi-
fiers of writer, addressee and location, as well as the date in a human readable
but parsable form. The tilde for non-breaking space is transferred from LATEX
to the KBSET/Letters markup. The phrase Pastor Lange von Laublingen is
marked-up as denoting the person with identifier lange. Identifiers used here
can be mnemonic as they are local to the project. The identifier brief:lange
is declared to denote the marked-up occurrence of the phrase ehe er den Brief
von E Hochedl. empfangen in the letter. Its scope is the letter environment. The
following example shows an annotation environment:

\begin{annotation}{bs:1745-02-14}

...

\ksection{Stellenkommentar}

\begin{klist}

\kitem{brief:lange} Der Brief Bodmers an Samuel Gotthold Lange ...

...

\end{klist}

\end{annotation}

The annotation block is about the example letter above, associated through the
argument bs:1745-02-14 of the \begin{annotation} statement. In the anno-
tation environment the identifiers like brief:lange that were locally declared
in the letter environment are re-activated for referencing. This permits a con-
venient way to express annotations that refer to specific places in the text of
letters (Stellenkommentare).

Also fact bases can be written with special markup commands in LATEX
notation. For example, the referenced person lange can be declared with the
following statement:

\defperson{lange}{Lange, Samuel Gotthold (1711--1781)}

Person names in these declarations must be compatible with the regularities used
by the GND .6 They can be directly used in indexes and, with years of birth and
death, allow to automatically determine the global GND identifiers of persons
represented in the GND . These global identifiers make metadata maintained,
for example, in the GND and Wikipedia available, relieving the edition project
from the need to replicate them explicitly.

So far, the user perceives the project as a collection of documents with let-
ters, annotations and fact bases in the specialized descriptive LATEX markup.
Indeed, KBSET provides an implementation of the specialized markup in form
of a LATEX package that is sufficient to generate a PDF representation of the
letters and annotations with fairly high quality just by a pure LATEX workflow.
In the result, letters and associated annotations are connected through PDF
hyperlinks. References like \xperson{lange}{...} to identifiers declared in a

6 We do not demand in full the principles of the GND for choosing preferred names,
as “Colombo, Cristoforo” or “Homerus” is unusual in German texts.

184 J. Kittelmann and C. Wernhard

fact base are converted to index entries processed by xindy. The bibliography
is handled by BibLaTeX. The involved LATEX processors already ensure validity
and consistency of the documents to some degree.

2.2 From LATEX to Prolog for Further Consistency Checking
and Text Combination

The KBSET core system includes a LATEX parser written in Prolog that yields
a list of items, terms whose argument is a sequence of characters represented as
atom, and whose functor indicates a type such as word, punctuation, comment,
command, or begin and end of an environment. A special type opaque is used to
represent text fragments that are not further parsed, such as LATEX preambles.
LATEX commands and environments can be made known to the parser to effect
proper handling of their arguments. The parser aims to be practically useful,
without claiming completeness for LATEX in full. It does not permit, for exam-
ple, a single-letter command argument without enclosing braces. The parser is
supplemented by conversions of parsing results to LATEX and to plain text.

So far, additional syntactic checks at parsing and various semantics-oriented
checks that are applied after the parsed documents are converted to Prolog fact
bases are implemented (box C2 in Fig. 1). Further ways of consistency checking
can be realized with respect to the generated HTML documents discussed below
in Sect. 2.3.

Source documents with letters and with annotations are maintained in a
large edition project not necessarily in the same ordering and fragmentation
in which these should appear in presentations. Based on the parsed LATEX,
the KBSET core system can perform such rearrangements (box C1 in Fig. 1)
and write out generated LATEX documents. The conventional LATEX workflow
applied to these generated documents then results in high-quality PDF docu-
ments, which, depending on the configuration, are suitable for publication in
print or on-screen reading.7 Figure 2 shows example output pages.

The functionalities for consistency checking and text combination are avail-
able as Prolog predicates in a user interface module, and, for users that do not
want to interact with Prolog directly, with Bash shell scripts that invoke SWI-
Prolog .8

2.3 HTML Presentation

The parsed source documents are converted to representations as Prolog predi-
cates, which form the basis for generating an HTML representation of the schol-
arly edition. In general, our Web presentation is designed to open-up the edition,
to make it easy to get an overview on the material and on the supported navi-
gation possibilities.

7 Before printing in high quality, LATEX documents in general need manual adjustments
in places that can not be handled satisfactorily by the automated layout processor.

8 In Microsoft Windows, these scripts can be called from the Cygwin shell.

KBSET – Knowledge-Based Support 185

Fig. 2. KBSET/Letters: PDF presentation, a letter and an annotation page.

On the basis of the identifiers in the LATEX-syntax source documents, URIs
for documents like letters and entities like persons and locations are generated.9

These can be used as URLs of the respective generated pages, which then can
persistently represent the respective document or entity with respect to the
edition. An HTML presentation of the project bibliography is generated from
the BibLaTeX sources via an invocation of the Biber processor with options such
that it produces an XML representation of the processed bibliography that is
then read into SWI-Prolog .

The Web presentation just uses static pages, in HTML5, with CSS3 and
– very little – JavaScript. This makes the loading of pages fast, requires no
maintenance efforts, and facilitates the interaction with search engines, general
Web search engines as well as dedicated engines for the online publication.

Some simple but useful means for navigation were realized: Letter pages have
links to a chronologically next and previous letter, with respect to the writer and
also with respect to the correspondence with the addressee. These four links are
always displayed at the same position in the page and thus allow to quickly move
within the letters by an author or in a correspondence.

Another realized useful navigation means is what we call chains (Ketten),
or, more explicitly, result value chains: The value of a query is often a “chain”,

9 This requires a syntactic conversion as “:” has a special meaning in URIs.

186 J. Kittelmann and C. Wernhard

that is, an ordered set of entities, represented as a series of links. Navigating
through such a chain is facilitated by a special type of Web pages, chain pages,
which just display the chain of links but are invoked parameterized by an index
into the chain. They scroll their content automatically such that the indexed link
appears at the top. By clicking at some link or a next button (for the indexed
link) in the chain window the respective linked document is opened in a different
window, and the index of the chain window is incremented (a previous button
has analogous effect). We actually use chains for a finite number of precomputed
queries of general interest such as the set of all letters in which a given person
is referenced, and whose results are also displayed on the respective entity pages
– but are there less convenient to browse through. Chain pages are by default
shown in a small pop-up window positioned top left on the screen. If possible,
an existing chain window and an existing window for displaying a page linked
from a chain window are re-used. Our implementation utilizes the CSS3 target
attribute. Figure 3 shows an example of a generated Web page representing a
letter, accompanied by a chain page.

Fig. 3. KBSET/Letters: HTML presentation, a letter and a chain page.

2.4 Access from Prolog and Export of Fact Bases

The advanced consistency checking and text combination, as well as the HTML
generation can be invoked via Bash shell scripts or directly from Prolog. The

KBSET – Knowledge-Based Support 187

representation of the parsed source documents as Prolog predicates underlying
the HTML conversion can in principle also be applied for other applications, such
as conversion to further formats like RDF/XML and TEI/XML, or to export
fact bases as indicated with box O2 in Fig. 1. The plan is to specify a suitable
set of Prolog predicates such that editions can offer exported data, and also the
parsed text, for download. Currently ways to produce RDF and XML on the
basis of the internal Prolog predicates are indicated with small examples in the
source code.

3 KBSET/NER

While KBSET/Letters addresses the practical aspects of comprehensive schol-
arly correspondence editions, the focus of KBSET/NER is to explore experimen-
tally potential future directions of scholarly editing. Specifically the integration
of techniques that return non-symbolic, fuzzy or incomplete results, the utiliza-
tion of large external fact bases from the library community such as the GND
and from Semantic Web activities such as YAGO, DBPedia and GeoNames, and
ways to handle the association of annotations with places in the object text that
are not explicitly marked as reference target. The functionality of KBSET/NER
can be accessed from the Prolog interpreter or with menus and keyboard short-
cuts from GNU Emacs. A draft edition of Geschichte der Reaction, vol. 1, 1852,
by philosopher Max Stirner that has been created with these novel techniques is
included with the KBSET distribution.

3.1 Caching External Knowledge Bases for Access Patterns

The inputs of KBSET/NER include, aside of object texts and annotation docu-
ments (boxes I1 and I2 in Fig. 1), also large imported fact bases (box I5). Before
use, the configured fact bases, which are typically available in Semantic Web
formats like RDF/XML or as CSV tables, have to be downloaded, parsed and
preprocessed. This can be done with a utility predicate, but, as it may take sev-
eral hours, for the example application also a TAR archive with the results of
the preprocessing can be downloaded from the KBSET home page.10 The pre-
processed fact bases are then loaded into the Prolog system. At the first loading
they are compiled into SWI-Prolog ’s quick-load format. In that format our fact
base with 12 million ternary facts on persons born before 1850 extracted from
the GND takes 7 s to load on a modern notebook computer.

KBSET then accesses these data as Prolog predicates stored in main memory.
The indexing mechanisms of SWI-Prolog are utilized by maintaining predicates
that are adapted to the represented entities, such as persons or locations (in
contrast to generic triple predicates as might be suggested by the RDF format),
and to access patterns. For example, a predicate for accessing data about a set of

10 Also the original fact bases used for the example application are archived on the
KBSET home page, as none of them has a persistent URL.

188 J. Kittelmann and C. Wernhard

persons via a given last name and another predicate for accessing data about a
person via a given GND identifier. We call these predicates, which may be in part
redundant from a semantic point of view, caches. In the current implementation,
the caches are in part computed when preprocessing the fact bases and in part
when loading them. With this approach, the system can evaluate the several
10.000s of queries against the fact bases required for named entity recognition on
the example document in a few seconds. Another useful feature is the semantics-
based restriction of the large fact bases at preprocessing them. Since our example
edition is a book from 1852, we keep of the GND only the facts about persons
born before 1850.

3.2 Named Entity Identification

Working with KBSET/NER is centered around a subsystem for named entity
recognition, which detects dates by parsing as well as persons and locations based
on the GND and GeoNames as gazetteers, using additional knowledge from
YAGO and DBpedia. Persons can be detected in two modes, characterized by
names as well as by functional roles like King of, Duke of and Bishop of. Differ-
ently from systems like the Stanford Named Entity Recognizer [4], KBSET/NER
does not just associate entity types such as person or location with phrases but
attempts to actually identify the entities, hence we also speak of named entity
identification.

The identification of persons and locations is based on single word occur-
rences with access to a context representation that includes the text before and
after the respective occurrence. Hence an association of word occurrences to
entities is computed, which is adequate for indexes of printed documents and for
hypertext presentations, but not fully compatible with TEI, where the idea is to
enclose a phrase that denotes an entity in markup.

Figure 4 shows the presentation of named entity identification results in GNU
Emacs. In the upper buffer, which contains the object text, the system highlights
words or phrases about which it assumes that they denote a person, location
or date. In the lower buffer additional information on the selected occurrence of
Gleim is displayed: Links to Wikipedia and GND , an explanation why the system
believes the entity to be a plausible candidate for being referenced by the word
occurrence, and an ordered listing of lower-ranked alternate candidate entities.
Menus and keyboard shortcuts allow to jump quickly between the highlighted
text positions with associated entities.

Aside of the presentation in GNU Emacs, the results of named entity iden-
tification can be output in different formats, in particular merged into a LATEX
source document as annotations. In this merging process also external annotation
documents can be considered, where the positions to insert particular annota-
tions are abstractly specified, for example by some form of text pattern. Further
supported output formats of the named entity identification results include the
presentation as TEI/XML elements merged into a source document, as a Prolog
fact base, or, for identified locations, as a CSV table that can be loaded into the
DARIAH-DE geo browser.

KBSET – Knowledge-Based Support 189

Fig. 4. KBSET/NER: named entity identification from GNU Emacs.

The named entity identification is controlled by rules which can be
specified and configured and determine the evaluation of syntactic features
matched against the considered word, for example, is-no-stopword or is-no-
common-substantive, and of semantic features matched against candidate enti-
ties, for example, is-in-wikipedia, is-linked-to-others-identified-in-context, has-
an-occupation-mentioned-in-context, or date-of-birth-matches-context. Evalua-
tion of these features is done with respect to the mentioned context represen-
tation, which includes general information like the date of text creation and
inferred information such as a set of entities already identified near the evalu-
ated text position. Features that are cheap to compute and have great effect on
restricting the set of candidate entities are evaluated first. This allows, for exam-
ple, to apply named entity identification of persons on the 300-pages example
book provided with the system in about 7 s on a modern notebook computer.
Feature evaluation results are then mapped to Prolog terms whose standard
order represent their plausibility ranking. Information about the features that
contributed to selection of a candidate entity is preserved and used to generate
the displayed explanations shown in Fig. 4.

3.3 Assistance Documents

The automated named entity identification produces incomplete, partially incor-
rect and, by presenting a ranked list of plausible entities, fuzzy results. Such

190 J. Kittelmann and C. Wernhard

results may be helpful for developing a scholarly edition but should not remain
in a released version. Hence, there must be a possibility to adapt them. This can
be done in KBSET/NER with configuration files, so-called assistance documents
(box I4 in Fig. 1). These specify the complete configuration of KBSET/NER,
including the URLs of the external fact bases, the preprocessing required to use
them, and how to bias or override automated inferencing in named entity identi-
fication. The idea for the latter is that the user, instead of annotating identified
entities manually, lets the system do it automatically and mainly gives hints in
exceptional cases, where the automatic method would otherwise not recognize
an entity correctly. That method was used in the example document supplied
with KBSET .

In the assistance document the explicit appearance of technical identifiers
such as the identifiers from the GND should be avoided. This is achieved by
permitting to specify a person just by some attributes like name, year of birth,
and/or a profession. These specifiers are evaluated with the current fact base of
the system, that is, essentially the GND . In contexts where a unique person must
be designated an error is signaled if no or several persons match the specifier. (Of
course, this method is not stable against importing an extended version of the
GND .) In addition, context properties can be specified that characterize when
the biasing should be applied. Other options are to register persons that can not
be found in the GND and to supplement attributes of persons in the GND . Also
simple syntactic exclusions, for example that a certain word should not denote
a person or location can be specified. Here is an excerpt from the assistance
document for the included example. It “assists” the automated named entity
identifier in distinguishing two persons named Tacitus, classifying Starcke (the
printer of the book) as a person and identifying him, as well as in identifying
the person referenced in the text as Herzog von Luxemburg :

entity(person,

[name=’Tacitus’,

professionOrOccupation=’Historiker’],

[near_word_in=[’Rmern’]]),

entity(person,

[name=’Tacitus’,

variantNameForThePerson=’Tacitus, Rmisches Reich, Kaiser’],

[near_word_in=[’Adel’]]),

entity(person,

[name=’Starcke, Johann Friedrich’,

professionOrOccupation=’Drucker’],

[near_word_in=[’Druck’]]),

supplement(person,

[name=’Joseph II., Heiliges Rmisches Reich, Kaiser’],

[biographicalOrHistoricalInformation

=lang(de,’Herzog von Luxemburg (1765-1790)’)]),

Like Prolog program files, assistance documents can be re-loaded, which effects
updating of the specified settings. Thus, the named entity identification of

KBSET – Knowledge-Based Support 191

KBSET/Letters can be improved in an iteration of adjustments of the assis-
tance documents and reviewing the effects in the GNU Emacs presentation.

This mode of interaction has, however, in the Sulzer-Bodmer edition project
only been used in occasional cases. Each letter has there been transcribed and
extensively commented by scientists, where the manual entity tagging emerged
as a by-product. The automated named entity identification has been applied
in special situations such as initializing the tagging of locations, examining and
completing the manual tagging of persons, and generating auxiliary fact bases
that map the project-local entity identifiers to global ones from the GND and
GeoNames.

4 Discussion

We conclude this inter-disciplinary paper with discussions of the KBSET envi-
ronment from three different perspectives.

4.1 KBSET in the World of Tools for Digital Scholarly Editing

KBSET has been designed and written within the paradigm of programming
and creating mechanizable formalizations in Artificial Intelligence,11 which is
considered there as an integral component of the research activity. The creation
of text with markup (LATEX) is daily routine for researchers in computer science
in general, as well as in numerous further fields.

In contrast, in the Humanities the use of formally defined languages entered
in the last decade largely from the outside, with the requirement to make pub-
licly funded results openly available in the HTML-based Web. Customizations
of TEI/XML seemed the format of choice.12 Hence the creation of TEI/XML
documents became a component of the scholarly editing workflow.13 However,
this should not be misunderstood as equating the creation of digital editions to
working with TEI/XML. The text represented in TEI/XML documents is hardly
readable and the computational treatment of TEI/XML usually requires famil-
iarity with several dedicated transformation and query languages, such that edi-
tion projects are typically large undertakings that are accompanied by support
11 In the sense of the discipline Artificial Intelligence, not as synecdoche for its subfield

Machine Learning.
12 See for example the DFG (German Research Foundation) document Förderkriterien

für wissenschaftliche Editionen in der Literaturwissenschaft, Ausgabe 11/2015,
https://www.dfg.de/download/pdf/foerderung/grundlagen dfg foerderung/inform-
ationen fachwissenschaften/geisteswissenschaften/foerderkriterien editionen literat-
urwissenschaft.pdf.

13 Scholarly editions of correspondences that offer an openly available TEI/XML
presentation include Alfred-Escher Briefedition (https://www.briefedition.alfred-
escher.ch), Briefe und Texte aus dem intellektuellen Berlin um 1800 (https://
www.berliner-intellektuelle.eu), Digitale Edition der Korrespondenz August Wilhelm
Schlegels (https://august-wilhelm-schlegel.de), hallerNet (http://hallernet.org), and
edition humboldt digital (https://edition-humboldt.de).

https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/inform-ationen_fachwissenschaften/geisteswissenschaften/foerderkriterien_editionen_literat-urwissenschaft.pdf
https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/inform-ationen_fachwissenschaften/geisteswissenschaften/foerderkriterien_editionen_literat-urwissenschaft.pdf
https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/inform-ationen_fachwissenschaften/geisteswissenschaften/foerderkriterien_editionen_literat-urwissenschaft.pdf
https://www.briefedition.alfred-escher.ch
https://www.briefedition.alfred-escher.ch
https://www.berliner-intellektuelle.eu
https://www.berliner-intellektuelle.eu
https://august-wilhelm-schlegel.de
http://hallernet.org
https://edition-humboldt.de

192 J. Kittelmann and C. Wernhard

from a specialized IT department, which mediates between the formal languages
and the researcher. Observe that this is quite different from research in Artificial
Intelligence, where the researcher herself creates mechanizable formalizations
and programs. Where should the Digital Humanities go?

As TEI/XML is a general scheme for encoding all sorts of text, “it is almost
impossible to use the TEI schema without customizing it in some way” [14,
Sect. 23.3]. Applications such as scholarly editions of letters typically use project-
or organization-specific customizations. Such customizations should be formal-
ized in a schema language and explained in an informal document, both of which
should be made accessible with the digital edition ([14, Sect. 23.4] gives very spe-
cific notions of this, even claimed to be presuppositions for calling a document
TEI-conformant). Unfortunately, in current practice such schema specifications
and documentations for digital editions are only rarely made easily accessible.14

The suggested way to associate a TEI/XML document instance with a schema
by the xml-model processing instruction [14, Sect. v.7.2] seems not used at all.15

Writing a conversion from KBSET/Letters source documents to some cus-
tomization of TEI/XML is an easy task based on the extraction process imple-
mented for the HTML transformation. The markup in LATEX-syntax is there
available in parsed form, metadata appear as Prolog predicates, and routines for
converting identifiers are already implemented. A module in KBSET illustrates
the concrete proceeding for XML and RDF conversions of metadata. In fact,
a conversion to a TEI/XML customization is much simpler than the HTML
translation included in KBSET . It is not yet implemented for the reason that,
so far, it seems difficult to identify a particular formally defined TEI/XML cus-
tomization for correspondences for which interesting tools or services are openly
available, for example, to generate further presentations or for integration with
other editions.

In the light of the standardization efforts via TEI/XML, KBSET can be
taken as a user-friendly and economic environment for developing scholarly edi-
tions that approaches compliance with the desiderata described in the introduc-
tion. The generation of a representation in some customized TEI/XML format
for interchange and archival is a marginal feature that is easy to add. In the
long run, variations of the KBSET markup language should perhaps be adapted
to reflect some suitable TEI/XML customizations more explicitly, or even be
considered as realizations of TEI customizations in LATEX-syntax.

Vice versa, KBSET/Letters can also be taken as a tool for generating pre-
sentations. It is not difficult to translate a representation of a correspondence in

14 Actually, the authors were (in November 2019) not able to find any correspondence
edition where a formal specification of the used customized schema is referenced from
the TEI/XML documents or specified on the Web site. Informal edition guidelines
can be found, for example, on the Web sites of Alfred-Escher Briefedition, Briefe
und Texte aus dem intellektuellen Berlin um 1800 and hallerNet.

15 The well-intentioned postulation “Um die Austauschbarkeit und Nachnutzung zu
ermöglichen, werden die projektspezifisch verwendeten XML-Elemente und Attribut-
Wert-Paare im TEI-Header dokumentiert” in the DFG document mentioned in foot-
note 12 can technically not refer to the teiHeader element.

KBSET – Knowledge-Based Support 193

a TEI/XML customization to the KBSET/Letters markup (this can be imple-
mented on the basis of the term representations of documents obtained from the
XML parser of SWI-Prolog) such that the PDF and HTML presentations offered
by KBSET/Letters become available. Since, as already mentioned, projects use
different and hardly documented TEI/XML customizations it is expected that
the translations need to be project-specific and some trial-and-error is involved
in the development.

KBSET is free software. It depends only on a TEX distribution (it has been
tested with TeX Live) and on SWI-Prolog , both of which are also free software,
platform independent, and, moreover, mature, stable and widely used such that
the current implementation of KBSET can be expected to operate also with
future releases of these environments.16

The sources of an edition project like the Sulzer-Bodmer correspondence can
be published and archived together with the used version of KBSET/Letters.
The following functionalities are then freely available, through the stability and
platform independence of LATEX and SWI-Prolog also in the foreseeable future:
Generation of various high-quality PDF and HTML representations, genera-
tion of fact bases in Prolog representation,17 and the representation in some
TEI/XML customization (which still needs to be implemented). Moreover, if
users want to improve or extend these functionalities, KBSET/Letters is avail-
able as a concrete and working free software environment to begin with.

The use of KBSET with other languages than German is supported to some
degree: All input documents created for KBSET are encoded in UTF-8. The
GNU Emacs user interface of KBSET/NER can be configured to English or
German. Some of the word lists included in the implementation are, however, so
far provided only for German. Also the presentation templates of KBSET/Letters
are currently only in German. The BibLaTeX configuration included currently
with KBSET/Letters is based on practices of the Humanities in Germany, but
it is no problem to replace it with a different configuration.

4.2 SWI-Prolog as a Unifying Practical Technology

The core system of KBSET/Letters is written in SWI-Prolog , which realizes the
potential of Prolog as a unifying language. As noted on the SWI-Prolog home
page,18 it considers Prolog “primarily as glue between various components. The
main reason for this is that data is at the core of many modern applications
while there is a large variety in which data is structured and stored. Classical
query languages such as SQL, SPARQL, XPATH, etc. can each deal with one

16 Some of the functions of KBSET can be invoked in addition from Bash shell scripts.
A Bash shell can be presupposed on Unix-like platforms and can be added, for
example with Cygwin, to Microsoft Windows platforms.

17 Considering that there is an ISO standard for Prolog, such fact bases are actually
in a standardized format. However, the ISO standard for Prolog is only with respect
to ASCII encoding. Modern implementations like SWI-Prolog support UTF-8.

18 https://www.swi-prolog.org/features.html, accessed Nov 21 2019.

https://www.swi-prolog.org/features.html

194 J. Kittelmann and C. Wernhard

such format only, while Prolog can provide a concise and natural query language
for each of these formats that can either be executed directly or be compiled
into dedicated query language expressions. Prolog’s relational paradigm fits well
with tabular data (RDBMS), while optimized support for recursive code fits well
with tree and graph shaped data (RDF).” The particular roles of Prolog, and in
particular SWI-Prolog , for KBSET can be compiled as follows:

1. Declarative representation mechanism for relational fact bases. As outlined
in Sect. 2.4, we convert the document sources created in scholarly edition
projects and large external fact bases to an intermediate representation as
Prolog predicates, which are then used, for example, to generate HTML pages,
but are also available for other purposes, including export as fact bases or
interactive querying on the Prolog shell. The declarative view brings seman-
tics into the focus and offers a bridge to the wealth of semantics-based tech-
niques for knowledge representation and knowledge-based reasoning, in par-
ticular deductive databases, model- and answer-set computation, first-order
theorem proving, and ontology reasoning.

2. Efficient representation mechanism for relational fact bases. We utilize the
predicate indexing facilities of SWI-Prolog ’s with predicate caches that are
specialized to access patterns as outlined in Sect. 3.1.

3. Query language. The standard predicates findall and setof provide expressive
means to specify queries in a declarative manner. Complex tests and construc-
tions can be smoothly incorporated, as query and programming language are
identical, without much impedance mismatch. Of course, queries written in
Prolog can not rely on an optimizer, and have to be designed “manually”
such that their evaluation is done efficiently. A further important feature of
Prolog is fast sorting based on a standard order of terms, which we quite
often use to canonicalize representations of sets and is also the basis of our
implementation of ranked answers in named entity identification.

4. Representation mechanism for structured documents. As in Lisp, data struc-
tures are in Prolog by default terms that are print- and readable, a feature
which is supplemented to “non-AI” languages often by XML serialization.
In our application context this is particularly useful as it allows to represent
XML and HTML documents directly as Prolog data structures, that is, terms.

5. Parser for XML and Semantic Web formats. SWI-Prolog comes with powerful
interfaces to Semantic Web formats, of which we use in particular the XML
parser and the RDF parser, which provides a call-back interface that allows
to process in succession the triples represented in a large RDF document such
as the GND (see footnote 3 in Sect. 1).

6. Parser for natural language text fragments and for formal languages. Prolog
has been developed originally in the context of applications in linguistics
and traditionally supports syntax for grammar rules that are translated into
an advanced parsing system. In KBSET this feature is used to parse date
specifications in various contexts, to parse person specifications by functional
roles in named entity identification, and to implement the LATEX parser.

7. Practical workflow model. Workflow aspects of experimental AI programming
seem also useful in the Digital Humanities: loading and re-loading documents

KBSET – Knowledge-Based Support 195

with formal specifications as well as invocation of functionality and running of
experiments through an interpreter. All of this manageable by the researcher
herself instead of further parties.

8. Programming language. Not to forget: Prolog is a programming language that
is “different, but not that different” [10, Introduction].

4.3 Some Issues for Logic-Based Knowledge Processing

KBSET is an implemented system that has been proved workable in an appli-
cation project and allows to experimentally study further possibilities. Some of
the issues encountered in the course of implementing that were solved in specific
ways seem to deserve further investigation. One of these issues is the inter-
play of knowledge that is inferred by automated and statistic-based techniques
such as named entity recognition with manually supplied knowledge, which is
addressed in KBSET so far with the assistance documents. Non-monotonic rea-
soning should in principle be a logic-based technique that is applicable here.
Related to this issue is the handling of ranked query results used in KBSET
for named entity identification. This is known in the field of databases as top-k
querying. Is it possible to add some systematic and logic-based support for this
to Prolog and perhaps also bottom-up reasoners like deductive database systems
and model generators?

The approach to access fact bases with several millions of facts via prepro-
cessed caches as realized by KBSET might be of general interest and could be
investigated and implemented more systematically. If queries are written in a
suitable fragment of Prolog, they can be automatically optimized, abstracting
from caring about indexes (i.e., which cache is used), the order of subgoals,
and the ways in which answer components are combined. Recent approaches
to interpolation-based query reformulation [1,15] investigate a declarative app-
roach for this. The optimized version of a query is there extracted as a Craig
interpolant [2,16] from a proof obtained from a first-order prover. It seems also
possible to apply this approach to determine from a given set of queries the
caches that need to be constructed for efficient evaluation of the queries.

Digital Scholarly editing involves the interplay of natural language text with
formal code and with formalized knowledge bases. From a general point of view,
the contribution of the computer in digital scholarly editing may be viewed as a
variant of the classical Artificial Intelligence scenario, where an agent in an envi-
ronment makes decisions on actions to perform: General background knowledge
in the AI scenario corresponds to knowledge bases like GND and GeoNames;
the position of the agent in the environment may correspond to a position in
the text; temporal order of events to the order of word occurrences; the environ-
ment which is only incompletely sensed or understood by the agent corresponds
to incompletely understood natural language text; coming to decisions about
actions to take corresponds to decisions about denotations of text phrases and
about annotations to associate with text components. This suggests that digital
scholarly editing is an interesting field for applying, improving and inventing AI
techniques.

196 J. Kittelmann and C. Wernhard

References

1. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating Plans from
Proofs: The Interpolation-based Approach to Query Reformulation. Morgan &
Claypool, San Rafael (2016)

2. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)

3. Eide, O.: Ontologies, data modeling, and TEI. J. Text Encoding Initiative 8 (2015)
4. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into

information extraction systems by Gibbs sampling. In: ACL 2005, pp. 363–370.
ACL (2005)

5. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and
temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61
(2013)

6. Kittelmann, J., Wernhard, C.: Semantik, Web, Metadaten und digitale Edition:
Grundlagen und Ziele der Erschließung neuer Quellen des Branitzer Pückler-
Archivs. In: Krebs, I., et al. (eds.) Resonanzen. Pücklerforschung im Spannungsfeld
zwischen Wissenschaft und Kunst, pp. 179–202. trafo Verlag (2013)

7. Kittelmann, J., Wernhard, C.: Knowledge-based support for scholarly editing and
text processing. In: DHd 2016, pp. 178–181. Nisaba verlag (2016)

8. Kittelmann, J., Wernhard, C.: Von der Transkription zur Wissensbasis.
Zum Zusammenspiel von digitalen Editionstechniken und Formen der Wis-
sensrepräsentation am Beispiel von Korrespondenzen Johann Georg Sulzers. In:
Kittelmann, J., Purschwitz, A. (eds.) Aufklärungsforschung digital. Konzepte,
Methoden, Perspektiven, IZEA - Kleine Schriften, vol. 10/2019, pp. 84–114. Mit-
teldeutscher Verlag (2019)

9. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted
from Wikipedia. Semant. Web 6(2), 167–195 (2015)

10. O’Keefe, R.A.: The Craft of Prolog. The MIT Press, Cambridge (1990)
11. Plachta, B.: Editionswissenschaft: Eine Einführung in Methode und Praxis der

Edition neuerer Texte. Reclam (1997)
12. Sahle, P.: Digitale Editionsformen, Zum Umgang mit der Überlieferung unter den

Bedingungen des Medienwandels, 3 volumes, Schriften des Instituts für Dokumen-
tologie und Editorik, vol. 7–9. Books on Demand (2013)

13. Sulzer, J.G.: Gesammelte Schriften. Kommentierte Ausgabe. In: Adler, H.,
Décultot, E. (eds.) Schwabe (2014–2021)

14. The TEI Consortium: TEI P5: Guidelines for Electronic Text Encoding and Inter-
change, Version 3.6.0. Text Encoding Initiative Consortium (2019). http://www.
tei-c.org/Guidelines/P5/

15. Toman, D., Weddell, G.: Fundamentals of Physical Design and Query Compilation.
Morgan and Claypool, San Rafael (2011)

16. Wernhard, C.: Facets of the PIE environment for proving, interpolating and elim-
inating on the basis of first-order logic. In: Hofstedt, P., et al. (eds.) DECLARE
2019. LNCS(LNAI), vol. 12057, pp. 160–177. Springer, Heidelberg (2020)

17. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theory Practice
Logic Program. 12(1–2), 67–96 (2012)

http://www.tei-c.org/Guidelines/P5/
http://www.tei-c.org/Guidelines/P5/

27th International Workshop on
Functional and Logic Programming -

WFLP 2019

Structured Traversal of Search Trees
in Constraint-Logic Object-Oriented

Programming

Jan C. Dageförde1(B) and Finn Teegen2

1 ERCIS, Leonardo-Campus 3, 48149 Münster, Germany
dagefoerde@uni-muenster.de

2 Institut für Informatik, CAU Kiel, 24098 Kiel, Germany
fte@informatik.uni-kiel.de

Abstract. In this paper, we propose an explicit, non-strict represen-
tation of search trees in constraint-logic object-oriented programming.
Our search tree representation includes both the non-deterministic and
deterministic behaviours of executing an application. Introducing such a
representation facilitates the use of various search strategies. In order to
demonstrate the applicability of our approach, we incorporate explicit
search trees into the virtual machine of the constraint-logic object-
oriented programming language Muli. We then exemplarily implement
three search algorithms that traverse the search tree on-demand: depth-
first search, breadth-first search, and iterative deepening depth-first
search. In particular, the last two strategies allow for a complete search,
which is novel in constraint-logic object-oriented programming and high-
lights our main contribution. Finally, we compare the implemented
strategies using several benchmarks.

Keywords: Constraint-logic object-oriented programming · Explicit
search tree · Complete search strategy · Virtual machine
implementation

1 Motivation

In constraint-logic object-oriented programming, combining imperative code
with features from logic programming causes the runtime to execute parts of
the imperative code non-deterministically (“don’t know” non-determinism). To
give an example, the program (or search region) depicted in Listing 1 has two
solutions. The example is written using the Münster Logic-Imperative Language
(Muli), which we explain in Sect. 2. The search region declares a boolean logic
variable coin. Subsequently, evaluating the if statement causes the runtime
environment to take and implement a decision regarding the potential value of
coin, thus introducing non-determinism. Consequently, implementing the deci-
sion selects a single branch of execution, eventually resulting in one of the two
outcomes.
c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 199–214, 2020.
https://doi.org/10.1007/978-3-030-46714-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_13&domain=pdf
http://orcid.org/0000-0001-9141-7968
http://orcid.org/0000-0002-7905-3804
https://doi.org/10.1007/978-3-030-46714-2_13

200 J. C. Dageförde and F. Teegen

boolean flipCoin() {
int coin free;
if (coin == 0)

return false;
else

return true; }

Listing 1. A simple non-deterministic
search region in Muli for the demonstra-
tion of constraint-logic object-oriented
programming concepts.

boolean flipTwoCoins() {
int coin1 free, coin2 free;
if (coin1 == 0)

return false;
else if (coin2 == 0)

throw Muli.fail();
else

return true; }

Listing 2. Muli search region example
that comprises two solutions and a fail-
ure.

