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Preface

This volume contains articles from the Brain-Lesion workshop (BrainLes 2019), as
well as the (a) International Multimodal Brain Tumor Segmentation (BraTS 2019)
challenge, (b) Computational Precision Medicine: Radiology-Pathology Challenge on
Brain Tumor Classification (CPM-RadPath 2019) challenge, and (c) the tutorial session
on Tools Allowing Clinical Translation of Image Computing Algorithms (TACTICAL
2019). All these events were held in conjunction with the Medical Image Computing
for Computer Assisted Intervention (MICCAI 2019) conference during October 13–17,
2019, in Shenzhen, China.

The papers presented describe research of computational scientists and clinical
researchers working on glioma, multiple sclerosis, cerebral stroke, trauma brain inju-
ries, and white matter hyper-intensities of presumed vascular origin. This compilation
does not claim to provide a comprehensive understanding from all points of view;
however the authors present their latest advances in segmentation, disease prognosis,
and other applications to the clinical context.

The volume is divided into four parts: The first part comprises the paper submissions
to BrainLes 2019, the second contains a selection of papers regarding methods pre-
sented at BraTS 2019, the third includes a selection of papers regarding methods
presented at CPM-RadPath 2019, and lastly papers from TACTICAL 2019.

The aim of the first chapter, focusing on BrainLes 2019 submissions, is to provide
an overview of new advances of medical image analysis in all of the aforementioned
brain pathologies. Bringing together researchers from the medical image analysis
domain, neurologists, and radiologists working on at least one of these diseases. The
aim is to consider neuroimaging biomarkers used for one disease applied to the other
diseases. This session did not make use of a specific dataset.

The second chapter focuses on a selection of papers from BraTS 2019 participants.
BraTS 2019 made publicly available a large (n = 626) manually annotated dataset of
pre-operative brain tumor scans from 19 international institutions, in order to gauge the
current state of the art in automated brain tumor segmentation using multi-parametric
MRI modalities, and comparing different methods. To pinpoint and evaluate the
clinical relevance of tumor segmentation, BraTS 2019 also included the prediction of
patient overall survival, via integrative analyses of radiomic features and machine
learning algorithms, as well as experimentally attempted to evaluate the quantification
of the uncertainty in the predicted segmentations, as noted in: www.med.upenn.edu/
cbica/brats2019.html.

The third chapter contains descriptions of a selection of the leading algorithms
showcased during CPM-RadPath 2019 (www.med.upenn.edu/cbica/cpm2019-data.
html). CRM-RadPath 2019 used corresponding imaging and pathology data in order to
classify a cohort of diffuse glioma tumors into two sub-types of oligodendroglioma and
astrocytoma. This challenge presented a new paradigm in algorithmic challenges,
where data and analytical tasks related to the management of brain tumors were

http://www.med.upenn.edu/cbica/brats2019.html
http://www.med.upenn.edu/cbica/brats2019.html
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combined to arrive at a more accurate tumor classification. Data from both challenges
were obtained from The Cancer Genome Atlas/The Cancer Imaging Archive
(TCGA/TCGA) repository and the Hospital of the University of Pennslvania.

The final chapter comprises two TACTICAL 2019 papers. The motivation for the
tutorial on TACTICAL is driven by the continuously increasing number of newly
developed algorithms and software tools for quantitative medical image computing and
analysis towards covering emerging topics in medical imaging and aiming towards the
clinical translation of complex computational algorithms (www.med.upenn.edu/cbica/
miccai-tactical-2019.html).

We heartily hope that this volume will promote further exiting research about brain
lesions.

March 2020 Alessandro Crimi
Spyridon Bakas
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Abstract. Structural magnetic resonance imaging (MRI) has been
widely utilized for analysis and diagnosis of brain diseases. Automatic
segmentation of brain tumors is a challenging task for computer-aided
diagnosis due to low-tissue contrast in the tumor subregions. To over-
come this, we devise a novel pixel-wise segmentation framework through
a convolutional 3D to 2D MR patch conversion model to predict class
labels of the central pixel in the input sliding patches. Precisely, we first
extract 3D patches from each modality to calibrate slices through the
squeeze and excitation (SE) block. Then, the output of the SE block
is fed directly into subsequent bottleneck layers to reduce the number
of channels. Finally, the calibrated 2D slices are concatenated to obtain
multimodal features through a 2D convolutional neural network (CNN)
for prediction of the central pixel. In our architecture, both local inter-
slice and global intra-slice features are jointly exploited to predict class
label of the central voxel in a given patch through the 2D CNN classifier.
We implicitly apply all modalities through trainable parameters to assign
weights to the contributions of each sequence for segmentation. Experi-
mental results on the segmentation of brain tumors in multimodal MRI
scans (BraTS’19) demonstrate that our proposed method can efficiently
segment the tumor regions.

Keywords: Pixel-wise segmentation · CNN · 3D to 2D conversion ·
Brain tumor · MRI

1 Introduction

Among brain tumors, glioma is the most aggressive and prevalent tumor that
begins from the tissue of the brain and hopefully cannot spread to other parts
of the body. Glioma can be classified into low-grade glioma (LGG) and high-
grade glioma (HGG). LGGs are primary brain tumors and usually affect young
c© Springer Nature Switzerland AG 2020
A. Crimi and S. Bakas (Eds.): BrainLes 2019, LNCS 11992, pp. 3–12, 2020.
https://doi.org/10.1007/978-3-030-46640-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46640-4_1&domain=pdf
http://orcid.org/0000-0003-2543-0712
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WT: Whole Tumor TC: Tumor Core ET: Enhancing Tumor

RWT RTC
RET

FLAIR T1 T1c T2

Brain tumor

Fig. 1. Structural MRI provides a non-invasive method to determine abnormal changes
in the brain for clinical purpose. Four MRI modalities (FLAIR, T1, T1c, and T2) along
with brain lesion: WT (all internal parts), TC (all except edema), and ET (enhancing
tumor).

people compared to HGGs. Multimodal MR sequences comprised of FLAIR,
T1, T1c, and T2 are usually used to segment internal parts of the tumor, i.e.,
whole tumor (WT), tumor core (TC), and enhancing tumor (ET) as depicted in
Fig. 1. Since the shape and location of tumors are unpredictable, it is difficult to
identify exactly type of brain tumor by studying the brain scans. On the other
hand, the low tissue contrast in the lesion regions makes the tumor segmentation
a challenging task. Moreover, manual annotation of these tumors is a time-
consuming and often biased task. Thus, automatic segmentation approaches are
a crucial task in diagnosis, analysis, and treating plane.

Many segmentation methods have been proposed to segment tissue of inter-
est based on traditional [5,6,19,20] and modern machine learning methods [7]
in medical application. The brain tumor segmentation methods [8,14] can be
roughly categorized into the pixel-wise [9,15] and region-wise [11,12,16,18,21]
techniques. The former predicts only the central pixel of each input patch while
the latter predicts labels of the most pixels inside the input patches. The region-
wise methods are usually based on 3D [11,16,21] and 2D [12,18] fully convolu-
tional networks (FCNs). Wang et al. [21] applied the cascaded framework with
three stages to segment WT, TC, and ET on each stage, respectively. Isensee et
al. [11] employed a U-Net-like architecture [17] that was trained on the BraTS
training dataset [3,13] along with a private clinical dataset with some augmen-
tations. In another work, Pereira et al. [16] introduced two new blocks to extract
discriminative feature maps: recombination-recalibration (RR) and segmenta-
tion squeeze-and-excitation (SegSE) blocks.
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Fig. 2. Illustration of the proposed 3D to 2D patch conversion model for the pixel-wise
segmentation of glioma. The 3D to 2D model includes the SE block and 1×1 convolution
as the bottleneck layer. The input data are 3D multimodal image patches, and the
outputs are four types of clinical subregions, i.e., edema, non-enhancing, enhancing,
and healthy tissue.

In 2D structures, Shen et al. [18] utilized a multi-task FCN framework to seg-
ment tumor regions. Additionally, Le et al. [12] introduced deep recurrent level
set (DRLS) based on VGG-16 with three layers: convolutional, deconvolutional,
and LevelSet layer. In the pixel-wise networks [9,15], the authors established the
2D CNN-based model to predict a single class label for the central pixel in the
2D multimodal patches. However, the intra-slice features are not used in their
segmentation frameworks.

Although the 3D FCN models can capture 3D information from MRI scans,
3D architectures are too computationally expensive because of the complicated
network structure, including the 3D kernels, 3D input patches, and input dimen-
sions. Notably, the size of the image patches is the most notable memory fac-
tor in convolutional nets, especially in the multimodal BraTS scans with four
sequences. In the case of multimodal 3D scans, we have 5-dimensional tensors,
including batch size, width, length, depth, and the number of modality con-
catenation. These tensors require much more memory for training and testing
compared to 2D FCN.

The focus of the current study is to develop a 3D to 2D conversion net-
work for the pixel-wise segmentation. The conversion block employs squeeze-and-
excitation (SE) block to adaptively calibrate slices in the input patch sequence
by explicitly modeling the interdependencies between these slices. The bottle-
neck layer is applied to encode the 3D patches to 2D ones to decrease the number
of input channel to the following feature extraction block. We use multimodal
2D output patches for segmentation through the 2D-CNN network. Particularly,
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we utilize the 3D feature between consecutive slices while using convolutional
layers with 2D kernels in our framework. The rest of our paper is organized as
follows. In Sect. 2, we describe 3D to 2D conversion method. Section 3 explains
the databases used for evaluation and experimental results. Some conclusions
are drawn in Sect. 4.

2 Method

Our goal is to segment an input MR volume, I ∈ R
H×W×D, according to manual

labels S ∈ {1, 2, ..., c}H×W×D, where c is the number of output classes. Also
H, W , and D are the spatial height, width, and depth, respectively. Let x ∈
R

ω×ω×L denotes the cropped 3D input patch on the central voxel, x
ω
2 , ω

2 , L
2 . We

need to predict the label of central voxels in each extracted 3D patch via 2D-
CNN network. Figure 2 demonstrates an overview of the proposed method. We
first introduce the adaptive 3D to 2D conversion module, and then 2D-CNN
architecture will be discussed.

2.1 Convolutional 3D to 2D Patch Conversion

We extend the SE block [10] to deal with the calibration of input 3D patches.
Our model squeezes the global spatial information in each slice by computing
average in each slice as:

zl = Fsq(xl) =
1

ω × ω

ω∑

i=1

ω∑

j=1

xl(i, j). (1)

where zl is the global embedded information in the slice of l. The second oper-
ation called ‘excitation’ is applied to capture slice-wise dependencies with a
sigmoid (σ) and ReLU (δ) activation, respectively. Thus we have:

u = Fex(z,W ) = σ(W2δ(W1z)) (2)

where W1 ∈ R
r×w2

and W2 ∈ R
w2×r are the weight matrices of two fully-

connected with reduction ratio r. At last, the scalar ul and input slice xl are
multiplied to obtain the calibrated 3D patch, x′ ∈ R

ω×ω×L.
Our bottleneck layer is a block that contains one convolutional layer with

the kernel size of 1 × 1 to represent calibrated 3D slices as 2D with nonlinear
dimensionality reduction, x′′. Each 2D patch thus forms a 3D-like representation
of a part (n consecutive slices) of the MR volume. This model allows incorporat-
ing some 3D information while bypassing the high computational and memory
requirements of the 3D CNN.

2.2 Classifier Block for Pixel-Wise Prediction

The output slices from four 3D to 2D blocks are concatenated and fed into classi-
fier block to predict the label of voxel where is located at the center of its cropped
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patch. The proposed network allows jointly capturing contextual features from
FLAIR, T1, T1c, and T2 modality. For feature extraction, we rely on CNN block
to learn from ground truth scores. Our feature extractor consists of two levels
of 3 × 3 convolutions along with max-pooling layers. The number of kernels in
each level is 32, 32, 32, 64, 64, and 64, respectively. The fully-connected layers
are composed of 64 and 32 hidden neurons, respectively, followed by the final
Softmax layer. Finally, we optimize cross-entropy loss between the predicted
score, Fseg(xFLAIR,xT1,xT1c,xT2;W), and the ground truth label, s

ω
2 , ω

2 , L
2 ,

with ADADELTA optimizer [22] as:

arg min
W

−
c∑

i

s
ω
2 , ω

2 , L
2 . log(Fseg(xFLAIR,xT1,xT1c,xT2;W)) (3)

where c is the class number and W is the trainable parameter of the model.

3 Experimental Results

3.1 Implementation Details

We implement the proposed method using the KERAS and TensorFlow with
12 GB NVIDIA TITAN X GPU. We have experimentally found that volumes
of seven have the best compromise between accuracy and complexity. Thus, the
input MR volumes are partitioned into 33 × 33 × 7 patches at the center of
each label, then the concatenated patches from four modalities are considered
as training data. For efficient training and class imbalance in brain tumor, we
perform augmentation in the number of patches for the small sample size classes.
The model is trained using the ADADELTA [22] optimizer (learning rate = 1.0,
ρ = 0.95, epsilon=1e−6) and cross-entropy as the loss function. Dropout is
employed to avoid over-fitting during the training process (pdrop = 0.5).

3.2 Datasets

The performance of the proposed pixel-wise method is evaluated on BraTS [1–
4,13] dataset to compare with other segmentation methods based on the pixel.
BraTS’13 contains small subjects, i.e., 30 cases for training and 10 cases for
the Challenge. We additionally evaluate the proposed technique on BraTS’19,
which has two publicly available datasets of multi-institutional pre-operative
MRI sequences: Training (335 cases) and Validation (125 cases). Each patient
is contributing 155 × 240 × 240 with four sequences: T1, T2, T1c, and FLAIR.
In BraTS’19, it identifies three tumor regions: non-enhancing tumor, enhanc-
ing tumor, and edema. Evaluation is performed for the WT, TC, and ET. The
evaluation is assessed by the SMIR1 and CBICA IPP2 online platforms. Metrics
computed by the online evaluation platforms in BraTS’19 are Dice Similarity
1 https://www.smir.ch/BRATS/Start2013.
2 https://ipp.cbica.upenn.edu.

https://www.smir.ch/BRATS/Start2013
https://ipp.cbica.upenn.edu
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Table 1. Impact of the 3D to 2D conversion block in segmentation: we perform exper-
iments using the same setting to evaluate performance with and without proposed
block.

Model DSC HD95 (mm)

ET WT TC ET WT TC

With 3D to 2D block 83.15 91.75 92.35 1.4 3.6 1.4

Without 3D to 2D block 80.21 89.73 88.44 3.1 4.2 1.5

Coefficient (DSC) and the 95th percentile of the Hausdorff Distance (HD95),
whereas, in BraTS’13, the online platform calculates DSC, Sensitivity, and Pos-
itive Predictive Value (PPV). DSC is considered to measure the union of auto-
matic and manual segmentation. It is calculated as DSC = 2TP

FP +2TP +FN where
TP, FP, and FN are the numbers of true positive, false positive, and false nega-
tive detections, respectively.

3.3 Segmentation Results on BRATS’13

Ablation Study. To investigate the effect of the proposed adaptive 3D to
2D block, we perform experiments with and without considering the 3D to 2D
block. For the latter, we directly apply multimodal 3D volume into the 3D plain
CNN model. We train both models with the 320 K patch for an equal number
of the patch in each group and validate on ten unseen subjects. Also, Dropout
is employed to avoid over-fitting during the training process (pdrop = 0.5). As
presented in Table 1, the results with 3D to 2D block increase the accuracy
of segmentation in terms of standard evaluation metrics compared to the 3D
baseline.

Comparison with State-of-the-Arts. We also compare the performance of
the proposed method with the well-known pixel-wise approach [9,15] and 2D
region-wise ones [18] on BraTS’13 Challenge. Table 2 shows DSC (%), Sensitivity,
and PPV for EN, WT, and TC, respectively. Moreover, it can be seen that the
proposed method outperforms others in DSC for WT.

3.4 Segmentation Results on BRATS’19

One limitation of pixel-wise methods is the time complexity at inference time due
to pixel by pixel prediction. Specifically, we have to process about 9M voxels per
channel for each patient. Although we eliminate voxels with the value of zero
in testing time, the pixel-wise prediction still needs longer time compared to
region-wise ones. This issue limits our method for evaluation on BraTS’19 with
125 validation samples. To decrease the inference time, we use a plain 3D U-Net
model to solely predict WT as an initial segmentation, which further allows us
to compute a bounding box concerning tumor region for our pixel-wise method.
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Table 2. Comparison of proposed 3D to 2D method with others on BraTS’13 Challenge
dataset.

Method DSC Sensitivity PPV

EN WT TC EN WT TC EN WT TC

Shen [18] 0.76 0.88 0.83 0.81 0.90 0.81 0.73 0.87 0.87

Pereira [15] 0.77 0.88 0.83 0.81 0.89 0.83 0.74 0.88 0.87

Havaei [9] 0.73 0.88 0.79 0.80 0.87 0.79 0.68 0.89 0.79

Proposed method 0.74 0.89 0.80 0.78 0.86 0.86 0.73 0.92 0.76

Table 3. DSCs and HD95 of the proposed method on BraTS’19 Validation set (training
on 335 cases of BraTS’19 training set).

Dice Sensitivity Specificity HD95 (mm)

ET WT TC ET WT TC ET WT TC ET WT TC

Mean 72.48 89.65 79.56 73.25 90.60 79.57 99.87 99.45 99.69 5.4 7.8 8.7

Std. 29.47 8.968 21.62 26.61 08.91 24.77 0.23.5 0.58 0.36 9.2 15.5 13.5

Median 84.46 92.19 89.17 83.20 93.66 91.14 99.94 99.64 99.82 2.2 3.1 3.8

25 quantile 70.99 88.31 74.63 67.73 87.83 72.88 99.84 99.26 99.56 1.4 2.0 2.0

75 quantile 89.22 94.72 93.39 88.71 96.58 96.04 99.98 99.81 99.93 4.2 5.3 10.2

axial slices sagittal slices
MDA_959 MDA_1060 WashU_S040 WashU_W053 CBICA_AQE CBICA_ARR TCIA10_195 TCIA10_220

Fig. 3. Segmentation results are overlaid on FLAIR axial and sagittal slices on
BraTS’19 Validation Data. The yellow label is edema, blue color means enhancing
tumor, and the green one presents the necrotic and non-enhancing tumor core. Each
column displays one slice of different Subject IDs of BraTS’19. (Color figure online)

In this way, the segmentation of the internal part of the tumor area is performed
inside the bounding box. The results in Table 3 show that our method achieved
competitive performance on automatic brain tumor segmentation. Results are
reported in the online processing platform by BraTS’19 organizer.

Moreover, Fig. 3 shows examples for glioma segmentation from validation
slices of BraTS’19. For simplicity of visualization, only the FLAIR image is
shown in the axial and sagittal view along with our segmentation results. The
subject IDs in each column are related to the validation set.
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4 Conclusion

This paper provides a framework that adaptively converts 3D patch into 2D
to highlight discriminative pixels for the label prediction of central voxels. The
converted 2D images are fed into the classifier block with 2D kernels for the
predication. This conversion enables incorporating 3D features while bypassing
the high computational and memory requirements of fully 3D CNN. We pro-
vided ablation study to examine the effect of our proposed conversion block on
the segmentation performance. Results from the BraTs’13 and BraTS’19 dataset
confirm that inter and intra-slice features effectively improve the performance
while using 2D convolutional kernels. Though pixel-wise methods have limitation
in inference time, we can take advantage of pre-trained network for classification
purpose through fine-tuning with MRI training set. Future works will concen-
trate on 3D to 2D patch conversion with an attention mechanism.
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Abstract. Automatic segmentation of lesions in head CT provides key
information for patient management, prognosis and disease monitoring.
Despite its clinical importance, method development has mostly focused
on multi-parametric MRI. Analysis of the brain in CT is challenging
due to limited soft tissue contrast and its mono-modal nature. We study
the under-explored problem of fine-grained CT segmentation of multiple
lesion types (core, blood, oedema) in traumatic brain injury (TBI). We
observe that preprocessing and data augmentation choices greatly impact
the segmentation accuracy of a neural network, yet these factors are
rarely thoroughly assessed in prior work. We design an empirical study
that extensively evaluates the impact of different data preprocessing and
augmentation methods. We show that these choices can have an impact
of up to 18% DSC. We conclude that resampling to isotropic resolution
yields improved performance, skull-stripping can be replaced by using the
right intensity window, and affine-to-atlas registration is not necessary
if we use sufficient spatial augmentation. Since both skull-stripping and
affine-to-atlas registration are susceptible to failure, we recommend their
alternatives to be used in practice. We believe this is the first work to
report results for fine-grained multi-class segmentation of TBI in CT. Our
findings may inform further research in this under-explored yet clinically
important task of automatic head CT lesion segmentation.

1 Introduction

Traumatic brain injury (TBI) is a pathology that alters brain function caused
by trauma to the head [1]. TBI is a leading cause of death and disability world-
wide with heavy socio-economic consequences [2]. Computed tomography (CT)
c© Springer Nature Switzerland AG 2020
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allows rapid assessment of brain pathology, ensuring patients who require urgent
intervention receive appropriate care [3]. Its low acquisition time allows for rapid
diagnosis, quick intervention, and safe application to trauma and unconscious
patients. Research on automatic segmentation of TBI lesions in magnetic reso-
nance imaging (MRI) [4,5] has shown promising results. However, MRI is usually
reserved for imaging in the post-acute phase of brain injury or as a research tool.
Since CT is routinely used in clinical care and CT voxel intensities are approx-
imately calibrated in Hounsfield units (HUs) across different scanners, effective
computational analysis of CT has the potential for greater generalisation and
clinical impact than MRI. Prior work on automatic analysis of pathology in
head CT is limited, mostly focusing on image-level detection of abnormalities
[6,7], feature extraction for outcome prediction [8], or image-level classification
[9] instead of voxel-wise semantic segmentation. Previous works on segmentation
employ level-sets for the segmentation of specific haemorrhages and haematomas
[10,11]. Recently, [12] applied deep learning for binary segmentation of contusion
core grouped with haematomas. We present the first multi-class segmentation of
contusion core, blood (haemorrhages and haematomas), and oedema. This task
is important for patient management and a better understanding of TBI.

State-of-the-art automatic segmentation relies on convolutional neural net-
works (CNNs) [13]. These models are effective in many biomedical imaging tasks
[14]. Neural networks are theoretically capable of approximating any function
[15]. This result commonly translates in the expectation that networks are able
to extract any necessary pattern from the input data during training. As a
result, attention is mainly focused on further development of network architec-
tures, while disregarding other parts of the system, such as data preprocessing.
Contrary to popular belief that networks generalise well by learning high-level
abstractions of the data, they tend to learn low-level regularities in the input [16].
In practice, the learned representations are largely dependent on a stochastic,
greedy and non-convex optimisation process. We argue that appropriate data
preprocessing and augmentation can be as important as architectural choices.
Preprocessing can remove useless information from the input and help training
start in a “better” region of the feature space. Data augmentation can help opti-
misation by reducing the risk overfitting to training samples. It can also learn a
model invariant to information not useful for the task (e.g., rotation).

Motivated by these observations, we present an extensive ablation study of
different preprocessing and data augmentation methods commonly found in the
literature but whose usage is rarely empirically justified. Our goal is to establish
the most appropriate methodological steps for segmentation of TBI lesions in
CT. We explore the effects of spatial normalisation, intensity windowing, and
skull-stripping on the final segmentation result. We also explore the effects of
spatial normalisation vs. spatial data augmentation. We demonstrate that using
intensity windowing can replace skull-stripping, and spatial data augmentation
can replace spatial normalisation. We show the difference these methodological
choices can make is up to 18% in the Dice similarity coefficient (DSC). To the
best of our knowledge, this work is the first to report results for multi-class
segmentation of contusion core, blood and oedema in TBI head CT.
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(a)

(b)

(c)

Fig. 1. Left (a): Effect of affine spatial normalisation to atlas space, CT atlas (top),
before and after normalisation (left and right). Top right (b): Skull-stripping meth-
ods, from left to right: no skull-stripping; thresholding out the skull; level-set method.
Bottom right (c): Intensity distribution of classes inside the brain mask.

2 Methods

Dataset: We use 98 scans from 27 patients with moderate to severe TBI. We
split the data into training and test (64/34), ensuring images from the same
patient are in the same set. All scans have been manually annotated and reviewed
by a team of experts to provide reference segmentations. We consider four classes:
background; core; blood; and oedema. The core class includes contusion cores
and petechial haemorrhages. The blood class includes subdural and extradural
haematomas as well as subarachnoid and intraventricular haemorrhages.

Spatial Normalisation: Since CNNs are not scale invariant, it is standard
practice to resample all images to have the same physical (isotropic) resolution
(e.g., 1 × 1 × 1 mm). Given that brain CT is often highly anisotropic with high
in-plane and low out-of-plane resolution, we may opt to resample to anisotropic
resolution (e.g., 1× 1× 4 mm) without loss of information while saving memory
in the CNN’s activations. Another preprocessing option is to perform spatial
normalisation via registration to a reference frame, e.g., an atlas. Using affine
transformations, we can remove inter-subject variability in terms of rotation
and scaling which may be beneficial for the CNN. We investigate the effect of
resampling and registration using three different settings: 1) isotropic resolution
of 1 mm; 2) anisotropic resolution of 1×1×4 mm; 3) affine-to-atlas registration
with 1 mm isotropic resolution. The atlas has been constructed from 20 normal
CT scans that show no disease using an iterative unbiased atlas construction
scheme [17], and subsequent alignment to an MNI MRI atlas (Fig. 1a).
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Skull-Stripping and Intensity Windowing: Skull-striping is commonly used
in brain image analysis to eliminate unnecessary information by removing the
skull and homogenising the background. Unlike MRI, CT intensities are roughly
calibrated in HUs and have a direct physical interpretation related to the absorp-
tion of X-rays. A specific intensity value reflects the same tissue density regard-
less of the scanner. Air is defined as −1000 HUs, distilled water as 0, soft tissue
ranges between −100 and 300, while bone has larger values than soft tissue. Con-
sider a lower and an upper bound that define the range of soft tissue. We test
three different skull-stripping methods: 1) no skull-stripping: we set intensities
below the lower bound and above the upper bound to the lower and upper bound
respectively; 2) thresholding out the skull: we set values below the lower bound
and above the upper bound to the lower bound; 3) a level-set method (geodesic
active contours [18]) to remove the skull followed by thresholding. Figure 1b
shows the effect of the three skull-stripping methods. We performed a visual
check on all images to make sure the level-set method is not removing parts of
the brain. We test two different intensity windows for the bounds and normal-
isation: 1) a larger window range [−100, 300]; 2) a smaller window [−15, 100].
Figure 1c shows that intensity values of soft tissue fall well inside these windows.
After skull-stripping and windowing, we normalise the intensity range to [−1, 1].
As seen in Fig. 1b, the brain-mask it not perfect in cases with a craniectomy,
yet, this is a realistic scenario when we calculate automatic brain-masks for large
datasets.

Data Augmentation: We test the following settings: no augmentation; flipping
the x axis; flipping the x and y axes; flipping the x and y axes combined with
fixed rotations (multiples of 90◦) of the same axes; flipping and fixed rotations
of all axes; random affine transformations (scaling ±10%; rotating xy randomly
between ±45◦; rotating xz and yz randomly between ±30◦) combined with flip-
ping the x axis; random affine transformations combined with flipping the x and
y axes. We test these settings for both isotropic and affine spatial normalisation
to study the effects of spatial augmentation vs. spatial normalisation.

Model architecture: Our main goal is to study the effects of preprocessing and
hence we use the same architecture for all experiments1. We employ DeepMedic
[5], a 3D CNN, with 3 parallel pathways that process an image at full resolution,
three and five times downsampled. We use the residual version [19], but using 20
less feature maps per convolution layer. To see which results are model specific
we re-run a subset of experiments with a 3D U-Net [20].

3 Results and Discussion

To assess which type of preprocessing is most effective we test all combinations
of the aforementioned alternatives for spatial normalisation, intensity windowing
1 For the experiments with 1×1×4 resolution, we turn some of the isotropic kernels into

anisotropic 3×3×1 kernels in order to obtain approximately the same receptive field
as in the experiments with isotropic resolution. This did not affect the performance.
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Fig. 2. Visual comparison for three cases. Top to bottom: image, manual and predicted
segmentation. Red is contusion core, green is blood, and blue is oedema. (Color figure
online)

and skull-stripping. For evaluation, we use the DSC calculated after transform-
ing the prediction back into the original native image space (where the expert
segmentation is defined). Thus, we guarantee an accurate comparison with the
expert’s segmentation. Figure 3 shows the DSC of the foreground class for all
preprocessing pipelines (flipping the x axis for augmentation). The foreground
class consists of all lesion classes merged into one (after training) for an over-
all evaluation and comparison. Figure 2 presents a visual comparison between
manual segmentation and the prediction made by the best performing model.
We can see that the TBI lesions have large inter-subject variability and intra-
subject complexity, making for a difficult segmentation problem. Figure 4 shows
the result of paired Wilcoxon signed-rank tests to determine which performance
differences are statistically significant (p < 0.05). Figure 5a presents the per
class DSC. Figure 5b presents a subset of experiments replicated with a different
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Fig. 3. Foreground DSC box plots for all preprocessing pipelines. (Color figure online)

model to determine if the results are model specific. Figure 6 shows the results
of spatial data augmentation for comparison with spatial normalisation.

Resampling Images to Isotropic Resolution Significantly Improves
Performance. From Figs. 3 and 4 (purple) we observe that using anisotropic
resolution of 1×1×4 is consistently worse than using the other two spatial nor-
malisation methods which use isotropic resolution. This contradicts the intuition
that oversampling the out-of-plane axis is not necessary, even though it does not
add information. CNNs have an architectural bias towards isotropic data which
is likely the cause for this result. The kernels are stacked such that it is expected
the same amount of information to be present in each physical direction.

Skull-Stripping Can Be Replaced by Windowing. From Fig. 4 (yellow) we
can see that skull-stripping significantly helps performance when combined with
a large intensity window. However, when combined with a small intensity win-
dow, skull-stripping does not offer a benefit over no skull-stripping. We observe
the same for the second model (Fig. 5b) where the difference is also not statis-
tically significant (p = 0.2). This indicates that what is important for the CNN
is to remove intensity ranges that are not of interest (e.g., hyper-intense skull,
either via windowing or skull stripping), allowing it to focus on the subtle inten-
sity differences between lesions and healthy tissue. Therefore, skull-stripping may
be replaced by an intensity window that limits extreme intensity values. Level-
set based skull-stripping is susceptible to failure. Although we performed visual
checks to ensure quality, these are unfeasible on large scale settings such as the
deployment of an automated segmentation pipeline. Conversely, windowing is
more robust, hence it should be used instead.

Affine-to-Atlas Registration Can Be Replaced by Data-Augmentation.
Although Figs. 3, 4 (green) could lead us to believe that affine registration pro-
vides a small benefit over simply using isotropic resolution, when we look at
Fig. 6 we see this is not the case. When we add more spatial augmentation to
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Fig. 4. Results of paired difference tests comparing prepossessing methods. For a p-
value of 5% the y-label is statistically significantly better (red) or worse (blue) than the
x-label. Yellow boxes: level-set skull stripping only helps performance when the large
intensity window is used. Green box: controlling for other preprocessing steps, affine-to-
atlas can provide small benefits. Purple box: anisotropic resolution consistently under-
performs when compared to isotropic resolution. (Color figure online)

(a) (b)

Fig. 5. Left (a): Per class DSC box plots preprocessing pipelines with no skull-stripping.
Right (b): Foreground DSC box plots for two different models.

the two spatial normalisation methods (besides only flipping the x axis) their
performance becomes comparable. Moreover, we see that this small benefit may
not translate to different models (Fig. 5b). We conclude that we can make the
network more robust to spatial heterogeneity with data augmentation instead of
homogenising the input data. Like skull-stripping, affine-to-atlas registration can
fail unpredictably during deployment of automatic pipelines. In contrast, spatial
augmentation applied only during model training, and thus it does not constitute
a possible point of failure after deployment. As a result, we recommend spatial
data augmentation to be used instead of affine-to-atlas registration. Regardless,
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(a) (b)

Fig. 6. Left (a): Foreground DSC box plots for all data augmentation methods. Right
(b): Per class DSC box plots for all data augmentation methods.

affine-to-atlas registration can still be useful for downstream analysis tasks such
as studying the location of lesions across a patient cohort.

Additional Findings. From Fig. 6 we observe that even though random affine
augmentation serves its purpose, it did not perform better than fixed rotations.
These transformations incur on a computational cost due to interpolation, and
hence fixed rotations may be a better choice. We also observe that too much
augmentation can start to hinder performance since flipping and rotating all
axes performs worse than doing the same on just x and y.

We achieve a maximum DSC of 53.9 ± 23.0% (foreground). We can see from
Figs. 5a and 6b that there is a large discrepancy between the performance of
each class. The blood class has the worst performance likely due to the presence
of hard to segment lesions such as subarachnoid haemorrhages. Surprisingly,
the model performs best for oedema, one of the hardest lesion types to detect
visually. Our results are not directly comparable with ones reported in the liter-
ature [10–12]. We use a different dataset, perform multi-class segmentation, and
our labels include hard to segment lesions such as petechial and subarachnoid
haemorrhages. Although the DSC obtained is not as high as in other similar
applications (e.g. brain tumour segmentation on MRI), this goes to show the
challenging nature of the problem and need to focus more effort on difficult
tasks. Importantly, this is the first work reporting fine-grained multi-class seg-
mentation of contusion core, blood and oedema in CT for patients with TBI.

4 Conclusion

We present an in-depth ablation study of common data preprocessing and aug-
mentation methods for CT and show these methodological choices are key for
achieving better segmentation performance with CNNs, with a difference of 18%
DSC between the worst and best settings. Based on our results we make the fol-
lowing recommendations: 1) using isotropic resolution is key 2) choosing the cor-
rect intensity window for context and normalisation is superior to skull-stripping
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since it is simpler and more robust; 3) affine-to-atlas registration can give small
improvements, however, spatial data augmentation can achieve the same benefits
while being more robust.

We hope our study will serve as a useful guide and help the community
to make further progress on the clinically important task of head CT lesion
segmentation. While our results on fine-grained TBI lesion segmentation are
promising, we believe this study also shows that this task remains an open
challenge and new approaches may be required to tackle this difficult problem.
In the future, we aim to apply our findings to a larger dataset and to further
fine-grain the segmented classes by separating SDH, EDH and SAH into separate
classes.
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Abstract. Stroke is the third most common cause of death and a major
contributor to long-term disability worldwide. Severe stroke is most often
caused by the rupture of a cerebral aneurysm, a weakened area in a blood
vessel. The detection and quantification of cerebral aneurysms are essen-
tial for the prevention and treatment of aneurysmal rupture and cere-
bral infarction. Here, we propose a novel aneurysm detection method
in a three-dimensional (3D) cerebrovascular model based on convolu-
tional neural networks (CNNs). The multiview method is used to obtain
a sequence of 2D images on the cerebral vessel branch model. The pre-
trained CNN is used with transfer learning to overcome the small training
sample problem. The data augmentation strategy with rotation, mirror-
ing and flipping helps improve the performance dramatically, particularly
on our small datasets. The hyperparameter of the view number is deter-
mined in the task. We have applied the labeling task on 56 3D mesh mod-
els with aneurysms (positive) and 65 models without aneurysms (neg-
ative). The average accuracy of individual projected images is 87.86%,
while that of the model is 93.4% with the best view number. The frame-
work is highly effective with quick training efficiency that can be widely
extended to detect other organ anomalies.

1 Introduction

Cerebral aneurysms are localized pathological dilatations of the cerebral arter-
ies. Their rupture causes subarachnoid hemorrhage and is associated with a
high morbidity and mortality rate [3]. For the average person, the incidence of
aneurysms is 2–3%, and this proportion increases with age [13]. The early detec-
tion, growth monitoring and early treatment of aneurysms is the most effective
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sequence method for preventing aneurysmal rupture. However, the early detec-
tion of aneurysms in the brain vessel network is quite challenging.

Conventional aneurysm detection methods use the machine learning method
to classify the aneurysm and vessel segments. Three main methods have been
used to identify areas in which aneurysms may occur based on vascular shape,
vascular skeleton, and image differences. Algorithms based on vascular mor-
phology depend on the assumption that aneurysms are approximately spherical.
Suniaga used Hessian eigenvalues analysis to find spherical objects in 3D images
[15]. Lauric constructed a geometric descriptor “writhe number” to distinguish
between areas of tubular and nontubular structures [8]. The nontubular struc-
tures may be aneurysms. The dot filter [16] and blobness filter [2,4,15] have
also been used to detect cluster structures in images based on prior knowledge
of aneurysm morphology. The algorithm in [15,16] is based on the skeleton to
find the endpoints and branch points of the vascular structure and considers
the distance between the endpoints and the branch points as the parameters of
the classifier. Several hybrid algorithms have been used to train the classifier
after feature extraction, incorporating classification strategies such as feature
thresholding [8], rule-based systems [16] or case-based reasoning [6]. Almost all
proposed algorithms are intended to work with magnetic resonance angiography
(MRA) datasets; one, however, implements a multimodal approach on three-
dimensional rotational angiography (3DRA) and computed tomography angiog-
raphy (CTA) datasets [8]. The conventional methods for aneurysms detection are
not generalizable; they extract features using descriptors of a dot filter or a blob-
ness filter, or they extract customized features such as those related to geometry
or distance. Since the use of CNNs has been successful in computer vision and
image processing, many studies have examined aneurysm detection in medical
images, such as MRA or 3DRA using a CNN. Jerman [5] used a Hessian-based
filter to enhance spherical and elliptical structures such as aneurysms and atten-
uate other structures on the angiograms. Next, they boosted the classification
performance using a 2D CNN trained on intravascular distance maps computed
by casting rays from the preclassified voxels and detecting the first-hit edges of
the vascular structures. Nakao [10] employed a voxel-based CNN classifier. The
inputs of the network were 2D images generated from volumes of interest of the
MRA images by applying a mixed-integer programming algorithm. The network
architecture they used was not very deep: 4 convolution layers in one [5] and 2
convolution layers in the other [10]. More adjustable parameters (weights and
bias) correspond to greater freedom of adjustment and a better approximation
effect.

In medical image analysis, 2D images are widely used as input, but this app-
roach is not well suited for aneurysm detection due to four limitations. First, we
are interested in detecting aneurysms from different types of imaging modalities
such as CT, MRA or 3DRA. The image resolution and file size may adversely
affect the CNN performance. Second, even for the subjects having aneurysms,
the percentage of the aneurysm volume data is quite small, which causes an
imbalance of positive and negative samples in the learning process. Third, doc-
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tors detect aneurysms relying more on anisotropic shape representation than
the intensity or texture in image, which results in a starting research point of
separation aneurysms directly from the 3D cerebral mesh model. Finally, due to
ethics and case selection problems, the availability of large population databases
is not assured. Training on a small sample dataset is a common problem for many
tasks in medical image analysis, such as segmentation or registration. To manage
these limits, we detect aneurysms with a CNN in 3D cerebral mesh models with
a pretrained neural network. After the segmentation and reconstruction of the
cerebral vessel mesh model, the heterogeneous nature of the image format and
resolution can be eliminated. The cerebral vessel network model can be divided
into branch models with two or three bifurcations. Relative to the volume data
of an image, the imbalance of the training sample of a model can be signifi-
cantly reduced. We overcome the influence of texture and intensity using the 3D
cerebral branch model, which focuses on shape. In several view experiments, the
classification accuracy of images is approximately 87%, while the classification
accuracy of mesh models is approximately 92%. To our knowledge, we are the
first group to apply CNN transfer learning to the aneurysm detection task on
mesh models instead of medical images. The main contributions of the paper are
as follows: (1)We present a novel aneurysm mesh model detection method based
on a CNN. Due to the challenges of direct calculation convolution on the mesh
model, we use the projection idea to change the 3D mesh model as a sequence of
multiview projection images. (2)We use the transfer learning method and data
augmentation of the input image to overcome the small training sample problem.
The pretraining was performed using GoogleNet Inception V3 on ImageNet. We
use the data augmentation with mirroring, rotation and flipping operations on
the input image, which obtains 6 times more training samples than before.

2 Methodology

Problem Formulation. The aneurysm detection task is formulated as a clas-
sification problem in this paper. Assume we have a training dataset com-
posed of branches with or without aneurysms in a featured space T =
{(b1, l1), (b2, l2), ..., (bn, ln)} ⊂ B × L where B = R

n is the feature vector space
and L = {0, 1} is the label space, where li = 1 represents that bi includes an
aneurysm (positive). The objective is to predict the label from the feature vector
by a classification function. l̂ = f(b) The training of f(b) is based on minimiza-
tion of the error between the predicted value l̂i and the ground truth li, and the
parameters in the classification function f are updated so that the classifier can
be more effective.

Architecture of the Network. The neural network of the project in called the
multiview aneurysm model label network (MVML) with combined fG and fC .
We consider as a classifier the pretrained GoogleNet Inception V3 (fG) with a
modified full-connection layer (fC). The feature vector is each of the 2D images
generated from multiview rendered images of the mesh models, which are used
as inputs of the network. The outputs of the network are two probability values,
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Fig. 1. Training process for the aneurysm detection with multiview CNN.

corresponding to the negative and positive cases. Finally, the accuracy of the
mesh model is determined by majority voting according to the image accuracy.
Figure 1 shows the framework of aneurysm detection proposed in this paper.

Case Selection. The positive dataset (vessel model with aneurysms) of 56
patients is drawn from a large multicenter database created within the EU-
funded project @neurIST [9] based on the 3DRA image. The negative model set
(vessel model without aneurysms), derived from the public dataset distributed
by the MIDAS Data Server at Kitware Inc. [1], The segments of the mesh model
included the similar branches as the positive dataset such as the anterior cere-
bral artery (ACA) or the internal carotid artery (ICA) bifurcation. No other
information was considered during the selection process.

Multiview Images from 3D Aneurysm Models. To obtain the multiview
images from each 3D aneurysm model, the model coordination must be deter-
mined, and the projected method should be chosen. We first use PCA to deter-
mine the coordination of the mesh model. The vascular vertexes of each sample
are denoted by A = {

[
xj
i , y

j
i , z

j
i

]
, j = 1, 2, 3 . . . N}, i = 1, 2, 3 . . . nj , where N

denotes the number of samples within the dataset and nj denotes the num-
ber of vascular vertexes in the dataset. The vertex coordinates of each sam-

ple are represented by Aj(a) = Āj +
nj−1∑
i=1

ajiv
j
i Ā denotes the average vertex

of the model j in the dataset and aj = [a1j , a2j , a
j
3, . . . , a

j
nj−1] denotes the

eigenvalues of the covariance matrix in descending order of the model j and
vj = [v1j , v2j , v

j
3, . . . , v

j
n−1] denotes the corresponding orthogonal eigenvectors.

The first three eigenvectors [v1j , v2j , v3j ], complemented with the right-hand
rule, define the adapted coordinates of the 3D model j. The eigenvector corre-
sponding to the largest eigenvalue is the rotation axis, while the one with the
smallest eigenvalue of the first three is the beginning of the view projection. We
then use the Phong reflection model [12] to create multiview images of the mesh
model. We set up different numbers of viewpoints (virtual cameras) to obtain
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the mesh model rendering results. All the viewpoints (virtual cameras) are posi-
tioned on the ground plane and pointed toward the centroid of the mesh. We
render the images from all the viewpoints to obtain a sequence of highly repre-
sentative images of the mesh model. We shrink the white space around the view
to enlarge its effective area. Different shading coefficients or illumination models
do not affect our output descriptors due to the invariance of the learned filter to
illumination changes as observed in an image-based CNN [7,14]. Thus, the view
color is set to gray. We create v rendered views by placing v virtual cameras
around the mesh every 360/v degrees. The selection of the value for the hyper-
parameter v is discussed in detail in the experimental description. The Toolbox
Graph [11] is used to generate the rendering result of the 3D mesh model.

Data Augmentation with Rotation and Reflection. We enrich the dataset
using mirroring, rotation, and flipping operations. Each image of the view is
transformed to create 2 additional images by flipping its horizontal and vertical
edges, and another 3 additional images are created by rotating with 90, 180,
and 270◦. Thus, we obtain 6 projected images from each view. The number of
datasets is v × 6 × 121. With these treatments of the images, the difference of
rotation axis orientation of the PCA eigenvector is eliminated.

Aneurysm Labeling with Transfer Learning. To address the limitations of
the aneurysm model dataset, we use the transfer learning method of the image to
realize the learning result. The pretrained CNN based on large annotated image
databases (ImageNet) is used for various classification tasks in the images of the
different domains. The original network architecture can be maintained, and the
network can be initialized with pretrained weights. The representation of each
layer can be calculated from the representation of the previous layer. The end-
to-end back-propagation algorithm, which combines feature extraction and clas-
sification processes, is widely used in CNN training. Generally, the convolution
layers are considered as feature extractors, while the fully connected layers are
seen as a classifier. The network architecture MVML of the project is composed
by fG and fC . We accept the pretrained GoogleNet Inception V3 model (fG) as
the feature extractors and the two-layer fully connected neuron network (fC) as
the classification. The latter outputs probabilities of the two classes with each
input image view with the Softmax function. The cross-entropy loss function is
adopted. C = − 1

n

∑n
i=1[yi ln ŷi + (1 − yi) ln(1 − ŷi)] When the network training,

only the weights of the fully connected neuron network are updated with the
pretrained GoogleNet weights frozen. From the resulting decision for each view,
we obtained the mesh group decision with majority voting,Ei =

∑m
i=1 I(yi =

P (xi)) s.t. I(yi = P (xi)) =

{
1, if yi = P (xi);
0, if yi �= P (xi).

where m = k × v is the

total number of projected images per mesh model and v is the number of views.
In our task, k is the multiplying factor of the data augmentation. xi is the input
image, and yi is the label of the image. P (xi) is the prediction of the image by
the classifier. The final label for the mesh model is the one satisfying Ei >

m
2 .

For instance, for v = 12 and k = 6, an aneurysm mesh model with more than
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36 different positive labeled projected images is assigned a final positive label.
Model performance is measured by first classifying views of testing mesh models,
and the classification results of all views through a majority voting process are
used to obtain the final class label for each mesh model.

3 Experiments and Data Analysis

We conduct our research platform based on TensorFlow using an NVIDIA 960
M GPU on an Ubuntu 16.10 Linux OS 64-bit operating system. The initial fully
connected classification is randomly set from 0 to 1. A stochastic gradient descent
optimizer is employed to train the loss function of cross-entropy. A learning rate
of 0.01 is suitable. The epoch step K = 500. The mini-batch size N ′ = 128. A
five-fold cross-validation is used on the classifier performance. In the following,
we test the effectiveness of the classification algorithm, the effect of the data
augmentation, and the computational time of the network training.

Optimization of the View Number Hyperparameter. First, we aim to
verify the effect of the different view numbers v on the classification results using
the accuracy of the mesh model and image data. We collect 3, 6, 9, 12, 15, and
18 views of the mesh model for the experiments. The views of the mesh models
used for training the classifier are never used for testing. The overall prediction
accuracy of the classifier on the image is evaluated, that is, the ratio of the
number of images correctly classified to the total number of images evaluated
(Table 1). The classification of each view is only an instrumental task. The real
result is the classification of the model. The mesh model label is achieved by a
majority voting process based on the predicted probability for every view. The
data show that when the number of views is large (such as 18), more images can
be created to identify the aneurysms, but image mislabeling will greatly influence
the results. For the proposed method, the equal possibility of aneurysms with
the voting result of the images without aneurysms reduces the accuracy of the
final result. The view number in this research is a nonlinear and unpredictable
hyperparameter that greatly influences the result. The small view number of the
model cannot offer sufficient images to reveal the aneurysm’s shape; however,
the large view number creates more branch clip images, resulting in mislabeling.
From these results, we selected the number of views v = 9 as the optimal one,
with a mean accuracy of 93.40%.

Table 1. Classification accuracy of the image and mesh model (%).

View 3 6 9 12 15 18

Image 87.4± 2.4 87.6± 3.0 87.9± 2.8 88.0± 2.7 87.9± 2.6 87.7± 2.8

Model 90.9± 1.7 91.7± 0.1 93.4± 2.0 92.6± 1.6 92.6± 1.6 92.6± 1.6

Effect of the Data Augmentation. To validate the effect of the data aug-
mentation on the images, we test the model with or without data augmentation
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of the images. For the without-mirroring and rotation data augmentation view,
the sizes of the dataset are 363, 726, 1089, 1452, 1815, and 2178. The accu-
racy of the classifier experiment on the images and the mesh model is shown
in Table 2. Thus, the data augmentation appears not to greatly influence the
accuracy. Inception V3 can bring out the strong features of the image to clearly
illustrate aneurysms. However, the data augmentation has a strong influence
on the mesh model. Without data augmentation, the accuracy of the model
decreases by an average of 2%. First, the convolution layer of the Inception V3
is local on the image. After the data augmentation, the augmented image can be
labeled identically to the original image. Second, the data augmentation brings
more training data, which can increase the learning result of the classifier in the
fully connected neural network. Third, deep learning with small training data is
relatively instable in learning. More data can bring better results. In this case,
the image data greatly influence the model accuracy.

Table 2. Average classification accuracy of images and mesh models without data
augmentation(%).

