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Abstract. We propose an ensemble of 2D convolutional neural networks to
predict the 3D brain tumor segmentation mask using the multi-contrast brain
images. A pretrained Resnet50 and Nasnet-mobile architecture were used as an
encoder, which was appended with a decoder network to create an encoder-
decoder neural network architecture. The encoder-decoder network was trained
end to end using T1, T1 contrast-enhanced, T2 and T2-Flair images to classify
each pixel in the 2D input image to either no tumor, necrosis/non-enhancing
tumor (NCR/NET), enhancing tumor (ET) or edema (ED). Separate Resent50
and Nasnet-mobile architectures were trained for axial, sagittal and coronal
slices. Predictions from 5 inferences including Resnet at all three orientations
and Nasnet-mobile at two orientations were averaged to predict the final prob-
abilities and subsequently the tumor mask. The mean dice scores calculated
from 166 were 0.8865, 0.7372 and 0.7743 for whole tumor, tumor core and
enhancing tumor respectively.

Keywords: Convolutional neural network � Ensemble networks � Residual
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1 Introduction

Automated brain tumor segmentation [1–6] from magnetic resonance images is a
challenging task due to variations in the acquisition protocol at different imaging sites.
Different imaging parameters including field strength, acceleration factors, resolution,
etc. causes variance in the MR images which makes it difficult for automated algo-
rithms to accurately segment the brain tumor regions. Accurate segmentation of brain
tumor or gliomas is an important task in grading and monitoring of the disease
progression.

Brain tumor segmentation challenge (Brats) is an annual competition which pro-
vides manually segmented brain tumor dataset [7–11] to assess the performance of
brain tumor segmentation algorithms. Brats challenge started with brain tumor seg-
mentation and have been extended to the task of survival prediction and quantification
of uncertainty in segmentation. In recent times, with the availability of large annotated
dataset and compute power, most of the best performing algorithms in the challenge are
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based on deep learning [12]. The best performing algorithms proposed different real-
izations of the encoder-decoder neural network architectures. Algorithms based on the
variations of 3D Unet [13] have been used in the Brats challenge. Since the imple-
mentation of 3D Unet requires a large amount of memory, a patch-based approach is
often used. The patch-based approach involves training the 3D Unet on a 3D patch of
the image often a cube of 64 or 128 depending on the available memory and
width/depth of the network. The large memory requirement of the 3D Unet restricts the
width and depth of the network. Contrary a 2D Unet [14] requires comparatively less
memory than the 3D counterpart at an expense of loss of information from the third
spatial dimension. In 2D Unet each image slice is processed independently without
considering any information from the rest of the slices within the volume.

In this work, we improve our previous method [15] and propose to use an ensemble
of 2D encoder-decoder networks with each network predicting segmentation proba-
bilities for a different orientation (axial, sagittal and coronal). The predicted proba-
bilities from the different orientation are averaged to predict the final probability maps
and the segmentation mask for the whole 3D volume. Since probability maps from each
individual encoder-decoder are from a different orientation the final averaged proba-
bility may contain the 3D information. We hypotheses that false positives from one
orientation will be suppressed, when its predicted probability is averaged with the
probability map from another orientation.

2 Methods

2.1 Dataset

Manually segmented dataset of brain tumor MR images was provided by the organizers
of BRATS challenge. The dataset consisted of two types of brain tumor images namely
high-grade tumor (HGG) and low-grade tumor (LGG). Four different contrast T1, T2,
T1 contrast-enhanced and T2 Flair image were provided with the manually segmented
masks. The mask consisted of three different labels, the necrotic and non-enhancing
tumor core (NCR/NET - label 1), the peritumoral edema (ED - label 2), GD-enhancing
tumor (ET - label 4) and everything else is classified as label 0. A total of 335 subjects
were present consisting of 259 HGG and 76 LGG. The whole dataset was divided into
two, one for training and another for validation. Following was the composition of the
training and local validation dataset.

• Training dataset: consisted of 288 HGG and 61 LGG subjects.
• Local validation dataset: consisted of 51 HGG and 61 LGG subjects.

