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Abstract. Early diagnosis and accurate segmentation of brain tumors
are imperative for successful treatment. Unfortunately, manual segmen-
tation is time consuming, costly and despite extensive human exper-
tise often inaccurate. Here, we present an MRI-based tumor segmenta-
tion framework using an autoencoder-regularized 3D-convolutional neu-
ral network. We trained the model on manually segmented structural T1,
T1ce, T2, and Flair MRI images of 335 patients with tumors of variable
severity, size and location. We then tested the model using independent
data of 125 patients and successfully segmented brain tumors into three
subregions: the tumor core (TC), the enhancing tumor (ET) and the
whole tumor (WT). We also explored several data augmentations and
preprocessing steps to improve segmentation performance. Importantly,
our model was implemented on a single NVIDIA GTX1060 graphics unit
and hence optimizes tumor segmentation for widely affordable hardware.
In sum, we present a memory-efficient and affordable solution to tumor
segmentation to support the accurate diagnostics of oncological brain
pathologies.
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1 Introduction

An estimated 17,760 people will die from a primary brain tumor this year in the
US alone [1]. Another 23,820 will be diagnosed with having one [1]. The earlier
and the more accurate this diagnosis will be, the better the patients chances are
for successful treatment. In cases of doubt, patients typically undergo a brain
scan either using computed tomography (CT) or magnetic resonance imaging
(MRI). Both techniques acquire a 3D image of the brain, which then serves as
the basis for medical examination. To understand the severity of the disease and
to plan potential treatments, a critical challenge is identifying the tumor, but
also to estimate its spread and growth by segmenting the affected tissue. This
process still often relies on careful manual assessment by trained medical staff.

In recent years, a growing number of algorithmic solutions were proposed
to aid and accelerate this process [2–4]. Most of these automatic segmentation
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methods build on convolutional neural networks (CNNs) trained on manual brain
segmentations of a large cohort of patients. Given enough training data, they
learn to generalize across patients and allow to identify the tumor and its spread
in new, previously unseen brains. However, there are at least two challenges
associated with CNN’s. First, they tend to overfit to the training data, making
it necessary to either have large data sets to begin with, or to use a variety
of data augmentations to make them generalize more robustly. Second, many
current CNN implementations require powerful computational resources to be
used within a reasonable time.

To solve such challenges and to promote the further development of automatic
segmentation methods, the brain tumor segmentation challenge (BraTS) [2,5–
8] provides large data sets of manually segmented brains for users to test new
implementations. Here, we used this data to implement a convolutional autoen-
coder regularized U-net for brain tumor segmentation inspired by last year’s
BraTS challenge winning contribution [3]. As model input, we used structural
(T1) images, T1-weighted contrast-enhanced (T1ce) images, T2-weighted images
and fluid-attenuated inversion recovery (Flair) MRI images of 335 patients with
tumors of variable severity, size and location. As training labels, we used the
corresponding manual segmentations.

The model training comprised three parts (Fig. 1). First, in an encoding
stage, the model learned a low-dimensional representation of the input. Second,
the variational autoencoder (VAE) stage reconstructed the input image from
this low-dimensional latent space. Third, a U-Net part created the actual seg-
mentations [9]. In this model architecture, the VAE part is supposed to act as
a strong regularizer on all model weights [3] and therefore to prevent overfitting
on the training data. The resulting segmentation images were compared to the
manual segmentation labels. This process was repeated until the optimal model
weights were found. These optimal parameters were then tested on new valida-
tion data of 125 patients, localizing and segmenting each brain tumor into three
tissue categories: whole tumor, enhancing tumor and tumor core.

Importantly, all of these steps were conducted on a single NVIDIA GTX1060
graphics unit while using data exclusively from the BraTS challenge 2019. In
addition, we explored various model parameters, data augmentations and pre-
processing steps to improve model performance. Therefore, we address above-
introduced challenges by presenting a memory-efficient and widely-affordable
solution to brain tumor segmentation in line with the aims of the GreenAI ini-
tiative [10].

