
Optimization with Soft Dice Can Lead
to a Volumetric Bias

Jeroen Bertels1(B) , David Robben1,2, Dirk Vandermeulen1,
and Paul Suetens1

1 Processing Speech and Images, ESAT, KU Leuven, Leuven, Belgium
jeroen.bertels@kuleuven.be
2 icometrix, Leuven, Belgium

Abstract. Segmentation is a fundamental task in medical image anal-
ysis. The clinical interest is often to measure the volume of a structure.
To evaluate and compare segmentation methods, the similarity between
a segmentation and a predefined ground truth is measured using metrics
such as the Dice score. Recent segmentation methods based on convo-
lutional neural networks use a differentiable surrogate of the Dice score,
such as soft Dice, explicitly as the loss function during the learning phase.
Even though this approach leads to improved Dice scores, we find that,
both theoretically and empirically on four medical tasks, it can introduce
a volumetric bias for tasks with high inherent uncertainty. As such, this
may limit the method’s clinical applicability.
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1 Introduction

Automatic segmentation of structures is a fundamental task in medical image
analysis. Segmentations either serve as an intermediate step in a more elaborate
pipeline or as an end goal by itself. The clinical interest often lies in the volume
of a certain structure (e.g. the volume of a tumor, the volume of a stroke lesion),
which can be derived from its segmentation [11]. The segmentation task can
also carry inherent uncertainty (e.g. noise, lack of contrast, artifacts, incomplete
information).

To evaluate and compare the quality of a segmentation, the similarity
between the true segmentation (i.e. the segmentation derived from an expert’s
delineation of the structure) and the predicted segmentation must be measured.
For this purpose, multiple metrics exist. Among others, overlap measures (e.g.
Dice score, Jaccard index) and surface distances (e.g. Haussdorf distance, aver-
age surface distance) are commonly used [13].

The focus on one particular metric, the Dice score, has led to the adoption of
a differentiable surrogate loss, the so-called soft Dice [9,15,16], to train convolu-
tional neural networks (CNNs). Many state-of-the-art methods clearly outper-
form the established cross-entropy losses using soft Dice as loss function [7,12].
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In this work, we investigate the effect on volume estimation when optimizing
a CNN w.r.t. cross-entropy or soft Dice, and relate this to the inherent uncer-
tainty in a task. First, we look into this volumetric bias theoretically, with some
numerical examples. We find that the use of soft Dice leads to a systematic under-
or overestimation of the predicted volume of a structure, which is dependent on
the inherent uncertainty that is present in the task. Second, we empirically val-
idate these results on four medical tasks: two tasks with relatively low inherent
uncertainty (i.e. the segmentation of third molars from dental radiographs [8],
BRATS 2018 [4–6,14]) and two tasks with relatively high inherent uncertainty
(i.e. ISLES 2017 [2,18], ISLES 2018 [3]).

2 Theoretical Analysis

Let us formalize an image into I voxels, each voxel corresponding to a true class
label ci with i = 0 . . . I − 1, forming the true class label map C = [ci]I . Typical
in medical image analysis, is the uncertainty of the true class label map C (e.g.
due to intra- and inter-rater variability; see Sect. 2.2). Under the assumption of
binary image segmentation with ci ∈ {0, 1}, a probabilistic label map can be
constructed as Y = [yi]I , where each yi = P (ci = 1) is the probability of yi

belonging to the structure of interest. Similarly, we have the maps of voxel-wise
label predictions Ĉ = [ĉi]I and probabilities Ŷ = [ŷi]I . In this setting, the class
label map Ĉ is constructed from the map of predictions Ŷ according to the
highest likelihood.