Non-deterministic execution is useful for applications involving search, i. e.,
an application would usually cause the runtime environment to evaluate more
than one branch. To that end, the runtime environment systematically evaluates
multiple alternative branches in sequence. Non-deterministic branching dynam-
ically creates an implicit search tree that represents the various execution paths
that lead to alternative outcomes of a program. The goal of the present work
is to make this search tree explicit at runtime. It encodes the various execution
paths of a program, the choices encountered along every path, and every path’s
outcome (i. e., solution or failure). As there can be paths of infinite length, our
search tree representation is non-strict. Our search tree then serves as a basis for
structured traversal by arbitrary search algorithms, including iterative deepening
depth-first search. Furthermore, by making the search tree explicit, it is possible
to inspect the search tree at any given point in time, e. g., after search or even
at an intermediate stage. This way, the search tree aids in effective debugging.

This paper provides the following contributions:

– A general search tree structure for constraint-logic object-oriented program-
ming that encapsulates execution state (Sect. 4).

– Search algorithm implementations that traverse the search tree structure for
finding solutions to constraint-logic object-oriented programs (Sect. 5).

– A discussion of the implications of our work for executing object-oriented
(imperative) programs non-deterministically (Sect. 6).

First of all, Sect. 2 introduces concepts of constraint-logic object-oriented
programming, followed by an outline of the Muli virtual machine in Sect. 3.

2 Constraint-Logic Object-Oriented Programming

Constraint-logic object-oriented programming combines the flexibility of imper-
ative and object-oriented programming with features from constraint-logic pro-
gramming, namely logic variables, constraints, and search. Muli is a constraint-
logic object-oriented programming language that is based on Java [4].

Structured Traversal of Search Trees 201

In Muli, logic variables are declared in a way that is similar to declaring
regular variables. As indicated in Listing 1,

int coin free;

declares a logic variable of a primitive (integer) type. Instead of assigning a
constant value, the free keyword specifies that coin is a logic variable. A logic
integer variable can be used interchangeably with other integer variables, i. e.,
they can become part of conditions or arithmetic expressions and can be passed
to methods as parameters [3]. In contrast to regular variables, logic variables are
used symbolically. Recent work is looking into support for reference-type logic
variables [2], but here we focus on logic variables of primitive types.

Constraints are defined as relational expressions, (typically) involving logic
variables. For simplicity, Muli does not provide a dedicated language feature
for imposing constraints. Instead, a constraint is imposed whenever the flow of
execution branches, such as when a branching condition is evaluated. Therefore,
constraints are derived from boolean expressions. For instance, in Listing 1

if (coin == 0) { s1 } else { s2 }

coin occurs in the condition and is not sufficiently constrained, so that the
condition can be evaluated to either true or false. As a result, the evaluation
of the condition creates a choice, from which alternatives are evaluated non-de-
terministically. The runtime environment selects an alternative by imposing the
corresponding constraint. In our example, by imposing coin �= 0 the runtime
environment can proceed with the evaluation of s2. The runtime environment
leverages a constraint solver for finding solutions as well as for cutting execution
branches early as soon as their constraint system becomes inconsistent.

Search transparently performs non-deterministic evaluation in combination
with backtracking until a solution is found. Implicitly, following a sequence of
choices (and taking decisions at each choice) produces a (conceptual) search tree
that represents the order of execution. In such a search tree, inner nodes are
choices and leaves represent alternative ends of execution paths. In Muli, an
execution path ends with a solution (specified by either return or throw) or
with a failure, e. g., if a path’s constraint system is inconsistent. The full listing of
our example in Listing 1 demonstrates how solutions are returned. After search
completes, solutions of the example are false and true (in any given order).

Moreover, applications sometimes require an explicit failure denoting the end
of an execution path without a solution. In Muli, an explicit failure is expressed
by throw Muli.fail(). Nevertheless, executing that statement will not return
an exception. Instead, the statement is specifically interpreted by the runtime
environment, resulting in backtracking. Listing 2 provides a slightly extended
search region with three execution paths, one of which ends in a failure.

The main program is executed deterministically, whereas all non-
deterministic search is encapsulated. Encapsulation gives application develop-
ers control over search. In addition to coarse-grained control (i. e., request-
ing either a single solution or an array comprising all solutions), Muli offers

202 J. C. Dageförde and F. Teegen

fine-grained control by returning a Java stream that evaluates solutions non-
strictly. Muli.muli() accepts a Supplier and returns a stream of Solution

objects. In Java (and, therefore, in Muli), a Supplier denotes either a lambda
expression or a method reference (both without arguments). We refer to the
method that is passed as an argument as a search region, as it will be executed
non-deterministically and therefore describes the constraint-logic object-oriented
problem. Following the principles of the Java Stream API, solutions can be
retrieved from the stream individually on demand [5]. For instance, considering
Listing 1, a stream is initialised using

Stream<Solution<Boolean>> stream = Muli.muli(self::flipCoin),

and the actual search starts as soon as the first solution is requested from the
stream.

3 Muli Logic Virtual Machine

The Muli Logic Virtual Machine (MLVM) is a runtime environment for Muli.
The MLVM is a custom Java Virtual Machine (JVM) that complies with the
JVM Specification (see [10]) for deterministic execution. Moreover, it adds mod-
ifications that support Muli-specific extensions, particularly symbolic execution
and non-deterministic execution [4]. As in a regular JVM, execution state is
represented in the MLVM by a combination of program counter (PC), a heap, a
stack of executed method frames (frame stack), and an operand stack per frame.
Additional state serves the purpose of supporting non-deterministic execution
and constraints. In particular, this includes the constraint stack and the trail.

The constraint stack maintains the active constraint system, i. e., the con-
junction of all constraints on the stack [4]. Representing the constraint system in
a stack structure is beneficial as constraints are added dynamically during exe-
cution. Consequently, on backtracking, only the most recently added constraints
need to be removed from the stack. Moreover, the trail records changes that
are made to the virtual machine (VM) state during execution. On backtracking,
the information on the trail can be used to revert to a previous execution state.
More precisely, using the trail, backtracking achieves the specific state of the
choice at which the next decision can be made. In fact, the trail is therefore
split up into incremental trails, one per choice, each describing how to backtrack
towards the next choice. In addition, in order to be able to not only backtrack to
a choice (upwards along a search tree) but to achieve an arbitrary previous state
(including downward navigation), the MLVM maintains two trails per choice,
one being the inverse of the other [5]. In the following, we call the trail for back-
tracking backward trail, as opposed to the forward trail that is used to navigate
downwards.

Like a regular JVM, the MLVM reads applications from bytecode and exe-
cutes bytecode instead of the original source. Muli’s bytecode format is com-
patible with that described in [10], merely adding custom attributes in order to
represent logic variables [4]. For instance, the example application from Listing 2

Structured Traversal of Search Trees 203

0: iload_1 // coin1
1: iconst_0
2: if_icmpne 7 // coin1 != 0
5: iconst_0
6: ireturn // return false
7: iload_2 // coin2
8: iconst_0
9: if_icmpne 16 // coin2 != 0
12: invokestatic #91 // fail()
15: athrow
16: iconst_1
17: ireturn // return true

Listing 3. Bytecode generated by the Muli compiler for the program in Listing 2.

Table 1. Bytecode instructions that may cause non-deterministic branching upon exe-
cution. <cond> is a placeholder for specific comparisons, e. g., eq for equality.

Triggering bytecode instruction Type of choice No. of decisions

If<cond>, If_icmp<cond> if instruction, integer comp 2

FCmpg, FCmpl, DCmpg, DCmpl floating point comparison 2

LCmp long comparison 3

Lookupswitch, Tableswitch switch instruction 1 per case + 1

compiles to the bytecode instructions in Listing 3. Some bytecode instructions
exhibit non-deterministic behaviour. For instance, if_icmpne in Listing 3 jumps
to the specified instruction if the two integer operands on the operand stack are
not equal. Otherwise, execution continues linearly with the following instruc-
tion. If one or both operands are logic variables, both jumping and not jumping
are feasible alternatives. As logic variables are used in the current example, the
execution of if_icmpne instructions creates choice points that offer two deci-
sion alternatives. While if instructions always provide two alternatives (i. e.,
jumping to the else branch or not), switch instructions result in alternatives
according to the number of cases plus one for the default case, each jumping
to instructions accordingly. Table 1 provides a reference of instructions that may
exhibit non-deterministic behaviour and counts the decision alternatives from
which the MLVM chooses.

Executing a bytecode instruction with non-deterministic branching creates
a choice point in the MLVM [4]. Prior to this work, the implementation of the
choice point itself was responsible for managing the execution of its branches.
More specifically, executing a bytecode instruction created a choice point repre-
sentation in the MLVM. Consequently, the created choice point contained infor-
mation about applicable branches, but also implemented the behaviour of search.

204 J. C. Dageförde and F. Teegen

That is, upon creation, the choice point representation immediately selected the
first decision alternative and applied it, thus committing to a specific branch. The
created choice point representations are stored in a stack of choice points. The
MLVM referred to the choice point stack during backtracking. Starting from the
top, it popped choice points until reaching one with an alternative that had not
been evaluated yet. It then immediately committed to this alternative by adding
its constraint and following its path.1 As a consequence, the runtime environment
never actually stored an explicit representation of the search tree. Instead, the
choice point stack merely maintained a single path through the (implicit) search
tree. Therefore, diverting from the currently executed path was not possible,
effectively restricting the search capabilities of the MLVM to depth-first search.
All things considered, the previous MLVM used a complex, tangled mixture
of responsibilities in which bytecode-instruction implementations, choice-point
implementations, and the VM realise non-deterministic search in combination.

In a cleaner architecture,

– declaratively executing a bytecode instruction creates choice objects and just
returns them to the MLVM (instead of performing a decision right away),
and

– choice objects only hold information about available decision alternatives (but
no implementation for taking decisions).

As a consequence, the MLVM is the only element that is allowed to change
execution state by committing to decisions, instead of sharing this permission
with choice objects or instruction implementations. The search tree structure
that we discuss subsequently facilitates an explicit representation that holds a
declarative representation of choices and of the alternatives that each choice
provides. Overall, the structure serves as a clean basis for following arbitrary
execution paths through the tree.

4 Search Trees

A declarative, explicit search tree representation lays the groundwork for follow-
ing arbitrary execution paths instead of limiting execution to depth-first search
only. We first explain the conceptual representation, outlining the intuition of the
elements that constitute the search tree. Afterwards, we describe how a search
tree is constructed dynamically during the execution of a Muli application. Last,
we abstractly describe navigation through the search tree as the basis for search.

4.1 Representation

Conceptually, our explicit search tree comprises five distinct node types. There
are node types for returned values, thrown exceptions, choices between non-
deterministic branches, failed computations, and yet unevaluated search trees.
1 Provided that the constraint system was still consistent. Otherwise, backtracking

occurred until the next choice point that offered an unevaluated, feasible alternative.

Structured Traversal of Search Trees 205

Fig. 1. Class diagram for the representation of search trees.

Figure 1 shows a class diagram for our search tree representation. Basically, this
representation corresponds to an algebraic data type and therefore does not
implement any decision-taking in contrast to the previously used choice points.

As solutions of a search region, a Value node holds the value returned by a
computation while an Exception node does the same with an exception that has
been thrown. A Fail node represents either an explicit failure or branches whose
constraint system is inconsistent. As a consequence, it does not hold any values.
Furthermore, Choice nodes store a list of subtrees which, in turn, reference
their parent choice. Having an explicit reference to each node’s parent allows
for easy and direct navigation through the search tree. For the root node of a
search tree, the parent attribute is null. Finally, UnevaluatedST serves as a
proxy for subtrees that have not been evaluated yet, facilitating non-strict usage.

Moreover, each node in the search tree stores fields that prepare for later
execution. The frame and pc fields represent a reference to the (mutable) stack
frame and the value of the PC at which the node has been created. Each node
holds an optional constraint expression that has to be satisfied in order to reach
this node, e. g., as a consequence of non-deterministic branching. Additionally,
the backward trail stores the changes to the VM state that were made in order
to reach this node (thus preparing for backtracking), whereas the forward trail
stores changes that are needed in order to return to this node afterwards. In
combination, these fields are used to properly manipulate the state of the MLVM
during the traversal of the search tree, which is discussed in detail in Sect. 4.3.

4.2 Construction

The actual search tree is constructed during search. A search strategy is respon-
sible for determining the order in which the search tree is traversed. Regardless of
the order, a search strategy evaluates UnevaluatedST nodes as long as there are
such nodes left and the encapsulating program demands additional solutions. In
general, the MLVM evaluates an UnevaluatedST node by imposing the node’s
constraint and executing the bytecode of the search region starting from the PC,
which the node points to, until either of the following situations occurs.

206 J. C. Dageförde and F. Teegen

Fig. 2. Different evaluation stages of the search tree corresponding to the search region
in Listing 2. The constraint of each subtree is noted at the respective edge.

– The computation in the search region returns with a value,
– an uncaught exception occurs during execution,
– the method Muli.fail() signals a failed computation, or
– one of the instructions in Table 1 is executed, which results in the creation of

a Choice object.

In any case, the UnevaluatedST node in the search tree is replaced by its eval-
uated counterpart, i. e., by a Value, Exception, Fail, or Choice node. Note
that all children of a newly created Choice node are unevaluated search trees
initially. Furthermore, state changes that were made during this evaluation are
received from the MLVM and stored within the new node as its backward trail.

At the beginning of search, the search tree is unknown and therefore initially
represented by a single UnevaluatedST node. The PC of that node points to the
start of the search region, and the optional constraint expression is left empty
since no constraints apply to the start of a search region. Similarly, the trails are
empty as this node has not yet been evaluated. Figure 2 exemplarily shows three
search trees for the program from Listing 2 that all are evaluated to a different
degree, and thus illustrate various intermediate evaluation stages that can occur
during a search. The illustration assumes a depth-first search strategy; therefore,
other search strategies will result in different intermediate stages.

4.3 Traversal

The implementation of any search algorithm requires to be able to navigate
through the search tree in any direction, i. e., upwards and downwards. For
example, if a branch of a search tree has been fully evaluated, search continues
elsewhere. While navigating through the search tree, it is vital to ensure that
the MLVM remains in a consistent state. A node’s forward and backward trail
together with its frame and PC are used for that purpose. In general, navigation
takes place from an already evaluated node to another evaluated node, since only
evaluated nodes have a trail (see Sect. 4.2). More specifically, a Choice node is
always the target node or source node when navigating upwards or downwards.

We navigate upwards in a search tree by following references to the parents
until we reach the target node (e. g., the root), backtracking the VM state in

Structured Traversal of Search Trees 207

void navigateUpwards(ST from, Choice to) {
while (from != to) {

if (from.constraintExpression.isPresent())
constraintStack.pop();

vm.processTrail(from.backwardTrail, from.forwardTrail);
vm.setFrame(from.frame); vm.setPc(from.pc);
from = from.parent; } }

void navigateDownwards(Choice from, ST to) {
Stack<ST> nodes = new Stack<>();
while (to != from)

nodes.put(to); to = to.parent;
while (!nodes.empty()) {

to = nodes.pop();
vm.setFrame(to.frame); vm.setPc(to.pc);
vm.processTrail(to.forwardTrail, to.backwardTrail);
if (to.constraintExpression.isPresent())

constraintStack.push(to.constraintExpression.get()); } }

Listing 4. Methods for navigating upwards and downwards in a search tree.

the process. In doing so, we remove previously imposed constraints from the
constraint stack and undo the changes to VM state by processing the back-
ward trails of nodes along the path. At the same time, the backward trails are
converted into forward trails so that a node from which we navigate away can
be reached again later when navigating downwards, e. g., for the evaluation of
another subtree of that node. Last but not least, the frame and PC of the VM
are set accordingly, using the information that was recorded at each node when
it was created.

Navigating downwards is slightly more complicated as we first need to deter-
mine how to reach a target node from the current (source) node. However, we
always have a reference to the target. Therefore, we can use the target’s par-
ents in order to find the path to the source. Afterwards, we process the path in
reverse order, thus getting from the source node to the target node. We basi-
cally do the opposite of what is done in upwards navigation: For each node,
we set the frame and PC to what is recorded in the node, apply the forward
trail to reapply changes to the execution state, and impose a node’s constraint if
present. Simultaneously to processing the forward trail, we convert it again into
a backward trail to be later able to navigate upwards. For clarity, Listing 4 shows
simplified implementations for navigating upwards and downwards, respectively.
Subsequently, these general navigation methods serve as primitives for traversal.

208 J. C. Dageförde and F. Teegen

Choice findCommonAncestor(ST a, ST b) {
initialise empty set;
while (b != null) {

add b to set;
b = b.parent; }

while (!set.contains(a))
a = a.parent;

return a; }

Listing 5. Algorithm for finding the first common ancestor of two nodes.

5 Search Strategies

As a demonstration of how the explicit search tree representation can be
employed for the implementation of search strategies, we outline the implemen-
tations of three particular ones.

Depth-First Search. The implementation of depth-first search maintains a
stack of unevaluated subtrees from the search tree. At the beginning of the
search, the initial node (see Sect. 4.2) is pushed to the stack. Then, depth-first
search repeatedly pops an unevaluated search tree node from the stack and tries
to evaluate it. If its evaluation results in a Choice node, its children are pushed
to the stack and search continues by popping the next node from the stack (i. e.,
a local subtree). Otherwise, if a Value or Exception node is encountered, the
search strategy must be able to return the result to the encapsulating program.
To that end, it reverts execution state to the state from the beginning of search
using navigateUpwards. When search is picked up again, the search strategy
uses navigateDownwards in order to evaluate the next node from the stack.
Finally, if the node at hand is evaluated to a Fail node, local backtracking is
performed, i. e., we navigate upwards to the nearest parent that has at least one
unevaluated subtree.

Breadth-First Search. Instead of a stack, a FIFO queue keeps track of uneval-
uated subtrees. Beginning or resuming search dequeues nodes from the head of
the queue. In contrast, when a Choice node is encountered, its children are
enqueued at the end. Another difference is the fact that breadth-first search
requires navigating between arbitrary nodes within the search tree. While it is,
of course, possible to go over the root node, it is more efficient to navigate along
a path going over the first common ancestor of the two involved nodes. List-
ing 5 shows a simple algorithm that determines the first common ancestor of
two nodes in the search tree. Once the first common ancestor is found, search
combines navigateUpwards (to the found ancestor) and navigateDownwards

in order to efficiently navigate between two arbitrary nodes.

Structured Traversal of Search Trees 209

Iterative Deepening Depth-First Search. Our search tree can also be used
to implement an exciting variant of iterative deepening search. Iterative deep-
ening provides the strength of depth-first search while ensuring that solutions
can be found even if there are execution paths of infinite length. In iterative
deepening, search is bounded by a constant maximum depth. Search proceeds
in a depth-first manner until nodes are reached that are at the maximum depth.
In that case, search first evaluates other nodes up to that depth, thus assuming
breadth-first search behaviour. Only if additional solutions are required, search
increases the bound, again by a constant, and so on. In Muli, aided by the
inverse trails, when the bound is increased, the runtime environment does not
need to restart computation at the root, which usually leads to a reevaluation of
known execution paths (and solutions). Instead, it leverages the (partial) search
tree and the recorded inverse trails in order to restart computation from known
states that provide further alternatives.

6 Discussion

The implementation of our search tree structure in the MLVM facilitates the
non-deterministic execution of imperative (object-oriented) programs in novel
ways, using search strategies that could not be implemented without an explicit
structure. The existing depth-first search strategy has been reimplemented and
is now based on the explicit search tree structure as well. In order to ensure
that the required changes do not adversely affect the performance of depth-first
search, we first compare the runtime behaviour before discussing novel aspects
of search. Note that we measure only performance, not memory consumption.
Obviously, maintaining the search tree requires more memory than merely stor-
ing the current execution path. However, a possible memory optimisation would
be to discard search tree nodes that belong to exhaustively evaluated subtrees—
especially in depth-first search strategies.

We are interested in comparing the performance of depth-first search in
the new search-tree-based and old choice-point-stack-based implementations. To
that end, a set of experiments is conducted in a modified MLVM that contains
our search-tree structure as well as in an MLVM without modifications, each
executed by OpenJDK 1.8.0 212.2 Since the MLVM is executed by a JVM, we
drop the first 15 executions in order to account for effects caused by just-in-
time compilation and take the performance values of subsequent executions. In
total, we aggregate performance values of 500 executions per experiment, tack-
ling classic search problems. The first experiment calculates a solution to the
3-partition problem for a fixed set of integer values using a depth-first search
strategy. Until the first solution is found, search passes 374 choices. The second
finds a solution to the Send More Money puzzle. For reference, we also execute
corresponding Curry implementations on PAKCS 2.1.1 using depth-first search.
Figure 3 features the average execution times. Our experiment indicates that the

2 Ubuntu 18.04.2 with 4.15.0 x86 64 GNU/Linux kernel; Intel Core i5-5200U CPU.

210 J. C. Dageförde and F. Teegen

Fig. 3. Comparison of execution times in MLVM with or without explicit search trees,
both using depth-first search. Execution times in PAKCS for reference.

private static boolean nonTerminatingCoin() {
int coin free;
if (coin == 0)

return true;
else

return nonTerminatingCoin(); }

Listing 6. Muli search region featuring an infinite amount of execution paths.

implementation and use of an explicit search tree do not negatively affect depth-
first search performance. Moreover, the comparison to PAKCS is encouraging,
seeing that Muli search regions offer competitive performance while providing
support for using side-effects during non-deterministic execution.

Since the use of explicit search trees does not add visible overhead to exe-
cution times, we can focus on the benefits of using a search tree representa-
tion at runtime. The MLVM now features additional search algorithms beyond
depth-first search that all leverage the search tree structure. In particular, using
breadth-first search is novel to the non-deterministic execution of imperative
programs that have side-effects.

Consider the search region from Listing 6. For lack of a termination condition,
there is one infinite execution path. Therefore, it is impossible to evaluate the
search tree (or the application) strictly. In our depth-first search implementation,
the infinite execution path is the leftmost one. As a result of this structure,
depth-first search is unable to compute a single solution. In contrast, several
solutions can be returned using a breadth-first or iterative deepening strategy,
even though the tree can never be evaluated in full. As a more sophisticated
example, we have implemented a search region that finds solutions to the Water
jugs problem. Here the MLVM is unable to evaluate a full search tree as there

Structured Traversal of Search Trees 211

Table 2. Comparison of search strategies w. r. t. the number of solutions that are
returned within ten seconds.

DFS BFS ID-DFS

Simple infinite recursion 0 1469.7 1555.2

Water jug problem 0 29.5 34.4

are cyclic execution paths that result in valid solutions or failures. We have
executed these programs using the available strategies 500 times for up to ten
seconds each and indicate the average number of solutions in Table 2.

Note that the results do not imply that depth-first search is generally a bad
strategy. On the contrary, the combination of increased memory requirements
and the time needed for changing VM state using the trail still speaks against
using breadth-first search by default. Iterative deepening shares this disadvan-
tage in case that additional levels of the search tree need to be evaluated (but is
as efficient as depth-first search if the initial depth is sufficient). Consequently,
the results indicate that iterative deepening depth-first search is a good trade-
off, if not a better strategy. Further evidence is needed to conclusively argue that
iterative deepening is a superior strategy in general. In any case, both are useful
strategies in certain situations in which depth-first search falls short.

The search tree structure that is presented in this paper is conceptually
similar to the ST structure known from the KiCS2 compiler for Curry [7]. How-
ever, Curry search trees only encode evaluation alternatives of an expression.
In contrast, search trees for constraint-logic object-oriented programming need
to encode the execution behaviour, i. e. VM state changes, that results from
different alternatives. Consequently, the state changes are recorded on the corre-
sponding paths that lead to solutions, so that the VM can change state depending
on the alternative that is being evaluated. In our current work, we do this by
maintaining the forward and backward trails on edges of the search tree.

Prior to our work, the execution state of constraint-logic object-oriented pro-
gramming in Muli was represented by the PC, frame stack, operand stacks, con-
straint stack, trail, and choice point stack. Our work results in a slightly altered
definition of execution state. What previously was a choice point stack is now
replaced by the search tree and a pointer to the current search tree node that is
under evaluation. In addition, a search algorithm is responsible for maintaining
a suitable data structure that keeps track of the progress of traversing the search
tree, e. g., a stack of not-yet-evaluated choices in depth-first search algorithms.

Moreover, the explicit search tree structure is useful for the development of
constraint-logic object-oriented programs, as it can be helpful to visualise the
structure of search. Specifically, we can visualise at which points different kinds
of choices are introduced and which solutions are encountered by the runtime
environment. During the development of the MLVM, the search tree structure
is useful for ensuring that non-deterministic branching and search algorithms
are implemented correctly. In contrast, the structure of the previous approach

212 J. C. Dageförde and F. Teegen

impeded the diagnosis of problems with non-deterministic execution, as only
the current execution path was represented. Consequently, relevant informa-
tion about previously encountered choices and solutions was lost, whereas this
information is adequately represented in the explicit search tree. All in all, the
discussed benefits of an explicit search tree structure outweigh the increased
memory requirements.

7 Related Work

For software testing, symbolic execution trees describe possible execution paths
of an imperative program under test [8,11]. Similar to our search tree, a sym-
bolic execution tree represents choice points where execution branches and col-
lects path constraints. However, a symbolic execution tree usually describes the
entire execution of an application. In contrast, our search tree for constraint-
logic object-oriented programming describes the execution of specific application
parts, namely the non-deterministic execution of a search region. Its leaf node
types are tailored to describing the result (i. e., solutions or failures) of execution
paths. Moreover, a symbolic execution tree is the result of performing depth-first
search, whereas the dual trails of our search tree specifically support arbitrary
traversal.

The idea of using an explicit data structure for non-deterministic compu-
tations in order to facilitate different search strategies is extensively used in
functional logic programming [1,7]. In functional logic programming, search
trees cover non-determinism of expressions, i. e., they encode alternatives for
the values to which a pure expression can be evaluated. In contrast to that,
constraint-logic object-oriented programming is non-deterministic in its execu-
tion behaviour, which includes side-effects incurring during execution. Therefore,
the present search tree structure has to encode alternative behaviour, including
side-effects, in addition to final results. In addition to the representation usually
used in functional logic programming, our representation includes node types
for exceptions (as a different kind of solution) and unevaluated search trees. The
latter types are a prerequisite for the on-demand construction of the search tree
during search, which is innately given with the non-strict evaluation in functional
logic programming.

An explicit data structure for representing a search tree structure has also
been used in a monadic definition of constraint programming [13]. In contrast
to our work, it abstracts from side effects and asserts an ordering of subtrees.
Another explicit search tree is used for implementing a domain-specific lan-
guage (DSL) for probabilistic programming in OCaml [9]. As OCaml is strict,
the on-demand characteristic of the search tree is modelled explicitly using
lambda functions. Although OCaml is not purely functional, the authors dis-
regard backtracking w. r. t. behaviour, modelling only non-deterministic results
of pure expressions.

As an alternative to using an explicit search tree, the interface of the proba-
bilistic DSL in OCaml has also been implemented by using continuation passing

Structured Traversal of Search Trees 213

style and by using delimited continuations, i. e., using shift and reset [6]. Using
continuations provides an implementation in a direct style and removes the run-
time overhead of the search tree data structure. Therefore, implementing Muli
by means of shift and reset is an interesting option for future work. In this
case, however, monadic reflection (i. e., inspecting the search tree) is expensive,
and its efficient implementation requires additional techniques [12].

The concept of trails has initially been adapted from the trail described
for the Warren Abstract Machine (WAM) [14] and has been extended towards
dual trails for arbitrary execution state in [5]. Dual trails facilitate their use
for backtracking upwards along a search tree as well as for descending towards
nodes that have been (partially) evaluated. For their duality, the two trails were
originally termed trail and inverse trail. Here we call them backward trail and
forward trail, respectively, in order to improve clarity regarding the direction in
which they are used. Extending previous work, the present paper leverages dual
trails for the implementations of search strategies other than depth-first search.

8 Conclusion and Future Work

Our search tree structure represents the paths of non-deterministic execution of
a search region. A runtime environment of a constraint-logic object-oriented lan-
guage can construct the search tree non-strictly while executing a search region,
thus encoding the solutions that are found as well as the execution behaviour
of imperative code that leads to solutions or intermediate choices. As a result,
the explicit search tree representation can serve several purposes. First, it pro-
vides a structure that arbitrary search strategies utilise for traversing the search
tree. Furthermore, we found it to make debugging of non-deterministic execu-
tion behaviour more productive by allowing developers who use a debugger to
introspect intermediate state at breakpoints. More opportunities for utilising the
search tree in constraint-logic object-oriented programming will be part of future
work.

We also extend Muli’s runtime environment, the MLVM, to implement depth-
first search, breadth-first search, and iterative deepening depth-first search. Even
though they are well-known as search algorithms for tree traversal, they are of
particular interest in the context of constraint-logic object-oriented program-
ming where the search tree is not (entirely) known before the program that
it represents has been executed in its entirety. The MLVM already supported
depth-first search using the previous, unstructured approach, but our evaluation
demonstrates that using a structured approach does not add any overhead. On
the contrary, the explicit representation provides opportunities for novel search
algorithms that could not be used for executing constraint-logic object-oriented
programs prior to our work. The modifications have already been integrated into
the open source MLVM and are available at https://github.com/wwu-pi/muli.

The current work is the basis for future endeavours. The search tree structure
could be used for implementing an interactive search strategy in which a devel-
oper could manually decide how to explore the search space when a choice is

https://github.com/wwu-pi/muli

214 J. C. Dageförde and F. Teegen

encountered. This interactivity could be an additional aid for debugging. More-
over, it is interesting to explore alternatives to explicit search trees, such as
the use of delimited continuations for the implementation of non-deterministic
execution.

Acknowledgements. The initial ideas that led to this work were conceived during
the first author’s visit to the University of Kiel. The authors appreciate the valuable
input of those that participated in the discussions; in particular, Sandra Dylus, Jan
Christiansen, Jan Rasmus Tikovsky, and Michael Hanus.

References

1. Braßel, B., Hanus, M., Huch, F.: Encapsulating non-determinism in functional logic
computations. J. Funct. Log. Program. 2004(6) (2004)

2. Dageförde, J.C.: Reference type logic variables in constraint-logic object-oriented
programming. In: Silva, J. (ed.) WFLP 2018. LNCS, vol. 11285, pp. 131–144.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16202-3 8

3. Dageförde, J.C., Kuchen, H.: An operational semantics for constraint-logic impera-
tive programming. In: Seipel, D., Hanus, M., Abreu, S. (eds.) WFLP/WLP/INAP
-2017. LNCS (LNAI), vol. 10997, pp. 64–80. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00801-7 5

4. Dageförde, J.C., Kuchen, H.: A compiler and virtual machine for constraint-
logic object-oriented programming with muli. J. Comput. Lang. 53, 63–78 (2019).
https://doi.org/10.1016/j.cola.2019.05.001

5. Dageförde, J.C., Kuchen, H.: Retrieval of individual solutions from encapsulated
search with a potentially infinite search space. In: Proceedings of 34th SAC, pp.
1552–1561. Limassol, Cyprus (2019). https://doi.org/10.1145/3297280.3298912

6. Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming - LFP 1990, pp. 151–160. ACM
Press (1990)

7. Hanus, M., Peemöller, B., Reck, F.: Search strategies for functional logic program-
ming. In: Proceedings of ATPS 2012, pp. 61–74, GI LNI 199 (2012)

8. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

9. Kiselyov, O., Shan, C.: Embedded probabilistic programming. In: Taha, W.M. (ed.)
DSL 2009. LNCS, vol. 5658, pp. 360–384. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-03034-5 17

10. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java R© Virtual Machine
Specification - Java SE 8 Edition (2015). https://docs.oracle.com/javase/specs/
jvms/se8/jvms8.pdf

11. Majchrzak, T.A., Kuchen, H.: Automated test case generation based on coverage
analysis. In: TASE 2009. IEEE (2009). https://doi.org/10.1109/TASE.2009.33

12. van der Ploeg, A., Kiselyov, O.: Reflection without remorse: revealing a hidden
sequence to speed up monadic reflection. In: ACM SIGPLAN Notices, vol. 49, no.
12, pp. 133–144 (2015)

13. Schrijvers, T., Stuckey, P., Wadler, P.: Monadic constraint programming. JFP
19(6), 663–697 (2009). https://doi.org/10.1017/s0956796809990086

14. Warren, D.H.D.: An abstract prolog instruction set, Technical repot, SRI Interna-
tional, Menlo Park (1983)

https://doi.org/10.1007/978-3-030-16202-3_8
https://doi.org/10.1007/978-3-030-00801-7_5
https://doi.org/10.1007/978-3-030-00801-7_5
https://doi.org/10.1016/j.cola.2019.05.001
https://doi.org/10.1145/3297280.3298912
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-642-03034-5_17
https://doi.org/10.1007/978-3-642-03034-5_17
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://doi.org/10.1109/TASE.2009.33
https://doi.org/10.1017/s0956796809990086

Performance Analysis of Zippers

Vı́t Šefl(B)

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
sefl@ksvi.mff.cuni.cz

Abstract. A zipper is a powerful technique of representing a purely
functional data structure in a way that allows fast access to a specific ele-
ment. It is often used in cases where the imperative data structures would
use a mutable pointer. However, the efficiency of zippers as a replace-
ment for mutable pointers is not sufficiently explored. We attempt to
address this issue by comparing the performance of zippers and mutable
pointers in two common scenarios and three different languages: C++,
C�, and Haskell.