2 Methods

2.1 Model Architecture

As mentioned above, our model is inspired by earlier work [3], but was adapted
as described in the following (see also Fig. 1). We adjusted the model architecture
to incorporate a patch-wise segmentation of the input image, as the full input
with a resolution of 240×240×155 voxel as used in the original model is too big
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to fit most commercially available graphics cards (GPU). This is true even with
a batch size of 1. We therefore used 3D blocks of size 80 × 80 × 80 and adjusted
the number of filters to make full use of the GPU memory available, leading to
32 filters in the first layer with a ratio of 2 between subsequent layers. We also
replaced the rectified linear unit (ReLU) activation functions with LeakyReLU
[11] as we observed an improvement in performance in a simplified version of
our model.

Notably, we tested various other factors, which did not lead to an improve-
ment in model performance, but are nevertheless included here as null-report.
These included a) changing the downsampling in the convolutional layers from
strides to average or max pooling, b) adjusting the ratio in the number of filters
between layers (including testing non-integer steps), c) varying the number of
units in the bottleneck layer, d) increasing the number of down-sampling and
subsequent up-sampling steps and e) replacing the original group norm by batch
norm. Due to our self-imposed computational constraints, we could not system-
atically test all these adjustments and possible interactions using the full model.
Instead, we tested these parameters in a simplified model with only 8 filters at
the input stage.

The overall model architecture follows a similar structure as a U-Net [9], with
an additional variational autoencoder module [12] to regularize the segmentation
of the tumor masks. As loss functions we used the mean-squared error between
the reconstructed and real input image and the Kullback-Leibler loss to ensure a
normal distribution in the latent space. The weights for both losses were down-
weighted by a factor of 0.1. The (soft Dice) segmentation loss was averaged
across all voxels belonging to the whole tumor (WT), enhancing tumor (ET)
and tumor core (TC).

2.2 Optimization

For training the model we used an adjusted version of the Dice loss in [3]:

LDice = 1 −
(
2 ∗

∑
(ytrue ∗ ypred) + s

(
∑

y2
true +

∑
y2
pred) + s

)
(1)

with ytrue being the real 3D mask and ypred being the corresponding 3D pre-
diction. This version of the Dice loss ensured that the loss estimate lies within
the interval [0,1]. The smoothness term s ensured that the model is allowed to
predict 0 tumor voxels without incurring a high loss in its overall estimate. In
line with [13] we decided to use s = 100.

The autoencoder part of our model consisted of two loss terms. As a recon-
struction loss we used the mean-squared error between the reconstructed and
the real input image:

LL2 = ||ytrue − ypred||22 (2)

In addition, we used a Kullback-Leibler loss to ensure a normal distribution
in our bottleneck layer, with N being the number of voxels in the input:

LKL =
1
N

∑
μ2 + σ2 − log σ2 − 1 (3)
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Fig. 1. Model architecture of our memory-efficient autoencoder-regularized U-Net. As
input to the model we used patches of size 80 × 80 × 80 and stacked the MRI modalities
in the channel dimension (n = 4). We used 3D convolutions with a kernel size of 3×3×3
throughout. We used residual blocks [14], using 3D convolutions with LeakyReLU
activations, interspersed with Group Normalization [15]. For upsampling to the original
image size, we used 3D bilinear upsampling and 3D convolutions with a kernel size of
1 for both the autoencoder and the segmentation part.

with μ and σ2 the mean and variance of the estimated distribution. In line
with [3] we weighted the autoencoder losses by 0.1, resulting in an overall loss
according to:

L = 0.1 ∗ LL2 + 0.1 ∗ LKL + 0.33 ∗ LDicewt
+ 0.33 ∗ LDicetc + 0.33 ∗ LDiceet (4)

We tested different weighting for the tumor subregions, but did not observe
a clear change in model performance using the smaller test model. We therefore
used the average of the three regions.