View 3 6 9 12 15 18

Image 87.9± 3.3 87.9± 3.7 88.3± 3.4 88.6± 2.7 87.9± 2.5 87.7± 2.9

Model 90.9± 3.1 90.1± 4.2 90.9± 4.1 91.8± 2.5 90.9± 3.0 91.8± 3.6

Computation and Convergence Time. The time-consuming processes that
are involved constitute a major challenge encountered in deep learning. We use
transfer learning with GoogleNet to limit the training data and decrease the test
time. The average change in the total lost function is smaller than 0.01 for 20
steps. We can identify the convergence of the training. The convergence steps of
the training process are shown in Tables 3. For data that are not mirrored and
rotated, the average numbers of convergence steps of the classifier in different
views are approximately 330, 301, 327, 332, 331, and 300. The average numbers
of convergence steps for different view classifiers are approximately 384, 361,
367, 348, 363, and 373 for different view classifiers through the mirroring and
rotation data.

Table 3. Convergence steps of the training process.

View 3 6 9 12 15 18

Without data augmentation 330 301 327 332 331 300

Data augmentation 384 361 367 348 363 373
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4 Conclusions

In this paper, we present a new multiview CNN to identify aneurysms in a 3D
cerebrovascular model. No registration or alignment is necessary in the method
for any of the models. With the projection of the 3D mesh model, we can obtain
the multiview images. The transfer learning method with data augmentation
is used in the model. The final mesh model identification is obtained by the
voting algorithm. The method is simple to understand and implement. In a
future study, we plan to incorporate postprocessing adjustment that is known to
slightly improve the identification of some datasets. The development of a more
sophisticated automatic adjustment will also necessitate further research.
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Abstract. The volume of stroke lesion is the gold standard for pre-
dicting the clinical outcome of stroke patients. However, the presence of
stroke lesion may cause neural disruptions to other brain regions, and
these potentially damaged regions may affect the clinical outcome of
stroke patients. In this paper, we introduce the tractographic feature
to capture these potentially damaged regions and predict the modified
Rankin Scale (mRS), which is a widely used outcome measure in stroke
clinical trials. The tractographic feature is built from the stroke lesion
and average connectome information from a group of normal subjects.
The tractographic feature takes into account different functional regions
that may be affected by the stroke, thus complementing the commonly
used stroke volume features. The proposed tractographic feature is tested
on a public stroke benchmark Ischemic Stroke Lesion Segmentation 2017
and achieves higher accuracy than the stroke volume and the state-of-
the-art feature on predicting the mRS grades of stroke patients. Also,
the tractographic feature yields a lower average absolute error than the
commonly used stroke volume feature.

Keywords: modified Rankin Scale (mRS) · Stroke · Clinical outcome
prediction · Tractographic feature · Machine learning

1 Introduction

According to the World Health Organization, 15 million people suffer strokes
each year, the second leading cause of death (5.8 million) and the third leading
cause of disability worldwide [8,13]. Around 87% of strokes are ischemic strokes,
which result from an obstruction within a blood vessel in the brain [18]. The
corresponding lack of oxygen results in different degrees of disability of people,
and the modified Rankin Scale (mRS) is commonly used to measure the degree
of disability or dependence in the daily activities of stroke patients [2,5,22].

Several studies [2,12,14,17,21,23] demonstrate significant correlations
between stroke volume and mRS grades, with larger lesions predicting more
severe disability. However, only a few studies [3,4,15] extracted different fea-
tures, including first-order features and deep features, other than the volume
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from stroke lesion to predict the mRS grades of stroke patients. The study of
Maier and Handels [15] is most relevant to our work. They extracted 1650 image
features and 12 shape characteristics from the stroke volume, the volume sur-
rounding the stroke and the remaining brain volume, and they applied a random
forest regressor with 200 trees on these 1662 features to predict the mRS grades
of stroke patients. However, the presence of stroke lesion may disrupt other brain
regions that may affect the clinical outcome of stroke patients.

The main contribution of this paper is the introduction of a new second-order
feature, the tractographic feature, that couples the stroke lesion of a patient
with the average connectome information from a group of normal subjects. The
tractographic feature describes the potentially damaged brain regions due to
the neural disruptions of the stroke lesion. Ideally one would like to use the
diffusion images from the stroke patient, but this is not a realistic scenario. For
instance, the patient with mental in their body is unsafe for getting an MRI
scan. Instead, we use the “normal” subject data from the HCP project with
the assumption that the parcellations and the associated tracts computed from
that data are a reasonable approximation to extract the connectivity features.
These tractographic features coupled with the stroke lesion information are used
to predict the mRS grades of stroke patients. The concept of the tractographic
feature was first proposed by Kao et al. [9] who used these to predict the overall
survival of brain tumor patients. We modify their method to adapt to the size of
the lesions and propose a new weighted vector of the tractographic feature. Our
experimental results demonstrate that the proposed approach improves upon the
state-of-the-art method and the gold standard in predicting the clinical outcome
of stroke patients.

2 Materials and Methods

2.1 Dataset

Ischemic Stroke Lesion Segmentation (ISLES) 2017 [10,16] provides 43 subjects
in the training dataset. Each subject has two diffusion maps (DWI, ADC), five
perfusion maps (CBV, CBF, MTT, TTP, Tmax), one ground-truth lesion mask
and clinical parameters. The ground-truth lesion mask is built in the follow-up
anatomical sequence (T2w or FLAIR) and the corresponding mRS grade was
given on the same day. The clinical parameters include mRS grade ranging from
0 to 4, time-to-mRS (88 to 389 days), TICI scale grade from 0 to 3, time-since-
stroke (in minutes), and time-to-treatment (in minutes). Since TICI scale grade,
time-since-stroke, and time-to-treatment were missing for some subjects, these
three clinical parameters are not used in this work. The dimension and voxel
spacing of MR images are different between each subject, but they are the same
within each subject. We only focus on the subjects who obtain an mRS grade at
3 months (90 days) following hospital discharge since ascertainment of disabil-
ity at 3-month post-stroke is an essential component of outcome assessment in
stroke patients [5], and the tractographic data may change at a different time.
Therefore, only 37 subjects are considered in this paper.
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2.2 Tractographic Feature

The tractographic feature describes the potentially damaged region impacted
by the presence of the stroke lesion through the average connectome informa-
tion from 1021 Human Connectome Project (HCP) subjects [20]. For each HCP
subject, q-space diffeomorphic reconstruction [24] is used to compute the diffu-
sion orientation distribution function. Figure 1 shows the workflow of building a
tractographic feature for a stroke patient.

Fig. 1. The workflow for constructing a tractographic feature from a stroke region.

Given the stroke lesion in the subject space, we first map the stroke lesion to
the Montreal Neurological Institute (MNI) space [6]. Second, we place one seed
within each voxel of the brain region, and a deterministic diffusion fiber tracking
method [25] is used to find all possible tracts passing through the stroke volume
inside the brain from the average diffusion orientation distribution function of
1021 HCP subjects. Topology-informed pruning [26] is used to remove false-
positive tracts. Third, an existing brain parcellation atlas is used to create a
disruption matrix D, which describes the degree of disruption between different
brain parcellation regions due to the presence of the stroke lesion.

D =

⎡
⎢⎢⎢⎣

d11 d12 . . . d1N
d21 d22 . . . d2N
...

...
. . .

...
dN1 dN2 . . . dNN

⎤
⎥⎥⎥⎦ (1)

dij notes the number of tracts starting from a region i and ending in a region
j, and N is the total number of brain parcellation regions in the existing
atlas. Then, this disruption matrix is normalized by its maximum value, i.e.,
D̂ = D/dm where D̂ is the normalized disruption matrix, and dm is the maximum
element of the disruption D. Afterward, we sum up each column in this normal-
ized disruption matrix D̂ to form a row vector L =

∑N
i=1 d̂ij = [l1, l2, . . . , lN ].
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From the stroke lesion, we build a weight vector γ = [s1, s2, . . . , sN ], which is
the distribution of the stroke volume in the different brain parcellation regions.
si is the volume of the stroke lesion in the i-th brain parcellation region. In the
end, the row vector L is multiplied by this weight vector γ element-wisely to
form the tractographic feature T .

T = γ ◦ L (2)

◦ is the Hadamard-product. This vector T is the proposed tractographic feature
extracted from stroke lesion without any diffusion information of a patient. In
this paper, the Automated Anatomical Labeling (AAL) [19] template is used
to define 116 brain regions so the dimension of the tractographic feature is 116.
The reasons for choosing AAL rather than other existing atlases are (i) this atlas
contains an optimal number of brain regions that could make each region large
enough to compensate possible stroke-induced lesion effect or distortion, and (ii)
this atlas contains cortical, subcortical and cerebellar regions, which could be
equally important for mRS prediction. The source code is available on GitHub1.

Parameters of Fiber Tracking

DSI Studio2 is used to build the fiber tracts for each subject. Table 1 shows
the tracking parameters3 we used in this paper. The type of stroke lesion is set
to ROI (–roi=stroke lesion) that found all possible tracts passing through the
stroke lesion.

Parameters of Connectivity Matrix

DSI studio is used to create the connectivity matrix4 followed by fiber tracking.
Automated Anatomical Labeling is chosen to form a 116 × 116 connectivity
matrix. The type of the connectivity matrix is set to end, the value of each
element in the connectivity matrix is the count of fiber tracts, and the threshold
to remove the noise in the connectivity matrix is set to 0.

2.3 Evaluation Metrics

The employed evaluation metrics are (i) the accuracy, which is the percentage of
the predicted mRS scores matching the corresponding ground-truth mRS scores,
and (ii) the average absolute error between the predicted mRS scores and the
corresponding ground-truth mRS scores.

1 https://github.com/pykao/ISLES2017-mRS-prediction.
2 https://github.com/frankyeh/DSI-Studio.
3 parameter id=F168233E9A99193F32318D24ba3Fba3Fb404b0FA43D21D22cb01ba0

2a01d.
4 http://dsi-studio.labsolver.org/Manual/command-line-for-dsi-studio.

https://github.com/pykao/ISLES2017-mRS-prediction
https://github.com/frankyeh/DSI-Studio
http://dsi-studio.labsolver.org/Manual/command-line-for-dsi-studio
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Table 1. Tracking parameters of building the fiber tracts for stroke patients in this
paper. More details of parameters can be found at http://dsi-studio.labsolver.org/
Manual/Fiber-Tracking.

Parameter Value

Termination index qa

Threshold 0.15958

Angular threshold 90

Step size (mm) 0.50

Smoothing 0.50

Min length (mm) 3.0

Max length (mm) 500.0

Topology-informed pruning (iteration) 1

Seed orientation All orientations

Seed position Voxel

Randomize seeding Off

Check ending Off

Direction interpolation Tri-linear

Tracking algorithm Streamline (Euler)

Terminate if 2,235,858 Tracts

Default otus 0.60

3 Experimental Results

First Experiment: In this experiment, we compare the mRS prediction per-
formance of the tractographic feature with other first-order features extracted
from the lesion mask. These first-order features include the volumetric feature,
spatial feature, morphological feature and volumetric-spatial feature depicted in
Table 2. The framework of the first experiment is shown in Fig. 2.

Fig. 2. The framework of the first experiment. In the end, the predicted mRS grade is
rounded to an integer.

We first register the stroke lesions from subject space to the MNI space
to overcome the differences of the voxel spacing and image dimension between

http://dsi-studio.labsolver.org/Manual/Fiber-Tracking
http://dsi-studio.labsolver.org/Manual/Fiber-Tracking


Predicting Clinical Outcome of Stroke Patients with Tractographic Feature 37

different subjects. The tractographic feature and other first-order features are
extracted from these normalized stroke lesions. After feature extraction, we apply
a standard feature normalization on the extracted features to ensure that each
dimension of the features has the same scale. Then, we remove the dimensions of
the features with zero variance between subjects and apply a recursive feature
elimination with leave-one-out cross-validation to find the best subset of the
feature that yields the lowest average mean absolute error. In the training phase,
we train one random forest regressor for each type of feature, i.e., five random
forest regressors are trained. Each random forest regressor has 300 trees of which
maximum depth is 3. In the testing phase, we use different types of features with
the corresponding trained random forest regressors to predict the mRS grades
of stroke patients, and the predicted mRS grade is rounded to an integer. We
evaluate the mRS prediction performance of different types of features with
leave-one-out cross-validation on ISLES 2017 training dataset. The quantitative
results are reported in Table 3. From Table 3, the tractographic feature has the
highest accuracy and lowest average absolute error on predicting the mRS grades
of stroke patients compared to other first-order features.

Table 2. First-order features extracted from the stroke lesion.

Type of feature Descriptions

Volumetric feature Volumetric feature is the volume of the lesion in the
MNI space, and it only has one dimension

Spatial feature Spatial feature describes the location of the lesion
in the brain. The centroid of the lesion is extracted
as the spatial feature for each subject, and the
spatial feature has three dimensions

Morphological feature Morphological feature describes shape information
of the lesion. The length of the major axis and
minor axis of the lesion, the ratio of the length of
the major axis and minor axis of the lesion, the
solidity and roundness of the lesion, and the surface
of the lesion are extracted as the morphological
feature. The morphological feature has six
dimensions for each subject

Volumetric-spatial feature Volumetric-spatial feature describes the distribution
of the stroke lesion in different brain parcellation
regions from an existing structural atlas.
Automated Anatomical Labeling (AAL) [19] is used
to build the volumetric-spatial feature so the
dimension of the volumetric-spatial feature is 116

Second Experiment: We compare the mRS prediction performance of the
tractographic feature with the state-of-the-art feature proposed by Maier and
Handels [15]. We implement their feature extraction method on ISLES 2017
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dataset. First, 1650 image features and 12 shape features are extracted from
the lesion volume and the apparent diffusion coefficients (ADC) maps in the
subject space. Thereafter, these two types of features are concatenated to build a
1662-dimension feature. Then, we apply the same feature normalization, feature
selection, cross-validation, and random forest regressor as the first experiment to
predict the mRS of stroke patients. The quantitative results of the state-of-the-
art feature are also shown in Table 3. From Table 3, the tractographic feature also
achieves higher accuracy and similar average absolute error (p = 0.81) compared
to the state-of-the-art feature.

Table 3. The mRS prediction performance of different types of features on ISLES 2017
training dataset with leave-one-out cross-validation. The bold numbers show the best
performance. (The average absolute error is reported as mean ± std.)

Type of feature Accuracy Average absolute error

Tractographic feature 0.622 0.487 ± 0.683

Volumetric feature 0.514 0.595 ± 0.715

Volumetric-spatial feature 0.568 0.621 ± 0.817

Morphological feature 0.378 0.703 ± 0.609

Spatial feature 0.351 0.919 ± 0.882

Maier and Handels [15] 0.595 0.460± 0.597

4 Discussion and Conclusion

From the first experiment, the tractographic feature has the best mRS prediction
accuracy and the lowest average absolute error compared to other first-order fea-
tures. The main reason is that the tractographic feature integrates volumetric-
spatial information of the stroke lesion and the average diffusion information
from a group of normal subjects that describes the potentially damaged regions
impacted by the stroke lesion. These potentially damaged regions are format-
ted in the disruption matrix D from Eq. (1), and the weight vector γ from Eq.
(2) carries spatial and volumetric information of the stroke lesion to the trac-
tographic feature T . Also, it is worth noting that the volumetric-spatial feature
is the same as the weight vector γ of the tractographic feature, and the mRS
prediction performance of volumetric-spatial feature is improved by considering
the average connectome information from a group of normal subjects.

The second experiment demonstrates that the tractographic feature also has
better mRS prediction accuracy than the state-of-the-art feature [15]. It should
be noted that their approach requires ADC maps that are not necessarily always
available, and using only the lesion shape information degrades the overall per-
formance significantly in their approach. We also note that the tractographic
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feature is of much lower dimensions (116) compared to the state-of-the-art fea-
ture (1662).

In both experiments, we apply the recursive feature selection with cross-
validation on different types of features, and this procedure reduces one dimen-
sion of feature recursively until finding the best subset of the feature with the
lowest mean absolute error. For the tractographic feature, this reduces the dimen-
sionality from 116 to 8. This selected tractographic feature comes from eight AAL
regions shown in Fig. 3 (left and right inferior temporal gyrus, right Rolandic
operculum, left middle frontal gyrus, orbital part and triangular part of right
inferior frontal gyrus, left angular gyrus and left putamen).

Fig. 3. Selected tractographic feature from eight AAL regions including left (in red)
and right (in pink) inferior temporal gyrus red, right Rolandic operculum (in orange),
left middle frontal gyrus (in yellow), orbital part (in green) and triangular part (in
blue) of right inferior frontal gyrus, left angular gyrus (in purple) and left putamen (in
grey) after applying the recursive feature selection with cross-validation on the original
tractographic features. These tractographic features are extracted from 37 ISLES 2017
training subjects. Best viewed in color.
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After feature selection, we use a random forest regressor to predict the mRS
grades of stroke patients. The random forest regressor gives the importance to
each dimension within a given type of feature shown in Fig. 4.

For the selected tractographic feature, left inferior temporal gyrus yields the
highest average importance compared to the other seven regions within 37 ISLES
2017 training subjects on the task of predicting the mRS grades. The reasons
left inferior temporal gyrus has the greatest effect on the mRS of stroke patients
are (i) this region is important for language processing and speech production
[1], and (ii) a large number of fiber tracts, passing through this region, goes
across the splenium of the corpus callosum which connects the visual, parietal
and auditory cortices [7,11] (See Fig. 5).

Fig. 4. Region importance of eight selected AAL brain parcellation regions given by a
random forest regressor with 300 trees whose maximum depth is 3. The average values
are marked in the green triangles. Left inferior temporal gyrus (LITG) yields a higher
mean importance (0.26) than right Rolandic operculum (RRO, 0.14), left middle frontal
gyrus (LMFG, 0.13), orbital part (ORIFG, 0.11) and triangular part (TRIFG, 0.10)
of right inferior frontal gyrus, left angular gyrus (LAG, 0.09), left putamen (LP, 0.09)
and right inferior temporal gyrus (RITG, 0.08) within 37 ISLES 2017 training subjects
on the task of predicting the mRS grades of stroke patients. Best viewed in color.
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Axial View Coronal View Sagittal View

Fig. 5. The fiber tracts passing through the left inferior temporal gyrus from the aver-
age connectome information of 1024 HCP subjects. We place a seed in each voxel inside
the whole brain to find all possible tracts passing through the left inferior temporal
gyrus. Best viewed in color.

In conclusion, the paper presents for the first time the use of tractographic
features for predicting the clinical outcome of stroke patients. The tractographic
feature leads to promising mRS prediction results on ISLES 2017 dataset but
needs to be further validated using a larger and representative independent
dataset to rule out a potential methodical bias and over-fitting effects. The
proposed tractographic feature has the potential to be improved if we build a
disruption matrix from each HCP subject given the stroke lesion in MNI space
and construct the average disruption matrix from these individual disruption
matrices.

Limitation. The proposed tractographic feature cannot be generated if the
stroke lesion is not located in the brain parcellation regions.
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Abstract. Glioblastoma (‘GBM’ ) is the most aggressive type of pri-
mary malignant adult brain tumor, with very heterogeneous radio-
graphic, histologic, and molecular profiles. A growing body of advanced
computational analyses are conducted towards further understanding the
biology and variation in glioblastoma. To address the intrinsic hetero-
geneity among different computational studies, reference standards have
been established to facilitate both radiographic and molecular analy-
ses, e.g., anatomical atlas for image registration and housekeeping genes,
respectively. However, there is an apparent lack of reference standards
in the domain of digital pathology, where each independent study uses
an arbitrarily chosen slide from their evaluation dataset for normaliza-
tion purposes. In this study, we introduce a novel stain normalization
approach based on a composite reference slide comprised of information
from a large population of anatomically annotated hematoxylin and eosin
(‘H&E’ ) whole-slide images from the Ivy Glioblastoma Atlas Project
(‘IvyGAP’ ). Two board-certified neuropathologists manually reviewed
and selected annotations in 509 slides, according to the World Health
Organization definitions. We computed summary statistics from each
of these approved annotations and weighted them based on their per-
cent contribution to overall slide (‘PCOS’ ), to form a global histogram
and stain vectors. Quantitative evaluation of pre- and post-normalization
stain density statistics for each annotated region with PCOS > 0.05%
yielded a significant (largest p = 0.001, two-sided Wilcoxon rank sum
test) reduction of its intensity variation for both ‘H’ & ‘E’ . Sub-
ject to further large-scale evaluation, our findings support the proposed
approach as a potentially robust population-based reference for stain
normalization.
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1 Introduction

Glioblastoma (‘GBM’ ) is the most aggressive, and common, type of primary
malignant adult brain tumor. GBMs are usually de novo, meaning they fre-
quently appear without any precursor lesions. If left untreated, the tumor is
quickly fatal, and even with treatment, median survival is about 16 months
[1,2]. If a GBM is suspected, multi-parametric magnetic resonance imaging
(‘mpMRI’ ) will be done to follow up, and presumptive diagnosis can typi-
cally be given. Ideally, surgical gross total resection is performed. When exten-
sive surgery is not possible, often needle or excisional biopsies are performed
to confirm the diagnosis. GBMs, due to their serious and sudden nature, lack
of effective treatment options, as well as their reported heterogeneity [3], have
been the subject of research in the realm of personalized medicine and diagnos-
tics. However, investigating their precise characterization requires large amounts
of data. Fortunately, publicly available datasets with abundant information are
becoming much more available.

With the advent of data collection and storage, not only are large datasets
becoming available for public use, but they are also becoming more detailed
in multiple scales, i.e., macro- and micro-scopic. Large comprehensive datasets
publicly available in various repositories, such as The Cancer Imaging Archive
(TCIA - www.cancerimagingarchive.net) [4] have shown promise on expediting
discovery. One of the exemplary data collections of glioblastoma, is the TCGA-
GBM [5], which since its initiation has included longitudinal radiographic scans
of GBM patients, with corresponding detailed molecular characterization hosted
in the National Cancer Institute’s Genomic Data Commons (gdc.cancer.gov).
This dataset enabled impactful landmark studies on the discovery on integrated
genomic analyses of gliomas [6,7]. TCIA has also made possible the release of
‘Analysis Results’ from individual research groups, with the intention of avoiding
study replication and allowing reproducibility analyses, but also expediting fur-
ther discoveries. Examples of these ‘Analysis Results’ describe the public release
of expert annotations [8–11], as well as exploratory radiogenomic and outcome
prediction analyses [12–15]. The further inclusion of available histology whole-
slide images (‘WSIs’ ) corresponding to the existing radiographic scans of the
TCGA-GBM collection contributes to the advent of integrated diagnostic anal-
yses, which in turn raises the need for normalization. Specifically, such analyses
attempt to identify integrated tumor phenotypes [16,17] and are primarily based
on extracting visual descriptors, such as the tumor location [18,19], and intensity
values [20], as well as subtle sub-visual imaging features [21–28].

Intensity normalization is considered an essential step for performing such
computational analysis of medical images. Specifically, for digital pathology anal-
yses, stain normalization is an essential pre-processing step directly affecting
subsequent computational analyses. Following the acquisition of tissue up until
the digitization and storage of WSIs, nearly every step introduces variation into
the final appearance of a slide. Prior to staining, tissue is fixed for variable
amounts of time. Slide staining is a chemical process, and thus is highly prone
to not only the solution preparation, but also the environmental conditions.

www.cancerimagingarchive.net
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While preparing a specimen, the final appearance can be determined by fac-
tors such as: stain duration, manufacturer, pH balance, temperature, section
thickness, fixative, and numerous other biological, chemical, or environmental
conditions. Additionally, the advent of digital pathology has incurred even more
variation on the final appearance of WSIs, including significant differences in the
process of digitization that varies between scanners (vary by manufacturers and
models within a given company).

Various approaches have been developed to overcome these variations in slide
appearance. Techniques such as Red-Green-Blue (‘RGB’ ) histogram transfers
[29] and Macenko et al. [30] use the general approach of converting an image
to an appropriate colorspace, and using a single example slide as a target for
modifying the colors and intensities of a source image. Recently, techniques such
as Reinhard [31], Vahadane [32], and Khan [33] have been developed to separate
the image into optical density (‘OD’ ) stain vectors (S), as well as corresponding
densities (W ) of each stain per pixel. This process (known as ‘stain deconvolu-
tion’) has been one of the more successful and popular techniques in recent years.
Additionally, a number of generative deep learning techniques, such as StainGAN
[34] and StaNoSA [35], have also been developed for stain normalization. While
such techniques [34,35] have been shown to outperform many transfer-based
approaches [30–33], they also have multiple downsides. First, these techniques
are generative, which means that rather than modifying existing information,
they attempt to generate their own information based on distributive models.
These generative techniques apply a “blackbox” to input data, making it diffi-
cult to discern if the model is biased, and hence may influence all downstream
processing without notice. For example, if a StainGAN model had not seen an
uncommon structure during training, it would be unable to accurately model
the staining of that structure, and fail in producing an accurate result. For a
much more thorough review of stain normalization algorithms, see [36]. Our
approach, in comparison to StainGAN or other generative methods, attempts to
expand upon prior transformative stain transfer techniques. Our motivation is
that an approach as the one we propose will obviate the “black box” presented by
generative methods, and prevent a potential entry for insidious bias in the nor-
malization of slides, while still maintaining a robust and accurate representation
of a slide batch.

While the technical aspects of stain transfer algorithms have progressed sig-
nificantly, their application remains fairly naive. In demonstration, most studies
arbitrarily pick either a single WSIs, or even a single patch within a WSI, as a
normalization step prior to further analysis. In this paper, we sought to build
upon current stain normalization techniques by using a publicly available dataset
in an effort to form a composite reference slide for stain transfer, and avoid the
use of arbitrarily chosen slides from independent studies. By doing this, we have
developed a standardized target for stain normalization, thus allowing the cre-
ation of more robust, accurate, and reproducible digital pathology techniques
through the employment of a universal pre-processing step.
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Fig. 1. An example slide and corresponding label map for IvyGAP is shown on the left,
and on the right is the list of anatomical features annotated in the IvyGAP dataset,
as well as their corresponding color in the label map.

2 Materials and Methods

2.1 Data

The Ivy Glioblastoma Atlas Project (‘IvyGAP’ ) [37,38] describes a compre-
hensive radio-patho-genomic dataset of GBM patients systematically analyzed,
towards developing innovative diagnostic methods for brain cancer patients [37].

IvyGAP is a collaborative project between the Ben and Catherine Ivy Foun-
dation, the Allen Institute for Brain Science, and the Ben and Catherine Ivy
Center for Advanced Brain Tumor Treatment. The radiographic scans of IvyGAP
are made available on TCIA (wiki.cancerimagingarchive.net/display/Public/
Ivy+GAP). In situ hybridization (‘ISH’ ), RNA sequencing data, and digitized
histology slides, along with corresponding anatomic annotations are available
through the Allen Institute (glioblastoma.alleninstitute.org). Furthermore, the
detailed clinical, genomic, and expression array data, designed to elucidate the
pathways involved in GBM development and progression, are available through
the Swedish Institute (ivygap.swedish.org).

The histologic data contains approximately 11,000 digitized and annotated
frozen tissue sections from 42 tumors (41 GBM patients) [37] in the form of
hematoxylin and eosin (‘H&E’ ) stained slides along with accompanying ISH
tests and molecular characterization. Tissue acquisition, processing, and stain-
ing occurred at different sites and times by different people following specific
protocols [37]. Notably to this study, this resource contains a large number of
H&E-stained GBM slides, each with a corresponding set of annotations corre-
sponding to structural components of the tumor (Fig. 1).

2.2 Data Selection/Tissue Review

As also mentioned in the landmark manuscript describing the complete IvyGAP
data [37], we note that the annotation labels (Fig. 1) a) do not comply with
the current World Health Organization (‘WHO’ ) classification, and b) have as

https://wiki.cancerimagingarchive.net/display/Public/Collections
https://wiki.cancerimagingarchive.net/display/Public/Collections
https://glioblastoma.alleninstitute.org/
http://ivygap.swedish.org/
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Fig. 2. An example of stain deconvolution on a patch from an IvyGAP WSI. The
top and bottom row illustrate the effect of deconvolution before and after applying
background masking, where is a substantial artifact of background intensity.

low as 60% accuracy due to their semi-supervised segmentation approach (as
noted by IvyGAP’s Table S11 [37]). Therefore, for the purpose of this study,
and to ensure consistency and compliance with the clinical evaluation WHO
criteria during standard practice, 509 IvyGAP annotated histological images
were reviewed by two board-certified neuropathologists (A.N.V. and M.P.N.).
For each image, the structural features/regions that were correctly identified
and labeled by IvyGAP’s semi-automated annotation application according to
their published criteria [37] were marked for inclusion in this study, and all others
were excluded from the analysis.

2.3 Stain Deconvolution

Each slide was paired with a corresponding label map of anatomical features,
and then on a per-annotation basis, each region was extracted and the stains
were deconvolved. A example deconvolution is illustrated in Fig. 2. Our method
of stain deconvolution was based off the work of Ruifrok and Johnston [39],
whose work has become the basis for many popular normalization methods.
More directly, our method stems from Vahadane et al. [32], but modified so the
density transformation is not a linear mapping, but a two-channel stain density
histogram matching.

First, a source image is flattened to a list of pixels, and represented by the
matrix I. It can be stated that:

I ∈ Rm×n (1)
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where m is the number of color channels in an RGB image (r = 3), and n is
the number of pixels in the flattened source image. This source image can be
deconvolved into the color basis for each stain, S, and the density map, W , with
each matrix element representing how much one of the stains contributes to the
overall color of one of the pixels. In matrix form, let:

W ∈ Rr×n (2)

where r is the number of stains in the slide (in this case, we consider r = 2 for
‘H&E’ ), and n is the number of pixels in the image, Also let:

S ∈ Rm×r (3)

where m is once more the number of color channels in an RGB image, and r
is the number of stains present in the slide. Additionally, I0 is a matrix which
represents the background of light shining through the slide, which in the case
is an RGB value of (255, 255, 255). Putting it all together, we get:

I = I−WH
0 . (4)

To accomplish this, we used an open source sparse modeling library for
python, namely SPAMS [40]. However, it should be noted that more robust
libraries for sparse modeling exist, such as SciPy. First, we used dictionary learn-
ing to find a sparse representation of an input reach, resulting in a 2 × 3 OD
representation of the stain vectors, S. Then, using these stain vectors, we used
SPAMS’ lasso regression function to deconvolve the tissue into the density map
W , which is a matrix showing the per-pixel contribution of each of the stains to
each pixel’s final color.

The actual process of anatomical region extraction begins by pairing an
‘H&E’ with its corresponding label (Fig. 2). Then, each tissue region corre-
sponding to each anatomical label was extracted. The pixels were converted to
the CIELAB color space, and pixels over 0.8 L were thresholded out as back-
ground intensity. The remaining pixels were stain-deconvolved, and the stain
vectors were saved. The ratio of red to blue was found for each stain vector, and
each stain’s identity was then inferred from it being more pink (eosin) or blue
(hematoxylin) when compared with the other stain vector. The stain densities
were converted into a sparse histogram, and also saved. Additional region statis-
tics (mean, standard deviation, median, and interquartile range) were also saved
for each anatomical region for validation.

2.4 Composite Histograms

The global histogram composition of our approach is based on the assessment
of each independent region (Fig. 3(a)). To create each composite histograms,
first, a slide and associated label map were loaded. Then, the label map was
downsampled to one tenth of its original size, and a list of colors present in
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Fig. 3. (a) Examples of decomposing WSIs into various annotated anatomical regions.
The labels correspond to the following respective components: leading edge, infiltrat-
ing tumor, cellular tumor, necrosis, perinecrotic zone, pseudopalisading cells around
necrosis, pseudopalisading but no visible necrosis, hyperplastic blood, and microvas-
cular proliferation. (b) Overview of the process used to separate and analyze regions
from WSIs. First, a slide and a corresponding annotation map were loaded. Then, on
a per-annotation basis, a pixel mask was created, and regions smaller than a threshold
were removed. Then, each underlying region of tissue was extracted, and broken down
into stain vectors and density maps via SNMF encoding [32]. Finally, a histogram was
computed for the annotated tissue region. Repeat for each annotation present in the
slide.

the label map were found. Next, each present annotation was converted into
a binary mask, and all connected components for that annotation were found.
Components with an area smaller than 15,000 (0.5% of WSI size) pixels were
discarded. Next, the remaining components were used as a mask to extract
the underlying tissue, and flatten the region into a list of pixels. Then, stain
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Fig. 4. Weighing all summary histograms based on total area, and merging to create
a final summary histogram.

vectors were estimated for the region, and a density map was found. Two sparse
histograms were then created from the associated density values for each stain
(Fig. 3(b)). This process was repeated for each annotation within an image,
and then across all images. Histograms and stain vectors were kept specific to
each annotation type. Each annotation type had an associated cumulative area,
master histogram, and list of stain vectors.

2.5 Image Transformation

Statistics across regions were summed across all slides. To account for differences
in the area representing the whole slide, each annotated anatomical structure’s
overall histograms were weighed according to their percent contribution to over-
all slide (‘PCOS’ ), then merged to create a master histogram (Fig. 4). Addi-
tionally, mean stain vectors from each annotation region were computed, then
weighted according to their annotation’s PCOS, and finally combined to give a
master set of stain vectors.

With the target histogram and stain vectors computed, we are able to trans-
form a source slide in a number of ways, but we choose to use a technique derived
from [32]. To do this, we first converted the slide to CIELAB color space, thresh-
olded out background pixels, and transformed the remaining pixels using non-
negative matrix factorization (‘NMF’ ) as proposed in [41] and extended in [32].
Then, a cumulative density function (‘CDF’ ) was found for each stain in both
the source image and the target image, and a two-channel histogram matching
function transformed each of the source’s stain density maps to approximate the
distribution of the target. Finally, the stain densities and corresponding stain
vectors were reconvolved, and the transformed source image closely resembles
the composite of all target images in both stain color and density distributions.

3 Results

We validate our approach by quantitatively evaluating the reduction in variabil-
ity of each annotated region in WSIs of our dataset. To do this, we computed
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the standard deviation of each anatomical annotation independently across all
selected IvyGAP slides by extracting the annotated anatomical structure per
slide, filtering background pixels, deconvolving, and finding the distibutions of
standard deviation of each stain’s density within that tissue type. We then used
the master stain vectors and histograms to batch normalize each of these slides.
Following stain normalization, we recomputed the standard deviation of each
transformed slide by using the same process as with the pre-convolved slides.

Results of each distribution of standard deviations for each stain are shown in
Fig. 5. In other words, the boxes of Fig. 5 denote the spread of the spreads. Com-
paring pre- and post-transformation slides, through the distributions of standard
deviations, shows a significant (largest p = 0.001, two-sided Wilcoxon rank sum
test) decrease in standard deviation across tissue types, for all regions contribut-
ing more than 0.05% PCOS.

We identified the master stain vectors for hematoxylin (‘H’ ) and eosin (‘E’ )
as RGBH = [141, 116, 203] and RGBE = [148, 117, 180], respectively.

4 Discussion and Conclusion

We found that it is feasible to create composite statistics of a batch of images, to
create a robust and biologically significant representation of the target GBM slide
for future pre-processing. The multi-site nature of the dataset used for validating
the proposed approach further emphasizes its potential for generalizability.

The technique proposed here, when compared with deep learning approaches
[34,35], obviates a “black box” entirely by nature of being a transformative
technique, and not a generative one. Through the law of large numbers, we
attempt to approximate the general distribution of stain densities for GBM slides
from a large batch, and use it to transform slides to match said specifications.
Thus, no new information in synthesized, and previously unseen structures can
be transformed without issue.

Using the very specific set of slides in this study, we identified specific master
stain vectors for ‘H’ and ‘E’ , provided in the “Results” section above. The
colors of these master stain vectors seem fairly close to each other in an RGB
space, owing this partly to the “flattened color appearance” of slides fixed in
frozen tissue sections, as the ones provided in the IvyGAP dataset. We expect
to obtain master stain vectors of more distinct colors with formalin-fixed paraffin-
embedded (FFPE) tissue slides.

While this approach has been shown to be feasible, there is still much room for
improvement. For instance, the current approach is limited by the slide transfor-
mation algorithm that it implements. Stain transfer algorithms are heavily prone
to artifacting [33]. While this algorithm avoids issues such as artificially staining
background density, it still struggles in certain areas. Notably, NMF approaches
rely on the assumption that the number of stains in a slide is already known,
and that every pixel can be directly reconstructed from a certain combination of
the stains. While with ‘H&E’ , we can assuredly say there are only two stains, it
neglects other elements such as red blood cells that introduce a third element of
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Fig. 5. The overall reduction in intra-cohort variability of stain density by annotated
anatomical structure. p value based on two-sided Wilcoxon rank sum test. Abbre-
viations for annotated regions are as follows: ‘PZ’ = Perinecrotic Zone, ‘PCnvN’ =
Pseudopalisading Cells with no visible Necrosis, ‘N’ = Necrosis, ‘HB’ = Hyperplastic
Blood, ‘MP’ = Microvascular Proliferation, ‘CT’ = Cellular Tumor, ‘IT’ = Infiltrating
Tumor, ‘PCaN’ = Psuedopalisading Cells around Necrosis, ‘LE’ = Leading Edge

color into the pixel. Thus, an area for expansion is in the ability of stain transfer
algorithms to cope with other variations in color.

The current application of this approach has been on a dataset containing
frozen tissue, which is not representative of most slides in anatomical pathology
cases or research. However, it offers the methodology to apply on a larger, more
representative set of curated slides to yield a more accurate target for clinically
relevant stain normalization. Furthermore, even though we note the benefit of
the proposed approach by the overall reduction in the intra-cohort variability of
stain density across multiple annotated anatomical structures (Fig. 5), further
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investigation is needed to evaluate its relevance in subsequent image analysis
methods [42].

Future work includes expansion of the proposed approach through the imple-
mentation and comparison of other stain transfer techniques, and a general
refinement to create a more accurate composite representation. While our pro-
posed method is still prone to artifacts and other complications seen throughout
stain transfer techniques, we believe that this study shows the feasibility of using
large, detailed, publicly available multi-institutional datasets to create robust
and biologically accurate reference targets for stain normalization.
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Abstract. Skull-stripping is an essential pre-processing step in compu-
tational neuro-imaging directly impacting subsequent analyses. Exist-
ing skull-stripping methods have primarily targeted non-pathologically-
affected brains. Accordingly, they may perform suboptimally when
applied on brain Magnetic Resonance Imaging (MRI) scans that have
clearly discernible pathologies, such as brain tumors. Furthermore, exist-
ing methods focus on using only T1-weighted MRI scans, even though
multi-parametric MRI (mpMRI) scans are routinely acquired for patients
with suspected brain tumors. Here we present a performance evaluation
of publicly available implementations of established 3D Deep Learning
architectures for semantic segmentation (namely DeepMedic, 3D U-Net,
FCN), with a particular focus on identifying a skull-stripping approach
that performs well on brain tumor scans, and also has a low compu-
tational footprint. We have identified a retrospective dataset of 1,796
mpMRI brain tumor scans, with corresponding manually-inspected and
verified gold-standard brain tissue segmentations, acquired during stan-
dard clinical practice under varying acquisition protocols at the Hos-
pital of the University of Pennsylvania. Our quantitative evaluation
identified DeepMedic as the best performing method (Dice = 97.9,
Hausdorff95 = 2.68). We release this pre-trained model through the
Cancer Imaging Phenomics Toolkit (CaPTk) platform.

Keywords: Skull-stripping · Brain extraction · Glioblastoma · GBM ·
Brain tumor · Deep learning · DeepMedic · U-Net · FCN · CaPTk

1 Introduction

Glioblastoma (GBM) is the most aggressive type of brain tumors, with a grim
prognosis in spite of current treatment protocols [1,2]. Recent clinical advance-
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ments in the treatment of GBMs have not increased the overall survival rate of
patients with this disease by any substantial amount. The recurrence of GBM
is virtually guaranteed and its management is often indefinite and highly case-
dependent. Any assistance that can be gleaned from the computational imaging
and machine learning communities could go a long way towards making better
treatment plans for patients suffering from GBMs [3–11]. One of the first steps
towards the goal of a good treatment plan is to ensure that the physician is
observing only the areas that are of immediate interest, i.e., the brain and the
tumor tissues, which would ensure better visualization and quantitative analyses.

Skull-stripping is the process of removing the skull and non-brain tissues
from brain magnetic resonance imaging (MRI) scans. It is an indispensable pre-
processing operation in neuro-imaging analyses that directly affects the efficacy
of subsequent analyses. The effects of skull-stripping on subsequent analyses have
been reported in the literature, including studies on brain tumor segmentation
[12–14] and neuro-degeneration [15]. Manual removal of the non-brain tissues
is a very involved and grueling process [16], which often results in inter- and
intra-rater discrepancies affecting reproducibility in large scale studies.

In recent years, with theoretical advances in the field and with the pro-
liferation of inexpensive computing power, including consumer-grade graphical
processing units [17], there has been an explosion of deep learning (DL) algo-
rithms that use heavily parallelized learning techniques for solving major seman-
tic segmentation problems in computer vision. These methods have the added
advantage of being easy to implement by virtue of the multitude of mature
tools available, most notable of these being TensorFlow [18] and PyTorch [19].
Importantly, DL based segmentation techniques, which were initially adopted
from generic applications in computer vision, have promoted the development of
novel methods and architectures that were specifically designed for segmenting 3-
dimensional (3D) MRI images [20–23]. DL, specifically convolutional neural net-
works, have been applied for segmentation problems in neuroimaging (including
skull-stripping), obtaining promising results [16]. Unfortunately, most of these
DL algorithms either require a long time to train or have unrealistic run-time
inference requirements.

In this paper, we evaluate the performance of 3 established and validated
DL architectures for semantic segmentation, which have out-of-the-box publicly-
available implementations. Our evaluation is focusing on skull-stripping of scans
that have clearly discernible pathologies, such as scans from subjects diagnosed
with GBM. We also perform extensive comparisons using models trained on var-
ious combinations of different MRI modalities, to evaluate the benefit of utilizing
multi-parametric MRI (mpMRI) data that are typically acquired in routine clin-
ical practice for patients with suspected brain tumors on the final segmentation.
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2 Materials and Methods

2.1 Data

We retrospectively collected 1,796 mpMRI brain tumor scans, from 449 glioblas-
toma patients, acquired during standard clinical practice under varying acquisi-
tion protocols at the Hospital of the University of Pennsylvania. Corresponding
brain tissue annotations were manually-approved by an expert and used as the
gold-standard labels to quantitatively evaluate the performance of the algorithms
considered in this study.

In this study, we have chosen to take advantage of the richness of the
mpMRI protocol that is routinely acquired in the cases of subjects with sus-
pected tumors. Specifically, four structural modalities are included at baseline
pre-operative time-point: native (T1) and post-contrast T1-weighted (T1Gd),
native T2-weighted (T2), and T2-weighted Fluid Attenuated Inversion Recovery
(FLAIR) MRI scans (Fig. 1). To conduct our quantitative performance evalua-
tion we split the available data, based on an 80/20 ratio, in a training and testing
subset of 1,432 and 364 mpMRI brain tumor scans, from 358 and 91 patients,
respectively.

2.2 Pre-processing

To guarantee the homogeneity of the dataset, we applied the same pre-processing
pipeline across all the mpMRI scans. Specifically, all the raw DICOM scans
obtained from the scanner were initially converted to the NIfTI [24] file format
and then followed the protocol for pre-processing, as defined in the International
Brain Tumor Segmentation (BraTS) challenge [12–14,25,26]. Specifically, each
patient’s T1Gd scan was rigidly registered to a common anatomical atlas of
240 × 240 × 155 image size and resampled to its isotropic resolution of 1 mm3

[27]. The remaining scans of each patient (namely, T1, T2, FLAIR) were then
rigidly co-registered to the same patient’s resampled T1Gd scan. All the regis-
trations were done using “Greedy” (github.com/pyushkevich/greedy) [28], which
is a CPU-based C++ implementation of the greedy diffeomorphic registration
algorithm [29]. “Greedy” is integrated into the ITK-SNAP (itksnap.org) segmen-
tation software [30,31], as well as the Cancer Imaging Phenomics Toolkit (CaPTk
- www.cbica.upenn.edu/captk) [32,33]. After registration, all scans were down-
sampled from a resolution of 240 × 240 × 155 to a resolution of 128×128×128,
with anisotropic spacing of 1.875 × 1.875 × 1.25 mm3 with proper padding mea-
sures to ensure the anisotropic spacing is attained. Finally, the intensities found
on each scan below the 2nd percentile and above the 95th percentile were capped,
to ensure suppression of spurious intensity changes due to the scanner acquisition
parameters.

2.3 Network Topologies

For our comparative performance evaluation, we focused on the most well-
established DL network topologies for 3D semantic segmentation. The selection

http://github.com/pyushkevich/greedy
http://www.itksnap.org/pmwiki/pmwiki.php
www.cbica.upenn.edu/captk
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Fig. 1. Example mpMRI brain tumor scans from a single subject. The original scans
including the non-brain-tissues are illustrated in A, whereas the same scans after apply-
ing the manually-inspected and verified gold-standard brain tissue segmentations are
illustrated in B.

was done after taking into consideration their wide application in related liter-
ature, their state-of-the-art performance on other segmentation tasks, as estab-
lished by various challenges [12,13,34,35], as well as their out-of-the-box appli-
cability of their publicly available implementation, in low resource settings. The
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specific architectures included in this evaluation comprise the a) DeepMedic
[20,21], b) 3D U-Net [22], and c) Fully Convolutional Neural network (FCN) [23].

DeepMedic [20,21] is a novel architecture, which came into the fore-
ground after winning the 2015 ISchemic LEsion Segmentation (ISLES) chal-
lenge [34]. DeepMedic is essentially a 3D convolutional neural network with
a depth of 11-layers, along with a double pathway to provide sufficient con-
text and detail in resolution, simultaneously. In our study, we have applied
DeepMedic using its default parameters, as provided in its GitHub repository
github.com/deepmedic/deepmedic. As a post-processing step, we also include a
hole filling algorithm.

As a second method, we have applied a 3D U-Net [22], an architecture that
is widely used in neuroimaging. We used 3D U-Net with an input image size
of 128 × 128 × 128 voxels. Taking into consideration our requirement for a low
computational footprint, we reduced the initial number of “base” filters from 64
(as was originally proposed) to 16.

The third method selected for our comparisons was a 3D version of an FCN
[23]. Similarly to the 3D U-Net, we used an input image size of 128 × 128 × 128
voxels. For both 3D U-Net and FCN, we used ‘Leaky ReLU’ instead of ‘ReLU’
for back-propagation with leakiness defined as α = 0.01. Furthermore, we used
instance normalization instead of batch normalization due to batch size being
equal to 1, due to the high memory consumption.

2.4 Experimental Design

Current state of the art methods typically use only the T1 modality for skull-
stripping [36–41]. Here, we followed a different approach, by performing a set
of experiments using various input image modality combinations for training
DL models. Our main goal was to investigate potential contribution of different
modalities, which are obtained as part of routine mpMRI acquisitions in patients
with suspected brain tumors, beyond using T1 alone for skull-stripping. Accord-
ingly, we first trained and inferred each topology on each individual modality sep-
arately to measure segmentation performance using different independent modal-
ities, resulting in 4 models for each topology (“T1”, “T1Gd”, “T2”, “Flair”).
Additionally, we trained and inferred models on a combination of modalities;
namely, using a) both T1 and T2 modalities (“Multi-2”), and b) all 4 structural
modalities together (“Multi-4”). The first combination was chosen as it has been
shown that addition of the T2 modality improves the skull-stripping performance
[14] and can also be used in cases where contrast medium is not used and hence
the T1Gd modality is not available, i.e., in brain scans without any tumors.
The second combination approach (i.e., “Multi-4”) was chosen to evaluate a
model that uses all available scans. Finally, we utilized an ensembling approach
(i.e., “Ens-4”) where the majority voting of the 4 models trained and inferred
on individual modalities was used to produce the final label for skull-stripping.

We ensured that the learning parameters stayed consistent across each experi-
ment. Each of the applied topologies needed different time for convergence, based
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on their individual parameters. For Deep-Medic, we trained with default param-
eters (as provided at the original github repository - 0.7.1 [commit dbdc1f1]) and
it trained for 44 h. 3D U-Net and FCN were trained with Adam optimizer with
a learning rate of 0.01 over 25 epochs. The number of epochs was determined
according to the amount of improvement observed. Each of them trained for 6 h.

The average inference time for DeepMedic including the pre-processing and
post-processing for a single brain tumor scan was 10.72 s, while for 3D U-Net and
FCN was 1.06 s. These times were estimated based on the average time taken
to infer on 300 patients. The hardware we used to train and infer were NVIDIA
P100 GPUs with 12 GB VRAM utilizing only a single CPU core with 32 GB of
RAM from nodes of the CBICA’s high performance computing (HPC) cluster.

2.5 Evaluation Metrics

Following the literature on semantic segmentation we use the following metrics
to quantitatively evaluate the performance of the trained methods.

Dice Similarity Coefficient. The Dice Similarity Coefficient (Dice) is typi-
cally used to evaluate and report on the performance of semantic segmentation.
Dice measures the extent of spatial overlap between the predicted masks (PM)
and the provided ground truth (GT ), and is mathematically defined as:

Dice =
2|GT ∩ PM |
|GT | + |PM | ∗ 100 (1)

where it would range between 0-100, with 0 describing no overlap and 100 perfect
agreement.

Hausdorff95. Evaluating volumetric segmentations with spatial overlap
agreement metrics alone can be insensitive to differences in the slotted edges.
For our stated problem of brain extraction, changes in edges might lead to
minuscule differences in spatial overlap, but major differences in areas close
to the brain boundaries resulting in inclusion of skull or exclusion of a tumor
region. To robustly evaluate such differences, we used the 95th percentile of the
Hausdorff95 distance to measure the maximal contour distance d, on a radial
assessment, between the PM and GT masks.