1 Introduction

Some programming techniques make use of the ability to keep a pointer to
internal parts of a data structure. Such a pointer is usually called a finger [9].
As an example, a finger can be used to track the most recently used node in
a tree. Tree operations can then start from the finger instead of starting from
the root of the tree, which can lead to a speedup if the program frequently
operates on elements that are stored near each other.

However, fingers lose most of their utility when applied to purely functional
data structures. Operations that make use of fingers frequently require the struc-
ture to contain pointers to parent nodes or require mutability. Pointers to parent
nodes create loops which hugely complicate update operations.

A zipper [5] is a technique of representing purely functional data structure
in a way that allows direct access to an element at a selected position. Different
data structures have different zipper representations: we, therefore, distinguish
between list zippers, tree zippers, etc. Zippers differ from fingers in a crucial way.
Unlike a finger, a zipper contains the data structure. A finger can be removed,
and the structure it was pointing to remains intact while removing a zipper
removes the structure it contains. As a consequence, while two fingers give direct
access to two positions, two zippers do not.

Despite these differences, there is a variety of tasks that can be solved by both
approaches. Our goal was to compare the effectiveness of these two techniques.
We chose two tasks where the ability to directly access a position inside a data
structure and perform local updates is beneficial: traversing a tree in an arbitrary
way and building a tree from a sorted sequence. Each task was implemented in
Haskell, C++, and C�, using the programming style common to that language.

This research was supported by SVV project number 260 453.

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 215–229, 2020.
https://doi.org/10.1007/978-3-030-46714-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-46714-2_14

216 V. Šefl

Note that we compared the performance difference between these techniques,
rather than performance across programming languages.

This work is organized as follows. In the next section, we discuss zipper
representations. The third section looks at single position zippers in detail. The
testing methodology, as well as the programming tasks themselves, are presented
in the fourth section. Finally, the fifth section details our findings.

The source code used for performance testing is available online.1

2 Related Work

Huet’s original zipper technique [5] relies on manually analyzing the data type
and then defining the corresponding zipper structure. Listing 1 shows an example
of such a zipper.

data List a = Nil | Cons a (List a)

data ListZipper a = ListZipper

{ before :: List a

, focus :: a

, after :: List a

}

Listing 1. List and its zipper

This approach becomes problematic when working with heterogeneous data
structures (a structure containing elements of multiple types), or when working
with many different zipper representations.

For heterogeneous collections, Huet’s zipper can be used to represent only
the positions of one type of elements, which is quite limiting. Adams [2] shows
how to build a zipper for heterogeneous collections by using generic programming
techniques based on the ideas of Lämmel and Peyton Jones [7]. Another benefit of
this approach is that new data structures do not need a custom implementation
of the zipper structure, which reduces the boilerplate that is usually present
when dealing with zippers.

Instead of using an explicit data structure, the zipper can be represented
as a suspended traversal of the original structure. Kiselyov [6] uses delimited
continuations to implement suspended computation to great effect. Applications
include creating a zipper for any type that is a member of Haskell’s Traversable
type class, zipping two data structures for side-by-side comparison and various
operations on zippers capable of representing multiple positions.

Another way of dealing with the boilerplate code is to automate the gen-
eration of auxiliary data structures. For each regular algebraic data type, the
type of one-hole contexts can be obtained by differentiating the original type,
not unlike differentiation in calculus [1,8]. A zipper is obtained by combining
an element of the original structure and the one-hole context. As a result, the

1 https://github.com/vituscze/performance-zippers.

https://github.com/vituscze/performance-zippers

Performance Analysis of Zippers 217

zipper does not need to be defined for each data structure separately [4]. We
explore this technique in more detail in the following section.

Ramsey and Dias [11] use zippers to represent control flow graphs in a low-
level optimizing compiler. The compiler is written in OCaml, giving the opportu-
nity to use an imperative approach based on mutable pointers as well as a purely
functional approach based on zippers. As part of their analysis, the authors also
include performance comparison. Zippers are shown to perform slightly better
than mutable pointers.

3 Zipper

Huet’s zipper is based on the idea of pointer reversal. Reversing all pointers
along the path from the root of the structure to a selected position called a focus
creates a structure that is rooted at the focus. This reversal has multiple advan-
tages. Direct access to the focus allows its modification in constant time. Even
in a purely functional setting where in-place modifications are not available, cre-
ating a copy of the focused node may be used instead. The rest of the structure
stays intact and can be shared.

Similarly, accessing the parent and children of the focus can be done in con-
stant time, which can be used to efficiently move the focus around the structure.
Moving the focus is accomplished by reversing the pointers.

Huet shows how to represent this kind of pointer reversal as a purely func-
tional structure. The nodes on the path from the root to the focus are stored in
a list. Each element of the list must contain the values and substructures that
are not descended into as well as the direction taken when moving towards the
focus. The list is reversed, ensuring the parent of the focus is in the head position
(instead of the root of the structure).

data Tree a = Leaf | Node (Tree a) a (Tree a)

data PathChoice a

= NodeL a (Tree a) -- Focus is in the left subtree

| NodeR (Tree a) a -- Focus is in the right subtree

data Context = Context

(Tree a) -- Left subtree of the focus

(Tree a) -- Right subtree of the focus

[PathChoice a] -- Path to the root

data Zipper a = Zipper a (Context a)

Listing 2. Binary tree and its zipper

Listing 2 defines a binary tree and its zipper. Listing 3 shows how to move
the focus of this zipper to the parent node.

up :: Zipper a -> Maybe (Zipper a)

up (Zipper _ (Context _ _ [])) = Nothing

218 V. Šefl

up (Zipper x (Context l r (NodeL p pr:ps))) = Just $

Zipper p (Context (Node l x r) pr ps)

up (Zipper x (Context l r (NodeR pl p:ps))) = Just $

Zipper p (Context pl (Node l x r) ps)

Listing 3. Focus movement

However, since the zipper structure depends on the original data structure,
these types and operations need to be defined for each structure separately.
One way to solve this problem is to automate this process by using data type
differentiation [1,8]. We give a brief overview of this technique here.

An algebraic data type is a data type defined as a combination of products
(tuples) and sums (variants), potentially in a recursive way. Algebraic data types
that do not change the parameters in recursive occurrences are known as regular
types. For these types, the derivative is defined as follows.

∂x(0) = 0 (empty type)
∂x(1) = 0 (unit type)
∂x(y) = 0 (type variable)
∂x(x) = 1 (type variable)

∂x(F + G) = ∂x(F) + ∂x(G) (sum type)
∂x(F × G) = ∂x(F) × G + F × ∂x(G) (product type)
∂x(μy.F) = [μy.F/y]∂x(F) × List ([μy.F/y]∂y(F)) (least fixed point)

The expression [y/x]t denotes a capture-avoiding substitution. The variables
can be introduced as parameters of the entire type (such as a in List a) or by the
least fixed point operation, which is used to define recursive types. The resulting
derivative is a type of one-hole contexts. A one-hole context is a structure that
uniquely describes one position within the original data structure. Zipper then
consists of a one-hole context together with an element of the original structure.

For example, a binary tree is a regular algebraic data type, and its zipper
can be obtained by computing the derivative.

∂a(Tree a) = ∂a(μx.1 + x × a × x)
= [Tree a/x]∂a(1 + x × a × x) × List ([Tree a/x]∂x(1 + x × a × x))
= [Tree a/x](x × x) × List ([Tree a/x](a × x + x × a))
= Tree a × Tree a × List (a × Tree a + Tree a × a)

This derivative matches the definition of the tree context given in Listing 2.
The zippers used for performance testing in this work were based on alge-

braic data type differentiation. The resulting zipper representation was manually
adjusted to provide better control over its strictness properties.

4 Performance Testing

To compare the performance of zippers and fingers, we implemented tree traver-
sal and tree insertion in three different programming languages. The approach

Performance Analysis of Zippers 219

based on zippers was implemented in Haskell. The approach based on fingers was
implemented in C++ and C�. We included two imperative languages, one with
manual memory management and the other with garbage collection, to check
how the memory management model affected the relative performance. Unless
specified otherwise, when discussing the imperative solutions, we are talking
about the C++ solution.

The tasks were chosen to test the performance under two different memory
allocation requirements. Tree traversal can avoid memory allocation altogether,
while tree insertion cannot. Both tasks were tailored to the finger- and zipper-
based approaches, which was done to better represent the common use case of
these approaches. In the following, we use the term cursor to refer to either
a zipper or a finger.

4.1 Tree Traversal

The first task focuses on tree traversal. We are given a binary tree and a vector
describing positions within the tree together with replacement values. The goal
is to replace the specified elements of the original tree with the given values.

For cursor-based approach, the input vector contains instructions that specify
the movement of the cursor relative to its previous position. These movement
instructions are interspersed with the replacement instructions. The element
under the cursor is replaced with the given value whenever such instruction is
encountered. As an example, replacing the left child of the root with 10 and the
right child with 20 would be represented as Vector.fromList [Mov L, Set 10,
Mov U, Mov R, Set 20].

We compared this approach to a solution where the replacement operation
always starts at the root of the tree. The input vector describes the positions
relative to the root of the tree. When a replacement value is encountered, the
specified element is replaced, and the position is reset back to the root of the tree.
The vector corresponding to the previous example would be Vector.fromList
[Mov L, Set 10, Mov R, Set 20]. We do not allow Mov U as it is not neces-
sary to describe a position.

This input format was chosen for better control over the spatial locality of the
positions, which allowed us to observe how the cursor-based approach behaves
depending on the average distance between positions. This task also allowed us
to compare the performance of imperative solutions when memory allocation is
not a factor.

Listing 4 specifies the desired behavior of the root- and cursor-based
approaches. For simplicity, the specification does not handle incorrect inputs
(such as positions outside the tree).

data Tree a = Leaf | Node (Tree a) a (Tree a)

data Dir = L | R | U

-- Replace an element at position determined by a list

-- of left/right directions.

replace :: a -> [Dir] -> Tree a -> Tree a

220 V. Šefl

replace v [] (Node l _ r) = Node l v r

replace v (L:ds) (Node l x r) = Node (replace v ds l) x r

replace v (R:ds) (Node l x r) = Node l x (replace v ds r)

replace _ _ t = t

data Cmd a = Mov Dir | Set a

-- Specifies the behavior of the cursor -based approach.

cursor :: Tree a -> Vector (Cmd a) -> Tree a

cursor tree = fst . Vector.foldl step (tree , [])

where

step (t, ds) (Mov U) = (t, tail ds)

step (t, ds) (Mov d) = (t, d:ds)

step (t, ds) (Set v) = (replace v (reverse ds) t, ds)

-- Specifies the behavior of the root -based approach.

root :: Tree a -> Vector (Cmd a) -> Tree a

root tree = fst . Vector.foldl step (tree , [])

where

step (t, ds) (Mov d) = (t, d:ds)

step (t, ds) (Set v) = (replace v (reverse ds) t, [])

Listing 4. Tree traversal specification

Imperative Solution. Listing 5 defines the structures used to represent the
binary tree. Member functions are omitted for brevity.

struct node_t {

node_t* parent;

node_t* left;

node_t* right;

int64_t value;

};

struct tree_t {

node_t* root;

node_t* finger;

};

Listing 5. Imperative binary tree (memory layout)

Movement instructions are represented by integer constants to simplify the
code. The input vector is processed by iterating over all its elements, applying
the corresponding finger operation at each step. We evaluated the imperative
solutions on a perfect binary tree of a specified depth.

Functional Solution. The functional solution is more involved. Since the task
is meant for a cursor-based approach, the zipper lends itself to this problem
naturally. However, the root-based approach presents a few problems that have
to be addressed.

Performance Analysis of Zippers 221

The tree and zipper definitions shown in Listing 6 follow the definitions from
Listing 2, with the exception that each data type contains strictness annotations.
Fields annotated with ! are evaluated whenever the enclosing data constructor
is, which ensures that these structures are fully evaluated at all times.

data Tree = Node !Tree !Int64 !Tree | Leaf

data Path

= PathLeft !Int64 !Tree !Path

| PathRight !Tree !Int64 !Path

| Nil

data Zipper = Zipper !Tree !Int64 !Tree !Path

Listing 6. Binary tree and its zipper (with strictness annotations)

As a consequence, the standard list type is replaced with a custom type. GHC
is also instructed to unbox the integer fields, which is done to ensure that the
cost of operating on boxed values does not have any impact on the performance.
Unboxed vectors from the vector package are used to represent the input vector.

The zipper comes with operations that replace the focused element and move
the focus left, right, and up. Processing the input vector is implemented as
a strict left fold. The zipper is the accumulator value, and in each step, we apply
zipper operation that corresponds to the element of the vector.

When starting from the root, replacing an element of the tree can be done
easily with a recursive function that reads the vector in each recursive call and
descends into the correct subtree. The problem is propagating the information
about how many elements of the input vector were consumed so that the next
operation can start from the correct position. To make sure the root-based app-
roach is efficient, we compared a few ways of dealing with this issue.

State Monad Solution. The obvious solution is to use a state monad. Note that
laziness in the state is unwanted, and the strict monad version is about twice
as fast. Analyzing GHC’s core language [10], the monadic code was optimized
away, and most values were unboxed. The only value that was not unboxed was
the state returned by the replacement operation. Replacing the standard state
monad with a handwritten one that uses unboxed integer did not improve the
performance in a statistically significant way, however.

ST Monad Solution. Another way of passing the state is to use the imperative ST
monad. The standard implementation of STRef is limited to boxed types, which
hugely degraded the performance. The standard references had to be replaced
with unboxed references from the unboxed-ref package.

findIndices Solution. Instead of propagating the new position via various versions
of the state monad, the replacement operation can be given hints on where to
start. These hints can be provided by an auxiliary vector containing the positions
where each descent starts. We can create this vector by using the findIndices

222 V. Šefl

function from the vector package. This solution has a few issues. The input
vector has to be traversed twice, and the auxiliary vector has to be stored in the
memory.

findIndex Solution. We can avoid the memory allocation by computing the hints
as needed, instead of all at once, by using the findIndex function.

Precomputed Vector Solution. To measure the impact of the double traversal,
we also implemented a function where the vector of hints is a part of its input.
The vector is precomputed, and its time requirements were not included in the
comparison.

Much like the imperative solution, all functional solutions were evaluated on
a perfect binary tree of a specified depth.

4.2 Tree Insertion

The second task focuses on tree building. Building a search tree can be done
much more efficiently when the input sequence is sorted. The search for a new
insertion point can be skipped since it will always be the leftmost or the rightmost
node (depending on the order of the input sequence). This node can be tracked
with a finger that is updated each time a new element is inserted. The same can
be done with a zipper, although the standard tree insert operation cannot be
reused.

To test a zipper for a different structure, we chose 2-3 trees [3] for this task.
The structure is redundant: all data is kept in the leaf nodes, and internal nodes
contain the minimum of their right subtree (and of the middle subtree, whenever
applicable). The task is then to build a redundant 2-3 tree from a descending
sequence of a given length. The standard approach starts from the root of the
tree when looking for the insertion point. The cursor-based approach starts in
the leftmost node and perform no additional search.

Imperative Solution. Listing 7 defines the structures used to represent the
2-3 tree. Member functions are omitted for brevity.

struct node_t {

std::array <int64_t , 2> values;

std::array <node_t*, 3> children;

node_t* parent;

bool is_two_node;

};

struct tree_t {

node_t* root;

node_t* last_inserted;

};

Listing 7. Imperative 2-3 tree (memory layout)

Performance Analysis of Zippers 223

Tree insertion follows the standard algorithm. We obtain the insertion point
and attempt to insert the element into the corresponding leaf node. When the
leaf node is full, we allocate a new node and redistribute all the elements from
the original node. After this split, we are left with a two-node and a three-node.
We take the middle element and the right node and attempt to insert them
into the parent node. We repeat this process until no split occurs or the root
is reached. Note that splitting an inner node results in two-nodes because the
middle element does not need to be duplicated.

The split operation puts the inserted element into a two-node when inserting
elements in descending order. As a result, leaf nodes are only split every second
insertion. The implementation could be improved to also provide similar benefit
for insertion in ascending order.

We also tried the following variations of the tree operations: non-recursive
destructor, split operation that allocates the left node, and recursive root-based
insertion. The impact on the performance was either detrimental or statistically
insignificant.

We repeatedly inserted elements into the tree in descending order and mea-
sured the time taken. In the case of C++ solution, this measurement also included
the time spent on deallocation, giving a fairer comparison to the languages with
garbage collection.

Functional Solution. Listing 8 shows a definition of 2-3 trees with strictness
annotations.

data Tree

= Leaf

| Node2 !Tree !Int64 !Tree

| Node3 !Tree !Int64 !Tree !Int64 !Tree

Listing 8. Functional 2-3 tree

To insert an element into the tree, we recursively insert it into the correct
subtree. The result of this insertion is either one subtree or two subtrees and
an element. The first case is handled by replacing the corresponding subtree;
the second case indicates that a split occurred and is handled similarly to the
imperative solution.

To obtain a zipper, we compute the derivative of a parametrized version of
the 2-3 tree type.

F = 1 + ax2 + a2x3

∂a(F) = x2 + 2ax3

∂x(F) = 2ax + 3a2x2

∂a(Tree a) = ∂a(μx.F)
= [Tree a/x]∂a(F) × List ([Tree a/x]∂x(F))

= ((Tree a)2 + 2a(Tree a)3) × List (2a(Tree a) + 3a2(Tree a)2)

224 V. Šefl

If the focus is in a two-node, then there is only one choice for the position, and
the context is given by the two subtrees. This case is represented by (Tree a)2. If
the focus is in a three-node, there are two choices for the position (left or right).
The context is given by the three subtrees and the element that is not focused,
or 2a(Tree a)3.

The path also distinguishes between two-nodes and three-nodes. In the case of
a two-node, there are two choices for the focus position (left or right subtree). The
context is given by the element and the other subtree. This case is represented
by 2a(Tree a). In the case of a three-node, there are three choices for the focus
position (left, middle, or right subtree) and the context is given by the two
elements and the other two subtrees, resulting in the final term 3a2(Tree a)2.

Since the insertion algorithm only needs to know the leftmost node and not
the particular element, we simplify the zipper by removing this choice point. The
type variable is replaced with Int64 and the list type is replaced with a custom
strict list. Listing 9 shows the resulting type.

data Nonempty

= Nonempty2 !Tree !Int64 !Tree

| Nonempty3 !Tree !Int64 !Tree !Int64 !Tree

data PathChoice

= Path2L !Int64 !Tree

| Path2R !Tree !Int64

| Path3L !Int64 !Tree !Int64 !Tree

| Path3M !Tree !Int64 !Int64 !Tree

| Path3R !Tree !Int64 !Tree !Int64

data Path = Nil | Cons !PathChoice !Path

data Zipper = Zipper !Nonempty !Path

Listing 9. 2-3 tree zipper

Inserting an element by using a zipper more closely resembles the imperative
solution. The key difference is that instead of pointers to parent nodes, the zipper
contains a list of choices along the path from the root to the focus. Instead of
descending into the tree, the zipper-based insertion needs to descend into this
list.

When a node splits and we attempt to add the element and one of the freshly
split nodes to the parent node, we also need to include information about the
position of the split node in relation to the element. This position is necessary
to reconstruct the extra information contained in the zipper. The imperative
solution assumes the split node is always to the right.

Much like the imperative solution, we repeatedly inserted elements into the
tree in descending order and measured time taken.

5 Results

All experiments were performed on Intel Core i7-4750HQ processor with 24
GB of main memory under Windows 10 operating system. Each program was

Performance Analysis of Zippers 225

compiled with the highest available level of compiler optimizations, and in the
case of GHC, LLVM backend was used for code generation. Garbage collectors
were allowed to only run in a single thread. Each solution was executed with an
increasing number of iterations until a time limit of three minutes was reached.
The measured times were normalized to one iteration. Mean execution time, as
well as standard deviation, were computed. Error bars represent one standard
deviation. The raw measurements are available online. 2

5.1 Tree Traversal

The input files were generated by randomly picking 1,000,000 elements out of
a perfect binary tree with 20 levels and outputting the path between them. We
evaluated the tree traversal in four scenarios which were obtained by biasing
the random generator towards particular areas of the tree: no bias, bottom bias,
right bias, and bottom-right bias. One input file was generated for each scenario
to ensure any performance differences were not due to different input data.

The results of the functional root-based approach are based on the findIndex
solution. Its precomputed version is only marginally faster, showing that the
double traversal has a low impact on the performance. The state and ST solutions
are much slower. Interestingly, the ST solution is slightly slower than the purely
functional state solution. Full comparison of these variants can be found in Fig. 1.

Fig. 1. Tree traversal performance (Haskell)

When the spatial locality is low (Fig. 2 and Fig. 3), the root-based approach
shows a clear advantage over the cursor-based approach. The relative gains of the
root-based approach are in the range of 50% to 60% for the imperative solutions
and around 20% for the functional solution.

2 https://github.com/vituscze/performance-zippers/blob/master/data.csv.

https://github.com/vituscze/performance-zippers/blob/master/data.csv

226 V. Šefl

When the spatial locality is high (Fig. 4 and Fig. 5), the cursor-based app-
roach takes over. In the case of the right bias, C++ reaches 150% speedup, C�

135% and Haskell 220%. Bottom-right bias increases this gap even more. C++

reaches 205% speedup, C� 175% and Haskell 280%.

Fig. 2. Tree traversal performance (no bias)

Fig. 3. Tree traversal performance (bottom bias)

Fig. 4. Tree traversal performance (right bias)

Performance Analysis of Zippers 227

Fig. 5. Tree traversal performance (bottom-right bias)

Notice that the root-based approach also shows a considerable performance
boost when the input data has high spatial locality. This boost is a consequence of
cache-friendly memory access pattern. In all scenarios, the zipper-based approach
exhibits smaller performance losses (low spatial locality) and higher performance
gains (high spatial locality) when compared to the finger-based approach.

5.2 Tree Insertion

Evaluating insertion into a 2-3 tree was done by repeatedly constructing a tree
containing 10,000,000 elements. The ordered sequence was not part of the input.
Instead, the elements of this sequence were generated on the fly and inserted
into the tree directly, without any auxiliary structure. As mentioned earlier, this
task compared fingers and zippers in an environment where memory allocation
is necessary. For this reason, the C++ solution also evaluated the time it took to
deallocate the structure, giving a better comparison with C� and Haskell.

The results are shown in Fig. 6. All three solutions show a preference for
the cursor-based approach. In C++ and C�, the finger-based insertion is roughly
20% faster than the root-based insertion. In Haskell, the zipper-based insertion
is 210% faster.

Note that both the root-based and finger-based insertion allocate O(1) nodes
(amortized) per insertion in imperative languages. The root-based functional
solution needs to copy the path from the root to the insertion point, leading
to O(log n) new nodes per insertion. The zipper-based insertion, therefore, not
only avoids the cost of finding the insertion point but also leads to significantly
reduced allocation count.

Comparing the C++ and C� results did not point to memory management
as a major factor. Reducing the size of the tree (by performing fewer insertions)
showed that the gap between C++ and C� decreased slightly, which hints to
a minor performance benefit from using garbage collection.

The C++ solution could be further optimized by using a memory pool instead
of the standard new and delete operators. However, we did not want to deviate

228 V. Šefl

Fig. 6. 2-3 Tree insertion performance

from the standard memory management models. In a similar vein, we decided
against fine-tuning the garbage collector parameters for the Haskell and C� solu-
tions.

6 Conclusion

While zippers lack the flexibility and ease of use of mutable pointers, they are
nevertheless a powerful tool when working with purely functional data struc-
tures. However, it was unclear whether zippers offer the same performance ben-
efit as the imperative approach.

We compared fingers and zippers in two scenarios: arbitrary tree traversal
and tree insertion. The first test measured the effectiveness of zippers when
its imperative counterpart does not have to allocate memory. This test focused
on fast access to a selected element as well as the ability to move the focus.
The second test considered the case where both the imperative and functional
solutions need to allocate memory. This test focused on the pointer reversal
aspect of zippers.

We provided evidence that when zippers are used in a functional setting,
they offer higher performance gains compared to mutable pointers used in an
imperative setting. More importantly, zippers provide this gain without under-
mining the benefits of purely functional data structures. We hope that this work
encourages functional programmers to use zippers before reaching for imperative
techniques when optimizing their code.

References

1. Abbott, M., Altenkirch, T., McBride, C., Ghani, N.: ∂ for data: differentiating data
structures. Fundam. Inf. 65(1–2), 1–28 (2004)

2. Adams, M.D.: Scrap your zippers: a generic zipper for heterogeneous types. In:
Proceedings of the 6th ACM SIGPLAN Workshop on Generic Programming,
WGP 2010, pp. 13–24. ACM, New York (2010). https://doi.org/10.1145/1863495.
1863499

https://doi.org/10.1145/1863495.1863499
https://doi.org/10.1145/1863495.1863499

Performance Analysis of Zippers 229

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

4. Hinze, R., Jeuring, J., Löh, A.: Type-indexed data types. Sci. Comput. Program.
51(1–2), 117–151 (2004). https://doi.org/10.1016/j.scico.2003.07.001

5. Huet, G.: The zipper. J. Funct. Program. 7(5), 549–554 (1997). https://doi.org/
10.1017/S0956796897002864

6. Kiselyov, O.: Generic zipper: the context of a traversal. http://okmij.org/ftp/
continuations/zipper.html (2015)

7. Lämmel, R., Peyton Jones, S.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Proceedings of the 2003 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, TLDI 2003, pp.
26–37. ACM, New York (2003). https://doi.org/10.1145/604174.604179

8. McBride, C.: The derivative of a regular type is its type of one-hole contexts
(extended abstract) (2001). http://strictlypositive.org/diff.pdf

9. Brodal, G.S.: Finger Search Trees. In: Mehta, D., Sahni, S. (eds.) Handbook of
Data Structures and Applications. Chapman & Hall/CRC, Boca Raton (2004)

10. Peyton Jones, S., Santos, A.: A transformation-based optimiser for Haskell.
Sci. Comput. Program. 32(1–3), 3–47 (1998). https://doi.org/10.1016/S0167-
6423(97)00029-4

11. Ramsey, N., Dias, J.: An applicative control-flow graph based on Huet’s zipper.
Electron. Notes Theor. Comput. Sci. 148(2), 105–126 (2006). https://doi.org/10.
1016/j.entcs.2005.11.042

https://doi.org/10.1016/j.scico.2003.07.001
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
http://okmij.org/ftp/continuations/zipper.html
http://okmij.org/ftp/continuations/zipper.html
https://doi.org/10.1145/604174.604179
http://strictlypositive.org/diff.pdf
https://doi.org/10.1016/S0167-6423(97)00029-4
https://doi.org/10.1016/S0167-6423(97)00029-4
https://doi.org/10.1016/j.entcs.2005.11.042
https://doi.org/10.1016/j.entcs.2005.11.042

Adding Data to Curry

Michael Hanus(B) and Finn Teegen

Institut für Informatik, CAU Kiel, 24098 Kiel, Germany
{mh,fte}@informatik.uni-kiel.de

Abstract. Functional logic languages can solve equations over user-
defined data and functions. Thus, the definition of an appropriate mean-
ing of equality has a long history in these languages, ranging from reflex-
ive equality in early equational logic languages to strict equality in con-
temporary functional logic languages like Curry. With the introduction of
type classes, where the equality operation “==” is overloaded and user-
defined, the meaning became more complex. Moreover, logic variables
appearing in equations require a different typing than pattern variables,
since the latter might be instantiated with functional values or non-
terminating operations. In this paper, we present a solution to these
problems by introducing a new type class Data which is associated with
specific algebraic data types, logic variables, and strict equality. We dis-
cuss the ideas of this class and its implications on various concepts of
Curry, like unification, functional patterns, and program optimization.

1 Introduction

The amalgamation of the main declarative programming paradigms, namely
functional and logic programming, has a long history. The advantages of such
integrated functional logic languages are manifold. One can use the features
of functional programming (e.g., powerful type systems, higher-order functions,
lazy evaluation) and logic programming (e.g., non-deterministic search, comput-
ing with partial information) in a single language which also leads to new design
patterns [3,8]. Compared to logic programming, computations can be more effi-
cient due to the use of optimal evaluation strategies [2].

Early approaches to integrating functional and logic programming (see [15]
for a good collection of these proposals) used equational logic programming
[19,37] as a unifying framework. From a logic programming point of view, equa-
tional logic programming extends the meaning of the standard equality predicate
“=” by taking user-defined functions into account before checking the equality
of both sides of an equation. Hence, both sides are evaluated before they are
unified. If the definition of evaluable functions are considered as axioms for an
equational theory, this process is also known as E-unification [17]. In order to use
logic programming techniques (computing with partial information) also for the
evaluation of user-defined functions, one can use narrowing instead of reduction
[40], i.e., replace pattern matching by unification when a function call should be
reduced. In this way, functional logic languages based on narrowing can be used
to solve equations.
c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 230–246, 2020.
https://doi.org/10.1007/978-3-030-46714-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_15&domain=pdf
http://orcid.org/0000-0002-4953-8202
http://orcid.org/0000-0002-7905-3804
https://doi.org/10.1007/978-3-030-46714-2_15

Adding Data to Curry 231

Example 1. Consider the following definition of Peano numbers and their addi-
tion (in Haskell [39] syntax):

data Nat = Z | S Nat

add :: Nat → Nat → Nat

add Z n = n

add (S m) n = S (add m n)

In the functional language Haskell, we can only compute the value of expressions,
e.g.,

> add (S Z) (S Z)

S (S Z)

However, if we interpret these definitions as a program written in the (narrowing-
based) functional logic language Curry [22,27], we can also solve the equation

> add x (S Z) =:= S (S Z) where x free

{x = S Z} True

Here, “=:=” denotes equality w.r.t. user-defined operations (see below for more
details) and x is declared as a free (logic) variable which is bound to S Z in order
to evaluate the equation to True.

For the practical applicability of functional logic languages, it is important to
reduce the computation space by using specific evaluation strategies. Thus, much
work in this area has been devoted to develop appropriate narrowing strategies
(see [21] for an early account of this research). In order to provide the advantages
of lazy evaluation used in Haskell, e.g., optimal evaluation [29] and modularity
[30], later research concentrated on demand-driven strategies. Needed narrowing
[2] is an optimal strategy [1] and, thus, the basis of the language Curry.

Demand-driven evaluation strategies, like Haskell’s lazy evaluation or Curry’s
needed narrowing, can deal with non-terminating operations that compute infi-
nite data structures [30]. However, this could be in conflict with the equa-
tion solving capabilities of functional logic languages discussed above. Standard
equality in the mathematical sense is required to be reflexive, i.e., x = x should
always hold [37]. Now consider two operations to compute infinite lists of Peano
numbers:

f1 :: Nat → [Nat]

f1 n = n : f1 (S n)

f2 :: Nat → [Nat]

f2 n = n : S n : f2 (S (S n))

By reflexivity, f1 Z = f1 Z should hold. This means that the infinite lists of all
Peano numbers are equal. As a consequence, f1 Z = f2 Z should also hold, but
it is unclear to verify it during run time. In early equational logic programming,
equations are solved by narrowing both sides to normal forms and unifying
these normal forms. However, this does not work here since f1 Z and f1 Z have
no normal form. Thus, reflexivity is not a feasible property of equations to be

232 M. Hanus and F. Teegen

evaluated (more details including issues about semantics are discussed in [18,
36]).

Therefore, contemporary languages interpret equations to be evaluated as
strict equality, denoted by “=:=” in Curry: e1 =:= e2 is satisfied iff e1 and e2 are
reducible to a same ground constructor term, i.e., an expression without variables
and defined functions. In particular, soundness, completeness, and optimality
results are stated w.r.t. strict equality [2]. As a consequence, f1 Z =:= f1 Z does
not hold so that it is not a defect that this equation cannot be solved.

Note that Haskell also offers the operation “==” intended to compare expres-
sions. Although standard textbooks on Haskell define this operation as “equality”
[11,31,41], its actual implementation can be different since, as a member of the
type class Eq, it can be defined with a behavior different than equality on con-
crete type instances. Actually, the documentation of the type class Eq1 denotes
“==” as “equality” but also contains the remark: “== is customarily expected
to implement an equivalence relationship where two values comparing equal are
indistinguishable by “public” functions.” Thus, it is intended that e1 == e2 eval-
uates to True even if e1 and e2 have not the same but only equivalent values. On
the other hand, the documentation requires that the reflexivity property

x == x = True

holds for any implementation, but this is not true even for the standard integer
equality (choose “last [1..] :: Int” for x).

This discussion shows that the precise treatment of equality, which is
essential for functional logic languages, might have some pitfalls when type
classes are used. As long as “==” is defined in the standard way (by the use
of “deriving Eq”), “==” conforms with strict equality. With the introduction of
type classes to Curry, one has to be more careful. For instance, consider the
“classical” functional logic definition of the operation last to compute the last
element of a list by exploiting list concatenation (“++”) and equation solving
[21,24]:

last xs | _ ++ [e] == xs = e

where e free

If “==” denotes equivalence rather than strict equality, last might not return
the last element of a list but one (or more than one) value which is equivalent
to the last element.

In this paper, we propose a solution to these problems by distinguishing
between strict equality and equivalence. For this purpose, we propose a new
type class Data which is associated with specific algebraic data types. We will
see that this type class can also be used for a better characterization of the
meaning of logic variables and the Curry’s unification operator “=:=”.

This paper is structured as follows. In the next section, we review some
aspects of functional logic programming and Curry. After motivating the prob-
lem this paper tackles in Sect. 3, we propose in Sect. 4 a new standard type class
for Curry, namely Data, as a solution to the problem. In Sects. 5, 6, and Sect. 7,
1 http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Eq.html.

