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Abstract. Automatic brain tumor segmentation method plays an
extremely important role in the whole process of brain tumor diagnosis
and treatment. In this paper, we propose a multi-step cascaded network
which takes the hierarchical topology of the brain tumor substructures
into consideration and segments the substructures from coarse to fine.
During segmentation, the result of the former step is utilized as the prior
information for the next step to guide the finer segmentation process. The
whole network is trained in an end-to-end fashion. Besides, to alleviate
the gradient vanishing issue and reduce overfitting, we added several aux-
iliary outputs as a kind of deep supervision for each step and introduced
several data augmentation strategies, respectively, which proved to be
quite efficient for brain tumor segmentation. Lastly, focal loss is utilized
to solve the problem of remarkably imbalance of the tumor regions and
background. Our model is tested on the BraTS 2019 validation dataset,
the preliminary results of mean dice coefficients are 0.886, 0.813, 0.771
for the whole tumor, tumor core and enhancing tumor respectively. Code
is available at https://github.com/JohnleeHIT/Brats2019.
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1 Introduction

Brain tumor is one of the most serious brain diseases, among which the malignant
gliomas are the most frequent occurred type. The gliomas can be simply divided
into two categories according to the severity: the aggressive one (i.e. HGG) with
the average life expectancy of nearly 2years and the moderate one (i.e. LGG)
with the life expectancy of several years. Due to the considerably high mortality
rate, it is of great importance for the early diagnosis of the gliomas, which largely
improves the treatment probabilities especially for the LGG. At present, the
most possible ways to treat gliomas are surgery, chemotherapy and radiotherapy.
For any of the treatment strategies, accurate imaging and segmentation of the
lesion areas are indispensable before and after treatment so as to evaluate the
effectiveness of the specific strategy.

Among all the existing imaging instruments, MRI has been the first choice
for brain tumor analysis for its high resolution, high contrast and present no
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known health threats. In the current clinical routine, manual segmentation of
large amount of MRI images is a common practice which turns out to be remark-
ably time-consuming and prone to make mistakes for the raters. So, it would be
of tremendous potential value to propose an automatic segmentation method.
Many researchers have proposed several effective methods based on deep learning
or machine learning methods to solve the problem. Among those proposed meth-
ods, Zikic et al. [1] used a shallow CNN network to classify 2D image patches
which captured from the MRI data volumes in a sliding window fashion. Zhao et
al. [2] converted the 3D tumor segmentation task to 2D segmentation in triplanes
and introduced multi-scales by cropping different patch sizes. Havaei et al. [3]
proposed a cascaded convolutional network, which can capture local and global
information simultaneously. Cigek et al. [4] extended the traditional 2D U-net
segmentation network to a 3D implementation which makes the volume seg-
mentation to a voxel-wise fashion. Kamnitsas et al. [5] proposed a dual pathway
3D convolution network named DeepMedic to incorporate multi-scale contextual
information, and used the 3D fully connected CRF as the postprocess method to
refine the segmentation result. Chen et al. [6] improved DeepMedic by first crop-
ping 3D patches from multiple layers selected from the original DeepMedic and
then merging those patches to learn more information in the network, besides,
deep supervision was introduced in the network to better propagate the gradient.
Ma et al. [7] employed a feature representations learning strategy to effectively
explore both local and contextual information from multimodal images for tissue
segmentation by using modality specific random forests as the feature learning
kernels.

Inspired by Havaei and Cicek, we proposed a multi-step cascaded network to
segment brain tumor substructures. The proposed network uses 3D U-net as the
basic segmentation architecture and the whole network works in a coarse-to-fine
fashion which can be seen as a kind of spatial attention mechanism.