Hausdorff95 = percentile
(
dPM,GT ∪ dGT,PM , 95th

)
(2)

3 Results

The median and inter-quartile range for Dice and Hausdorff95 scores for each
of the constructed models using 3 topologies and 7 input image combinations,
are shown in Tables 1 and 2 and Fig. 2 and 3. DeepMedic showed a consistent
superior performance to 3D U-Net and FCN, for all input combinations.
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Table 1. Median and inter-quartile range for Dice scores of all trained models and
input image combinations. DM:DeepMedic, 3dU:3D U-Net.

T1 T2 T1Gd Flair Multi-4 Multi-2 Ens-4

DM 98.09 ± 1.18 97.88 ± 1.07 97.86 ± 1.08 97.88 ± 1.03 98.19 ± 1.08 98.13 ± 1.08 97.94 ± 1.10

3dU 94.77 ± 2.30 96.01 ± 1.58 97.15 ± 1.66 96.08 ± 1.92 98.20 ± 1.19 98.13 ± 1.02 98.05 ± 0.76

FCN 97.65 ± 0.74 96.34 ± 1.32 97.16 ± 0.99 96.74 ± 1.11 93.34 ± 1.13 97.82 ± 1.18 97.46 ± 1.07

Fig. 2. Median and inter-quartile range for Dice scores of all trained models and input
image combinations.

Overall, best performance was obtained for the DeepMedic-Multi-4 model
(Dice = 97.9, Hausdorff95 = 2.68). However, for the model trained using
DeepMedic and only the T1 modality obtained comparable (statistically insignif-
icant, p > 0.05 - Wilcoxon signed-rank test) performance (Dice = 97.8,
Hausdorff95 = 3.01). This result reaffirms the use of T1 in current state of
the art methods for skull-stripping.

Performance of 3D U-Net was consistently lower when the network was
trained on single modalities. However, the 3D U-Net-Multi-4 model obtained
performance comparable to DeepMedic. Despite previous literature reporting a
clear benefit of the ensemble approach [12,13], in our validations we found that
the ensemble of models trained and inferred on individual modalities did not
offer a noticeable improvement.

Illustrative examples of the segmentations for the best performing model
(DeepMedic-Multi-4 ) are shown in Fig. 4. We showcase the best and the worst
segmentation results, selected based on the Dice scores.
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Table 2. Median and inter-quartile range for Hausdorff95 scores for all trained models
and input image combinations. DM:DeepMedic, 3dU:3D U-Net.

T1 T2 T1Gd Flair Multi-4 Multi-2 Ens-4

DM 2.24 ± 1.41 2.24 ± 1.00 2.24 ± 1.27 2.24 ± 1.00 2.00 ± 1.41 2.24 ± 1.41 2.24 ± 1.00

3dU 11.45 ± 2.98 19.21 ± 2.85 3.00 ± 2.01 5.20 ± 5.85 1.73 ± 1.41 2.00 ± 1.50 2.00 ± 0.61

FCN 2.24 ± 1.00 3.61 ± 1.18 2.83 ± 0.93 3.00 ± 1.55 5.92 ± 0.93 2.24 ± 1.00 2.24 ± 0.76

Fig. 3. Median and inter-quartile range for Hausdorff95 scores of all trained models
and input image combinations.

4 Discussion

We compared three of the most widely used DL architectures for semantic seg-
mentation in the specific problem of skull-stripping of images with brain tumors.
Importantly, we trained models using different combinations of input image
modalities that are typically acquired as part of routine clinical evaluations of
patients with suspected brain tumors, to investigate contribution of these differ-
ent modalities to overall segmentation performance.

DeepMedic consistently outperformed the other 2 methods with all input
combinations, suggesting that it is more robust. In contrast, 3D U-Net and FCN
had highly variable performance with different image combinations. With the
addition of mpMRI input data, the 3D U-Net models (“Multi-4” and “Multi-2”)
performed comparably with DeepMedic.

We have made the pre-trained DeepMedic model, including all pre-processing
and post-processing steps, available for inference to others through our cancer
image processing toolkit, namely the CaPTk [32,33], which provides readily
deployable advanced computational algorithms to facilitate clinical research.

In future work, we intend to extend application of these topologies to multi-
institutional data along with other topologies for comparison.
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Fig. 4. Visual example of the best (A) and the worst (B) output results.
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Abstract. Convolutional neural networks (CNN) have been widely used
for the medical image analysis of brain lesions. The estimates of tradi-
tional segmentation networks for the prediction of the follow-up tissue
outcome in strokes are, however, not yet accurate enough or capable of
properly modeling the growth mechanisms of ischaemic stroke.

In our previous shape space interpolation approach, the prediction of
the follow-up lesion shape has been bounded using core and penumbra
segmentation estimates as priors. One of the challenges is to define well-
suited growth constraints, as the transition from one to another shape
may still result in a very unrealistic spatial evolution of the stroke.

In this work, we address this shortcoming by explicitly incorporat-
ing vector fields for the spatial growth of the infarcted area. Since the
anatomy of the cerebrovascular system defines the blood flow along brain
arteries, we hypothesise that we can reasonably regularise the direction
and strength of growth using a lesion deformation model. We show that
a Principal Component Analysis (PCA) model computed from the dif-
feomorphic displacements between a core lesion approximation and the
entire tissue-at-risk can be used to estimate follow-up lesions (0.74 F1
score) for a well-defined growth problem with accurate input data bet-
ter than with the shape model (0.62 F1 score) by predicting the PCA
coefficients through a CNN.

Keywords: Stroke · Growth · Prediction · PCA · CNN

1 Introduction

Ischaemic stroke is the blockage of brain arteries by thrombotic or embolic clots
leading to a reduced blood flow. The lack of oxygen can cause brain cell death
and makes it a potentially deadly medical condition with high mortality rates
in the industrialised world. The treatments mainly aim to reperfuse the tissue
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(a) Normal blood flow (b) Blood flow with AIS (c) Stroke growth

Fig. 1. Illustrating the motivation: oxygenated blood supply is represented by vectors
at sample positions in the left hemisphere. Interpreting vector directions and mag-
nitudes as blood flow, the vectors follow the main arteries in the brain (a). Acute
ischaemic stroke (AIS) clots (yellow) reduce the flow and oxygen supply (b). The less
oxygen, the faster the stroke lesion growth (c). (Color figure online)

and the outcome is highly dependent on time from stroke onset until successful
reperfusion [1]. While necrotic tissue in the core of the stroke cannot be recov-
ered, the hypo-perfused tissue-at-risk in the surrounding penumbra can often
be restored. CT perfusion (CTP) imaging in the acute phase of the stroke can
provide parameter maps, such as TTD (time to drain) or CBV (cerebral blood
volume), to segment core and penumbra. The bigger the potential spatial growth
of the lesion into the tissue-at-risk (Fig. 1), the higher could be the clinical benefit
of an immediate treatment saving most of the recoverable brain area.

Today, the estimation of the spatial growth of the stroke is strongly depending
on the subjective experience of the doctor. The lack of longitudinal data (“time is
brain”, i.e. patients are treated as quick as possible after the emergency imaging)
is a major obstacle for proposing a data-driven algorithmic model that accurately
describes the relation from imaging or clinical parameters to future outcome.
Regularisation is crucial, because the space of outcomes at different times of
treatment is often under-sampled by the available ground truth data.

1.1 Related Work

In recent years, machine learning methods have become increasingly popular in
the field of stroke prediction research [2,3]. Several deep learning approaches
for stroke tissue outcome prediction – often exploiting standard segmentation
networks for prediction – have been investigated and compared [4]. Recently
presented methods [5,6] learn the tissue outcome prediction from weakly super-
vised data over time (single follow-up imaging) and use clinical meta-data as
predictors to a convolutional neural network, e.g. by upsampling scalar to spa-
tial data in order to combine it with the image data. However, the performance
of the deep learning based follow-up predictions is still too low for clinical usage.

While the task of segmenting the CTP perfusion lesion (all tissue-at-risk incl.
necrosis, “core+penumbra”) is rather straight-forward, the true necrotic core is
usually estimated in the acute phase by comparing prolonged perfusion times
with significantly decreased blood flow and volume, which can be quite difficult
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to assess. Thus, also automatic methods struggle to segment the core on CTP.
At the ISLES challenge 2018, only the winning [7] out of 50 algorithms in the
leaderboard achieved the maximum Dice score of 0.51 (www.isles-challenge.org).

Principal component analysis (PCA) serves well to obtain representative low-
dimensional encodings that keep the main information. It has been combined
with neural learning in various ways, e.g. to cope with the respiratory motion
of lungs [8], to integrate prior shape knowledge when predicting segmentations
of the heart [9], or to predict deformations for landmark regression tasks [10].
Inspired by spatial transformer networks [11], those methods do not need to
directly regress and compare the coefficients for the PCA embeddings but a
final resampled mask result that is matched with the ground truth mask.

Some algorithms for the prediction of disease progression incorporate prior
knowledge with the help of autoencoders from retrospective outcome data during
training. The inter- or extrapolated disease progression along a trajectory in the
latent space can be set to be linear [12] or non-linear as in [13]. The learnt
decoders continuously morph the shape of a segmentation mask or the change
in gray values of a medical image to simulate the growth of the disease.

Using the shape distributions in our previous work [12] as a surrogate for a
stroke growth model relies on several assumptions, which are difficult to choose
and result in a highly under-sampled problem. In particular, it is not ensured
how the progression between the observed ground truth labels continues. This is
completely allocated to the optimisation process under some constraints defined
before (e.g. monotony or trajectory criteria). The learnt shape sample distribu-
tions serve as a surrogate for a non-existing growth supervision.

In order to better guide the learning of the spatial growth process itself over
time (rather than morphing between shape “snapshots”), we aim to regularise
the change of the stroke lesion segmentation in both temporal directions (for-
ward/backward) by using non-linear deformations reconstructed from a PCA on
diffeomorphic displacements. The underlying hypothesis implies that the follow-
up lesion mask should be located somewhere on the deformation trajectory of
the displacements from core to core+penumbra.

1.2 Contribution

Our contribution is based on different aspects of the method’s novel perspective
on stroke growth modelling:

(1) Indirect prior knowledge of the brain’s common blood vessel anatomy
(Fig. 1) is incorporated through the registration of stroke lesion masks.

(2) The feasability of using only the displacements from core+penumbra to core
for tissue outcome (follow-up mask) prediction is demonstrated.

(3) Valid evolution of the lesion shape is ensured through the dense resampling
of displacements from biophysically plausible diffeomorphic registrations.

(4) Generalisation of the spatial evolution modes is ensured by using only prin-
cipal components (PCA) of the training data’s growth vectors.

(5) Non-linearity of stroke growth is learned through a CNN estimating the
coefficients of the principal directions of the lesion deformation.

https://www.isles-challenge.org
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Fig. 2. Training method overview: n pairs of core and perfusion lesion are being regis-
tered in a preprocessing step. The resulting displacements will be downsampled before
extracting their principal components pci (1 ≤ i ≤ k) and mean m. A CNN esti-
mates the coefficients ci to reconstruct displacements generating a follow-up prediction.
While part 1 is only computed once, part 2 and after are computed for each of the n
samples.

2 Materials and Methods

The idea for stroke tissue outcome prediction is to mimic the stroke shape pro-
gression (spatial growth) as a registration problem of its segmentations at var-
ious times (core at t = 0, follow-up at 0 < t < 1, core+penumbra at t = 1).
We propose a two-part training (Fig. 2) to estimate principal directions of stroke
growth by using a surrogate of principal displacement modes between core and
core+penumbra from an independent registration procedure.

These modes are modelled using statistical machine learning, namely a PCA
(Part 1), of displacement vector fields (Sect. 2.1) that warp the core+penumbra
onto the core segmentation. Instead of a high number of deformation parameters
(regular vector field), we have simplified the task and regularised it through the
robust PCA model along a small number of k ≤ n main deformation directions
(n total training cases).

The CNN (Part 2) learns the PCA coefficients ci for a suitable weighting
of each component i ∈ {1..k} to predict the displacements for the follow-up
lesion. The follow-up mask is being resampled from these displacements on
the core+penumbra mask through a GridSampler module implemented in the
PyTorch deep learning package [14].

Inserting the coefficients ci in Eq. (1) together with both mean m and the
linear combination of the principal directions pci of the PCA gives us a recon-
structed displacement field d that warps core+penumbra onto the follow-up seg-
mentation. Using invertible diffeomorphic ground truth displacements as super-
vision, we can think of the growth from core to follow-up (forward in time,
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Fig. 3. The CNN architecture of Fig. 2, Part 2, consists of two sides: Before concate-
nation, the images are convolved and downsampled, while increasing the number of
channels (bottom). After concatenation with clinical time data, the channels are re-
weighted and reduced to the dimensionality of the PCA space. (Best viewed on screen)

d−1) also in the reverse direction from core+penumbra to follow-up (backward
in time, d). This enables us to use the core+penumbra segmentation with more
shape information as a moving image. During training, a SoftDice loss as in
[12] measures the difference to the actual ground truth follow-up lesion mask. In
order to update the parameter weights of the CNN, the loss can easily be back-
propagated through the derivative of Eq. (1) before passing backward through
the CNN.

d = m +
k∑

i=1

ci ∗ pci (1)

The CNN receives core and core+penumbra masks as input, repeatedly dou-
bles the feature channels from 25 to 800, while reducing the spatial size down
to 1 × 1 × 1 (Fig. 3, before concatenation). Time meta-data, i.e. both time peri-
ods onset-to-imaging and imaging-to-treatment, is concatenated to this vector
and processed through two 802-channel 1×1×1 convolutional layers followed by
dropouts to regress the output vector ci that contains the PCA model coefficients
(Fig. 3, after concatenation).

2.1 Data

We used the same dataset of 29 patients consisting of CBV segmentations, TTD
segmentations, and follow-up CT segmentations after successful thrombectomy
as in [12]. The TTD segmentation outlines the core+penumbra, and the CBV
segmentation mask serves as an approximation of the core segmentation. How-
ever, this does not always meet the clinical hypothesis of a monotonously grow-
ing segmentation shape, because the follow-up lesion in CT can be sometimes
smaller than the acute CBV lesion in the original dataset.
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Fig. 4. Dataset Modified A (left) uses the union of CBV and follow-up segmenta-
tions as target, while for Modified B (right) an intermediate deformation from core to
core+penumbra according to a non-linear growth rate is used as target.

Thus, we replaced the training target in dataset Modified A by the union
of the original follow-up (FU Segm.) and the core segmentation (CBV Segm.)
as shown in Fig. 4 (left). In dataset Modified B we first registered core and
core+penumbra and applied the resulting displacements by a weighting factor η
to adjust the vector magnitudes according to the time-to-reperfusion t (Fig. 4,
right). This simulates a non-linearly growing artificial lesion with a growth rate
of η = t0.5 for a time t ∈ {0..1} between the initial necrosis (t = 0) and the
worst case (t = 1). Using dataset B we are able to demonstrate the general
applicability of the method for a well-specified growth problem based on the
clinical observations of higher growth at the beginning [1].

2.2 Experimental Setup

For the preprocessing step in Fig. 2, a diffeomorphic B-Spline transformation
model optimised through stochastic gradient descent [15] was used in order
to generate the displacement ground truths from core+penumbra to core. The
choice of registration method is up to the user and can be tuned independently
from the rest of our method. The displacement vector fields are trilinearly down-
sampled from 256×256×28×3 to 32×32×28×3 voxels for reduced computational
demand.

Since our aim is to learn the main displacement along the cerebral vessel
system, we do not work on a canonical (centered) basis but keep the location
in the common brain space of the images (within a single hemisphere, Fig. 5a).
Similar to [12] we ran the same 5-fold validation. The first two components
of a learnt displacement model roughly show the main variation in height and
width, which explains about 2/3 of the variance in the data (Fig. 5b). To improve
robustness of the PCA, we also applied affine augmentation directly on the
displacement fields (9 random transformations per patient) for which we also
had to increase k to cover a similar variance than without the augmentation.
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(a) The first two principal components (b) Accumulated variance for increasing k

Fig. 5. Displacement model from the training data of [12]. (a) First two principal modes
deforming a mean shape of core+penumbra. (b) Accumulated percentage of variance
explained by the first k modes: ∼90% for k = 5, ∼95% for k = 8, and ∼99% for k = 15.

2.3 Previous Approach

The proposed method that predicts PCA displacement coefficients has been
compared to our previous approach using shape interpolations within a learnt
shape space [12]. It incorporates prior knowledge about stroke growth in the form
of a learnt stroke tissue shape space. By enforcing follow-up segmentation to lay
on the trajectory between core and penumbra representations within the shape
space, we could continuously evolve the shape to simulate growth of ischaemic
strokes restricted to a lower (core) and upper bound (core+penumbra).

The training of the CAE is conducted in a two-step manner: First, recon-
structions of segmentation masks are learned. Second, the decoded interpolation
of the low-dimensional representations of core and core+penumbra is forced to
match with the follow-up segmentation mask while ensuring monotonous growth
of the reconstructed lesion. Apart from the results reported in [12] we added the
results of the CAE on the two modified datasets in the evaluation of this paper.

3 Results

Find the overlap metric results in Table 1: The “F1 Oracle” score quantifies the
capability of the PCA to enable a deformation of core+penumbra that overlaps
with the follow-up, while “F1 Prediction” quantifies the capability of the CNN
to find the right coefficients in the PCA model for an unknown follow-up given
the input of core mask, core+penumbra mask, and time meta-data.
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Table 1. F1 score results: Refer to Sect. 2.1 for a description of the datasets and affine
augmentation. The highest scores per dataset are highlighted in bold.

Method k Augmentation Dataset F1 Prediction F1 Oracle

PCA 60 Displacements affine Modified B 0.74 0.92

PCA 20 – Modified B 0.71 0.88

CAE – – Modified B 0.62 0.71

PCA 60 Displacements affine Modified A 0.52 0.84

PCA 20 – Modified A 0.48 0.73

CAE – – Modified A 0.60 0.71

PCA 60 Displacements affine Original [12] 0.37 0.84

PCA 20 – Original [12] 0.38 0.70

CAE – – Original [12] 0.46 0.53

Considering the diffeomorphic registration overlap of the core+penumbra
warped onto the core lesion from the preprocessing step, we have an initial aver-
age F1 score of 0.84 for the supervision (not listed in Table 1). The registration
on the core is thereby not perfect, but diffeomorphic, so that the subsequent
PCA receives rather plausible displacement fields as training input.

If we take the principal components of each PCA (k = 20) for the five training
folds (with n = 23 samples) with an oracle knowing the right coefficients for all k
components (by gradient descent optimisation on the ground truth), we achieve
an average F1 score of 0.70 on the original data or even more on the two modified
datasets.

4 Discussion

These oracle results indicate that the principal components are capable of rep-
resenting meaningful displacements from core+penumbra to follow-up lesions,
although the samples are drawn from displacements of core+penumbra to core.
This supports our hypothesis that the final lesion on the follow-up image roughly
represents an intermediate lesion when the core deforms to the core+penumbra
lesion.

In particular, the follow-up lesions can – in theory – be much better repre-
sented by the PCA space than by the learnt shape space model of [12]. Once
learnt, the CAE shape space, which encodes the low-dimensional representations
of a core-penumbra pair, offers only a single degree of freedom to find the right
follow-up shape (linear trajectory position between both representations in the
latent space). With the PCA model, however, we still have k degrees of freedom
to find the right deformation for getting the follow-up shape in a space with
dimensions that explain a known percentage of the variance in the original data.

Even though the prediction F1 scores of the PCA model with coefficients from
the CNN are lower on the original and Modified A data than for the shape space



Principal Directions of Spatial Stroke Growth 77

Fig. 6. Results of each dataset (Original of [12], Modified A, Modified B) for three
sample subjects (top, middle, bottom) are shown. The first three columns show the
ground truth masks, while the last three columns show the predictions of the follow-up
mask (FU Segm.). Note: Implausible interpolations (green arrows) can still occur with
the CAE interpolations but not with the PCA of displacements. (Color figure online)
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reconstructions, we never observe any fade-in/fade-out appearance or implau-
sible shape change over time of progression. This can still occur when training
a shape space with the CAE and is difficult to fully avoid (see Fig. 6, green
arrows). The more plausible a follow-up shape is compared to the given core
approximation, the better are the predictions of the PCA+CNN (F1 scores on
Modified B : 0.74 for PCA, 0.62 for CAE).

5 Conclusion

Here we present the first results on a stroke lesion deformation model that can
serve as the basis for the prediction of ischaemic stroke tissue outcome. It is
capable of learning the main direction of spatial growth over time from the core
to the perfusion lesion (core+penumbra) based on a small number of samples.
We show that these deformation modes allow to reconstruct displacements that
deform the perfusion lesion shape close to the follow-up lesion shape (F1 ≥ 0.70).

We did not strive for the highest overlap accuracy but look for consistent
growth (in terms of spatial regularisation) over time by a model of main defor-
mation modes that can be more plausible to the doctor than an interpolation
based on the weak supervision of a single follow-up shape sample per patient. It
seems quite clear from the results that displacement fields offer richer supervi-
sion than the segmentation masks used for training the shape CAE. While the
theoretical upper bound (oracle) of overlap with the follow-up lesion is higher
than with the compared shape-interpolation method, we cannot yet achieve high
overlap on data with CBV lesion segmentations used as core approximation in
general, and in particular by learning the coefficients of the principal components
with a CNN to predict the follow-up lesion.

Although being work-in-progress that requires further investigations, e.g. to
find the optimal hyper-parameter k for the k-dimensional PCA basis, we see
this as a promising research direction to quantify potential stroke growth not
just by a global volume measure but locally and spatially within the tissue to
assist the doctor in treatment planning. Since it was shown that displacements
between core and perfusion lesion are suitable to generate actual follow-ups if
reconstructed from low-dimensional representations, we would like to integrate
the displacement fields into a CAE architecture in the future directly to learn a
displacement model end-to-end along with the CNN to eventually improve the
prediction of the unseen follow-up segmentations. Further auxiliary supervision
(e.g. computing loss on ci directly) might be necessary to achieve this.
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Abstract. The fully convolutional networks (FCNs) have been widely applied
in numerous medical image segmentation tasks. However, tissue regions usually
have large variations of shape and scale, so the ability of neural networks to
learn multi-scale features is important to the segmentation performance. In this
paper, we improve the network for multi-scale feature fusion, in the medical
image segmentation by introducing two feature fusion modules: i) global
attention multi-scale feature fusion module (GMF); ii) local dense multi-scale
feature fusion module (LMF). GMF aims to use global context information to
guide the recalibration of low-level features from both spatial and channel
aspects, so as to enhance the utilization of effective multi-scale features and
suppress the noise of low-level features. LMF adopts bottom-up top-down
structure to capture context information, to generate semantic features, and to
fuse feature information at different scales. LMF can integrate local dense multi-
scale context features layer by layer in the network, thus improving the ability of
network to encode interdependent relationships among boundary pixels. Based
on the above two modules, we propose a novel medical image segmentation
framework (GLF-Net). We evaluated the proposed network and modules on
challenging brain tumor segmentation and pancreas segmentation datasets, and
very competitive performance has been achieved.

1 Introduction

The segmentation of target tissue is one of basic problems in medical image analysis.
However, it would be time-consuming to label a large amount of medical images
manually. In this case, reliable and automatic segmentation technology has a potential
to improve the efficiency in clinical practice, promoting quantitative assessment in
pathology and detection in illness progress [1]. With the development of fully con-
volutional network (FCN), it has achieved good performance in numerous medical
image segmentation tasks [2, 3].

Nevertheless, tissue areas in medical images often present complex morphology and
multi-scale variation, so different multi-scale context features are required to encode local
and global information for accurate classification of pixels. For instance, segmentation of
large structures requires more global and wider receptive field, while segmentation of
small structures needs to concentrate on local high-resolution information. Especially, to
locate vague boundary in tissue areas precisely, local dense multi-scale features are
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required to encode interdependent relationships among boundary pixels. In addition, for a
specific-scale object, because of the large difference in resolution and semantic level
between high- and low-level features, these features have different importance for dis-
crimination, some of which may indicate false information [4]. Additionally, low-level
features have complex background noise. Simply integrating high- and low-level features
by feature concatenation is unable to utilize the multi-scale information thoroughly.
Therefore, it is necessary to select the discriminative and effective features.

Based on motivation of these two aspects, and with the inspiration of literature [5],
we introduce attention mechanism based on the skip connection and propose a global
attention multi-scale feature fusion module (GMF). This module utilizes the global
context information of high-level features, guising improvement and recalibration in
spatial and channel information of low-level features respectively, aiming to strengthen
relative features and suppress irrelative noise. Before the high- and low-level features
fusion, this module would perform discriminative selection and optimization for low-
level features, urging lower-level features to provide more effective multi-scale infor-
mation for higher-level features. In addition, we introduce a local dense multi-scale
feature fusion module (LMF) to learn the dense multi-scale features. The LMF uses the
advantage of bottom-up top-down structure, obtaining larger receptive field and higher-
level semantic features by down-sampling, and fusing multi-scale context information
by up-sampling and skip connection. It could be regarded as a fundamental module
used in network, and with the cascade of LMF in multiple layers, the network could
obtain multi-scale information under arbitrary feature resolutions. As far as we know, it
is the first time to propose local dense multi-scale feature fusion module based on mini
bottom-up top-down structure in the neural network, and it is also the first time to apply
it to medical image segmentation.

We integrate the proposed modules (GMF & LMF) into a typical encoder-decoder
network for medical image segmentation, to demonstrate that these are two generic
components to boost performance, so as to propose a novel medical image segmen-
tation framework (GLF-Net). On challenging brain tumor segmentation and pancreas
segmentation tasks, GLF-Net and the proposed modules have been extensively eval-
uated. The conclusion indicates that GLF-Net is perfectly adaptive to these two dif-
ferent segmentation tasks, and the modules also improve the performance considerably.

Related Work. Researchers mainly try to improve the ability of networks to learn
multi-scale features from the following three aspects: (i) multi-scale feature extraction
based on image pyramid [6]; (ii) multi-scale feature fusion layer by layer based on
encoder-decoder structure and skip connection [2]; (iii) multi-scale features extraction
based on dilated convolution and dilated spatial pyramid module [7]. Our method
improves the performance of feature learning on the basis of the second aspect.
Besides, attention mechanism offers a feasible scheme for the adaptive recalibration of
feature maps. Both of [5, 8] adopt different attention mechanism to calibrate features
and improve the network performance.
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2 Method

Convolution layer uses a set of feature maps as inputs, constructs information features
by fusing information from space and channel in local receptive field, and generates a
new set of feature maps as outputs. Here, we define a group of convolutional trans-
formations Ftr : X ! X 0;X 2 R

H�W�C;X 0 2 R
H0�W 0�C0

, where H and W are the spatial
height and width, with C and C0 being the number of input and output channels,
respectively. Every convolution operation Ftrð�Þ encodes the spatial information in
adjacent locations in the input feature X, and then outputs X 0 which is able to encode
more abundant spatial information. Therefore, features of FCN in different layers
encode information at different scales. Many researchers proposed different schemes
(such as skip connection [3], ASPP [7], etc.) to use multi-scale information in FCN.
However, most of methods based on feature fusion [2] only consider simple fusion of
high- and low-level features in the decoder, to enhance the reconstruction in high-
resolution details. In this study, we focus on using the rich multi-scale information
among different feature maps in FCN to achieve accurate and robust segmentation. We
emphasize the learning of local multi-scale features in encoder and enhance the effi-
ciency of high- and low-level feature fusion in decoder respectively. Next, we would
introduce the methods proposed in this paper in detail.

2.1 Global Attention Multi-scale Feature Fusion Module (GMF)

We introduce global attention multi-scale feature fusion module, by combining skip
connection with attention mechanism. It uses the high-level features’ perception abil-
ities to global information to guide the low-level features optimization, and offers more
effective multi-scale information to high-level features. GMF emphasizes that high-
level features could guide the low-level features’ optimization effectively to enhance
the semantic consistence of high- and low-level features, and improve the fuse effi-
ciency of multi-scale features.

Here, we use the global information of high-level features to recalibrate local
features in space and channel respectively. We assume that the input high- and low-
level features U ¼ u1; u2; u3; � � � ; uC½ �; L ¼ l1; l2; l3; � � � ; lC½ � have c channels and the i-
th channel is denoted as ui 2 R

H�W ; li 2 R
H�W respectively. In the branch of spatial

feature recalibration, we use a feature transformation to obtain the spatial projected map
s ¼ Fs�sqðUÞ of high-level feature U, where the Fs�sqð�Þ indicates the 1 � 1 convo-
lutional operation and the output channel number is 1. Then, using a sigmoid function
to obtain spatial weight map ~s ¼ rðsÞ;~s 2 R

H�W . In the branch of channel feature
recalibration, we use a global average pooling to compress the global spatial infor-
mation of ui into a channel descriptor, and generate channel-wise statistics vector
z ¼ Fc�sqðUÞ. The vector is transformed to z0¼Fex zð Þ by two 1 � 1 convolution layers,
and the final channel weight vector ð~z ¼ rðz0Þ;~z 2 R

1�1�CÞ is gained by a sigmoid
function. The weight vectors ~s and ~z encode spatial and channel information in the
high-level feature U respectively. We encode the global information into low-level
features by element-wise multiplication, so as to improve the encoding quality of low-
level features, and to suppress irrelative background noise. Subsequently, the final
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multi-scale feature is obtained by adding the corresponding elements of the recalibrated
low-level feature and the high-level feature U. It could be defined as:
~Ls ¼ ~s� LþU; ~Lc ¼ ~z� LþU, where � denotes element-wise multiplication.
Finally, we concatenate ~Ls, ~Lc and send the result to a 3 � 3 convolution layer to fuse
their corresponding feature information, and reduce the channel dimensions. The
architecture of GMF is illustrated in Fig. 1.

2.2 Local Dense Multi-scale Feature Fusion Module (LMF)

Generally, tissue areas in medical images have vague contours. Precise location of
tissue contours requires local dense multi-scale features to encode the interdependent
relationships among boundary pixels. However, every feature map in FCN only
encodes corresponding scale information, which is unable to meet the network’s need
to encode this relationship. In this case, we introduce a local dense multi-scale feature
fusion module (LMF), which could obtain context information under arbitrary feature
resolutions, generate semantic features and fuse feature information at different scales.

In particular, LMF uses bottom-up top-down structure to learn and obtain context
information to generate semantic features, and to fuse multi-scale features in adjacent
layers by skip connections between bottom-up and top-down. The whole module is
shown in Fig. 2. LMF uses two 3 � 3 convolution layers and a down-sampling to
expand the receptive field rapidly and obtain context information from the input feature
maps. Then, it expands global information and generates semantic features by two
3 � 3 convolution layers and an up-sampling. In LMF, two skip connections are used
to fuse features in adjacent scales. It is worth noting that LMF could change the
quantity of these components according to different tasks for getting better perfor-
mance. Networks based on bottom-up top-down structure [2] are widely applied in
medical image segmentation field. Unlike those methods, LMF aims to enhance the
encoding ability to learn local dense multi-scale features by obtaining and fusing
adjacent multi-scale features, rather than to solve specific segmentation tasks.
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Fig. 1. The schematic illustration of the global attention multi-scale feature fusion module.
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Another advantage of LMF is the larger receptive field. In conventional FCN, it
only uses multiple convolution layers to encode feature information among adjacent
spatial locations in feature maps. Since small convolution kernel is used, the network’s
receptive field expands slowly. As shown in Fig. 2(b), LMF could expand its receptive
field rapidly by the bottom-up top-down structure, which obtains spatial information at
different scales respectively. By fusing the obtaining information, LMF could learn
denser multi-scale features while provide larger respective field. Therefore, the network
is able to learn dense multi-scale features from low to high layer by layer with simple
repetition of LMFs.

2.3 Multi-scale Feature Fusion Framework

The proposed multi-scale feature fusion enhancement modules could be integrated into
existing segmentation frameworks, improving their ability to learn multi-scale features
by substituting standard convolution layers and skip connection. To demonstrate the
effectiveness of these modules, we choose the Unet [2] as the backbone structure,
which is the most widely used in medical image segmentation, leading to a new
medical image segmentation network (GLF-Net). As shown in Fig. 3, in the Unet
decoder, we use GMF to enhance the fusion of high- and low-level features. Then, we
substitute all standard convolutions in the encoder with LMF to improve the encoder’s
ability to learn local dense multi-scale information. In this paper, each convolution
module in GLF-Net consists of a 3 � 3 convolution layer, a group normalization layer
[9] and a rectified linear unit (ReLU) layer. Finally, we get the segmentation probability
map by Sigmoid function.

Receptive field
(b)(a)

Fig. 2. The schematic illustration of LMF. (a) The detailed structure of proposed LMF.
(b) Expansion details in receptive field of LMF.
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Fig. 3. Illustration of the architecture of our proposed GLF-Net.
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3 Experiments

3.1 Data and Experiments Setups

We first investigated automatic segmentation of the whole tumor from Fluid Attenuated
Inversion Recovery (FLAIR) images. We randomly chose 175 cases of FLAIR images
from 2018 Brain Tumor Segmentation Challenge (BraTS) [10–14] training set. Dif-
ferent from previous works focus on multi-label and multimodality segmentation, we
only used FLAIR images and only segmented the whole tumor in 2D slices due to the
limitation of memory. We used 100 volumes with 8000 slices for training, 25 volumes
with 2000 slices for validation and 50 volumes with 4000 slices for testing. Then we
studied the automatic segmentation of pancreas in CT images, provided by Memorial
Sloan Kettering Cancer Center form MSD challenge1. This dataset contains 280 cases
of patients in total. We performed data splitting at patient level and used images from
180, 20, 80 patients for training, validation and testing, respectively. Similarly, we only
used 2D slices to train the network, and we obtained 6886 training images in total, 800
validation images and 3200 testing images. Noting that in both datasets, we manually
discarded some slices that contain only background.

Our GLF-Net was implemented using Pytorch on a Linux system with an Nvidia
1080Ti GPU. During training, we used the dice loss and the Adam optimizer with a
learning rate of 1 � 10−4, with a learning rate reduction of 0.1 times after every 15
epochs. In each experiment, we saved the model that performed best on the validation
set during training as the final test model. Data augmentation including random
cropping and flipping were used to improve the robustness of the model. As for BraTS
dataset, we first re-scaled all images to 224 � 224 pixels and normalized the pixel
values of the images to the range of 0 to 1. As for the pancreas dataset, we first
normalized all images to 0 to 1 and resized the images to 256 � 256. In these two
experiments, the batch size used for training was 10 and 5, respectively.

For verifying the effectiveness of the proposed modules and network, we conducted
ablation studies on two datasets respectively, and compared GLF-Net with Unet-24 [2],
Res-Unet-24. Res-Unet-24 was a modified Unet where each convolution block was
replaced by the bottleneck building block used in the ResNet [15]. The number of basic
channels of Unet-24 and Res-Unet-24 is 24 to ensure that the number of parameters is
close to that of GLF-Net. Dice coefficient and Jaccard index were used to quantitative
evaluation of the segmentation performance.

3.2 Results and Discussion

Table 1 shows the evaluation results of different variants of the proposed method (only
GMF, only LMF and GLF-Net) on brain tumor dataset and pancreas dataset respec-
tively. It can be seen that the GLF-Net method, which only includes GMF, has better

1 http://medicaldecathlon.com/.
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performance on these two datasets though its parameters are only a half of Unet-24.
This phenomenon indicates that GMF could use multi-scale information of low-level
features more efficiently to improve the segmentation results of network. In addition,
LMF gets better performance than GMF. Though LMF augments parameters, its
segmentation results improve a lot compared with Unet-24. This proves the effec-
tiveness of proposed LMF. The GLF-Net, integrating GMF and LMF, gets the best
performance among all the compared methods. Compared with Unet-24, the Jaccard
index of GLF-Net increases by 3.8% and 7.4% on pancreas and brain tumor datasets
respectively. The results show that compared with ordinary organ segmentation, GLF-
Net could obtain better performance on lesion segmentation tasks with complicated
multi-scale variation (such as brain tumor segmentation).

The qualitative segmentation results of three examples with different appearances
from brain tumor and pancreas datasets are shown in Fig. 4. For example A, though the
tumor area is obvious, there are two independent segmentation regions which influence
network’s judgment, leading Unet-24 makes wrong prediction. However, GMF
improves one of the segmentation performances, and LMF almost completely avoids
the error prediction of these two regions. For example B, the background is very close
to the tumor area, and Unet-24 is unable to distinguish boundary information of tumor
areas, thus, causing segmentation results with larger errors. GMF and LMF improve
segmentation results in different areas successively. This indicates that both of GMF
and LMF are able to enhance the ability of network to learn multi-scale features
effectively, and get better performance. Moreover, LMF has a more precise segmen-
tation result than GMF, which indicates that LMF could encode the interdependent
relationship among boundary pixels more effectively, so as to locate boundaries pre-
cisely. Example C also proves the validity of GMF and LMF. Besides, we visualize
spatial weight maps in GMF, and it is obvious that different spatial weight maps encode
context information on diverse scales in target areas. By using this kind of global
information to improve encoding of low-level features, it is able to enhance target-
related feature information in low-level features.

Table 1. Quantitative evaluation of different networks on brain tumor and pancreas datasets.

Method Brain Tumor dataset Pancreas dataset

Dice Jaccard Dice Jaccard Parameters

Unet-24 0.841 � 0.125 0.737 � 0.153 0.764 � 0.103 0.628 � 0.121 4.3 � 106

Res-Unet-24 0.862 � 0.066 0.766 � 0.099 0.774 � 0.079 0.640 � 0.102 4.5 � 106

GLF-Net (only GMF) 0.875 � 0.065 0.786 � 0.097 0.773 � 0.095 0.637 � 0.111 1.9 � 106

GLF-Net (only LMF) 0.884 � 0.061 0.796 � 0.093 0.788 � 0.093 0.658 � 0.109 4.4 � 106

GLF-Net 0.893 � 0.055 0.811 � 0.086 0.795 � 0.069 0.666 � 0.092 4.5 � 106
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4 Conclusion

This paper propose two modules used in multi-scale feature fusion enhancement for
better medical image segmentation performance. Before the fusion of high-level and
low-level features, GMF uses attention mechanism to select the optimal low-level
features information to improve the high- and low-level feature fusion efficiency. LMF
aims to obtain more abundant local dense multi-scale features with a bottom-up top-
down structure, to improve the tissue contours segmentation precision of network.
Based on these two modules, we propose a novel medical image segmentation network.
We evaluated the proposed methods on brain tumor and pancreas datasets, and got very
competitive results. This indicates that the proposed methods have effectiveness and
wide adaptability. Besides, as a general solution, future work aims to apply the methods
to 3D segmentation or other segmentation tasks.
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Abstract. Segmentation is a fundamental task in medical image anal-
ysis. The clinical interest is often to measure the volume of a structure.
To evaluate and compare segmentation methods, the similarity between
a segmentation and a predefined ground truth is measured using metrics
such as the Dice score. Recent segmentation methods based on convo-
lutional neural networks use a differentiable surrogate of the Dice score,
such as soft Dice, explicitly as the loss function during the learning phase.
Even though this approach leads to improved Dice scores, we find that,
both theoretically and empirically on four medical tasks, it can introduce
a volumetric bias for tasks with high inherent uncertainty. As such, this
may limit the method’s clinical applicability.

Keywords: Segmentation · Cross-entropy · Soft Dice · Volume

1 Introduction

Automatic segmentation of structures is a fundamental task in medical image
analysis. Segmentations either serve as an intermediate step in a more elaborate
pipeline or as an end goal by itself. The clinical interest often lies in the volume
of a certain structure (e.g. the volume of a tumor, the volume of a stroke lesion),
which can be derived from its segmentation [11]. The segmentation task can
also carry inherent uncertainty (e.g. noise, lack of contrast, artifacts, incomplete
information).

To evaluate and compare the quality of a segmentation, the similarity
between the true segmentation (i.e. the segmentation derived from an expert’s
delineation of the structure) and the predicted segmentation must be measured.
For this purpose, multiple metrics exist. Among others, overlap measures (e.g.
Dice score, Jaccard index) and surface distances (e.g. Haussdorf distance, aver-
age surface distance) are commonly used [13].

The focus on one particular metric, the Dice score, has led to the adoption of
a differentiable surrogate loss, the so-called soft Dice [9,15,16], to train convolu-
tional neural networks (CNNs). Many state-of-the-art methods clearly outper-
form the established cross-entropy losses using soft Dice as loss function [7,12].
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In this work, we investigate the effect on volume estimation when optimizing
a CNN w.r.t. cross-entropy or soft Dice, and relate this to the inherent uncer-
tainty in a task. First, we look into this volumetric bias theoretically, with some
numerical examples. We find that the use of soft Dice leads to a systematic under-
or overestimation of the predicted volume of a structure, which is dependent on
the inherent uncertainty that is present in the task. Second, we empirically val-
idate these results on four medical tasks: two tasks with relatively low inherent
uncertainty (i.e. the segmentation of third molars from dental radiographs [8],
BRATS 2018 [4–6,14]) and two tasks with relatively high inherent uncertainty
(i.e. ISLES 2017 [2,18], ISLES 2018 [3]).

2 Theoretical Analysis

Let us formalize an image into I voxels, each voxel corresponding to a true class
label ci with i = 0 . . . I − 1, forming the true class label map C = [ci]I . Typical
in medical image analysis, is the uncertainty of the true class label map C (e.g.
due to intra- and inter-rater variability; see Sect. 2.2). Under the assumption of
binary image segmentation with ci ∈ {0, 1}, a probabilistic label map can be
constructed as Y = [yi]I , where each yi = P (ci = 1) is the probability of yi

belonging to the structure of interest. Similarly, we have the maps of voxel-wise
label predictions Ĉ = [ĉi]I and probabilities Ŷ = [ŷi]I . In this setting, the class
label map Ĉ is constructed from the map of predictions Ŷ according to the
highest likelihood.

The Dice score D is defined on the label maps as:

D(C, Ĉ) =
2|C ∩ Ĉ|
|C| + |Ĉ| (1)

The volumes V(C) of the true structure and V(Ĉ) of the predicted structure are
then, with v the volume of a single voxel:

V(C) = v
I−1∑

i=0

ci, V(Ĉ) = v
I−1∑

i=0

ĉi (2)

In case the label map is probabilistic, we need to work out the expectations:

V(Y ) = vE[
I−1∑

i=0

yi], V(Ŷ ) = vE[
I−1∑

i=0

ŷi] (3)

2.1 Risk Minimization

In the setting of supervised and gradient-based training of CNNs [10] we are per-
forming empirical risk minimization. Assume the CNN, with a certain topology,
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is parametrized by θ ∈ Θ and represents the functions H = {hθ}|Θ|. Further
assume we have access to the entire joint probability distribution P (x, y) at
both training and testing time, with x the information (for CNNs this is typ-
ically a centered image patch around the location of y) of the network that is
used to make a prediction ŷ = hθ (x) for y. For these conditions, the general
risk minimization principle is applicable and states that in order to optimize the
performance for a certain non-negative and real-valued loss L (e.g. the metric or
its surrogate loss) at test time, we can optimize the same loss during the learn-
ing phase [17]. The risk RL(hθ ) associated with the loss L and parametrization
θ of the CNN, without regularization, is defined as the expectation of the loss
function:

RL(hθ ) = E[L(hθ (x), y)] (4)

For years, minimizing the negative log-likelihood has been the gold standard in
terms of risk minimization. For this purpose, and due to its elegant mathematical
properties, the voxel-wise cross-entropy loss (CE) is used:

CE(Ŷ , Y ) =
I−1∑

i=0

[CE(ŷi, yi)] = −
I−1∑

i=0

[yi log ŷi] (5)

More recently, the soft Dice loss (SD) is used in the optimization of CNNs to
directly optimize the Dice score at test time [9,15,16]. Rewriting Eq. 1 to its
non-negative and real-valued surrogate loss function as in [9]:

SD(Ŷ , Y ) = 1 − 2
∑I−1

i=0 ŷiyi∑I−1
i=0 ŷi +

∑I−1
i=0 yi

(6)

2.2 Uncertainty

There is considerable uncertainty in the segmentation of medical images. Images
might lack contrast, contain artifacts, be noisy or incomplete regarding the neces-
sary information (e.g. in ISLES 2017 we need to predict the infarction after treat-
ment from images taken before, which is straightforwardly introducing inherent
uncertainty). Even at the level of the true segmentation, uncertainty exists due
to intra- and inter-rater variability. We will investigate what happens with the
estimated volume V of a certain structure in an image under the assumption
of having perfect segmentation algorithms (i.e. the prediction is the one that
minimizes the empirical risk).

Assuming independent voxels, or that we can simplify Eq. 3 into J indepen-
dent regions with true uncertainty pj and predicted uncertainty p̂j , and corre-
sponding volumes sj = vnj , with nj the number of voxels belonging to region
j = 0 . . . J − 1 (having each voxel as an independent region when nj = 1), we
get:

V(Y ) =
J−1∑

j=0

(sjpj), V(Ŷ ) =
J−1∑

j=0

(sj p̂j) (7)
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We analyze for CE the predicted uncertainty that minimizes the risk RCE(hθ ):

arg min
Ŷ

[RCE(hθ )] = arg min
Ŷ

[E[CE(Ŷ , Y )]] (8)

We need to find for each independent region j:

arg min
p̂j

[sjCE(p̂j , pj)] = arg min
p̂j

[−pj log p̂j − (1 − pj) log(1 − p̂j)] (9)

This function is continuous and its first derivative monotonously increasing in
the interval ]0, 1[. First order conditions w.r.t. p̂j give the optimal value for the
predicted uncertainty p̂j = pj . With the predicted uncertainty being the true
uncertainty, CE becomes an unbiased volume estimator.

We analyze for SD the predicted uncertainty that minimizes the risk
RSD(hθ ):

arg min
Ŷ

[RSD(hθ )] = arg min
Ŷ

[E[SD(Ŷ , Y )]] (10)

We need to find for each independent region j:

arg min
Ŷ

[E[SD(Ŷ , Y )]] = arg min
p̂j

[E[1 − 2
∑J−1

j=0 sj p̂jpj
∑J−1

j=0 sj p̂j +
∑J−1

j=0 sjpj

]] (11)

This minimization is more complex and we analyze its behavior by inspecting
the values of SD numerically. We will consider the scenarios with only a single
region or with multiple independent regions with inherent uncertainty in the
image. For each scenario we will vary the inherent uncertainty and the total
uncertain volume.

Single Region of Uncertainty. Imagine the segmentation of an image with
K = 3 independent regions, α, β and γ, as depicted in Fig. 1 (A0). Region
α is certainly not part of the structure (pα = 0, i.e. background), region β
belongs to the structure with probability pβ and region γ is certainly part of
the structure (pγ = 1). Let their volumes be sα = 100, sβ , sγ = 1, respectively,
with μ = sβ

sγ
= sβ the volume ratio of uncertain to certain part of the structure.

Assuming a perfect algorithm, the optimal predictions under the empirical risk
from Eq. 11 are:

arg max
p̂α,p̂β ,p̂γ

[E[
2(sβ p̂βpβ + sγ p̂γ)

sαp̂α + sβ p̂β + sγ p̂γ + sβpβ + sγ
]] (12)

It is trivial to show that p̂α = 0 = pα and p̂γ = 1 = pγ are solutions for this
equation. The behavior of p̂β w.r.t. pβ and μ can be observed qualitatively in
Fig. 1 (A1-A4). Indeed, only for pβ = {0, 1} the predicted uncertainty p̂β is
exact. The location of the local minimum in p̂β = [0, 1] switches from 0 to 1
when pβ = 0.5. Therefore, when pβ decreases or increases from 0.5 (different
opacity in A1-A3), respectively under- or overestimation will occur (A4). The
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resulting volumetric bias will be highest when the inherent uncertainty pβ = 0.5
and decreases towards the points of complete certainty, being always 0 or 1. The
effect of the volume ratio μ (colors) is two-fold. With μ increasing, the optimal
loss value increases (A1-A3) and the volumetric bias increases (A4; solid lines).
However, the error on the estimated uncertainty is not influenced by μ (A4;
dashed lines).

Multiple Regions of Uncertainty. In a similar way we can imagine the
segmentation of a structure with K = N + 2 independent regions, for which
we further divided the region β into N equally large independent sub-regions
βn with n = 0 . . . N − 1. Let us further assume they have the same inherent
uncertainty pβn

= pβ and volume ratio μβn
= μβ

N (in order to keep the total
uncertain volume the same). If we limit the analysis to a qualitative observation
of Fig. 1 with N = 4 (B0-B4) and N = 16 (C0-C4), we notice three things. First,
the uncertainty pβ for which under- or overestimation will happen decreases (A4,

Fig. 1. The effects of optimizing w.r.t. SD for volume ratios: μ = 0.25 (blue), μ = 1
(black) and μ = 4 (red). ROWS A-C: Situations with respectively N = {1, 4, 16} inde-
pendent regions with uncertainty pβ . COLUMN 0: Schematic representation of the sit-
uation. COLUMNS 1-3: SD = [0, 1] (y-axis) for pβ = {0, 0.25, 0.5, 0.75, 1} (respectively
with increasing opacity) and p̂ = [0, 1] (x-axis). COLUMN 4: Influence of pβ = [0, 1]
(x-axis) on volumetric bias (solid lines) or on the error in predicted uncertainty (dashed
lines). With the light red area we want to highlight that easier overestimation of the
predicted volume occurs due to a higher volume ratio μ or an increasing number of
independent regions N . (Color figure online)
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B4, C4). Second, this effect is proportional with μ and the maximal error on the
predicted uncertainty becomes higher (B0-B4, C0-C4). Third, there is a trend
towards easier volumetric overestimation and with the maximal error being more
pronounced when the number of regions increases (A4, B4, C4).