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Eq.html

Adding Data to Curry 233

we discuss how the proposed Data type class affects logic variables, optimiza-
tion of equality constraints, and non-left-linear rules and functional patterns,
respectively. Finally, Sect. 8 discusses related work before we conclude in Sect. 9.

2 Functional Logic Programming and Curry

We briefly review some aspects of functional logic programming and Curry that
are necessary to understand the contents of this paper. More details can be
found in surveys on functional logic programming [7,24] and in the language
report [27].

Curry is a declarative multi-paradigm language intended to combine the
most important features from functional and logic programming. The syntax
of Curry is close to Haskell [39] but also allows free (logic) variables in condi-
tions and right-hand sides of rules. Thus, expressions in Curry programs contain
operations (defined functions), constructors (introduced in data type declara-
tions), and variables (arguments of operations or free variables). Function calls
with free variables are evaluated by a possibly non-deterministic instantiation
of demanded arguments [2]. This corresponds to narrowing [40], but Curry nar-
rows with possibly non-most-general unifiers to ensure the optimality of com-
putations [2]. In contrast to Haskell, rules with overlapping left-hand sides are
non-deterministically (rather than sequentially) applied.

Example 2. The following simple program shows the functional and logic fea-
tures of Curry. It defines the well-known list concatenation and an operation
that returns some element of a list having at least two occurrences:

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

someDup :: [a] → a

someDup xs | xs =:= _ ++ [x] ++ _ ++ [x] ++ _ = x

where x free

Since “++” can be called with free variables in arguments, the condition in the
rule of someDup is solved by instantiating x and the anonymous free variables
“-” to appropriate values before reducing the function calls. As already men-
tioned in the introduction, “=:=” denotes strict equality, i.e., the condition of
someDup is satisfied if both sides are reduced to a same ground constructor term.
In order to avoid the enumeration of useless values, “=:=” is implemented as
unification: if y and z are free (unbound) variables, y =:= z is evaluated (to True)
by binding y and z (or vice versa) instead of non-deterministically binding y and
z to identical ground constructor terms. This can be interpreted as an optimized
implementation by delaying the bindings to ground constructor terms [10]. Due
to this implementation, “=:=” is also called an equational constraint (rather than
Boolean equality).

We already used the logic programming features of Curry in the definition of last
shown in Sect. 1. In contrast to last, someDup is a non-deterministic operation

234 M. Hanus and F. Teegen

since it could yield more than one result for a given argument, e.g., the evaluation
of someDup [1,2,2,1] yields the values 1 and 2. Non-deterministic operations,
which can formally be interpreted as mappings from values into sets of values
[20], are an important feature of contemporary functional logic languages. Hence,
Curry has also a predefined choice operation:

x ? _ = x

_ ? y = y

Thus, the expression “0 ? 1” evaluates to 0 and 1 with the value non-
deterministically chosen.

3 Equality vs. Equivalence

Type classes are an important feature to express ad-hoc polymorphism in a
structured manner [42]. In the context of Curry, it is also useful to restrict the
application of some operations to unintended expressions. For instance, in the
definition of Curry without type classes [27], the type of the unification operator
is defined as

(=:=) :: a → a → Bool

This implies that we could unify values of any type, including defined functions.
However, the meaning of equality on functions is not well defined. The Curry
implementation PAKCS [26], which compiles Curry programs into Prolog pro-
grams, uses an intensional meaning, i.e., functions are equal if they have the
same name. This means that PAKCS evaluates

not =:= not

to True but it fails on

not =:= (\x → not x)

(since the lambda abstraction will be lifted into a new top-level function). More-
over, the Curry implementation KiCS2 [12], which compiles Curry programs into
Haskell programs, produces an internal error for these expressions.

It would be preferable to forbid the application of “=:=” to functional values
at compile time. This is similar to the requirement on Haskell’s operator “==”.
Haskell uses the type class Eq in order to express that “==” is not parametric
polymorphic but overloaded for some (but not all) types. The type class Eq

contains two operations (we omit the default implementations):

class Eq a where

(==) :: a → a → Bool

(/=) :: a → a → Bool

Hence, the operator “==” cannot be applied to any type but only to types defining
instances of this class. We can use this operator to check whether an element
occurs in a list:

elem :: Eq a => a → [a] → Bool

Adding Data to Curry 235

elem _ [] = False

elem x (y:ys) = x==y || elem x ys

Although type classes express type restrictions in an elegant manner, they might
also cause unexpected behaviors if they are not carefully used. For instance, we
can define a data type for values indexed by a unique number:

data IVal a = IVal Int a

Since the index is assumed to be unique, we define the comparison of index
values by just comparing the indices:

instance Eq a => Eq (IVal a) where

IVal i1 _ == IVal i2 _ = i1 == i2

With this definition, the operation elem defined above could yield surprising
results:

> elem (IVal 1 ’b’) [IVal 1 ’a’]

True

This is not intended since the element (first argument) does not occur in the
list. Actually, the Haskell documentation2 about elem contains the explanation
“Does the element occur in the structure?” which ignores the fact that some
instances of Eq are only equivalences rather than identities.

This unusual behavior could also influence logic-oriented computations in a
surprising manner. If the operation last is defined as shown in Sect. 1, we obtain
the following answer when computing the last element of a given IVal list (here,
“-” denotes a logical variable of type Char):

> last [IVal 1 ’a’]

IVal 1 _

Hence, instead of the last element, we get a rather general representation of it.
The next section presents our proposal to solve these problems.

4 Data

As discussed above, type classes are an elegant way to express type restrictions.
On the other hand, it is not a good idea to allow user-defined instance definitions
of important operations like strict equality. Therefore, we propose the introduc-
tion of a specific type class where only standard instances can be derived so that
all instances satisfy the intended meaning. This type class is called Data and has
the following definition:

class Data a where

aValue :: a

(===) :: a → a → Bool

Thus, any instance of this class provides two operations:

– The non-deterministic operation aValue returns some value, i.e., the complete
evaluation of aValue yields all values of type a.

2 http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html.

http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html

236 M. Hanus and F. Teegen

– The operation “===” implements the standard equality on values, i.e., it
returns True or False depending on whether the argument values are identical
or not.

The following definition specifies how to automatically derive a Data instance for
any algebraic datatype.

Definition 1. If T is an algebraic datatype declared by

T a1 . . . ak C1 b11 . . . b1k1 . . . Cn bn1 . . . bnkn

the standard derived Data instance has the following form:

cx T a1 . . . ak

C1 Cn . . .

C1 x1 . . . xk1 C1 y1 . . . yk1 x1 y1 . . . xk1 yk1

Cn x1 . . . xkn Cn y1 . . . ykn x1 y1 . . . xkn ykn

Ci . . . Cj . . . ∀i, j ∈ {1, . . . , n} with i �= j

In the instance declaration above, the context cx consists of Data constraints
ensuring that Data bij holds for each type bij with i ∈ {1, . . . , n} and j ∈
{1, . . . , ki}.
Example 3. For the type of Peano numbers (see Example 1), the Data instance
can be defined as follows:

instance Data Nat where

aValue = Z ? S aValue

Z === Z = True

S m === S n = m === n

Z === S _ = False

S _ === Z = False

A Data instance for lists requires a Data instance for its elements:

instance Data a => Data [a] where

aValue = [] ? aValue : aValue

[] === [] = True

(x:xs) === (y:ys) = x === y && xs === ys

[] === (_:_) = False

(_:_) === [] = False

The operation aValue is useful when a value of some data type should be guessed,
e.g., for testing [25]. The obvious relation to logic variables will be discussed later.

The definition of “===” is identical to “==” if the definition of the latter is
automatically derived (by a “deriving Eq” clause). As discussed above, it is also
possible to define other instances of Eq that leads to unintended results. To ensure
that “===” always denotes equality on values, it is not allowed to define explicit

Adding Data to Curry 237

Data instances as shown above. Such instances can only be generated by adding
a “deriving Data” clause to a data definition. Note that an instance deriva-
tion requires that all arguments of all data constructors have Data instances. In
particular, if some argument has a functional type, e.g.,

data IntRel = IntRel (Int → Bool)

then a Data instance can not be derived.
For ease of use, one could always derive Data instances for data declarations

whenever it is possible (i.e., functional values do not occur in arguments), or
provide a language option to turn this behavior on or off.

With the introduction of the class Data, we can specify a more precise type
to Curry’s strict equality operation “=:=”. As discussed in [10], the meaning of
“=:=” is the “positive” part of “===”, i.e., its semantics can be defined by

x =:= y = solve (x === y) (1)

where solve is an operator that enforces positive evaluations for Boolean expres-
sions:

solve True = True (2)

Since expressions of the form e1 =:= e2 might return True but never False, “=:=”
can be implemented by unification, as already discussed in Sect. 2. Such an opti-
mized implementation is justified by the definition (1) above. However, if the
semantics of “=:=” is defined by

x =:= y = solve (x == y) (3)

as suggested before the introduction of type classes to Curry [9], an implemen-
tation of “=:=” by unification would not be correct since unification might put
stronger requirements on expressions to be compared than actually defined by
Eq instances.

As a spin-off of definition (1), we obtain a more restricted type of “=:=”:

(=:=) :: Data a => a → a → Bool (4)

This avoids the problems with the application of “=:=” to functional values
sketched at the beginning of Sect. 3.

5 Logic Variables

When a function call with free variables in arguments is evaluated by narrow-
ing, the free variables are instantiated to values so that the function call becomes
reducible. Conceptually, a free variable denotes possible values so that a com-
putation can pick one in order to proceed. With the definition of the type class
Data and the non-deterministic operation aValue, we make the notion of “possible
value” explicit. Actually, it has been shown that non-deterministic operations
and logic variables have the same expressive power [5,14] since one can replace
logic variables occurring in a functional logic program by non-deterministic value
generators.

238 M. Hanus and F. Teegen

Example 4. Consider the addition on Peano numbers shown in Example 1 which
is exploited to define subtraction:

sub :: Nat → Nat → Nat

sub x y | add y z === x = z

where z free

We can replace the logic variable z by a value generator:

sub x y | add y z === x = z

where z = aValue

The equivalence of logic variables and non-deterministic value generators can
be exploited when Curry is implemented by translation into a target language
without support for non-determinism and logic variables. For instance, KiCS2
[12] compiles Curry into Haskell by adding only a mechanism to handle non-
deterministic computations. Therefore, KiCS2 is able to evaluate a logic variable
to all its values. Thus, KiCS2 could exploit this fact by using the following
alternative definition for aValue:

aValue = - (5)

This equivalence also sheds some new light on the type of logic variables. Cur-
rently, logic variables without any constraints on their types are considered to
have a polymorphic type. For instance, the inferred type of aValue as defined in
(5) is

aValue :: a

However, this type does not really describe the intent of this operation, since
aValue does not yield functional values. For instance, consider the definition

f x = y where y free

The type currently inferred is

f :: a → b

However, it is meaningless to use the result of some application of f in contexts
where a function is required. For instance, the evaluation of the expression

map (f True) [0,1] (6)

suspends in PAKCS and produces a run-time error in KiCS2 (very similar to the
examples described at the beginning of Sect. 3). Furthermore, the inferred type
of the definition

g x = g x

is

g :: a → b

Adding Data to Curry 239

Thus, it looks very similar to the type of f although g has a quite different
meaning: in contrast to f, an application of g never returns a value.

All these problems can be avoided by a simple fix: logic variables are con-
sidered as equivalent to the operation aValue of type class Data so that a logic
variable without any constraints on its type has type a where a is constrained
with the type class context Data a. With this change, the inferred type of f is

f :: Data b => a → b

As a consequence, expression (6) will be rejected by the type checker since func-
tions have no Data instance.

6 Equality Optimization

Choosing the appropriate kind of equality might not be obvious to the program-
mer. The difference between identity and equivalence is semantically relevant
so that the decision between “===” and “==” is not avoidable. However, “=:=”
can be considered as an optimization of “===” so that it is not obvious when
it should be applied. In order to simplify this situation, it has been argued in
[9,10] that the programmer should always use strict equality (i.e., “===”) and
the selection of “=:=” should be done by an optimization tool. This tool analyzes
the required values of Boolean expressions. If an application of strict equality
requires only the result value True, e.g., in guards of conditional rules or in argu-
ments of solve, see (2), then one can safely replace the equality operator by the
unification operator “=:=” (see [10] for details). For instance, if last is defined
by

last xs | _ ++ [e] === xs

= e where e free

then it can be transformed into

last xs | _ ++ [e] =:= xs

= e where e free

As shown in [10], this transformation can have a big impact on the execution
time.

Up to now, this tool (which is part of the compilation chain of Curry systems)
considered the optimization of calls to “==”. Since this might lead to incomplete-
ness, as discussed above, it has to consider calls to “===” when the type class
Data is introduced. However, for backward compatibility and better optimiza-
tions, one can extend the optimizer also to calls of the form e1 == e2: if the types
of the arguments e1, e2 are monomorphic and the Eq instances of these types
are derived with the default scheme (by deriving annotations), the semantics of
“==” is identical to the semantics of “===” so that one can replace e1 == e2 by
e1 === e2 and apply the optimization sketched above.

240 M. Hanus and F. Teegen

7 Non-left-Linear Rules and Functional Patterns

The proposed introduction of the type class Data together with the adjusted type
of the unification operator “=:=” has also some influence on language constructs
where unification is implicitly used. We discuss this in more detail in this section.

In contrast to Haskell, Curry allows non-left-linear rules, i.e., defining rules
with multiple occurrences of a variable in the patterns of the left-hand side. For
instance, this function definition is valid in Curry:

f x x = x

Multiple occurrences of variables in the left-hand side are considered as an abbre-
viation for equational constraints between these occurrences [27], i.e., the defi-
nition above is expanded to

f x y | x =:= y = x

This feature of Curry is motivated by logic programming where multiple variable
occurrences in rule heads are also solved by unification. However, in Curry the
situation is a bit more complex due to the inclusion of functions and infinite
data structures. As a matter of fact, our refined type of “=:=” makes the status
of non-left-linear rules clearer. According to the type shown in (4), the type
inferred for the definition above is

f :: Data a => a → a → a

Hence, f can not be called with functional values as arguments. This even
increases the compatibility with logic programming where unification is applied
to Herbrand terms, i.e., algebraic data.

Another feature of Curry, where equational constraints are implicitly used,
are functional patterns. Functional patterns are proposed in [4] as an elegant way
to describe pattern matching with an infinite set of patterns. For instance, con-
sider the definition of last shown above. Since the equational condition requires
the complete evaluation of the input list, an expression like last [failed,3]

(where failed is an expression that has no value) can not be evaluated to some
value. Now, consider that last is defined by the following (infinite) set of rules:

last [x] = x

last [x1,x] = x

last [x1,x2,x] = x

...

Then the expression above is reduced to the value 3 by applying the second rule.
This set of rules can be abbreviated by a single rule:

last (- ++ [x]) = x (7)

Since the argument contains the defined operation “++”, it is called a func-
tional pattern. Conceptually, a functional pattern denotes all constructor terms
to which it can be evaluated (by narrowing). In this case, these are the patterns

Adding Data to Curry 241

shown above. Operationally, pattern matching with functional patterns can be
implemented by a specific unification procedure which evaluates the functional
pattern in a demand-driven manner [4]. Functional patterns are useful to express
pattern matching at arbitrary depths in a compact manner. For instance, they
can be exploited for a compact and declarative approach to process XML docu-
ments [23].

A delicate point of functional patterns are non-linear patterns, i.e., if a func-
tional pattern is evaluated to some constructor term containing multiple occur-
rences of a variable. For instance, consider the function

dup :: a → (a,a)

dup x = (x,x)

and its use in a functional pattern:

whenDup (dup x) = x

By the semantics of functional patterns, the latter rule is equivalent to the
definition

whenDup (x,x) = x

Due to the non-linear left-hand side, the type of whenDup is

whenDup :: Data a => (a,a) → a

Now, consider the operation const defined by

const :: a → b → a

const x _ = x

and its use in a functional pattern:

g (const x x) = x (8)

By the semantics of functional pattern, the definition of g is equivalent to

g x = x

so that a correct type is

g :: a → a

Hence, the type context Data a is not required, although the variable x has
a multiple occurrence in (8). This example shows that, if functional patterns
are used, the requirement for a Data context depends on the linearity of the
constructor terms to which the functional patterns evaluate. Since this property
is undecidable in general, a safe approximation is to add a Data constraint to the
result type of the functional pattern. This has the consequence that the type of
last, when defined as in (7), is inferred as

last :: Data a => [a] → a

Basically, this type is the same as we would obtain when defining last with an
equational constraint, but it could be done better: since the functional pattern
(- ++ [x]) always yields a linear term, the type class constraint Data a is not

242 M. Hanus and F. Teegen

necessary. Hence, one can make the type checking for operations defined with
functional patterns more powerful by approximating the linearity property of
the functional pattern. Such an approximation has already been used in [4]
to improve the efficiency of the unification procedure for functional patterns.
However, a significant drawback would be the fact that the inferred type of a
function would depend on the quality of the approximation. As a consequence,
the principal type of a function [13,28] would become ambiguous under certain
circumstances and would depend on a function’s implementation.

8 Related Work

We already discussed in the previous sections some work related to the interpre-
tation and use of equality in declarative languages. In the following, we focus on
some additional work related to our proposal.

The necessity to distinguish different equalities in the context of functional
logic programming and to define their exact semantics has been recognized
before. In [16], the authors introduce several equality (and disequality) oper-
ations, among others also an operation for strict equality. However, no explicit
distinction between equality and equivalence is made as only the former is dis-
cussed. Note also that some of these operations became obsolete with [9].

In [33], the author discusses the addition of Haskell-like overloading to Curry.
In doing so, a new type class Equal that contains the unification operation “=:=”
is proposed. The intent is to restrict this operation similarly to the equivalence
operation “==” so that it is only applicable to certain types. In contrast to our
proposal, it is not enforced that instances of the Equal type class should always
have the same form. In the same work, another type class Narrowable containing a
method called narrow is proposed in order to restrict the type of logical variables
against the background of higher-rank types. The method narrow is very similar
to our method aValue. But aside from a few downsides of the introduction of such
a method, e.g., a possibly fixed order when enumerating solutions, no further
consequences for the language itself are discussed in that work.

The idea to use a type relation to restrict the type of logical variables has
also been introduced in [35] for a better characterization of free theorems. In
[34], a type class Data is used for the same reason, but the class is only used as
a marker (as in [35]) so that the type class does not contain any methods.

On a side note, there is also a Data type class in Haskell. However, this par-
ticular type class is used for generic programming in Haskell and shares nothing
but the name with our type class [32].

9 Conclusions

In this paper we presented a solution to various problems w.r.t. equality and
logic variables in functional logic programs by introducing a new type class
Data. Instances of this class support a generator operation aValue for values and
a strict equality operation “===” on these values. In contrast to other classes,

Adding Data to Curry 243

instances of this class can only be derived in a standard manner and cannot
be defined by the programmer. This decision ensures a reasonable semantics:
if e1 === e2 evaluates to True, then the expressions e1 and e2 have an identical
value. Although this is the notion of strict equality proposed for a long time,
Haskell-like overloading of the class Eq and its operation “==” allows to specify
that “some expressions are more equal than others” [38].

At a first glance, it might be unnecessary to add a further equality operator
and base type class to a declarative language. The advantage is that this supports
a clear documentation for all functions depending on equality, as it makes a
huge difference in functional logic programming whether one imposes equality
or equivalence in a function’s implementation. If a programmer is interested in
identical values, she or he has to use “===”.3 If only equivalence is relevant, “==”
is the right choice. For instance, consider the operation elem to check whether
an element occurs in a list. The type

elem :: Data a => a → [a] → Bool

indicates that this operation succeeds if the element actually occurs in the list,
whereas the type

elem :: Eq a => a → [a] → Bool

indicates that it succeeds if some equivalent element is contained in the list.
Unfortunately, these details are often not taken into account. As discussed

in this paper, many textbooks and program documentations simply ignore such
differences or are not formally precise in their statements.

We showed that our proposal is also useful to type logic variables in a more
meaningful way. The type of a logic variable is required to be an instance of
Data so that one can enumerate the possible values of this variable. Although
logic variables are often instantiated by narrowing or unification to appropriate
values, there are situations where an explicit enumeration is necessary to ensure
completeness. For instance, consider the encapsulation of non-deterministic com-
putations in order to reason about the various outcomes. Set functions [6] are
a declarative, i.e., evaluation-independent, encapsulation approach. If f is a
(unary) function, its set function fS returns the set of all results computed
by f for a given argument. For instance, someDupS xs returns the set of all dupli-
cate elements (see Example 2) occurring in the list xs. An important property
of a set function is that it encapsulates only the non-determinism caused by the
function’s definition and not by the arguments. Hence, someDupS ([1,1] ? [2])

yields two different sets: {1} and {}. This property of set functions is important
to ensure their declarative semantics. It has the consequence that arguments
must be evaluated outside the set function. Hence, to evaluate the expression

let x free in . . .(fS x). . .

3 As discussed in Sect. 6, the unification operator “=:=” does not need to be used by
the programmer since it is an optimization of “===”.

244 M. Hanus and F. Teegen

it is not allowed to bind x inside the evaluation of f . As a consequence, x must
be instantiated outside in order to proceed a computation where f demands its
argument. This can easily be obtained by the use of the operation aValue:

let x = aValue in . . .(fS x). . .

In order to evaluate the practical consequences of our proposal, we implemented
it in a prototypical manner in our Curry front end that is used by various Curry
implementations. The changes in the type checker were minimal (e.g., adding
Data contexts to the inferred types of logic variables). Concerning libraries, only
a single type signature had to be adapted in the standard prelude, one of the
largest Curry modules: the type of the “arbitrary value” operation gets a Data

context:

unknown :: Data a => a

unknown = let x free in x

In other libraries, only a few types (related to search encapsulation primitives)
had to be adapted. With these few changes, even larger Curry applications could
be compiled without problems. This demonstrates that our proposal is a viable
alternative to the current unsatisfying handling of equality and logic variables
in Curry. Usually, no changes are necessary in existing Curry programs. Only
in the rare cases of function definitions with polymorphic non-linear left-hand
sides or polymorphic logic variables, type signatures have to be adapted.

Acknowledgments. The authors are grateful to Sandra Dylus and Marius Rasch
for fruitful discussions during the conception phase of this paper. Furthermore, we
thank Kai-Oliver Prott for his efforts in evaluating our proposal by prototypically
implementing it.

References

1. Antoy, S.: Optimal non-deterministic functional logic computations. In: Hanus,
M., Heering, J., Meinke, K. (eds.) ALP/HOA-1997. LNCS, vol. 1298, pp. 16–30.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0027000

2. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),
776–822 (2000)

3. Antoy, S., Hanus, M.: Functional logic design patterns. In: Hu, Z., Rodŕıguez-
Artalejo, M. (eds.) FLOPS 2002. LNCS, vol. 2441, pp. 67–87. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45788-7 4

4. Antoy, S., Hanus, M.: Declarative programming with function patterns. In: Hill,
P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 6–22. Springer, Heidelberg (2006).
https://doi.org/10.1007/11680093 2

5. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp.
87–101. Springer, Heidelberg (2006). https://doi.org/10.1007/11799573 9

6. Antoy, S., Hanus, M.: Set functions for functional logic programming. In: Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP 2009), pp. 73–82. ACM Press (2009)

https://doi.org/10.1007/BFb0027000
https://doi.org/10.1007/3-540-45788-7_4
https://doi.org/10.1007/11680093_2
https://doi.org/10.1007/11799573_9

Adding Data to Curry 245

7. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74–85
(2010)

8. Antoy, S., Hanus, M.: New functional logic design patterns. In: Kuchen, H. (ed.)
WFLP 2011. LNCS, vol. 6816, pp. 19–34. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22531-4 2

9. Antoy, S., Hanus, M.: Curry without success. In: Proceedings of the 23rd Inter-
national Workshop on Functional and (Constraint) Logic Programming (WFLP
2014). CEUR Workshop Proceedings, vol. 1335, pp. 140–154. CEUR-WS.org (2014)

10. Antoy, S., Hanus, M.: Transforming Boolean equalities into constraints. For-
mal Aspects Comput. 29(3), 475–494 (2017). https://doi.org/10.1007/s00165-016-
0399-6

11. Bird, R.: Introduction to Functional Programming using Haskell, 2nd edn. Prentice
Hall, Englewood Cliffs (1998)

12. Braßel, B., Hanus, M., Peemöller, B., Reck, F.: KiCS2: a new compiler from Curry
to Haskell. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 1–18. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22531-4 1

13. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 1982), pp. 207–212. ACM, New York (1982)

14. de Dios Castro, J., López-Fraguas, F.J.: Extra variables can be eliminated from
functional logic programs. Electron. Notes Theor. Comput. Sci. 188, 3–19 (2007)

15. DeGroot, D., Lindstrom, G. (eds.): Logic Programming, Functions, Relations, and
Equations. Prentice Hall, Englewood Cliffs (1986)

16. Gallego Arias, E.J., Mariño Carballo, J., Rey Poza, J.M.: A proposal for dise-
quality constraints in Curry. Electron. Notes Theor. Comput. Sci. 177, 269–285
(2007). Proceedings of the 15th Workshop on Functional and (Constraint) Logic
Programming (WFLP 2006)

17. Gallier, J.H., Snyder, W.: Complete sets of transformations for general E-
unification. Theoret. Comput. Sci. 67, 203–260 (1989)

18. Giovannetti, E., Levi, G., Moiso, C., Palamidessi, C.: Kernel leaf: a logic plus
functional language. J. Comput. Syst. Sci. 42(2), 139–185 (1991)

19. Goguen, J.A., Meseguer, J.: EQLOG: equality, types, and generic modules for
logic programming. In: DeGroot, D., Lindstrom, G. (eds.) Logic Programming,
Functions, Relations, and Equations, pp. 295–363. Prentice Hall (1986)

20. González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodŕıguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
J. Log. Program. 40, 47–87 (1999)

21. Hanus, M.: The integration of functions into logic programming: from theory to
practice. J. Log. Program. 19&20, 583–628 (1994)

22. Hanus, M.: A unified computation model for functional and logic programming. In:
Proceedings of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93 (1997)

23. Hanus, M.: Declarative processing of semistructured web data. In: Technical Com-
munications of the 27th International Conference on Logic Programming, vol. 11,
pp. 198–208. Leibniz International Proceedings in Informatics (LIPIcs) (2011)

24. Hanus, M.: Functional logic programming: from theory to Curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123–168.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1 6

25. Hanus, M.: CurryCheck: checking properties of Curry programs. In: Hermenegildo,
M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 222–239.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 13

https://doi.org/10.1007/978-3-642-22531-4_2
https://doi.org/10.1007/978-3-642-22531-4_2
https://doi.org/10.1007/s00165-016-0399-6
https://doi.org/10.1007/s00165-016-0399-6
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/978-3-319-63139-4_13

246 M. Hanus and F. Teegen

26. Hanus, M., et al.: PAKCS: The Portland Aachen Kiel Curry System (2018). http://
www.informatik.uni-kiel.de/∼pakcs/

27. Hanus, M. (ed.): Curry: an integrated functional logic language (vers. 0.9.0) (2016).
http://www.curry-language.org

28. Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans.
Am. Math. Soc. 146, 29–60 (1969)

29. Huet, G., Lévy, J.-J.: Computations in orthogonal rewriting systems. In: Lassez,
J.-L., Plotkin, G. (eds.) Computational Logic: Essays in Honor of Alan Robinson,
pp. 395–443. MIT Press (1991)

30. Hughes, J.: Why functional programming matters. In: Turner, D.A. (ed.) Research
Topics in Functional Programming, pp. 17–42. Addison Wesley (1990)

31. Hutton, G.: Programming in Haskell, 2nd edn. Cambridge University Press, Cam-
bridge (2016)

32. Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate: a practical design pattern
for generic programming. In: Proceedings of the 2003 ACM SIGPLAN Interna-
tional Workshop on Types in Languages Design and Implementation (TLDI 2003),
pp. 26–37. ACM Press (2003)

33. Lux, W.: Adding Haskell-style overloading to Curry. In: 25. Workshop der GI-
Fachgruppe Programmiersprachen undRechenkonzepte, Kiel, Germany, pp. 67–76
(2008). Technical report 0811, Institut für Informatik, CAU Kiel

34. Mehner, S.: Tools for reasoning about effectful declarative programs. Ph.D. thesis,
Universität Bonn (2015)

35. Mehner, S., Seidel, D., Straßburger, L., Voigtländer, J.: Parametricity and proving
free theorems for functional-logic languages. In: Proceedings of the 16th Interna-
tional Symposium on Principle and Practice of Declarative Programming (PPDP
2014), pp. 19–30. ACM Press (2014)

36. Moreno-Navarro, J.J., Rodŕıguez-Artalejo, M.: Logic programming with functions
and predicates: the language babel. J. Log. Program. 12, 191–223 (1992)

37. O’Donnell, M.J.: Equational logic programming. In: Gabbay, D.M., Hogger, C.J.,
Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, pp. 69–161. Oxford University Press (1998)

38. Orwell, G.: Animal Farm: A Fairy Story. Secker and Warburg, London (1945)
39. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries-The Revised Report.

Cambridge University Press, Cambridge (2003)
40. Reddy, U.S.: Narrowing as the operational semantics of functional languages. In:

Proceedings IEEE International Symposium on Logic Programming, Boston, pp.
138–151 (1985)

41. Thompson, S.: Haskell - The Craft of Functional Programming, 2nd edn. Addison-
Wesley, Boston (1999)

42. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings POPL 1989, pp. 60–76 (1989)

http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/
http://www.curry-language.org

Free Theorems Simply, via Dinaturality

Janis Voigtländer(B)

University of Duisburg-Essen, Duisburg, Germany
janis.voigtlaender@uni-due.de

Abstract. Free theorems are a popular tool in reasoning about para-
metrically polymorphic code. They are also of instructive use in teaching.
Their derivation, though, can be tedious, as it involves unfolding a lot
of definitions, then hoping to be able to simplify the resulting logical
formula to something nice and short. Even in a mechanised generator it
is not easy to get the right heuristics in place to achieve good outcomes.
Dinaturality is a categorical abstraction that captures many instances
of free theorems. Arguably, its origins are more conceptually involved to
explain, though, and generating useful statements from it also has its
pitfalls. We present a simple approach for obtaining dinaturality-related
free theorems from the standard formulation of relational parametricity
in a rather direct way. It is conceptually appealing and easy to control
and implement, as the provided Haskell code shows.

1 Introduction

Free theorems [14] are an attractive means of reasoning about programs in a
polymorphically typed language, predominantly used in a pure functional set-
ting, but also available to functional-logic programmers [10]. They have been
employed for compiler optimisations [7] and other applications, and can also be
used (when generated for deliberately arbitrary polymorphic types) to provide
insight into the declarative nature of types and semantics of programs while
teaching. Free theorems are derived from relational parametricity [12], and the
actual process of deriving them can be tedious. We discuss an approach that
side-steps the need to explicitly unfold definitions of relational actions and sub-
sequently manipulate higher-order logic formulae. That there is a relationship
between relational parametricity and categorical dinaturality is not news at all
[5], and has been used to impressive effect lately [8], but we show that one can
do without explicitly involving any category theory concepts, instead discovering
all we need along the way. Together with deterministic simplification rules, we
obtain a compact and predictable free theorems generator. We provide a neat
implementation using the higher-order abstract syntax [11] and normalisation
by evaluation [6] principles.

In the remainder of the paper, we are going to explain and discuss the stan-
dard approach of deriving free theorems via relational parametricity, first very
informally (Sect. 2), then by somewhat superficially invoking its usual formal

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 247–267, 2020.
https://doi.org/10.1007/978-3-030-46714-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-46714-2_16

248 J. Voigtländer

presentation (Sect. 3.1), after which we “discover” our bridge to the simpler app-
roach (Sects. 3.2 and 3.3), and conclude with pragmatics and implementation
(rest of Sect. 3 and Sect. 4). As a kind of afterthought, we sketch the precise
connection to dinaturality (Sect. 5).

2 How Free Theorems Are Usually Derived

For the sake of simplicity, we consider only the case of functions polymorphic in
exactly one type variable, i.e., types like (α → Bool) → [α] → Maybe α but not
like α → β → (α, β). Extension to cases like the latter would be possible.

2.1 Constructing Relations

The key to deriving free theorems is to interpret types as relations [12,14]. For
example, given the type signature f :: (α → Bool) → [α] → Maybe α, we replace
the type variable α by a relation variable R, thus obtaining (R → Bool) →
([R] → Maybe R). Eventually, we will allow (nearly) arbitrary relations between
closed types τ1 and τ2, denoted R ∈ Rel(τ1, τ2), as interpretations for relation
variables. Also, there is a systematic way of reading expressions over relations
as relations themselves. In particular,

– base types like Bool and Int are read as identity relations,
– for relations R1 and R2, we have

R1 → R2 = {(f , g) | ∀(a, b) ∈ R1. (f a, g b) ∈ R2}

and
– every type constructor is read as an appropriate construction on relations; for

example, the list type constructor maps every relation R ∈ Rel(τ1, τ2) to the
relation [R] ∈ Rel([τ1], [τ2]) defined by (the least fixpoint of)

[R] = {([], [])}∪ {(a : as, b : bs) | (a, b) ∈ R, (as , bs) ∈ [R]}

while the Maybe type constructor maps R ∈ Rel(τ1, τ2) to Maybe R ∈
Rel(Maybe τ1,Maybe τ2) defined by

Maybe R = {(Nothing,Nothing)}∪ {(Just a, Just b) | (a, b) ∈ R}

and similarly for other datatypes.

The central statement of relational parametricity now is that for every choice
of τ1, τ2, and R, the instantiations of the polymorphic f to types τ1 and τ2 are
related by the relational interpretation of f ’s type. For the above example, this
means that (fτ1 , fτ2) ∈ (R → idBool) → ([R] → Maybe R). From now on, type
subscripts will often be omitted since they can be easily inferred.