The Dice score D is defined on the label maps as:

D(C, Ĉ) =
2|C ∩ Ĉ|
|C| + |Ĉ| (1)

The volumes V(C) of the true structure and V(Ĉ) of the predicted structure are
then, with v the volume of a single voxel:

V(C) = v
I−1∑

i=0

ci, V(Ĉ) = v
I−1∑

i=0

ĉi (2)

In case the label map is probabilistic, we need to work out the expectations:

V(Y ) = vE[
I−1∑

i=0

yi], V(Ŷ ) = vE[
I−1∑

i=0

ŷi] (3)

2.1 Risk Minimization

In the setting of supervised and gradient-based training of CNNs [10] we are per-
forming empirical risk minimization. Assume the CNN, with a certain topology,
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is parametrized by θ ∈ Θ and represents the functions H = {hθ}|Θ|. Further
assume we have access to the entire joint probability distribution P (x, y) at
both training and testing time, with x the information (for CNNs this is typ-
ically a centered image patch around the location of y) of the network that is
used to make a prediction ŷ = hθ (x) for y. For these conditions, the general
risk minimization principle is applicable and states that in order to optimize the
performance for a certain non-negative and real-valued loss L (e.g. the metric or
its surrogate loss) at test time, we can optimize the same loss during the learn-
ing phase [17]. The risk RL(hθ ) associated with the loss L and parametrization
θ of the CNN, without regularization, is defined as the expectation of the loss
function:

RL(hθ ) = E[L(hθ (x), y)] (4)

For years, minimizing the negative log-likelihood has been the gold standard in
terms of risk minimization. For this purpose, and due to its elegant mathematical
properties, the voxel-wise cross-entropy loss (CE) is used:

CE(Ŷ , Y ) =
I−1∑

i=0

[CE(ŷi, yi)] = −
I−1∑

i=0

[yi log ŷi] (5)

More recently, the soft Dice loss (SD) is used in the optimization of CNNs to
directly optimize the Dice score at test time [9,15,16]. Rewriting Eq. 1 to its
non-negative and real-valued surrogate loss function as in [9]:

SD(Ŷ , Y ) = 1 − 2
∑I−1

i=0 ŷiyi∑I−1
i=0 ŷi +

∑I−1
i=0 yi

(6)

2.2 Uncertainty

There is considerable uncertainty in the segmentation of medical images. Images
might lack contrast, contain artifacts, be noisy or incomplete regarding the neces-
sary information (e.g. in ISLES 2017 we need to predict the infarction after treat-
ment from images taken before, which is straightforwardly introducing inherent
uncertainty). Even at the level of the true segmentation, uncertainty exists due
to intra- and inter-rater variability. We will investigate what happens with the
estimated volume V of a certain structure in an image under the assumption
of having perfect segmentation algorithms (i.e. the prediction is the one that
minimizes the empirical risk).

Assuming independent voxels, or that we can simplify Eq. 3 into J indepen-
dent regions with true uncertainty pj and predicted uncertainty p̂j , and corre-
sponding volumes sj = vnj , with nj the number of voxels belonging to region
j = 0 . . . J − 1 (having each voxel as an independent region when nj = 1), we
get:

V(Y ) =
J−1∑

j=0

(sjpj), V(Ŷ ) =
J−1∑

j=0

(sj p̂j) (7)
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We analyze for CE the predicted uncertainty that minimizes the risk RCE(hθ ):

arg min
Ŷ

[RCE(hθ )] = arg min
Ŷ

[E[CE(Ŷ , Y )]] (8)

We need to find for each independent region j:

arg min
p̂j

[sjCE(p̂j , pj)] = arg min
p̂j

[−pj log p̂j − (1 − pj) log(1 − p̂j)] (9)

This function is continuous and its first derivative monotonously increasing in
the interval ]0, 1[. First order conditions w.r.t. p̂j give the optimal value for the
predicted uncertainty p̂j = pj . With the predicted uncertainty being the true
uncertainty, CE becomes an unbiased volume estimator.