3 Empirical Analysis

In this section we will investigate whether the aforementioned characteristics can
be observed under real circumstances. In a practical scenario, the joint proba-
bility distribution P (x, y) is unknown and presents itself as a training set. The
risk RL (Eq. 4) becomes empirical, where the expectation of the loss function
becomes the mean of the losses across the training set. Furthermore, the loss
L absorbs the explicit (e.g. weight decay, L2) or implicit (e.g. early stopping,
dropout) regularization, which is often present in some aspect of the optimiza-
tion of CNNs. Finally, the classifier is no longer perfect and additionally to the
inherent uncertainty in the task we now have inherent uncertainty introduced
by the classifier itself.

To investigate how these factors impact our theoretical findings, we train
three models with increasing complexity: LR (logistic regression on the input
features), ConvNet (simpler version of the next) and U-Net. We use five-fold
cross-validation on the training images from two tasks with relatively low inher-
ent uncertainty (i.e. lower-left third molar segmentation from panoramic dental
radiographs (MOLARS) [8], BRATS 2018 [4]) and from two tasks with rela-
tively high inherent uncertainty (i.e. ISLES 2017 [2], ISLES 2018 [3]). Next, we
describe the experimental setup, followed by a dissemination of the predicted
volume errors ΔV(Ŷ , Y ) = V(Ŷ ) − V(Y ) by CE and SD trained models.

3.1 Task Description and Training

We (re-)formulate a binary segmentation task for each dataset having one (multi-
modal) input, and giving one binary segmentation map as output (for BRATS
2018 we limit the task to whole tumor segmentation). For the 3D public bench-
marks we use all of the provided images, resampled to an isotropic voxel-size
of 2 mm, as input (for both ISLES challenges we omit perfusion images). In
MOLARS (2D dataset from [8]), we first extract a 448 × 448 ROI around the
geometrical center of the lower-left third molar from the panoramic dental radio-
graph. We further downsample the ROI by a factor of two. The output is the
segmentation of the third molar, as provided by the experts. All images are
normalized according to the dataset’s mean and standard deviation.

For our U-Net model we start from the successful No New-Net implementa-
tion during last year’s BRATS challenge [12]. We adapt it with three 3× 3(×3)
average pooling layers with corresponding linear up-sampling layers and strip the
instance normalization layers. Each level has two 3× 3(×3) convolutional layers
before and after the pooling and up-sampling layer, respectively, with [[10, 20],
[20, 10]], [[20, 40], [40, 20]], [[40, 80], [80, 40]] and [40, 20] filters. For the ConvNet
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model, we remove the final two levels. The LR model uses the inputs directly
for classification, thus performing logistic regression on the input features.

The images are augmented intensively during training and inputs are central
image crops of 162 × 162 × 108 (in MOLARS 243× 243). We train the models
w.r.t. CE or SD with ADAM, without any explicit regularization, and with the
initial learning rate set at 10−3 (for LR model at 1). We lower the learning rate
by a factor of five when the validation loss did not improve over the last 75
epochs and stop training with no improvement over the last 150 epochs.

3.2 Results and Discussion

In Table 1 the results are shown for each dataset (i.e. MOLARS, BRATS 2018,
ISLES 2017, ISLES 2018), for each model (i.e. LR, ConvNet, U-Net) and for
each loss (i.e. CE , SD) after five-fold cross-validation. We performed a pairwise
non-parametric significance test (bootstrapping) with a p-value of 0.05 to assess
inferiority or superiority between pairs of optimization methods.

Table 1. Empirical results for cross-entropy (CE), soft Dice score (1−SD) and volume
error (ΔV; in 102 pixels or ml) metrics for models optimized w.r.t. CE and SD losses.
Significant volumetric underestimations in italic and overestimations in bold.

Dataset ↓ Model → LR ConvNet U-Net

Training loss → CE SD CE SD CE SD
Metric ↓

MOLARS (2D) CE(Ŷ , Y ) 0.240 5.534 0.194 1.456 0.024 0.103

1 − SD(Ŷ , Y ) 0.068 0.153 0.150 0.270 0.865 0.931

ΔV(Ŷ , Y ) (102 pixels) −0.069 302.3 −0.276 87.09 0.092 −0.187

BRATS 2018 (3D) CE(Ŷ , Y ) 0.039 0.173 0.030 0.069 0.012 0.027

1 − SD(Ŷ , Y ) 0.080 0.355 0.196 0.715 0.585 0.820

ΔV(Ŷ , Y ) (ml) −2.841 276.4 3.936 19.93 −6.778 −1.905

ISLES 2017 (3D) CE(Ŷ , Y ) 0.025 0.155 0.018 0.069 0.014 0.066

1 − SD(Ŷ , Y ) 0.099 0.255 0.114 0.321 0.188 0.340

ΔV(Ŷ , Y ) (ml) 15.71 82.42 −4.227 23.83 −2.875 13.44

ISLES 2018 (3D) CE(Ŷ , Y ) 0.055 0.225 0.044 0.139 0.029 0.128

1 − SD(Ŷ , Y ) 0.136 0.329 0.200 0.449 0.362 0.518

ΔV(Ŷ , Y ) (ml) 0.773 34.03 −0.374 12.44 −0.878 5.442

Optimizing the CE loss reaches significantly higher log-likelihoods under all
circumstances, while soft Dice scores (i.e. 1 − SD) are significantly higher for
SD optimized models. Looking at the volume errors ΔV(Ŷ , Y ), the expected
outcomes are, more or less, confirmed. For the LR and ConvNet models, CE
optimized models are unbiased w.r.t. volume estimation. For these models, SD
optimization leads to significant overestimation due to the remaining uncertainty,
partly being introduced by the models themselves.

The transition to the more complex U-Net model brings forward two inter-
esting observations. First, for the two tasks with relatively low inherent uncer-
tainty (i.e. MOLARS, BRATS 2018), the model is able to reduce the uncertainty
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to such an extent it can avoid significant bias on the estimated volumes. The
significant underestimation for CE in BRATS 2018 can be due to the optimiza-
tion difficulties that arise in circumstances with high class-imbalance. Second,
although the model now has the ability to extend its view wide enough and
propagate the information in a complex manner, the inherent uncertainty that
is present in both of the ISLES tasks, brings again forward the discussed bias. In
ISLES 2017, having to predict the infarction after treatment straightforwardly
introduces uncertainty. In ISLES 2018, the task was to detect the acute lesion,
as observed on MR DWI, from CT perfusion-derived parameter maps. It is still
unknown to what extent these parameter maps contain the necessary informa-
tion to predict the lesion.

The CE optimized U-Net models result in Dice scores (Eq. 1) of 0.924, 0.763,
0.177 and 0.454 for MOLARS, BRATS 2018, ISLES 2017 and ISLES 2018,
respectively. The Dice scores obtained with their SD optimized counterparts
are significantly higher, respectively 0.932, 0.826, 0.343 and 0.527. This is in line
with recent theory and practice from [7] and justifies SD optimization when the
segmentation quality is measured in terms of Dice score.

4 Conclusion

It is clear that, in cases with high inherent uncertainty, the estimated volumes
with soft Dice-optimized models are biased, while cross-entropy-optimized mod-
els predict unbiased volume estimates. For tasks with low inherent uncertainty,
one can still favor soft Dice optimization due to a higher Dice score.

We want to highlight the importance of choosing an appropriate loss function
w.r.t. the goal. In a clinical setting where volume estimates are important and
for tasks with high or unknown inherent uncertainty, optimization with cross-
entropy can be preferred.
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Abstract. The evaluation of white matter lesion progression is an
important biomarker in the follow-up of MS patients and plays a crucial
role when deciding the course of treatment. Current automated lesion
segmentation algorithms are susceptible to variability in image charac-
teristics related to MRI scanner or protocol differences. We propose a
model that improves the consistency of MS lesion segmentations in inter-
scanner studies. First, we train a CNN base model to approximate the
performance of icobrain, an FDA-approved clinically available lesion
segmentation software. A discriminator model is then trained to pre-
dict if two lesion segmentations are based on scans acquired using the
same scanner type or not, achieving a 78% accuracy in this task. Finally,
the base model and the discriminator are trained adversarially on multi-
scanner longitudinal data to improve the inter-scanner consistency of the
base model. The performance of the models is evaluated on an unseen
dataset containing manual delineations. The inter-scanner variability is
evaluated on test-retest data, where the adversarial network produces
improved results over the base model and the FDA-approved solution.

Keywords: Deep learning · Inter-scanner · Lesion segmentation ·
Adversarial training · Longitudinal data · Multiple sclerosis

1 Introduction

Multiple sclerosis (MS) is an autoimmune disorder characterized by a demyeli-
nation process which results in neuroaxonal degeneration and the appearance of
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Fig. 1. MRI scans from one patient in three 3T scanners (left to right: Philips Achieva,
Siemens Skyra and GE Discovery MR750w). Automated lesion segmentations in green.
(Color figure online)

lesions in the brain. The most prevalent type of lesions appear hyperintense on
T2-weighted (T2w) magnetic resonance (MR) images and their quantification is
an important biomarker for the diagnosis and follow-up of the disease [3].

Over the years methods for automated lesion segmentation have been devel-
oped. Several approaches model the distribution of intensities of healthy brain
tissue and define outliers to these distributions as lesions [7,15]. Others are
either atlas-based [11] or data-driven (supervised) [2,13] classifiers. For a detailed
overview of recent methods refer to [3].

Lesion segmentation is particularly interesting for patient follow-up, where
data from two or more time-points is available for one patient. Some approaches
try to improve segmentation consistency by analysing intensity differences over
time [6]. Although these methods achieve good performance in controlled set-
tings, they remain sensitive to changes in image characteristics related to scan-
ner type and protocol. In a test-retest multi-scanner study [1], scanner type was
observed to have an effect on MS lesion volume. These findings are supported
by [12], where scanner-related biases were found even when using a harmonized
protocol across scanners from the same vendor. Figure 1 illustrates such an effect.

Few works have addressed the inter-scanner variability issue in the context of
lesion segmentation. Recent approaches attempt to increase the generalization
of CNN-based methods to unseen MR scanner types through domain adaptation
[8] or transfer learning [4,14] techniques. Nevertheless, these methods share the
common downside that they require a training step to adapt to new unseen
domains (scanners types and protocols). The consistency of the delineations in
longitudinal settings is also not considered. A solution to incorporate consistency
information into this type of data-driven solutions would be to train them on
a dataset containing intra- and inter-scanner repetitions for the same patient,
acquired within a short periods of time. However, in practice this type of test-
retest dataset is almost impossible to acquire at a large scale, due to time and
cost considerations.
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In the present work we present a novel approach to improve the consistency
of lesion segmentation in the case of multi-scanner studies, by capturing inter-
scanner differences from lesion delineations. Given the shortage of test-retest
data we propose instead to use longitudinal inter-scanner data to train a cross-
sectional method. We start by training a base model on a multi-scanner dataset
to achieve performance comparable to an existing lesion segmentation software
[7]. We then design a discriminator to identify if two segmentations were gener-
ated from images that originate from the same scanner or not. The assumption
is that the natural temporal variation in lesion shape can be distinguished from
the variation caused by the different scanners. These networks are then combined
and trained until the base model produces segmentations that are similar enough
to fool the discriminator. We hypothesize that through this training scheme the
model will become invariant to scanner differences, thus imposing consistency
on the baseline CNN. Finally we evaluate the accuracy on a dataset with man-
ual lesion segmentations and the reproducibility on a multi-scanner test-retest
dataset.

2 Methods

We start by building a lesion segmentation base model based on a deep convo-
lutional neural network (CNN) architecture [9] that approximates the perfor-
mance of icobrain, an FDA-approved segmentation software. This method is
an Expectation-Maximization (EM) model that uses the distribution of healthy
brain tissue to detect lesions as outliers while also using prior knowledge of the
location and appearance of lesions [7]. We refer to it as EM-model.

Base Model. The base model is based on the DeepMedic architecture [9]. Gen-
erally, it is composed of multiple pathways which process different scales of the
original image simultaneously. This is achieved by downsampling the original
image at different rates before dividing it into input patches, which allows the
model to combine the high resolution of the original image and the broader
context of a downsampled image to make a more accurate prediction. In our
implementation we used three pathways, for which the input volumes were down-
sampled with factors (1, 1, 1), (3, 3, 1) and (5, 5, 3) and divided into patches of
size (35, 35, 19), (25, 25, 19) and (23, 23, 13), respectively. Each pathway is com-
prised of ten convolutional layers, each followed by a PReLu activation, after
which the feature maps from the second and third pathways are upsampled to
the same dimensions as the first pathway and concatenated. This is followed by
dropout, two fully connected layers and a sigmoid function, returning a (15, 15, 9)
probability map. The first five layers have 32 filters and kernel size (3,3,1) and
the last five layers 48 filters with kernel size (3,3,3). The values of the output
probability map that are above a certain threshold are classified as lesions. The
threshold used throughout this article is 0.4. The architecture is represented in
Fig. 2. The loss function of the base model is given by

LB = Y log(B(X)) + (1 − Y )log(1 − B(X)), (1)
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Fig. 2. Architecture of the base model that describes the patch sizes of the different
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Fig. 3. Architecture of the discriminator that describes the in- and output sizes of the
patches and the overall structure.

where X is the concatenation of the T1- and FLAIR MR images, Y is the corre-
sponding lesion segmentation label and B() the output of the base model.

Discriminator. The discriminator is reduced to one pathway with six convolu-
tional layers, since additional pathways with subsampling resulted in a marginal
increase in performance. The two first layers have 32 filters of kernel size (3,3,1)
and the following layers 48 filters with kernel size (3,3,3). As input it takes two
label patches of size (15, 15, 9) and generates a voxel-wise prediction that the two
labels are derived from images acquired using the same scanner. The architecture
is represented in Fig. 3.

The loss function of the discriminator is given by:

LD = Y log(D(B(X1), B(X2))) + (1 − Y )log(1 − D(B(X1), B(X2))), (2)

where Y is the ground truth indicator variable (0 or 1) indicating whether two
time points were acquired on the same scanner or not, X1 and X2 are images
at different time points and B() and D() are respectively the output of the base
model and the discriminator.
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Fig. 4. Adversarial network that combines the base model and the discriminator to
reduce the inter-scanner variability.

Adversarial Model. After training, the discriminator was combined adversar-
ially with the base model, as introduced in [5]. The adversarial model consists of
two base model blocks (B) and one discriminator (D) (Fig. 4). In our particular
case the pre-trained weights of the discriminator are frozen and only the weights
of the base model are fine-tuned. The concept of adversarial training uses the
pre-trained weights of the discriminator to reduce the inter-scanner variability
of the base model by maximizing the loss function of the discriminator. This is
equivalent to minimizing the following loss function:

LAdv = (1 − Y )log(D(B(X1), B(X2))) + Y log(1 − D(B(X1), B(X2))), (3)

The loss function of the adversarial network then consists of two terms: one
associated with the lesion segmentation labels, and one related to the output
image of the discriminator:

L = 2 ∗ LB + LAdv (4)

The purpose of LAdv is to ensure that the base model is updated such that the
discriminator can no longer distinguish between segmentations that are based
on same- or different-scanner studies. We hypothesize that the base model learns
to map scans from different scanners to a consistent lesion segmentation.

Model Training. Both the base model and the discriminator were trained
using the binary cross entropy objective function and optimized using mini-batch
gradient descent with Nesterov momentum β = 0.9. Initial learning rates were
α = 0.016 for the base model and α = 4e−3 for the discriminator, and were
decreased at regular intervals until convergence. For the adversarial network
initial learning rate was α = 2e−3. All models were trained using an NVIDIA
P100. The networks are implemented using the Keras and DeepVoxNet [10]
frameworks.

3 Data and Preprocessing

Four different datasets were available: two for training and two for testing
the performance of the models. Since for three of the datasets manual delin-
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eations were not available, automated segmentations were acquired using the
EM-method described in the previous section. All automated delineations were
validated by a human expert. Each study in the datasets contains T1w and
FLAIR MR images from MS patients.

Cross-Sectional Dataset. 208 independent studies from several centers. The
base model is trained on this dataset.
Longitudinal Dataset. 576 multi-center, multi-scanner studies with approved
quality MR scans, containing multiple studies from 215 unique patients at dif-
ferent timepoints. For training the adversarial model and the discriminator only
studies with less than 2 years interval were used to minimize the effect of the
natural evolution of lesions over time and capture the differences between scan-
ners. This resulted in approximately 80% being used since most patients have
a follow-up scan every 6 months to one year. The discriminator and adversarial
model are trained on this dataset.
Manual Segmentations. 20 studies with manual lesion delineations by
experts.
Test-Retest Dataset. 10 MS patients. Each patient was scanned twice in three
3T scanners: Philips Achieva, Siemens Skyra and GE Discovery MR450w [7].

All the data was registered to Montreal Neurological Institute (MNI) space
and intensities were normalized to zero mean and unit standard deviation. Ten
studies from each training dataset were randomly selected to use as validation
during the training process. The data was additionally augmented by randomly
flipping individual samples around the x-axis.

4 Results

The models were evaluated on the manual segmentations and the test-retest
datasets described in Sect. 3 and compared to the EM-model. The main results
are summarized in Table 1. For the manual segmentations dataset results are
described in terms of Dice score, Precision and Recall. For the test-retest dataset
we are mainly interested in evaluating the reproducibility in the inter-scanner
cases. Since there is no ground truth, we report the metrics between different
time points for the same patient. Aside from the total lesion volume (LV) in
mm3 we additionally quantify the absolute differences in lesion volume (|ΔLV|)
in mm3. The results in this table were calculated with a lesion threshold value
of 0.4. Figure 5 depicts the distribution of (|ΔLV|) for both inter-scanner and
intra-scanner cases of the test-retest dataset.

Base Model. For the manual segmentation dataset, results are comparable to
the EM-model. In the test-retest validation, the inter-scanner |ΔLV| is larger
for the base model, which indicates that the model is sensitive to inter-scanner
variability.

Discriminator. The discriminator is validated on a balanced sample of the
test-retest dataset, so that there is the same number of inter- and intra-scanner
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Table 1. Mean performance metrics for the different models on two test sets: manual
segmentations and test-retest. For the latter only inter-scanner studies are considered.
|LV| represents absolute differences between individual lesion volumes and is given in
mm3.

Model Manual Test/Retest

Dice Precision Recall |ΔLV| LV

EM 0.71 ± 0.07 0.85 0.61 2077 ± 2054 8307

Base 0.72 ± 0.10 0.80 0.65 4557 ± 3530 9894

Adversarial 0.68 ± 0.11 0.83 0.59 1331 ± 1020 8584

Fig. 5. Absolute intra- and inter-scanner difference in lesion volume, calculated on the
test-retest dataset with three different models.

examples. It achieves an accuracy of 78% by looking at the average probability
value on the lesion voxels only.

Adversarial Model. On the manual segmentations dataset, again referring
to Table 1, the adversarial model achieves a slightly lower but still competitive
performance when compared to the EM-model.

Regarding the test-retest dataset, the adversarial model produces lower inter-
scanner |ΔLV| when compared to the base model (Wilcoxon Signed-Rank Test,
p = 3.26e − 15) and to the EM-model, (Wilcoxon Signed-Rank Test, p = 0.02).
This indicates that the adversarial model produces segmentations that are less
sensitive to inter-scanner variation than both the base model and the EM-model.

The mean |ΔLV| values and standard deviation for the EM-model are almost
twice as large as the adversarial model. Taking into account the boxplots in
Fig. 5, this is partly explained by the fact that the distribution has a positive
skew and additionally by three significant outliers, which artificially increase the
mean values.

This is evidence that the EM-model has larger variability and lower repro-
ducibility than the adversarial model, while the average predicted lesion volume
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Fig. 6. Lesion segmentation results for one patient in three 3T scanners. Top: EM-
model; Middle: base model; Bottom: adversarial model. Adversarial model results
appear more consistent, while maintaining physiological meaning.

is similar for the EM- and adversarial models. Figure 6 shows an example of the
different lesion segmentations on the different scanners with the three models.

5 Discussion and Future Work

We presented a novel approach to improve the consistency of inter-scanner MS
lesion segmentations by using adversarial training on a longitudinal dataset.
The proposed solution shows improvements in terms of reproducibility when
compared to a base CNN model and to an FDA-approved segmentation method
based on an EM approach. The key ingredient in the model is the discriminator,
which predicts with 78% accuracy on unseen data whether two lesion segmen-
tations are based on MRI scans acquired using the same scanner. This is a very
promising result, since this is not a standard problem.

When evaluated on an unseen dataset of cross-sectional data, the model’s per-
formance approximates the EM-model, but decreases slightly after the adversar-
ial training. This indicates a trade-off between performance and reproducibility.
One concern was that this would be connected to an under-segmentation due
to the consistency constraint learned during the adversarial training. However,
evaluating the average predicted lesion volume on a separate test-retest dataset
shows no indication of under-segmentation when compared to the EM-model.

Both the adversarial network and the discriminator were trained on longitu-
dinal inter-scanner data. This is not ideal, since MS can have an unpredictable
evolution over time, and as such it becomes difficult to distinguish between dif-
ferences caused by hardware and the natural progression of the disease. We
attempt to mitigate this effect by selecting studies within no more than two
years interval, but better and more reliable performance could be achieved if the
model would be trained on a large dataset with the same characteristics as the
test-retest dataset described in Sect. 3. However, large datasets of that type do
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not exist and would require a very big effort to collect, both from the point of
view of patients and logistics. As such, using longitudinal inter-scanner data is
a compromise that is cost-efficient and shows interesting results.

Another point that could improve the performance would be to use higher
quality images and unbiased segmentations at training time. This would allow for
a stronger comparison to other methods in literature and manual delineations.
At this moment it is expectable that our model achieves results comparable to
those of the method used to obtain the segmentations it was trained on.

Aside from these compromises, some improvements can still be made in future
work. Namely, during the training and testing stages of the adversarial network
images can be affinely registered to each other instead of using one common atlas
space. We would expect this to increase the overlap metrics. On the other hand
it was observed that the overlap metrics slightly decrease for the adversarial
network with longer training, and as such the weight of the term in the loss
function associated with the discriminator can be optimized/lowered to achieve
more efficient training and better overlap of the images.

Finally, instead of only freezing the weights of the discriminator to improve
the base model, the weights of the base model can also be frozen in a next step to
improve the discriminator, so that the base model and discriminator are trained
in an iterative process until there are no more performance gains.

Apart from the various optimizations to the model, it would be interesting
to apply the same adversarial training to other lesion types, such as the ones
resulting from vascular dementia or traumatic brain injuries.
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Abstract. The appearance of contrast-enhanced pathologies (e.g.
lesion, cancer) is an important marker of disease activity, stage and
treatment efficacy in clinical trials. The automatic detection and seg-
mentation of these enhanced pathologies remains a difficult challenge,
as they can be very small and visibly similar to other non-pathological
enhancements (e.g. blood vessels). In this paper, we propose a deep neu-
ral network classifier for the detection and segmentation of Gadolinium
enhancing lesions in brain MRI of patients with Multiple Sclerosis (MS).
To avoid false positive and false negative assertions, the proposed end-
to-end network uses an enhancement-based attention mechanism which
assigns saliency based on the differences between the T1-weighted images
before and after injection of Gadolinium, and works to first identify
candidate lesions and then to remove the false positives. The effect of
the saliency map is evaluated on 2293 patient multi-channel MRI scans
acquired during two proprietary, multi-center clinical trials for MS treat-
ments. Inclusion of the attention mechanism results in a decrease in false
positive lesion voxels over a basic U-Net [2] and DeepMedic [6]. In terms
of lesion-level detection, the framework achieves a sensitivity of 82% at
a false discovery rate of 0.2, significantly outperforming the other two
methods when detecting small lesions. Experiments aimed at predicting
the presence of Gad lesion activity in patient scans (i.e. the presence
of more than 1 lesion) result in high accuracy showing: (a) significantly
improved accuracy over DeepMedic, and (b) a reduction in the errors
in predicting the degree of lesion activity (in terms of per scan lesion
counts) over a standard U-Net and DeepMedic.

Keywords: Segmentation · Gadolinium lesions · Multiple Sclerosis ·
Attention · Deep learning

1 Introduction

There are many clinical contexts where contrast-enhancing agents, such as
Gadolinium, are injected into patients, in order to produce images that better
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illustrate new pathological activity (e.g. lesions, cancers). In the context of Mul-
tiple Sclerosis (MS), Gadolinium enhancing lesions (referred to as “Gad lesions”)
appearing on T1-weighted MRI indicate new disease activity, disease stage and
are important for monitoring treatment efficacy and therefore used extensively
in the context of clinical trial analysis for development of new drugs [7,12]. The
primary objective of an automatic technique would therefore be to locate and
detect all Gad lesions in patient MRI, a task that is particularly challenging
due to the large variability in their appearances, locations, and sizes which can
range from only a few to over 100 voxels in size. In fact, many Gad lesions are
very small (e.g. 3–4 voxels in size at a resolution of 1 mm× 1 mm× 3 mm). Fur-
thermore, although the presence of contrast enhancement assists in identifying
candidate lesion locations, blood vessels and other normal structures enhance
in T1-weighted MRI as well and result in many other similarly appearing false
candidates. The problem is further complicated as some lesions do not enhance
sufficiently under contrast, and enhancement intensity levels can be inconsis-
tent, making them even more difficult to detect. Figure 1 depicts a case where
only 2 Gad lesions are present, but many other MRI enhancements can be seen
throughout the brain.

The challenges in detecting and segmenting Gad lesions must be addressed by
an automatic method in order for it to be deployed in real clinical practice and in
clinical trial analysis, where the stakes for making errors are high. Patients with
no Gad lesions are considered inactive and those with larger or more Gad lesions,
active. Even a single false positive or false negative assertion can therefore have
significant impact on patient disease assessment and determination of treatment
efficacy.

Fig. 1. Example of patient images and Gad lesions. Left to right: T1-weighted pre-
contrast MRI (T1-p); T1-weighted post-contrast MRI (T1-c); Difference image: T1c-
T1p with Gad lesions highlighted in yellow boxes. Brighter voxels have more contrast;
Zoomed in image of cropped ROI for left Gad lesion. (Color figure online)

Although several methods have been presented for the automatic segmenta-
tion of T2 lesions in patients with Multiple Sclerosis [1,4,18], much less work
has focused on the context of Gad lesion segmentation and detection. Some early
work in Gad lesion segmentation was developed [3,11] but these relied on prior
segmentation of other structures. Probabilistic graphical models [8] were devel-
oped to address this problem using an adapted Conditional Random Field with
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promising results. However, this method relied on a series of hand-crafted fea-
tures and carefully designed CRF models. This work explores how deep neural
networks [10] can be adapted to this problem. Although many deep networks
have shown promising results for the task of segmenting T2 lesions, they have
been shown to have some difficulty segmenting small lesions [13]. Inspired by [8],
this work explores how a U-Net [2] can be adapted to this domain through the
addition of a saliency based attention mechanism which focuses the network’s
attention on the candidate regions and then use the bulk of the network to dis-
tinguish false positives from true Gad lesions. The method works by generating
features at different scales and using those features to segment the remainder
of the MRI, rather than jointly extracting features and searching for candidates
(which expands the capacity of classification of the network). This allows it to
achieve better searching capabilities, particularly for small lesions.

The network was trained on a large proprietary, multi-scanner, multi-center
dataset consisting of 5830 multi-channel MRI acquired from 2239 patients with
Relapsing-Remitting MS (RRMS) during 2 clinical trials. Experiments were per-
formed on subset of 448 MRI patient scans set aside for testing. Segmentation
and detection results were examined through ROC-like curves (TPR vs. FDR).
The proposed approach shows improved performance when compared against
two common models, the U-Net and DeepMedic, at the tasks of: voxel-level
lesion segmentation, lesion detection and estimating the degree of MRI lesion
activity per patient scan as determined by Gad lesion counts. Specifically, voxel-
level segmentation experiments indicate that the proposed contrast enhancement
attention-based mechanism results in an AUC of 0.68, with a decrease in false
positive lesion voxels over a basic U-Net [2] (AUC 0.61) and DeepMedic [6] (AUC
0.32). The lesion level detection results show a true positive rate of 0.82 at a
false detection rate of 0.2 over all lesions, significantly outperforming the other
two methods when detecting small lesions. Experiments aimed at predicting any
Gad lesion activity in patient scans result in significantly higher accuracy of
the U-Net’s (92%) over DeepMedic (77%). Finally, the proposed method shows
reduced error in predicting the degree of lesion activity in terms of the num-
ber of lesions per patient image over a standard U-Net. On average, the error
between the predicted number of lesions present and the actual number of lesions
is 0.261 for the proposed attention based method, 0.348 for the U-Net and 0.732
for DeepMedic.

2 Methodology

The proposed framework (Saliency U-Net) consists of a single 3D CNN, which
takes as inputs 5 MRI sequences and a labeled T2 weighted lesion mask and pro-
duces a binary outcome for each voxel which classifies the voxel as being either
a Gad lesion or a non-lesion. The baseline architecture consists of an encoder-
decoder (See Fig. 2). The encoding side consists of five blocks where each block
executes a convolution, ReLU [14], convolution, ReLU, batch normalization [5]
and finally a dropout [17] operation. The upward path executes a transpose
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convolution, concatenation with the same scale features from across the net-
work followed by a dropout, convolution, ReLU, convolution, ReLU, and finally
a batch normalization operation. The upward path contains three blocks fol-
lowing this pattern and finally two more convolutions. The additional attention
mechanism [19,21] computes features using a set of 3×3×3, 5×5×5, and 7×7×7
convolutions with an LRelu [20] from both the original set of MRIs and the dif-
ference between T1-c and T1-p (see Sect. 3.1) and concatenates them together.
A final 3×3×3 convolution followed by a softmax produces a volume of values
between 0–1 which multiplies the original set of MRIs. This tensor becomes the
input for the remainder of the network. After a pass through the network, the
weighted softmax cross entropy loss is computed and backpropagated throughout
the network.

Fig. 2. Network architecture

To derive lesion level detection results from the initial volume of binary pre-
dictions we first threshold the volume produced by the network and get the
connected components of this binarized image. Next, we remove connected com-
ponents smaller than 3 voxels. Finally, to compute lesion level statistics we check
the overlap of our connected components and the ground truth. Connected com-
ponents which have a dice score greater than .5 or an overlap of 3 voxels with
the ground truth are considered to be correctly detected lesions [13].

3 Experiments

The network is trained to segment Gad lesions on a per voxel basis. The proposed
network is compared against a baseline U-Net and the standard DeepMedic [6].
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Each of the three networks was trained on the same training sample set of
5830 multi-channel MRI scans from two trials, producing binary lesion/non-
lesion outputs at each voxel.

3.1 Data

The data set used in the experiment consists of two large, proprietary, multi-
scanner, multi-center, clinical trial image datasets. Patients had the Relaps-
ing Remitting form of Multiple Sclerosis (RRMS). Each MRI sample includes:
T1-weighted pre-contrast (T1p), T1-weighted post-contrast (T1c), T2-weighted
(T2w), Proton density weighted (PDW), Fluid-attenuated inversion (FLAIR)
MRIs each at a resolution of 1 mm× 1 mm× 3 mm. In addition, expert-annotated
gadolinium-enhancing (Gad) lesion masks and T2 lesion labels were provided
for training and testing. The T2 lesion labels were obtained through a semi-
manual procedure, in which labels generated by an automated algorithm were
corrected by an expert. Gad lesion masks were obtained manually through con-
sensus between trained experts.

The MRIs underwent brain extraction, Nyul image intensity normal-
ization [15], registration to a common space (ICBM space), and N3 bias
field inhomogeneity correction [16]. After cropping, the final dimensions were
192× 192× 56 with a resolution of 1 mm× 1 mm× 3 mm. Any patient missing
at least one of the scans was removed from the experiment. One clinical trial had
MRIs at 1 year intervals and the other at 24 week intervals. All MRI sequences
and the T2-weighted lesion map were used as inputs to determine the final Gad
lesion map. The 2293 patients for both of the trials were split into fifths with
four fifths making up the training set and the final fifth making up the validation
and test set. As each patient has approximately 3 sets of MRIs, the total data
set contains 6830 sets of scans containing all the required MRIs with 5830 scans
set aside for training and validation and the remaining 1000 held out for testing.
Division by patient when sampling ensured that the testing set contained no
images from the same patients found in the training set.

3.2 Implementation Details

To account for the large imbalance between the background class and the fore-
ground class (about 50000:1), the foreground class was heavily weighted and we
slowly decayed the weight over time. The weighting began at 1000x for the fore-
ground class and was reduced by a factor of 1.02 every 2000 samples. Similarly,
the learning rate began at 10−4 and was reduced by a factor of 1.02 every 2000
samples. The ADAM [9] optimizer was chosen and trained for 240000 samples.

4 Results

Comparisons of the proposed method against the U-Net and DeepMedic are
made in three domains. First, the generated labels from the Saliency U-Net are
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evaluated qualitatively and shown along side generated labels from DeepMedic
and a U-Net (both provided with MRI inputs without any saliency maps). Next,
quantitative results for instance level detection of different sized lesions are pre-
sented as TPR and FPR curves over different lesion sizes and at the voxel level.
Finally, results for the count of Gad lesions on a scan-by-scan level are evalu-
ated (regardless of overlap). To demonstrate the network’s accuracy we show the
confusion matrix for derived lesion counts against ground truth lesion counts for
each of the three models and a histogram showing the error from the true label.

4.1 Gad Lesion Detection

Qualitative results in Fig. 3 demonstrate the performance of the Saliency U-
Net against the other methods for a series of patient cases. The first, second
and fifth case show examples where the proposed method was able to remove
false positives over a U-Net. The second and fifth example show that it can
accurately detect and segment lesions both when the lesion is isolated and when
the lesions are clustered. Overall, the proposed method is shown to overcome
several challenges of this domain.

To evaluate the model quantitatively, the ROC-like curve is presented in
Fig. 4, depicting the True Positive Rate (TPR = TP/(TP + FN)) against the
False Discovery Rate (FDR = FP/(FP +TP )) for the voxel segmentation task
and for Gad lesion level detection. Voxel-level segmentation results show that the
proposed method has higher accuracy than the other methods with an AUC 0.68,
as compared to a basic U-Net [2] (AUC 0.61) and DeepMedic [6] (AUC 0.32). For
the task of lesion level detection, the results are shown for three different lesion
sizes: Large (50+ voxels), medium (10 to 50 voxels), and small (3 to 10 voxels).
By plotting across lesion sizes, we can more robustly compare results between
different trials. The Saliency U-Net shows high overall lesion detection accuracy
with a TPR of 0.82 at an operating point of 0.2 FDR (an operating point of
clinical relevance) for all lesions, outperforming the other methods, particularly
for small lesions. DeepMedic does not perform well overall, and fails to detect
small lesions (the worst possible curve for this plot is a vertical line at x = 1).

4.2 Quantifying Lesion Activity

The ROC-like Gad lesion segmentation and detection curves are based on the
entire collection of Gad lesions in the dataset and not on a per scan basis.
Experiments were subsequently performed to test the network’s ability to (a)
predict the overall patient activity per scan, a binary outcome depicting the
presence of any Gad lesions, and (b) to predict the severity of Gad lesion activity
per scan, defined by the number of Gad lesions present.

Figure 5 shows the confusion matrices for Gad lesion count prediction per
scan for the three methods: Saliency U-Net, U-Net, and DeepMedic. For the
task of predicting the binary outcome of active/inactive, error rates per scan were
computed by summing the instances when the network predicted the presence
of lesions (active) when there were none (inactive), and the instances where the
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Fig. 3. Qualitative detection results for different patients (rows). Columns from left to
right: T1-c, Expert labels (Yellow), DeepMedic Labels, U-Net labels, Saliency U-Net
labels. True positive predictions are shown in green, false negatives are shown in red,
and false positives are shown in blue. (Color figure online)

network predicted no lesions (inactive) and lesions were present (active). Here,
the U-Net and Saliency U-Net perform similarly with 85 and 82 errors respec-
tively. Both, however, perform better than DeepMedic which had 238 errors.
Despite similar performance in detecting the presence of lesions, the confusion
matrix indicates that the Saliency U-Net is notably more diagonal with a total
count of 829 along the diagonal, whereas the U-Net and DeepMedic had counts
of 719 and 712, respectively. This indicates an improved performance by the
proposed method in predicting the correct degree of lesion activity. To further
demonstrate the improvement, the histogram in Fig. 6 depicts the differences
between the predicted lesion counts and the lesion counts provided by manual
segmentations. Quantitatively, the average error in lesion count on a per scan
basis was 0.261 for Saliency U-Net, 0.348 for U-Net, and 0.732 for DeepMedic.
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Fig. 4. Gad-enhanced segmentation and detection results: ROC-like TPR vs. FDR
curves. Top left: voxel based segmentation results, top right: detection results for all
lesions, bottom left: detection results for large (50+ voxels) lesions, bottom center:
detection results for medium (10 to 50 voxels), Bottom right: detection results for
small (3 to 10 voxels) lesions.

Fig. 5. Per scan lesion count predictions for the saliency U-net, U-net, and DeepMedic.
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Fig. 6. Histogram of errors in predicted lesion count on a per scan basis relative to
manual labels. The x-axis starts at 1 to depict the degree of error when incorrect.

5 Conclusions

This paper presents an end-to-end 3D CNN network for the segmentation and
detection of Gadolinium enhanced lesions in MS patient MRI. The model embeds
an enhancement-based saliency map which permits the network to quickly focus
on candidate regions. Results of experiments on two large multi-center, multi-
scanner clinical trial datasets indicate that our proposed method improves the
voxel based segmentation and lesion based detection results over a simpler U-
Net and DeepMedic, particularly in the detection of small lesions. Furthermore,
the proposed method shows improved accuracy in estimating the binary out-
come of active/inactive patient scans over DeepMedic and in estimating the
correct degree of Gad lesion activity (over both methods). Since Gad lesion
detection, and subsequent counts and activity labels, are important markers
of treatment efficacy, this method has the potential to improve the speed and
accuracy required in clinical trial analysis.
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Abstract. Stereotactic radiosurgery is a minimally-invasive treatment
option for a large number of patients with intracranial tumors. As part of
the therapy treatment, accurate delineation of brain tumors is of great
importance. However, slice-by-slice manual segmentation on T1c MRI
could be time-consuming (especially for multiple metastases) and sub-
jective. In our work, we compared several deep convolutional networks
architectures and training procedures and evaluated the best model in a
radiation therapy department for three types of brain tumors: menin-
giomas, schwannomas and multiple brain metastases. The developed
semiautomatic segmentation system accelerates the contouring process
by 2.2 times on average and increases inter-rater agreement from 92.0%
to 96.5%.

Keywords: Stereotactic radiosurgery · Segmentation · CNN · MRI

1 Introduction

Brain stereotactic radiosurgery involves an accurate delivery of radiation to the
delineated tumor. The basis of the corresponding planning process is to achieve
the maximum conformity of the treatment plan. Hence, the outcome of the
treatment is highly dependent on the clinician’s delineation of the target on the
MRI. Several papers have been shown that experts defined different tumour
volumes for the same clinical case [10]. As there are no margins applied to
a contoured target, the differences in contouring could increase normal tissue
toxicity or the risk of recurrence.

The process of contouring is the largest source of potential errors and inter-
observer variations in target delineation [12]. Such variability could create chal-
lenges for evaluating treatment outcomes and assessment of the dosimetric
c© Springer Nature Switzerland AG 2020
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impact on the target. Routinely the targets are delineated through slice-by-
slice manual segmentation on MRI, and an expert could spend up to one hour
delineating an image. However, stereotactic radiosurgery is one-day treatment
and it is critical to provide fast segmentation in order to avoid treatment delays.

Automatic segmentation is a promising tool in time savings and reducing
inter-observer variability of target contouring [11]. Recently deep learning meth-
ods have become popular for a wide range of medical image segmentation tasks.
In particular, gliomas auto-segmentation methods are well-developed [1] thanks
to BRATS datasets and contests [8]. At the same time, the most common types of
brain tumors treated by radiosurgery, namely meningiomas, schwannomas and
multiple brain metastases, are less studied. Recently published studies [2,5,6]
developed deep learning methods for automatic segmentation of these types of
tumors. However, these studies do not investigate the above-mentioned clinical
performance metrics: inter-rater variability and time savings.

Our work aimed to fill this gap and evaluate the performance of semi-
automatic segmentation of brain tumors in clinical practice. We developed an
algorithm based on deep convolutional neural network (CNN) with suggested
adjustment to cross-entropy loss, which allowed us to significantly boost quality
of small tumors segmentation. The model achieving the state-of-the-art level of
segmentation was integrated into radiosurgery planning workflow. Finally, we
evaluated the quality of the automatically generated contours and reported the
time reduction using these contours within the treatment planning.

2 Related Work

During recent years, various deep learning architectures were developed. For
medical imaging, the best results were achieved by 3D convolutional networks:
3D U-Net [3] and V-Net [9]. However, a large size of brain MRI for some tasks
places additional restrictions on CNN. A network called DeepMedic [4] demon-
strated solid performance in such problems, including glioma segmentation [1].

Some image processing methods were proposed for the other brain tumors
as well. For example, authors of [7] developed a multistep approach utilizing
classical computer vision tools such as thresholding or super-pixel clustering. In
common with other medical image processing tasks, such methods have two key
drawbacks: processing speed and quality of small lesions segmentation [6]. Deep
learning-based approaches may potentially resolve these issues thanks to its high
inference speed and great flexibility. Indeed, several recently published studies
validated CNN in the task of nonglial brain tumors segmentation and demon-
strated promising results. In [6] authors modified the DeepMedic to improve
segmentation quality. Authors of [2] compared various combinations of T1c, T2
and Flair modalities. New patch generation methods were proposed and eval-
uated on three types of brain tumors in [5]. In [9] authors introduced a novel
loss function based on Dice coefficient to improve segmentation results in highly
class imbalance tasks.
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3 Data

For computational experiments, we used 548 contrast-enhanced T1-weighted
MRI with 0.94 × 0.94 × 1 mm image resolution. These cases were character-
ized by multiple brain tumors (4.5 per patient) of different sizes: from 1.3 mm
up to 4.2 cm in diameter. These images were naturally divided into two datasets.
The first one, training dataset, consisted of 489 unique patients examined before
2017. It was used to train different models and tune their parameters via cross-
validation. The second, hold-out dataset, was represented by another 59 patients
who were treated in 2017. We performed the final comparison of the best meth-
ods on the hold-out dataset to avoid overfitting.

Finally, to evaluate the quality of tumor delineation algorithm in clinical
practice, we used the third, clinical, dataset which consists of four cases of
meningioma, two cases of vestibular schwannoma and four cases of multiple
brain metastases (ranged from 3 to 19 lesions per case) collected in 2018. Four
experts (or users) with experience in brain radiosurgery ranged from 3 to 15 years
delineated each of these cases in two setups: manually and using the output of
our model as the starting point, see the details in Sect. 4.4.

4 Methods

4.1 CNN

We used vanilla 3D U-Net, V-Net and DeepMedic models as network architec-
tures. We trained all models for 100 epochs, starting with learning rate of 0.1,
and reducing it to 0.01 at the epoch 90. Each epoch consists of 200 stochastic
gradient descent iterations. At every iteration, we generated training patches of
size 64 × 64 × 64 with batches of size 12 for 3D U-Net and 16 for V-Net. For
DeepMedic we generated 16 patches of effective size 39 × 39 × 39 in one batch.
We used 5-fold cross-validation to split our training data patient-wise. After the
train-predict process, we gather test predictions over the 5 splits to form the
metric curve and compare experiment results.

For a subset of experiments (see Sect. 5 for the details), we also used a mod-
ified loss function, described in the next subsection and Tumor Sampling from
[5]. For the Tumor Sampling as well as the original patches sampling procedures
we set the probability to choose the central voxel of each patch belonging to
the target mask to be 0.5 for all experiments. We reported the results on the
hold-out dataset while using the training dataset to fit the models.

4.2 Inversely Weighted Cross-Entropy

We observed that all methods were missing lots of small tumors or inappropriate
segmented them. We assumed that such a performance comes from loss function
properties: errors on small targets have the same impact on the loss function as
small inaccuracies in large lesions. To make all possible errors contribute equally
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to the BCE (binary cross-entropy) loss function, we construct a tensor of weights,
which are equal to inverse relative volumes of regions of interest.

Given the ground truth on the training stage, we generate a tensor of weights
for every image in the train set. To form such a tensor for the given image we split
the corresponding ground-truth mask into connected components Ci, i ∈ {0..K},
where C0 is the background and K is the number of tumors. Weights of the
background component were set to be w0 = 1. The weights for pixels in the
connected component Ci (i �= 0) are equal to:

wi = β ·
∑K

k=0 |Ck|
|Ci| , (1)

where β is the fraction of positive class in the current training set. The final
form of our loss is the same with weighted BCE over n voxels in the propagated
sample:

iwBCE = − 1
n

n∑

j=1

ωj · (yj log pj + (1 − yj) log (1 − pj)) , (2)

where ωj is the weight of the j-th pixel calculated using (1).
We compare proposed loss function with the current state-of-the-art Dice

loss [9] as well as with the standard BCE.

4.3 Metric

We highlighted two essential characteristics that could characterize small tumors
segmentation: tumor delineation and detection quality. Since delineation could
be simply measured by local Dice score and experts could always adjust contours
of found tumors, we focus our attention on the detection quality.

We suggested measuring it in terms of tumor-wise precision-recall curves.
We adopted the FROC curve from [13] by changing its hit condition between
predicted and ground truth tumors. Predicted tumors were defined as connected
components above the probability of 0.5, and we treated the maximum prob-
ability of a component as a model’s certainty level for it. Our hit condition is
that the Dice score between real and predicted lesions is greater than zero. We
found such lesion-wise PRC (precision-recall curve) to be more interpretable and
useful for model comparison than traditional pixel-wise PRC.

4.4 Contouring Quality and Time Reduction

Within a clinical experiment, we implemented the final model as a service which
can process Dicom images and generate contours as Dicom RT files. This out-
put was uploaded to a standard planning system and validated and adjusted
(if needed) by experts there; we call these contours CNN-initialized. In addition,
the same cases were annotated manually in the same planning systems by the
same four experts.

To perform the quality evaluation of our algorithm we introduced the follow-
ing three types of comparisons.
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• 1 vs 3 – the manual contour of one user comparing to a ground truth esti-
mation which is the averaged contour of the other users. This setting allows
us to measure the current inter-rater variability for a specific user.

• 1+ vs 3 – a CNN-initialized contour of one user comparing to the same
ground truth as above. In this setting we estimate the effect of algorithm on
the users.

• 1+ vs 3+ – the same as previous setting, but the average contour was obtained
using CNN-initialized contours for the three corresponding users. The last
setting allows us to measure the level of additional standardization provided
by CNN.

To investigate the differences in Dice scores we performed the Sign test for
pairs of metrics (1 vs 3, 1+ vs 3) and (1 vs 3, 1+ vs 3+), see Sect. 5.

To evaluate a speed-up provided by our algorithm in routine clinical practice
we compared times needed for two contouring techniques: manual delineation
of the tumors and user adjustment of the CNN-initialized contours of the same
tumors. The time spent on each task was recorded for all users and cases.

We didn’t perform comparison types which include pure CNN generated
contours, because AI could not be used in a treatment planing solely without
user control and verification.

5 Results

5.1 Methods Comparison on the Hold-Out Dataset

Firstly, we compared three network architectures, see Fig. 1. The results sug-
gest the superiority of U-Net-like architectures over the DeepMedic in our task
(see Fig. 1). We made the architecture choice in favor of 3D U-Net and changed
it in a minor way to fit our inference timings and memory requirements. We used
this model for the subsequent experiments and the final model.

We also observed all the models perform poorly on the small tumors (Fig. 1,
left). Within the second set of experiments, we aimed to improve recall for small
lesions by adding Tumor Sampling and iwBCE to 3D U-Net, the best model
from the first experiments. The proposed loss re-weighting strategy (see Sect. 4.2)
reduced the number of missed small tumors by a factor of two with the same level
of precision (Fig. 2, left) and improve the network performance over all tumors
(Fig. 2, right), achieving almost 0.9 recall on the hold-out dataset. It slightly
outperformed Dice loss function, so we used iwBCE to train our model for the
clinical installation.

The shaded area on the PRC plots shows 95% confidence intervals of boot-
strapped curves over 100 iterations choosing 80% of the test patients every time.
The median lesion-wise Dice score of 3D U-Net trained with Tumor Sampling
and iwBCE is 0.84 for the hold-out dataset.
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Fig. 1. CNN models comparison. We zoomed all the PRC images from standard [0; 1]
scale to better show some model or method had higher recall. We treated recall as
a more important metric than precision in our task: a radiologist spends few seconds
on deleting miss-prediction but much more time on finding and delineating the tumor
which CNN didn’t predict.

5.2 Clinical Evaluation

We observed better agreement between contours created by the expert and the
reference one when the contours were initialized by CNN, even if the reference
contour was generated completely manually. Table 1 shows a reduction of inter-
rater variability. Improvements for 3 out of 4 experts are statistically significant
according to the Sign test p-values. The total median agreement increased from
0.924 to 0.965 in terms of Dice score.

The automatic contours were generated and imported to the treatment plan-
ning system in less than one minute. The total median time needed to delineate a
case manually was 10.09 min, details for all four experts could be seen in Table 2.
On average, the automatic algorithm speeds up the process of the delineation in
2.21 times with the median reduction of time of 5.53 min. We observed speed-up
for all users and for all cases they have delineated. We should note that accel-
eration plays more significant role in the cases of multiple lesions. The total
median time needed to delineate a case with multiple metastases manually was
15.7 min (ranged from 15:20 to 44:00 in mm:ss). The automatic tumor segmen-
tation speeded up the delineation of multiple lesions in 2.64 times with median
time reduction of 10.23 min.