2 Methodology

Based on the thorough analysis of the substructures of brain tumor, which turns
out to be a hierarchical topology (see Fig. 1), We propose a multi-step cascaded
network which is tailored for the brain tumor segmentation task. Our proposed
method mainly contains three aspects, detailed information are as follows:

2.1 Multi-step Cascaded Network

The proposed multi-step cascaded networks are illustrated in Fig. 2. This method
segments the hierarchical structure of the tumor substructures in a coarse-to-fine
fashion. In the first step, in order to be consistent with the manual annotations
protocol which are detailed descripted in [8], two modalities (Flair&T1ce) of the
MRI tumor volumes are utilized. The two-channel data volumes are then fed
into the first segmentation network to coarsely segment the whole tumor (WT)
which contains all the substructures of the brain tumor; In the second step,
similarly, we choose T1lce modality as the data source to segment the tumor
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Fig. 1. Schematic diagram of the tumor structures

core (TC) structure. Besides, the result of the first coarse step can be utilized
as the prior information for the second step. By multiplying the mask generated
in the first step with the Tlce data volume, the second segmentation network
will concentrate more on the corresponding masked areas and make it easier
to segment the TC structure. Then the masked volumes are processed by the
second network, as a result, TC structure (foreground) are introduced. In the last
and finest step, by following the same strategies, we can also get the enhancing
tumor (ET) substructures from the data volume, and finally by combining the
results of the three steps, the final segmentation maps of the brain tumor will
be received.
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Fig. 2. Overview of the proposed multi-step cascaded network

2.2 3D U-Net Architecture with Deep Supervisions

We take a variant of 3D U-net as the basic segmentation architecture in
our multi-step cascaded networks, which is illustrated in Fig.3. The typical
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3D U-net consists of two pathways: the contracting pathway and the expanding
pathway. The contracting pathway mainly intends to encode the input volumes
and introduces the hierarchical features, the expanding pathway however is used
to decode the information encoded in the contracting pathway. The two path-
ways are connected with skip connections so as to make the network be capable
of capturing both local and global information. Our basic segmentation network
takes 3D U-net as the prototype, whilst makes some improvements on top of it.
The main differences between 3D U-net and the proposed basic segmentation
networks are as follows:

(1) Compared to the traditional 3D U-net architecture, our proposed basic seg-
mentation network introduces three auxiliary outputs in the expanding path-
way with the intention of better gradient propagation and decreasing the
probabilities of vanishing gradient for the relatively deep segmentation net-
works. As a result, we need to minimize the overall loss functions which
comprise both the main branch and the auxiliary loss functions for the basic
segmentation process.

(2) We introduce the focal loss [9] as the loss function for the whole training
process with the intention of alleviating the considerably imbalance of the
positive and negative samples in the training data. The focal loss can be
expressed as follows:

FL (pt) = —ax (1 = pr)” log (p) (1)
_Jr ify=1
Pe = { 1 — p otherwise (2)

where p € [0,1] is the model’s estimated probability for the class with label
y=1. v > 0 refers to focusing parameter, it smoothly adjusts the rate at
which easy examples are down weighted. a; refers to balancing factor which
balance the importance of the positive and negative samples.
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Fig. 3. Schematic of the 3D U-net architecture with deep supervisions
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3 Experiments and Results

3.1 Preprocessing

In this paper, we take BraTS 2019 dataset [10-13] as the training data, which
comprises 259 HGG and 76 LGG MRI volumes with four modalities (T1, T2,
T1lce and Flair) available. According to the official statement of the dataset, all
the datasets have been segmented manually following the same annotation pro-
tocol. Besides, some preprocessing operations have also been conducted on those
datasets, for example, all the MRI volumes have been co-registered to the same
anatomical template, interpolated to the same resolution and skull-stripped.
Nevertheless, extra preprocessing steps should be done to the raw dataset due to
the existence of the intensity nonuniformity in the image data, also called bias
field which comes from the imperfect of the MRI machine and the specificity
of the patients. This kind of intensity nonuniformity or bias field considerably
affects the training process. To eliminate the bias field effect, a great deal of cor-
rection methods have been proposed. Among the proposed bias field correction
method, the most effective one is the N4 bias field correction [14]. In this paper,
N4 bias field correction method is utilized as an important preprocessing step
before the segmentation process. At last, we also use the normalization method
to normalize all the data to zero mean with unit variance.

