
Brain Tumor Classification with
Multimodal MR and Pathology Images

Xiao Ma1,2 and Fucang Jia1,2(B)

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

fc.jia@siat.ac.cn
2 Shenzhen College of Advanced Technology, University of Chinese Academy

of Sciences, Shenzhen, China

Abstract. Gliomas are the most common primary malignant tumors of
the brain caused by glial cell canceration of the brain and spinal cord.
Its incidence accounts for the vast majority of intracranial tumors and
has the characteristics of high incidence, high recurrence rate, high mor-
tality, and low cure rate. Gliomas are graded into I to IV by the World
Health Organization (WHO) and the treatment is highly dependent on
the grade. Diagnosis and classification of brain tumors are traditionally
done by pathologists, who examine tissue sections fixed on glass slides
under a light microscope. This process is time-consuming and labor-
intensive and does not necessarily lead to perfectly accurate results. The
computer-aided method has the potential to improve tumor classification
process. In this paper, we proposed two convolutional neural networks
based models to predict the grade of gliomas from both radiology and
pathology data. (1) 2D ResNet-based model for pathology whole slide
image classification. (2) 3D DenseNet-based model for multimodal MRI
images classification. Finally, we achieve first place in CPM-RadPath-
2019 [1] challenge using these methods for the tasks of classifying lower
grade astrocytoma (grade II or III), oligodendroglioma (grade II or III)
and glioblastoma (grade IV).
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1 Introduction

Brain tumors are one of the common diseases in the central nervous system,
which are classified into primary and secondary tumors. Primary brain tumors
originate from brain cells, while secondary tumors metastasize from other organs
to the brain. Glioma is the first of all types of tumors in the brain and has the
highest incidence of intracranial malignant tumors. The World Health Organi-
zation (WHO) grades I-IV for gliomas based on malignant behavior for clinical
purposes. Preoperative glioma grading is critical for prognosis prediction and
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treatment planning. Grade I has the highest survival rate and Grade IV has the
lowest.

The current standard diagnosis and grading of brain tumors are done by
pathologists who test Hematoxylin and Eosin (H&E) staining tissue sections
fixed on glass slides under an optical microscope after resection or biopsy. The
cell of these subtypes has distinct features that pathologists use for grade con-
firmation. Some of the gliomas have the mixed above-mentioned features so it
is difficult to distinguish accurately. The whole confirmation process is usually
time-consuming, invasive, prone to sampling error and user interpretation. The
previous study has shown that CNN can be helpful for glioma classification
using pathology images [7]. CNN has shown its ability to work well with large
labeled datasets of computer vision tasks, such as ImageNet. But it is not easy
for medical imaging fields because of the limitations of data acquisition. Besides,
especially for WSI images, it is a difficult point because the size is too large, such
as 40k * 40k pixels.

Magnetic Resonance Imaging (MRI) is the standard medical imaging tech-
nique for brain tumor diagnosis in clinical practice. Usually, several compli-
mentary 3D MRI modalities are obtained - such as Fluid Attenuation Inver-
sion Recover (FLAIR), T1, T1 with contrast agent (T1c), and T2. Many works
have been done on trying to grade gliomas using MRI images by radiomics
feature-based machine learning methods [4] and CNN based deep learning
approaches [5,6,13,14] since MRI is relatively safe and non-invasive. However,
since the golden standard for glioma classification is based on pathological infor-
mation, it is difficult to predict the subtype of the glioma using only the MRI
data.

With the development of machine learning, especially deep learning and com-
puting ability, the automatic diagnosis technology based on computer vision has
been applied in many fields, and has made great success in judging the types
of diseases and the segmentation of lesions. It is natural to use deep learning to
combine pathological and MRI images to predict gliomas subtypes.

In this work, we present a deep learning-based method for the glioma clas-
sification of (1) lower grade astrocytoma, IDH-mutant (Grade II or III), (2)
oligodendroglioma, IDH-mutant, 1p/19q codeleted (Grade II or III), and (3)
glioblastoma and diffuse astrocytic glioma with molecular features of glioblas-
toma, IDH-wildtype (Grade IV). We try to utilize both pathology and MRI data
to train the model for a better classification result. Our model won first place
in the MICCAI 2019 Computational Precision Medicine: Radiology-Pathology
Challenge.