Free Theorems Simply, via Dinaturality 249

2.2 Unfolding Definitions

To continue with the derivation of a free theorem in the standard way, one has
to unfold the definitions of the various actions on relations described above. For
the example:

Now it is useful to specialise the relation R to the “graph” of a function g ::τ1 →
τ2, i.e., setting R = graph(g) := {(x , y) | g x = y } ∈ Rel(τ1, τ2), and to realise
that then [R] = graph(map g) and Maybe R = graph(fmap g), so that we can
continue as follows:

It remains to find out what (a, b) ∈ graph(g) → id means. We can do so as
follows:

Finally, we obtain, for every f :: (α → Bool) → [α] → Maybe α, g :: τ1 → τ2,
b :: τ2 → Bool, and c :: [τ1],

fmap g (f (b ◦ g) c) = f b (map g c)

or, if we prefer this statement pointfree as well, fmap g ◦ f (b ◦ g) = f b ◦
map g . The power of such statements is that f is only restricted by its type – its
behaviour can vary considerably within these confines, and still results obtained
as free theorems will be guaranteed to hold.

2.3 Typical Complications

So what is there not to like about the above procedure? First of all, always
unfolding the definitions of the relational actions – specifically, the R1 → R2

definition – is tedious, though mechanical. It typically brings us to something

250 J. Voigtländer

like (∗) or (∗∗) above. Then, specifically if our f has a higher-order type, we will
have to deal with preconditions like (a, b) ∈ R → id or (a, b) ∈ graph(g) → id .
Here we have seen, again by unfolding definitions, that the latter is equivalent
to a = b ◦ g , which enabled simplification of statement (∗∗) by eliminating the
variable a completely. But in general this can become arbitrarily complicated.
If, for example, our f of interest had the type (α → α → Bool) → [α] → [α],
we would have to deal with a precondition (a, b) ∈ graph(g) → graph(g) →
id instead. By similar steps as above, one can show that this is equivalent to
∀x ::τ1, y ::τ1. a x y = b (g x) (g y) or ∀x ::τ1. a x = b (g x)◦g or something even
more cryptic if one insists on complete pointfreeness (to express the condition
in the form “a = . . .” in order to eliminate the explicit precondition by inlining).
One might prepare and keep in mind the simplifications of some common cases
like those above, but in general, since the type of f , and thus of course also the
types of higher-order arguments it may have, can be arbitrary and more “exotic”
than above (in particular, possibly involving further nesting of function arrows
– consider, e.g., we had started with f :: (([α] → Int) → α) → α as the target
type), we are eventually down to unfolding the definitions of relational actions.
We can only hope then to ultimately be able to also fold back into some compact
form of precondition like was the case above.

Moreover, the picture is complicated by the fact that the procedure, exactly
as described so far, applies only to the most basic language setting, namely a
functional language in which there are no undefined values and all functions are
total. As soon as we consider a more realistic or interesting setting, some changes
become required. Typically that involves restricting the choice of relations over
which one can quantify, but also changes to the relational actions that may or
may not have a larger impact on the procedure of deriving free theorems. Specif-
ically, already when taking possible undefinedness and partiality of functions
into account, one may only use relations that are strict (i.e., (⊥,⊥) ∈ R) and
additionally has to use versions of datatype liftings that relate partial structures
(e.g., [R] = {(⊥,⊥), ([], [])}∪ {(a : as, b : bs) | . . .}). This is not very severe
yet, since strictness of relations simply translates into strictness of functions
and connections like [R] = graph(map g) for R = graph(g) remain intact, so
there is no considerable impact on the derivation steps. But if one additionally
takes Haskell’s seq-primitive into account, more changes become required [9].
Now relations must also be total (i.e., (a, b) ∈ R implies a = ⊥ ⇔ b = ⊥) and
additionally the relational action for function types must be changed to

The latter does have an impact on the derivation steps, since these typically (like
in the examples above) use the definition of R1 → R2 a lot, and now must man-
age the extra conditions concerning undefinedness. Also, some simplifications
become invalid in this setting. Note that in the first example, in Sect. 2.2, we
used that the precondition ∀x :: τ1. a x = b (g x) is equivalent to a = b ◦ g .
But not in a language including seq , since in such a language eta-reduction is
not generally valid (e.g., ∀x . ⊥ x = ⊥ (id x) but not ⊥ = ⊥ ◦ id)! We might

Free Theorems Simply, via Dinaturality 251

still be safe, since the condition ∀x :: τ1. a x = b (g x) is at least implied by
a = b ◦g , so depending on where that explicitly quantifying statement appeared
in the overall statement we may obtain a weakening or a strengthening of that
overall statement by replacing one condition by the other. But such consider-
ations require careful management of the preconditions and their positions in
nested implication statements. All this can still be done automatically [1], but
it is no pleasure. There is not as much reuse as one might want, different sim-
plification heuristics have to be used for different language settings, there is no
really deterministic algorithm but instead some search involved, and sometimes
the only “simplification” that seems to work is to unfold all definitions and leave
it at that. Moreover, if one were to move on and consider automatic generation
of free theorems for further language settings, like imprecise error semantics [13],
then the story would repeat itself. There would be yet another set of changes to
the basic definitions for relations and relational actions, new things to take care
of during simplification of candidate free theorems, etc.

2.4 Some Problematic Examples, and Outlook at a Remedy

Let us substantiate the above observations with some additional examples. First
we consider the declaration f :: (([α] → Int) → α) → α. The existing free
theorems generator library mentioned above [1], used inside a web UI created
by Joachim Breitner [2], produces the statement that for every g :: τ1 → τ2,
p :: ([τ1] → Int) → τ1, and q :: ([τ2] → Int) → τ2, it holds:

Arguably, it would have been more useful to be given the equivalent statement
that for every f , g , p with types as above,

g (f p) = f (λs → g (p (λx → s (map g x)))) (1)

There is another free theorems generator as part of another tool, by Andrew
Bromage [3], and it does quite okay here, generating this: (∀p. g (h (p◦map g)) =
k p) ⇒ g (f h) = f k . But if we make the input type a bit more nasty by more
nesting of function arrows, f :: (((([α] → Int) → Int) → Int) → α) → α, then the
existing generators differ only slightly from each other, and both yield something
like the following:

It would have been nicer to be given the following:

g (f p) = f (λs → g (p (λt → s (λw → t (λx → w (map g x)))))) (2)

252 J. Voigtländer

which is exactly what the approach to be presented here will yield (modulo vari-
able names). Of course, one could invest into further post-processing steps in
the existing generators to get from the scary form of the statement to the more
readable, equivalent one. But at some point, this will always be only partially suc-
cessful. Going from a compact relational expression to a quantifier-rich formula
in higher-order logic through unfolding of definitions, and then trying to recover
a more readable form via generic HOL formula manipulations, will generally be
beaten by an approach better exploiting the structure present in the original
type expression – which is what we will do. We will always generate a simple
equation between two lambda-expressions, without precondition statements, as
in (1) and (2) above.

Moreover, there is still the issue of the variability of free theorems between
different language settings. The generator inside Lambdabot [3] does not consider
such impact of language features, and thus the theorems it outputs are not safe in
the presence of seq . The other previous generator [1,2] does, and thus adds the
proper extra conditions concerning undefinedness. For example, for the more
complicated of the two types considered above, the output then is (besides a
strictness and totality condition imposed on g)1:

In contrast, with the approach to be presented we will get:

which . . .

1. . . . is almost as strong as the more complicated formula above it. The only
thing that makes it weaker is that it does not express that the corner cases
g (f ⊥) = f ⊥ and g (f p′) = f (g ◦ p′) with p′ any of (λs → p ⊥),
(λs → p (λt → ⊥)), (λs → p (λt → s ⊥)), . . . , (λs → p (λt → s (λw →
t (λx → w ⊥)))) also hold.

2. . . . simply reduces to (2) in any functional language setting in which eta-
reduction is valid. So we will not perform different derivations for different
language settings. (Rather, eta-reduction, when applicable, can be applied as
an afterthought – which is exactly what our implementation will do.)

1 Something we will not mention again and again is that g is also itself non-⊥. Disre-
garding types that contain only ⊥, this follows from totality of g anyway.

Free Theorems Simply, via Dinaturality 253

To top the mentioned benefits, the approach to free theorems derivation we
will discuss is much simpler than the “relation unfolding” one – simpler both
conceptually (and thus also when one wants to obtain free theorems by hand)
as well as when implementing it. In fact, the generator code takes up much
less than a page in the appendix (without counting the code for implementing
the eta-reduction functionality) – a relatively small fraction of the size of the
corresponding code in the existing free theorems generators.2

There is one gotcha. It is not always possible to express a free theorem
simply as an equation without preconditions. A typical example is the type
f :: (α → α) → α → α. Its general free theorem is:

Since even for fixed g , neither of h and k uniquely determines the other here,
the precondition g ◦ h = k ◦ g cannot be avoided by some way of inlining
or other strategy. The dinaturality-related approach will instead generate the
unconditional statement

i.e., setting h to p ◦ g and k to g ◦ p for some p, thus certainly satisfying
g ◦ h = k ◦ g , but losing some generality. However, we believe we can say for
what sort of types this will happen (see Sect. 3.5).

3 Free Theorems Simply, “via Dinaturality”

So, what is the magic sauce we are going to use? We start from the simple
observation that with the standard approach, once one has done the unfolding
of definitions and subsequent simplifications/compactifications, one usually ends
up with an equation (possibly with preconditions) between two expressions that
look somewhat similar to each other. For example, for type f ::[α] → [α] one gets
the equation map g (f xs) = f (map g xs), for type f :: (α → Bool) → [α] → [α]
one gets the equation map g (f (p ◦ g) xs) = f p (map g xs), etc. There is
certainly some regularity present: on one side map g happens “before f ”, on
the other side it happens “after f ”; maybe g needs to be brought in at some
other place in one or both of the two sides as well; but the expression structure
is essentially the same on both sides. In fact, given some experience with free
theorems, one is often able to guess up front what the equation for a given type
of f will look like. But to confirm it, one would still be forced to do the chore of
unfolding the definitions of the relational actions, then massaging the resulting
formulae to hopefully bring them into the form one was expecting. We will
change that, by using what we call here the conjuring lemma of parametricity.
2 Additional code for parsing input strings into type expressions and pretty-printing

generated theorem expressions back into pleasingly looking strings is of comparable
complexity between the different generators.

254 J. Voigtländer

It was previously stated in the setting of deriving free theorems for a functional-
logic language [10] (see Theorem 7.8 and Lemma 8.1 there), but will be used for
(sublanguages of) Haskell here. To justify it, we need a brief excursion (some
readers may want to largely skip) into how relational parametricity is usually
formulated abstractly.

3.1 Usual Abstract Formulation of Relational Parametricity

Putting aside notational variations, as well as the fact that the exact form would
differ a bit depending on whether one bases one’s formalisation on a denotational
or on an operational semantics (typically of a polymorphic lambda-calculus with
some extensions, not full Haskell), one essentially always has the following the-
orem (sometimes called just the fundamental lemma of logical relations). Some
explanations, such as what Δ stands for, are given below it.

Theorem 1 (Relational Parametricity).

1. If e is a closed term (containing no free term variables, but also no free type
variables) of a closed type τ , then (e, e) ∈ Δ∅,τ .

2. If e is a closed term (in the sense of containing no free term variables) of
a type polymorphic in one type variable, say σ containing free type variable
α, then for every choice of closed types τ1, τ2, and R ∈ Rel(τ1, τ2), we have
(e[τ1/α], e[τ2/α]) ∈ Δ[α�→R],σ.

3. If e is a polymorphic term as above, of type σ containing free type variable α,
but now possibly also containing a free term variable x of some type σ′ possibly
containing the free type variable α as well, then for every choice of closed types
τ1, τ2, and R as above, and closed terms e1 ::σ′[τ1/α] and e2 ::σ′[τ2/α] such
that (e1, e2) ∈ Δ[α�→R],σ′ , we have (e[τ1/α, e1/x], e[τ2/α, e2/x]) ∈ Δ[α�→R],σ.

Now, the promised explanations:

– The notation Δρ,σ corresponds to the construction of relations from types (as
in Sect. 2.1), where ρ keeps track of the interpretation of any type variables
by chosen relations. For example, Δ∅,Int→[Bool] would be id Int → [idBool] and
Δ[α�→R],[α]→α would be [R] → R.

– For any closed type τ , the relation Δ∅,τ (in fact, any Δρ,τ) turns out to just
be the identity relation at type τ . As such, (e, e) ∈ Δ∅,τ in the first item
of the theorem may appear to state a triviality. However, if one explicitly
handles abstraction and instantiation of type variables (we have not done
so for the exposition in Sect. 2, because we anyway wanted to deal only with
types polymorphic over exactly one type variable), then it is less so. One then
introduces, alongside R1 → R2 etc., a new relational action ∀R. F R (for
mappings F on relations), which is defined in exactly such a way that when
moreover setting Δρ,∀α.σ = ∀R. Δρ[α�→R],σ, the statement (e, e) ∈ Δ∅,∀α.σ

reduces exactly to the statement in the second item of the theorem – which
then needs not to be explicitly made. The treatment is analogous if one has
types polymorphic in more than one type variable, say τ = ∀α.∀β.σ, which
explains how to deal with that case not considered in Sect. 2.

Free Theorems Simply, via Dinaturality 255

– The choices of relations R ∈ Rel(τ1, τ2) are not really completely arbitrary,
instead depend on the language setting for which the parametricity theorem
is stated and proved. As mentioned earlier, R must be strict to take the
presence of partial functions into account, and must be strict and total to
take the presence of seq into account, and other restrictions may apply in
other settings.

– Even the third item of the theorem as stated above, adding the treatment
of free term variables, is not yet the most general form. In general, the para-
metricity theorem is formulated for an arbitrary number of free type and term
variables, in straightforward (but notationally tedious) extension of the formu-
lations above. Just for the sake of exposition here, we have chosen the progres-
sion between the three items. Of course, usually not all three (or more/further
ones) are shown, only one at the level of generality needed for a specific con-
cern. In a short while, we will see that it can even be useful to consider the
case where e does involve a type variable, and free term variables of types
involving that type variable, but does itself not have a polymorphic type.

Also, let us make explicit how Theorem 1 corresponds to the concrete standard
derivation approach for free theorems as described in Sect. 2. Given a function
f of type scheme σ polymorphic in α, one would use the first or second item
of the theorem to conclude (fτ1 , fτ2) ∈ Δ[α�→R],σ, then unfold the definition
of Δ[α�→R],σ, for example (fτ1 , fτ2) ∈ (R → idBool) → ([R] → Maybe R) if
σ = (α → Bool) → [α] → Maybe α, then continue from there, with all the
tedious work this entails.

The trick now is to establish a lemma, actually a corollary, that does not
even mention the relation construction Δ, and that directly states an equality
between expressions rather than something about relatedness.

3.2 The Conjuring Lemma of Parametricity

Before giving the lemma, let us give a brief example of the sort of term e that
can appear in it, since without such an example it may be counterintuitive how
e could “involve α” but nevertheless have a closed overall type. What this means
is that e can be something like λxs → map post (f (map pre xs)). In a context
in which f ::∀α.[α] → [α] and pre and post are term variables typed τ1 → α and
α → τ2 respectively, this e has the closed type [τ1] → [τ2], despite the fact that
in order to write down e with explicit type annotations everywhere (i.e., on all
subexpressions), one would also need to write down the type variable α at some
places. Now the lemma, a corollary of the parametricity theorem.

Lemma 1 (Conjuring Lemma).
Let τ , τ1 and τ2 be closed types. Let g :: τ1 → τ2 be closed and:

– strict if we want to respect partially defined functions,
– strict and total if we want to respect seq.

256 J. Voigtländer

Let e :: τ be a term possibly involving α (but not in its own overall type, which
is closed by assumption) and term variables pre :: τ1 → α and post :: α → τ2, but
no other free variables. Then:

e[τ1/α, idτ1/pre, g/post] = e[τ2/α, g/pre, idτ2/post]

Proof (see also proof of Lemma 8.1 in [10]). The conditions on g (strictness, total-
ity, depending on language setting) guarantee that its graph can be used as an
admissible R. To apply the parametricity theorem (in its general form with arbi-
trarily many free variables), we need to establish (idτ1 , g) ∈ Δ[α�→graph(g)],τ1→α

and (g, idτ2) ∈ Δ[α�→graph(g)],α→τ2 . Since τ1, τ2 are closed types, these state-
ments reduce to (idτ1 , g) ∈ idτ1 → graph(g) and (g, idτ2) ∈ graph(g) → idτ2 ,
respectively. Both of these hold in all the language settings considered (easy cal-
culations; also note that g �= ⊥ if g total), so the parametricity theorem lets us
conclude

(e[τ1/α, idτ1/pre, g/post], e[τ2/α, g/pre, idτ2/post]) ∈ Δ[α�→R],τ

from which the lemma’s statement follows by Δ[α�→R],τ = idτ (recall: τ is closed).

Let us reflect on what we have gained. The conjuring lemma does not mention Δ
from the previous subsection. It holds in basically any language setting in which
the (or better, a) parametricity theorem holds, no matter what the exact defi-
nitions of the relational actions (the unfolding steps employed for a concrete Δ)
are. It is enough that a) the statement of the parametricity theorem holds in the
language setting under consideration, and that b) (idτ1 , g) ∈ idτ1 → graph(g)
and (g, idτ2) ∈ graph(g) → idτ2 do hold. Both a) and b) are the case in all poly-
morphically typed pure functional languages and Δ-definitions we are aware of.
This does not just mean partiality and seq in Haskell, but also for example
the setting with imprecise error semantics as studied in [13]. Even in work on
parametricity and free theorems for a functional-logic language [10], where the
definition of Δ, including the case R1 → R2, turns out somewhat differently
(since having to deal with nondeterminism and thus with power domain types),
the statement of the parametricity theorem and the definition of R1 → R2 are
such that the conjuring lemma holds (for the functional intermediate language
used there). Of course, whether the g in the lemma must be strict, or strict and
total, or something else, does depend on the language setting, but this is not
harmful, since it does not restrict us in our choice of e.

Also, suppose the situation that some new datatype is to be considered. Usu-
ally, this requires some new lifting to be defined and used for the relational
interpretation of types. Even though there is a standard recipe to follow, at least
for run-of-the-mill algebraic datatypes, it is still work, and requires checking and
of course building into a free theorems generator, along with appropriate sim-
plification rules. Not so if we use the conjuring lemma, which (while of course
requiring an assertion that the parametricity theorem still holds even in the
presence of the new datatype – i.e., there must exist an appropriate relational

Free Theorems Simply, via Dinaturality 257

lifting) is not itself sensitive at all to how the new datatype is relationally inter-
preted. If we can come up with interesting terms e, now possibly involving the
new datatype, we are in good condition to prove new free theorems.

Before we consider the question whether we actually can, in general, come
up with interesting terms e, let us do so for some specific examples. We have
already remarked, just before the conjuring lemma, that given f :: ∀α.[α] → [α],
the term e = λxs → map post (f (map pre xs)) fits the bill, which means that
the conjuring lemma gives us the following statement:

Using the additional knowledge that map id = id , this is exactly the standard
free theorem for said type of f , namely map g ◦ f = f ◦map g .

Let us try again, for the type f ::∀α.(α → Bool) → [α] → [α]. We may “know”
that we want map g (f (p◦g) xs) = f p (map g xs), but do not want to prove that
statement via a lengthy derivation. So, imagining where pre and post should be
put in order to make both sides of the desired statement an instance of a common
term e, we may arrive at e = λp xs → map post (f (p ◦ post) (map pre xs)),
from which the conjuring lemma plus map id = id rewriting gives us

Should we also have rewritten p ◦id to p? No, not in general! In fact, p ◦id = p is
not valid in the presence of seq , and luckily there is no way to abuse the conjuring
lemma for producing the not generally valid statement map g (f (p ◦ g) xs) =
f p (map g xs). Only after applying the lemma, when we commit to a specific
language setting, we may decide that for us p ◦ id = p indeed holds.

To conclude this example exploration, let us consider the nasty type f ::
(((([α] → Int) → Int) → Int) → α) → α from Sect. 2.4. The choice e = λp →
post (f (λs → pre (p (λt → s (λw → t (λx → w (map pre x))))))) gives us what
we reported there as (2). We also remarked there that the approach presented
here does not give us the various positive corner cases relevant in the presence
of seq . That is not fully true; actually the conjuring lemma gives us those as
well, for example with e = λp → post (f (λs → pre (p (λt → s ⊥)))), which is
a valid input to Lemma 1, and gives us g (f (λs → p (λt → s ⊥))) = f (λs →
g (p (λt → s ⊥))). But in what follows, we want to construct exactly one e for
each type of f , and of course we opt for the supposedly most useful one, not for
corner cases that “just” happen to also be valid. So for said type of f , we want
to, and will, construct the e which gives

(or with left-hand side g (f p) in a world in which eta-reduction is valid).

258 J. Voigtländer

3.3 Constructing e – Discovering Dinaturality

Given some f of polymorphic type, we want to construct an e of closed type. That
seems easy, we could simply use e = 42. But no, of course we want e to use f in
an interesting way. In essence, we want it to “touch” each occurrence of the type
variable α in the type of f . For doing so, e can use pre ::τ1 → α and post ::α → τ2.
Some reflection shows that we should make a difference between positive and
negative occurrences of α, in the standard sense of polarity in function types.
That is, an occurrence of α that is reached by an odd number of left-branching at
function arrows (in the standard right-associative reading of →) is considered a
negative occurrence, others are considered positive occurrences. So, for example,
in the type (α → Bool) → [α] → Maybe α, the first α is positive, the second
one is negative, and the third one is positive. Then, we want to construct e such
that negative occurrences of α are replaced by τ1 and positive ones by τ2.

This is doable by structural recursion on type expressions. Specifically, the
following function monopre,post(σ) builds a term that maps an input of type σ
to an output of a type with the same structure as σ, but made monomorphic
according to the just described rule about negative and positive occurrences of
α. So, for example, monopre,post((α → Bool) → [α] → Maybe α) maps an input
of type (α → Bool) → [α] → Maybe α to an output of type (τ2 → Bool) →
[τ1] → Maybe τ2. We do not prove the general behaviour, but it should be easy
to see that monopre,post(σ) does what we claim. The defining equations we give
should also be suggestive of what would have to be done if new datatypes (other
than lists and Maybe) are introduced.

Note the switching of pre and post in moving from σ1 → σ2 to σ1. Of course,
in that last defining equation, the h must be a sufficiently fresh variable (also
relative to pre and post).

Given f of polymorphic type ∀α.σ, we will be able to use the term e =
monopre,post(σ) f in Lemma 1. It is useful to notice then that (omitting explicit
type instantiation and substitution):

– monopre,post(σ)[id/pre, g/post] = monoid,g(σ)
– monopre,post(σ)[g/pre, id/post] = monog,id(σ)

So our overall procedure now is to generate free theorems as follows:

monoid,g(σ) f = monog,id(σ) f

Free Theorems Simply, via Dinaturality 259

Category theory aficionados will recognise the concept of dinaturality here! For
a sketch of the precise connection, see Sect. 5.

Here, let us try out the above for the example f :: (α → Bool) → [α] →
Maybe α. We get:

So the free theorem we get from this by instantiation is:

There are ample opportunities for further simplification here, but let us try to
be systematic about this.

3.4 Simplifying Obtained Statements

The terms generated by monopre,post(σ) contain a lot of function compositions,
both outside and inside of map- and fmap-calls. Moreover, many of the partners
in those compositions will be id , either up front because of the cases with σ a
base type, or later when pre or post is replaced by id (and the other by g). So our
primary strategy for simplification is to inline all the compositions, and while
doing so eliminate all id -calls. Additionally, all lambda-abstractions introduced
by the monopre,post(σ1 → σ2) case will be provided with an argument and then
beta-reduced. There is no danger of term duplication here since the lambda-
bound h is used only linearly in the right-hand side.

These considerations lead to the following syntactic simplification rules, to be
applied to terms produced as monoid,g(σ) f or monog,id(σ) f . As usual, where
lambda-bound variables are introduced, they are assumed to be sufficiently fresh.

260 J. Voigtländer

The last line is a catch-all case that is only used if none of the others apply. In
the case where the simplification function �· is applied to a term of the form
(λh → body) t , note that we are indeed entitled to eta-expand the beta-reduced
version body [t/h] into λv → body [t/h] v (in order to subsequently apply �·
recursively). Said eta-expansion is type correct as well as semantically correct,
since by analysing the monopre,post(σ) function, which is the producer of the
subexpression (λh → body), we know that body , and hence also body [t/h], is
a term formed by function composition, and since f ◦ g = λv → (f ◦ g) v
is a valid equivalence even in language settings in which eta-reduction is not
valid (and in which thus f = λv → f v would not be in general okay). The
eta-expansions on the function arguments of map- and fmap-calls (again done
to enable further simplification on f v) are also justified, since map and fmap
use their function arguments only in specific, known ways: map f t is indeed
semantically equivalent to map (λv → f v) t , since map does not use seq . These
considerations should convince us that �· transforms a term into a semantically
equivalent one, hence is correct. But is it also exhaustive, or can we accidentally
skip transforming (and thus, simplifying) some part of the term produced by
monopre,post(σ)? The best argument that we cannot, actually comes from the
Haskell implementation given in the appendix, and will be discussed in Sect. 4.

Let us be a bit more concrete again, and consider an example. In the previous
subsection, we generated monopre,post(σ) for σ = (α → Bool) → [α] → Maybe α.
Let us now calculate �monoid,g(σ) f from this (of course, �monog,id(σ) f would
be very similar). See Fig. 1. The result is not yet fully satisfactory. For one thing,
�map id v2 was “simplified” to map (λv4 → v4) v2. Of course, we would prefer
it to be simplified to just v2. This is easy to achieve by adding simplification
rules like �map id t = t . In fact, our implementation does something more
general, namely replacing the original first simplification rule �id t = t by
the following one: �f t = t whenever f can be syntactically generated by the
grammar Id = id | map Id | fmap Id | Id ◦ Id.

�(λh1 (λh2 fmap g ◦ h2 ◦ map id) ◦ h1 ◦ (λh3 id ◦ h3 ◦ g)) f �
= λv1 ((λh2 fmap g ◦ h2 ◦ map id) ◦ f ◦ (λh3 id ◦ h3 ◦ g)) v1�
= λv1 (λh2 fmap g ◦ h2 ◦ map id) �f �(λh3 id ◦ h3 ◦ g) v1���
= λv1 v2 (fmap g ◦ �f �(λh3 id ◦ h3 ◦ g) v1�� ◦ map id) v2�
= λv1 v2

�
�

�
�fmap g ��f �(λh3 id ◦ h3 ◦ g) v1�� �map id v2���

= λv1 v2 fmap (λv3 �g v3�) �f �(λh3 id ◦ h3 ◦ g) v1� (map (λv4 �id v4�) v2)�
= λv1 v2 fmap (λv3 g v3) (f �(λh3 id ◦ h3 ◦ g) v1� (map (λv4 v4) v2))
= λv1 v2 fmap (λv3 g v3) (f (λv5 �(id ◦ v1 ◦ g) v5�) (map (λv4 v4) v2))
= λv1 v2 fmap (λv3 g v3) (f (λv5 �id �v1 �g v5���) (map (λv4 v4) v2))
= λv1 v2 fmap (λv3 g v3) (f (λv5 v1 (g v5)) (map (λv4 v4) v2))

Fig. 1. An example calculation, for �monoid,g((α → Bool) → [α] → Maybe α) f �

Free Theorems Simply, via Dinaturality 261

Another issue is the unsatisfactory “simplification” of fmap g to fmap (λv3 →
g v3) in Fig. 1. To prevent it, but still keep the general rule �map f t =
map (λv → �f v) t in which the recursive descent can be important (say,
if f is not just a function variable), we add the following simplification rule,
which applies right after the one about generalised identities introduced above:
�f t = f t whenever f can be syntactically generated by the grammar
Simple = v | map Simple | fmap Simple (where v means any variable, includ-
ing the g from monoid,g(σ), say). As a result, the calculation in Fig. 1 would
now yield the simplified term λv1 v2 → fmap g (f (λv3 → v1 (g v3)) v2).

In summary, we generate the free theorem for a function f of polymorphic
type σ as �monoid,g(σ) f = �monog,id(σ) f , additionally using the simplifica-
tion rules introduced and elaborated above. There might still be eta-reducible
expressions left in the produced terms. But those are not necessarily safe to
reduce in the presence of seq , so are left to a separate post-processing.

3.5 About What Generality Is Lost

There is one issue open from (the end of) Sect. 2.4, where we promised to explain
for what types the presented approach will not give an as general result as the
existing generators, since it is impossible to express the general free theorem for
those types as an equation without preconditions. The criterion again depends on
the notion of polarity in function types. We believe it is an exact characterisation,
but have no proof to show for it.

Let us annotate all parts of a type expression, not just the type variables,
with their polarity. So, for example, the type (α → α) → α → α becomes
(α+ → α−)− → (α− → α+)+, the type (α → Bool) → [α] → Maybe α becomes
(α+ → Bool−)− → ([α−]− → (Maybe α+)+)+, and the type (α → Bool) →
(Bool → α) → [α] → α becomes (α+ → Bool−)− → ((Bool+ → α−)− →
([α−]− → α+)+)+. The types for which stating a simple equation is not the
most general free theorem are those which contain a negative subexpression in
which both a positive and a negative α appear. For example, this is the case for
(α+ → α−)− → (α− → α+)+, but not for the other two types considered above.

4 Implementation

Figures 2, 3 and 4 in the appendix give the Haskell code for deriving free the-
orems using the presented approach, minus the code for lexing, parsing, and
pretty-printing. The actual generation work happens in Fig. 2: mono implements
monopre,post(σ), apply implements �f t. An eta-reducer is implemented in Fig. 3.
To encode lambda-terms (and substitution), we use higher-order abstract syntax,
and normalisation by evaluation principles come into play as well.

The generator code is available online [4], and can be installed using standard
Haskell package management tools. To see the generator in action, see Fig. 5 in
the appendix.

262 J. Voigtländer

From Sect. 3.4 we still owe an argument that �· is exhaustive, i.e., that we
cannot accidentally skip transforming (and thus, simplifying) some part of the
term produced by mono. So, consider the following. In the implementation, �·
(named apply there) does not take one argument term, but instead two, and they
are differently typed. Specifically, there is one syntax type for terms generated
by mono and another syntax type for final output terms. The type of �· is
such that it always takes an f in the former syntax and a t in the latter syntax,
in the form �f t. The type of mono guarantees that it indeed generates f
in the former syntax type (in essence, hence, this syntax type characterises a
subclass of lambda-terms in which all terms possibly generated by mono live).
Since it is easy to see by inspection of the implementation that �· does an
exhaustive case distinction on all possible forms of its first argument (it handles
all constructor cases of its syntax type), and since �·’s output type is the one of
final output terms, not of mono-generated terms, we know that no parts of the
monopre,post(σ)-term survive untouched. In particular, the syntax and function
types in the implementation also tell us that the catch-all case �f t = f t will
not have to deal with any f that still contains mono-material. Instead, we know
that if the catch-all case is reached, f is a variable or an already simplified final
output term (which could have come into place via the substitution in an earlier
recursive call �body [t/h] v).

5 The Precise Connection to Dinaturality

A dinatural transformation, between two bifunctors F and G of the same mixed
contravariant/covariant kind over the same source category, is an indexed collec-
tion of arrows φX of types G (X,X) → F (X,X) such that for every g : B → A
the following diagram commutes:

G (B,B) F (B,B)

G (A,B) F (B,A)

G (A,A) F (A,A)

φB

F (idB ,g)G (g,idB)

G (idA,g)

φA

F (g,idA)

One possible instantiation is to let all categories involved be Set, let G be the
constant functor to the final object 1, and let each φX be the lifted constant
fX : F (X,X), for a given indexed collection fX . By this, the above diagram
specialises to the following one:

Free Theorems Simply, via Dinaturality 263

1 F (B,B)

1 F (B,A)

1 F (A,A)

fB

F (idB ,g)id1

id1

fA

F (g,idA)

Consequently, we have

F (idB , g) fB = F (g, idA) fA

if fX is (polymorphically) typed F (X,X) for a bifunctor F of appropriate kind.
Using the Hom bifunctor, we can indeed turn type schemes σ into such bifunctors,
as follows:

Fα (X,Y) = Y
FBool (X,Y) = Bool
FInt (X,Y) = Int
F[σ] (X,Y) = [Fσ (X,Y)]
F(Maybe σ) (X,Y) = Maybe (Fσ (X,Y))
Fσ1→σ2 (X,Y) = Hom(Fσ1 (Y,X),Fσ2 (X,Y))

So now we have that if f :: ∀α.σ, then

Fσ (idB , g) fB = Fσ (g, idA) fA

for the bifunctor arising from the recursive definition above. Taking into account
that the action of Hom on arrows is that Hom(f, g) is the function h �→ g ◦h ◦ f ,
this is exactly the statement

monoid,g(σ) f = monog,id(σ) f

which was used earlier, since one can then show that the relevant definitions are
related by, on the arrow level, Fσ (pre, post) = monopre,post(σ).

Acknowledgements. Many of the ideas here, most notably the conjuring lemma
(including that name), but also the criterion proposed in Sect. 3.5, originated during
past collaboration with Stefan Mehner.