For training the model, we used the Adam optimizer [16], starting out with
a learning rate of 1e-4 and decreasing it according to

α = α0 ∗ (1 − e

Ne
)0.9 (5)

with e the epoch and Ne the number of total epochs (n = 50). We evaluated 2101
samples in each epoch, stopping early when the validation loss did not decrease
further for 2 subsequent epochs.

2.3 Data Augmentation

In line with [3] we used a random scaling between 0.9 and 1.1 on each image
patch, and applied random axis mirror flip for all 3 axes with a probability of 0.5.
We experimented with additional augmentations. In particular, we computed a
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voxel-wise similarity score for each participant’s T1 comparing it to a healthy
template brain. We co-registered an average template of 305 participants without
any tumors [17] to each patient’s T1 using translations, rotations and scaling and
calculated a patch-wise Pearson’s correlation with a searchlight-sphere size of
7 mm. The resulting correlation images were normalized and concatenated with
the 4 MRI modalities as an additional channel in the input (Fig. 2). However, in
our hands, this procedure did not further improve model performance. Future
work could test different across-image similarity measures.

Fig. 2. Local similarity score. To aid model performance, we computed a local similar-
ity score image, which served as additional input. We linearly co-registered a healthy
template brain [17] to each participant’s T1, and computed a patch-wise Pearson cor-
relation between the two. Patch-size was 7 mm. The correlation between healthy and
pathological brain drops in tumor regions.

A shortcoming of using discretized patch-input is the lack of information
about the anatomical symmetry of the tested brain images. Strong asymmetry in
MRI images can indicate the presence of a tumor, which is in most cases limited
to one hemisphere. The other hemisphere should hence rather approximate how
the healthy brain once looked like. Therefore, for each patch we also provided
the mirrored patch from the opposite hemisphere as an additional input. This
mirroring of image patches was only done on the sagittal plane of the MRI
images. Looking forward, we believe this approach has the potential to benefit
the model performance if measures other than Pearson’s correlation are explored
and mirror symmetry is factored in.

We used test time augmentation to make our segmentation results more
robust, for this we mirrored the input on all three axes and flipped the cor-
responding prediction to match the original mask orientation. This gave us 16
model estimates (2 ∗ 2 ∗ 2 ∗ 2), which we averaged and thresholded to obtain our
segmentation masks. We decided to directly optimize for tumor regions instead
of the intra-tumoral regions as this resulted in better estimates during training of
how well our model will perform on the BraTS 2019 competition benchmark. We
optimized the values at which we thresholded our masks on the training data
and used 0.55, 0.5 and 0.4 for whole tumor, tumor core and enhanced tumor
respectively.
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3 Results

Here, we present an autoencoder regularized U-net for brain tumor segmenta-
tion. The model was trained on the BraTS 2019 training data, which consisted
of 335 patients separated into high-grade glioma and low-grade glioma cases.
Initial shape of the input data was 240 × 240 × 155, with multi-label segmen-
tation masks of the same size, indicating NCR & NET (label 1), edema (label
2), and enhancing tumor (label 4). We created an average tumor template from
all segmentation masks to locate the most prominent tumor regions via visual
inspection. Based on that, we created our initial slice resulting in image dimen-
sions of 160 × 190 × 140. We then used a sliding window approach to create
patches of size 80×80×80, feeding these patches through the model while using
a sampling procedure that increased the likelihood of sampling patches with a
corresponding tumor (positive samples).

Table 1. Validation results. ET: enhancing tumor, WT: whole tumor, TC: tumor core.

Dice score Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.787 0.896 0.800 0.782 0.907 0.787 0.998 0.994 0.997 6.005 8.171 8.241

Std 0.252 0.085 0.215 0.271 0.088 0.246 0.003 0.008 0.004 14.55 15.37 11.53

Median 0.870 0.922 0.896 0.884 0.934 0.895 0.999 0.997 0.999 2.000 3.162 3.605

We used an ensemble of two separately trained models to segment the MRI
images of validation and testing set into different tumor tissue types. This allowed
us to test the model on previously unseen data (Table 1, Figs. 3, 4, team-name:
CYHSM). The mean Dice scores of our model on the validation dataset (n = 125)
are 0.787 for enhanced tumor, 0.896 for whole tumor and 0.800 for tumor core.