2 Dataset and Method

In this section, we describe the CPM-RadPath-2019 dataset and our method for
preprocessing and prediction.
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Fig. 1. Statistical information on the age of the patients from the dataset.

2.1 Dataset

The CPM-RadPath-2019 training dataset consists of a total of 221 paired radiol-
ogy scans and digitized histopathology images. Three subtypes which need to be
classified are glioblastoma, oligodendroglioma, and astrocytoma with the num-
ber of 133, 54 and 34. The data was provided in two formats: *.tiff for pathology
images and *.nii.gz for MRI images with modalities of FLAIR, T1, T1c, and
T2. In addition, we also get age information of the patient in the format of days
(Fig. 1). The size of the validation and testing set is 35 and 73 respectively.

Fig. 2. Visualization of pathological whole slide image.
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2.2 Preprocessing

Pathology. For all patients, each one has a pathological image, respectively
(Fig. 2). In each picture, only a small part of it is where the cells are stained,
and a large part of it is a white background. Besides, there are different degrees
of damage in some pictures, such as some strange color areas (blue or green). So
we need to find an effective way to extract meaningful information. Pathology
images of this dataset are compressed tiff format files which are very big after
decompression (up to about 30 GB). Due to the limitations of the resources, it
is not feasible to process the whole image. So we use openslide [8] to extract
patches of 512 * 512 pixel with a stride of 512 in both directions from the whole
slide images (see Fig. 3). During the extraction, we set several constraints to pre-
vent sampling to data that we are not expecting like backgrounds and damaged
images.

1) 100 < mean of the patch < 220.
2) Standard deviation of the patch > 100.
3) Convert the patch from RGB to HSV and the mean of channel 0 of it > 135

with the standard deviation > 25.

The iteration process will be stopped if two thousand patches are extracted
or exceeded the limits of maximum time. The number of patches of each label
is 108744, 49067 and 30318 with the order of G, A, and O. Although it may not
be very accurate, we set the labels of all extracted patches to the labels of the
entire WSI image.

Fig. 3. Visualization of sample extracted patches of the pathological whole slide images.
(First row : glioblastoma. Second row: astrocytoma. Third row: oligodendroglioma).
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Because of the different conditions of staining slice, using color normalization
can make the result of the image better and extract more effective information.
Now there are many robust color normalization methods for preprocessing the
image [12]. In our model, for the sake of simplicity, we transform the original
RGB images into grayscale images. The entire preprocessing process of patho-
logical images can be seen in Fig. 4. All these extracted patches will be used as
the input of the neural network for the tumor classification.

Fig. 4. Pathological image preprocessing process.

Magnetic Resonance Images. In general, for magnetic resonance images,
extracting valid features requires information on the tumor mask, and then mod-
els are established by these radiomics features to predict the desired outcome.
However, since the data set does not provide information about the mask, we
do not intend to use additional information. Although the MR image of this
dataset is very similar to the BraTS dataset [2], we have tried to train a seg-
mentation network using data from BraTS. Four raw modalities data are used
for the convolutional neural network to extract the 3D texture information. We
use SimpleITK to convert the MRI images to numpy arrays and normalize them
by subtracting the mean and scaling it to unit variance independently by each
modality. The volume size of the input data for the convolutional neural network
is 4 * 155 * 240 * 240. The sample MRI images can be seen in Figs. 5 and 6.

2.3 Convolutional Neural Network

Pathology. The extracted patches of the original WSI are grayscale *.png files.
We use well-known ResNet34 and ResNet50 [9] deep learning network architec-
tures for this classification task. The results of patch based classification on
cross-validation set can be seen in Table 1. The size of the training and cross-
validation set is 150504 and 37625 respectively.
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Fig. 5. Visualization of sample MRI data. (From left to right: FLAIR, T1, T1c, T2
respectively)

Fig. 6. An example of the segmentation results trained using BraTS18 dataset. From
left to right are FLAIR, T1ce, and segmentation mask.

ImageNet statistics are used for the normalization of the input images. The
batch size is 24 due to the limitation of the GPU memory. The cross-validation
set is obtained by randomly splitting the training set by 0.2. Adam optimizer is
employed with the initial learning rate 1e − 4 and weight decay 1e − 5. The loss
function is cross entropy loss. Extensive data augmentations are used including
random crop, rotation, zoom, translation and color change.