We also present quality-time plot (see Fig. 3) for both manual and CNN-
initialized techniques separately for each user and each case. One can distin-
guish the global trend of simultaneous improvement of inter-rater agreement
and speedup of delineation time. Examples of different contouring techniques
for all three types of lesions could be found on the Fig. 4.
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Fig. 2. The best model with TS (Tumor Sampling) and then with iwBCE or DL (Dice
Loss).

Table 1. Quality evaluation in tumor contouring. Case I evaluated hypothesis that
median difference between settings (1 vs 3) and (1+ vs 3) is equal to zero. Case II
evaluated the same hypothesis for settings (1 vs 3) and (1+ vs 3+). All data contains
results for the consolidated set of experiments.

Median dice scores p-values

1 vs 3 1+ vs 3 1+ vs 3+ I II

User 1 0.938 0.947 0.969 2.85e−1 7.00e−6

User 2 0.930 0.941 0.968 7.01e−3 7.00e−6

User 3 0.915 0.920 0.934 2.29e−3 2.26e−3

User 4 0.918 0.935 0.968 1.40e−2 3.55e−2

All data 0.924 0.941 0.965 6.57e−4 3.61e−5

Table 2. Time reduction in tumor delineation. Median time is given per one case.

Median manual time∗ Range Median time reduction Range

User 1 13:15 07:00–35:06 06:54 00:40–17:06

User 2 05:30 02:17–15:20 02:16 00:48–08:20

User 3 12:00 03:00–44:00 09:00 01:00–26:00

User 4 06:30 03:00–23:30 05:27 03:00–17:35

All data 10:05 02:17–44:00 05:32 00:40–26:00
∗The results are given in mm:ss
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6 Discussion

For this study, we developed and successfully implemented a deep learning algo-
rithm for automatic brain tumor segmentation into radiosurgery workflow. We
demonstrated that our algorithm could achieve near expert-level performance,
providing significant time savings in tumor contouring, and reducing the vari-
ability in targets delineation at the same time. We should note that within the
clinical evaluation, the users initially delineated a case manually, and then they
were asked to adjust the CNN-initialized contours of the same case. The adjust-
ment of the CNN-initialized contours typically was performed in one day after
manual delineation of the tumor. The fact that the experts had seen tumors
previously might have a small impact on the results on the evaluation of time
savings.

Fig. 3. Plots of inter-rater agreement vs delineation time. Left : each point corresponds
to a pair lesion-user. Dice scores for blue dots (manual segmentation) were calculated
using 1 vs 3 strategy, for red dots - 1 vs 3+. Central, right : dashed lines connect
two points for the same pair lesion-user for manual and CNN-initialized delineations.
Note that we restricted both time-axis to the maximum of 1000 s and Dice-axis to
the minimum of 0.9, therefore few blue points were left outside the plot. (Color figure
online)

We proposed a new loss function, called iwBCE, which has not been dis-
cussed in all the details. However, it seemed to be a promising approach to
improve segmentation quality of modern deep learning tools. We aimed to con-
tinue research of the proposed method and compare it with state-of-the-art Dice
loss in different setups and on different datasets.



Deep Learning for Radiation Therapy: Clinical Evaluation 127

Fig. 4. Segmentation results for two metastatic lesions, one schwannoma and one
meningioma in vertical order. Blue corresponds to the manual contour, red – CNN-
initialized contour with user’s adjustment, dashed yellow—pure CNN contour with-
out user’s adjustment. (Color figure online)
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Abstract. Past few years have witnessed the prevalence of deep learn-
ing in many application scenarios, among which is medical image pro-
cessing. Diagnosis and treatment of brain tumors requires an accurate
and reliable segmentation of brain tumors as a prerequisite. However,
such work conventionally requires brain surgeons significant amount of
time. Computer vision techniques could provide surgeons a relief from
the tedious marking procedure. In this paper, a 3D U-net based deep
learning model has been trained with the help of brain-wise normaliza-
tion and patching strategies for the brain tumor segmentation task in the
BraTS 2019 competition. Dice coefficients for enhancing tumor, tumor
core, and the whole tumor are 0.737, 0.807 and 0.894 respectively on the
validation dataset. These three values on the test dataset are 0.778, 0.798
and 0.852. Furthermore, numerical features including ratio of tumor size
to brain size and the area of tumor surface as well as age of subjects
are extracted from predicted tumor labels and have been used for the
overall survival days prediction task. The accuracy could be 0.448 on the
validation dataset, and 0.551 on the final test dataset.

Keywords: Brain tumor segmentation · 3D U-Net · Survival days
prediction

1 Introduction

Human brain stays in a delicate balance under the enclosure of the skull. A
brain tumor is a bunch of abnormal brain cells that may harass the balance [1].
Primary brain tumors originate in the brain, while others belong to the secondary
or metastatic brain tumors that come from other organs. Brain tumors can also
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be categorized as malignant or benign, the former are cancerous and easy to be
spread to the other part of the brain while the later not. Nevertheless, in both
cases, the growth of brain tumor in rigid brain space could result in a dysfunction
or even life-threatening symptom for human body. Depending on the size and
location of the tumor, people may have different symptoms caused by the growing
of tumor cells. Some tumors would invade brain tissue directly and some cause
pressure on the surrounding brain. As a result, people may suffer from vomiting,
blurred vision, confusion, seizures, et al. Magnetic Resonance Imaging (MRI)
and resection surgery are the most common diagnosis and treatment means
respectively currently used for brain tumors [2]. A priority for a neurosurgeon
is to mark the tumor region precisely. Too much or too less surgery may give
rise to more loss and suffering. Unfortunately, manually labeling is a laborious
and time consuming work for a doctor. Moreover, because of inevitable practical
operation factors, it is difficult to replicate a segmentation result exactly the
same.

Determining the best computer assistant solutions to the segmentation task,
Multimodal Brain Tumor Segmentation Challenge 2019 provides ample MRI
scans of patients with gliomas, the most common primary brain tumor, before
any kind of resection surgery [3–5]. For training datasets, 259 subjects with
high-grade gliomas (HGG) and 76 subjects with low-grade gliomas (LGG) were
used [6,7]. Each subject had four 240×240×155 structural MRI images, includ-
ing native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2
Fluid Attenuated Inversion Recovery (FLAIR) volumes. Meanwhile, pathologi-
cally confirmed segmentation labels for each subject also come as 240×240×155
images with values of 1 for the necrotic (NCR) and the non-enhancing tumor
core(NET), 2 for edema (ED), 4 for enhancing tumor (ET), and 0 for everything
else. Further, the segmentation task defines three sub-regions for evaluation, they
are 1) the tumor core (TC) including NCR, NET and ET, 2) the ET area, 3) the
whole tumor (WT) which is the combination of TC and ED. All these provided
MRI images were collected from 19 institutions and had undergone alignment,
1 × 1 × 1 mm resolution resampling and skull stripping. Another task in BraTS
2019 is to predict the overall survival (OS) days of patients after the gross total
resection (GTR) surgery. All the OS values are provided together with the age
of patients with resection status of GTR.

Deep learning has reentered prosperous ever since AlexNet won the ImageNet
competition in 2012 [8,9], which to a great extent attributes to the massively
ascending dataset scale and computing power. The advancement of convolutional
neural networks came up with a lot of crafted deep learning designs, like VGG-
Net [10], Inception networks [11,12] and ResNet [13]. These crafted architectures
together with advanced open source frameworks like tensorflow and pytorch ener-
gize the development in many research and industrial fields. Semantic segmenta-
tion in image processing is to separate the target object from other areas. Fully
convalutional networks (FCN) empowers CNN to be able to label each pixel by
means of a plain upsampling idea [14]. For medical images, usually they don’t
share the same features with ordinary pictures from dataset like ImageNet or
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CIFAR-10/100 [9,15], which makes it difficult for pre-trained networks on those
datasets to be directly used and leaves spaces for specific inventions. U-Net stood
out from the IEEE International Symposium on Biomedical Imaging (ISBI) chal-
lenge that segments electron microscopy images of the drosophila cell [16]. When
it comes to 3D volumetric medical images, the inventors of U-Net also proposed
feasible solutions [17].

BraTS initiated by Center for Biomedical Image Computing and Analyt-
ics (CBICA) encourages participants to identify competitive solutions to brain
tumor segmentation tasks. Most former teams took use of U-Net or put it in
ensemble with other modules. For example, the 1st ranked model of BraTS 2018
added a variational auto-encoder (VAE) branch on the U-Net structure to give
a new regularization item in the loss function [18]. Isensee et al. argued that
a well trained U-Net could be powerful enough and brought out a fine-tuned
U-Net model that won the 2nd place in the contest [19]. Moreover, the second
task of BraTS is to predict how many days could a patient survive after the
GTR operation. Previously, the best record was obtained by performing a linear
regression model developed by Feng et al. in BraTS 2018 [20], the features they
used include the size and length of tumors and the age information.

In this work, we illustrate our solutions to the two tasks in BraTS 2019. Four
modalities (T1, T1Gd, T2, and T2-FLAIR) of structural MRI images collected
from patients with gliomas are processed and fed into the network. In particular,

Fig. 1. An example of one modality of input data and the corresponding ground truth
and predicted labels, each picture illustrates a slice of 3D MRI images. For ground truth
and predicted result, four colors represent four label values. Red for value 1 (NCR and
NET), blue for value 2 (ED), yellow for value 4 (ET), black for value 0 (everything
else). (Notice that brain areas other than tumor part are also supposed to be black
in the six label figures, we draw the brain image just for illustration purpose.) (Color
figure online)
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rather than normalizing voxel values on the whole image with black background,
only the brain wise area has been taken into account for the normalization and
scaling. Two phases of training with different patching strategies were under-
taken, with one keeping an eye on the black background and the other not,
both with a patch covering the center field. An extra parameter was designed
for each image to remember the minimum cube that could encapsulate it. All
the patching and recovery procedures were maneuvered based on such cubes.
Different kinds of tumor tissues would be labeled with different values, as can
be seen in Fig. 1 which gives an example of three slices of one T1 brain image in
directions of segittal, coronal and axial. These segmentation results have been
analyzed and further used for the overall survival task. The proportion of tumor
compared to the whole brain and the ratio of length of one sub-region to another
have been extracted, together with the phenotypic age information, as the input
features.

2 Method

2.1 Preprocessing

All the structural MRI images have been bias field corrected through N4ITK
Insight Toolkit hopefully to minimize the bias caused by the differences in mul-
tiple scanners, institutions and protocols [21]. Normalization was performed for
each modality, by accumulating the voxel values inside brain skull throughout all
the training images and calculating the mean value μ and the standard deviation
σ. Given A ∈ R

240×240×155 represents an original image, the z-score normaliza-
tion and min-max scaling are deployed in the following manner.

Âijk =

{
(Aijk − μ)/σ if Aijk �= 0

0 else,
(1)

Ãijk =

⎧⎪⎨
⎪⎩

100 ×
(

Âijk − Âmin

Âmax − Âmin

+ 0.1
)

if Aijk �= 0

0 else,
(2)

in which Âmin and Âmax indicate the minimum and maximum values for all
the Âijk with corresponding Aijk �= 0, i, j ∈ [0, 239], k ∈ [0, 154]. Brain area
voxel values in the finally preprocessed image would range from 10 to 110, which
are discriminated from background value 0. Notice that for validation and test
datasets, we still use the μ and σ calculated from the training dataset for the
z-score normalization.

2.2 Patching Strategies

Patching strategy would make it possible for less powerful GPU to deal with
a large image. In this work we leverage two kinds of patching strategies, both
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Fig. 2. Patching strategies. The green rectangle represents the boundary of the brain,
red and blue dashed cubes indicate the patches, in particular, blue for the fixed center
one. Start offset marks the largest distance to the boundary a patch could start with.
(a) Patching strategy in the first training phase. (b) Patching strategy in the second
training phase. (Color figure online)

were maneuvered based on the cuboid boundary of the brain, as shown in Fig. 2,
patch size is 128×128×128. For the convenient of drawing, we use a 2D picture
to illustrate the idea behind operations on 3D images.

For the first strategy, as seen in Fig. 2(a), a cubic patch starts with a ran-
dom distance between 0 to 4 voxels away from the border. The overlap of each
two neighbor patches is 32, which stands for each time when the patching win-
dow moves 96 voxels. This strategy would generate patches with a bunch of
background values. For the second image displayed in Fig. 2(b), all the patches
were arranged to the largest extent inside the brain area, each corner of the
quadrilateral boundary has a corresponding patch with one corner completely
matched. For the training process, two of the patching strategies are employed in
sequence. The second strategy is also the one used for the prediction procedure.
One extra blue dashed cube that exists in both figures in Fig. 2 refers to a patch
we fix in center of the brain area for each image, considering the large amount
of information in this part.

2.3 Models

Segmentation Task: Following the framework of U-Net by Isensee et al. [19],
the architecture of the segmentation network has been depicted in Fig. 3.

It takes 4 × 128 × 128 × 128 matrices as input, each of which is stacked by
4 128 × 128 × 128 patches of different modalities. The Downward Block (DB)
squeezes the image size and stretches the channel length. Particularly, as the
basic feature embedding element, the Convalutional Block (CB) works with
the instance normalization and leaky ReLU modules [22]. As in ResNet, DB
also bypasses the front message to the end to fight with the weight decay and
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Fig. 3. Schematic of the network for segmentation task. Self-defined modules are listed
downstaires. CB refers to Convalutional Block, which takes 3 parameters from Conv3D
block inside: f is the number of filters, s is the step length, and k is the kernel size. C3 is
short for Conv3D module and U3 for UpSampling3D with upsampling factor equals 2.
DB and UB mean Downward Block and Upward Block respectively. In general, black
rimmed blocks are original modules in frameworks, while colored blocks and arrows
indicate the developed ones. ⊕ is element-wise addition, c© means concatenation. (Color
figure online)

overfitting problems. Upward Blocks (UB) are in charge of reconstructing the
location information by means of concatenating the corresponding DB output.
They recover the image size to 128 × 128 × 128 and shrink the depth of channel
to 3, each of which is the probability matrix that demonstrates the confidence
of each voxel belonging to one certain sub-region of the tumor.

The weighted multi-class Dice loss function has been proved to be efficient
in former BraTS competitions [23]. As exhibited in Eq. (3),

L = −
2∑

c=0

∑127
i,j,k=0 YcijkŶcijk∑127

i,j,k=0 Ycijk +
∑127

i,j,k=0 Ŷcijk

, (3)

in which Y indicates the 3 × 128 × 128 × 128 matrix generated from the ground
truth image, Ŷ represents the output from the constructed network.

The 3 channels in the output would be mixed to one 128 × 128 × 128 image
that each voxel chooses to be the value of one tumor sub-region label or to be
zero as the background (by setting up one threshold). Meanwhile, the priority of
ET is higher than TC’s which in turn is higher than that of WT, which means
we compare priorities rather than probabilities once the probability value is over
threshold. At the end of the prediction, all the labeled patches with numbers
indicating the tumor sub-regions would be concatenated into a brain boundary
(the green rectangle in Fig. 2(a)) sized image, in which the overlapped part with
more than one values would take the average of them. This image would be
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further recovered into the original size of 240× 240× 155 according to the saved
boundary information.

Overall Survival Days Prediction: The predicted tumor images would be
further utilized for the estimation of the OS days. In this task, we select seven
features from numerous candidates. The first three are the ratios of the volume
of each tumor sub-region to the size of the whole brain. Then we calculate the
gradient of each kind of tumor matrix and sum up non-zero gradient values to
approximate the area of the tumor surface. Last but not the least, age informa-
tion of subjects have been taken into account. The combination of these seven
features have been demonstrated with better performance than other mixtures.
The model we choose to solve this problem is straight forward—a fully connected
neural network with two hidden layers, each with 64 filters.

3 Results

All the programs developed for this work were written in python and Keras
backend by tensorflow, on a single GTX 1080ti GPU installed desktop.

In segmentation task, there are 335 labeled subjects for training, 125 unla-
beled subjects for validation and 166 unlabeled subjects for the final test. We
trained the network with two patching strategies each for 100 epochs, the sec-
ond phase use the first phase saved model as pre-trained. Start offset is 4, patch
overlap is 32, initial learning rate of Adam optimizer is 5e−4, the learning rate
would drop by 50% after 10 steps without loss value decrease. Data augmenta-
tion has been undertaken on the fly for each patch, including random rotation,
flip and distortion. Table 1 exhibits the mean values of all the required criteria
in BraTS 2019, Fig. 4 and Fig. 5 illustrate more details of that. Because we are
only afforded the summary stats of results on the final test dataset, here we
just illustrate the mean values of the dice coefficient and Hausdorff distance in
Table 1.

Table 1. Mean values of different criteria for segmentation task.

Dataset Dice Sensitivity Specificity Hausdorff95

ET TC WT ET TC WT ET TC WT ET TC WT

Training 0.830 0.888 0.916 0.856 0.895 0.909 0.998 0.997 0.996 3.073 3.667 4.009

Validation 0.737 0.807 0.894 0.766 0.826 0.897 0.998 0.996 0.995 5.994 7.357 5.677

Final test 0.778 0.798 0.852 – – – – – – 3.543 6.219 6.547

For the OS days prediction task, only patients whose ‘ResectionStatus’ is
‘GTR’ are taken into consideration, which results in a 101 subjects training set,
a 29 subjects validation set and a 107 subjects final test set. In this model, Adam
optimizer with initial learning rate as 1e−4 has been deployed, it updates the
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Fig. 4. Dice coefficient, specificity, sensitivity and hausdorff for training dataset.

Fig. 5. Dice coefficient, specificity, sensitivity and hausdorff for validition dataset.
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learning rate the same way as in task one. For the training process, five-fold
cross validation has been employed, which boils down to a configuration with
batch size to be 5 and epochs to be more than 500.

Table 2 presents the scores of our predicted survival days. The accuracy is
calculated based on a three categories classification, and they define the survival
days less than 300 as short-survival, from 300 to 450 as mid-survivor, and more
than 450 as long-survival.

Table 2. Mean values of different criteria for OS days prediction task.

Dataset Accuracy MSE MedianSE stdSE SpearmanR

Training 0.515 8.73e4 1.96e4 1.83e5 0.472

Validation 0.448 1.0e5 4.93e4 1.35e5 0.25

Final test 0.551 4.10e5 4.93e4 1.23e6 0.323

4 Conclusion

In this work, we introduced a brain-wise normalization and two patching strate-
gies for the training of 3D U-Net for tumor segmentation task. At the same
time, we brought about a network taking use of features extracted from pre-
dicted tumor labels to anticipate the overall survival days of patients who have
undergone gross total resection surgery. Currently on single GPU platform, only
one 4 × 128 × 128 × 128 image could be fed as input each time during training,
which probably restricts the capacity of the model. In future works, with more
powerful hardwares we would go on with the training and upgrading of this
network.
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Abstract. Magnetic resonance imaging (MRI) is the dominant modal-
ity used in the initial evaluation of patients with primary brain tumors
due to its superior image resolution and high safety profile. Automated
segmentation of brain tumors from MRI is critical in the determination
of response to therapy. In this paper, we propose a novel method which
aggregates multi-scale prediction from 3D U-Net to segment enhancing
tumor (ET), whole tumor (WT) and tumor core (TC) from multimodal
MRI. Multi-scale prediction is derived from the decoder part of 3D U-
Net at different resolutions. The final prediction takes the minimum
value of the corresponding pixel from the upsampling multi-scale pre-
diction. Aggregating multi-scale prediction can add constraints to the
network which is beneficial for limited data. Additionally, we employ
model ensembling strategy to further improve the performance of the
proposed network. Finally, we achieve dice scores of 0.7745, 0.8640 and
0.7914, and Hausdorff distances (95th percentile) of 4.2365, 6.9381 and
6.6026 for ET, WT and TC respectively on the test set in BraTS 2019.

Keywords: Brain tumor segmentation · Multi-scale prediction · Deep
learning · Multimodal MRI

1 Introduction

A brain tumor is an abnormal mass of tissue in which cells grow and multiply
uncontrollably, seemingly unchecked by the mechanisms that control normal
cells. They can be categorized as the primary and the metastatic brain tumors.
The primary brain tumors originate from the tissues of the brain or the brain’s
immediate surroundings. The metastatic brain tumors occur when tumors spread
to brain from another organ, such as lung or breast. As primary brain tumor,
gliomas are the most prevalent type of adult brain tumor, accounting for 78%
of malignant brain tumors [1]. They develop from different types of glial cells.
Sophisticated imaging techniques, such as magnetic resonance imaging (MRI),
c© Springer Nature Switzerland AG 2020
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can pinpoint brain tumors and assist neurosurgeon in diagnosis and planning
treatment for patients.

Automatic segmentation of brain tumor can provide physicians reproducible
delineation of different types of tumors and make them more efficient. The out-
come of segmentation can be further used in other research (e.g. tumor size calcu-
lation, tumor shape analysis, tumor growth analysis). Recently, many approaches
based on deep learning have been proposed in various medical imaging tasks and
produce the state-of-the-art result [5,8,12].

Multimodal Brain Tumor Segmentation Challenge (BraTS) focuses on the
evaluation of state-of-the-art methods for segmentation of brain tumors in multi-
modal MRI scans [2,3,14,18,19]. In BraTS 2019, the training data comprises 259
High Grade Glioma (HGG) cases and 76 Low Grade Glioma (LGG) cases with
corresponding annotations for three glioma tumor subregions (i.e., the enhancing
tumor, the peritumoral edema, the necrotic and non-enhancing tumor core). The
official validation data contains 125 cases without any published annotations and
tumor grade information. All multimodal MRI data describe native (T1), post-
contrast T1-weighted (T1Gd), T2-weighted (T2) and T2 Fluid Attenuated Inver-
sion Recovery (T2-FLAIR) volumes with size 155×240×240. The provided MRI
data from BraTS have been pre-processed, i.e. co-registered to the same anatom-
ical template, interpolated to the same resolution (1mm × 1mm × 1mm) and
skull-stripped [2,3,14,18,19]. Three nested tumor subregions including whole
tumor (WT), tumor core (TC) and enhancing tumor (ET) are used to evaluate
the performance of automatic segmentation method under four types of metrics
including dice score, sensitivity, specificity and Hausdorff distance (95%).

In this work, we propose a novel method used for tumor segmentation from
3D multimodal MRI. We aggregate multi-scale prediction from decoder part
of 3D U-Net, as features from decoder part of 3D U-Net could produce seg-
mentation masks on different scales. Moreover, some strategies such as test
time augmentation (TTA) [23] and models ensembling are employed to make
the proposed approach produce more stable and robust result. We evaluate our
approaches on the official validation set of BraTS 2019 Challenge and achieve
competitive result.

2 Related Work

BraTS 2017. In BraTS 2017, the remarkable competitors included Kamnitsas
et al. [9] and Wang et al. [22]. Kamnitsas et el. [9] ensembled three types of
models for robust segmentation. The explored Ensembles of Multiple Models
and Architectures (EMMA) can reduce the influence of the hyper-parameters of
individual approaches and the risk of overfitting. Wang et al. [22] decomposed
the multi-class segmentation task into a sequence of three binary segmentation
problems. A cascade of fully convolutional neural network was proposed to seg-
ment three types of tumor step by step. To boost the segmentation performance,
multi-view fusion, dilated convolution technology and multi-scale prediction had
been employed.
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BraTS 2018. In BraTS 2018, Myronenko et al. [15] won the 1st place, Isensee et
al. [8] won the 2nd place, McKinley et al. [13] and Zhou et al. [24] shared the 3rd
place. Due to limited training data, Myronenko et al. [15] equipped a variational
auto-encoder (VAE) to encoder-decoder network and used the cropped 160 ×
192 × 128 MRI volume as input. Instead of modifying the network architecture,
Isensee et al. [8] devoted to explore the potential of 3D U-Net by optimizing
the training procedure. Furthermore, additional data were used to regularize the
network through cotraining. They used a large patch with shape 128×128×128
as input. McKinley et al. [13] proposed a novel approach embedding densely
connected blocks with dilated convolutions into a shallow symmetrical U-Shape
network. They also introduced a new loss function called label-uncertainty loss
to model label noise and uncertainty. Zhou et al. [24] ensembled multiple deep
networks of varied architectures to reduce the risk of overfitting.

Multi-scale Aggregation. As a fully convolutional network (FCN) extracts
the hierarchical features, the low-level and the high-level features can be learned
in the shallow and the deep layers respectively. Multi-scale prediction from dif-
ferent layers can be combined to derive robust segmentation result [17,20,22].
Instead of taking advantage of multi-scale features in FCN, multi-scale features
from decoder part of encoder-decoder architecture can also be exploited [6,7,10].
Predictions from multi-scale features are generally aggregated by element-wise
addition after upsampling to the resolution of input. Multi-scale aggregation
takes advantage of deep supervision which injects gradient signals deeply into
the network.

Comparing to the previous methods, we explore multi-scale prediction aggre-
gation from 3D U-Net [4] by element-wise minimization (see Fig. 1). And we
show this aggregation method making multi-scale prediction complementary to
each other by visualization. Similar to [15], we use a large crop with shape
160 × 224 × 160 as input. We also employ some optimization strategies such as
Test Time Augmentation (TTA) and model ensembling to achieve more robust
segmentation.

3 Methods

In this section, we first describe the proposed network architecture with mulit-
scale aggregation. Then, we describe element-wise minimization of multi-scale
aggregation. Finally, strategies for better performance such as Test Time Aug-
mentation (TTA) and model ensembling are discussed.

3.1 Network Architecture

To perform accurate and robust brain tumor segmentation, the outstanding com-
petitors in BraTS 2018 tend to propose novel method based on 3D U-Shape
network [8,15]. Their success in last year challenge demonstrates the power and
the potential of U-Shape network for brain tumor segmentation.
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Fig. 1. Schematic visualization of the proposed network architecture. Input is a cropped
3D MRI volume with 4 modalities. Output has the same resolution as the input with
3 channels of the probabilities for WT, TC and ET respectively. Blocks in wathet
represent the convolution operations in 3D U-Net [4]. Multi-scale prediction aggregation
is shown within the dotted line frame.

The proposed network architecture we used in BraTS 2019 Segmentation
Challenge is shown in Fig. 1. We employ 3D U-Net to produce the multi-scale
prediction. Due to the limitation of GPU memory, we crop the original MRI into
size 224 × 160 in x- and y-axis. And we expand the z-axis size from 155 to 160
by padding zeros in extra area. Thus, the input has the size 160×224×160. The
input MRI volume first goes through encoder part of 3D U-Net which extracts
features in each resolution by convolution with ReLU and downsampling. Then,
the features with lowest resolution start to restore the resolution as input by
processing the concatenation of the features with corresponding resolution from
encoder part and themselves after upsampling progressively in decoder part. In
each resolution, features are processed under two convolution layers with ReLU.
We use max-pooling as downsample and transposed convolution as upsampling
in the whole network. Finally, the features in multi-resolution from decoder part
are then used in producing multi-scale prediction which is aggregating to derive
the segmentation result.

3.2 Multi-scale Prediction Minimization Aggregation

In the decoder part of 3D U-Net, segmentation prediction map can be derived
on various scales. However, most of works [8,15] based on 3D U-Net only make
prediction on the largest scale features for the minimum resolution loss. These
methods put the responsibility of prediction to the last layer of largest scale.
Intuitively, prediction can be made on every scales. Unlike other works in [6,7,
10], we aggregate multi-scale prediction by minimization. Multi-scale prediction
minimization aggregation can reduce the responsibility of prediction on the last
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Fig. 2. Demonstration of multi-scale prediction minimization aggregation. Lattice pat-
tern represents prediction map. Red in grid represents the high probability for tumor
and white in grid represents the low probability for one. (Color figure online)

layer of largest scale. It also can make predictions on different scales complement
each other.

The multi-scale features from decoder part of 3D U-Net are processed by
two successive convolution layers with ReLU to produce multi-scale prediction.
Let pij and p̂ij denote the predictive probability before and after upsampling on
scale-i in jth location, respectively. We use nearest neighbor upsampling here.
Then, the final predictive probability pj can be formulated as follows:

pj = min
i

{p̂ij}
p̂i = upsampling × 2(i−1)(pi)

where i ∈ {1, 2, 3}. By minimization aggregation, prediction can be made on
any scale. Furthermore, prediction on various scales can complement each other.
In other words, prediction on a small scale can refine the one on a large scale
by producing fine-grained segmentation result and prediction on a large scale
can correct the one on small scale which produces over-segmentation result. (see
Fig. 2)

3.3 Optimization Strategies

Test Time Augmentation. Test Time Augmentation (TTA) shows its effec-
tiveness in many applications [23], and it has been used in aleatoric uncertainty
estimation under a consistent mathematical framework [21]. TTA combines pre-
dictions of multiple transformed versions of a test MRI volume. Let Ii denotes
the ith transformed MRI volume from test one I and pi = f(Ii) denotes the
probability from trained network f in case of input Ii, while i ∈ {1, . . . , N}. In
this work, we obtain the final prediction oi by averaging:
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oi =
1
N

N∑

i=1

pi

The transformation used in this work is mirror flipping in three axes of MRI vol-
ume. In our experiments, TTA not only improves performance but also reduces
deviation.

Model Ensembling. Independently trained models are diverse and biased due
to the different initial weights and training set. One model may be better than
the other models in discriminating some features. Therefore, a more accurate
and robust result can be obtained by ensembling multiple diverse models.

After training multiple models with different data from training set, we aver-
age the output of each model as the final result. Formally, let pmi denotes the
predictive probability of target tumor in pixel i from jth model. The ensembling
output from M models can be derived as follows:

pi =
1
M

M∑

m=1

pmi

The final binary result of the target tumor and background in pixel i can be
obtained by using a threshold (i.e. 0.5) on the ensembling output.

4 Results and Discussion

4.1 Data and Implementation Details

In BraTS 2019 Segmentation Challenge, the training data comprises 335 multi-
modal MRI cases and corresponding annotations for glioma tumor. Each multi-
modal MRI data includes T1, T1 contrast-enhanced, T2 and FLAIR. We ran-
domly split the training data into 268 cases as local training set and 67 cases
as local validation set. Our models are trained in local training set with mirror
flipping as data augmentation. Local validation set is used to adjust hyper-
parameters in our models. The validation set in BraTS 2019 contains 125 cases
without any public annotations. Online validation tool1 is applied to evaluate
the performances of our methods.

We implement the proposed methods in PyTorch [16] platform and train
them on NVIDIA Tesla V100 32 GB GPU. All models are trained in 200 epoches
with batch size 1. Adam optimizer [11] with the initial learning rate 1e−4 and
weight decay 1e−5. The initial learning rate is decayed by 0.1 every 60 epoches.

1 https://ipp.cbica.upenn.edu/.

https://ipp.cbica.upenn.edu/
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Table 1. Performance comparison of dice and Hausdorff distance on the BraTS 2019
validation set using a online validation tool.

basic channels Dice Hausdorff (95%)

ET WT TC ET WT TC

3D U-Net [4] 10 0.6981 0.8533 0.7719 6.4053 12.2777 10.4436

AMPNet 10 0.7224 0.8651 0.7838 4.8419 7.3529 8.4079

AMPNet+TTA 10 0.7285 0.8718 0.7885 4.5898 7.1399 8.2186

AMPNet+Ensemble 10 0.7530 0.8755 0.8092 33.4766 8.8384 12.4542

AMPNet 32 0.7413 0.8934 0.7948 5.2697 6.0294 7.9257

AMPNet+TTA 32 0.7416 0.9026 0.7925 4.5748 4.3783 7.9539

AMPNet+Ensemble 32 0.7557 0.9029 0.7932 4.7696 4.4932 8.1903

4.2 Performances on BraTS 2019 Validation Set

In BraTS 2019 Segmentation Challenge, four types of metrics, namely dice,
sensitivity, specificity and Hausdorff distance (95%) are used to evaluate the
segmentation methods in three types of tumor subregions (i.e., ET, WT and
TC). Tables 1 and 2 show the performances of our model on the BraTS 2019
validation set. The results are derived from the online validation tool.

Table 2. Performance comparision of sensitivity and specificity on the BraTS 2019
validation set using the online validation tool.

basic channels Sensitivity Specificity

ET WT TC ET WT TC

3D U-Net [4] 10 0.7765 0.9047 0.7927 0.9976 0.9854 0.9938

AMPNet 10 0.7564 0.8655 0.8027 0.9981 0.9914 0.9944

AMPNet+TTA 10 0.7624 0.8723 0.8062 0.9981 0.9914 0.9944

AMPNet+Ensemble 10 0.7567 0.8692 0.8103 0.9904 0.9854 0.9886

AMPNet 32 0.6813 0.8533 0.7144 0.9993 0.9974 0.9988

AMPNet+TTA 32 0.7385 0.8974 0.7800 0.9987 0.9955 0.9976

AMPNet+Ensemble 32 0.7769 0.7769 0.7871 0.9983 0.9983 0.9983

We start from basic 3D U-Net architecture. Due to the large input size, we
reduce the number of filters in the whole network in a proportional manner. We
denote the number of filters in the first convolutional layer as basic channels.
For clarity, our method is denoted as AMPNet.

In Table 1, it can be seen that our AMPNet improves the performance with
regards to dice and Hausdorff distance when compared to the 3D U-Net which
has less fewer filters in convolutional layer. The TTA improves performance con-
sistently and effectively. The output of our AMPNet is highly uncertain at the
blurred edge of brain tumor in MRI. TTA reduces edge uncertainty by averaging
the results of multiple transformations of input MRI. In our experiment, TTA
can improve dice performance of WT by about 1%. The edge of WT is more
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obscure than that of ET and TC because of edema. And the model ensembling
has only slightly improved performance after using TTA. The uncertainties of
different models for predicting different locations are different. We should ensem-
ble the models by weighting the output of different models instead of averaging
them. In our experiment, increasing the number of filters in the network can
further improve the performance, but it needs more GPU memory. Our AMP-
Net increases the dice score by 1–2% when we increase the number of filter in
network by about three times.

Figure 3 shows the visualization of predicted results achieved by our AMP-
Net.

Fig. 3. Visualization of prediction from the proposed AMPNet on BraTS 2019 Valida-
tion Set. The left image of each group is FLAIR MRI. The right image of each group is
predicted result rendered on FLAIR. (Blue: necrotic and non-enhancing tumor; Green:
edema; Red: enhancing tumor). (Color figure online)

4.3 Visualization of Multi-scale Prediction

Figure 4 shows some examples of multi-scale prediction achieved by our AMPNet
on BraTS 2019 local validation set. In our experiments, hierarchical features have
been learned in each scale. Small-scale prediction focuses on detailed features,
while large-scale prediction learns more general relevance information. Multiscale
prediction complements and corrects each other to produce the final results.

4.4 Performances on BraTS 2019 Test Set

On testing phase, we used an ensemble of three AMPNet models which were
trained with BraTS 2019 training set for the final submission. The test results
are shown in Table 3. We compare the results on the test set and the validation
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set. On the test set, segmentation performances of our method in terms of Dice
and 95th Hausdorff Distance in ET and TC are similar to or even better than
that on the validation set. However, the performance of WT segmentation gets
worse on the test set.

Table 3. The performance of AMPNet on BraTS 2019 test set.

Dice Hausdorff (95%)

ET WT TC ET WT TC

AMPNet+Ensemble 0.7745 0.8640 0.7914 4.2365 6.9381 6.6026

(a) FLAIR (b) GT (c) Output (d) S1 (e) S2 (f) S3

Fig. 4. Visualization of AMPNet output on BraTS 2019 local validation set. Each
column from left to right is FLAIR, GT label for WT, the final output of WT from
AMPNet, prediction in highest resolution from AMPNet, prediction in middle resolu-
tion from AMPNet after upsampling and prediction in lowest resolution from AMPNet
after upsampling.

5 Conclusion

In this work, we propose a network structure which aggregates multi-scale pre-
dictions from the decoder part of 3D U-Net in brain tumor segmentation. To
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achieve better performance, two optimization strategies are integrated into our
network. The proposed method is applied in BraTS 2019 Segmentation Chal-
lenge. Experimental results demonstrate that our method can achieve dice scores
of 0.7745, 0.8640 and 0.7914, and Hausdorff distances (95%) of 4.2365, 6.9381
and 6.6026 for ET, WT and TC respectively on the test data in BraTS 2019.
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Abstract. The magnetic resonance (MR) analysis of brain tumors is
widely used for diagnosis and examination of tumor subregions. The
overlapping area among the intensity distribution of healthy, enhancing,
non-enhancing, and edema regions makes the automatic segmentation
a challenging task. Here, we show that a convolutional neural network
trained on high-contrast images can transform the intensity distribution
of brain lesions in its internal subregions. Specifically, a generative adver-
sarial network (GAN) is extended to synthesize high-contrast images. A
comparison of these synthetic images and real images of brain tumor
tissue in MR scans showed significant segmentation improvement and
decreased the number of real channels for segmentation. The synthetic
images are used as a substitute for real channels and can bypass real
modalities in the multimodal brain tumor segmentation framework. Seg-
mentation results on BraTS 2019 dataset demonstrate that our proposed
approach can efficiently segment the tumor areas. In the end, we predict
patient survival time based on volumetric features of the tumor subre-
gions as well as the age of each case through several regression models.

Keywords: Tumor segmentation · Synthetic image · GAN ·
Regression model · Overall survival

1 Introduction

Glioma is the most aggressive and widespread tumor is grouped into low-grade
gliomas (LGGs) and high-grade gliomas (HGGs). Multimodal MR channels in
BraTS 2019 datasets [1–4,13], included of FLAIR, T1, T1c, and T2, are routinely
used to segment internal parts of the tumor, i.e., whole tumor (WT), tumor core
(TC), and enhancing tumor (ET). Several segmentation approaches have been
proposed to segment regions of interest through classic [7,8,17,18] and mod-
ern machine learning methods, especially brain tumor segmentation techniques
[10,14].
c© Springer Nature Switzerland AG 2020
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Fig. 1. The pipeline outlines the steps in the current (top) and proposed synthetic
(bottom) segmentation techniques. We displace the real T1 channels with the synthetic
image.

The focus of current research is to form a generator that increases the contrast
within subregions of the brain tissue. The generator, which is a deep neural
network model, employes a real channel as input to produce the synthetic one.
Our framework comprises two stages: (1) we generate high tissue contrast images
based on FLAIR sequence in our convolutional neural network (CNN) model,
(2) we train a 3D fully convolutional network (FCN) [5,9,12,16] based on the
synthetic images to segment region of interests.

2 Method

Our goal is to segment tumor subregions based on multimodal 3D magnetic reso-
nance (MR) volumes. Figure 1 demonstrates an overview of the proposed method
based on synthetic high-contrast images. In contrast to the current methods, we
use both real and synthetic volumes for the segmentation task. Following, we
first introduce the synthetic image generator module, based on the generative
adversarial networks (GANs) model [6], and then 3D FCN architecture for seg-
mentation is discussed.

2.1 Synthetic Image Generator

We extend the image-to-image translation method [11] to deal with the synthesis
of high-contrast 2D images. Our model trains on high-contrast images, building
based on manual labels, in an adversarial framework. The synthesis model con-
tains a Generator, based on the 2D-U-Net [15], and a Discriminator, build on 2D
FCN network. Figure 2 illustrates the image translation framework, where both
the generator and the discriminator blocks are trained on FLAIR with a patch
size of 128 × 128 pixels. In implementation details, we follow [11], including the
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Fig. 2. Deep-learning-based high-contrast synthesis using FLAIR images. After train-
ing by GAN, the model outputs the synthetic high tissue contrast images with an
inference time of around 20 ms.

number of epochs, the number of layers, and the kernel sizes. For each subject
in the BraTS’19 dataset, we provide a 3D synthetic volume for the next stage,
segmentation.

2.2 Synthetic Segmentation

The output volumes from synthetic image generator block are concatenated with
real modalities (FLAIR, T1c, and T2) and fed into segmentation block to predict
region of interests. The segmentation network allows jointly capturing features
from FLAIR, synthetic, T1c, and T2 modality. For the 3D segmentation block,
we rely on ensembling the 3D FCN on axial, sagittal, and coronal planes.

3 Experimental Results

3.1 Implementation Details

We implement the proposed design employing the KERAS with 12GB NVIDIA
TITAN X GPU. We have scaled image patches to sizes 128×128 pixels for trans-
lation. The model is trained through the ADADELTA [19] optimizer (learning
rate = 0.9, ρ = 0.90, epsilon = 1e−5). Dropout is employed to avoid over-fitting
over the training (pdrop = 0.4).
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Table 1. DSCs and HD95 of the synthetic segmentation method on BraTS’19 Valida-
tion set (training on 335 cases of BraTS’19 training set).

Dice Sensitivity Specificity HD95 (mm)

ET WT TC ET WT TC ET WT TC ET WT TC

Mean 76.65 89.65 79.01 76.88 91.32 77.71 99.85 99.39 99.76 4.6 6.9 8.4

Std. 25.86 9.44 23.31 25.35 8.84 26.13 0.23 0.69 0.33 7.2 13.8 12.4

Median 84.73 92.15 89.47 85.47 94.53 90.08 99.93 99.58 99.88 2.2 3.3 4.1

25 quantile 77.88 87.94 74.29 72.82 88.65 73.26 99.82 99.15 99.70 1.4 2.0 2.0

75 quantile 90.21 94.81 93.98 91.97 97.28 95.16 99.98 99.83 99.97 4.1 5.1 10.3

3.2 Datasets

The performance of the proposed method is evaluated on the BraTS’19 dataset,
which has two datasets of pre-operative MRI sequences: Training (335 cases) and
Validation (125 cases). Each patient is giving 155×240×240 with four channels:
T1, T2, T1c, and FLAIR. In the manual label of BraTS’19, there are three tumor
regions: non-enhancing tumor, enhancing tumor, and edema. The evaluation is
figured out by CBICA IPP1 online platforms. Metrics computed by the online
evaluation platforms in BraTS’19 are Dice Similarity Coefficient (DSC) and the
95th percentile of the Hausdorff Distance (HD95). DSC is considered to measure
the union of prediction and manual segmentation. It is measured as DSC =

2TP
FP+2TP+FN where TP, FP, and FN are the numbers of true positive, false
positive, and false negative detections, respectively.

3.3 Segmentation Results on BRATS’19

Figure 3 shows examples of brain tumor prediction in LGG and HGG slides on
BraTS19 along with corresponding labels, where the subject IDs are “BraTS19-
TCIA10-175-1” and “BraTS19-CBICA-APK-1” for LGG and HGG, respectively.
The results in Table 1 show that our method performed competitive performance
on validation set (125 cases) of BraTS dataset. Results are reported in the online
processing platform by BraTS’19 organizer. Moreover, Table 2 reports the aver-
age results on 335 training case of the BraTS’19.

4 Overall Survival Prediction Model

BraTS’19 dataset contains 102 gross total resections (GTR) pre-operative scans
out of 335 training cases in which the age of patients is available. These subjects
are applied for developing a model to predict the overall survival (OS) of the
patient. To this end, we measure the volume of WT, TC, and ET after segmen-
tation to create a feature vector to predict patient OS. We also consider patient’s

1 https://ipp.cbica.upenn.edu.

https://ipp.cbica.upenn.edu
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Pred. 
LGG

GT
LGG

Pred. 
HGG

GT
HGG

Fig. 3. Segmentation results are overlaid on FLAIR axial slices on BraTS’19 Training
Data. The yellow label is edema, blue color means enhancing tumor, and the green one
shows the necrotic and non-enhancing tumor core. The first and second rows illustrate
LGG brain tumor, prediction (Pred.), and ground truth (GT), respectively. The third
and fourth rows are related to HGG tumors. Computed DSCs by the Challenge orga-
nizer are reported for the LGG subject as: WT = 96.55% and ET%= 88.85, as well as
HGG subject as: TC= 93.80%, WT = 93.97%, and ET = 95.00%. (Color figure online)

age as an input feature to increase survival prediction accuracy. Thus, we have a
4-dimensional normalized feature vector that scaled between 0 and 1. We train
different regression models to predict OS through supervised machine learn-
ing, including linear models, regression trees, support vector machines (SVMs)
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Table 2. DSCs and HD95 of the synthetic method on BraTS’19 Training set.

Dice Sensitivity Specificity HD95 (mm)

ET WT TC ET WT TC ET WT TC ET WT TC

Mean 79.26 91.65 90.76 84.49 91.89 90.76 99.86 99.51 99.77 3.5 5.7 3.4

Std. 23.96 05.59 7.13 14.46 08.04 08.17 0.178 0.47 0.34 7.3 11.0 4.6

Median 87.04 93.29 92.88 88.12 94.35 93.22 99.92 99.64 99.88 1.4 2.8 2.0

25 quantile 79.49 89.89 88.34 80.69 88.99 87.96 99.831 99.37 99.74 1.0 1.8 1.4

75 quantile 91.54 95.39 95.28 93.78 97.23 96.43 99.975 99.80 99.95 2.2 4.9 3.6

Table 3. Comparison between linear models and regression trees with different hyper-
parameters.

Linear regression models Regression trees

Linear Interactions Robust Stepwise Fine Medium Coarse

RMSE 316.81 375.23 326.76 314.07 377.46 317.35 327.95

MAE 224.24 250.04 220.04 223.36 277.04 237.8 237.38

Pred. speed 2000 6200 7800 7600 4900 19000 19000

Table 4. Comparison between different SVM kernels. Kernel scales for Gaussian
(Gaus.) SVM are considered as 0.5, 2, and 8 for Fine, Medium, and Coarse, respectively.

SVM

Linear Quadratic Cubic Fine
Gaus.

Medium
Gaus.

Coarse
Gaus.

RMSE 323.92 354.44 377.65 349.41 341.52 329.36

MAE 220.02 244.46 263.68 234.66 228.45 221.86

Pred. speed 5400 16000 17000 16000 17000 15000

with different kernel functions, Gaussian process regression (GPR) models, and
ensembles of trees. We measure root mean square error (RMSE), maximum
absolute error (MAE), and prediction speed during inference (observation/sec)
to assess model performance. The 5-fold cross-validation is applied to evaluate
these models with four feature vectors.

Table 3 presents linear regression models, including linear, interactions,
robust, and stepwise linear models. We also evaluate regression Trees with three
minimum leaf sizes, i.e., 4, 12, and 36 in this table.

Table 4 evaluates SVMs models through different Kernel functions and scales.
We consider kernel scales 0.5, 2, and 8 for fine, medium, and coarse Gaussian
SVM, respectively.
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Table 5. Comparison between GPR and ensemble models with several kernel functions.
The abbreviation is: (Exp)onential

Gaussian process regression models Ensemble trees

Squared Exp. Matern Exp. Rational quadratic Boosted Bagged

RMSE 332.28 344.9 344.2 332.28 344.16 333.36

MAE 237.93 250.37 249.95 237.93 251.42 240.69

Pred. speed 4900 12000 13000 13000 2600 3400

Table 5 shows GPR and Ensemble Trees models. The former is evaluated
with squared exponential, Matern 5/2, exponential, and rational quadratic kernel
functions. The boosted Trees and the Bagged Trees are examined for the latter.

Figure 4 displays predicted response versus subject numbers in BraTS’19.
The predictions are accomplished with the stepwise linear regression model.

Fig. 4. Survival prediction per day through the stepwise linear regression model. The
predicted results versus case number.

Figure 5 also illustrates predicted response based on three features. We
removed age feature to evaluate the effect of this feature on OS task. Table 6
compare RMSE with and without age feature for survival task.
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Fig. 5. Survival prediction per day through the stepwise linear regression model. The
predicted results versus case number.

Table 6. RMSE with and without age feature.

Feature numbers Linear Regression trees SVM Ensemble GPR

RMSE with age feature 314.07 317.35 323.92 333.36 332.26

RMSE without age feature 357.96 361.45 351.99 362.62 352.53

5 Conclusion

This paper provided a framework for the synthetic segmentation that translated
FLAIR MR images into high-contrast synthetic MR ones for segmentation. Syn-
thesizing based on the GAN network empowers our model to decrease the num-
ber of real channels in multimodal brain tumor segmentation challenge 2019. We
also implemented several regression models to predict the OS of each patient. We
found that the stepwise linear model overwhelmed other traditional regression
models in terms of RMSE. We also observed that patient age as a distinctive
feature in the OS prediction tasks.
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Abstract. Automatic brain tumor segmentation method plays an
extremely important role in the whole process of brain tumor diagnosis
and treatment. In this paper, we propose a multi-step cascaded network
which takes the hierarchical topology of the brain tumor substructures
into consideration and segments the substructures from coarse to fine.
During segmentation, the result of the former step is utilized as the prior
information for the next step to guide the finer segmentation process. The
whole network is trained in an end-to-end fashion. Besides, to alleviate
the gradient vanishing issue and reduce overfitting, we added several aux-
iliary outputs as a kind of deep supervision for each step and introduced
several data augmentation strategies, respectively, which proved to be
quite efficient for brain tumor segmentation. Lastly, focal loss is utilized
to solve the problem of remarkably imbalance of the tumor regions and
background. Our model is tested on the BraTS 2019 validation dataset,
the preliminary results of mean dice coefficients are 0.886, 0.813, 0.771
for the whole tumor, tumor core and enhancing tumor respectively. Code
is available at https://github.com/JohnleeHIT/Brats2019.

Keywords: Brain tumor · Cascaded network · 3D-UNet ·
Segmentation

1 Introduction

Brain tumor is one of the most serious brain diseases, among which the malignant
gliomas are the most frequent occurred type. The gliomas can be simply divided
into two categories according to the severity: the aggressive one (i.e. HGG) with
the average life expectancy of nearly 2 years and the moderate one (i.e. LGG)
with the life expectancy of several years. Due to the considerably high mortality
rate, it is of great importance for the early diagnosis of the gliomas, which largely
improves the treatment probabilities especially for the LGG. At present, the
most possible ways to treat gliomas are surgery, chemotherapy and radiotherapy.
For any of the treatment strategies, accurate imaging and segmentation of the
lesion areas are indispensable before and after treatment so as to evaluate the
effectiveness of the specific strategy.