In Fig. 3, we show the model segmentations for one exemplary patient from
the validation set overlayed on the patient’s T1 scan. For this patient we obtained
Dice scores of 0.923 for whole tumor, 0.944 for tumor core and 0.869 for enhanc-
ing tumor from the online evaluation platform: https://ipp.cbica.upenn.edu. The
distribution of Dice scores across patients can be seen in Fig. 4 [18]. The ensem-
ble model performed well on most patients (∼ 0.9 median Dice score), but failed
completely in a few.

To examine why the model performed poorly in some few patients, we exam-
ined the model error pattern as a function of brain location. We calculated the
average voxel-wise Dice score for the whole tumor for all 125 validation sub-
sets and registered them to the Colin27-MNI-template (Fig. 5). We found that
our model performed well in superficial gray matter (average Dice-score >0.9),
but failed to segment the tumors accurately in white matter, predominantly
in deeper structures in the temporal lobes. Moreover, our model segmented the
whole tumor most accurately, but struggled to differentiate the enhancing tumor
from the tumor core. It especially misclassified low-grade glioma cases in which
no enhancing tumor was present (Dice score of 0).

https://ipp.cbica.upenn.edu
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Fig. 3. Tumor segmentations. Validation data shown for one exemplary patient. We
depict the T1 scan (upper panel) as well as the segmentation output of our model
overlaid on the respective T1 scan (bottom panel) for sagittal, horizontal and coronal
slices. Segmentations were color-coded.

4 Discussion

Tumor segmentation still often relies on manual segmentation by trained medical
staff. Here, we present a fast, automated and accurate solution to this problem.
Our segmentations can be used to inform physicians and aid the diagnostic pro-
cess. We successfully segmented various brain tumors into three tissue types:
whole tumor, enhancing tumor and tumor core in 125 patients provided by the
BraTS challenge [2]. Importantly, our model was implemented and optimized on
a single GTX1060 graphics unit with 6GB memory. To meet these low graph-
ics memory demands, we split the input images into multiple 3D patches. The
model iterated through these patches and converged on the most likely brain seg-
mentation given all iterations in the end. We hence present a memory efficient
and widely affordable solution to brain segmentation. Naturally, one limitation
of this low-cost approach is that the model is still relatively slow. Naturally,
more computational resources would alleviate this problem. In addition, more
graphics memory would allow to upscale the input patch size further, in turn
likely also benefiting the model performance greatly.

In addition, we implemented the model using data provided for this year’s
BraTS 2019 challenge alone. No other data was used. Earlier work including
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Fig. 4. Group-level segmentation performance (Dice score) for enhancing tumor (green,
left), tumor core (blue, middle) and whole tumor (petrol, right) for the validation
data set. We plot single-patient data overlaid on group-level whisker-boxplots (center,
median; box, 25th to 75th percentiles; whiskers, 1.5 interquartile range) as well as the
smoothed data distribution. (Color figure online)

Fig. 5. Model error (1-Dice Score) overlaid on structural T1-template in MNI-space.
Hot colors indicate high errors. The model performed well in superficial gray matter,
but failed in deeper structures, especially in white matter tracts in the temporal lobe.
(Color figure online)

previous BraTS challenges showed that incorporating additional data, hence
increasing the training data set, greatly improves model performance [4]. Here,
we aimed at optimizing brain tumor segmentation explicitly in the light of these
common computational and data resource constraints. One interesting observa-
tion was that the model performed well on most patients (3), but failed com-
pletely in a few. The reasons for this remain unclear and need to be explored in
the future.

Taken together, our results demonstrate the wide-ranging applicability of
U-Nets to improve tissue segmentation and medical diagnostics. We show that
dedicated memory efficient model architectures can overcome computational and
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data resource limitations and that fast and efficient brain tumor segmentation
can be achieved on widely-affordable hardware.
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