3.2 Implementation Details

We mixed all the data in the BraTS 2019 training dataset including HGG and
LGG, and then trained our model with the mixed dataset. During training, we
first extract the brain region from the volume by getting the largest rectangle
which contains the brain. Then we randomly crop the raw data volume to sub-
volumes due to memory limitation and we choose the size of the patches as
96*96*96 empirically. We take one patch from a patient’s data volume every
iteration in the training process. While in the testing phase, for a single data
volume we get the sub-volumes in order so as to rebuild the whole volume with
those predictions and the patch size is the same as is in the training process. We
get different number of patches for each patient data because the brain regions
we extracted from the volume are distinct. To reduce overfitting, we introduced
some data augmentation methods, for instance, rotating a random angle, flipping
horizontally and vertically, and adding guassion blur to the sub-volumes with
a certain probability. It turned out that the data augmentation was significant
important for the brain tumor segmentation task because the network is prone
to be overfitting with relatively less training data. We used Adam optimizer to
update the weights of the network. The initial learning rate was set to 0.001 at
the very beginning and decayed to 0.0005 when the loss curve plateaued. The
batch size was set to 1 in the whole training process.

Our model was trained on a Nvidia RTX 2080 Ti GPU for 50 epochs, which
takes around 13 h.
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3.3 Segmentation Results

To evaluate our proposed mothed, we tested our algorithm on both training
and validation set by uploading the inference results to the online evaluation
platform (CBICB’s IPP), we finally got the evaluation results including Dice
sore, Hausdorff distance, sensitivity and specificity for the whole tumor (WT),
the tumor core (TC) and the enhancing tumor (ET), respectively. The metrics
aforementioned are defined as follows:

. | Py A Th |
Dice(P,T) = +—+——71— (3)
(| P + |T1]) /2
P AT,
Sensitivity (P, T) = [P AT (4)
1]
Py N1
Speciﬁcity(P,T):| 0 A To| (5)
T
Haus(P,T) = ma; sup inf d(p,t), sup inf d(t, 6
(P,T) X{p@% Jnf (p,t) Sup b ( p)} (6)

where P refers to the prediction map of the algorithm, and 7T is the groundtruth
label segmented manually by the experts. A is the logical AND operator, |-| means
the number of voxels in the set, and Py, Py represent the postive and negative
voxels in the prediction map, respectively, and 17, Ty denote the positive and
negative voxels in the groundtruth map, respectively. d(p, t) denotes the distance
of the two points p, t. P is the surface of the prediction volume set P; and 0T}
is the surface of the groundtruth label set T7.

Table 1 presents the quantitative average results on both training and vali-
dation dataset. Not surprisingly, the dice coefficient and sensitivity of the whole
tumor, the tumor core and the enhancing tumor are in a descending order for
both datasets due to the ascending difficulties for those tasks. However, there
still exists small gaps for the evalutation metrics between training and validation
dataset which attributed to the overfitting problem.