Among all the existing imaging instruments, MRI has been the first choice
for brain tumor analysis for its high resolution, high contrast and present no
c© Springer Nature Switzerland AG 2020
A. Crimi and S. Bakas (Eds.): BrainLes 2019, LNCS 11992, pp. 163–173, 2020.
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known health threats. In the current clinical routine, manual segmentation of
large amount of MRI images is a common practice which turns out to be remark-
ably time-consuming and prone to make mistakes for the raters. So, it would be
of tremendous potential value to propose an automatic segmentation method.
Many researchers have proposed several effective methods based on deep learning
or machine learning methods to solve the problem. Among those proposed meth-
ods, Zikic et al. [1] used a shallow CNN network to classify 2D image patches
which captured from the MRI data volumes in a sliding window fashion. Zhao et
al. [2] converted the 3D tumor segmentation task to 2D segmentation in triplanes
and introduced multi-scales by cropping different patch sizes. Havaei et al. [3]
proposed a cascaded convolutional network, which can capture local and global
information simultaneously. Çiçek et al. [4] extended the traditional 2D U-net
segmentation network to a 3D implementation which makes the volume seg-
mentation to a voxel-wise fashion. Kamnitsas et al. [5] proposed a dual pathway
3D convolution network named DeepMedic to incorporate multi-scale contextual
information, and used the 3D fully connected CRF as the postprocess method to
refine the segmentation result. Chen et al. [6] improved DeepMedic by first crop-
ping 3D patches from multiple layers selected from the original DeepMedic and
then merging those patches to learn more information in the network, besides,
deep supervision was introduced in the network to better propagate the gradient.
Ma et al. [7] employed a feature representations learning strategy to effectively
explore both local and contextual information from multimodal images for tissue
segmentation by using modality specific random forests as the feature learning
kernels.

Inspired by Havaei and Çiçek, we proposed a multi-step cascaded network to
segment brain tumor substructures. The proposed network uses 3D U-net as the
basic segmentation architecture and the whole network works in a coarse-to-fine
fashion which can be seen as a kind of spatial attention mechanism.

2 Methodology

Based on the thorough analysis of the substructures of brain tumor, which turns
out to be a hierarchical topology (see Fig. 1), We propose a multi-step cascaded
network which is tailored for the brain tumor segmentation task. Our proposed
method mainly contains three aspects, detailed information are as follows:

2.1 Multi-step Cascaded Network

The proposed multi-step cascaded networks are illustrated in Fig. 2. This method
segments the hierarchical structure of the tumor substructures in a coarse-to-fine
fashion. In the first step, in order to be consistent with the manual annotations
protocol which are detailed descripted in [8], two modalities (Flair&T1ce) of the
MRI tumor volumes are utilized. The two-channel data volumes are then fed
into the first segmentation network to coarsely segment the whole tumor (WT)
which contains all the substructures of the brain tumor; In the second step,
similarly, we choose T1ce modality as the data source to segment the tumor
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Fig. 1. Schematic diagram of the tumor structures

core (TC) structure. Besides, the result of the first coarse step can be utilized
as the prior information for the second step. By multiplying the mask generated
in the first step with the T1ce data volume, the second segmentation network
will concentrate more on the corresponding masked areas and make it easier
to segment the TC structure. Then the masked volumes are processed by the
second network, as a result, TC structure (foreground) are introduced. In the last
and finest step, by following the same strategies, we can also get the enhancing
tumor (ET) substructures from the data volume, and finally by combining the
results of the three steps, the final segmentation maps of the brain tumor will
be received.

Fig. 2. Overview of the proposed multi-step cascaded network

2.2 3D U-Net Architecture with Deep Supervisions

We take a variant of 3D U-net as the basic segmentation architecture in
our multi-step cascaded networks, which is illustrated in Fig. 3. The typical
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3D U-net consists of two pathways: the contracting pathway and the expanding
pathway. The contracting pathway mainly intends to encode the input volumes
and introduces the hierarchical features, the expanding pathway however is used
to decode the information encoded in the contracting pathway. The two path-
ways are connected with skip connections so as to make the network be capable
of capturing both local and global information. Our basic segmentation network
takes 3D U-net as the prototype, whilst makes some improvements on top of it.
The main differences between 3D U-net and the proposed basic segmentation
networks are as follows:

(1) Compared to the traditional 3D U-net architecture, our proposed basic seg-
mentation network introduces three auxiliary outputs in the expanding path-
way with the intention of better gradient propagation and decreasing the
probabilities of vanishing gradient for the relatively deep segmentation net-
works. As a result, we need to minimize the overall loss functions which
comprise both the main branch and the auxiliary loss functions for the basic
segmentation process.

(2) We introduce the focal loss [9] as the loss function for the whole training
process with the intention of alleviating the considerably imbalance of the
positive and negative samples in the training data. The focal loss can be
expressed as follows:

FL (pt) = −αt (1 − pt)
γ log (pt) (1)

pt =
{

p if y = 1
1 − p otherwise (2)

where p ∈ [0, 1] is the model’s estimated probability for the class with label
y = 1. γ � 0 refers to focusing parameter, it smoothly adjusts the rate at
which easy examples are down weighted. αt refers to balancing factor which
balance the importance of the positive and negative samples.

Fig. 3. Schematic of the 3D U-net architecture with deep supervisions
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3 Experiments and Results

3.1 Preprocessing

In this paper, we take BraTS 2019 dataset [10–13] as the training data, which
comprises 259 HGG and 76 LGG MRI volumes with four modalities (T1, T2,
T1ce and Flair) available. According to the official statement of the dataset, all
the datasets have been segmented manually following the same annotation pro-
tocol. Besides, some preprocessing operations have also been conducted on those
datasets, for example, all the MRI volumes have been co-registered to the same
anatomical template, interpolated to the same resolution and skull-stripped.
Nevertheless, extra preprocessing steps should be done to the raw dataset due to
the existence of the intensity nonuniformity in the image data, also called bias
field which comes from the imperfect of the MRI machine and the specificity
of the patients. This kind of intensity nonuniformity or bias field considerably
affects the training process. To eliminate the bias field effect, a great deal of cor-
rection methods have been proposed. Among the proposed bias field correction
method, the most effective one is the N4 bias field correction [14]. In this paper,
N4 bias field correction method is utilized as an important preprocessing step
before the segmentation process. At last, we also use the normalization method
to normalize all the data to zero mean with unit variance.

3.2 Implementation Details

We mixed all the data in the BraTS 2019 training dataset including HGG and
LGG, and then trained our model with the mixed dataset. During training, we
first extract the brain region from the volume by getting the largest rectangle
which contains the brain. Then we randomly crop the raw data volume to sub-
volumes due to memory limitation and we choose the size of the patches as
96*96*96 empirically. We take one patch from a patient’s data volume every
iteration in the training process. While in the testing phase, for a single data
volume we get the sub-volumes in order so as to rebuild the whole volume with
those predictions and the patch size is the same as is in the training process. We
get different number of patches for each patient data because the brain regions
we extracted from the volume are distinct. To reduce overfitting, we introduced
some data augmentation methods, for instance, rotating a random angle, flipping
horizontally and vertically, and adding guassion blur to the sub-volumes with
a certain probability. It turned out that the data augmentation was significant
important for the brain tumor segmentation task because the network is prone
to be overfitting with relatively less training data. We used Adam optimizer to
update the weights of the network. The initial learning rate was set to 0.001 at
the very beginning and decayed to 0.0005 when the loss curve plateaued. The
batch size was set to 1 in the whole training process.

Our model was trained on a Nvidia RTX 2080 Ti GPU for 50 epochs, which
takes around 13 h.



168 X. Li et al.

3.3 Segmentation Results

To evaluate our proposed mothed, we tested our algorithm on both training
and validation set by uploading the inference results to the online evaluation
platform (CBICB’s IPP), we finally got the evaluation results including Dice
sore, Hausdorff distance, sensitivity and specificity for the whole tumor (WT),
the tumor core (TC) and the enhancing tumor (ET), respectively. The metrics
aforementioned are defined as follows:

Dice(P, T ) =
|P1 ∧ T1|

(|P1| + |T1|) /2
(3)

Sensitivity(P, T ) =
|P1 ∧ T1|

|T1| (4)

Specificity(P, T ) =
|P0 ∧ T0|

|T0| (5)

Haus(P, T ) = max

{
sup

p∈∂P1

inf
t∈∂T1

d(p, t), sup
t∈∂T1

inf
p∈∂P1

d(t, p)

}
(6)

where P refers to the prediction map of the algorithm, and T is the groundtruth
label segmented manually by the experts. ∧ is the logical AND operator, |·| means
the number of voxels in the set, and P1, P0 represent the postive and negative
voxels in the prediction map, respectively, and T1, T0 denote the positive and
negative voxels in the groundtruth map, respectively. d(p, t) denotes the distance
of the two points p, t. ∂P1 is the surface of the prediction volume set P1 and ∂T1

is the surface of the groundtruth label set T1.
Table 1 presents the quantitative average results on both training and vali-

dation dataset. Not surprisingly, the dice coefficient and sensitivity of the whole
tumor, the tumor core and the enhancing tumor are in a descending order for
both datasets due to the ascending difficulties for those tasks. However, there
still exists small gaps for the evalutation metrics between training and validation
dataset which attributed to the overfitting problem.

Table 1. Quantitative average results on the training and validation dataset

Dataset Label Dice Sensitivity Specificity Hausdorff
distance

Training WT 0.915 0.942 0.993 4.914

TC 0.832 0.876 0.996 6.469

ET 0.791 0.870 0.997 6.036

Validation WT 0.886 0.921 0.992 6.232

TC 0.813 0.819 0.997 7.409

ET 0.771 0.802 0.998 6.033
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To better analysis the overall performance of the proposed algorithm, we
made the boxplot of all the validation and training results, which can be seen
from Fig. 4. It is evident that the proposed method can segment well on almost
all the volumes in both datasets except for a few outliers. Besides, by comparing
the boxplot of the validation and training dataset, we noticed that the variance
of all the evaluation metrics including dice coefficient, sensitivity, specificity and
hausdorff distance for the validation dataset is larger than those for training
dataset, which means that our method still suffers from the overfitting problem
to some extent. Finally, we can see from the 4 subgraphs that the variance of dice
coefficient for the whole tumor is smaller than both tumor core and enhancing
tumor substructures for both training and validation datasets, the same for
sensitivity and hausdorff distance metrics and the opposite for the specificity
metrics, which are in line with our expectations. However, what surprise us most
is that the variance of the tumor core (TC) is larger than that of enhancing tumor
core (ET) on most metrics for the two datasets, the most possible explanation
of the fact is that the network sometimes predicts the whole tumor as the tumor
core mistakenly with the impact of the LGG tumor samples, which increases the
variations sharply.

Fig. 4. Boxplot of the overall performance on both training and validation datasets

Qualitative analysis of the segmentation results for the HGG and LGG
tumors are also introduced, which can be seen from Fig. 5 and Fig. 6, respectively.
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Fig. 5. Segmentation result of the whole tumor (WT), Tumor core (TC) and Enhancing
tumor (ET) structures for HGG tumors, each shows the ground truth label (The blue
line) and the prediction result (The red line) (Color figure online)

The left row are the flair modality images with the whole tumor ground truth
and the prediction result, demonstrated in blue and red curves respectively. The
middle row are the T1ce modality images with the tumor core ground truth
and the prediction result which are illustrated in the same way as the left row.
The right row of course focus on the remaining substructure, i.e. the enhancing
tumor.

All of the three regions with great clinical concerns have been well segmented
except for some small details. Not surprisingly, our aforementioned guess about
the difficulties of the three tasks can be verified again from the visualization
result. Specifically, from step one to step three, the task becomes tougher because
the contrast between the tumor region and the surrounding background decreases
and the segmentation substructures contours become much rougher at the same
time.
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Fig. 6. Segmentation result of the whole tumor (WT), Tumor core (TC) and Enhancing
tumor (ET) structures for LGG tumors, each shows the ground truth label (The blue
line) and the prediction result (The red line) (Color figure online)

4 Discussing and Conclusion

By visualizing all the validation results, we find it interesting that plenty of
bad segmented cases for the tumor core regions are those who mistaken the
whole tumor as the tumor core region. The most possible explanation might be
the variations between different MRI volumes despite the same modality. So, it
is likely that the results would increase if some preprocessing methods which
can decrease those variations have been taken before the training process, e.g.
histogram equalization.

Besides, we also tried the curriculum learning strategy which trained the
network step by step instead of end-to-end training, it turns out that the results
are no better than the end-to-end training ones. That is most likely because the
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network can fit the training data better if all the parameters in the network can
be updated. Lastly, we tried to weight the three steps of the cascaded network,
surprisingly, we find that the final results present no big difference for increment,
decrement or even weights of the training steps.

In conclusion, we present a very efficient multi-step network to segment all
the tumor substructures. We first choose specific modalities for each step to keep
the automatic segmentation process to be consistent with the mamual protocol
which improves our result a lot compared to the method to use all the modalities.
After that, we preprocess the input volumes with N4 bias field correction and
normalization. Due to the memory limitation, we randomly crop volume patches
from the original data and introduce data augmentation on those patches, We
find the data augmentation is quite important for reducing overfitting especially
when the training data is scarce.

At last, the training patches are trained in the multi-step network which has
proved to be more effective than the one-step couterpart as it trains the network
in a coarse-to-fine fashion and seperates the tough multi-classification problem
to three much easier binary-classification issuse.

We evaluated the proposed mothod on the BraTS 2019 validation dataset,
the results show that our method performance well on all three substructures.
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Abstract. Glioma is one of the most common types of brain tumors;
it arises in the glial cells in the human brain and in the spinal cord.
In addition to having a high mortality rate, glioma treatment is also
very expensive. Hence, automatic and accurate segmentation and mea-
surement from the early stages are critical in order to prolong the sur-
vival rates of the patients and to reduce the costs of the treatment. In
the present work, we propose a novel end-to-end cascaded network for
semantic segmentation in the Brain Tumors in Multimodal Magnetic
Resonance Imaging Challenge 2019 that utilizes the hierarchical struc-
ture of the tumor sub-regions with ResNet-like blocks and Squeeze-and-
Excitation modules after each convolution and concatenation block. By
utilizing cross-validation, an average ensemble technique, and a simple
post-processing technique, we obtained dice scores of 88.06, 80.84, and
80.29, and Hausdorff Distances (95th percentile) of 6.10, 5.17, and 2.21
for the whole tumor, tumor core, and enhancing tumor, respectively, on
the online test set. The proposed method was ranked among the top in
the task of Quantification of Uncertainty in Segmentation.

1 Introduction

Glioma is among the most aggressive and dangerous types of cancer [11], leading,
for instance, to around 80% and 75% of all malignant brain tumors diagnosed
in the United States [8] and Sweden [1], respectively. Gliomas with different
prognosis and numerous heterogeneous histological sub-regions, such as edema,
necrotic core, and enhancing and non-enhancing tumor core, are classified into
four world health organisation (WHO) grades according to their aggressiveness:
low grade glioma (LGG) (class I and II, considered as slow-growing), and high
grade glioma (HGG) (class III and IV, considered as fast-growing).

The aim of the Brain Tumors in Multimodal Magnetic Resonance Imaging
Challenge 2019 (BraTS19) [2–5,16] is in evaluating and finding new state-of-
the-art methods for tumor segmentation and to set a gold standard for the
segmentation of intrinsically heterogeneous brain tumors. BraTS19 provided a
large data set comprising multi-institutional pre-operative magnetic resonance
imaging (MRI) scans with four sequences: post-contrast T1-weighted (T1c),
c© Springer Nature Switzerland AG 2020
A. Crimi and S. Bakas (Eds.): BrainLes 2019, LNCS 11992, pp. 174–186, 2020.
https://doi.org/10.1007/978-3-030-46640-4_17
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Input

W-Net C C-Net C E-Net

Whole tumor Core tumor Enhancing tumor

Output

Fig. 1. Schematic visualization of TuNet. The input is the MRI volumes as four differ-
ent channels, while the output is the predicted masks for the three labels: the necrotic
and non-enhancing tumor core (NCR/NET—label 1, green), the peritumoral edema
(ED—label 2, yellow) and the GD-enhancing tumor (ET—label 3, red). First, the
multi-modal input is fed into the W-Net to generate a probability map of the whole
tumor region (orange) including labels 1, 2 and 3. Second, the concatenation of the
whole tumor probability map and the input is passed through the C-Net to produce the
tumor core probability map (blue) including labels 1 and 3. Third, the two obtained
maps from W-Net and C-Net are concatenated with the multi-modal input and then
fed into the E-Net to generate an enhancing tumor probability map including label 3.
Last, the outputs of W-Net, C-Net, and E-Net are merged to produce the final brain
tumor mask. (Color figure online)

T2-weighted (T2w), T1-weighted (T1w), and T2 Fluid Attenuated Inversion
Recovery (FLAIR). Masks were annotated manually by one to four raters fol-
lowed by improvements by expert raters. The segmentation performance of the
participants was measured using Sørensen-Dice coefficient (DSC), sensitivity,
specificity, and 95th percentile of the Hausdor distance (HD95).

Traditional discriminative approaches, such as Support-vector Machines [6],
have been widely used in medical image segmentation. In recent years, Convo-
lutional Neural Networks (CNNs) have achieved state-of-the-art performance in
numerous computer vision tasks. In the field of medical image segmentation, a
fully convolutional encoder-decoder neural network named U-Net, introduced by
Ronneberger et al. [18], has received a lot of attention in recent years. With its
success, it is unsurprising that the U-Net has motivated many top-ranking teams
in segmentation competitions in previous years [7,13,17,19].

Kitrungrotsakul et al. [15] presented CasDetNet-CLSTM to detect mitotic
events in 4D microscopic images by introducing a connection between a region-
based convolutional neural network and convolutional long short-term memory.
In the BraTS18, instead of proposing a new network, Isensee et al. [13] focused
on the training process, and made only minor modifications to the U-Net, used
additional training data, and applied a simple post-processing technique. Myro-
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Fig. 2. Our C-Net and E-Net with a U-Net backbone. The W-Net does not include
the probability map produced by a previous sub-network. To enrich the feature map
at each level in the encoder part, we concatenate the down-sampled original input
(light green) with the down-sampled output (grey) of the convolution block (yellow).
Each convolution block comprises a convolution operation, an instance normalization
followed by a ReLU activation function. The W-Net constrains the C-Net, while the
C-Net constrains the E-Net. The E-Net functions as a regularizer for the C-net, while
the C-Net plays the same role for the W-Net. (Color figure online)

nenko [17] was the winner of BraTS18 by introducing a U-Net-like network with
an asymmetrically large encoder and a Variational Auto-Encoder (VAE) branch
to reconstruct the input image to add guidance and regularization to the encoder
part of the network.

In another work, Wang et al. [19] proposed an encoder-decoder cascaded
anisotropic CNN, that won the second place in the BraTS17, that hierarchically
segments the whole tumor, tumor core, and enhancing tumor core sequentially
by separating the complex brain tumor segmentation problem into three binary
segmentation problems. We argue that: (1) the training process employed in [19]
might be time-consuming as there are three separate binary segmentation prob-
lems, and (2) the lack of regularization could lead to overfitting.

Motivated by the successes of the cascaded anisotropic network, introduced
in [19], and the VAE branch, presented in [17], we propose a novel architecture,
denoted End-to-end Hierarchical Tumor Segmentation using Cascaded Networks
(TuNet). TuNet exploits separating a complex problem into less challenging sub-
problems, and also attempts to avoid overfitting by using heavy regularization
through multi-task learning. In the present work, we constructed three U-Net-
like networks, each was used to segment a specific tumor region, i.e. whole tumor,
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core tumor, and enhancing tumor. We connected the three sub-networks to form
an end-to-end cascaded network in the hope that three sub-networks could mutu-
ally regularize each other to prevent overfitting and reduce the training time.

2 Methods

Motivated by the drawbacks in [19] and the VAE branch in [17], we thus propose
a framework that we expect not only utilizes region-based optimization, but we
also hypothesis that it will prevent or reduce overfitting.

2.1 Cascaded Architecture

Figure 1 illustrates the proposed end-to-end cascaded architecture. As in [19],
we employed three encoder-decoder networks to cope with the three aforemen-
tioned tumor regions. We denote them W-Net (whole tumor network), C-Net
(core tumor network), and E-Net (enhancing tumor network). In our proposed
approach, instead of using three separate networks, we joined them together to
form an end-to-end cascaded network.

2.2 Segmentation Network

Figure 2 shows the proposed symmetric encoder-decoder C-Net and E-Net. The
patch size was set to 80 × 96 × 64. Note that the probability map (pink) was
concatenated with the input image as a first step for the C-Net and the E-Net,
but not for the W-Net. We also concatenated the max-pooled feature maps with
the down-sampled input (light green) in order to enhance the feature maps at
the beginning of each level in the encoder part. The base number of filters was
set to 16 and the number of filters were doubled at each level. Skip-connections
were used like in the U-Net. The probability maps produced at the end of the
decoder part of each sub-network had the same spatial size as the original image
and were activated by a logistic sigmoid function.

2.3 ResNet Block

He et al. [9] proposed the ResNet as a way to make training deep networks easier,
and won the 1st place in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2015 classification task. It has been shown that ResNet-like networks
are not only easier to optimize but also boost accuracy from considerably deeper
networks [9,17]. Inspired by the winner of BraTS18 [17], we replaced the con-
volution blocks used in the traditional U-Net by ResNet blocks in two of our
models (see Fig. 2 and Table 1). An illustration of the ResNet-like block can be
seen in Fig. 3.
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Convolution
block

= 3× 3× 3
Convolution IN ReLU

Transition
block

= 1× 1× 1
Convolution IN ReLU

SEB = Global
pooling FC + ReLU FC + Sigmoid

REB1 = Transition
block

Convolution
block

+

REB2 = Transition
block

Convolution
block

Convolution
block

+

Fig. 3. The convolution blocks used in the different experiments (see Table 1). SEB,
REB1 and REB2 denote Squeeze-and-Excitation block and two variations of ResNet
blocks, respectively. Here, IN and FC stand for instance normalization and fully-
connected layer, respectively; while rectified linear unit (ReLU) and Sigmoid are acti-
vation functions.

2.4 Squeeze-and-Excitation Block

We added a Squeeze-and-Excitation block (SEB) as developed by Hu et al. [12]
after each convolution and concatenation block. The SEB is a computationally
efficient means to incorporate channel-wise inter-dependencies, and has been
widely used to improve network performances by significant margins [12]. SEB
is also illustrated in Fig. 3.

2.5 Preprocessing and Augmentation

We normalized all input images to have mean zero and unit variance. To increase
the data set size, we employed simple on-the-fly data augmentation by randomly
rotating the images within a range of −1 to 1 degrees and random mirror flips
(on the x-axis) with a probability of 0.5. We also experimented with median
denoising, but it did not demonstrate any additional improvements.

2.6 Post-processing

One of the most difficult tasks of BraTS19 is to detect small vessels in the
tumor core and to label them as edema or as necrosis. To cope with the fact
that LGG patients may have no enhancing tumor region, Isensee et al. [13]
proposed to replace all enhancing tumor regions with less than 500 voxels by
necrosis. We employed that approach in the present work as well. Additionally,
we kept decreasing the threshold segmentation from 0.5 to 0.3, 0.1, 0.05, and
0.01, respectively, if no core tumor region was found. This technique resolved
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several cases where the networks failed to distinguish between core and whole
tumor.

2.7 Ensemble of Multiple Models

We employed five-fold cross-validation when training on the 335 cases (259
HGG + 76 LGG) of BraTS19, and did not use any additional in-house data. We
trained 30 models in total and used 15 of them, that correspond to TuNet + SEB,
TuNet + REB1 + SEB and TuNet + REB2 + SEB, to cast votes when predicting
the final label maps. We used an average ensemble approach, such that

pc =
1
M

M∑

m=1

fmc, (1)

where pc ∈ R
|C| and fmc ∈ R

|C| denote the final probability of label c and the
probability of label c generated by model m = 1, . . . ,M at an arbitrary voxel,
respectively. Here, C = {1, 2, 3} is the set of tumor labels, and thus c ∈ C.

The ensemble that we used was computed as the average of the prediction
outputs of TuNet + SEB, TuNet + REB1 + SEB and TuNet + REB2 + SEB (see
Table 1 and Table 2).

2.8 Task 3: Quantification of Uncertainty in Segmentation

In BraTS19, the organizers decided to include a new task that focuses on explor-
ing uncertainty measures in the context of tumor segmentation on three glioma
regions: whole, core, and enhancing. This task, called “Quantification of Uncer-
tainty in Segmentation”, aimed at rewarding participating methods with result-
ing predictions that are: (a) confident when correct and (b) uncertain when
incorrect. Participants were called on to generate uncertainty maps associated
with the resulting labels at every voxel with values in [0, 100], where 0 represents
the most certain prediction and 100 represents the most uncertain.

Our proposed approach, TuNet, benefits from this task since, fundamentally,
it segments the brain tumor MRI images into three aforementioned tumor regions
instead of partitioning into three labels. We define an uncertainty score, ur

i,j,k,
at voxel (i, j, k) as:

ur
i,j,k =

{
200(1 − pri,j,k) if pri,j,k ≥ 0.5
200pri,j,k if pri,j,k < 0.5

(2)

where ur
i,j,k ∈ [0, 100]|R| and pri,j,k ∈ [0, 1]|R| denote the uncertainty score map

and probability map (the network’s likelihood outputs) corresponding to tumor
region, r ∈ R, as produced by the TuNet (see Fig. 1), where R is the set of tumor
regions, i.e. whole, core, and enhancing region.
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3 Experiments

We implemented our network in Keras 2.2.41 using TensorFlow 1.12.02 as the
backend. This research was conducted using the resources of the High Perfor-
mance Computing Center North (HPC2N)3 at Ume̊a University, Ume̊a, Sweden,
and the experiments were run on NVIDIA Tesla V100 16 GB GPUs.

We report the results on the BraTS19 training set (335 cases) using cross-
validation and on the validation set (125 cases) by uploading our predicted
masks and corresponding uncertainty maps to the evaluation server. The evalua-
tion metrics of Task 1—Segmentation included: DSC, sensitivity, specificity, and
HD95; while the evaluation metrics of Task 3—Quantification of Uncertainty in
Segmentation were Dice Area Under Curve (DAUC) and Ratio of Filtered True
Positives (RFTPs).

3.1 Implementation Details and Training

For evaluation of the segmentation performance, we employed the DSC, defined
as

D(X,Y ) =
2|X ∩ Y |
|X| + |Y | , (3)

where X and Y denote the output segmentation and its corresponding ground
truth, respectively.

The HD95 is defined as the largest value in the set of closest distances between
two structures, or

H(X,Y ) = max
{

max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(y, x)
}
, (4)

where d(x, y) denotes the Euclidian distance between two points x ∈ X and y ∈
Y . It is common practice to report the 95th percentile instead of the maximum
to compensate for outliers.

The loss function used for training contained three terms,

L(x, y) = Lwhole(x, y) + Lcore(x, y) + Lenh(x, y), (5)

where Lwhole, Lcore, and Lenh where the soft dice loss of whole, core, and enhanc-
ing tumor regions, respectively, and where the soft dice loss is defined as

Ldice(x, y) =
−2

∑
i xiyi∑

i xi +
∑

i yi + ε
, (6)

in which u is the softmax output of the network, v is a one-hot encoding of
the ground truth segmentation map, and ε is a small constant added to avoid
division by zero.
1 https://keras.io.
2 https://tensorflow.org.
3 https://www.hpc2n.umu.se/.

https://keras.io
https://tensorflow.org
https://www.hpc2n.umu.se/
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Table 1. Mean DSC (higher is better) and HD95 (lower is better) and their standard
deviations (SDs) (in parentheses) computed from the five-folds of cross-validation on
the training set (335 cases) for the different models. Details of the variations of the
convolution blocks used for each model is shown in Fig. 3.

Model DSC HD95

whole core enh. whole core enh.

TuNet 89.89 (2.07) 84.08 (4.02) 74.92 (7.24) 6.22 (2.66) 6.82 (2.93) 4.72 (2.21)

TuNet+SEB 91.38 (2.02) 85.93 (3.77) 78.11 (7.29) 4.50 (2.34) 6.70 (2.72) 4.24 (2.07)

TuNet+REB1 90.68 (1.98) 86.07 (3.84) 75.88 (7.36) 5.14 (2.07) 5.16 (1.99) 4.20 (1.99)

TuNet+REB1 +SEB 90.86 (2.12) 86.30 (3.72) 76.20 (7.32) 5.10 (2.29) 5.72 (2.62) 3.89 (1.61)

TuNet+REB2 90.77 (2.18) 85.84 (3.96) 75.22 (7.30) 5.42 (2.50) 6.00 (2.38) 4.56 (2.09)

TuNet+REB2 +SEB 91.90 (2.00) 86.09 (3.81) 77.43 (7.28) 5.07 (2.38) 6.20 (2.45) 3.98 (1.87)

Ensemble 91.92 (2.18) 86.35 (3.81) 78.01 (7.30) 5.30 (2.19) 5.80 (2.69) 3.45 (1.93)

Ensemble+post-process 91.92 (2.18) 86.45 (3.79) 78.72 (7.10) 5.30 (2.19) 5.75 (2.65) 3.08 (1.90)

We used the Adam optimizer [14] with a learning rate of 1 ·10−4 and momen-
tum parameters of β1 = 0.9 and β2 = 0.999. We also used L2 regularization with
a penalty parameter of 1 · 10−5, that was applied to the kernel weight matrices,
for all convolutional layers to cope with overfitting. The activation function of
the final layer was the logistic sigmoid function.

All models were trained for 200 epochs, with a mini-batch size of four. To
prevent over-fitting, we selected a patience period and dropped the learning rate
by a factor of 0.2 if the validation loss did not improve over six epochs. Further,
the training process was stopped if the validation loss did not improve after
15 epochs. The training time for a single model was around 35 h on an NVIDIA
Tesla V100 GPU.

4 Results and Discussion

The key strengths of the proposed method are: (1) it takes advantage of the hier-
archical structure of the tumor sub-regions, since the whole tumor region must
contain the core tumor, and the core tumor region must contain the enhancing
tumor region, and (2) it consists of three connected sub-networks that mutually
regularize each other, i.e. the E-Net functions as a regularizer for the C-net,
C-Net plays that role for the W-Net, and the W-Net and the E-Net constrain
each other through the C-Net.

Table 1 shows the mean DSC and HD95 scores and SDs computed from the
five-folds of cross-validation on the training set. As can be seen in Table 1, with
DSC of 89.89/84.08/74.92 (whole/core/enh.) using cross-validation on the train-
ing set and 89.70/76.96/77.90 (whole/core/enh.) on the validation set, our base-
line (TuNet) produced acceptable results. Adding SEB to TuNet (TuNet + SEB)
improved the DSC on all tumor regions; however, only core and core+enhancing
DSC scores were boosted when adding SEB to two variations, that used ResNet-
like blocks, i.e. TuNet + REB1 + SEB and TuNet + REB2 + SEB.

We gained a few DSC points when the average ensemble technique (Ensem-
ble), i.e. DSC reached 91.92/86.45/78.72 (whole/core/enh). The post-processing
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Table 2. Results of Segmentation Task on BraTS19 validation data (125 cases). The
results were obtained by computing the mean of predictions of five models trained over
the folds. “UmU” denotes the name of our team and the ensemble of TuNet+ SEB,
TuNet+ REB1 + SEB and TuNet+ REB2 + SEB. The metrics were computed by the
online evaluation platform. All the predictions were post-processed before submitting
to the server. Bottom rows correspond to the top-ranking teams from the online system.

Model DSC HD95

whole core enh. whole core enh.

TuNet+ SEB 90.41 81.67 78.97 4.35 6.12 3.35

TuNet+ REB1 + SEB 90.06 79.43 78.12 4.66 7.98 3.34

TuNet+ REB2 + SEB 90.34 79.14 77.38 4.29 8.80 3.57

UmU 90.34 81.12 78.42 4.32 6.28 3.70

ANSIR 90.09 84.38 80.06 6.94 6.00 4.52

lfn 90.91 85.48 80.24 4.35 5.32 3.88

SVIG1 91.16 85.79 81.33 4.10 5.92 4.21

NVDLMED 91.01 86.22 82.28 4.42 5.46 3.61

Table 3. Results of Segmentation Task on BraTS19 test data (166 cases).

Model DSC HD95

whole core enh. whole core enh.

UmU 88.06 80.84 80.29 6.10 5.17 2.20

step only improved slightly the Ensemble model on the core region, but boosted
the DSC of the enhancing region by a large margin, from 78.01 to 78.72, mak-
ing it (Ensemble + post-processing) the best-performing model of all proposed
models on the training set.

Table 2 shows the mean DSC and HD95 scores on the validation set by
uploading our predicted masks to the evaluation server4 (team name UmU ).
What is interesting in this table is: (1) DSC of core region on the validation set
was lower compared to the cross-validation score on the training set, and (2)
TuNet + SEB, perhaps surprisingly, performed slightly better than the ensem-
ble model of TuNet + SEB, TuNet + REB1 + SEB and TuNet + REB2 + SEB.
Table 3 shows that our BraTS19 testing dataset results are 88.06, 80.84 and 80.29
average dice for whole tumor, tumor core and enhanced tumor core, respectively.

Table 4 provides the mean DAUC and RFTPs scores on the validation set
obtained after uploading our predicted masks and corresponding uncertainty
maps to the evaluation server5. Similar to Table 2, it can be seen in Table 4 that
TuNet + SEB is the best-performing model of our models. Though our best-

4 https://www.cbica.upenn.edu/BraTS19/lboardValidation.html.
5 https://www.cbica.upenn.edu/BraTS19/lboardValidationUncertainty.html.

https://www.cbica.upenn.edu/BraTS19/lboardValidation.html
https://www.cbica.upenn.edu/BraTS19/lboardValidationUncertainty.html
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Table 4. Results of Quantification of Uncertainty Task on BraTS19 validation data
(125 cases) including mean DAUC (higher is better) and RFTPs (lower is better). The
results were obtained by computing the mean of predictions of five models trained over
the folds. “UmU” denotes the name of our team and the ensemble of TuNet + SEB,
TuNet+ REB1 + SEB and TuNet+ REB2 + SEB. The metrics were computed by the
online evaluation platform. The bottom rows correspond to the top-ranking teams from
the online system. The proposed method was ranked among the top that was evaluated
on the online test set.

Model DAUC RFTPs

whole core enh. whole core enh.

TuNet + SEB 87.52 79.90 75.97 4.50 12.97 6.59

TuNet + REB1 + SEB 86.13 80.01 75.13 5.80 16.50 8.02

TuNet + REB2 + SEB 87.40 79.32 75.90 5.50 15.30 8.53

UmU 87.47 79.86 75.89 5.83 13.72 8.46

ANSIR 89.42 88.72 87.67 1.23 6.16 4.63

NVDLMED 89.95 88.03 84.67 1.68 2.43 2.86

TEAM ALPACA 90.93 88.08 87.90 1.54 3.82 2.59

Su
cc
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s

Fa
ilu

re

FLAIR T2 Ground truth Prediction

Fig. 4. A comparison of the ground truth masks and the results. The two examples
show the input T1c (left), the ground truth masks (middle) and the results of the
proposed method (right).
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Fig. 5. The uncertainty score maps generated from probability maps corresponding
to whole, core, and enhancing tumor regions. Top row (from left to right): input,
probability map of the whole, core and enhancing tumor regions, respectively. Bottom
row (from left to right): multi-class label map (output), uncertainty map of the whole,
core and enhancing tumor regions, respectively.

performing model performs slightly worse than the top-ranking teams on the
validation set, it was one of the top-performing models on the test set This
indicates that the proposed ensemble model might generalize the problem well.

Figure 4 illustrates four qualitative examples generated from the Ensem-
ble + post-process model on the training set. As can be seen in the first and
second rows, our model detected all three regions well. However, it struggled to
correctly differentiate between the necrotic and non-enhancing tumor core and
the enhancing tumor (third and last rows). This is most likely due to difficulties
in labeling the homogeneous areas.

Figure 5 illustrates the uncertainty score maps generated from the corre-
sponding output probability maps, that are produced by the TuNet, for three
tumor regions (whole, core, and enhancing). As can be seen in Fig. 5, the uncer-
tainty scores tends to be: (i) more obvious at the borderline or overlapping areas
between tumor regions, and (ii) less apparent on the background or non-tumor
regions.

An adapted version of the TuNet was also used by the authors in the Kidney
Tumor Segmentation Challenge 2019 (KiTS19) [10].

5 Conclusion

In conclusion, we developed a cascaded architecture by connecting three U-Net-
like networks to segment glioma sub-regions from multimodal brain MRI images.
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We separated the complex brain tumor segmentation into three simpler binary
tasks to segment the whole tumor, tumor core, and enhancing tumor core, respec-
tively. Our network used an encoder-decoder structure with ResNet-like blocks
and Squeeze-and-Excitation blocks after each convolution and concatenation
block. Dice scores on the training set and validation set were 91.92/86.45/78.72
and 90.34/81.12/78.42 for the whole tumor, tumor core, and enhancing tumor
core, respectively.
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Abstract. The work presented in this paper addresses the MICCAI
BraTS 2019 challenge devoted to brain tumor segmentation using mag-
netic resonance images. For each task of the challenge, we proposed and
submitted for evaluation an original method. For the tumor segmenta-
tion task (Task 1), our convolutional neural network is based on a variant
of the U-Net architecture of Ronneberger et al. with two modifications:
first, we separate the four convolution parts to decorrelate the weights
corresponding to each modality, and second, we provide volumes of size
240 ∗ 240 ∗ 3 as inputs in these convolution parts. This way, we profit of
the 3D aspect of the input signal, and we do not use the same weights
for separate inputs. For the overall survival task (Task 2), we compute
explainable features and use a kernel PCA embedding followed by a Ran-
dom Forest classifier to build a predictor with very few training samples.
For the uncertainty estimation task (Task 3), we introduce and compare
lightweight methods based on simple principles which can be applied to
any segmentation approach. The overall performance of each of our con-
tribution is honorable given the low computational requirements they
have both for training and testing.

Keywords: Biomedical imaging · Brain tumor segmentation ·
Glioblastoma · CNN · U-Net

1 Introduction

The work presented in this paper was realized in the context of MICCAI BraTS
2019 Challenge [1–4,12], which aims at stimulating brain tumor detection, seg-
mentation and analysis. This challenge is composed of 3 tasks, and we propose
a contribution for each of them which will be described in separate sections.

Task 1 – Tumor segmentation. Given a set of unknown brain scans with four
modalities, segment tumoral regions. We propose a deep architecture which
fully decorrelates each modality with partial 3D convolutions.
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Task 2 – Survival prediction. Predict the patient overall survival time. We
propose a predictor based on kernel PCA, Random Forests and a custom
brain atlas.

Task 3 – Quantification of uncertainty in segmentation. Assess how reli-
able the results from Task 1 are. We propose a set of lightweight techniques
based on intrinsic confusion and geometry properties of the segmentation.

2 Brain Tumor Segmentation—Task 1

Starting from a set of 335 brain images where tumors are segmented by neuro-
radiologists, the aim of Task 1 is to segment new brain images whose ground
truth is not known. The provided modalities are magnetic resonance images
(T1/T1CE/T2 and FLAIR). The resolution of the provided images is 240∗240∗
155 voxels of 1 mm3. These images result from captures of different protocols,
magnetic fields strengths and MRI scanners.

Previous Work. For BraTS 2018 challenge, the first place was won by Myro-
nenko [13] who used a semantic segmentation network based on a encoder-
decoder architecture. Due to limited training dataset size, he connected a varia-
tional auto-encoder (able to reconstruct the initial image) to this network during
the training procedure. This way, some constraints are added on the layers of the
shared encoder which is in some way “regularized” and also less sensible to the
random initialization. A crop size of 160×192×128 has been used, which implied
a batch size of 1 due to GPU memory limitations. Isensee et al. [7] won the sec-
ond place and proved that a U-Net-like architecture with slight modifications
(like using the LeakyReLU instead of the usual ReLU activation function and
using instance normalization [18]) can be very efficient and hard to beat. They
used a batch size of 2, a crop size of 128 × 128 × 128, and a soft Dice loss func-
tion [7]. They also used an additional training data from their own institution
to optimize the enhancing tumor dice. McKinly et al. [11] shared the third place
with Zhou et al. [20]. On one side, McKinly et al. [11] proposed an embedding
of a DenseNet [6] structure using dilated convolutions into a U-Net [15] archi-
tecture, to obtain their segmentation CNN. On the other side, Zhou et al. [20]
ensembled different networks in cascade.

For the BraTS 2017 challenge, the first place was won by Kamnitsas et
al. [8] who ensembled several models (trained separately) for robust segmenta-
tion (EMMA): they combined DeepMedic [9], FCN [10], and U-Net [15] models.
During the training procedure, they used a batch size of 8 and a crop size of
64 × 64 × 64 3D patch. Wang et al. [19] won the second place. They segmented
tumor regions in cascade using anisotropic dilated convolutions with 3 networks
for each tumor subregion.

Proposed Architecture. Because the U-Net architecture [15] has demon-
strated good performance in matter of biomedical image analysis, we propose
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Table 1. Our U-Net-like multimodal 3D architecture, with 4 contractive branches.

Layer name Operation Output shape Input(s)

mod1 input Input 240, 240, 3, 1

mod1 conv1-1 Conv3D 240, 240, 3, 64 mod1 input

mod1 conv1-2 Conv3D 240, 240, 3, 64 mod1 conv1-1

mod1 conv2 BLOCK A 120, 120, 3, 128 mod1 conv1-2

mod1 conv3 BLOCK A 60, 60, 3, 256 mod1 conv2

mod1 conv4 BLOCK A 30, 30, 3, 512 mod1 conv3

mod1 conv5 BLOCK A 15, 15, 3, 1024 mod1 conv4

The branch for mod1 is repeated for each input (modality).

concatenate 1 Concatenate 15, 15, 3, 4096 modi conv5 ∀i ∈ [1, 4]

up samp3d UpSampling3D 30, 30, 3, 4096 concatenate 1

conv3d 1 Conv3D 30, 30, 3, 512 up samp3d

conv3d 2 BLOCK B 60, 60, 3, 256 modi conv4 ∀i ∈ [1, 4]

conv3d 1

conv3d 3 BLOCK B 120, 120, 3, 128 modi conv3 ∀i ∈ [1, 4]

conv3d 2

conv3d 4 BLOCK B 240, 240, 3, 64 modi conv2 ∀i ∈ [1, 4]

conv3d 3

concatenate 2 Concatenate 240, 240, 3, 320 modi conv1-2 ∀i ∈ [1, 4]

conv3d 4

conv3d 5 Conv3D 240, 240, 3, 64 concatenate 2

conv3d 6 Conv3D 240, 240, 3, 64 conv3d 5

conv3d 7 Conv3D 240, 240, 3, 4 conv3d 6

output Conv3D 240, 240, 3, 4 conv3d 7 k: 1 × 1 × 1

Table 2. Detail of the contractive block BLOCK A.

Layer name Operation Output shape Input(s)

b1 input Input H, W, 3, C

b1 mp MaxPooling3D H/2, W/2, 3, C b1 input pool: 2 × 2 × 1

b1 conv Conv3D H/2, W/2, 3, 2*C b1 mp

b1 output Conv3D H/2, W/2, 3, 2*C b1 conv

here to re-adapt this architecture for multimodal biomedical image analysis. The
complete architecture of our network is detailed in Tables 1, 2 and 3. We asso-
ciate each modality to one input in our network. Then, each input is followed
with a sequence of five layers made of two successive convolutional layers plus a
max pooling and a dropout layer (contractive paths). Then, from the bottleneck,
we apply five deconvolutional layers, each made of an upscaling layer followed
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Table 3. Detail of the expanding block BLOCK B.

Layer name Operation Output shape Input(s)

b2 input modi Input H, W, 3, C ∀i ∈ [1, 4]

b2 input prev Input H, W, 3, C

b2 concatenate Concatenate H, W, 3, 5*C b2 input modi ∀i ∈ [1, 4]

b2 input prev

b2 conv3d 1 Conv3D H, W, 3, C b2 concatenate

b2 conv3d 2 Conv3D H, W, 3, C b2 conv3d 1

b2 up samp3d UpSampling3D 2*H, 2*W, 3, C b2 conv3d 2 pool: 2 × 2 × 1

b2 output Conv3D 2*H, 2*W, 3, C/2 b2 up samp3d

with two convolutional layers (expanding path). Finally, skip connections are
used to connect the contractive path to the expanding path at each scale. Note
that the number of skip connections is multiplied by a factor of four due to the
structure of our network. To ensure continuity in the segmentation results, we
propose also to provide partial volumes as inputs in our network (we use the
Conv3D layers of Keras on volumes of size W ∗ H ∗ 3 with kernels of shape
3 × 3 × 3).

Fig. 1. Segmentation results with our architecture: on the left side, the ground truths,
then the four modalities, and then our segmentation results.

Note that we know that the T1 modality and the T1CE one are strongly
related, like the T2 one and the FLAIR one, but we are convinced that using
separated weights for each inputs allows to improve segmentation results. This
way we force the network to optimize different weights for each modality during
the learning procedure.

Our motivation for our 3D approach (we provide partial volumes of size
3 ∗ 240 ∗ 240) is twofold: first, the winners of the BraTS of 2018 used a full-
3D approach [13], and second, we obtain smoother results thanks to the 3D
convolutional layer (2D approaches generally lead to discontinuities along the z
axis when slices are along x and y).



Using Separated Inputs with 3D U-Net 191

Note that we do not do any particular pre-processing, we just normalize each
brain in the following manner like in [7]:

Xnorm :=
X − μ

σ
,

where μ and σ are respectively the statistical mean and standard deviation of the
modality X corresponding to some patient. Also, we consider only the volumes
(when we consitute the data set for the training procedure) where the number
of voxels of the brain is greater than or equal to (240 ∗ 240 ∗ 3)/6. We do not use
any post-processing.

Finally, we chose the standard parameters for our model: the number of filters
are 64, 128, 256, 512, and 1024 for the 5 bi-convolutional layers, the number
of filters are 512, 256, 128 and 64 for the bi-deconvolutional layers. Also, the
learning rate is equal to 10−4, we use categorical cross-entropy. We use the selu
activation for all hidden layers, and use sigmoidal activation for the output layer.

Results. Table 4 summarizes the results obtain by the proposed method on
Task 1 and Fig. 1 illustrates them. At test time, segmentations are predicted
on a single-pass without any augmentation. Furthermore, not post-processing
was applied on the results we report. The proposed approach exhibits a reason-
able performance regarding the computational constraints required for training:
indeed, a single GPU card with 16 GB of memory was sufficient to conduct our
experiments. The DICE measure suggests that for some volumes or for some
specific areas, the method fails to detect the correct elements but succeeds most
of the time. The Hausdorff measure suggests that the boundary of the detected
regions are not very precise and that more regularization at inference time could
improve the method.

Table 4. Mean values of the segmentation metrics for each region, for the validation
set and the test set. ↑ (resp. ↓) indicates that a higher (resp. lower) value is better.

Dataset DICE (%) ↑ Hausdorff95 (voxels) ↓
WT TC ET WT TC ET

Validation 68.4 87.8 74.7 10.2 10.9 14.8

Test 73.7 86.2 75.1 5.6 10.7 15.4

3 Survival Prediction—Task 2

The second task of the MICCAI 2019 BraTS challenge is concerned with the pre-
diction of patient overall survival from pre-operative scans (only for subjects with
gross total resection (GTR) status). The classification procedure is conducted
by labeling subjects into three classes: short-survivors (less than 10 months),
mid-survivors (between 10 and 15 months) and long-survivors (greater than 15
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months). For post-challenge analyses, prediction results are also compared in
terms of mean and median square error of survival time predictions, expressed
in days. For that reason, our proposed patient survival prediction algorithm is
organized in two steps:

1 We first predict the overall survival class, i.e. short-, mid- or long-survival
(hereafter denoted by class/label 1, 2 and 3, respectively).

2 We then adjust our prediction within the predicted class by means of linear
regression, in order to express the survival time in days.

Definition and Extraction of Relevant Features. Extracting relevant fea-
tures is critical for classification purposes. Here, we re-use the features imple-
mented by our team in the framework of the patient survival prediction task
of MICCAI 2018 BraTS challenge, which ranked tie second [14]. Those features
were chosen after in-depth discussions with a practitioner and are the following:

feature 1: the patient age (expressed in years).
feature 2: the relative size of the necrosis (labeled 1 in the groundtruth) class

with respect to the brain size.
feature 3: the relative size of the edema class (labeled 2 in the groundtruth)

with respect to the brain size.
feature 4: the relative size of the active tumor class (labeled 4 in the

groundtruth) with respect to the brain size.
feature 5: the normalized coordinates of the binarized enhanced tumor (thus

only considering necrosis and active tumor classes).
feature 6: the normalized coordinates of the region that is the most affected by

necrosis, in a home made brain atlas.

For the training stage, features 2, 3 and 4 are computed thanks to the patient
ground truth map for each patient. As this information is unknown during the
test stage, the segmented volumes predicted by our Deep FCN architecture are
used instead. In any case, these size features are expressed relatively to the total
brain size (computed as the number of voxels in the T2 modality whose intensity
is greater than 0).