Apart from the local validation dataset, another 125 cases were provided to validate
the generalization of the model. These 125 cases were provided without the ground
truth and segmentation performance was evaluated online using the CBICA Image
Processing Portal (https://ipp.cbica.upenn.edu).
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2.2 Network Architecture

Our approach consisted of using a 2D convolutional neural network on the individual
slices of the whole 3D brain image. We performed end to end training with input being
multi-contrast brain images (T1, T2, Tl-CE, T3-Flair) and output being the segmen-
tation mask. The overview of the segmentation process is depicted in Fig. 1, we used
an ensemble of 2D networks to predict the segmentation of the whole 3D volume.

The encoder-decoder architecture similar to the Unet was the building blocks of the
ensemble network. Specifically, we used five separately trained encoder-decoder net-
works in the ensemble. The encoder-decoder architectures consisted of three networks
with Resnet50 [16] as encoder and two networks with Nasnet-mobile [17] as an
encoder. A spate encoder-decoder network was trained for each orientation (axial,
sagittal and coronal).

The decoder part in each of the network was the same and consisted of a series of
convolution and upsampling operations. One block of a decoder is depicted in Fig. 2,

Fig. 1. Overview of the segmentation process. Six separate networks were trained consisting of
three Resne50 encoder-decoder architecture for axial, sagittal and coronal orientations and three
Nasnet mobile encoder-decoder architecture for axial, sagittal and coronal orientations. The
probabilities from the individual predictions were averaged and the segmentation mask was
generated from the averaged probabilities.
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which consists of a 2D upsampling operation by a factor of 2 using bilinear interpo-
lation. The upsampling layer increases the spatial dimension of the features using
bilinear interpolation and increased size features are then concatenated with the features
from the encoder part having the same spatial dimension. The concatenated features are
then passed through the two blocks of convolution, batch normalization, spatial
dropout and rectilinear activation (ReLU). The number of features for each convolu-
tional layer in the decoder was 256 at each scale except the last scale where it was 128.
The convolution kernel size was always 3 � 3 in the decoder network. The last layer of
the decoder network consisted of four features, a softmax activation was applied on the
last layer, which converts the features into probability maps corresponding to the four
classes (NCR/NET, ED, ET or no tumor).

As depicted in Fig. 1, at the time of inference individual slices of the 3D image at
different orientations, were processed through the 2D encoder-decoder networks. For
Resnet50 predictions were made for axial, sagittal and coronal orientations while for
Nasnet-mobile predictions were made for axial and coronal orientations. With Nasnet-
mobile encoder-decoder we did not find performance improvement with the sagittal
orientation hence it was not used for inference on sagittal orientation. The predicted
probabilities from individual 2D slices were stacked to form a 3D volume and 3D
volumes from all orientations were averaged for the whole 3D volume. An argmax
along the channel dimension on the averaged probability map classified each pixel into
one of the four classes (NCR/NET, ED, ET or no tumor).

Fig. 2. One block of the decoder network, which first upsamples the input features by a factor of
2 using bilinear interpolation and concatenate the upsampled features with the same scale features
form the encoder network. The concatenated features are passed through two blocks of
convolution with batch normalization and ReLU activation.
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2.3 Pre-processing

The spatial dimension of the input image was 240 � 240 � 155. However, all the 2D
networks were trained on 256 � 256 images. The 2D input images were first zero-
padded symmetrically to make the 2D input to be 256 � 256.

Since the data was sourced from multiple sites, a preprocessing is required to
normalize the images. We used a simple pre-processing of normalizing the mean and
standard deviation of the whole 3D volume to zero mean and unity standard deviation
using Eq. 1.

xpp ¼ x� �xð Þ
std xð Þ ð1Þ

where xpp is the preprocessed 3D volume, x is the input 3D volume, �x is the mean of the
input volume and std xð Þ is the standard deviation of input.

2.4 Training

The training of the network was performed on the Keras [18] deep learning library with
Tensorflow backend. The adaptive stochastic gradient descent Adam optimizer was
used for training the network with a batch size of 4 and initial learning rate of 0.0001.
We considered the training of 2000 batches as one epoch. The learning rate was
decreased with a step decay of 0.96 per epoch. All the networks were trained for 100
epochs and the network for which the average dice score was maximum on the local
validation dataset was chosen as the best model and used for inference on the no
ground truth validation dataset.