264 J. Voigtländer

A Implementation

See Sect. 4 for some explanation of the implementation.

module Generate (mono, apply) where

import Syntax (Type (. .), Func (. .), Term (. .))
mono :: Type Func v Func v Func v
mono Alpha pre post = post
mono Bool pre post = Id
mono Int pre post = Id
mono (List t) pre post = Map "map" (mono t pre post)
mono (Maybe t) pre post = Map "fmap" (mono t pre post)
mono (s ‘To‘ t) pre post = Lambda (λh mono t pre post

‘Comp‘
Embed h
‘Comp‘
mono s post pre)

apply :: Func (Term v) Term v Term v
f ‘apply ‘ t | isId f = t
f ‘apply ‘ t | Just f ′ isSimple f = f ′ ‘Apply‘ t
Map name f ‘apply ‘ t = Const name ‘Apply‘ Lambda′ (λv f ‘apply ‘ (Var v)) ‘Apply‘ t
Lambda f ‘apply ‘ t = Lambda′ (λv f t ‘apply ‘ (Var v))
(f ‘Comp‘ g) ‘apply ‘ t = f ‘apply ‘ (g ‘apply ‘ t)
Embed f ‘apply ‘ t = f ‘Apply‘ t
isId :: Func v Bool
isId Id = True
isId (Map f) = isId f
isId (f ‘Comp‘ g) = isId f && isId g
isId = False

isSimple :: Func (Term v) Maybe (Term v)
isSimple (Embed f@(Var)) = Just f
isSimple (Map name f) | Just f ′ isSimple f = Just (Const name ‘Apply‘ f ′)
isSimple = Nothing

Fig. 2. Module Generate, generation and simplification of free theorems

Free Theorems Simply, via Dinaturality 265

module Syntax (Type (. .), Func (. .), Term (. .), etaReduce) where

import Control.Monad.State

data Type = Alpha | Bool | Int | List Type | Maybe Type | Type ‘To‘ Type

data Func v = Id | Map String (Func v) | Lambda (v Func v) | Func v ‘Comp‘ Func v
| Embed v

data Term v = Const String | Var v | Term v ‘Apply‘ Term v | Lambda′ (v Term v)
etaReduce :: Term String Term String
etaReduce t = evalState (go t) [’*’ : show n | n [1 . .]]

where go t@(Const) = return t
go t@(Var) = return t
go (f ‘Apply‘ t) = liftM2 Apply (go f) (go t)
go (Lambda′ f) = do vars get

let v = head vars
vs = tail vars

put vs
body go (f v)
case body of

t ‘Apply‘ Var v ′ | not (freeVar v t) && v ′ == v
return t

return (Lambda′ (λv evalState (go (f v)) vs))

freeVar (Const) = False
freeVar v (Var v ′) = v ′ == v
freeVar v (f ‘Apply‘ t) = freeVar v f || freeVar v t
freeVar v (Lambda′ f) = freeVar v (f "")

Fig. 3. Module Syntax, datatypes for types and different forms of (higher-order abstract
syntax) terms, and eta-reduction

266 J. Voigtländer

module Main (main) where

import Syntax (Type (. .), Func (. .), Term (. .), etaReduce)
import Parser (parse)
import Generate (mono, apply)
import Show ()
import System.IO

sigma :: Type
sigma = (Alpha ‘To‘ Bool) ‘To‘ ((Bool ‘To‘ Alpha) ‘To‘ (List Alpha ‘To‘ Alpha))
main :: IO ()
main = do

hSetBuffering stdout NoBuffering
putStr $ "function type (or Enter for default): "

sigma getLine >>= λs return $ if s == "" then sigma else parse s
putStrLn ""

putStrLn $ "f :: "++ show sigma
putStrLn $ replicate 66 ’-’

putStrLn $ "e = "++ show (mono sigma (Embed "pre") (Embed "post")) ++ " f"

putStrLn $ replicate 66 ’-’

let lhs = mono sigma Id (Embed (Var "g")) ‘apply ‘ Const "f"
rhs = mono sigma (Embed (Var "g")) Id ‘apply ‘ Const "f"

putStrLn $ "free theorem:"

putStrLn $ " "++ show lhs
. . .

Fig. 4. Module Main, putting the generator together with input and output

*Main> main

function type (or Enter for default):

f :: (alpha -> Bool) -> (Bool -> alpha) -> [alpha] -> alpha

--

e = (\h1 -> (\h2 -> (\h3 -> post . h3 . map pre)

. h2 . (\h4 -> pre . h4 . id))

. h1 . (\h5 -> id . h5 . post)) f

--

free theorem:

\x1 x2 x3 -> g (f (\x4 -> x1 (g x4)) (\x5 -> x2 x5) x3)

=

\x1 x2 x3 -> f (\x4 -> x1 x4) (\x5 -> g (x2 x5)) (map g x3)

--

free theorem, eta-reduced:

\x1 x2 x3 -> g (f (\x4 -> x1 (g x4)) x2 x3)

=

\x1 x2 x3 -> f x1 (\x4 -> g (x2 x4)) (map g x3)

Fig. 5. An example session

Free Theorems Simply, via Dinaturality 267

References

1. http://hackage.haskell.org/package/free-theorems. Accessed Sept 2019
2. http://free-theorems.nomeata.de. Accessed Sept 2019
3. http://hackage.haskell.org/package/lambdabot-haskell-plugins. Accessed Sept

2019
4. http://hackage.haskell.org/package/ft-generator. Accessed Sept 2019
5. Bainbridge, E., Freyd, P., Scedrov, A., Scott, P.: Functorial polymorphism. Theor.

Comput. Sci. 70(1), 35–64 (1990)
6. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed

lambda-calculus. In: Logic in Computer Science, Proceedings, pp. 203–211. IEEE
Press (1991)

7. Gill, A., Launchbury, J., Peyton Jones, S.: A short cut to deforestation. In: Func-
tional Programming Languages and Computer Architecture, Proceedings, pp. 223–
232. ACM Press (1993)

8. Hackett, J., Hutton, G.: Programs for cheap! In: Logic in Computer Science, Pro-
ceedings, pp. 115–126. IEEE Press (2015)

9. Johann, P., Voigtländer, J.: Free theorems in the presence of seq. In: Principles of
Programming Languages, Proceedings, pp. 99–110. ACM Press (2004)

10. Mehner, S., Seidel, D., Straßburger, L., Voigtländer, J.: Parametricity and proving
free theorems for functional-logic languages. In: Principles and Practice of Declar-
ative Programming, Proceedings, pp. 19–30. ACM Press (2014)

11. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Programming Language
Design and Implementation, Proceedings, pp. 199–208. ACM Press (1988)

12. Reynolds, J.: Types, abstraction and parametric polymorphism. In: Information
Processing, Proceedings, pp. 513–523. Elsevier (1983)

13. Stenger, F., Voigtländer, J.: Parametricity for Haskell with imprecise error seman-
tics. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 294–308. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02273-9 22

14. Wadler, P.: Theorems for free! In: Functional Programming Languages and Com-
puter Architecture, Proceedings, pp. 347–359. ACM Press (1989)

http://hackage.haskell.org/package/free-theorems
http://free-theorems.nomeata.de
http://hackage.haskell.org/package/lambdabot-haskell-plugins
http://hackage.haskell.org/package/ft-generator
https://doi.org/10.1007/978-3-642-02273-9_22

Improving the Performance of the Paisley
Pattern-Matching EDSL by Staged

Combinatorial Compilation

Baltasar Trancón y Widemann(B) and Markus Lepper

semantics GmbH, Berlin, Germany
baltasar@trancon.de

https://bandm.eu/

Abstract. Paisley is a declarative lightweight embedded domain-specific
language for expressive, non-deterministic, non-invasive pattern match-
ing on arbitrary data structures in Java applications. As such, it comes
as a pure Java library of pattern-matching combinators and correspond-
ing programming idioms. While the combinators support a basic form of
self-optimization based on heuristic metadata, overall performance is lim-
ited by the distributed and compositional implementation that impedes
non-local code optimization. In this paper, we describe a technique for
improving the performance of Paisley transparently, without compro-
mising the flexible and extensible combinatorial design. By means of
distributed bytecode generation, dynamic class loading and just-in-time
compilation of patterns, the run-time overhead of the combinatorial app-
roach can be reduced significantly, without requiring any technology
other than a standard Java virtual machine and our LLJava bytecode
framework. We evaluate the impact by comparison to earlier benchmark-
ing results on interpreted Paisley. The key ideas of our compilation tech-
nique are fairly general, and apply in principle to any kind of combinator
language running on any jit-compiling host.

Keywords: Pattern matching · Embedded domain-specific language ·
Staged compilation

1 Introduction

In declarative programming languages with algebraic datatypes, constructing
and querying structured data are symmetric tasks, handled by languages features
of equal expressiveness, the latter namely by pattern matching. Semantics are
given by a clean, reversible algebraic interpretation.

In object-oriented languages, by contrast, the query side is markedly deficient
in expressiveness [4,12]. This is due partly to shortcomings in language design,
partly to the doctrine of data abstraction which is generally incompatible with
algebraic semantics.

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 268–285, 2020.
https://doi.org/10.1007/978-3-030-46714-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-46714-2_17

Paisley Compilation 269

Paisley [11] is a solution for this dialectic problem. It is a lightweight embed-
ded domain-specific language (EDSL) that raises the pattern-matching expres-
siveness of the host language Java considerably, without breaking either the
imperative control flow or the abstraction of object-oriented data models.

The present paper summarizes the design of Paisley in Sect. 1. Its main con-
tribution is the description and evaluation of a novel compilation technique,
presented in Sects. 2 and 3, respectively.

1.1 Basic Design and Usage of Paisley

The lightweight implementation of the Paisley EDSL is a pure Java library that
runs on a vanilla Java platform requiring neither compiler nor runtime exten-
sions, and that reifies pattern matching primitives by a collection of Java classes.
Constructor terms for objects of these classes form a declarative language, but
since they denote plain Java objects and thus first-class citizens, patterns may
also be configured algorithmically by meta-programming in the host system.

In the following presentation, all code samples are in Java 8, which we assume
the reader is basically familiar with. We shall take the liberty to add a keyword
partial for partial type definition fragments that add up throughout a collection
of sources, borrowed from C#, in order to focus on distinct aspects of the APIs
according to the flow of discussion.

The Paisley design aims at representing the imperative object-oriented view
on Java data objects faithfully. Thus it is concerned with the full spectrum of
operational semantics of data query operations, of which the implementation of
algebraic semantics is merely a particularly well-behaved special case. The basic
API is deceptively simple:

partial abstract class Pattern〈A〉 {
public boolean match(A target);
public boolean matchAgain();

}
A pattern is an object that can be attempted to match against some value
target of the parameter type A, and will indicate success by its boolean return
value. All additional information, such as extracted pieces of data, needs to be
communicated via side effects.

Patterns are potentially non-deterministic; additional matches beyond the
successful first, each with their own observable side effects, can be obtained
by iterating matchAgain until it fails. Note that patterns are required to store
the information needed for backtracking as private mutable state, thus they are
reusable sequentially but not concurrently.

The event of a successful match, together with the collection of all observable
side effects, is called a solution. The sequence of all solutions is the primary
behavioral semantics of a pattern.

270 B. Trancón y Widemann and M. Lepper

Fig. 1. Basic usage template for Paisley patterns

The single most important pattern class is the Variable, which can be bound
to data obtained from the target. A variable pattern simply matches any target
deterministically, and records it as a side effect:1

partial class Variable〈A〉 extends Pattern〈A〉 {
A value;

public boolean match(A target) { value = target; return true; }
public boolean matchAgain() { return false; }

}
The power of these variables comes from the ability to be nested inside

complex patterns, and hence record selected parts of the overall target data,
under controlled conditions. Note that variable binding is by ordinary imper-
ative assignment; there are no declarative concepts such as single assignment
(which would prevent transparent sequential reuse) or unification (which is ill-
defined for arbitrary non-algebraic data APIs).

The basic usage template consists of four steps: (1) allocate pattern variables
to hold results; (2) construct a complex pattern over the variables; (3) attempt
one or more matches; (4) on success, proceed using the result values; see Fig. 1.

Here createPattern is problem-specific producer code that may build on oper-
ations from the Paisley library, doSomething is arbitrary consumer code that does
not need to know about patterns, and the greyed-out part is optional for the case
of exhaustive search of matches for non-deterministic patterns. Note that the API
is statically type-safe for both targets and results, and backtracking is subject to
explicit imperative control flow, including the user-defined conditionwantingMore.

1.2 Summary of Features

This section gives a brief overview of the features of the Paisley core library. It
is not intended as a detailed or complete introduction, but rather to convey an
intuition about the operational principles and recurring idioms, as well as the
scope of the task of developing a compiler for the Paisley language.
1 This is the only solution-relevant side effect discussed in this paper, but others could

be implemented by user-defined combinators.

Paisley Compilation 271

Paisley is a combinatorial language in the sense of Schönfinkel and Curry.
Each primitive is either a full-fledged pattern that can be used on its own, or
an operator that builds new patterns from one or more existing ones. The core
library can be extended as needed by giving new implementations (subclasses)
of the existing APIs.

Logic. The most basic Paisley combinators are both and either, which implement
the logical conjunction and disjunction of patterns, respectively.

The pattern both(p, q) produces all solutions of q for each successive solution
of p in order, both applied to the same target. Since q may observe the variable
bindings established by the successful match for p, the solution semantics of
the combinator is a dependent sum rather than just a Cartesian product of the
individual semantics.

The pattern either(p, q) produces all solutions of p followed by all solutions
of q, both applied to the same target. This is the most straightforward way
to introduce non-determinism. Since q is only invoked after solutions for p are
exhausted, the latter can not observe the former, and the solutions semantics of
the combinator is just the concatenation of the individual semantics. Note that
a variable can only be considered bound in each solution of —either(p, q)— if
it is bound by both p and q.

Projections. Any data access operation that can be reified as an instance f of
the Java standard interface Function〈A, B〉, such as a getter for a field of type B
from objects of class A, contravariantly induces a transform from Pattern〈B〉 p
to Pattern〈A〉 transform(f, p) — namely, transform(f, p).match(a) should behave
equivalently to p.match(f.apply(a)). This allows patterns operating on parts of a
data structure to be lifted to patterns operating on the whole, by transforming
them with the appropriate access operation.

Tests. Any data access operation that can be reified as an instance t of the Java
standard interface Predicate〈A〉, such as a boolean-valued getter or an instanceof
test, induces Pattern〈A〉 guard(t) — namely, guard(t).match(a) should behave
equivalently to t.test(a). Thus, the pattern matches a target deterministically
and without extra side effects, if and only if the underlying predicate is satisfied.

Encapsulated Search. An important usage of non-deterministic computations
embedded in a conventional deterministic program is encapsulated search: locally
enumerating all solutions of a non-deterministic subproblem, without leaking
backtracking control flow to the consumer. Paisley provides convenience oper-
ations for encapsulating the ubiquitous special case of patterns with a single
variable. An expression of the form v.bindings(p, a) enumerates the values of
variable v for all solutions of p.match(a). Both eager and lazy evaluation are
supported:

partial class Variable〈A〉 {
public 〈B〉 List〈A〉 eagerBindings(Pattern〈B〉 pattern, B target);
public 〈B〉 Iterable〈A〉 lazyBindings (Pattern〈B〉 pattern, B target);

}

272 B. Trancón y Widemann and M. Lepper

Fig. 2. Relational programming on numbers

Pattern Algebra. For meta-programming with patterns, it would be desirable to
be able to substitute a Variable〈B〉 v occurring in a Pattern〈A〉 p with another
Pattern〈B〉 q. Since patterns are specified by an abstract API and in general have
no discernible term structure, this is not straightforward. If v is definitely bound
in p however, we can have the next best thing: an external data-flow composi-
tion v.bind(p, q) — namely v.bind(p, q).match(a) should behave equivalently to
b → q.match(b) iterated disjunctively over the elements of v.lazyBindings(p, a).
Note that lazy evaluation ensures that computations from p and q are interleaved
in the expected order [6].

Substitution in turn is good enough to define a lambda operator for pattern
function abstraction. Considering functions on patterns (motifs) as first-class
citizens raises the level of abstraction considerably:

partial interface Motif〈A, B〉 extends Function〈Pattern〈A〉, Pattern〈B〉〉 { }
partial class Variable〈A〉 {
public 〈B〉 Motif〈A, B〉 lambda(Pattern〈B〉 body);

}
Besides the basic composition operations for point-free construction, such as

point-wise lifted transform() and guard()), motifs also provide Kleene star() and
plus() operators for full-fledged relational programming [14]. These operations
implement unbounded iteration of a pattern transparently by lazy cloning, and
thus increase the expressive power of Paisley considerably. See Fig. 2 for a concise
example. 2

Standard Data Bindings. The API design of Paisley is modular and open, such
that pattern primitives that bind to actual data APIs can be added as needed.
For convenience, the core library comes with predefined bindings for some of the
most common Java datatypes: objects (equality, type checks); numbers (compar-
ison, arithmetic); strings (substrings, regular expressions); collections and arrays
(shape checks, element iteration); XML (DOM trees, XPath relations).

1.3 Bottom-Up Optimization

A major downside of highly generic and reusable combinators is that, without
a specialization framework, their implementation is quite hard to optimize. By
2 The javap disassembly of the compiled bytecode is given in Sect. 5.

Paisley Compilation 273

the very compositional nature of the combinators, the code that implements the
operational semantics of each is a small fragment, and has hardly any metadata
about its context that could be exploited for optimization.

We shall take a short detour to demonstrate the optimization potential given
by even the most rudimentary bottom-up context information. The remainder
of this paper is then the description of a complementary, technologically more
sophisticated solution that also takes the more powerful top-down metadata flow
into account.

The Paisley API specifies a single item of heuristic metadata, namely a flag
that indicates whether a pattern is statically guaranteed to be deterministic, i.e.,
not to match any single target more than once:

partial class Pattern〈A〉 {
public boolean isDeterministic();

}
This information is exploited by the pattern combinator both(p, q) that imple-
ments the conjunctive sequential combination of patterns p and q (analogous
to the Prolog comma operator (p, q)). If p is not certainly deterministic, then
storage for backtracking (analogous to a frame of the Prolog choice stack) must
be allocated, for restarting q for each solution of p. Otherwise, both the choice-
point storage and the corresponding fragment of a global backtracking algorithm
can be elided. Note that possible non-determinism of q is irrelevant, as it must
be realized further down.

The choice between the generic, backtracking implementation and the opti-
mized, semi-deterministic one is made at pattern construction time, depending
on the value returned by p.isDeterministic(). Figure 3 depicts both implementa-
tions in horizontal synopsis. The subpatterns p/q are stored as left/right, respec-
tively. It is easy to see that the optimized version is significantly superior in
terms of space and time efficiency, and that this optimization is crucially neces-
sary for ensuring that Paisley non-determinism does not impose prohibitive costs
where it is not needed.

2 Compiling Paisley

The basic mode of Paisley pattern execution is by a modular interpreter; each
object in the graph making up a complex pattern encapsulates the code and
the state variables required for a particular step of the overall pattern-matching
algorithm. While elegant and lightweight, this technique has evident limitations
regarding performance.

Fortunately however, combinators have the ideal structure for a well-known
compilation technique, namely partial evaluation. The inputs to each fragment
of implementation are clearly distinguished into two categories of binding time:
Combinator arguments make up the pattern structure, and are bound at pattern
construction time; targets are bound at pattern application time. Thus a pattern
may be specialized after construction, exploiting the information of the former,

274 B. Trancón y Widemann and M. Lepper

Fig. 3. Pattern conjunction, non-deterministic (left) and semi-deterministic (right)

to obtain the code of a residual program that just inputs the latter — that is,
an equivalent monolithic pattern.

Compiling an interpreted language by explicitly controlled partial evaluation
of the interpreter is a ubiquitous and well-proven technique, ultimately haling
back to Futamura’s first projection [5], but more recently known as staging [10].

2.1 Design of the Paisley Compiler

The user perspective on Paisley pattern compilation is an extremely simple API
that subsumes interpreted and compiled patterns transparently, and requires no
configuration or global context:

partial class Pattern〈A〉 {
public Pattern〈A〉 compile();

}
Here p.compile().match(a) should behave equivalently to p.match(a), although
hopefully with less computational overhead, as returns on the resources invested
in compilation. Semantic equivalence implies that p.compile() shares pattern vari-
ables with p, but higher-level combinators may have been fused to a single object,
whose code can be executed without internal dynamic function calls and field
indirections, and thus optimized far more aggressively by the jit compiler.

Paisley Compilation 275

2.2 Implementation of the Paisley Compiler

The Java language and virtual machine (JVM) have no native support for partial
evaluation, and are in general not a suitable candidate either, due to their com-
plex imperative semantics. Thus homoiconic staged meta-programming, where
object and meta code share the same syntax, is not an option. The JVM does,
however, support dynamic extensions of the code base through class loaders.
Given an expressive JVM bytecode synthesis tool, partial evaluation can be
implemented for well-behaved reified languages, in particular declarative light-
weight EDSLs such as Paisley, with reasonable effort.

We have implemented such a tool based on our LLJava [15] framework. LLJava
defines both a low-level JVM programming language and an abstract bytecode
model, and translation tools that can be used as compiler, disassembler and
bytecode manipulation library. Our experimental new tool, LLJava-live provides
a convenient front-end to the LLJava bytecode model, particularly tailored to
the purpose of modular synthesis of code for immediate use. Paisley is its first
completed application.

Generator modules interact with LLJava-live through a CompilationContext
API that serves both as a source of context (such as variable bindings) and
as a sink for code (such as instructions and scoping blocks). Generated code
fragments are organized at the intra-method level by default, and connected
in a data-flow network: The enclosing scope of each fragment denotes m input
and n output variables, which are statically typed and can be realized in byte-
code transparently as fields, parameters, temporary local variables, or arbitrary
access code. For fragments corresponding to methods, m equals the number of
parameters and n equals 1 or 0 for a return value or void, respectively.

For local data flow, the fragment may read the inputs and must write the
outputs and terminate. In the process, local variables may be allocated, and
nested fragments inserted and connected. For non-local data flow, fragments
may allocate and share state variables which are realized as private fields of the
enclosing class.

The virtual instruction set understood by the context comprises both the
operand-stack style (load/store) and the register style (move). Basic block gen-
erators are passed as Runnable callbacks, such that the context can rearrange
them as needed. The code base of the host program can be referred directly via
the standard reification as Class and Method objects. See Fig. 4 for an example
where a (highly contrived) code fragment foo is compiled, including a subfrag-
ment bar.

The overall organization of generated code into methods and the API of
the generated class is handled by an application-specific compiler entry point.
LLJava-live provides a generic service for generating the actual bytecode, loading
the class and instantiating it via reflection.

Compilation API. In order to preserve the modularity of Paisley, the compiler
is distributed over the classes that implement pattern combinators, completely
analogous to the interpreter. Thus, for every method related to interpretation,
we have added a companion method that generates the equivalent code:

276 B. Trancón y Widemann and M. Lepper

Fig. 4. Code fragments (left) and LLJava-live generator (right).

partial class Pattern〈A〉 {
protected void compileMatch (CompilationContext context);
protected void compileMatchAgain(CompilationContext context);

}
Calling the entry point Pattern.compile() generates a new subclass of Pattern

and populates its API methods by invoking each of the companion methods
of the pattern to be compiled with a corresponding context. In the following,
we discuss a few selected issues to be addressed for the effective compilation of
EDSLs in general, and of Paisley in particular.

Variable Capture. As usual in partial evaluation, the program fragments pro-
duced by the construction stage may capture host-language variables of their
context. For primitive types, a constant corresponding to the environment value
can simply be injected into the target class. But capturing references to live
Java objects is another matter. We use a staged version of the same technique
also employed by the Java compiler for variable captures in local classes: The
target class is closure-converted, that is, captured variables are represented as
private final fields, and properly initialized with the environment values when
the class is instantiated for proceeding to the application stage.

Fallback Strategy: Staged Eta Expansion. For incremental upgrading of the Pais-
ley core library to compilation, but also for users who wish to extend the language
but not be bothered with LLJava-live code generation, there is a fallback mech-
anism that allows any combinator without a specific code generator, and its
arguments, to be embedded in a tree that is compiled as a whole. This fallback
is defined as the default implementation of code generation methods, which can
either be overridden specifically or simply inherited.

The technique is essentially a staged variant of eta expansion, or reverse stubs
in virtual machine terminology: by default, any API method of a pattern com-
piles into a call of itself, thus reverting from compiled to interpreted mode. This
entails the capture of a reference to the original pattern. As a special case, pat-
tern variables are always compiled in this way, since their identity is crucial to

Paisley Compilation 277

the external work flow (see Fig. 1), and must not be “optimized” away such that
remote interactions via observable side effects are severed.

Avoiding Code Explosion. Partial evaluation frameworks typically draw their
power from two related top-down heuristics: The first is inlining, where a func-
tion call is replaced by the function body, specialized by substituting the actual
parameter values for the formal ones. The second is “the Trick” [2], where a
fragment of code depending on an unbound variable with few distinct possi-
ble values, is replaced by a case distinction over the variable, with the original
fragment specialized repeatedly by substituting one possible value per branch.

Both involve the duplication of code in environments with more bound vari-
ables than the original place of definition, trading the potential for subsequent
simplification for the danger of combinatorial code explosion. For example in
Fig. 3 (left), consider the double occurrence of the inlinable call to method
right.match(target), and the parameter variable boolean again that is subject
both to inlining globally and to the Trick locally.

Because of the highly self-similar nature of combinator trees, any local dupli-
cation of code can easily lead to exponential growth. In the context of the JVM,
where the bytecode size of a method is tightly limited to 64 kiB, and the resource-
constrained verifier and jit compiler are liable to choke on far less, this becomes
a problem very quickly. Thus duplication of bytecode must be strictly controlled
for the compilation of nestable combinators.

The Paisley compiler has an all-or-nothing policy regarding code duplication:
when the compilation step for any combinator finds that it would call the same
substep more than once, a private auxiliary method is created instead, popu-
lated once and called from every occurrence. The decision whether to inline such
methods (where cheap enough) is left to the jit compiler, which has sophisticated
code-size budgeting heuristics anyway.

2.3 Motif Compilation

Surprisingly, lifting compilation to the function level, that is from patterns to
motifs, requires hardly any effort. An obvious näıve solution would be to compile
any motif point-wise:

partial interface Motif〈A, B〉 {
public default Motif〈A, B〉 compile() {
return p → this.apply(p).compile();

}
}

But this would redundantly create a new class for every application of a motif.
Fortunately, we can do much better by reducing the general task to a clever
treatment of lambda abstractions, v.lambda(p), that escapes the modular code
generation scheme in a substantial but transparent way.

Assuming that v actually occurs in p, the compilation of p will include the
staged eta expansion of v. Hence v will occur in the environment of the com-
piled closure. All we need to do is to defer the actual constructor call for the

278 B. Trancón y Widemann and M. Lepper

closure, and return a motif that calls the constructor when applied, substituting
its argument for p in the environment. In short, v.lambda(p).compile().apply(q)
should behave equivalently to p.compile(), except that the latter’s environment
reference to v is rerouted to q.

No other motif combinator needs to be implemented manually. Any complex
motif m can be compiled monolithically by instead compiling its eta expansion,
m.etaExpand().compile(), where the above procedure can be applied to the body.

partial interface Motif〈A, B〉 {
public default Motif〈A, B〉 etaExpand() {
Variable〈A〉 x = new Variable〈〉();
return x.lambda(this.apply(x));

}
}

The only catch is that the variable x is naturally considered deterministic in the
construction-time analysis of p, as discussed above. Thus for non-deterministic
patterns q backtracking glue code needs to be inserted. The implementation of
compile() for eta-expanded motifs deals with this transparently.

3 Evaluation

We evaluate the performance of the Paisley compiler and its results by reiterating
previously published benchmarks of (interpreted) Paisley applications.3

3.1 Cryptarithmetic Puzzles

In [13] we demonstrated the use of Paisley for embedded logic programming
by considering cryptarithmetic puzzles. Given a natural number b, an injective
mapping of letters to values in {0, . . . , b−1} induces a b-adic notation of natural
numbers disguised as words. A puzzle is a sum equation of n words, and the
solutions are the mappings that satisfy the equation. The classic example is
SEND + MORE = MONEY , with b = 10 and n = 2, which has the unique
solution O = 0, M = 1, Y = 2, E = 5, N = 6, D = 7, R = 8, and S = 9 [3].

Our approach to solving cryptarithmetic puzzles with Paisley is based on one
pattern variable for each letter, and the set of possible digits as the target object.
Various generic non-deterministic combinators from the Paisley library span the
search tree, and a few problem-specific constraint patterns prune it. (Constraint
patterns do not examine the target object, but the bindings of variables, exploit-
ing the dependent nature of the both combinator.)

In [13] we considered three increasingly sophisticated search-plan construc-
tion algorithms for arbitrary cryptarithmetic puzzles:

3 All results reported here have been obtained on the same test equipment, namely a
Core i7-5600U @ 2.60 GHz CPU with 16GiB of RAM, running CentOS Linux 7 and
OpenJDK 8u202.

Paisley Compilation 279

Table 1. Solving the SEND+MORE=MONEY puzzle with Paisley patterns.

Strategy Run Time Speedup Compilation

interp. compiled time bytes flds mths

näıve 4 029 ms 3 530 ms 1.14 17.8 ms 8 339 35 29

injective 636ms 279ms 2.28 23.4 ms 21 932 91 85

modular 1 719µs 813µs 2.11 23.5 ms 23 892 99 93

1. A näıve generate-and-test strategy that exhausts the Cartesian space of vari-
able bindings by brute force, and checks the injectivity and arithmetic con-
straints for each at the very end.

2. A strategy that exploits injectivity by inserting pair-wise inequality con-
straints for bound variables as early as possible.

3. A strategy that additionally exploits modular arithmetic by binding variables
in right-to-left order of occurrence, inserting approximative checks for the
sum modulo bk, for increasing k, as early as possible.

We have re-run the cryptarithmetic puzzle solver application, using out-
of-the-box compilation support for all generic combinators of the Paisley core
library, but strictly no additional problem-specific generator code. Table 1 sum-
marizes our benchmarking results. For each strategy the following data are given:

– run times of the original pattern and its compiled variant, and their ratio;
– times for compilation, including bytecode generation, class loading and veri-

fication and object initialization;
– size of generated class, measured in overall bytes, number of state fields and

matching-related methods (match, matchAgain and their auxiliaries).

All reported times are wall-clock times, each obtained with the precision of
System.nanoTime(), as the median of a specific, suitably large number of itera-
tions to allow for jit-compiler warm-up. See Sect. 4 for further discussion.

3.2 Document Object Model Navigation with XPath

XPath [1] is a declarative non-deterministic domain-specific language for naviga-
tion in XML document trees, suitable for embedding in various more high-level
XML technologies such as XQuery and XSLT. In [14], we demonstrated how a
straightforward translation of XPath 1.0 abstract syntax to Paisley motifs yields
a lightweight lazy XPath execution engine, which is not only highly educational,
but even in interpreted form competes well against the heavyweight XML tools
shipped with the Java platform. As benchmarks, we used a selection of test cases
from the XMark [9] suite, see Table 2.

We have re-run the tests, using compilation support for all generic combina-
tors of the Paisley core library, as well as for bindings to the standard Java XML
DOM. Table 2 summarizes our benchmarking results. For each test the following
data are given:

280 B. Trancón y Widemann and M. Lepper

Table 2. Executing XPath queries from the XMark suite with Paisley patterns.

Test XPath Expression

Q00 //node()

Q01 /site/open auctions/open auction/bidder[1]/increase/text()

Q06 //site/regions//item

Q15 /site/closed auctions/closed auction/annotation/description/

parlist/listitem/parlist/listitem/text/emph/keyword/text()

Q16 /site/closed auctions/closed auction[annotation/description/

parlist/listitem/parlist/listitem/text/emph/keyword/text()]

Test Run Time Overhead Solutions

interp. comp. baseline interp. comp. speedup

Q00 99.56 ms 64.05 ms 13.71 ms 6.26 3.67 1.71 1 877 979

Q01 11.16 ms 6.78 ms 5.44 ms 1.05 0.25 4.27 4 310

Q06 162.85 ms 84.52 ms 62.11 ms 1.62 0.36 4.50 8 700

Q15 7.13 ms 4.07 ms 3.62 ms 0.97 0.12 7.80 68

Q16 9.43 ms 4.55 ms 3.92 ms 1.41 0.16 8.75 59

– run times of the original motif and its compiled variant;
– the baseline run time of a hand-coded eager traversal algorithm that efficiently

implements that particular XPath expression;
– the relative overhead of the interpreted and compiled Paisley variants over

the baseline, and their ratio;
– the number of solutions

. . . in a fixed pseudo-random input document, generated by a tool supplied by
the authors of XMark.4

All reported times are obtained as above. The results show that the generic
Paisley implementation of XPath expressions approximates the performance of
specific one-off Java implementations gracefully.

The overhead is noticeable in case Q00, where a trivial query literally matches
all nodes, and thus yields a huge number of solutions. Here the cost of lazy
backtracking, as opposed to eager traversal, has an impact that can not be com-
pensated fully by our compilation technique. On the upside, the lazy search can
be suspended arbitrarily after each solution, at no additional cost. For the other
cases, where significant amounts of traversal take place between solutions, the
Paisley overhead is moderate. Furthermore it can be improved to near insignifi-
cance by compilation, such that the costs of actually calling into the target data
API completely dominate.

4 The official XMark home page is no longer online, but can be retrieved from https://
web.archive.org/web/20070810005114/http://www.xml-benchmark.org/.

https://web.archive.org/web/20070810005114/http://www.xml-benchmark.org/
https://web.archive.org/web/20070810005114/http://www.xml-benchmark.org/

Paisley Compilation 281

4 Conclusion

We have demonstrated how staged compilation can improve the performance
of Paisley, a modularly interpreted combinator EDSL par excellence. The com-
piler mirrors the structure of the interpreter and generates bytecode that can
be immediately loaded and eventually jit-compiled by the JVM. Compiled and
interpreted Paisley interface transparently in both directions, and dealing with
compilation is completely optional for user extensions. The approach is generally
suitable also for accelerating any other declarative EDSL.