In addition, we also re-use the home-made brain atlas that we also developed
for the 2018 BraTS challenge. This atlas is divided into 10 crudely designed
regions accounting for the frontal, parietal, temporal and occipital lobes and the
cerebellum for each hemisphere (see [14] for more details regarding this atlas
and how it is adjusted to each patient brain size). Feature 6 is defined as the
coordinates of the centroid of the region within the atlas that is the most affected
by the necrosis class (i.e., the region that has the most voxels labeled as necrosis
with respect to its own size). Note that this feature, as well as feature 5, is
then normalized relatively to the brain bounding box. This leads to a feature
vector with 10 components per patient (since both centroids coordinates are
3-dimensionals).
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Fig. 2. Workflow of the proposed class-based training procedure. The information
stored after the training phase (necessary for the test phase) is written in red or encir-
cled in dashed red. (Color figure online)
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Fig. 3. Workflow of the proposed test procedure.

Training Phase. For the training phase, we modified our previous work [14] in
the following way: while we maintained the final learning stage through random
forest (RF) classifiers [17], we replaced the principal component analysis (PCA)
transformation, acting as preprocessing step for the learning stage, by its kernel
counterpart (kPCA) [16]. The rationale is that we hope to increase the RFs
performances in terms of classification/prediction as the input features are highly
non-linear in terms of survival labels.

More specifically, the training stage of our prediction algorithm is as follows:

1. The feature vector xi ∈ R
10 of each of the N patients in the training set is

extracted as described in the previous Sect. 3. All those feature vectors are
then stacked in a N × 10 feature matrix Xtrain.

2. A kPCA is performed on Xtrain, yielding the N × N matrix XkPCA. This
matrix is obtained through the computation, normalization and diagonaliza-
tion of the so-called kernel matrix which represents the dot product between
the N features vectors when mapped in the feature space through a kernel
function (here defined as a polynomial kernel with degree d = 3).

4. The N × Nf matrix Ytrain is defined from Xtrain by retaining the first Nf

columns (corresponding to the leading Nf features in the feature space, here
set to Nf = 10). NRF RF classifiers [17] are finally trained on all rows of
Ytrain to learn to predict the survival class of each training patient using the
true label vector ylabel as target values. The used RF parameters (number
of decision trees per RF, splitting criterion, total number of RFs NRF) are
defined as in [14].

5. Three linear regressors (one per survival class) are finally trained using the
patient age and its whole tumor size (relatively to its brain size) as explana-
tory variables and its true survival time (expressed in days) as measured
variable.
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Table 5. Classification metrics of the proposed survival prediction method for the
validation and test data sets, given the segmentation produced by our system for Task 1.

Data set Accuracy MSE medianSE stdSE SpearmanR

Validation 0.414 158804 80437 194618 0.272

Test 0.505 464492 60237 1408716 0.363

Steps 1 to 4 are depicted by the workflow in Fig. 2. In addition to the three linear
regressors, we also store (for the test phase) the training feature matrix Xtrain,
the eigenvector matrix VkPCA and eigenvalues EkPCA of the kernel matrix, and
the number of retained features Nf after kPCA.

Test Phase. The test phase is conducted in a similar fashion as the training
phase. Given some input test patient, its overall survival class is first predicted,
before being refined and expressed in terms of number of days. More specifically:

1. The features vector xtest of the test patient is retrieved as described previ-
ously.

2. This feature vector is then projected onto the principal axes learnt by the
kPCA during the training phase. For that purpose, a new kernel matrix is
computed and centered (hence the need for Xtrain) before proper projection
(through VkPCA) and scaling (with EkPCA).

3. This results in the projected vector xkPCA ∈ R
N from which the first Nf

features are retained, yielding the test vector ytest. This vector is then fed to
the NRF RF classifiers, leading to NRF independent class label predictions.
The final label prediction ypred (1, 2 and 3 for short-, mid- and long-survivors,
respectively) is eventually obtained by majority voting.

4. Once the survival class has been established, the final patient survival rate is
predicted by means of the appropriate learnt linear regressor.

Steps 1 to 3 are illustrated by the workflow in Fig. 3.

Results. Table 5 presents the various classification performance metrics, namely
the class-based accuracy, the mean, median and standard deviation square errors
and Spearman R coefficient for survival predictions expressed in days, for the
proposed prediction algorithm for the validation data set and the test data set.
The validation and test data sets are comprised of N = 27 and N = 107 patients,
respectively.

Results reported in Table 5 exhibit a slight improvement over the class-based
classification accuracy between the validation set (0.414) and the test set (0.505).

4 Uncertainty Estimation in Segmentation—Task 3

The last task of the challenge is a new task which consists in estimating the
uncertainty of the segmentation predictions produced in Task 1. The sub-regions
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considered for evaluation are: (i) the “enhancing tumor” (ET); (ii) the “tumor
core” (TC); and (iii) the “whole tumor” (WT).

Participants had to produce uncertainty maps for each glioma sub-region.
Each map contains integer values ranging from 0 (certain) to 100 (uncertain), and
indicates the confidence of a decision to classify a particular voxel as belonging
or not belonging to the a particular sub-region.

Results are reported using two metrics. (i) The area under the curve formed
by the DICE scores computed for each uncertainty threshold (DICE score com-
puted only on voxels for which the uncertainty is strictly inferior to the current
threshold). This metric is the principal metric used for ranking. (ii) The area
under the curve formed by the ratio of filtered true positive for each uncertainty
threshold (wrongly discarded as being uncertain).

Uncertainty Estimation Methods. We focused on the study of lightweight
uncertainty estimation techniques relying on two aspects of the predictions made
by our segmentation system: (i) the consistency between independent predictions
made for each classes; and (ii) the instability at the spatial boundary between
two regions predicted as belonging to different classes. We believe that such
approaches can be complementary to approaches based on the stability of the
prediction under perturbations like Monte Carlo Dropout [5] which tend to be
computationally demanding.

To take into account the consistency between independent predictions made
for each classes, we propose a simple indicator called “weighted score difference”
(abbreviated “WSDIFF”) which estimates the uncertainty by computing the
difference of activation between the most likely (maximally activated) class and
the others, weighted by the absolute value of the greatest activation (in order to
penalize cases where there is no clear activation of any class). This requires that
the segmentation network outputs predictions for each class in an independent
way (therefore it cannot use a softmax which would constrain predictions to be
mutually exclusive).

Let ci be the activation maps for each class i belonging to the sub-region R
to consider, then the WSDIFF indicator for this sub-region R is computed as:

WSDIFFR = (1 − max(sR, sR) |sR − sR|) ∗ 100,

where:
sR = max∀i∈R(ci) and sR = max∀i/∈R(ci).

SDIFF (“score difference”) is the variant of this indicator without weighting:

SDIFFR = (1 − |sR − sR|) ∗ 100.

As shown later in the results, the weighting factor increased the performance of
this indicator in our tests. Other attempts using the sum of the activation maps
for each set of classes gave poor results and were harder to normalize.
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Regarding the instability of the spatial boundary between two regions pre-
dicted as belonging to different classes, we designed an indicator (abbrevi-
ated “BORDER”) which assigns a maximal uncertainty (100) at the boundary
between two regions, and linearly decreases this uncertainty to the minimal value
(0) at a given distance to the boundary. This distance defines the (half) width
of an “uncertainty border” between two regions.

It is calibrated independently for each class and was estimated with respect
to the 95th percentile of the Hausdorff distance metric reported for our seg-
mentation method for this particular class. In practice, we used the following
parameters: for the whole tumor (WT) we used a half-width of 9 voxels, for the
tumor core (TC), 12 voxels, and for the enhancing tumor (ET), 7 voxels.

To compute this indicator, we first compute the Boundary Distance Trans-
form BDT = max(DT(R),DT(R)) using the Distance Transform DT to the
given sub-region R and its complement R. Then, we invert, shift and clip the
BDT such that the map is maximal on the boundary and have 0 values at a
distance greater or equal to the half-width of the border. We finally scale the
resulting map so its values are comprised between 0 (far from the boundary) and
100 (on the boundary). The resulting uncertainty map for a given class exhibits
a triangular activation shape on the direction perpendicular to the boundary of
the objects detected by the segmentation stage.

Results and Discussion. Experimental results regarding the different uncer-
tainty estimation methods are reported in Table 6. They indicate the results
obtained for the validation set computed by the official competition platform.

Table 6. Mean values of the metrics for each region, computed by the official compe-
tition platform on the validation set for Task 3 (uncertainty estimation), for each of
our uncertainty estimation approaches. ↑ (resp. ↓) indicates that a higher (resp. lower)
value is better. Best values are in bold face.

Metric DICE AUC (%) ↑ FTP RATIO AUC (%) ↓
WT TC ET WT TC ET

(original DICE score) 85.2 62.0 59.9 - - -

SDIFF 85.9 76.2 72.0 20.7 17.8 16.8

WSDIFF 85.9 77.5 74.1 30.7 24.0 21.4

BORDER 87.8 80.6 68.3 58.1 68.7 70.9

MEAN BORDER WSDIFF 86.7 79.5 73.3 44.1 45.7 45.9

Regarding the DICE AUC metric, the BORDER approach exhibits better
results for glioma sub-regions WT and TW, while the WSDIFF approach per-
forms better for the ET sub-region. The integration of a weighting of the uncer-
tainty according to the activation of a given class provided some improvement
to the WSDIFF method over the SDIFF one.
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Regarding the FTP Ratio AUC metric, the BORDER method filters true
positives quite aggressively and gives very high measures. The SDIFF method,
on the other side of the spectrum, filters much less true positives. The WSDIFF
method presents an interesting compromise in terms of true positive filtering.
We can also notice that mean of the BORDER and WSDIFF indicators yields
some form of compromise (sub-optimal results, but less aggressive filtering). The
best balance seems to use the BORDER indicator for WT and TC regions, and
the WSDIFF indicator for ET regions: this the strategy we used.

Figure 4 illustrates the responses of the uncertainty estimation methods on
a case for which the segmentation step performed reasonably well. We can see
that while the BORDER method generates a lot of false positives, it successfully
captures erroneous regions with a high uncertainty score. A better calibration of
this method may improve its performance. For ET regions, the WSDIFF method
is more selective and yields a lower amount of false positives.

Whole Tumor (WT)

Tumor Core (TC)

Enhancing Tumor (ET)

Fig. 4. Comparison of the WSDIFF and BORDER indicators on a reasonably well
segmented case. Each row illustrates the response of uncertainty estimation meth-
ods for a different glioma region. The GT column is the ground truth, SEG the pre-
dicted segmentation, ERR the prediction error, and for each uncertainty estimation
METHOD ∈ {WSDIFF,BORDER}: METHOD ∩ ERR shows the uncertainty val-
ues for erroneous areas (true positives – higher is better), METHOD ∩ ERR shows
the uncertainty values for well-classified areas (false positives – lower is better), and
METHOD ∩ ERR shows the inverted (100 − x) uncertainty values for erroneous areas
(false negative – lower is better).

When comparing our results with other approaches from the public leader
board for Task 3 (for the validation set), it should be noted that direct com-
parison is hard because the performance at Task 3 is directly linked to the
performance at Task 1, hence a measure of a relative gain or loss might provide
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some hint, but ultimately each uncertainty estimator should be tested on every
segmentation method. Nevertheless, we identified three interesting trends among
those results. (1) Methods with high performance in both Task 1 and Task 3:
the uncertainty estimation may be great but the score at Task 3 is indubitably
boosted by the one at Task 1. (2) Methods with average scores at Task 1 but
with a noticeable improvement with respect to the DICE AUC score at Task 3:
those methods seem to have an efficient uncertainty estimation strategy. Such
methods may have: (2.1) a good score for the FTP Ratio AUC metric of Task 3,
indicating an efficient approach; (2.2) an average score for this metric: we believe
our approach belongs to this category.

Those results let us believe that our uncertainty estimation methods are bet-
ter suited for cases were the underlying segmentation method already performs
quite well. Because of their simplicity and fast computation, they may be a
natural baseline for more complex methods to be compared against.

5 Conclusion

We proposed contributions for each task of the MICCAI BraTS 2019 challenge.
For the tumor segmentation task (Task 1), our deep architecture based on a
decorrelation of inputs and partial 3D convolutions exhibits an honorable per-
formance given the fact the training can be performed on a single GPU with
16 GB of RAM. For the overall survival prediction task (Task 2), our approach
based on a kernel PCA before using a random forest classifier provides an encour-
aging performance (given the few training examples available) while being based
on explainable features. Finally, for the uncertainty estimation task (Task 3), we
introduced and compared several lightweight methods which can be combined
and could be better tuned to produce a less aggressive filtering.
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Abstract. In this paper, a two-step convolutional neural network
(CNN) for brain tumor segmentation in brain MR images with a random
forest regressor for survival prediction of high-grade glioma subjects are
proposed. The two-step CNN consists of three 2D U-nets for utilizing
global information on axial, coronal, and sagittal axes, and a 3D U-net
that uses local information in 3D patches. In our two-step setup, an ini-
tial segmentation probability map is first obtained using the ensemble
2D U-nets; second, a 3D U-net takes as input both the MR image and
initial segmentation map to generate the final segmentation. Following
segmentation, radiomics features from T1-weighted, T2-weighted, con-
trast enhanced T1-weighted, and T2-FLAIR images are extracted with
the segmentation results as a prior. Lastly, a random forest regressor
is used for survival time prediction. Moreover, only a small number of
features selected by the random forest regressor are used to avoid overfit-
ting. We evaluated the proposed methods on the BraTS 2019 challenge
dataset. For the segmentation task, we obtained average dice scores of
0.74, 0.85 and 0.80 for enhanced tumor core, whole tumor, and tumor
core, respectively. In the survival prediction task, an average accuracy of
50.5% was obtained showing the effectiveness of the proposed methods.

Keywords: Brain tumor segmentation · Survival prediction ·
Convolutional neural network · Radiomics · Random forest

1 Introduction

Glioma is the most frequently occurring primary brain tumor in the human
brain [11]. It contains subregions that are heterogeneous, each with a differ-
ent pattern on the brain MRI scan. Information such as the shape, size, and
location of these subregions is vital to both surgery and treatment planning, as
well as eventual diagnosis of disease progression. Glioma is further divided into
glioblastoma (GBM/HGG) and lower grade glioma (LGG); with HGG being an
aggressive and life-threatening tumor. Thus, accurate prediction of survival time
of HGG patients is valuable for physicians to determine treatment planning.

Accordingly, the problem of segmenting glioma tumors into three areas such
as peritumoral edema, necrotic and non-enhancing tumor core, and enhancing
c© Springer Nature Switzerland AG 2020
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tumor core were considered in the BraTS 2012 challenge [5]; whereas the BraTs
2017 challenge [8] not only addressed the segmentation task but also survival
prediction.

Many methods have been proposed to address the survival prediction prob-
lem. In most cases, tumor regions are first segmented from multi-modal MR
images, and then features extracted from the segmentation results are used for
survival time prediction. For the tumor segmentation problem, convolutional
neural networks (CNN) are commonly used and show good segmentation perfor-
mance [10]. Specifically, methods using 2D CNN [16], 3D CNN [12,20], or ensem-
ble of multiple CNNs [6,22] have been proposed. Moreover, the use of different
types of networks [22], loss functions [9,13], or regularization [15] techniques
have been explored. Notably, for survival prediction; deep learning techniques
alone did not achieve high performance as compared to the segmentation task.
The majority of state-of-the-art methods extract features from multi-modal MR
images with segmentation results, and use such features with machine learning
methods to predict survival time. Specifically, methods using features defined by
authors [6,21], or using thousands of Radiomics features with feature selection
algorithms [1,18] have been proposed.

In this work, following similar procedures of recent state-of-the-art methods,
we address brain tumor segmentation and survival prediction sequentially. For
tumor segmentation, we propose a two-step CNNs consisting of three 2D U-nets
to utilize global information in the axial, coronal, and sagittal axes, and a 3D
U-net for utilizing local information in 3D patches. Segmentation is predicted
through the 2D U-nets and the 3D U-net sequentially. Lastly, for survival time
prediction; a random forest regressor with radiomics features, extracted from the
T1-weighted (T1), T2-weighted (T2), contrast enhanced T1-weighted (T1ce),
and Fluid Attenuation Inversion Recovery (T2-FLAIR) images with segmenta-
tion results, is used for final prediction. To avoid overfitting, a feature selection
scheme is employed.

2 Method

The overall procedure consists of preprocessing, tumor segmentation, and sur-
vival time prediction (see Fig. 1). First, the multi-modal MR images are nor-
malized to have values ranging between 0 and 1. Second, the normalized images
are used to obtain tumor subregion segmentation probability maps predicted by
three 2D U-nets on axial, coronal and sagittal axes, respectively. The probability
maps are further averaged and aggregated as 3D segmentation maps. Then, 3D
patches of the segmentation maps and multi-modal MR images are input to a
3D U-net to predict the segmentation of the 3D patches. The final segmentation
of the whole image is obtained by aggregating the local 3D patch predictions.
Given the final 3D segmentation maps and the multi-modal MR images, selec-
tive radiomics features are extracted. Finally, survival time is predicted by the
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Fig. 1. The overall procedure of the survival time prediction.

random forest regressor. Also, a feature selection model is used to determine
which features need to be chosen from the radiomics features. Details are
described in following subsections.

2.1 Tumor Segmentation Model

The proposed 2D-3D two-step CNN framework is shown in Fig. 2. In the first
step, three identical 2D CNNs are trained on axial, coronal, and sagittal axes,
respectively, using half of the training data. The network architectures follow the
classic U-Net structure [17] taking as input 4-channel 2D slices from 4 different
modality MR images with output labels: enhancing tumor, peritumoral edema,
necrotic and non-enhancing tumor, and background, respectively. Each CNN
predicts a 2D probability map with 4 channels where each channel indicates
the probability of tumor subregions and background, respectively. Finally, 2D
probability maps on the three axes are averaged into a 3D probability map with
4 channels.

In the second step, a 3D CNN is trained with the remainder of the training
data. First, a 3D probability map is generated using the ensemble 2D CNNs
from the first step. Following, 4-channel patches are extracted from both the
probability map and 3D multi-modal MR images to obtain a single 8-channel
patch as input for the 3D CNN. A U-Net style architecture [17] is employed for
the segmentation model and is trained with the segmentation labels of tumor
subregions. The patch size was empirically set as 16 × 16 × 16 voxels.

During inference, patch-wise 3D probability maps are sequentially generated
using ensemble 2D CNNs and the trained 3D CNN. Finally, the patch predictions
are aggregated to reconstruct the whole probability map. The final segmentation
is determined by taking the label with the maximum probability.

2.2 Overall Survival Time Prediction

Overall procedure of survival time prediction is described in Fig. 3.

Feature Extraction: Radiomics features are extracted from multi-modal MR
images and tumor segmentation obtained by the proposed two-step network.
The radiomics features were extracted from T1, T2, T1ce, T2-FLAIR images on
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Fig. 2. The proposed 2D-3D two-step segmentation networks.

each of the enhancing tumor (ET), tumor core (TC), and whole tumor (WT)
regions using the Pyradiomics toolbox [19]. TC refer to the area including the
necrotic and the non-enhancing tumor core, while WT refer to the area where
all subregions are included.

Given an image and its segmentation, the Pyradiomics toolbox extracts shape
features, intensity features, and texture features, respectively. Specifically, 14
shape features regarding tumor shapes such as tumor volume, surface area, 3D
diameter, 2D diameter, and so on, are extracted from the segmentation. Whereas,
18 first order statistic features related to the tumor region intensity such as
mean intensity, standard deviation of the intensity values, median intensity, and
so on, are extracted from the image. In total, 75 texture features containing
24 gray-level co-occurrence matrix (GLCM) features, 16 gray-level run length
matrix (GLRLM) features, 16 gray-level size zone matrix (GLSZM) features, 5
neighboring gray-tone difference matrix (NGTDM) features and 14 gray-level
dependence matrix (GLDM) features are also extracted from the image.

Intensity and the texture features are extracted from the input image as well
as the images filtered by Laplacian of Gaussian (LoG) filters with different sigma
values i.e. 1, 2, and 3. Thus, a total (18+75)×4+14 = 386 features are extracted
per a single modality image on a single subregion. The radiomics features are
extracted 12 times from four different modality MR images on three subregions,
respectively. In total, 386 × 12 = 4632 features are extracted.
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Fig. 3. The procedure of survival time prediction. Radiomics features are extracted
from the T1, T2, T1ce, and T2-FLAIR images on three subregions, respectively. Then,
informative features are selected from the thousands of radiomics features and the
survival time is predicted by the random forest regressor.

Feature Selection: From the thousands of features extracted, it is highly likely
that there are redundant or irrelevant features useful for survival prediction. In
order to create more robust predictions without being affected by such unneces-
sary information, we compute the importance of features and select the features
whose importance value is larger than a certain importance value. To achieve
this, a random forest regression model containing 100 decision trees [7] is trained
using the 4632 radiomics features. During training, feature importance is calcu-
lated from the variation of the variance based on the selected features. The
higher the feature importance, the more important the feature is selected in the
regression analysis. We empirically extract 17 features using a threshold and use
them for the survival prediction.

Overall Survival Time Prediction: Finally, we train a random forest regres-
sion model containing 100 decision trees [7] using the selected 17 features. During
inference, the trained model is used to predict survival time following the extrac-
tion of 17 features from a given test image and its segmentation.

3 Experimental Results

3.1 Dataset

We evaluated our method on the dataset in BraTS 2019 challenge. The dataset
contains 3T multi-modal brain MR images routinely taken for clinical diagno-
sis [2–4,14]. To observe the tumor subregions of glioma, four modality MR images
such as T1, T2, T1ce, and T2-FLAIR were acquired. These images were skull-
stripped, registered on an anatomical template, and resampled with isotropic
1 mm3 resolution. The final dimension of the images was 240 × 240 × 155. The
ground truths for these images were provided by board-certified neuroradiolo-
gists.

The dataset contains training, validation, and testing datasets. The train-
ing dataset includes the images and its ground truths acquired from 259 HGG
subjects and 76 LGG subjects. Among them, the survival times of the HGG
subjects were given for the survival time prediction task. The validation dataset
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contained 125 subjects for the segmentation task and 29 subjects for the sur-
vival time prediction task. The testing dataset contained 166 subjects for the
segmentation task and 107 subjects for the survival time prediction task.

Table 1. Segmentation results on validation data.

Measure Mean Std Median

Dice ET 0.672 0.316 0.819

Dice WT 0.876 0.097 0.912

Dice CT 0.764 0.246 0.883

Sensitive ET 0.763 0.268 0.864

Sensitive WT 0.887 0.106 0.918

Sensitive TC 0.765 0.269 0.894

Specificity ET 0.998 0.004 0.998

Specificity WT 0.991 0.027 0.996

Specificity TC 0.996 0.009 0.999

95% Hausdorff ET 8.843 18.976 2.236

95% Hausdorff WT 14.175 23.528 4.000

95% Hausdorff TC 11.667 18.400 5.099

Table 2. Segmentation results on testing data.

Measure Mean Std Median

Dice ET 0.743 0.258 0.836

Dice WT 0.858 0.154 0.906

Dice CT 0.804 0.266 0.910

95% Hausdorff ET 4.381 13.673 1.732

95% Hausdorff WT 16.454 28.240 4.977

95% Hausdorff TC 7.241 13.767 3.000

3.2 Results of Tumor Segmentation

The segmentation performance on the validation set was evaluated by dice score,
sensitivity, specificity, and 95% Hausdorff distance for each of the ET, TC, and
WT regions, while the performance on the testing set was evaluated by dice score
and 95% Hausdorff distance. The segmentation results on the validation set and
the testing set are shown in Tables 1 and 2, respectively. Moreover, Fig. 4 shows
the box plots of segmentation accuracy on the validation dataset. Generally,
the results on the testing set were consistent with those of the validation data
set. According to the dice scores, the highest accuracy was obtained on the
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WT among 3 subregions since the appearance of WT was consistent compared
to the heterogeneous subregions such as ET and TC. In the case of ET and
TC, the standard deviation of DSC and sensitivity was also higher than that
of WT. Figure 5 shows representative segmentation results on the validation
dataset obtained by the proposed method. In most cases, our method achieved
good segmentation performances.

Fig. 4. Box plots of segmentation accuracy on the validation dataset. The top, center
and bottom lines of each box represent upper quartile, median, and lower quartile
scores, respectively.

Table 3. Survival prediction results on the validation and testing sets.

Accuracy Mean square error Median square error

Validation 0.483 121778.6 20736

Testing 0.505 409680.9 50625

3.3 Results of Survival Time Prediction

The survival time prediction was evaluated with accuracy, mean square error,
and median square error. Table 3 shows the performances of our method for
the validation and testing sets. Accuracy of regression model was measured by
classification of subjects as long-survivors (i.e., >15 months), short-survivors
(i.e., <10 months), and mid-survivors (i.e., between 10 and 15 months). The
proposed method achieved an average accuracy of 50.5%, mean square error of
409680.9, and median square error of 50625 on the testing set.
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T1 T2 T1ce T2-FLAIR Segmentation

Fig. 5. Multi-modal MR images and those segmentations for 5 representative cases on
the validation set. In the segmentation, green, red, and yellow indicates peritumoral
edema, enhancing and non-enhancing tumor core, necrotic core, respectively. (Color
figure online)

4 Conclusion

In this work, we addressed the task of tumor segmentation and survival predic-
tion of HGG subjects in multi-model MR images with a two-step CNN framework
and a random forest regression model. In the segmentation task, ensemble 2D
CNNs trained with global multi-model information predict segmentation maps
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that are further aggregated and feed as input to a 3D-CNN that takes advantage
of local information to produce a final segmentation map. Following this, in the
survival task; a trained random forest regressor with selected features is used
to predict the survival time of patients. Experimental results demonstrate the
effectiveness of the proposed method with dice scores 0.74, 0.85 and 0.80 for
enhancing tumor core, whole tumor, and tumor cores, respectively. Moreover,
empirical results for survival prediction also show that by using less features for
the regressor we can obtain improved performance i.e. an accuracy of 50.5% and
reduce overfitting. The combination of deep learning methods and handcrafted
features in this multi-stage framework shows potential viability of the proposed
methods. As a future point of research, it would be interesting to further explore
the use of a single model for both survival prediction and segmentation that is
invariant to modality shifts.
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Abstract. 3D brain tumor segmentation is essential for the diagnosis, moni-
toring, and treatment planning of brain diseases. In recent studies, the Deep
Convolution Neural Network (DCNN) is one of the most potent methods for
medical image segmentation. In this paper, we review the different kinds of
tricks applied to 3D brain tumor segmentation with DNN. We divide such tricks
into three main categories: data processing methods including data sampling,
random patch-size training, and semi-supervised learning, model devising
methods including architecture devising and result fusing, and optimizing pro-
cesses including warming-up learning and multi-task learning. Most of these
approaches are not particular to brain tumor segmentation, but applicable to
other medical image segmentation problems as well. Evaluated on the
BraTS2019 online testing set, we obtain Dice scores of 0.810, 0.883 and 0.861,
and Hausdorff Distances (95th percentile) of 2.447, 4.792, and 5.581 for
enhanced tumor core, whole tumor, and tumor core, respectively. Our method
won the second place of the BraTS 2019 Challenge for the tumor segmentation.

Keywords: Brain tumor segmentation � Deep neural network

1 Introduction

Gliomas are the most common primary brain malignancies, with different degrees of
aggressiveness. 3D brain tumor segmentation plays a vital role in addressing the
diagnosis, monitoring, and treatment planning of brain diseases. Although Deep
Convolutional Neural Networks (DCNN) have shown great success in solving general
computer vision problems, when applied to MRI image segmentation, they face two
special challenges.

First, annotated MRI images are very scarce due to privacy concerns and the high
cost of human annotation. For example, the training set of BraTS2019 contains only
355 annotated cases. Given that DCNN typically has millions of parameters, the
scarcity of annotated data can hardly guarantee the generalization performance of
DCNN. Second, the training of DCNN consumes large GPU memory, while the large
volume of 3D MRI image data makes the training of DCNN with large patches and
large batches impossible. As a result, by training with small MRI patches, DCNN
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cannot gain enough receptive fields to model the global structure of brains and the
spatial relations between different anatomical regions. Besides the specific difficulties
of 3D MRI segmentation, the phenomenon of class imbalance is also a common
problem that must be faced in semantic segmentation. Most of the tricks described in
this paper are aimed at conquering the problems described above.

Since the introduction of U-Net [1] in 2015, DCNN has become the dominating
approach for medical image segmentation. Various new approaches have been pro-
posed based on the original U-Net. Myronenko, A. [2] uses auto-encoder to reconstruct
the input image itself and regularize the optimizing process. Isensee, F. [3] takes
advantage of other labeled data, using a co-training method. McKinley, R. [4] proposes
label-uncertainty loss to models to label noise and uncertainty. These methods were
shown to be effective in improving the segmentation, yet further improvements can be
achieved by considering and combining various strategies in data processing, network
architecture, and learning-algorithm design. In this work, we introduce several useful
tricks in model learning and combine them to boost the overall accuracy of the model.

The rest of this paper is organized as follows. Section 2 introduces tricks used in
3D MRI brain-tumor segmentation. Section 3 presents the implementation details and
experimental results, and Sect. 4 provides concluding remarks.

2 Methods

Many tricks in general DCNN design and training for the image can also be applied to
the 3D brain-image segmentation. We divide such tricks into three categories: data
processing methods, model designing methods, and optimizing methods.

2.1 Data Processing Methods

Sampling. Data imbalance has always been a hot topic for segmentation. Commonly,
that training data contains an overwhelming number of background voxels, most of
which are easy for the classifier to predict, and only a few are difficult. Here, we use
two methods to cope with this problem.

Heuristic Sampling. To reduce the effect of background voxels, we use a heuristic
sampling method to select more informative patches. More concretely, several patches
are randomly cropped from the input MRI, and the one that contains the most fore-
ground voxels is selected to feed the model.

Hard Sample Mining. A standard solution was known as hard sample mining. At every
iteration, the voxels with the largest loss values are selected as training voxels, and their
gradients are back-propagated to update the model’s parameters. The gradients of other
voxels are discarded directly. The percentage of the selected voxels is set to and
decreases as the number of iteration increases.

The method described above can be seen as a method that uses a hard threshold to
select the difficult sample. Lin, T.Y. [5] proposed a new loss called focal loss to
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conquer the class imbalance problem through a soft threshold and outperforms the
alternatives of training with the hard sample mining. The loss is defined as (2).

pt ¼ p if y ¼ 1
1� p otherwise

�
ð1Þ

CE ptð Þ ¼ � 1� ptð Þclog ptð Þ ð2Þ

In the above, y 2 �1f g specifies the ground-truth class, and p 2 0; 1½ � is the model’s
estimated probability for the class with y ¼ 1. c[ 0 is a tunable focusing parameter.
When an example is misclassified and pt is small, the modulating factor is near 1, and
the loss is unaffected. As pt ! 1, the factor goes to 0, and the loss for well-classified
examples is down-weighted. The focusing parameter c smoothly adjusts the rate at
which easy examples are down-weighted. Experiment results demonstrate that focal
loss is better than general hard sample mining.

Random Patch-Size Training. Using large patches could include more contextual
information but leads to the small batch size, which increases the variance of stochastic
gradients and hurts optimization. On the other hand, using a large batch size could
facilitate the optimization but leads to small patches, which results in less contextual
information. To take benefit of both sizes of patches, we construct a training batch pool
with batches of different patch sizes. Note that if the size of the patch is large, the
corresponding batch size will be small.

This method is illustrated in Fig. 1. Using the different numbers of padding and
cropping layers between the convolution layer, this model can learn global information
from the largest patch and informative texture from the small patch with the same
parameter. For each iteration during training, we randomly select a batch from the pool
to update the model. We take advantage of both the large patches and the large batch
size. In practice, we found this simple strategy very efficient.

Fig. 1. Random patch-size training strategy. At each iteration, we select a training batch with
random patch size and using padding and cropping to adjust the size of the feature map. The
number in each square is the size of the patch.
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Semi-supervised Learning. To tackle the lack of annotated data, we use a semi-
supervised method called the multi-space semi-supervised method. At the first iteration,
the manually labeled dataset is used as a training set, and different student-models, s0i
are trained on the training set under some different conditions, such as the different
subset of training set or the different subspace of features, etc. Then, all student-models
are combined as a teacher model, so that the teacher model is defined as

T0 ¼ 1
n

Xn

i¼1
s0i ð3Þ

Finally, the teacher model, T0, is used to label the unlabeled dataset.
After the first iteration, we combine the manually labeled dataset and model labeled

dataset as the new training set and then repeat the training process as the first iteration.
We repeated the process until the accuracy of the student model is stable. Such a
process is summarized in Fig. 2.

2.2 Model Devising Methods

Architecture Devising. The whole architecture used in this paper is shown in Fig. 3.
For many computer vision tasks, a classic way to boost the accuracy is to combine
multiple prediction results made at different scales. Inspired by this observation, we
introduce a new architecture, named self-ensemble, that makes predictions at each scale
of U-Net and then joins them to obtain the final prediction. The simple way to combine

Algorithm 1: Multi-View Semi-Supervised Segmentation Algorithm

1. Input: 
a. Overlapped MRI labeled patches  and unlabeled patches 
b. Data transformation functions: 

2. Training the ensemble model:
a. Initialize pseudo-labels  by some supervised, trained model
b. Repeat

- For each transformation function  , update the model :

- Update the ensemble model by Eq. (4)
- Update pseudo labels  by the method described in Sec.2.2

Until convergence
3. Training the student model:

a. Learn a student model based on F, , 

Fig. 2. Multi-view semi-supervised segmentation algorithm
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predictions of different sizes is to resize them to the size of the input image, as
illustrated on the left side of Fig. 4. However, it is highly memory consuming since it
up-samples every prediction tensor to the largest size. Instead, we propose to combine
the predictions in a recursive manner which is illustrated at the right side of Fig. 4 and
formulated as

ys ¼ Up ysþ 1; 2ð Þþeys s ¼ S� 1; S� 2; . . .; 1 ð4Þ

y ¼ y1 ð5Þ

where eys is the prediction tensor of the s-th scale, S is the number of scales in U-Net,
and Up(y, t) is a function that up-samples y by rate t. The prediction of the current scale
ys is based on ysþ 1 and only needs to model the residual of ysþ 1. The final result of
y ¼ y1, combining predictions at each scale, outperforms any single prediction.

Fig. 3. The overall architecture of the self-ensemble U-Net model.

Fig. 4. The left figure is the naïve way to combine predictions of different scales. The right
figure is our self-ensemble method.
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Fusing Result. We use two methods for combining different results to improve the
final prediction. The overall architecture is shown in Fig. 5. The ensemble model
fusing the prediction of different models is shown at the top of Fig. 5, and the method
of fusing the prediction of overlapped patches is illustrated at the bottom of Fig. 5.

Fusing the Prediction of Different Models. The method combined different models like
[3]. We evaluate our model by running five-folds cross-validation on the training cases.
Then we use the average of all the five models as the final ensemble model.

Fusing the Prediction of the Overlapped Patch. The model may predict the different
results of the same voxel because of the voxel located in a different position related to
the different patches. Base on this phenomenon, we crop the input MRI into overlapped
patches and then combine these patches as a batch predicted by the model. In this way,
the overlapped voxel is predicted more than one time. A more accurate result would be
obtained by averaging these predictions.

2.3 Optimizing Methods

Gradual Warming Up Learning Rate. The gradual warming up learning rate, which
was first proposed in [6], gradually increases the learning rate from a small value to a
large value. In practice, with a mini-batch of size, we start from a learning rate of g and
increase it by a constant amount at each iteration until it reaches bg ¼ kg after several
epochs. After the warmup phase, we go back to the original learning rate schedule.

Fig. 5. The overall architecture of the result is fusing. At the top of the figure is the method for
fusing the predictions of the different models, and at the bottom of the figure is the method fusing
the prediction of overlapped patches.
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Multitask Learning. Multitask learning can be seen as a regulation method. It can
affect the process of optimizing and provide additional information related to the
learning problem. In this paper, we first calculate the cross-entropy loss between the
softmax result and the label provided by the organizer, including the background (BG),
the necrotic and the non-enhancing tumor core (NCR/NET), the peritumoral edema
(ED), and the enhancing tumor (ET). Then the predicted result and ground truth are
reorganized as four independent categories. These include background, enhancing
tumor, whole tumor (WT), and tumor core (TC). Finally, the binary cross-entropy loss
is calculated between the reorganized prediction and ground truth. The overall process
can be seen as Fig. 6.

3 Experiments and Results

3.1 Datasets and Evaluation Metrics

Datasets. We use two datasets in our experiments.

BraTS2019 [7–11]. It contains 355 cases whose corresponding manual segmentation
is provided. Each case has four MRI sequences that are named T1, T1 contrast-
enhanced, T2, and FLAIR, respectively.

Decathlon [12]. It comprises 750 cases collected from older BraTS challenges. We use
this dataset as the unlabeled dataset.

Fig. 6. Multitask learning. Optimizing the cross-entropy loss and the binary cross-entropy loss
simultaneously.
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Evaluation Metrics. The segmentation performance was quantitatively assessed using
the mean Dice coefficient (DSC). Let A and B denote the manual label and predicted
label, respectively. The mean Dice similarity coefficient is defined as

DSC ¼ 1
n

Xn

i¼1

2 AiBij j
Aij j þ Bij j ð6Þ

where Aij j denotes the number of positive elements in the binary segmentation Ai, and
AiBij j is the number of positive elements shared by Ai and Bi. n = 4 is the number of
labels.

3.2 Preprocessing

In our approach, before feeding the data to the deep neural network, each MRI
sequence of a case is normalized independently. Specifically, all voxels of an MRI
sequence are normalized to range from 0 to 1. We also apply a random axis mirror
along the horizontal axis.

3.3 Implementation Details

We use the summation of cross-entropy and average Dice similarity as the loss
function. The patch size is randomly selected from 64, 80, 96, 112, 128, 144, and the
corresponding batch size is 15, 8, 4, 2, 1, 1. SGD with momentum is used as the
optimizer, and the learning rate is set to 0.4. The step of warming up is set to 20 epochs.
The model is trained in an end-to-end way, and no additional preprocessing or post-
processing is performed. The method is implemented by Pytorch, and all experiments
are conducted on two TITAN GPUs with 12G RAM. It took around 21 h to train the
model.

3.4 Results

To better understand our method, we conduct ablation experiments to examine how
some trick affects the final performance. We evaluate the performance under different
experimental settings: (1) BL, the original U-Net: equipped with dense block structure
and self-ensemble structure. (2) BL+warmup: model 1 with warming-up learning rate.
(3) BL+warmup+fuse: model 2 with the resultant fusing of five different models trained
by fivefold cross-validation. (4) BL+warmup+fuse+semi: model 3 with semi-
supervised learning. From the results listed in Table 1, we can observe that our
method steadily improves accuracy with the addition of each component. Three
examples are visualized in Fig. 7. We can see that most voxels are segmented correctly,
while some errors occur in the small regions and boundaries between regions. Table 2
shows the results of our model on the BraTS 2019 testing dataset.
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Fig. 7. The visualization result of the validation set of the BraTS2019 dataset. From left to right,
the column is the original FLAIR image, the original T2 image, the original T1ce image, the
original T1 image, and the segmentation result overlaid over the T1 image.

Table 2. Results of the BraTS2019 testing data (166 cases). Metrics are computed by the online
evaluation platform.

Dice Hausdorff Dist.
ET WT TC ET WT TC

Mean 0.810 0.883 0.861 2.447 4.792 4.217
StdDev 0.193 0.145 0.225 4.030 6.619 7.503
Median 0.850 0.924 0.928 1.732 3.0 2.236
25quantile 0.783 0.875 0.882 1.0 1.494 1.414
75quantile 0.915 0.951 0.960 2.236 4.899 3.606

Table 1. Results of the BraTS2019 validation data (125 cases). Metrics are computed by the
online evaluation platform.

Method Dice Hausdorff Dist.
ET WT TC ET WT TC

BL 0.702 0.893 0.800 4.766 5.078 6.472
BL+warmup 0.729 0.904 0.802 3.832 4.141 8.099
BL+warmup+fuse 0.737 0.908 0.823 4.089 4.599 6.433
BL+warmup+fuse+psudo label 0.754 0.910 0.835 3.844 4.569 5.581
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4 Conclusion

In this paper, we review useful tricks for training DCNN to improve the accuracy of
brain tumor segmentation and evaluate their performance. Our empirical results on the
BraTS2019 indicate that these tricks improve model accuracy consistently. In partic-
ular, stacking all of them together leads to significantly higher accuracy. On the
BraTS2019 online validation set, our combined method achieved average Dice scores
of 0.754, 0.910, 0.835 for the enhancing tumor, whole tumor, and tumor core,
respectively. However, our model tends to make false predictions for small anatomical
regions.

In the future, we will investigate methods for accurately segmenting small regions
and apply them to other tasks such as prediction of patient overall survival from pre-
operative scans.
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Abstract. In this study, an automated three dimensional (3D) deep segmen-
tation approach for detecting gliomas in 3D pre-operative MRI scans is pro-
posed. Then, a classification algorithm based on random forests, for survival
prediction is presented. The objective is to segment the glioma area and produce
segmentation labels for its different sub-regions, i.e. necrotic and the non-
enhancing tumor core, the peritumoral edema, and enhancing tumor. The pro-
posed deep architecture for the segmentation task encompasses two parallel
streamlines with two different resolutions. One deep convolutional neural net-
work is to learn local features of the input data while the other one is set to have
a global observation on whole image. Deemed to be complementary, the outputs
of each stream are then merged to provide an ensemble complete learning of the
input image. The proposed network takes the whole image as input instead of
patch-based approaches in order to consider the semantic features throughout the
whole volume. The algorithm is trained on BraTS 2019 which included 335
training cases, and validated on 127 unseen cases from the validation dataset
using a blind testing approach. The proposed method was also evaluated on the
BraTS 2019 challenge test dataset of 166 cases. The results show that the
proposed methods provide promising segmentations as well as survival pre-
diction. The mean Dice overlap measures of automatic brain tumor segmenta-
tion for validation set were 0.86, 0.77 and 0.71 for the whole tumor, core and
enhancing tumor, respectively. The corresponding results for the challenge test
dataset were 0.82, 0.72, and 0.70, respectively. The overall accuracy of the
proposed model for the survival prediction task is 55% for the validation and
49% for the test dataset.

Keywords: Convolutional neural network � U-Net � Deep learning � MRI �
Brain tumor segmentation

1 Introduction

Brain tumors are caused by abnormal growth of the cells inside brain and have a wide
variety of tumor types. They can be generally categorized into low-grade gliomas
(LGG) or high-grade gliomas (HGG). Magnetic resonance imaging (MRI) plays an
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important role regarding the clinical tasks related to brain tumors. Accurate segmen-
tation of brain tumor may aid the measurement of tumor features to help diagnosis,
treatment planning and survival prediction [1]. MR images can be generated using
different acquisition protocols such as fluid attenuated inversion recovery (FLAIR), T1-
weighted (with and without contrast agent), and T2-weighted to distinguish between
different tumor sub-tissues.

Segmentation of human brain tumor in medical images is a vital and crucial task
that traditionally is performed manually by physicians. The manual delineation prac-
tices are subjective and inherently prone to misinterpretation that can bring about sever
and even fatal upcomings. So, developing a reliable and fast automated algorithm,
undoubtedly, leads to much more accurate diagnosis, making a remarkable advance in
long term in treatment planning for the patients. This becomes even more highlighted
when having three-dimensional observation to images by the machine instead of a
natural two-dimensional view of a human interpreter.

So far, many efforts addressed inventing such an automatic segmentation system.
Undeniably, several big steps have been taken, yet there is a lot to be taken. On the
other hand, thanks to emerging powerful computing processors as well as availability
of big datasets, deep learning and particularly its recent advancements revolutionized
many aspects of the technology by manifesting unprecedented amount of knowledge
and learning about various data types, i.e. text, speech, and image.

Deep learning is widely being used in medical imaging domain in various ways
such as denoising, finding biomarkers, pattern prediction, and detecting lesions and
tumors. Applying deep learning techniques to multimodal MR images for tumor seg-
mentation is naturally a challenging task due to high dimensionality of the input data,
poor quality and problems of the image during capturing such as bias field, and after all
designing an appropriate architecture for the specific objective.

Due to the recent advances in deep neural networks (DNN) in recognition of the
patterns in the images, most of the recent tumor segmentations have focused on deep
learning methods [2]. Fully convolutional networks (FCN) have been suggested for
per-pixel classification with the advantage of end-to-end learning [3]. Despite the
advantage of dense pixel classification, FCN-based methods suffer from the loss of
spatial information, which occurs in the pooling layers, results in coarse segmentation
[2]. U-Net [4] proposed using skip layers to tackle this problem and was suggested for
fine medical image segmentation. Several methods have proposed using U-Net for
brain tumor segmentation [5–7]. U-Net showed promising results in medical image
segmentation tasks. So, several researches focused on U-Net modification to acquire
even better outcomes. Cascaded U-Net is a successful example of such modifications as
presented in [8] where the cascaded U-Net outperforms the standard version.

The present study on segmentation is inspired by two deep convolutional neural
networks, i.e. U-Net and the one that is proposed in [9]. These networks are placed in
parallel stream lines fed by original images. The U-Net is meant to capture the local
features and make a fine learning of the data. On the other hand, the other pipeline is to
maintain a coarse but global learning.
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Furthermore, the proposed architecture is designed to take the whole image as the
input for the network, rather than patch-based architectures which incorporate partial
information from the images during training. This approach ensures that all the
semantic features throughout the whole volume will be considered during training,
which eliminates most of the false positives.

For the survival prediction task, a model based on the random forest (RF) [10] is
presented. The output of the model is as the number of days. As an ensemble learning
algorithm, RF is widely being used in both classification and regression purposes.

2 Materials and Methods

2.1 Dataset

The proposed network is trained using the Multimodal Brain Tumor Segmentation
Challenge (BraTS) 2019 [11–15] training dataset which includes 259 HGG and 76
LGG patient cases. The dataset contains segmentation ground truth manually annotated
by experts and provided on the Center for Biomedical Image Computing and Analytics
(CBICA) portal. The network was evaluated using BRTAS 2019 validation dataset
which includes 125 patient cases. For the task of post-operative survival prediction,
101 of the training patient cases were provided with the survival information.
The network was also evaluated for the challenge test dataset which includes 166
patient cases for the segmentation task and 107 cases for the survival prediction
task.

2.2 Segmentation

Our proposed segmentation method consists of two main pipelines steps with different
resolution levels, i.e. original and low resolutions. The architecture of the proposed
network is depicted in Fig. 1. The pre-processing stage consists of intensity normal-
ization, histogram matching and bias filed correction. The intensities were normalized
for each protocol by subtracting the average of intensities of the image and divided by
their standard deviation. The histogram of each image was normalized and matched to
a selected reference image, which is one of the patient cases. Bias field correction was
performed using the toolbox provided in [16].
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Fig. 1. Architecture of the proposed multi-resolution method consisting of two different
pathways one with original resolution and the other with lower resolution and larger field of
view.
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2.3 Survival Prediction

The output masks forming the segmentation in the previous section are used for the
task of survival prediction. Some spatial features are extracted for the whole tumor and
each sub-tissue. Normalized volume size for the whole tumor, tumor core and enhanced
tumor are calculated. The average intensity value for each sub-tissue is another feature.
The feature vectors extracted for each volume of interest (VOI) were input to the
random forests (RF). RF parameters, i.e. tree depth and the number of trees, were tuned
by examining them on training datasets and evaluating the classification accuracy using
5-fold cross validation. The number of 30 trees with depth 10 provided an optimum
generalization and accuracy. The RF classifier was used in regression mode which
produced predictions as number of days. The schematic diagram of the proposed
approach for the survival prediction is demonstrated in Fig. 2.

3 Results

3.1 Segmentation Task

For the segmentation task, the proposed method was implemented using Keras Ten-
sorflow backend on Nvidia GeForce GTX 1080 Ti GPU, RAM 11 GB, PC with CPU
Intel Core i7 and RAM 16 GB with the operating system Linux. The U-Net [4] was
modified and the method in [9] was implemented using [17]. The RF was implemented
using MATLAB 2019a. The ground truth is provided for the training set, whilst for
evaluation a blind testing system is utilized. The evaluation measures which are pro-
vided by the CBICA’s Image Processing Portal, i.e. Dice score, sensitivity, specificity,
Hausdorff distance, were used to compare the segmentation results with the gold
standard (blind testing).

Table 1 presents the evaluation results obtained by applying the proposed seg-
mentation method on BraTS 2019 validation dataset which was provided by CBICA
blind testing system. Figure 3 shows segmentation results of the proposed multi-
resolution approach for some cases of BraTS 2019 training dataset and the ground
truth. Two modalities, i.e. FLAIR and T1-ce, are shown in Fig. 2 and the tumor sub-
tissues are overlaid on T2 modality and depicted in axial, sagittal, and coronal views.
Figure 4 represents segmentation results of the proposed multi-resolution method for
two sample cases of BraTS 2019 validation dataset.

Fig. 2. The pipeline for overall survival prediction based on the volume labels extracted in the
segmentation stage
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Fig. 3. Segmentation results for one sample training data using the proposed multi-resolution
model, and comparison with the ground truth. Light blue: necrosis and on-enhancing, green:
edema, red: enhancing. The Dice scores reported by the CBICA system for enhancing tumor,
tumor core, and the whole tumor are as follows: BraTS19_2013_10_1: 0.82, 0.94, and 0.91.
(Color figure online)
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Fig. 4. Segmentation results for two validation data samples using the proposed multi-resolution
model. Light blue: necrosis and on-enhancing, green: edema, red: enhancing. The Dice scores
reported by the CBICA system for enhancing tumor, tumor core, and the whole tumor are as
follows: Brats19_TCIA07_600_1: 0.86, 0.91, and 0.93; Brats19_CBICA_BLI_1: 0.84, 0.92, and
0.91. (Color figure online)
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3.2 Survival Prediction

In order to validate the survival prediction method, 29 patient cases were specified by
the CBICA portal, and the predictions were generated in terms of the number of
survival days. Evaluation metrics for this task, were accuracy for classification mode
and mean square error (MSE), median and standard deviation of SE, and Spearman R
for regression mode. The classes of survival predictions were calculated based on three
categories, short (less than 10 months), medium (between 10 to 15 months), and long
(more than 15 months). The survival prediction results provided by CBICA system are
presented in Table 2.