We analyze for SD the predicted uncertainty that minimizes the risk
RSD(hθ ):

arg min
Ŷ

[RSD(hθ )] = arg min
Ŷ

[E[SD(Ŷ , Y )]] (10)

We need to find for each independent region j:

arg min
Ŷ

[E[SD(Ŷ , Y )]] = arg min
p̂j

[E[1 − 2
∑J−1

j=0 sj p̂jpj
∑J−1

j=0 sj p̂j +
∑J−1

j=0 sjpj

]] (11)

This minimization is more complex and we analyze its behavior by inspecting
the values of SD numerically. We will consider the scenarios with only a single
region or with multiple independent regions with inherent uncertainty in the
image. For each scenario we will vary the inherent uncertainty and the total
uncertain volume.

Single Region of Uncertainty. Imagine the segmentation of an image with
K = 3 independent regions, α, β and γ, as depicted in Fig. 1 (A0). Region
α is certainly not part of the structure (pα = 0, i.e. background), region β
belongs to the structure with probability pβ and region γ is certainly part of
the structure (pγ = 1). Let their volumes be sα = 100, sβ , sγ = 1, respectively,
with μ = sβ

sγ
= sβ the volume ratio of uncertain to certain part of the structure.

Assuming a perfect algorithm, the optimal predictions under the empirical risk
from Eq. 11 are:

arg max
p̂α,p̂β ,p̂γ

[E[
2(sβ p̂βpβ + sγ p̂γ)

sαp̂α + sβ p̂β + sγ p̂γ + sβpβ + sγ
]] (12)

It is trivial to show that p̂α = 0 = pα and p̂γ = 1 = pγ are solutions for this
equation. The behavior of p̂β w.r.t. pβ and μ can be observed qualitatively in
Fig. 1 (A1-A4). Indeed, only for pβ = {0, 1} the predicted uncertainty p̂β is
exact. The location of the local minimum in p̂β = [0, 1] switches from 0 to 1
when pβ = 0.5. Therefore, when pβ decreases or increases from 0.5 (different
opacity in A1-A3), respectively under- or overestimation will occur (A4). The
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resulting volumetric bias will be highest when the inherent uncertainty pβ = 0.5
and decreases towards the points of complete certainty, being always 0 or 1. The
effect of the volume ratio μ (colors) is two-fold. With μ increasing, the optimal
loss value increases (A1-A3) and the volumetric bias increases (A4; solid lines).
However, the error on the estimated uncertainty is not influenced by μ (A4;
dashed lines).

Multiple Regions of Uncertainty. In a similar way we can imagine the
segmentation of a structure with K = N + 2 independent regions, for which
we further divided the region β into N equally large independent sub-regions
βn with n = 0 . . . N − 1. Let us further assume they have the same inherent
uncertainty pβn

= pβ and volume ratio μβn
= μβ

N (in order to keep the total
uncertain volume the same). If we limit the analysis to a qualitative observation
of Fig. 1 with N = 4 (B0-B4) and N = 16 (C0-C4), we notice three things. First,
the uncertainty pβ for which under- or overestimation will happen decreases (A4,

Fig. 1. The effects of optimizing w.r.t. SD for volume ratios: μ = 0.25 (blue), μ = 1
(black) and μ = 4 (red). ROWS A-C: Situations with respectively N = {1, 4, 16} inde-
pendent regions with uncertainty pβ . COLUMN 0: Schematic representation of the sit-
uation. COLUMNS 1-3: SD = [0, 1] (y-axis) for pβ = {0, 0.25, 0.5, 0.75, 1} (respectively
with increasing opacity) and p̂ = [0, 1] (x-axis). COLUMN 4: Influence of pβ = [0, 1]
(x-axis) on volumetric bias (solid lines) or on the error in predicted uncertainty (dashed
lines). With the light red area we want to highlight that easier overestimation of the
predicted volume occurs due to a higher volume ratio μ or an increasing number of
independent regions N . (Color figure online)
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B4, C4). Second, this effect is proportional with μ and the maximal error on the
predicted uncertainty becomes higher (B0-B4, C0-C4). Third, there is a trend
towards easier volumetric overestimation and with the maximal error being more
pronounced when the number of regions increases (A4, B4, C4).