Benchmarks indicate that the speedup by compilation is significant, even
for legacy applications, and can approximate hand-written data query code. We
foresee that long-running applications with complex internal data models, such
as information systems and document servers, could benefit the most from this
technology. This is because their usage mode fits the assumptions of staged
compilation perfectly: construct early, reuse often.

In a multi-stage pipeline such as the jit-compiled JVM, there is more to con-
sider than just the run time of the compilation step. For pattern compilation
to pay off in the end, the compiled patterns must be (re-)used often enough
for the jit compiler to consider them worthwhile for machine code generation.
Otherwise they are executed compiled at the level of the embedded language
Paisley, but interpreted at the level of the host, in contrast to the original pat-
terns for which the situation is the converse. Thus one-off applications such as
the cryptarithmetic puzzles are purely academic, and for more heterogeneous
realistic applications empirical validation is required.

4.1 Related Work

Many different approaches to pattern matching in Java exist. We have already
compared our approach to the most significant ones, in particular the historically
relevant JMatch [8] in previous papers [12,16]. More modern, quasi-algebraic
solutions, such as adt4j5 or derive4j6, do not properly address object-oriented
data abstraction and non-determinism, the focus of Paisley in general, or com-
pilation, the focus of the present paper in particular.

On the JVM, the Scala language supports non-algebraic pattern matching via
dedicated syntax and the magic method unapply. As a core part of the language
and its compiler, this mechanism is much more tightly integrated than Paisley
can ever hope to be, and naturally compiles both predefined and custom pattern
code. But the comparison is not exactly fair, as Scala patterns are neither non-
deterministic, nor point-free, nor dynamically meta-programmable.

A very recent work [7] on parser generation has inspired us to complete the
work presented here. They also improve the performance of a combinator lan-
guage, often drastically, by intermediate compilation of a construction stage.

5 https://github.com/sviperll/adt4j.
6 https://github.com/derive4j/derive4j.

https://github.com/sviperll/adt4j
https://github.com/derive4j/derive4j

282 B. Trancón y Widemann and M. Lepper

Their approach, like ours, combines the benefits of bottom-up heuristic meta-
data (a variant of LL(1) analysis) with those of top-down code specialization.
However, the MetaOCaml host language framework they use is markedly differ-
ent in nature: On the one hand, it natively supports staged meta-programming,
for which we have had to build a custom tool onto Java’s dynamic bytecode
loading. On the other hand, OCaml does not have the benefit of a jit compiler
that could optimize both combinators and generated code heuristically, which
makes their compilation stage proportionally even more effective.

5 Bytecode Disassembly of Countdown Example

public class Pattern$compiled$1cll1f extends eu.bandm.tools.paisley.Pattern {

private final eu.bandm.tools.paisley.Pattern env$0; // Motif.eagerBindings()

private final java.util.function.Predicate env$1; // lambda (n → n > 0)

private final java.util.function.Function env$2; // lambda (n → n − 1)

private java.lang.Object state$0; // choice stack for Pattern.either()

private boolean state$1; // choice stack for Pattern.either()

private eu.bandm.tools.paisley.Pattern state$2; // lazy clone for Motif.star()

public Pattern$compiled$1cll1f(eu.bandm.tools.paisley.Pattern,
java.util.function.Predicate,
java.util.function.Function);

Code:
0: aload 0
1: invokespecial #20 // Method eu/bandm/tools/paisley/Pattern.”〈init〉”:()V

4: aload 0
5: aload 1
6: putfield #22 // Field env$0:Leu/bandm/tools/paisley/Pattern;

9: aload 0
10: aload 2
11: putfield #24 // Field env$1:Ljava/util/function/Predicate;

14: aload 0
15: aload 3
16: putfield #26 // Field env$2:Ljava/util/function/Function;

19: return

public boolean match(java.lang.Object);
Code:

0: aload 0
1: aload 1
2: putfield #30 // Field state$0:Ljava/lang/Object;

5: aload 0
6: aload 1
7: iconst 0
8: invokespecial #34 // Method aux$0:(Ljava/lang/Object;Z)Z

11: ireturn

Paisley Compilation 283

public boolean matchAgain();
Code:

0: aload 0
1: getfield #38 // Field state$1:Z

4: ifeq 25
7: aload 0
8: getfield #30 // Field state$0:Ljava/lang/Object;

11: astore 2
12: aload 0
13: aload 0
14: getfield #30 // Field state$0:Ljava/lang/Object;

17: iconst 1
18: invokespecial #34 // Method aux$0:(Ljava/lang/Object;Z)Z

21: istore 1
22: goto 33
25: aload 0
26: getfield #53 // Field state$2:Leu/bandm/tools/paisley/Pattern;

29: invokevirtual #62 // Method eu/bandm/tools/paisley/Pattern.matchAgain

// :()Z

32: istore 1
33: iload 1
34: ireturn

private boolean aux$0(java.lang.Object, boolean);
Code:

0: iload 2
1: ifeq 16
4: aload 0
5: iconst 0
6: putfield #38 // Field state$1:Z

9: aload 0
10: getfield #38 // Field state$1:Z

13: goto 32
16: aload 0
17: aload 0
18: getfield #22 // Field env$0:Leu/bandm/tools/paisley/Pattern;

21: aload 1
22: invokevirtual #40 // Method eu/bandm/tools/paisley/Pattern.match

// :(Ljava/lang/Object;)Z

25: putfield #38 // Field state$1:Z

28: aload 0
29: getfield #38 // Field state$1:Z

32: ifeq 40
35: iconst 1
36: istore 3
37: goto 99
40: aload 0
41: aconst null
42: putfield #30 // Field state$0:Ljava/lang/Object;

45: aload 0

284 B. Trancón y Widemann and M. Lepper

46: getfield #24 // Field env$1:Ljava/util/function/Predicate;

49: aload 1
50: invokeinterface #45, 2 // InterfaceMethod java/util/function/Predicate.test

// :(Ljava/lang/Object;)Z

55: ifeq 97
58: aload 0
59: getfield #26 // Field env$2:Ljava/util/function/Function;

62: aload 1
63: invokeinterface #51, 2 // InterfaceMethod java/util/function/Function.apply

// :(Ljava/lang/Object;)Ljava/lang/Object;

68: astore 4
70: aload 0
71: getfield #53 // Field state$2:Leu/bandm/tools/paisley/Pattern;

74: ifnonnull 85
77: aload 0
78: aload 0
79: invokevirtual #57 // Method eu/bandm/tools/paisley/Pattern.clone

// :()Leu/bandm/tools/paisley/Pattern;

82: putfield #53 // Field state$2:Leu/bandm/tools/paisley/Pattern;

85: aload 0
86: getfield #53 // Field state$2:Leu/bandm/tools/paisley/Pattern;

89: aload 4
91: invokevirtual #40 // Method eu/bandm/tools/paisley/Pattern.match

// :(Ljava/lang/Object;)Z

94: goto 98
97: iconst 0
98: istore 3
99: iload 3
100: ireturn

public boolean isDeterministic();
Code:

0: iconst 0
1: ireturn

public eu.bandm.tools.paisley.Pattern compile();
Code:

0: aload 0
1: areturn

}

References

1. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0. W3C. http://
www.w3.org/TR/1999/REC-xpath-19991116/ (1999)

2. Danvy, O., Malmkjær, K., Palsberg, J.: Eta-expansion does the trick. ACM Trans.
Program. Lang. Syst. 18(6), 730–751 (1996). https://doi.org/10.1145/236114.
236119

3. Dudeney, H.E.: Strand Magazine 68, 97–214 (1924)

http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/1999/REC-xpath-19991116/
https://doi.org/10.1145/236114.236119
https://doi.org/10.1145/236114.236119

Paisley Compilation 285

4. Emir, B., Odersky, M., Williams, J.: Matching objects with patterns. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 273–298. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73589-2 14

5. Futamura, Y.: Partial evaluation of computation process– an approach to a
compiler-compiler. High. Order Symb. Comput. 12, 381–391 (1999). https://doi.
org/10.1023/A:1010095604496

6. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107
(1989). https://doi.org/10.1093/comjnl/32.2.98

7. Krishnaswami, N., Yallop, J.: A typed, algebraic approach to parsing. In: Pro-
ceedings 40th PLDI, pp. 379–393. ACM (2019). https://doi.org/10.1145/3314221.
3314625

8. Liu, J., Myers, A.C.: JMatch: iterable abstract pattern matching for Java. In:
Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 110–127. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36388-2 9

9. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark:
a benchmark for XML data management. In: Proceedings 28th VLDB. pp. 974–985.
Morgan Kaufmann (2002). http://www.vldb.org/conf/2002/S30P01.pdf

10. Taha, W., Sheard, T.: Metaml and multi-stage programming with explicit anno-
tations. Theor. Comput. Sci. 248(1), 211–242 (2000). https://doi.org/10.1016/
S0304-3975(00)00053-0

11. Trancón y Widemann, B., Lepper, M.: Paisley: pattern matching à la carte. In:
Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 240–247. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30476-7 16

12. Trancón y Widemann, B., Lepper, M.: Paisley: a pattern matching library for
arbitrary object models. In: Software Engineering 2013, Workshopband. LNI, vol.
215, pp. 171–186. Gesellschaft für Informatik (2013). http://www.se2013.rwth-
aachen.de/downloads/proceedings/SE2013WS.pdf

13. Trancón y Widemann, B., Lepper, M.: Some experiments on light-weight object-
functional-logic programming in Java with paisley. In: Hanus, M., Rocha, R. (eds.)
WLP 2013. LNCS (LNAI), vol. 8439, pp. 218–233. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08909-6 14

14. Trancón y Widemann, B., Lepper, M.: Interpreting xpath by iterative pattern
matching with paisley. In: Proceedings 23rd WFLP. vol. 1335, pp. 108–124. CEUR-
WS.org (2015). http://ceur-ws.org/Vol-1335/wflp2014 paper1.pdf

15. Trancón y Widemann, B., Lepper, M.: Lljava: minimalist structured programming
on the Java virtual machine. In: Proceedings 13th PPPJ. ACM (2016). https://
doi.org/10.1145/2972206.2972218

16. Trancón y Widemann, B., Lepper, M.: A practical study of control in objected-
oriented-functional-logic programming with paisley. In: Proceedings 24th WFLP.
EPTCS, vol. 234, pp. 150–164 (2016). https://doi.org/10.4204/EPTCS.234.11

https://doi.org/10.1007/978-3-540-73589-2_14
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1007/3-540-36388-2_9
http://www.vldb.org/conf/2002/S30P01.pdf
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1007/978-3-642-30476-7_16
http://www.se2013.rwth-aachen.de/downloads/proceedings/SE2013WS.pdf
http://www.se2013.rwth-aachen.de/downloads/proceedings/SE2013WS.pdf
https://doi.org/10.1007/978-3-319-08909-6_14
https://doi.org/10.1007/978-3-319-08909-6_14
http://ceur-ws.org/Vol-1335/wflp2014_paper1.pdf
https://doi.org/10.1145/2972206.2972218
https://doi.org/10.1145/2972206.2972218
https://doi.org/10.4204/EPTCS.234.11

ICurry

Sergio Antoy1 , Michael Hanus2(B) , Andy Jost1, and Steven Libby1

1 Computer Science Department, Portland State University, Portland, OR, USA
2 Institut für Informatik, Kiel University, 24098 Kiel, Germany

mh@informatik.uni-kiel.de

Abstract. FlatCurry is a well-established intermediate representation
of Curry programs used in compilers that translate Curry code into Pro-
log or Haskell code. Some FlatCurry constructs have no direct translation
into imperative code. These constructs must be each handled differently
when translating Curry code into, e.g., C, C++ or Python code. We intro-
duce a new representation of Curry programs, called ICurry, and derive
a translation from all FlatCurry constructs into ICurry. We present the
syntax and semantics of ICurry and the translation from FlatCurry to
ICurry. We present a model of functional logic computations as graph
rewriting and show how this model can be implemented with ICurry in
a low-level imperative language.

1 Introduction

Functional logic languages [8] provide fast software prototyping and develop-
ment, simple elegant solutions to otherwise complicated problems, a tight inte-
gration between specifications and code [9], and an ease of provability [10,20]
unmatched by other programming paradigms. Not surprisingly, these advan-
tages place heavy demands on their implementation. Theoretical results must
be proven and efficient models of execution must be developed. For these rea-
sons, the efficient implementation of functional logic languages is an active area
of research with contributions from many sources. This paper is one such con-
tribution.

Compilers of high-level languages transform a source program into a target
program which is in a lower-level language. This transformation maps constructs
available in the source program language into simpler, more primitive, constructs
available in the target program language. For example, pattern matching can be
translated into a sequence of switch and assignment statements available in C,
C++ and Python. We use this idea to map Curry into a C-like language. Our
target language is not standard C, but a more abstract language that we call
ICurry. The “I” in ICurry stands for “imperative”, since a design goal of the
language is to be easily mappable into an imperative language.

There are advantages in choosing ICurry over C. ICurry is simpler than C.
It has no arrays, typedef declarations, types, explicit pointers, or dereferencing
operations. ICurry is more abstract than concrete low level languages. Because of

c© Springer Nature Switzerland AG 2020
P. Hofstedt et al. (Eds.): DECLARE 2019, LNAI 12057, pp. 286–307, 2020.
https://doi.org/10.1007/978-3-030-46714-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46714-2_18&domain=pdf
http://orcid.org/0000-0003-4522-7658
http://orcid.org/0000-0002-4953-8202
https://doi.org/10.1007/978-3-030-46714-2_18

ICurry 287

its simplicity and abstraction, it has been mapped with a modest effort to C,
C++, and Python.

Section 2 is a brief overview of Curry, with focus on the features relevant
to ICurry or to the examples. Section 3 discusses an operational model of exe-
cution for functional logic computations. This model can be implemented rel-
atively easily in Curry or in common imperative languages. Section 4 presents
FlatCurry, a format of Curry programs similar to ICurry. FlatCurry has been
used in the translation of Curry into other, non-imperative, languages, but it is
not suitable for the translation of Curry into an imperative language. Section 5
defines ICurry and its semantics, and discusses its generation and use. Section 6
addresses related work and offers our conclusion.

2 Curry

Curry is a declarative language that joins the most appealing features of func-
tional and logic programming. A Curry program declares data types, which
describe how information is structured, and defines functions or operations,
which describe how information is manipulated. For example:

data List a = Nil | Cons a (List a)

declares a polymorphic type List in which a is a type parameter standing for the
type of the list elements. The symbols Nil and Cons are the constructors of List.
The values of a list are either Nil, the empty list, or Cons e l, a pair in which e
is an element and l is a list.

Since lists are ubiquitous, a special notation eases writing and understand-
ing them. Curry uses [] to denote the empty list and e : l to denote the pair,
where the infix constructor “:” associates to the right. A finite list is written
[e1,. . .,en], where ei is a list element. For example, [1,2,3] = 1:2:3:[].

Functions are defined by rewrite rules of the form:

f p̄ | c1 = e1
· · ·
| cn = en

(1)

where f is a function symbol, p̄ stands for a sequence of zero or more expressions
made up only of constructor symbols and variables, “| ci” is a condition, and ei
is an expression. Conditions in rules are optional. The expressions in p̄ are called
patterns. For example, consider:

abs x | x < 0 = -x

| x >= 0 = x

length [] = 0

length (_:xs) = 1 + length xs

(2)

where abs computes the absolute value of its argument and shows some condi-
tions, and length computes the length of its argument and shows some patterns.

288 S. Antoy et al.

In contrast to most other languages, the textual order of the rewrite rules in
a program is irrelevant—all the rules that can be applied to an expression are
applied. An emblematic example is a function, called choice, and denoted by the
infix operator “?”, which chooses between two alternatives:

x ? y = x

x ? y = y

Therefore, 0 ? 1 is an expression that produces 0 and 1 non-deterministically. In
Curry, there are many other useful syntactic and semantic features, for example,
rewrite rules can have nested scopes with local definitions. We omit their descrip-
tion here, since they are largely irrelevant to our discussion, with the exception
of let blocks and free variables.

Let blocks support the definition of circular expressions which allows the
construction of cyclic graphs. Figure 1 shows an example of a let block and the
corresponding graph. Expression oneTwo evaluates to the infinite list 1:2:1:2:. . .

oneTwo = let x = 1 : y

y = 2 : x

in x

2

1 :

:

Fig. 1. Example of a let block with mutually recursive variables and the graph it
defines.

Free variables abstract unknown information and are “computationally inert”
until the information they stand for is required during a computation. When this
happens, plausible values for a variable are non-deterministically produced by
narrowing [6,29]. Free variables might occur in initial expressions, conditions,
and the right-hand side of rules, and need to be declared by the keyword free,
unless they are anonymous (denoted by “-”). For instance, the following program
defines list concatenation which is exploited to define an operation that returns
some element of a list having at least two occurrences:

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

someDup :: [a] → a

someDup xs | xs == _ ++ [x] ++ _ ++ [x] ++ _

= x where x free

3 The Execution Model

A program is a graph rewriting system [16,28] over a signature, partitioned
into constructor and operation symbols. We briefly and informally review the

ICurry 289

underlying theory. A graph is a set of nodes, where a node is an object with some
attributes, and an identity by virtue of being an element in a set. Key attributes
of a node are a label and a sequence of successors. A label is either a symbol
of the signature or a variable. A successor is another node, and the sequence
of successors may be empty. Exactly one node of a graph is designated as the
graph’s root. Each node of a graph corresponds to an expression in the Curry
program.

A graph rewriting system is a set of rewrite rules following the constructor
discipline [27]. A rule is a pair of graphs, l → r, called the left- and right-
hand sides, respectively. Rules are unconditional without loss of generality [3]. A
rewrite step of a graph e first identifies both a subgraph t of e, and a rule l → r
in which t is an instance of l, then replaces t with the corresponding instance of
r. The identification of the subgraph t and the rule l → r is accomplished by a
strategy [4]. For example, given the rules (2), a step of length [3,4] produces
1+length[4] where the subgraph reduced in the step is the whole graph, and the
rule applied in the step is the second one.

A computation of an expression e is a sequence of rewrite steps starting with
e, e = e0 → e1 → . . . Expression e is referred to as top-level, and each ei as
a state of the computation of e. A value of a computation is a state in which
every node is labeled by a constructor symbol. Such expression is also called a
constructor normal form. Not every computation has values.

We have modeled a functional logic program as a graph rewriting system
[16,28]. Functional logic computations are executed in this model by rewriting
which consists of two relatively simple operations: the construction of graphs
and the replacement of subgraphs with other graphs. The most challenging part
is selecting the subgraph to be replaced in a way that does not consume com-
putational resources unnecessarily. This is a well-understood problem [4] which
is largely separated from the model.

In an implementation of the model, the expressions are objects of a compu-
tation and are represented by dynamically linked structures. These structures
are similar to those used for computing with lists and trees. The nodes of such a
structure are in a bijection with the nodes of the graph they represent. Unless a
distinction is relevant, we do not distinguish between a graph and its represen-
tation.

The occurrence of a symbol, or variable, in the textual representation of an
expression stands for the node labeled by the occurrence. Distinct occurrences
may stand for the same node, in which case we say that the occurrences are
shared. The textual representation accommodates this distinction, therefore it is
a convenient, linear notation for a graph. Figure 2 shows two graphs and their
corresponding textual expressions.

4 FlatCurry

FlatCurry [17] is an intermediate language used in a variety of applications.
These applications include implementing Curry by compiling into other lan-
guages, like Prolog [21] or Haskell [12]. FlatCurry is also the basis for specifying

290 S. Antoy et al.

+

coin coin

coin+coin

+

coin

x+x where x=coin

Fig. 2. Graphical and textual representation of expressions. In Curry, all the occur-
rences of the same variable are shared. Hence, the two occurrences of x stand for the
same node. The expression coin is conventionally an integer constant with two val-
ues, 0 and 1, non-deterministically chosen. The sets of values produced by the two
expressions differ.

the operational semantics of Curry programs [1], building generic analysis tools
[22], or verifying properties of Curry programs [19,20]. The FlatCurry format of
a Curry program removes some syntactic constructs, such as nested scopes and
infix notation, that make source programs more human readable. This removal
still preserves the program’s meaning. We ignore some elements of FlatCurry,
such as imported modules or exported symbols, which are not directly related
to the execution model presented in Sect. 3. Instead, we focus on the declara-
tion of data constructors, the definition of functions, and the construction of
expressions. These are the elements that play a central role in our execution
model.

FlatCurry is a machine representation of Curry programs. As such, it is not
intended to be read by human. For example, each variable is identified by an
integer, function application is only prefix, and pattern matching is broken down
into a cascade of case distinctions. In the examples that follow, we present a
sugared version of FlatCurry in which variables have symbolic names, typically
the same as in Curry; the application of familiar infix operators is infix; and
indentation, rather than parentheses and commas, show structure and grouping.
The intent is to make the examples easier to read without altering the essence
of FlatCurry.

In FlatCurry, data constructors are introduced by a type declaration. A type
t has attributes such as a name and a visibility, and chief among these attributes
is a set of constructors c1, c2, . . . cn. Each constructor ci has similar attributes,
along with an arity and type of each argument, which are not explicitly used in
our discussion. The same information is available for operation symbols. Addi-
tionally, any operation f has an attribute that abstracts the set of the rules
defining f .

The abstract syntax of FlatCurry operations is summarized in Fig. 3.1 Each
operation is defined by a single rule with a linear left-hand side, i.e., the argument
variables x1, . . . , xn are pairwise different. The right-hand side of the definition
consists of (1) variables introduced by the left-hand side or by a let block or
by a case pattern, (2) constructor or function calls, (3) case expressions, (4)

1 In contrast to some other presentations of FlatCurry (e.g., [1,18]), we omit the
difference between rigid and flexible case expressions.

ICurry 291

disjunctions, (5) let bindings, or (6) introduction of free variables. The patterns
pi in a case expression must be pairwise different constructors applied to vari-
ables. Therefore, deep patterns in source programs are represented by nested
case expressions.

D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable)

| c(e1, . . . , en)llacrotcurtsnoc()
| f(e1, . . . , en)llacnoitcnuf()
| case e of {p1 → e1; . . . ; pn → en} (case expression)
| e1 or e2 (disjunction)
| let {x1 = e1; . . . ;xn = en} in e (let binding)
| let x1, . . . , xn free in e (free variables)

p ::= c(x1, . . . , xn) (pattern)

Fig. 3. Abstract syntax of function definitions in FlatCurry

Case expressions closely resemble definitional trees [2]. We recall that a defi-
nitional tree of some operation f , of arity n, is a hierarchical structure of expres-
sions of the form f p1 . . . pn, where each pi is a pattern. Since f is constant and
provides no information, except to ease readability, we also call these expres-
sions patterns. The pattern at the root of the tree is f x1 . . . xn, where the xi’s
are distinct variables. The patterns at the leaves are the left-hand sides of the
rules of f , except from the names of the variables. For ease of understanding, in
pictorial representations of definitional trees we add the right-hand side of the
rules too. If f p1 . . . pn is a branch node, β, of the tree, a variable x in some
pj is singled out. We call the variable x inductive. The pattern in a child of β is
f p1 . . . qj . . . pn where qj is obtained from pj by replacing x with c y1 . . . yk,
where c is a constructor of the type of x and each yi is a fresh variable. For
example, consider the usual operation zip for zipping two lists:

zip [] y = []

zip (x1:x2) [] = []

zip (x1:x2) (y1:y2) = (x1,y1) : zip x2 y2

(3)

The corresponding definitional tree is shown below where the inductive variable
is boxed.

zip x y

���
�� ����

�

zip [] y

��

zip (x1:x2) y

����
�� �����

��

zip (x1:x2) []

��

zip (x1:x2) (y1:y2)

��
[] [] (x1,y1) : zip x2 y2

292 S. Antoy et al.

The FlatCurry code of the rules of operation zip, closely corresponds to the
code in (4). This would be harder for the programmer to write than (3) and
less readable, but is semantically equivalent. Every program can be transformed
into an equivalent program in which every operation has a definitional tree [3].
There is a relatively simple algorithm [4] to construct a definitional tree from
the operation’s rules.

zip x y = case x of

{ [] → [] ;

(x1:x2) → case y of

{ [] → [] ;

(y1:y2) → (x1,y1) : zip x2 y2 }}

(4)

Expressions are the final relevant element of FlatCurry. As the code of zip shows,
an expression can be a literal, like []; an application of constructors and opera-
tions to expressions possibly containing variables, like (x1,y1) : zip x2 y2; or a
case expression, like case y of . . . FlatCurry also has let blocks to support the
construction of cyclic graphs, as shown in Fig. 1.

FlatCurry programs cannot be directly mapped to code in a C-like target
language. There are two problems: case expressions as arguments of a symbol
application, and let blocks with shared or mutually recursive variables. A con-
trived example of the first is:

3 + case x of { [] → 0; (y:ys) → y }

Since the evaluation of the scrutinee of a case expression might yield a non-
deterministic result, it cannot be directly mapped into imperative language con-
structs. An example of the second is shown in Fig. 1. ICurry proposes a solu-
tion to these problems in a language-independent form which is suitable for the
imperative paradigm.

5 ICurry

In this section we define ICurry, discuss how to map it to imperative code that
implements our earlier model of computation, and show how to obtain it from
FlatCurry.

5.1 ICurry Definition

ICurry is a format of Curry programs similar in intent to FlatCurry. The purpose
of both is to represent a Curry program into a format with a small number of
simple constructs. Properties and manipulations of programs can be more easily
investigated and executed in these formats. ICurry is specifically intended for
compilation into a low-level language. Each ICurry construct can be translated
into a similar construct of languages such as C, Java or Python. This should
become apparent once we describe the constructs.

ICurry 293

D ::= f = blck (function definition)
blck ::= decl1 . . . declk asgn1 . . . asgnn stm (block)
decl ::= declare x (local variable declaration)

| free x (free variable declaration)
asgn ::= v = exp (variable assignment)
stm ::= return exp (return statement)

| exempt (failure statement)
| case x of {c1 → blck1; . . . ; cn → blckn} (case statement)

exp ::= v (variable)
| NODE(l, exp1, . . . , expn) (node construction)
| exp1 or exp2 (disjunction)

v ::= x (local variable)
| v[i] (node access)
| ROOT (root of function call)

l ::= c (constructor symbol)
| f (function symbol)

Fig. 4. Abstract syntax of function definitions in ICurry

ICurry’s data consists of nested applications of symbols represented as
graphs. ICurry’s key constructs provide the declaration or definition of sym-
bols and variables, construction of graph nodes, assignment, and conditional
executions of these constructs. Rewriting steps are implemented in two phases,
once the redex and rule are determined. First, the replacement of the redex is
constructed. This is defined by the right-hand side of the rule. Then, the suc-
cessors pointing to the root of the redex are redirected [16, Def. 8], through
assignments, to point to the root of the replacement.

The declaration of data constructors in ICurry is identical to that in
FlatCurry as described earlier. However, the constructors of a type are in an
arbitrary, but fixed, order. Therefore, we can talk of the first, second, etc., con-
structor of a type. This index is an attribute of constructor symbols which we
call the tag. The tag is used to provide efficient pattern matching. We will return
to this topic in Sect. 5.4.

The abstract syntax of operations in ICurry is summarized in Fig. 4. In
FlatCurry, the body of a function is an expression. In ICurry, it is a block
consisting of optional declarations and/or assignments and a final statement
returning an expression. We describe expressions first.

Expressions are nested symbol applications represented as graphs. Therefore,
an expression is either a variable or a symbol application. ICurry makes an appli-
cation explicit with a directive, NODE, that constructs a graph node from its label
(1st argument) and its successors (remaining arguments), and returns a refer-
ence to the node. Accordingly, there is a directive to access node components:
assuming x is a variable referring to a node, x[k] retrieves the k-th successor of
the node. An ICurry variable v is a reference to a node n in a graph. When n is a
Curry free variable, v is called free as well. Otherwise, v is called a local variable.

294 S. Antoy et al.

The ICurry format distinguishes between constructor and function application,
and between full and partial application. We do not discuss these details in this
paper. It is expected that by providing this additional information, processors
will be able to generate low-level code more easily, and the generated code should
be easier to optimize.

In ICurry, there are only a handful of statement kinds: declaration of a
variable, and assignment to a variable, return, and case expressions. Follow-
ing FlatCurry, variables are represented by integers. A declaration introduces
a variable which is a reference to a graph node. Successors of a node refer-
enced by x are accessed through the x[. . .] construct. Arguments passed to func-
tions are accessed through local variables. The return statement is intended to
return an expression, the result of a function call. Case expressions in ICurry
are structurally similar to those in FlatCurry, but with two differences for alge-
braically defined types, which have a finite number of data constructors. First,
the branches of a case expression are in tag order. We will justify this decision in
Sect. 5.4. Second, the set of branches of a case expression is complete, i.e., there
is a branch for each constructor of the type.

ICurry code begins with a declaration, and possible assignment, of some
variables. It is then followed by either a case statement, or a return statement.
Each branch of the case expression may declare and assign variables, and may
lead to either another case statement, or a return statement.

Below, we present two examples. The first example is the code of function
oneTwo, a constant, of Fig. 1:

function oneTwo

declare x

declare y

x = NODE(:, NODE(1), y)

y = NODE(:, NODE(2), x)

x[2] = y

return x

Symbol application is explicit through NODE. In the above example, the definitions
of the nodes referenced by x and y are mutually recursive, thus either node cannot
be completely constructed before constructing the other. We resolve the impasse
by partially constructing the node referenced by x (starting with y would be
symmetric), constructing the node referenced by y, and finally coming back to
x and finish the job. The missing information when the node referenced by x is
constructed is the value of the node’s second successor, which is addressed by
x[2]. This value becomes known when the node referenced by y is constructed.
At that point, the missing information is filled in with the assignment to x[2].

The second example is the code of head, the usual function returning the
head of a non-empty list:

head (x:_) = x (5)

The rule of head for the argument [] is missing in the Curry source code. Conse-
quently, the case branch for the argument [] is missing in FlatCurry, too. ICurry
has a distinguished statement, exempt, to capture the absence of a rule:

ICurry 295

function head

declare arg

arg = ROOT[1]

case arg of

[] → exempt

: → return arg[1]

where ROOT is a reference to the root of the expression being evaluated. This
expression is rooted by head, which is the reason why it is passed to function
head.

5.2 Operational Semantics of ICurry

In this section, we define a small-step semantics for ICurry programs. We are
motivated by the fact that ICurry is very similar to a simple imperative language,
but has primitives to support non-deterministic computations. These primitives
are the or expression, used to introduce non-determinism, and the exempt state-
ment, used to express a failing branch of a computation.

Non-deterministic choices in a program execution require copying a compu-
tation into two branches. In order to reduce the effort for copying, pull-tabbing
[5] can be used. Fundamentally, a pull-tab step moves a choice occurring in a
demanded argument of an operation outside this operation. For instance, if f
demands the value of its single argument, then the following is a pull-tab step.

f (e1 ? e2) → (f e1) ? (f e2)

Although ICurry’s non-determinism can also be implemented with other strate-
gies such as stack copying, we use pull-tabbing here due to its limited demand
to copy structures. For this purpose, we make the following assumptions:

1. Each ICurry function contains at most one case statement. This can be
obtained by replacing nested case statements by auxiliary operations.2 There-
fore, we denote by f i an ICurry function which demands its i-th argument in
a case statement, otherwise the superscript is omitted.

2. A graph might also contain choice nodes of the form ?c(n1, n2). The expres-
sions n1, n2 are the alternatives, and c is a choice identifier which is an integer
uniquely determined when the choice node is created. Choice identifiers are
necessary to distinguish choices in different computation branches [5,12].

As discussed in Sect. 3, the execution model of Curry is based on graph rewriting.
Therefore, the main component of ICurry’s run-time system is a graph G. In
the subsequent description, we use the following notation. We write G[n] =
s(n1, . . . , nk) if n is a node of G with label s and successor nodes n1, . . . , nk.
The update of a node n of G is denoted by G[n ← s(n1, . . . , nk)]. The label
of n is replaced by s and the successors of n are set to n1, . . . , nk. In order to
implement sharing, it is sometimes necessary to redirect a graph node n to a

2 Some implementations of Curry, e.g., [21] perform this transformation.

296 S. Antoy et al.

node n′ of a graph G. We denote this by G[n ← n′]. This can be implemented
either by a specific “redirection node” or by redirecting all edges pointing to n
so that they point to n′. Finally, we denote the extension of a graph G with a
new node n by G � {n : s(n1, . . . , nk)}. The node n does not exist in G and has
label s and successors n1, . . . , nk.

In order to deal with non-deterministic computations, the run-time system
manages a queue of computation tasks, where each task consists of a control
block, a stack of pending computations, and a fingerprint [11] managing the
consistency of non-deterministic choices for the task. To be more precise, the
state of an ICurry computation is a triple (G,Q,R) where the components have
the following structure:

– G is graph where each node is labeled with a function, constructor, or the
choice symbol, “?”. As discussed above, a choice node n has the form G[n] =
?c(n1, n2).

– Q is a queue (list) of tasks where each task is a triple (C,S, F) with:
• C is the control which is either a graph node n to be evaluated or a pair

(b, E) consisting of a block of ICurry (see Fig. 4) and an environment E
(a mapping from local variables to graph nodes).

• S is a stack where each stack element is a node n labeled by a function
symbol. The stack contains the functions to be evaluated by a task.

• F is a fingerprint, which is a (partial) mapping from choice identifiers to
indexes of alternatives.

– R is the set of computed results, which are graph nodes. Note that ICurry
evaluates expressions to head normal forms, that is graphs with a constructor
at the root. This is sufficient since the evaluation to normal form can be
implemented by auxiliary operations.

In the following, we use φ[x �→ v] to denote an update of a mapping φ for some
argument v. If φ′ = φ[x �→ v], then φ′(x) = v and φ′(y) = φ(y) for all y �= x.
Furthermore, we use Curry’s list notation for states. Thus, an initial state of an
ICurry computation has the form

(G, [(n, [], {})], {})

where the graph G contains the initial expression with root node n. Thus, there
is only one task with an empty stack and fingerprint and an empty set of results.
A final computation state has the form:

(G, [], R)

There are no tasks left and the set R contains the root nodes of all computed
results.