Table 1. Performance of patch classification accuracy.

Accuracy on cross-validation set

ResNet50 96.7%

ResNet34 95.6%

Magnetic Resonance Images. 3D DenseNet is employed to explore the MRI
volumes’ capabilities of the classification of gliomas because two-dimensional
networks may lose some spatial contextual information and dense connections
work better with small datasets [10]. The input and output layers are modified
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to meet our needs. Five-fold cross validation is employed to get a more robust
model. The average results obtained could be found in Table 2. Besides, the
confusion matrix can be seen in Fig. 7.

Table 2. Performance of MRI classification accuracy.

Accuracy on cross-validation set

DenseNet-8 81.82%

DenseNet-121 90.9%

Fig. 7. Confusion matrix of DenseNet-8 and DenseNet-101 on cross-validation set
respectively.

The batch size is 2 because of GPU memory efficiency. Mirroring, rotations,
scaling, cropping, and color augmentation are used for data augmentation. The
learning rate, loss function, and optimizer are set to be the same as the ResNet
model described above. All models are implemented on PyTorch platform [11]
and use NVIDIA Tesla V100 16GB GPU.

In the training stage, we train two models separately. In the inference stage,
we make a simple regression model get the final result according to the outputs
of the two models. Test time augmentation is performed at both the convolu-
tional neural network models for a more stable prediction. In general, the results
produced by the combined use of the outputs of the two models are more robust
and accurate. The whole process can be seen in Fig. 8.

3 Results and Discussion

In this section, we will briefly present some of the best evaluation results and
discuss the methods we have experimented with.
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Fig. 8. The whole process of the prediction stage.

As you can see in Table 3, the results are obtained from the online evaluation
tool. Above mentioned approaches are evaluated on the validation set. Several
metrics are available from online evaluation to estimate the performance of our
models.

Table 3. Results on CPM-RadPath-2019 validation set.

Balanced accuracy Kappa F1 micro

Pathology only ResNet50 0.833 0.866 0.914

Mri only DenseNet121 0.711 0.748 0.829

Ensemble 0.889 0.903 0.943

Among the metrics, balanced accuracy is defined as the average recall
obtained in each class. Kappa coefficients represent the proportion of error reduc-
tion between classifications and completely random classifications. po is the sum
of the number of samples for each correct classification divided by the total num-
ber of samples. pe is the expected agreement when both annotators assign labels
randomly. The F1 score can be interpreted as a weighted average of the precision
and recall, where an F1 score reaches its best value at 1 and the worst score at
0. [3] TP, TN, FN, FP stand for true positive, true negative, false negative, and
false positive respectively.

precision =
TP

(TP + FP )

recall =
TP

(TP + FN)
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Balanced accuracy =
Classes∑

recall/Classes (1)

κ =
(po − pe)
(1 − pe)

(2)

F1 =
2 ∗ (precision ∗ recall)
(precision + recall)

(3)

For pathological data, we have used directly extracted pictures and binarized
and denoised pictures after extraction. The first method can obtain above 95%
accuracy easily by using a convolutional neural network, while the second app-
roach is stuck on about 75% accuracy. As for the patch extraction method, I
believe there could be some better constraints other than what we have men-
tioned above. The speed and the rate of successful sampling of pre-set value
need to be further improved. Besides, the further annotation of pathological
whole slide images could be a help for our method.

For MRI data, in addition to the methods mentioned above, we also try to
use the segmentation tumors regions as the input of the neural network. The
segmentation network is trained by BraTS2018 challenge. However, we do not
use the tumor segmentation information because we do not want to use external
datasets. 2D network has also experimented and the results are worse than the
3D network as we can infer.

Overall, our experiments show the power of the convolutional neural network
on the task of glioma classification. Through pathological and MRI data, our
model could support the diagnosis and treatment planning of glioma for the
pathologists and radiologist. Effective combination of the computer-aided and
manual method can improve efficiency of the remedy process.

4 Conclusion

In this paper, we explore the potential of computer-aided method’s ability to the
diagnosis and grading of glioma by developing a CNN based ensemble model from
pathology and radiology data. Our method achieves first place for astrocytoma,
oligodendroglioma, and glioblastoma classification problem from CPM-RadPath-
2019. The results suggest that our model could be useful for improving the
accuracy of glioma grading. The proposed model could be further developed in
the future.
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