3 Empirical Analysis

In this section we will investigate whether the aforementioned characteristics can
be observed under real circumstances. In a practical scenario, the joint proba-
bility distribution P (x, y) is unknown and presents itself as a training set. The
risk RL (Eq. 4) becomes empirical, where the expectation of the loss function
becomes the mean of the losses across the training set. Furthermore, the loss
L absorbs the explicit (e.g. weight decay, L2) or implicit (e.g. early stopping,
dropout) regularization, which is often present in some aspect of the optimiza-
tion of CNNs. Finally, the classifier is no longer perfect and additionally to the
inherent uncertainty in the task we now have inherent uncertainty introduced
by the classifier itself.

To investigate how these factors impact our theoretical findings, we train
three models with increasing complexity: LR (logistic regression on the input
features), ConvNet (simpler version of the next) and U-Net. We use five-fold
cross-validation on the training images from two tasks with relatively low inher-
ent uncertainty (i.e. lower-left third molar segmentation from panoramic dental
radiographs (MOLARS) [8], BRATS 2018 [4]) and from two tasks with rela-
tively high inherent uncertainty (i.e. ISLES 2017 [2], ISLES 2018 [3]). Next, we
describe the experimental setup, followed by a dissemination of the predicted
volume errors ΔV(Ŷ , Y ) = V(Ŷ ) − V(Y ) by CE and SD trained models.

3.1 Task Description and Training

We (re-)formulate a binary segmentation task for each dataset having one (multi-
modal) input, and giving one binary segmentation map as output (for BRATS
2018 we limit the task to whole tumor segmentation). For the 3D public bench-
marks we use all of the provided images, resampled to an isotropic voxel-size
of 2 mm, as input (for both ISLES challenges we omit perfusion images). In
MOLARS (2D dataset from [8]), we first extract a 448 × 448 ROI around the
geometrical center of the lower-left third molar from the panoramic dental radio-
graph. We further downsample the ROI by a factor of two. The output is the
segmentation of the third molar, as provided by the experts. All images are
normalized according to the dataset’s mean and standard deviation.

For our U-Net model we start from the successful No New-Net implementa-
tion during last year’s BRATS challenge [12]. We adapt it with three 3× 3(×3)
average pooling layers with corresponding linear up-sampling layers and strip the
instance normalization layers. Each level has two 3× 3(×3) convolutional layers
before and after the pooling and up-sampling layer, respectively, with [[10, 20],
[20, 10]], [[20, 40], [40, 20]], [[40, 80], [80, 40]] and [40, 20] filters. For the ConvNet
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model, we remove the final two levels. The LR model uses the inputs directly
for classification, thus performing logistic regression on the input features.

The images are augmented intensively during training and inputs are central
image crops of 162 × 162 × 108 (in MOLARS 243× 243). We train the models
w.r.t. CE or SD with ADAM, without any explicit regularization, and with the
initial learning rate set at 10−3 (for LR model at 1). We lower the learning rate
by a factor of five when the validation loss did not improve over the last 75
epochs and stop training with no improvement over the last 150 epochs.

3.2 Results and Discussion

In Table 1 the results are shown for each dataset (i.e. MOLARS, BRATS 2018,
ISLES 2017, ISLES 2018), for each model (i.e. LR, ConvNet, U-Net) and for
each loss (i.e. CE , SD) after five-fold cross-validation. We performed a pairwise
non-parametric significance test (bootstrapping) with a p-value of 0.05 to assess
inferiority or superiority between pairs of optimization methods.

Table 1. Empirical results for cross-entropy (CE), soft Dice score (1−SD) and volume
error (ΔV; in 102 pixels or ml) metrics for models optimized w.r.t. CE and SD losses.
Significant volumetric underestimations in italic and overestimations in bold.