We specify the small-step semantics of ICurry by a set of transformation
rules on states. Some of the rules use an auxiliary operation extend to extend
a graph by adding the graph representation of an expression occurring in an
ICurry program. Informally, extend(G,E, e) extends a graph G with an ICurry

ICurry 297

expression e w.r.t. an environment E and returns the pair (G′, n) consisting
of the extended graph and the root node n of the added expression. To define
extend , we use an auxiliary function lookup to retrieve a graph node w.r.t. an
environment:

lookup(G,E, v) =

⎧
⎪⎨

⎪⎩

E(v) if v = x or v = ROOT

ni
if v = v′[i], lookup(G,E, v′) = n
and G[n] = l(n1, . . . , nk)

If e is a variable, its binding is looked up in the environment E and returned as
n without extending the graph:

extend(G,E, v) = (G, lookup(G,E, v))

A disjunction e1 or e2 creates new subgraphs for the arguments e1 and e2 and
connects them by a new choice node:

extend(G,E, e1 or e2) = G′′ � {n : ?c(n1, n2)}
if extend(G,E, e1) = (G′, n1) and extend(G′, E, e2) = (G′′, n2)

Here, c is a new choice identifier. We assume the existence of a global set of choice
identifiers so that new unique identifiers can be obtained during the computation.
Similarly, a node constructor creates new subgraphs for the argument expressions
and a new node connecting these subgraphs. We assume that ni is the root node
for the subgraph created for ei and G′ is the graph containing G and the new
subgraphs:

extend(G,E,NODE (l, e1, . . . , ek)) = G′ � {n : l(n1, . . . , nk)}

Now we can specify a small-step semantics of ICurry by the following transfor-
mation rules:

Function Node: If the control contains a graph node labeled with a defined
function whose i-th argument is demanded, the function node is put onto the
stack and the control is replaced by the i-th argument:

(G, (n, S, F) : Q,R) → (G, (ni, n : S, F) : Q,R)

if G[n] = f i(n1, . . . , nk)

If the control contains a graph node labeled with a defined function which does
not demand an argument, the function’s body is put into the control together
with an environment initialized with the graph node:

(G, (n, S, F) : Q,R) → (G, ((b, {ROOT �→ n}), S, F) : Q,R)

if G[n] = f(. . .) and f = b is a declaration of the ICurry program

298 S. Antoy et al.

Variable Declaration: If the control starts with a declaration of a local variable,
it is initialized as a null pointer in the environment:

(G, ((declare x; b, E), S, F) : Q,R) → (G, ((b, E[x �→ null]), S, F) : Q,R)

Free variables can be handled in various ways. For the sake of simplicity, we
implement free variables as non-deterministic generator operations. This tech-
nique is also used in KiCS2 [12] and stems from the equivalence of logic variables
and non-determinism [7]. For instance, a generator for a Boolean free variable
can be defined as:

gen_Bool = False ? True

Since free variables of different types will have a different generator operation,
we denote by genx the generator operation of the free variable x.3 Then a free
variable is introduced by initializing it with a node representing the generator
operation:

(G, ((free x; b, E), S, F) : Q,R) →
(G � {n : genx()}, ((b, E[x �→ n]), S, F) : Q,R)

Assignment: If the control starts with an assignment to a local variable, the
graph is extended with the expression and the environment is updated:

(G, ((x = e; b, E), S, F) : Q,R) → (G′, ((b, E[x �→ n]), S, F) : Q,R)

if extend(G,E, e) = (G′, n)

If the control starts with an assignment to successor of a node, the graph is
extended with the expression and the successor is set to the created subgraph:

(G, ((v[i] = e; b, E), S, F) : Q,R) →
(G′[n ← l(n1, . . . , ni−1, n

′, ni+1, . . . , nk)], ((b, E), S, F) : Q,R)

if lookup(G,E, v) = n, G[n] = l(n1, . . . , nk), extend(G,E, e) = (G′, n′)

Return Statement: If the control contains a return statement, the graph is
extended with the returned graph and the root of the current function is updated
with the returned node:

(G, ((return e,E), S, F) : Q,R) → (G′[E(ROOT) ← n], (n, S, F) : Q,R)

if extend(G,E, e) = (G′, n)

Exempt Statement: If the control contains an exempt statement, the current
computation is removed from the list of tasks:

(G, ((exempt , E), S, F) : Q,R) → (G,Q,R)

3 Type-based generators can be implemented with type classes, as described in [23].
Thus, a compiler can easily attach appropriate generators to free variables in ICurry.

ICurry 299

Case Statement: If the control contains a case statement, the corresponding
branch is selected (this is always possible since the case argument is demanded
and was evaluated before invoking the function):

(G, ((case x of {c1 → b1; . . . ; cn → bn}, E), S, F) : Q,R) →
(G, ((bi, E) : S, F) : Q,R)

if E(x) = n and G[n] = ci(. . .)

Constructor Node: If the control contains a graph node labeled with a construc-
tor symbol, we distinguish two cases. If the stack is empty, a result has been
computed:

(G, (n, [], F) : Q,R) → (G,Q,R ∪ {n})

if G[n] = c(. . .) for some constructor c

If the stack is not empty, then it contains a function where an argument is
demanded. Since this argument, which is the node in control, is evaluated, we
invoke this function by putting its body into the control:

(G, (n, (n′ : S, F) : Q,R) → (G, ((b, {ROOT �→ n′}), S, F) : Q,R)

if G[n] = c(. . .) for some constructor c, G[n′] = f i(. . .),
and f i = b is a declaration in the ICurry program

Choice Node: If the control contains a choice node, we distinguish three cases.
If the stack is empty, i.e., the choice is at the top, and the fingerprint already
selects a branch for this choice, the choice node is replaced by the corresponding
branch:

(G, (n, [], F) : Q,R) → (G, (ni, [], F) : Q,R)

if G[n] = ?c(n1, n2) and F (c) = i

If the stack is empty and the fingerprint does not contain a selection for this
choice, we split the current task into two new tasks where the fingerprint is
extended in each task:

(G, (n, [], F) : Q,R) → (G,Q ++ [(n1, [], F [c �→ 1]), (n2, [], F [c �→ 2])], R)

if G[n] = ?c(n1, n2) and F (c) is undefined

Note that we can use any strategy to add the new tasks to the existing ones.
Here we put them at the end which corresponds to a breadth-first strategy in the
search tree. Putting them at the front of Q corresponds to a depth-first search
strategy. Some Curry implementations, like KiCS2 [12], allow the user to select
different search strategies.

The final case is a pull-tab step. If the choice is at a demanded argument
position, then the stack is not empty, and the graph node identified by the top
of the stack is replaced by a choice:

300 S. Antoy et al.

(G, (n0, n : S, F) : Q,R) → (G′[n ← ?c(n′
1, n

′
2)], (n, S, F) : Q,R)

if G[n0] = ?c(n1, n2), G[n] = f i(n1, . . . , nk),
and G′ = G � {n′

1 : f i(n1, . . . , ni−1, n1, ni+1, . . . , nk),
n′
2 : f i(n1, . . . , ni−1, n2, ni+1, . . . , nk)}

Since each transformation step performs only local changes, the implementa-
tion effort for these steps is limited when mapping ICurry into an imperative
language. This will be shown in Sect. 5.4 where implementations of ICurry in
various imperative languages are summarized.

5.3 ICurry Generation

Current Curry distributions such as PAKCS [21] or KiCS2 [12] provide a pack-
age with the definition of FlatCurry and a rich API for its construction and
manipulation. Therefore, the ICurry format of a Curry program is conveniently
obtained from the FlatCurry format of that program.

A fundamental difference between the two formats concerns expressions.
Expressions in FlatCurry may contain cases and lets as the arguments of a
function application. These are banned in ICurry which allows only nested func-
tional application. The reason is that the latter can be directly translated into
various imperative languages, where the former cannot. Therefore, any case and
let constructs that are the arguments of a function application are replaced by
calls to newly created functions. Thus, in ICurry, the replaced constructs are
executed at the top level. We replace these constructs during the transforma-
tion from FlatCurry into ICurry. However, the same transformation could be
performed from FlatCurry into itself, or even from source Curry into itself. Our
contrived example below shows the latter for ease of understanding. The code
of function g is irrelevant, therefore, it is not shown:

f x = g x (case x of ...)

is transformed into:

f x = g x (h x)

h x = case x of ...

The offending case, as an argument of the application of g, has been replaced
by a call to a newly created function, h. In function h, the case is no longer an
argument of a function application.

The second major difference between FlatCurry and ICurry concerns case
expressions. FlatCurry matches a selector against shallow constructor expres-
sions, where ICurry matches against constructor symbols. Furthermore, the set
of these symbols is complete and ordered in ICurry. The transformation is rel-
atively simple, except it may require non-local information. A function in a
module M may pattern match on some instance of a type t that is not declared
in M . Therefore, the constructors of t must be accessed in some module different
from that being compiled.

ICurry 301

A third significant difference between FlatCurry and ICurry concerns let
blocks. They are banned in ICurry, and replaced by the explicit construction of
nodes, and by the assignment of these nodes’ references to local variables.

In the following, we show an algorithm to translate FlatCurry into ICurry.
For this purpose, we define a pure expression as an expression that only con-
tains literals, variables, constructor applications, and function applications. Any
or expression and function application may only contain pure expressions. The
scrutinee of a case expression must be a variable, literal, or constructor appli-
cation. An assignment in a let expression must be a pure expression or an or
expression. The branches of a case expression must match all constructors of a
data type in an order fixed by the definition of that data type. Branches missing
in the original Curry program contain ⊥ in their right-hand side.

The algorithm is divided into five functions which are described in Fig. 5. F
translates a FlatCurry function into an ICurry function. B translates a FlatCurry
expression into an ICurry block. D extracts all of the variables declared in a
FlatCurry expression. A generates necessary assignments for ICurry variables.
E translates a FlatCurry expression into an ICurry expression.

The functions F and E are straightforward translations. F simply makes a
block, with the root of the block being set to the root of the function. E is almost
entirely a straight translation, but there is one technical point. In a case expres-
sion, each branch must be translated into its own block. However, each of the vari-
ables in the pattern of a branch need to be related to the scrutinee of the case. This
is achieved by setting the root of the block to the scrutinee of the case.

The function B creates an ICurry block. Blocks are more complicated to
construct. Each block will have a root and a list of variables. The root is the
root of the expression that created the block. For a function, the root is the
root of the function expression. For a case branch, the root is the root of the
scrutinee of the case. The variables of a block are the parameters of a function, or
the pattern variables of a branch. After declaring variables, all variables in any
let expressions are declared with D. Then each variable is assigned an expression
with A. If either D or A is undefined for some expression, their application does
not generate ICurry code. Finally, we translate the expression into an ICurry
statement with E .

The function D declares variables declared in a let or free expression. If there
is a case expression, then a new variable xe is declared.

The function A assigns variables in a let or free expression. The expression for
all variables in a let is translated with E . Next, if there are any variables declared
in the let block that are used in one of the expressions, they need to be filled in.
Finally, if there is a case expression, we assign xe to be the root of the scrutinee.

A compiler from FlatCurry to ICurry implementing these translation rules
is available as package icurry. It can easily be installed with the Curry pack-
age manager.4 The tool provided by this package also contains an interpreter
for ICurry, based on the small-step semantics specified in Sect. 5.2, which can
visualize the graph and machine state during a computation.

4 http://curry-lang.org/tools/cpm.

http://curry-lang.org/tools/cpm

302 S. Antoy et al.

F(f(x1, . . . , xn) = e) := f = B(x1, . . . , xn, e, ROOT)

B(x1, . . . , xn,⊥, root) := exempt
B(x1, . . . , xn, e, root) :=
declare x1

. . .
declare xn

D(e)
x1 = root[1]
. . .
xn = root[n]
A(e)
return E(e) (omit return if E(e) is a case)

D(let x1, . . . , xn free in e) :=
free x1

. . .
free xn

D(let {x1 = e1; . . . ;xn = en} in e) :=
declare x1

. . .
declare xn

D(case e of {p1 → e1; . . . ; pn → en}) := declare xe

A(let {x1 = e1; . . . ;xn = en} in e) :=
x1 = E(e1)
. . .
xn = E(en)
x1[p] = xi (for each occurrence of xi, i ≥ 1, in e1 at position p)
. . .
xn[p] = xi (for each occurrence of xi, i ≥ n, in en at position p)

A(case e of {p1 → e1; . . . ; pn → en}) := xe = E(e)

E(x) := x
E(c(e1, . . . , en)) := NODE(c, E(e1), . . . , E(en))
E(f(e1, . . . , en)) := NODE(f, E(e1), . . . , E(en))
E(e1 or e2) := E(e1) or E(e2)
E(let {x1 = e1; . . . ;xn = en} in e) := E(e)
E(let {x1, . . . , xn} free in e) := E(e)
E(case e of {c(x11, . . . , x1m) → e1; . . . ; c(xn1, . . . , xnk) → en}) :=
case E(e) of { B(x11, . . . , x1m, e1, xe);

. . . ;
B(xn1, . . . , xnk, en, xe); }

Fig. 5. Algorithm for translating FlatCurry into ICurry

ICurry 303

5.4 ICurry Use

The stated goal of ICurry is to be a format of Curry programs suitable for
translation into an imperative language. Below, we briefly report our experience
in translating ICurry into various target languages. Table 1 shows the size of
a Curry program that translates ICurry into a target language. The numerical
values in the table, extracted from Wittorf’s thesis [30], count the lines of code
of the translator. The table is only indicative since “lines of code” is not an accu-
rate measure, and some earlier compilers use older variants of ICurry that have
evolved over time. Each ICurry construct has a direct translation into the tar-
get language. The following details refer to the translation into C. Declarations
and assignments are the same as in C. The ICurry statements are translated as
follows: (1) the ICurry return is the same as in C, (2) an ICurry case statement
is translated into a C switch statement where the case selector is the tag of a
node, and (3) the ICurry exempt statement is translated into code that, when
executed, terminates the executing computation without producing any result.
This is justified by the facts that the evaluation strategy executes only needed
steps, and that failures in non-deterministic programs are natural and expected,
therefore they should be silently ignored.

Table 1. Number of Curry source lines of code for various translators from ICurry to
a target language.

C 441

Python 342

Java 790

JavaScript 632

The ICurry case expressions of a function’s code contain a branch for each
constructor in the argument’s type and a branch for each of the following: the
choice symbol, the failure symbol, any function symbol [11, Fig. 2], and any
free variable. A dispatch table, which is addressed by the argument’s label’s
tag, efficiently selects the branch to be executed. The behavior of the additional
branches is described below, and is the same across all the functions of a program.
A choice symbol in a pattern matched position results in the execution of a pull-
tabbing step [5,13]. A failure is propagated to the context. A function symbol
triggers the evaluation of the expression rooted by this symbol. Finally, a free
variable is instantiated to a choice of shallow patterns of the same type as the
variable. As an example, the evaluation of:

head x where x free

instantiates x to [] ? (y:ys) where y and ys are free variables. The alternative
[] will result in failure. This can be determined at compile time and removed
during optimizations.

304 S. Antoy et al.

Compilers from Curry to Python and other imperative languages can be
implemented as described above. As Table 1 indicates, the compilers (written
in Curry) are quite compact. We observe that FlatCurry covers the complete
language, since it is the basis for robust Curry implementations, like PAKCS and
KiCS2, and the natural/operational semantics of Curry is defined in FlatCurry
[1]. ICurry contains the same information as FlatCurry except type information,
since the type correctness of a program has been verified at the point of the
compilation process in which ICurry is used.

We have also implemented a translator from ICurry programs into the JSON
format. This translator is simpler and shorter than all the translators into imper-
ative languages of Table 1. The translation into JSON is used by Sprite [11], a
Curry system under development, whose target language is C++. The JSON for-
mat is more convenient than ICurry when the client of the ICurry format is not
coded in Curry, hence it cannot read and parse ICurry program using Curry’s
library functions.

6 Concluding Remarks

Our work is centered on the compilation of Curry programs. As in many com-
pilers, our approach is transformational. To compile a Curry program P , we
translate P into a language, called target, for which a compiler already exists.
This is the same route followed by other Curry compilers like PAKCS [21] and
KiCS2 [12].

PAKCS translates source Curry code into Prolog, leveraging the existence
of native free variables and non-determinism in Prolog. KiCS2 translates source
Curry code into Haskell, leveraging the existence of first-class functions and
their efficient demand-driven execution in Haskell. Both of these compilers use
FlatCurry as an intermediate language. They have the same front end which
translates Curry into FlatCurry. The use of FlatCurry simplifies the translation
process, but is still appropriate to express Curry computations without much
effort. FlatCurry has some relatively high-level constructs that can be mapped
directly into Prolog and Haskell, because these languages are high-level, too.

In order to provide a better basis to compile Curry into low-level imperative
languages, we presented ICurry as an intermediate language for this purpose.
Before ICurry, a Curry compiler targeting a C-like language would handle certain
high-level constructs of FlatCurry in whichever way each programmer would
choose. This led to both duplications of code and unnecessary differences. ICurry
originates from these efforts. It abstracts the ideas that, over time, proved to be
simple and effective in a language-independent way. With ICurry, the effort to
produce a Curry compiler targeting an imperative language is both shortened,
because more of the front end can be reused, and simplified, because the starting
point of the translation is independent of the target and is well understood.

Our work is complementary to, but independent of, other efforts toward
the compilation of Curry programs. These efforts include the development of
evaluation strategies [6], or the handling of non-determinism [5,13].

ICurry 305

There exist other functional logic languages, e.g., T OY [15,25] whose opera-
tional semantics can be abstracted by needed narrowing steps of a constructor-
based graph rewriting system. Some of our ideas seem applicable with little to
no changes to the implementation of these languages.

Graph rewriting, often supported by graph machines [14,24,26], has been
used for the implementation of functional languages. A comparison with these
efforts is problematic at best. Despite the remarkable syntactic similarities—
Curry’s syntax extends Haskell’s with a single construct, a free variable
declaration—the semantic differences are profound. In particular, there is no
textual order among the rewrite rules of a functional logic program, and the
notion of laziness is based on needed steps modulo non-deterministic choices. As
a consequence, there are purely functional programs whose execution produces a
result as Curry but does not terminate as Haskell [8, Sect. 3]. Furthermore, most
steps of a functional logic computation are functional steps, but the computation
must be prepared to encounter non-determinism and/or free variables. Hence,
situations and goals significantly differ.

Future work should investigate ICurry to ICurry transformations that are
likely to optimize the generated code. For example, different orders of the decla-
ration of variables in a let block lead to different numbers of assignments. Also,
case expressions as arguments of function call can be moved outside the call in
some situations rather than be replaced by a call to a new function.

Acknowledgments. The authors are grateful to the anonymous reviewers for their
helpful comments to improve the paper. This material is based in part upon work
supported by the National Science Foundation under Grant No. 1317249.

References

1. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational semantics for
declarative multi-paradigm languages. J. Symb. Comput. 40(1), 795–829 (2005)

2. Antoy, S.: Definitional trees. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS,
vol. 632, pp. 143–157. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0013825

3. Antoy, S.: Constructor-based conditional narrowing. In: Proceedings of the 3rd
International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, PPDP 2001, pp. 199–206. ACM Press (2001)

4. Antoy, S.: Evaluation strategies for functional logic programming. J. Symb. Com-
put. 40(1), 875–903 (2005)

5. Antoy, S.: On the correctness of pull-tabbing. TPLP 11(4–5), 713–730 (2011)
6. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),

776–822 (2000)
7. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic

programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp.
87–101. Springer, Heidelberg (2006). https://doi.org/10.1007/11799573 9

8. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74–85
(2010)

https://doi.org/10.1007/BFb0013825
https://doi.org/10.1007/BFb0013825
https://doi.org/10.1007/11799573_9

306 S. Antoy et al.

9. Antoy, S., Hanus, M.: Contracts and specifications for functional logic program-
ming. In: Russo, C., Zhou, N.-F. (eds.) PADL 2012. LNCS, vol. 7149, pp. 33–47.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27694-1 4

10. Antoy, S., Hanus, M., Libby, S.: Proving non-deterministic computations in Agda.
In: Proceedings of the 24th International Workshop on Functional and (Constraint)
Logic Programming, WFLP 2016. Volume 234 of Electronic Proceedings in Theo-
retical Computer Science, pp. 180–195. Open Publishing Association (2017)

11. Antoy, S., Jost, A.: A new functional-logic compiler for Curry: Sprite. In:
Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184,
pp. 97–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 6

12. Braßel, B., Hanus, M., Peemöller, B., Reck, F.: KiCS2: a new compiler from Curry
to Haskell. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 1–18. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22531-4 1

13. Braßel, B., Huch, F.: On a tighter integration of functional and logic programming.
In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 122–138. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76637-7 9

14. Burn, G.L., Peyton Jones, S.L., Robson, J.D.: The spineless G-machine. In: Pro-
ceedings of the 1988 ACM Conference on LISP and Functional Programming, pp.
244–258. ACM (1988)

15. Caballero, R., Sánchez, J. (eds.): TOY: A Multiparadigm Declarative Language
(version 2.3.1) (2007). http://toy.sourceforge.net

16. Echahed, R., Janodet, J.-C.: On constructor-based graph rewriting systems.
Research report IMAG 985-I, IMAG-LSR, CNRS, Grenoble (1997)

17. Hanus, M.: FlatCurry: an intermediate representation for Curry programs (2008).
http://www.informatik.uni-kiel.de/∼curry/flat/

18. Hanus, M.: Functional logic programming: from theory to curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123–168.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1 6

19. Hanus, M.: Combining static and dynamic contract checking for curry. In: Fiora-
vanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS, vol. 10855, pp. 323–340.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94460-9 19

20. Hanus, M.: Verifying fail-free declarative programs. In: Proceedings of the 20th
International Symposium on Principles and Practice of Declarative Programming,
PPDP 2018, pp. 12:1–12:13. ACM Press (2018)

21. Hanus, M., et al.: PAKCS: The Portland Aachen Kiel Curry System (2018). http://
www.informatik.uni-kiel.de/∼pakcs/

22. Hanus, M., Skrlac, F.: A modular and generic analysis server system for functional
logic programs. In: Proceedings of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation, PEPM 2014, pp. 181–188. ACM Press
(2014)

23. Hanus, M., Teegen, F.: Adding Data to Curry. In: Proceedings of the Conference
on Declarative Programming (Declare 2019). LNCS. Springer (2019)

24. Kieburtz, R.B.: The G-machine: a fast, graph-reduction evaluator. In: Jouannaud,
J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 400–413. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15975-4 50

25. López Fraguas, F.J., Sánchez Hernández, J.: TOY : a multiparadigm declarative
system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp.
244–247. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48685-2 19

26. José Moreno-Navarro, J., Kuchen, H., Loogen, R.: Lazy narrowing in a graph
machine. In: Kirchner, H., Wechler, W. (eds.) ALP 1990. LNCS, vol. 463, pp.
298–317. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53162-9 47

https://doi.org/10.1007/978-3-642-27694-1_4
https://doi.org/10.1007/978-3-319-63139-4_6
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/978-3-540-76637-7_9
http://toy.sourceforge.net
http://www.informatik.uni-kiel.de/~curry/flat/
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/978-3-319-94460-9_19
http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/
https://doi.org/10.1007/3-540-15975-4_50
https://doi.org/10.1007/3-540-48685-2_19
https://doi.org/10.1007/3-540-53162-9_47

ICurry 307

27. O’Donnell, M.J.: Equational Logic as a Programming Language. MIT Press, Cam-
bridge (1985)

28. Plump, D.: Term graph rewriting. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozen-
berg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transfor-
mation, Volume 2: Applications, Languages and Tools, pp. 3–61. World Scientific,
Singapore (1999)

29. Reddy, U.S.: Narrowing as the operational semantics of functional languages. In:
Proceedings of the IEEE International Symposium on Logic Programming, Boston,
pp. 138–151 (1985)

30. Wittorf, M.A.: Generic translation of Curry programs into imperative programs.
Master’s thesis, Kiel University (2018). (in German)

Author Index

Antoy, Sergio 286
Atzmueller, Martin 59

Bayot, Roy 79
Beires Nogueira, Vitor 79
Brass, Stefan 119

Dageförde, Jan C. 199
Dovier, Agostino 3
Dunkelau, Jannik 139

Ehmke, Dierk 139

Formisano, Andrea 3

Gonçalves, Teresa 79

Hanus, Michael 230, 286
Hofstedt, Petra 99, 106

Janhunen, Tomi 89
Jeltsch, Wolfgang 24
Jost, Andy 286

Kittelmann, Jana 178
Krings, Sebastian 139

Lepper, Markus 268
Libby, Steven 286
Liu, Ke 99, 106
Löffler, Sven 99, 106

Quaresma, Paulo 79

Raiyani, Kashyap 79

Schmidt, Joshua 139
Šefl, Vít 215
Seipel, Dietmar 59
Sioutis, Michael 89
Skowronek, Patrick 139

Teegen, Finn 199, 230
Trancón y Widemann, Baltasar 268

Vella, Flavio 3
Voigtländer, Janis 247

Weidner, Daniel 59
Wenzel, Mario 119
Wernhard, Christoph 160, 178
Wolf, Armin 43

	Preface
	Organization
	Contents
	Invited Talks
	GPU-Based Parallelism for ASP-Solving
	1 Preliminaries
	2 Conflict-Driven ASP-Solving
	3 ASP as an Irregular Application
	4 The CUDA-Based ASP-Solver Yasmin
	4.1 The Propagate-and-Check Procedure
	4.2 The Learning Procedure
	4.3 Exploiting Stream-Based Parallelism

	5 Experimental Results
	References

	A Process Calculus for Formally Verifying Blockchain Consensus Protocols
	1 Introduction
	2 The -Calculus
	2.1 Language
	2.2 Operational Semantics
	2.3 Behavioral Equivalence

	3 Residuals Axiomatically
	3.1 Residuals in General
	3.2 Weak Residuals
	3.3 Normal Weak Residuals

	4 Related Work
	5 Summary and Outlook
	References

	22nd International Conference on Applications of Declarative Programming and Knowledge Management - INAP 2019
	Modular Modeling and Optimized Scheduling of Building Energy Systems Based on Mixed Integer Programming
	1 Introduction
	2 Related Work
	3 Developing Extendible, Modular Optimization Models
	3.1 A MIP Model for Fuel Cell Combined Heat and Power Plants

	4 Implementing a MIP-Based Optimizing Tool
	5 Evaluation on a Heat Pump Scenario
	6 Conclusion and Future Work
	References

	Finding Maximal Non-redundant Association Rules in Tennis Data
	1 Introduction
	2 Related Work
	2.1 Association Rule Mining
	2.2 Condensed Representations and Post-mining Methods

	3 Association Rules and the Apriori Algorithm
	3.1 Definitions for Association Rules
	3.2 Mining Association Rules with Weka

	4 Data Mining Process
	5 Case Study: Analysis of Tennis Data
	5.1 Preparing the Data: Creating and Duplicating the Table
	5.2 From Table to Association Rules
	5.3 From Facts to Maximal Non-redundant Rules
	5.4 Manual Workflow for Domain Experts
	5.5 Experimental Results
	5.6 Future Work on Data Mining for Tennis Data

	6 Conclusions
	References

	From Textual Information Sources to Linked Data in the Agatha Project
	1 Introduction
	2 Framework for Processing Portuguese Text
	2.1 Part-Of-Speech Tagging
	2.2 Named Entity Recognition
	2.3 Dependency Parsing
	2.4 Semantic Role Labeling
	2.5 SVO Extraction
	2.6 Lexicon Matching
	2.7 Linked Data: Ontology, Thesaurus and Terminology

	3 Discussion
	4 Conclusions and Future Work
	References

	Allen's Interval Algebra Makes the Difference
	1 Introduction
	2 Preliminaries
	3 Difference Constraints for Answer-Set Programming
	4 Encoding Temporal Networks in ASP(DL)
	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

	Exploring Properties of Icosoku by Constraint Satisfaction Approach
	1 Introduction
	2 Preliminaries
	3 The Constraint Programming Model
	4 Experiments
	5 Conclusions and Future Work
	References

	The Regularization of Small Sub-Constraint Satisfaction Problems
	1 Introduction
	2 Preliminaries
	3 Substitution of Constraints by Regular Constraints
	4 Examples and Experimental Results
	4.1 The Black Hole Problem
	4.2 The Solitaire Battleships Problem

	5 Conclusion and Future Work
	References

	33rd Workshop on (Constraint) Logic Programming - WLP 2019
	Declarative Programming for Microcontrollers - Datalog on Arduino
	1 Introduction
	2 Target Platform
	3 Extension to Dedalus Language
	4 Program Evaluation
	5 IO Literals and Example Programs
	6 Macro Expansion
	7 Runtime Environment and Compilation
	7.1 Memory Management
	7.2 Target Code
	7.3 Compiled Source File
	7.4 Program Sizes and Speeds

	8 Conclusion
	References

	Towards Constraint Logic Programming over Strings for Test Data Generation
	1 Introduction
	2 Test Data
	2.1 Test Data Generators
	2.2 Requirements Towards Solvers

	3 Related Work and Alternative Approaches
	3.1 Autogen
	3.2 MiniZinc
	3.3 SMT Solvers
	3.4 Other Solvers
	3.5 Summary

	4 Constraint Logic Programming over Strings
	4.1 Domain Definition
	4.2 Domain Representation
	4.3 Constraint Handling Rules
	4.4 Integration of CLP(FD), CLP(R) and CLP(B)

	5 Case Studies
	5.1 Generation of IBAN Numbers
	5.2 Generation of Calendar Dates
	5.3 Generation of Data in JSON
	5.4 Comparison to Test Data Generators

	6 Way Forward and Future Work
	6.1 An Efficient Backend
	6.2 Combining Solvers

	7 Conclusion
	References

	Facets of the PIE Environment for Proving, Interpolating and Eliminating on the Basis of First-Order Logic
	1 Introduction
	2 PIE Documents
	3 Second-Order Quantifier Elimination in PIE
	4 Abduction with Second-Order Quantifier Elimination – Basic Use of PIE Macros
	5 Invoking Theorem Provers from PIE
	6 Computing Circumscription as Second-Order Quantifier Elimination – PIE Macros with Prolog Bodies, Result Simplifications
	7 Expressing Graph Colorability by a Second-Order Formula – PIE Macros with Parameters in Functor Position
	8 Craig Interpolation
	9 Further Features of PIE
	10 Conclusion
	References

	KBSET – Knowledge-Based Support for Scholarly Editing and Text Processing with Declarative LaTeX Markup and a Core Written in SWI-Prolog
	1 Introduction
	2 KBSET/Letters
	2.1 Descriptive Application-Specific Markup in LaTeX Notation
	2.2 From LaTeX to Prolog for Further Consistency Checking and Text Combination
	2.3 HTML Presentation
	2.4 Access from Prolog and Export of Fact Bases

	3 KBSET/NER
	3.1 Caching External Knowledge Bases for Access Patterns
	3.2 Named Entity Identification
	3.3 Assistance Documents

	4 Discussion
	4.1 KBSET in the World of Tools for Digital Scholarly Editing
	4.2 SWI-Prolog as a Unifying Practical Technology
	4.3 Some Issues for Logic-Based Knowledge Processing

	References

	27th International Workshop on Functional and Logic Programming - WFLP 2019
	Structured Traversal of Search Trees in Constraint-Logic Object-Oriented Programming
	1 Motivation
	2 Constraint-Logic Object-Oriented Programming
	3 Muli Logic Virtual Machine
	4 Search Trees
	4.1 Representation
	4.2 Construction
	4.3 Traversal

	5 Search Strategies
	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	References

	Performance Analysis of Zippers
	1 Introduction
	2 Related Work
	3 Zipper
	4 Performance Testing
	4.1 Tree Traversal
	4.2 Tree Insertion

	5 Results
	5.1 Tree Traversal
	5.2 Tree Insertion

	6 Conclusion
	References

	Adding Data to Curry
	1 Introduction
	2 Functional Logic Programming and Curry
	3 Equality vs. Equivalence
	4 Data
	5 Logic Variables
	6 Equality Optimization
	7 Non-left-Linear Rules and Functional Patterns
	8 Related Work
	9 Conclusions
	References

	Free Theorems Simply, via Dinaturality
	1 Introduction
	2 How Free Theorems Are Usually Derived
	2.1 Constructing Relations
	2.2 Unfolding Definitions
	2.3 Typical Complications
	2.4 Some Problematic Examples, and Outlook at a Remedy

	3 Free Theorems Simply, ``via Dinaturality''
	3.1 Usual Abstract Formulation of Relational Parametricity
	3.2 The Conjuring Lemma of Parametricity
	3.3 Constructing e – Discovering Dinaturality
	3.4 Simplifying Obtained Statements
	3.5 About What Generality Is Lost

	4 Implementation
	5 The Precise Connection to Dinaturality
	A Implementation
	References

	Improving the Performance of the Paisley Pattern-Matching EDSL by Staged Combinatorial Compilation
	1 Introduction
	1.1 Basic Design and Usage of Paisley
	1.2 Summary of Features
	1.3 Bottom-Up Optimization

	2 Compiling Paisley
	2.1 Design of the Paisley Compiler
	2.2 Implementation of the Paisley Compiler
	2.3 Motif Compilation

	3 Evaluation
	3.1 Cryptarithmetic Puzzles
	3.2 Document Object Model Navigation with XPath

	4 Conclusion
	4.1 Related Work

	5 Bytecode Disassembly of Countdown Example
	References

	ICurry
	1 Introduction
	2 Curry
	3 The Execution Model
	4 FlatCurry
	5 ICurry
	5.1 ICurry Definition
	5.2 Operational Semantics of ICurry
	5.3 ICurry Generation
	5.4 ICurry Use

	6 Concluding Remarks
	References

	Author Index