The loss function used to train the Resnet encoder-decoder architecture consisted of
a weighted sum of categorical cross-entropy and soft dice loss. The soft dice loss is
defined as:

dice loss ¼ 2 �P pp � pt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p2p � p2t
q ð2Þ

where pp is the predicted probability map and pt is the true probability map.
We trained the Resnet50 encoder-decoder with the weighted sum of categorical

cross-entropy loss and dice loss with a weight of 1.0 for cross-entropy and weight of
0.1 for dice loss. For the Nasnet-mobile encoder-decoder, only categorical cross-
entropy was used as a loss function.

The results of segmentation were evaluated using the dice score, sensitivity (true
positive rate) and specificity (true negative rate) and Hausdorff distance (95%). The
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evaluation on the validation dataset was calculated using online web-portal provided by
the BRATS organizers.

3 Results and Discussion

The individual predictions of the trained networks were ensemble as depicted in Fig. 1
and the segmentation masks were uploaded to the online validation portal. Figure 3
shows the dice scores for the 125 validation subjects and 166 test subjects calculated by
the online portal. The median dice scores were higher than the mean dice scores for
both the test and validation dataset, suggesting that few difficult cases were segmented
by the network with lower accuracy. The dice scores for the test dataset were higher
than the validation dataset and also the sample size for the test dataset was larger 166
compared to 125 for the validation dataset. Higher dice score for test dataset (sample
size 166) suggests that the algorithm works well for most of the cases but does require
further improvements to accurately predict the segmentation for a few subjects that
were segmented with lower accuracy.

Fig. 3. Bar plot showing the mean dice score using the proposed method; (a): bar plot for
validation dataset from 125 subjects (b): bar plot for test dataset from 166 subjects
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Table 1 shows the mean and median dice score, sensitivity and Hausdorff distance
on the 125 validation subjects and Table 2 shows the mean and median dice score and
Hausdorff distance for 166 test subjects.

The medians of the dice scores are higher than that of the mean for all three
categories of the tumor. The higher median indicates that there are a few harder cases
where the algorithm fails to perform well. Usually, the performance on the enhancing
tumor class is more challenging compared to the other two classes. However, it is
worthwhile to note that the performance of our algorithm on the enhancing tumor class
is comparatively higher compared to the tumor core class. This suggests that there is a
scope of improvement for the core tumor class, which may require further training and
fine-tuning of the network. Two representative segmentations are shown in Fig. 4, one
for a highly accurate prediction with average dice score of 0.9508 (Fig. 3 (a)) and
another for less accurate segmentation with average dice score of 0.6301 (Fig. 3 (b)).

This work aimed to reduce the memory footprints of the 3D networks by trans-
forming it into multiple 2D networks. This transformation constitutes a trade-off
between the computational complexity and memory requirements, the proposed
approach reduces the memory footprints but increases the computational complexity.
For instance, a 3D network of similar architecture would require 3 times more com-
putation compared to 2D counterpart. However, an ensemble of five 2D networks
makes the computational complexity to be 5 times than the single 2D network.

Table 1. Quantitative score on validation dataset of 125 subjects calculated using the online IPP
portal

Whole tumor Core tumor Enhancing tumor

Dice score (mean) 0.8865 0.7372 0.7743
Dice score (median) 0.9163 0.8855 0.8666
Hausdorff distance 4.2348 5.7720 8.1844
Sensitivity (mean) 0.8602 0.6996 0.7786
Sensitivity (median) 0.9054 0.8510 0.8510

Table 2. Quantitative score on test dataset of 166 subjects calculated using the online IPP portal

Whole tumor Core tumor Enhancing tumor

Dice score (mean) 0.8851 0.8586 0.8052
Dice score (median) 0.9186 0.9224 0.8463
Hausdorff distance 6.4109 4.6700 3.4515
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4 Conclusion

In this work, we have presented an approach to predict the brain tumor segmentation
for the whole 3D volume using an ensemble to the 2D CNN. Specifically, we used
resnet50 and nasnet-mobile architectures for the predictions. The results are promising
with the average dice score of 0.8851, 0.8586 and 0.8052 for whole tumor, core tumor
and enhancing tumor respectively.

Fig. 4. Segmentation results for two representative images with red color: NCR/NET, orange
color: edema and white color: ET. The bottom of the figure shows the dice score for whole tumor
(WT), tumor core (TC) and enhancing tumor (ET) respectively. (a): first row shows ground truth
segmentation; second row shows predicted segmentation results for one of the highly accurate
prediction; (b): first row shows ground truth segmentation; second row shows predicted
segmentation results for one of the less accurate prediction. (Color figure online)
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