Table 1. Quantitative average results on the training and validation dataset

Dataset Label | Dice | Sensitivity | Specificity | Hausdorff
distance

Training |WT |0.915|0.942 0.993 4.914

TC |0.832|0.876 0.996 6.469

ET 0.791 | 0.870 0.997 6.036
Validation | WT |0.886 | 0.921 0.992 6.232

TC 0.813|0.819 0.997 7.409

ET 0.771 0.802 0.998 6.033
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To better analysis the overall performance of the proposed algorithm, we
made the boxplot of all the validation and training results, which can be seen
from Fig. 4. It is evident that the proposed method can segment well on almost
all the volumes in both datasets except for a few outliers. Besides, by comparing
the boxplot of the validation and training dataset, we noticed that the variance
of all the evaluation metrics including dice coefficient, sensitivity, specificity and
hausdorff distance for the validation dataset is larger than those for training
dataset, which means that our method still suffers from the overfitting problem
to some extent. Finally, we can see from the 4 subgraphs that the variance of dice
coefficient for the whole tumor is smaller than both tumor core and enhancing
tumor substructures for both training and validation datasets, the same for
sensitivity and hausdorff distance metrics and the opposite for the specificity
metrics, which are in line with our expectations. However, what surprise us most
is that the variance of the tumor core (TC) is larger than that of enhancing tumor
core (ET) on most metrics for the two datasets, the most possible explanation
of the fact is that the network sometimes predicts the whole tumor as the tumor
core mistakenly with the impact of the LGG tumor samples, which increases the
variations sharply.
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Fig. 4. Boxplot of the overall performance on both training and validation datasets

Qualitative analysis of the segmentation results for the HGG and LGG
tumors are also introduced, which can be seen from Fig. 5 and Fig. 6, respectively.
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Whole Tumor Tumor Core Enhancing Tumor

Fig. 5. Segmentation result of the whole tumor (WT'), Tumor core (TC) and Enhancing
tumor (ET) structures for HGG tumors, each shows the ground truth label (The blue
line) and the prediction result (The red line) (Color figure online)

The left row are the flair modality images with the whole tumor ground truth
and the prediction result, demonstrated in blue and red curves respectively. The
middle row are the Tlce modality images with the tumor core ground truth
and the prediction result which are illustrated in the same way as the left row.
The right row of course focus on the remaining substructure, i.e. the enhancing
tumor.

All of the three regions with great clinical concerns have been well segmented
except for some small details. Not surprisingly, our aforementioned guess about
the difficulties of the three tasks can be verified again from the visualization
result. Specifically, from step one to step three, the task becomes tougher because
the contrast between the tumor region and the surrounding background decreases
and the segmentation substructures contours become much rougher at the same
time.
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Whole Tumor Tumor Core Enhancing Tumor

Fig. 6. Segmentation result of the whole tumor (WT'), Tumor core (TC) and Enhancing
tumor (ET) structures for LGG tumors, each shows the ground truth label (The blue
line) and the prediction result (The red line) (Color figure online)

4 Discussing and Conclusion

By visualizing all the validation results, we find it interesting that plenty of
bad segmented cases for the tumor core regions are those who mistaken the
whole tumor as the tumor core region. The most possible explanation might be
the variations between different MRI volumes despite the same modality. So, it
is likely that the results would increase if some preprocessing methods which
can decrease those variations have been taken before the training process, e.g.
histogram equalization.

Besides, we also tried the curriculum learning strategy which trained the
network step by step instead of end-to-end training, it turns out that the results
are no better than the end-to-end training ones. That is most likely because the
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network can fit the training data better if all the parameters in the network can
be updated. Lastly, we tried to weight the three steps of the cascaded network,
surprisingly, we find that the final results present no big difference for increment,
decrement or even weights of the training steps.

In conclusion, we present a very efficient multi-step network to segment all
the tumor substructures. We first choose specific modalities for each step to keep
the automatic segmentation process to be consistent with the mamual protocol
which improves our result a lot compared to the method to use all the modalities.
After that, we preprocess the input volumes with N4 bias field correction and
normalization. Due to the memory limitation, we randomly crop volume patches
from the original data and introduce data augmentation on those patches, We
find the data augmentation is quite important for reducing overfitting especially
when the training data is scarce.

At last, the training patches are trained in the multi-step network which has
proved to be more effective than the one-step couterpart as it trains the network
in a coarse-to-fine fashion and seperates the tough multi-classification problem
to three much easier binary-classification issuse.

We evaluated the proposed mothod on the BraTS 2019 validation dataset,
the results show that our method performance well on all three substructures.
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