Dataset ↓ Model → LR ConvNet U-Net

Training loss → CE SD CE SD CE SD
Metric ↓

MOLARS (2D) CE(Ŷ , Y ) 0.240 5.534 0.194 1.456 0.024 0.103

1 − SD(Ŷ , Y ) 0.068 0.153 0.150 0.270 0.865 0.931

ΔV(Ŷ , Y ) (102 pixels) −0.069 302.3 −0.276 87.09 0.092 −0.187

BRATS 2018 (3D) CE(Ŷ , Y ) 0.039 0.173 0.030 0.069 0.012 0.027

1 − SD(Ŷ , Y ) 0.080 0.355 0.196 0.715 0.585 0.820

ΔV(Ŷ , Y ) (ml) −2.841 276.4 3.936 19.93 −6.778 −1.905

ISLES 2017 (3D) CE(Ŷ , Y ) 0.025 0.155 0.018 0.069 0.014 0.066

1 − SD(Ŷ , Y ) 0.099 0.255 0.114 0.321 0.188 0.340

ΔV(Ŷ , Y ) (ml) 15.71 82.42 −4.227 23.83 −2.875 13.44

ISLES 2018 (3D) CE(Ŷ , Y ) 0.055 0.225 0.044 0.139 0.029 0.128

1 − SD(Ŷ , Y ) 0.136 0.329 0.200 0.449 0.362 0.518

ΔV(Ŷ , Y ) (ml) 0.773 34.03 −0.374 12.44 −0.878 5.442

Optimizing the CE loss reaches significantly higher log-likelihoods under all
circumstances, while soft Dice scores (i.e. 1 − SD) are significantly higher for
SD optimized models. Looking at the volume errors ΔV(Ŷ , Y ), the expected
outcomes are, more or less, confirmed. For the LR and ConvNet models, CE
optimized models are unbiased w.r.t. volume estimation. For these models, SD
optimization leads to significant overestimation due to the remaining uncertainty,
partly being introduced by the models themselves.

The transition to the more complex U-Net model brings forward two inter-
esting observations. First, for the two tasks with relatively low inherent uncer-
tainty (i.e. MOLARS, BRATS 2018), the model is able to reduce the uncertainty
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to such an extent it can avoid significant bias on the estimated volumes. The
significant underestimation for CE in BRATS 2018 can be due to the optimiza-
tion difficulties that arise in circumstances with high class-imbalance. Second,
although the model now has the ability to extend its view wide enough and
propagate the information in a complex manner, the inherent uncertainty that
is present in both of the ISLES tasks, brings again forward the discussed bias. In
ISLES 2017, having to predict the infarction after treatment straightforwardly
introduces uncertainty. In ISLES 2018, the task was to detect the acute lesion,
as observed on MR DWI, from CT perfusion-derived parameter maps. It is still
unknown to what extent these parameter maps contain the necessary informa-
tion to predict the lesion.

The CE optimized U-Net models result in Dice scores (Eq. 1) of 0.924, 0.763,
0.177 and 0.454 for MOLARS, BRATS 2018, ISLES 2017 and ISLES 2018,
respectively. The Dice scores obtained with their SD optimized counterparts
are significantly higher, respectively 0.932, 0.826, 0.343 and 0.527. This is in line
with recent theory and practice from [7] and justifies SD optimization when the
segmentation quality is measured in terms of Dice score.

4 Conclusion

It is clear that, in cases with high inherent uncertainty, the estimated volumes
with soft Dice-optimized models are biased, while cross-entropy-optimized mod-
els predict unbiased volume estimates. For tasks with low inherent uncertainty,
one can still favor soft Dice optimization due to a higher Dice score.

We want to highlight the importance of choosing an appropriate loss function
w.r.t. the goal. In a clinical setting where volume estimates are important and
for tasks with high or unknown inherent uncertainty, optimization with cross-
entropy can be preferred.
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