4 Conclusion

In the present study, a three-dimensional multi-resolution learning-based algorithm was
proposed in which, instead of patching the image, the whole MR image is passed to the
network. The low resolution path was inspired by the U-Net architecture which was
modified to take a larger input receptive field and considered the whole input volume
rather than partial patches. Although this procedure performed a coarser segmentation,
the false positives were successfully eliminated, while the original resolution path
produced fine segmentation boundaries. Fusion of these two resolution levels results in
increasing accuracy, specificity and sensitivity compared to utilizing each single
pipeline separately. The proposed algorithm reached to the Dice scores of 0.86, 0.77
and 0.71 for the whole tumor, core and enhancing tumor on the validation data, and
0.82, 0.72 and 0.70 on the test data set. The hand-crafted statistical and intensity-based
features extracted from the segmentation masks are then applied to a random forest
classifier for the task of survival prediction. The proposed method acquired MSE and

Table 1. Segmentation results for validation dataset provided by CBICA portal blind testing
system. ET: enhancing tumor, WT: whole tumor, TC: tumor core.

Dataset Dice Sensitivity Specificity Hausdorff (95%)

ET WT TC ET WT TC ET WT TC ET WT TC

Validation Mean 0.71 0.86 0.77 0.69 0.85 0.76 1.00 0.99 1.00 6.92 8.42 11.55
STD 0.25 0.09 0.18 0.25 0.11 0.18 0.00 0.01 0.01 11.87 14.21 20.04

Test Mean 0.70 0.82 0.72 – – – – – – 5.59 8.42 9.14
STD 0.23 0.18 0.29 – – – – – – 11.64 13.22 12.68

Table 2. The results of survival prediction for validation dataset provided by CBICA portal
blind testing system.

Dataset Accuracy MSE Median SE STD SE Spearman R

Validation 0.55 104253 43264 142579 0.26
Test 0.49 408632 69696 1219534 0.28

228 M. Amian and M. Soltaninejad



classification accuracy of 104253 and 0.55, for the validation dataset. The corre-
sponding results for the challenge dataset were 408632, and 0.49, respectively.
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Abstract. In this paper, we devise a novel two-stage cascaded U-Net
to segment the substructures of brain tumors from coarse to fine. The
network is trained end-to-end on the Multimodal Brain Tumor Segmen-
tation Challenge (BraTS) 2019 training dataset. Experimental results on
the testing set demonstrate that the proposed method achieved average
Dice scores of 0.83267, 0.88796 and 0.83697, as well as Hausdorff dis-
tances (95%) of 2.65056, 4.61809 and 4.13071, for the enhancing tumor,
whole tumor and tumor core, respectively. The approach won the 1st
place in the BraTS 2019 challenge segmentation task, with more than 70
teams participating in the challenge.

Keywords: Deep learning · Brain tumor segmentation · U-Net

1 Introduction

Gliomas are the most common type of primary brain tumors. Automatic three-
dimensional brain tumor segmentation can save doctors time and provide an
appropriate method of additional tumor analysis and monitoring. Recently, deep
learning approaches have consistently outperformed traditional brain tumor seg-
mentation methods [6,10,17,20,24,27].

The multimodal brain tumor segmentation challenge (BraTS) is aimed at
evaluating state-of-the-art methods for the segmentation of brain tumors [1–
4,13]. The BraTS 2019 training dataset, which comprises 259 cases of high-grade
gliomas (HGG) and 76 cases of low-grade gliomas (LGG), is manually annotated
by both clinicians and board-certified radiologists. For each patient, a native pre-
contrast (T1), a post-contrast T1-weighted (T1Gd), a T2-weighted (T2) and a
T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) are provided. An example
image set is presented in Fig. 1. Each tumor is segmented into enhancing tumor,
the peritumoral edema, and the necrotic and non-enhancing tumor core. A num-
ber of metrics (Dice score, Hausdorff distance (95%), sensitivity and specificity)
c© Springer Nature Switzerland AG 2020
A. Crimi and S. Bakas (Eds.): BrainLes 2019, LNCS 11992, pp. 231–241, 2020.
https://doi.org/10.1007/978-3-030-46640-4_22
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(a) T2 Flair (b) T1 weighted

(c) T1 post-contrast (d) T2 weighted

Fig. 1. Example of image modalities in the BraTS 2019 dataset.

are used to measure the segmentation performance of the algorithms proposed
by participants.

In BraTS 2017, Kamnitsas et al. [9], who was the first-place winner of the
challenge, proposed Ensembles of Multiple Models and Architectures (EMMA)
for robust segmentation, which was achieved by combining several network archi-
tectures including DeepMedic [10], 3D U-Net [18] and 3D FCN [12]. These
networks were trained with different optimization processes via diverse loss
functions such as Dice loss [14] and cross-entropy loss. In BraTS 2018, Myro-
nenko [15], who achieved the best performance on the testing dataset, utilized
an asymmetrical U-Net with a larger encoder to extract image features, along
with a smaller decoder to reconstruct the label. He fed a very large patch size
(160 × 192 × 128 voxels) into the network, and also added a variational autoen-
coder (VAE) branch in order to regularize the shared encoder.

In this work, inspired by the cascaded strategy [19,22,25,26], we propose a
novel two-stage cascaded U-Net. In the first stage, we use a variant of U-Net
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as the first stage network to train a coarse prediction. In the second stage, we
increase the width of the network and use two decoders so as to boost perfor-
mance. The second stage is added to refine the prediction map by concatenating
a preliminary prediction map with the original input to utilize auto-context. We
do not use any additional training data and only participate in the segmentation
task in testing phase.

2 Methods

Myronenko [15] proposed an asymmetrical U-Net with a variational autoencoder
branch [5,11]. In this paper, we take a variant of this approach as the basic
segmentation architecture. We further propose a two-stage cascaded U-Net. The
details are illustrated as follows.

Fig. 2. Overview of the two-stage cascaded network.

2.1 Model Cascade

As can be seen in Fig. 2, in the first stage, multi-modal magnetic resonance
images (4 × 128 × 128 × 128) are passed into the first stage U-Net and predict a
segmentation map roughly. The coarse segmentation map is fed together with
the raw images into the second stage U-net. The second stage can provide a
more accurate segmentation map with more network parameters. The two-stage
cascaded network is trained in an end-to-end fashion.
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Fig. 3. The first stage network architecture.

2.2 The First Stage Network Architecture

Due to GPU memory limitations, our networks is designed to take input patches
of size 128 × 128 × 128 voxels and to use a batch size of one. The network archi-
tecture consists of a larger encoding path, to extract complex semantic features,
and a smaller decoding path, to recover a segmentation map with the same input
size. The architecture of the first stage network is presented in Fig. 3.

The 3D U-Net has an encoder and a decoder path, each of which have four
spatial levels. At the beginning of the encoder, patches of size 128 × 128 × 128
voxels with four channels are extracted from the brain tumor images as input,
followed by an initial 3× 3 × 3 3D convolution with 16 filters. We also use a
dropout with a rate of 0.2 after the initial encoder convolution. The encoder
part uses a pre-activated residual block [7,8]. Each of these blocks consists of
two 3 × 3 × 3 convolutions with Group Normalization [23] with group size of
8 and Rectified Linear Unit (ReLU) activation, followed by additive identity
skip connection. The number of pre-activated residual blocks is 1, 2, 2, and 4
within each spatial level. Moreover, a convolution layer with a 3× 3 × 3 filter
and a stride of 2 is used to reduce the resolution of the feature maps by 2 and
simultaneously increase the number of feature channels by 2.

Unlike the encoder, the decoder structure uses a single pre-activated residual
block for each spatial level. Before up-sampling, we use 1 × 1 × 1 convolutions
to reduce the number of features by a factor of 2. Compared with [15], we use
a deconvolution with kernel size 2× 2 × 2 and a stride of 2 rather than trilin-
ear interpolation in order to double the size of the spatial dimension. The net-
work features shortcut connections between corresponding layers with the same
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resolution in the encoder and decoder by elementwise summation. At the end
of the decoder, a 1 × 1 × 1 convolution is used to decrease the number of output
channels to three, followed by a sigmoid function. The detail of the structure is
shown in Table 1.

2.3 The Second Stage Network Architecture

Different from the network in the first stage, we double the number of filters
in the initial 3D convolution in order to increase the network width. What’s
more, we use two decoders. The structure of the two decoders is the same except
that one uses a deconvolution and the other uses trilinear interpolation. The
interpolation decoder is used only during training. Because the performance of
the decoder used deconvolution is better than used trilinear interpolation and
add a decoder used trilinear interpolation to regularize the shared encoder can
improve the performance in our experiment. The architecture of the second stage
network is presented in Fig. 4 and the detail of the structure is shown in Table 2.
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Fig. 4. The second stage network architecture.

2.4 Loss

The Dice Similarity Coefficient measures (DSC) the degree of overlap between
the prediction map and ground truth. The DSC is calculated by Eq. 1, where S
is the output of network, R is the ground truth label and | · | denotes the volume
of the region.

DSC =
2|S ∩ R|
|S| + |R| (1)
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The soft Dice loss is designed as following:

Ldice =
2 ∗ ∑

S ∗ R
∑

S2 +
∑

R2 + ε
(2)

Instead of learning the labels (e.g. enhancing tumor, edema, necrosis and non-
enhancing), we directly optimize the three overlapping regions (whole tumor,
tumor core and enhancing tumor) with the Dice loss, then simply add the Dice
loss functions of each region together. We also add the loss of each stage together
to arrive at the final loss.

Table 1. The first stage network structure, where + stands for additive identity skip
connection, Conv3 - 3× 3× 3 convolution, Conv1 - 1× 1× 1 convolution, GN - group
normalization, ConvTranspose - deconvolution with kernel size 2× 2× 2.

U-Net 1

Name Details Repeat Size

Input 4× 128× 128× 128

InitConv Conv3, Dropout 1 16× 128× 128× 128

EnBlock1 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 16× 128× 128× 128

Encoder EnDown1 Conv3 stride 2 1 32× 64× 64× 64

EnBlock2 GN, ReLU, Conv3, GN, ReLU, Conv3, + 2 32× 64× 64× 64

EnDown2 Conv3 stride 2 1 64× 32× 32× 32

EnBlock3 GN, ReLU, Conv3, GN, ReLU, Conv3, + 2 64× 32× 32× 32

EnDown3 Conv3 stride 2 1 128× 16× 16× 16

EnBlock4 GN, ReLU, Conv3, GN, ReLU, Conv3, + 4 128× 16× 16× 16

DeUp3 Conv1, ConvTranspose, +EnBlock3 1 64× 32× 32× 32

DeBlock3 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 64× 32× 32× 32

DeUp2 Conv1,ConvTranspose,+EnBlock2 1 32× 64× 64× 64

Decoder DeBlock2 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 32× 64× 64× 64

DeUp2 Conv1, ConvTranspose, +EnBlock1 1 16× 128× 128× 128

DeBlock1 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 16× 128× 128× 128

EndConv Conv1 1 3× 128× 128× 128

Sigmoid Sigmoid 1 3× 128× 128× 128

3 Experiments

3.1 Data Pre-processing and Augmentation

Before feeding the data into the deep learning network, a preprocessing method
is used to process the input data. Since the MRI intensity values are non-
standardized, we apply intensity normalization to each MRI modality from each
patient independently by subtracting the mean and dividing by the standard
deviation of the brain region only.

Moreover, to prevent an overfitting issue from arising, we deploy three
types of data augmentation. Firstly, we apply a random intensity shift between
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Table 2. The second stage network structure, where + stands for additive identity skip
connection, Conv3 - 3× 3× 3 convolution, Conv1 - 1× 1× 1 convolution, GN - group
normalization, ConvTranspose - deconvolution with kernel size 2× 2× 2, Upsampling
- trilinear interpolation, Decoder2 is used only during training.

U-Net 2

Name Details Repeat Size

Input 7× 128× 128× 128

InitConv Conv3, Dropout 1 32× 128× 128× 128

EnBlock1 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 32× 128× 128× 128

Encoder EnDown1 Conv3 stride 2 1 64× 64× 64× 64

EnBlock2 GN, ReLU, Conv3, GN, ReLU, Conv3, + 2 64× 64× 64× 64

EnDown2 Conv3 stride 2 1 128× 32× 32× 32

EnBlock3 GN, ReLU, Conv3, GN, ReLU, Conv3, + 2 128× 32× 32× 32

EnDown3 Conv3 stride 2 1 256× 16× 16× 16

EnBlock4 GN, ReLU, Conv3, GN, ReLU, Conv3, + 4 256× 16× 16× 16

DeUp3 Conv1, ConTranspose, +EnBlock3 1 128× 32× 32× 32

DeBlock3 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 128× 32× 32× 32

DeUp2 Conv1, ConTranspose, +EnBlock2 1 64× 64× 64× 64

Decoder1 DeBlock2 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 64× 64× 64× 64

DeUp2 Conv1, ConTranspose, +EnBlock1 1 32× 128× 128× 128

DeBlock1 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 32× 128× 128× 128

EndConv Conv1 1 3× 128× 128× 128

Sigmoid Sigmoid 1 3× 128× 128× 128

DeUp3 1 Conv1, Upsampling, +EnBlock3 1 128× 32× 32× 32

DeBlock3 1 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 128× 32× 32× 32

DeUp2 1 Conv1, Upsampling, +EnBlock2 1 64× 64× 64× 64

Decoder2

(Used only

during

training)

DeBlock2 1 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 64× 64× 64× 64

DeUp2 1 Conv1, Upsampling, +EnBlock1 1 32× 128× 128× 128

DeBlock1 1 GN, ReLU, Conv3, GN, ReLU, Conv3, + 1 32× 128× 128× 128

EndConv 1 Conv1 1 3× 128× 128× 128

Sigmoid 1 Sigmoid 1 3× 128× 128× 128

[−0.1−0.1] of the standard deviation of each channel, as well as a random scaling
intensity of the input between scales [0.9−1.1]. Secondly, we train our network by
randomly cropping the MRI data from 240× 240 × 155 voxels to 128 × 128 × 128
voxels due to memory limitation. Finally, we use random flipping along each 3D
axis with a probability of 50%.

3.2 Training Details

The implementation of our network is based on PyTorch 1.1.0 [16]. The maxi-
mum number of training iterations is set to 405 epochs with 5 epochs of linear
warmup. We use Adam optimizer to update the weights of the network, with a
batch size of 1 and an initial learning rate of α0 = 1e − 4 at the very beginning
and decays it as following:

α = α0 ×
(

1 − e

Ne

)0.9

(3)
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where e is an epoch counter, and Ne is a total number of epochs. We regu-
larize using an l2 weight decay of 1e − 5. Training is performed on a Nvidia
Titan V GPU with 12 Gb memory. However, our method requires slightly more
than 12 Gb memory in our experiment. We utilize gradient checkpointing [21]
by PyTorch to reduce the memory consumption.

3.3 Augmentation for Inference

At testing time, we segment the whole brain region at once instead of using a
sliding window. The interpolation decoder is not used during the inference phase.
To obtain a more robust prediction, we preserve eight weights of the model in
the last time of the training progress for prediction. For each snapshot, the input
images are used different flipping before being fed into the network. Finally, we
average the output of the resulting eight segmentation probability maps.

3.4 Post-processing

We replace enhancing tumor with necrosis when the volume of predicted enhanc-
ing tumor is less than the threshold to post-process our segmentation results
(The threshold is chosen for each experiment independently, depending on the
performance of BraTS 2019 validation dataset).

4 Results

The variability of a single model can be quite high. We use total five net-
works from the 5-fold cross-validation as an ensemble to predict segmentation for
BraTS 2019 validation dataset. Also, we use an ensemble of a set of 12 models,
which are trained from scratch using the entire training dataset. The best single
model is chosen from the set of 12 models.

We report the results of our approach on the BraTS 2019 validation dataset,
which contains 125 cases with unknown glioma grade and unknown segmen-
tation. All reported values are computed via the online evaluation platform
(https://ipp.cbica.upenn.edu/) for evaluation of Dice score, sensitivity, speci-
ficity and Hausdorff distance (95%). Validation set results can be found in
Table 3. The performance of the best single model is slightly better than ensem-
ble of 5-fold cross-validation. The ensemble of 12 models results in a minor
improvement compared with the best single model.

Testing set results are presented in Table 4. Our algorithm achieved the first
place out of more than 70 participating teams.

https://ipp.cbica.upenn.edu/
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Table 3. Mean Dice and Hausdorff measurements of the proposed segmentation
method on BraTS 2019 validation set. DSC - dice similarity coefficient, HD95 - Haus-
dorff distance (95%), WT - whole tumor, TC - tumor core, ET - enhancing tumor
core.

Method DSC HD95

Validation WT TC ET WT TC ET

Ensemble of 5-fold 0.90797 0.85888 0.79667 4.35413 5.69195 3.12642

Best single model 0.90819 0.86321 0.80199 4.44375 5.86201 3.20551

Ensemble of 12 models 0.90941 0.86473 0.80211 4.26398 5.43931 3.14581

Table 4. Mean Dice and Hausdorff measurements of the proposed segmentation
method on BraTS 2019 testing set. DSC - dice similarity coefficient, HD95 - Haus-
dorff distance (95%), WT - whole tumor, TC - tumor core, ET - enhancing tumor
core.

Method DSC HD95

Testing WT TC ET WT TC ET

Ensemble of 12 models 0.88796 0.83697 0.83267 4.61809 4.13071 2.65056

5 Conclusion

In this paper, we propose a two-stage cascaded U-Net. Our approach refines the
prediction through a progressive cascaded network. Experiments on the BraTS
2019 validation set demonstrate that our method can obtain very competitive
segmentation even though using single model. The testing results show that our
proposed method can achieve excellent performance, winning the first position
in the BraTS 2019 challenge segmentation task among 70+ participating teams.
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Abstract. Segmentation is a routine and crucial procedure for the treat-
ment of brain tumors. Deep learning based brain tumor segmentation
methods have achieved promising performance in recent years. However,
to pursue high segmentation accuracy, most of them require too much
memory and computation resources. Motivated by a recently proposed
partially reversible U-Net architecture that pays more attention to mem-
ory footprint, we further present a novel Memory-Efficient Cascade 3D
U-Net (MECU-Net) for brain tumor segmentation in this work, which
can achieve comparable segmentation accuracy with less memory and
computation consumption. More specifically, MECU-Net utilizes fewer
down-sampling channels to reduce the utilization of memory and com-
putation resources. To make up the accuracy loss, MECU-Net employs
multi-scale feature fusion module to enhance the feature representation
capability. Additionally, a light-weight cascade model, which resolves the
problem of small target segmentation accuracy caused by model compres-
sion to some extent, is further introduced into the segmentation network.
Finally, edge loss and weighted dice loss are combined to refine the brain
tumor segmentation results. Experiment results on BraTS 2019 valida-
tion set illuminate that MECU-Net can achieve average Dice coefficients
of 0.902, 0.824 and 0.777 on the whole tumor, tumor core and enhancing
tumor, respectively.

Keywords: Deep learning · Brian tumor segmentation ·
Memory-efficient U-Net · Cascade strategy

1 Introduction

Malignant brain tumors, especially gliomas, belong to the aggressive and danger-
ous disease that leads to death worldwide [1]. Automatic tumor segmentation
using computer technology plays an important role in assisting the diagnosis
and treatment of brain tumors. However, due to the huge difference in intensity
c© Springer Nature Switzerland AG 2020
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ranges, as well as the various size, shape, and location of tumors, it is a chal-
lenging task to automatically achieve satisfied tumor segmentation results from
brain images.

Recently, with the great success of deep learning in the medical image analy-
sis community, deep learning based brain tumor segmentation methods have also
achieved promising performance improvement. Generally speaking, current deep
learning based brain segmentation models mainly consist of patch-wise based and
fully convolution based segmentation networks. Patch-wise based segmentation
networks utilize the idea of small-scale image patches classification to segment
the brain tumor [2,3], successfully augmenting the sample size of brain images
for the training of deep networks. In order to make better use of 3D features of
MRI images, Kamnitsas et al. [4] proposed an efficient multi-scale brain tumor
segmentation network model based on 3D convolutional neural network and fully
connected conditional random fields (CRFs), which achieves the state-of-the-art
performance on several public databases. However, patch-wise architectures lack
spatial continuity and require huge storage space, leading to lower efficiency.
Fully convolution based segmentation networks segment the whole brain tumor
by the way of pixel classification, i.e., pixel-by-pixel prediction, which can largely
improve the brain tumor segmentation efficiency. The initial fully convolutional
networks (FCN) [5] is proposed for the nature image segmentation by Long et al.,
and it is quickly introduced to solve the medical image segmentation problems,
including brain tumor segmentation. On this basis, a variant of FCN models,
named U-Net [6] is further put forward, which utilizes the skip connection to
reduce the loss of feature information and improve the ability to determine global
location. Due to its light-weight and high-efficiency advantages, U-Net quickly
becomes the priority choice for the brain segmentation task. In addition, since 2D
U-Net approaches ignore 3D MRI images spatial context information, Cieck et
al. proposed a 3D U-Net [7] model to achieve higher segmentation precision. To
further improve its segmentation performance, a variety of more powerful mod-
ules (such as residual module and dense connection module [8]) and advanced
strategies (such as multi-scale fusion cascade ideology [9,10]) are injected into
the baseline model [7,11,12], which have largely promoted the development of
brain tumor segmentation methods.

However, most advanced 3D depth models consume large amounts of mem-
ory and computation resources to achieve high segmentation accuracy, and they
can only be performed on the computer/server equipped with high-performance
graphic cards (at least 16G). More recently, to reduce the memory footprint
of the existing advanced networks, Brügger et al. presented a novel partially
reversible U-Net [13], which can be performed on a computer equipped with
graphics card of 12GB capacity while achieves competitive accuracy with the
state-of-the-art networks. Motivated by the partially reversible U-Net, in this
work, we further present a novel Memory-Efficient Cascade 3D U-Net (MECU-
Net) for brain tumor segmentation, which can be run on the smaller graphics
card of 8G capacity, and evaluate the model in the brain tumor segmentation
challenge (BraTS) [14]. Experiment results show that our MECU-Net can achieve
comparable segmentation accuracy while requiring less memory and computation
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consumption. Our main contributions are concluded as follows: (1) We propose
a novel Memory-Efficient Cascade 3D U-Net (MECU-Net) for brain tumor seg-
mentation. MECU-Net largely reduces the number of down-sampling channels,
i.e., from 60, 120 to 20, 48, which makes it suitable for a smaller graphics card
of 8G capacity. (2) To make up the accuracy loss caused by the down-sampling
channel reduction, cascade strategy, and multi-scale information fusion mecha-
nism, as well as the combination of edge loss and weighted dice loss, are put
forward to alleviate the oscillation problem in model training, and these strate-
gies effectively improve the segmentation result for the small tumors. (3) Exper-
iment results on BraTS 2019 dataset illuminate that MECU-Net can achieve
competitive performance in brain tumor segmentation.

Fig. 1. Overview of the MECU-Net model. Our MECU-Net is mainly comprised of
down-sampling, multi-scale feature fusion module (MSFFM), up-sampling, cascade
strategy, and multi-loss module. It employs reversible convolution to put entire MRI
images into the model, followed by several dilated convolutions with different dilation
rates to extract various receptive field features for fusion. After the up-sampling stage,
a light-weight cascade strategy is given to improve the segmentation accuracy of small
targets. Finally, a combination of weighted dice loss and edge loss is employed for
refining the tumor segmentation results.
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2 Memory-Efficient Cascade 3D U-Net Model

Here, we mainly describe the details of the given Memory-Efficient Cascade 3D
U-Net (MECU-Net) model. Our MECU-Net model is based on Robin’s Partial
Reversible U-Net [13], i.e., a recently proposed memory-efficient U-Net, which
inherits and develops the reversible residual network [15]. MECU-Net largely
reduces the number of down-sampling channels to make it suitable for the smaller
graphics card of 8G capacity. To make up the accuracy loss caused by the down-
sampling channel reduction, multi-scale information fusion mechanism, and cas-
cade strategy, as well as the combination of edge loss and weighted dice loss,
are introduced to alleviate the oscillation problem in model training, and these
strategies effectively improve the segmentation result for the small tumors. The
overview of our MECU-Net model is shown in Fig. 1, which mainly consists of
down-sampling, multi-scale feature fusion, up-sampling, cascade strategy, and
multi-loss module. The maximum memory requirement for the initial Partial
Reversible U-Net model exists in the large-size feature map generated by the
first and second layers of the down-sampling module. Therefore, we reduce the
number of channels in the first two layers during the down-sampling stage, fur-
ther compressing the parameters of the model. In this work, the channel number
of the first down-sampling layer is reduced from 60 to 24, and that of second
layers shrinks from 120 to 48. Then, it will be suitable for a smaller graphics card
of 8G capacity. However, the compressed model has insufficient resolution ability
and edge segmentation ability for small targets. Therefore, to make up the accu-
racy loss caused by the down-sampling channel reduction, we further introduce
multi-scale information fusion mechanism and cascade strategy, as well as the
combination of edge loss and weighted dice loss, to enhance the segmentation
capacity for the small tumors, which also alleviates the oscillation problem of
model training. The following three subsections will describe the details of the
multi-scale information fusion, cascade strategy, and multi-loss module.

2.1 Multi-scale Feature Fusion Module

In the compressed U-Net feature extraction process, the feature map is grad-
ually reduced by convolution operation, and the classification information of
small targets is gradually diluted, resulting in the loss of the relevant classifi-
cation information of small targets in the bottom feature map. Meanwhile, in
the up-sampling process of U-Net, although the bottom information is gradually
enlarged to the original size step by step, the loss of information of small tar-
gets can not be restored in the upper feature map. Traditional U-Net attempts
to compensate for the loss of relevant information by directly superimposing
the same size of the original atlas, but it does not extract the classification
information of the large receptive field of small targets well. As the number of
down-sampling channels decreases, the accuracy of small target segmentation of
the compressed model decreases significantly. Therefore, we propose a multi-scale
dilated convolution operation for the original features (as shown in Fig. 2). Under
the same conditions, not only the classification information transmitted by the
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Fig. 2. Overview of the multi-scale feature fusion module. The initial information is
processed by multi-scale dilated convolution to obtain various information from multi-
ple receptive fields. The fusion strategy consists of convolutions with various dilation
rates and shortcut connections to provide richer classification information for each
pixel, which makes up for the deficiency of lacking classification information for small
tumors during the up-sampling process.

underlying features, but also the diversified classification information obtained
by multi-scale receptive field convolution for the same layer features, together
with the original feature map, are provided for the classification of small targets.
The combined feature map provides enough feature information to improve the
classification accuracy of each pixel in the small target area, thus improving the
segmentation accuracy of the small target.

2.2 Cascade Strategy

For the brain tumor images, three levels of segmentation labels have a strong
correlation with each other. The whole label, core label, and enhancing label are
mosaic in turn. It can be intuitively seen that the segmentation results of the
former stage have important guiding significance for the next stage. However,
despite its promising performance, traditional cascade strategy not only intro-
duces enormous model complexity and computational cost but also neglects the
relevance among tasks. Therefore, we propose a light-weight cascade operation
for the MECU-Net. We divide the segmentation operation into three parts and
integrates the three tasks into one network in order. Using the segmentation
results of the previous stage, we enhance the feature map and realize the atten-
tion mechanism by focusing on the target area. Moreover, each task owns an
independent information extract block, a classification, and a loss layer, respec-
tively. At the same time, most of the other parameters are shared to reduce the
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complexity of the model. Through a small amount of extra computation, the pro-
gressive attention of the model to small targets is realized, and the segmentation
ability of the model to small targets is further improved.

2.3 Edge Loss and Weighted Dice Loss

Dice loss is effective for the brain tumor segmentation task. However, Dice loss is
too sensitive to small target errors during the model training process. In the case
where the pixel segmentation errors are the same, the fluctuation caused by Dice
loss of large targets is much smaller than that caused by small targets. Although
this phenomenon is conducive to the model’s attention to small targets, the train-
ing of the model results will lead to instability of model loss and high volatility
of training convergence. Especially in the later period of the model training, a
slight mistake will lead to sharp fluctuations of the loss function, causing the
model to oscillate during the training process. Therefore, according to the focal
loss, we first add the weight information related to the total number of target
pixels in the Dice loss. Meanwhile, we utilize the weighted dice loss function
to stabilize the later process of the model training. In addition, the accuracy
of correlation can be compensated by supplementary supervision of edge pix-
els in three segmentation regions, which could partially resolve the problem of
attention loss of small targets. Inspired by this, we realize the 3D edge loss to
focus on edge information of small targets, further improving the segmentation
accuracy. Based on the above ideas, the multi-loss function formula can be given
as follows:

L = λ1 · Ldice + λ2 · Ledge + λ3 · Lmask (1)

where Lmask means the average binary cross-entropy loss, Ldice represents the
added weighted Dice loss to optimize segmentation branch, Ledge represents the
loss which focuses on the edge information, respectively. λi (1 ≤ i ≤ 3) is the
hyper-parameter that controls the importance of each loss.

3 Experiments and Results

3.1 Experiment Dataset

The brain tumor MRI dataset adopted in this work is BraTS 2019 dataset,
which is used for a brain tumor image segmentation challenge to compare the
state-of-the-art methods at the MICCAI conference. The BraTS 2019 training
dataset consists of 259 cases of high-grade gliomas (HGG) and 76 cases of low-
grade gliomas (LGG), while the validation dataset includes 125 cases with hidden
ground-truth. There are four sequence modalities, i.e., Flair, T1, T1ce and T2,
which have already been co-registered, for each sample. According to the manual
segmentation results given by the experts [16–18], each ground-truth for brain
tumors contains four different regions, which are marked with three labels: label
1 for necrosis and non-enhancing, label 2 for edema, and label 4 for enhancing
tumor. However, we evaluated the following three categories: whole tumor (all
three labels), tumor core (label 1, 4), and the enhancing tumor (label 4) to
construct segmentation results.
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3.2 Experiment Settings

For pre-processing, we normalize each brain image individually with zero mean
and unit variance (based on non-zero voxels only) to avoid the initial bias of the
network towards one modality. Meanwhile, all of the images are cropped into
the same size of 160 × 192 × 160 pixels, which not only satisfies the limitation
of machine performance but also ensures that each image contains the whole
tumor area. Additionally, data enhancement is implemented by using diverse
data augmentation strategies such as random rotation, random scaling, random
elastic deformations, random flips, and small intensity shift. Due to the par-
ticularity of brain images, we keep the Z-axis constant, rotating, scaling, and
elastically deforming only on the planes which are perpendicular to the z-axis.
In our experiments, we utilize the Adam optimizer with an initial learning rate
of 0.0001 is utilized. The learning rate is decreased by a factor of 5 after 35, 55
and 75 epochs, and the batch size is set to 1. Our model is implemented using the
PyTorch deep learning framework on an NVIDIA GeForce GTX 1080Ti GPU
with 11 GB of memory.

3.3 Evaluation Metrics

To evaluate the memory-efficient cascade 3D U-Net model, we utilize the offi-
cial evaluation metrics given by BraTS 2019, including Dice score, Sensitivity,
Specificity and Hausdorff distance defined as follows:

Dice =
2TP

FP + 2TP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Haus(T, P ) = max {supt∈T infp∈P d (t, p) , supp∈P inft∈T d (t, p)} (5)

where True Positive (TP), False Positive (FP), True Negative (TN) and False
Negative (FN) denote the number of false negative, true negative, true positive,
and false positive voxels. t and p denote the pixels in the ground-truth regions
T and the predicted regions P , respectively. d (t, p) is the function that com-
putes the distance between points t and p. Dice, Sensitivity and Specificity mea-
sure voxel-wise overlap between the predicted results and the ground-truth. The
Hausdorff distance calculates the distance between predicted segmented regions
and the ground-truth regions. Besides, Hausdorff95 is a metric of Hausdorff dis-
tance to measure the 95% quantile of the surface distance. Since Dice is the
overall evaluation metric for the entire BraTS challenges, we adopt it as the key
metric for evaluation consistently across all the challenges.
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3.4 Experiment Results

We first train and test our proposed memory-efficient cascade 3D U-Net (MECU-
Net) approach on the BraTS 2019 training dataset. Then, our model is evaluated
on BraTS 2019 validation dataset and proves the effectiveness of the method.
Finally, we carry out a series of ablation studies to demonstrate the validity of
each module proposed in this paper.

Results on BraTS 2019 Training Dataset. We employ a random data split
of 80% VS. 20% from the BraTS 2019 training dataset for training and test-
ing, respectively. Therefore, 268 cases are used for training and the remained 67
cases are considered as test data, and the evaluation results of MECU-Net can
be reported in Table 1. In addition to dice, we also given three other evaluation
metrics, i.e., Sensitivity, Specificity, and Hausdorff95, required by the competi-
tion. As shown in Table 1, MECU-Net can achieve the dice score of 0.890, 0.811
and 0.765 on the whole tumor, core tumor and enhancing tumor, respectively.

Table 1. Evaluation results on BraTS 2019 training dataset

Tumor type Dice Sensitivity Specificity Hausdorff95

Enhancing 0.765 0.769 0.997 5.199

Whole 0.890 0.8980 0.994 5.381

Core 0.811 0.816 0.994 7.243

Additionally, we also analyze the segmentation results of the model and
ground-truth by visual inspection, which is shown in Fig. 3. The six columns
from left to right of image show not only one axial slice of MRI acquired in
Flair, T1, T1ce and T2 modality which are used as inputs of model, but also
ground truth (GT) and the prediction labels, respectively. As can be seen, the
segmentation results of our proposed model are sensibly similar to Ground Truth.
While labeling the pixel very well in the area with enhancing tag, the model can
judge the pixels correctly in the area without enhancing label, thereby reducing
False Positive (FP).

Results on BraTS 2019 Validation Dataset. In order to participate in the
BraTS 2019 competition, all samples of the training dataset are employed for
model training in this experiment. The evaluation results of MECU-Net achieved
on the BraTS 2019 Validation dataset are tabulated in Table 2. Quantitatively,
we achieve Dice scores of 0.9018, 0.8244 and 0.7765 for the whole tumor, core
tumor and enhancing tumor, respectively. In addition, the table also lists the
mean, standard deviation, median and 25th and 75th percentile of each met-
ric. The validation dataset results are automatically generated by the evaluation
mechanism provided by the official BraTS 2019 online website. It should be noted
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Fig. 3. Example segmentation results on the BraTS 2019 Training Dataset. From left
to right, show the axial slice of MRI images in Flair, T1, T1ce and T2 modality, ground
truth (GT) and the prediction labels. Among, enhancing tumor (yellow), edema (green)
and necrotic and non-enhancing tumor (red). (Color figure online)

that a slight increase in performance on the validation dataset than the train-
ing dataset. The reason for this performance can be explained by the increasing
number of training subjects. As the number of training subjects increases, the
feature extraction ability of the model is improved, which improved the segmen-
tation accuracy. Another possible reason is that our artificial split of training
dataset brings greater data distribution differences than that between the vali-
dation dataset and the training dataset.

Ablation Studies on BraTS 2019 Validation Dataset. We also perform
the ablation experiments on BraTS 2019 Validation Dataset to verify the effec-
tiveness of the three embedded modules, whose results can be shown in Table 3.
Here, the Partial Reversible U-Net is taken as the baseline model, which reduces
the number of down-sampling channels at the first and second stages. On this
basis, we further perform an experiment with improved loss function, and this
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Table 2. Evaluation results on BraTS 2019 validation dataset

Metrics Tumor type Mean StdDev Median 25 quantile 75 quantile

Dice Enhancing 0.777 0.257 0.862 0.793 0.906

Whole 0.902 0.065 0.918 0.890 0.943

Core 0.824 0.175 0.892 0.781 0.935

Sensitivity Enhancing 0.779 0.269 0.860 0.758 0.933

Whole 0.908 0.076 0.930 0.885 0.957

Core 0.837 0.173 0.893 0.789 0.952

Specificity Enhancing 0.998 0.003 0.999 0.998 0.999

Whole 0.995 0.005 0.996 0.993 0.998

Core 0.997 0.005 0.999 0.996 0.999

Hausdorff95 Enhancing 5.282 9.951 2.236 1.414 3.535

Whole 5.412 9.397 3.162 2.236 5.000

Core 7.263 11.849 3.606 1.799 6.633

Table 3. Ablation experiment results on BraTS 2019 validation dataset

Method Dice

Enhancing Whole Core

Partial Reversible U-Net (Baseline) 0.757 0.895 0.808

Baseline + Combined loss 0.771 0.898 0.811

Baseline + Multi-scale Feature Fusion Module 0.772 0.900 0.817

Baseline + Cascade Strategy 0.766 0.900 0.821

MECU-Net 0.777 0.902 0.824

model is represented as Baseline + Combined loss, where combined loss stands
for the combination of edge-loss and weighted dice loss. Note that the combined
loss module gains 1.4% segmentation accuracy over the baseline model on the
enhancing tumor. Multi-Scale Feature Fusion Module (MSFFM) represents a
module that can extract different scale feature information from lower features
through several convolution kernels with different sizes. We adopt the module
before the fusion operation of each original feature and the upper sample fea-
ture. The experiments prove that the Baseline+MSFFM model outperforms the
baseline with 1.5%, 0.5% and 0.9% on enhancing tumor, whole tumor, and core
tumor, respectively, showing its well effectiveness for brain tumor segmentation
task. Moreover, Cascade Strategy refers to the model which transfers the segmen-
tation result of the whole label to the next task of enhancing label classification.
This module achieves an average dice score of 0.9% over the baseline model. In
particular, this module gains 1.3% accuracy improvement on the core tumor.
Finally, based on the combination of the three modules, the MECU-Net obtains
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the optimal results on all of the three tumors, which outperforms the baseline
module with a large margin.

4 Conclusion

In this work, we propose a novel Memory-Efficient Cascade 3D U-Net (MECU-
Net) for automatic brain tumor segmentation. Our pipeline addresses some chal-
lenges of large memory requirement of traditional high-precision segmentation
model and small target segmentation accuracy loss caused by model compression.
By introducing the multi-scale information fusion mechanism, cascade strategy,
as well as the combination of edge loss and weighted dice loss, MECU-Net can
achieve comparable segmentation accuracy with less memory footprint.
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Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–
517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5 44

12. Bakas, S., et al.: Identifying the best machine learning algorithms for brain
tumor segmentation, progression assessment, and overall survival prediction in the
BRATS challenge, arXiv preprint arXiv:1811.02629 (2018)
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Abstract. Gliomas are the most prevalent primary malignant brain
tumors in adults. Until now an accurate and reliable method to predict
patient survival time based on medical imaging and meta-information
has not been developed [3]. Therefore, the survival time prediction task
was introduced to the Multimodal Brain Tumor Segmentation Challenge
(BraTS) to facilitate research in survival time prediction.

Here we present our submissions to the BraTS survival challenge based
on classical statistical models to which we feed the provided metadata
as features. We intentionally ignore the available image information to
explore how patient survival can be predicted purely by metadata. We
achieve our best accuracy on the validation set using a simple median
regression model taking only patient age into account. We suggest using
our model as a baseline to benchmark the added predictive value of
sophisticated features for survival time prediction.

Keywords: Survival time prediction · Glioma · Glioblastoma · HGG ·
LGG · Brain tumor · Benchmark · BraTS · Medical imaging · MRI

1 Introduction

Accurate estimation of a patient’s prognosis is at the heart of clinical decision-
making, both for clinical trials as well as daily clinical care.

Survival time prediction and statistics are frequently requested not only by
terminally ill patients, but also by the general public. Survival time prognosis is
considered as one of the most important factors in palliative medicine for three
major reasons [22]:
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1. Necessity for medical law and insurance decisions, e.g. in the United States
of America two independent doctors have to agree on a survival prognosis to
decide on hospice eligibility.

2. Survival prognosis is critical for medical decision making, which weights the
risks of medical procedures against expected benefits. For instance, in pain
management, it can be beneficial to deliver addictive and potentially harm-
ful doses of antidepressants and neurolytic agents to patients with short life
expectancy.

3. Lifetime prognosis enables doctors to assist patients in making critical life
decisions [18].

Considering the relevance of reliable survival time predictions, it is particu-
larly striking how statistics reveal that clinicians are often unsuccessful in pre-
dicting patient survival [6]. Many studies have shown this issue, e.g. [17] found
that about 50% of survival predictions for patients with lung cancer are erro-
neous. Specifically, the patients did not survive half of the predicted time frame
or survived more than double the predicted time. Most clinicians’ predictions of
survival time are overly optimistic [6]. An important finding is that, the longer
the patient-doctor relationship exists, the larger the optimism bias is within
the doctor’s survival prognosis [4]. This indicates that human subjectivity is a
major source of error, besides the difficulties for clinicians to integrate prog-
nostic information from multiple sources (e.g. demographic, genomic or imaging
information).

These inconsistencies and relevant bias in clinicians survival prediction
demand more quantitative approaches such as statistical or learning based mod-
els to assist in creating more realistic survival predictions. This has been empir-
ically studied in the literature for various terminal diseases, e.g. by Henderson
et al. for patients with lung cell cancer, using statistical models [8]. Recently,
learning based methods exploring image information have proven to outperform
medical doctors in survival time predictions for a multitude of diseases [10,13].

The Brain Tumor Segmentation Challenge (BraTS) focuses on a specific type
of brain neoplasms called gliomas. Gliomas are one of the most prevalent brain
tumors in adults and can be roughly distinguished in two major classes: aggres-
sive high-grade gliomas, and low-grade gliomas. The life expectancy of a patient
with a high-grade glioma has a median remaining life span of fewer than two
years, while for low-grade gliomas, it is more than five years [16]. The survival
prediction task was introduced to the BraTS challenge to crowd-source the devel-
opment of an accurate and generalizable prediction model [1–3,15].

The BraTS dataset was acquired at multiple clinical centers, therefore pre-
senting several real-world challenges. For instance, scans are often acquired using
different imaging protocols, and follow-up scans are acquired at varying time
points. These inconsistencies, among others, pose severe problems to clinicians
as well as automated diagnostic approaches.
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In the BraTS survival challenge, the images as well as corresponding meta-
data are given to the participants to predict patient survival. Most contributions
to the challenge explore image information using learning models, e.g. U-Net [3].
However, in the BraTS2018 survival challenge, a simple linear regression consid-
ering only patient age and simple tumor region sizes as features achieved third
place [19,20]. This could be attributed to a lack of larger and diverse datasets,
which could be resolved in future challenges by extending the data across clinics
or using recently successful generative approaches [7,14]. Another methodologi-
cal reason could be the insufficient structure of extracted imaging features and
contradicting feature interpretation.

Inspired by Weninger et al. [19], we systematically explored how far one can
get using only metadata for survival time prediction. We intentionally disregard
image information and instead explore a multitude of classical statistical models
and metadata based features.

2 Methods

2.1 Models

As a baseline, we implemented simple ordinary least squares (OLS) linear models
[5]. Additionally, we fitted linear model with three orthogonal polynomials [9] and
quantile regression models [11]. We computed p-values and confidence intervals
for the model coefficients and evaluated the goodness of fit of the models by
adjusted R2 for the linear models and the quantile models by V, as suggested
by Koenker respectively [12].

2.2 Features

We deliberately ignored image information and instead focused on primitive
features extracted from the patients’ metadata. Besides the patients’ age we
included resection status [21] and the clinical institution (extracted from the
patient ID e.g. “CBICA”) as predictors for our models. The clinical institu-
tion feature differentiates regional factors such as access to healthcare, different
population etc. that might affect survival time.

2.3 Dataset

As the test set includes only patients with gross total resection (GTR), we eval-
uated our models’ performance on the GTR subset. Additionally, we also took
patients with only partial tumor resections into account to find out whether we
can retrieve additional information from these cases.
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Fig. 1. Scatterplot of patient age versus survival time (Pearson r : −0.486), rep-
resenting the space we fit our models to in the spirit of this XKCD comic
[https://xkcd.com/2048/]. The dashed lines represent the thresholds to distinguish
between short, medium and long-term survivors. The solid cyan line illustrates predic-
tions of our proposed median regression model based on patient age.

3 Results

We designed our models on the training dataset considering measures of goodness
of fit and p-values for model coefficients. Promising model configurations were
evaluated on the validation dataset via the CBICA’s Image Processing Portal
(IPP).

3.1 Evaluation on the Training Set

The simple ordinary least squares (OLS) model outperformed the polynomial
models on the training set, as reflected by higher values of adjusted R2, see
Table 1. Resection status and the clinical institution failed to add significant
predictive value. These findings were also reflected in the analysis for the quantile
models. For all models we achieved a much better fit on the subset of patients
with gross total resection.

3.2 Evaluation on the Validation Set

Next, we evaluated on the validation set of 29 patients using the CBICA’s Image
Processing Portal (IPP). For the BraTS survival challenge, the predicted sur-
vival times are mainly evaluated by the accuracy of the survival prediction and
secondarily by the metrics denoted in Table 2. Accuracy is defined as classifying

https://xkcd.com/2048/
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Table 1. Result table comparing the goodness of fit on the training set. We calculate
the adjusted coefficient of determination R2 for the OLS and polynomial models and
V for the median model. The quantile model cannot be directly compared to the other
models as the considered coefficients of determination (R2 and V) are not the same as
introduced by [12].

Model R2 all data R2 GTR only V all data V GTR only

OLS model age 0.129 0.229 - -

age, resec., inst 0.147 - - -

age, inst 0.129 0.243 - -

Polyn. model age 0.122 0.220 - -

Median model age - - 0.068 0.114

age, resec., inst - - 0.099 0.121

age, inst - - 0.072 0.114

patients correctly in one of three survival time bins. Three bins are defined as
short-term survivors with a remaining survival time of fewer than ten months,
mid-term survivors with a remaining survival time between ten and 15 months
and long-term survivors with more than 15 months of remaining survival time.
A glance at the scatterplot Fig. 1 reveals that these bins cannot be derived intu-
itively from the data and the accuracy-based challenge scoring might potentially
lead to the paradox situation where a better fitting model performs worse in the
classification-based challenge.

On the validation set, we find that the quantile models using only age as
predictors achieve the best accuracy (0.552). We attribute this to the median
models’ decreased susceptibility to outliers, especially given the low number of
patients in the training and validation dataset. However, the metrics for the sur-
vival time predictions in days are differing, for example, the polynomial model
using age only as a predictor has the lowest mean squared error and the Spear-
man R is identical for five different solutions, see Table 2.

Given that we achieved a much better fit on the GTR subset for the training
set and because features other than age fail to add predictive value reliably, we
selected a median model trained solely on the GTR subset and taking only age
as an input for evaluation on the test set. A positive side effect of this approach
is the simple deployment in clinical and scientific practice. The predictions of
this median model are illustrated in scatterplot 1.

Comparison to Other Challenge Participants. During the course of the
challenge, we also compared our best performing model to the other participants
on the validation set, knowing that most participating teams also consider image
information. We monitored the leader board during the validation phase and
found that our approach with an accuracy of 0.552 is within the best third
of submissions. When comparing the metrics for fitting days of survival time,
e.g. MSE, to the other submissions with equal accuracy, we found that our
model shows solid performance. Overall, the total accuracy of our survival time



A Baseline for Predicting Glioblastoma Patient Survival Time 259

Table 2. Result table for the performance of our models on the validation set. Scores
as calculated in the BRATS survival challenge leader board. Here the features used are
encoded as age, resection status (resec.) and institution (inst.). The evaluation metrics
for each submission (Subm.) are the accuracy, the mean squared error (MSE), median
squared error (medianSE), standard squared error (stdSE) and SpearmanR.

Model Accuracy MSE medianSE stdSE SpearmanR

OLS model age; GTR only 0.448 90127.4 36773.6 123765.8 0.265

age, inst.; GTR only 0.345 111571.2 40332.8 175070.8 0.165

age, inst., resec.; all 0.310 105081.9 35523.3 161929.7 0.155

Polyn. model age; all 0.448 90383.3 30953.2 131065.2 0.265

age; GTR only 0.448 88113.3 32745.4 136508.8 0.265

Median model age; all 0.552 101877.8 26958.2 116475.5 0.265

age; GTR only 0.552 93572.3 30927.6 139847.1 0.265

age, inst., resec.; all 0.483 96845.3 44466.3 155227.5 0.263

age, inst.; GTR only 0.276 118450.0 54195.3 188132.4 0.184

predictions, but also of the best performing survival prediction, leaves much
room for improvement. Even the best performing algorithms fail in more than
one third of predictions. For perspective it is interesting to consider that last year
the top performing algorithm used a U-Net to extract advanced image features.
This shows that even the state-of-the-art in machine learning applied to this
problem does not achieve a reliable survival prediction [3].

3.3 Evaluation on the Test Set

Finally, we consider our scores on the test set of 107 patients. We find a slight
drop in performance with an accuracy of 0.486, a MSE of 419660.8, a medianSE
53177.5, a stdSE 1255102.9 and a SpearmanR of 0.358. Accuracy and medianSE
are similar to our performance on the validation set. While the accuracy and
medianSE scores remain comparable to the performance on the training and
validation set, the outlier sensitive MSE and stdSE are substantially worse. This
suggests that our drop in performance is mostly driven by statistical outliers.

4 Conclusion

We implemented simple OLS models, polynomial models and median regres-
sion models and experimented with different metadata-based predictor variables
intentionally disregarding all image features. A simple median regression using
only patient age as an input performed best to predict survival time for glioblas-
toma patients with gross total resection. Our model can serve as a baseline to
evaluate the predictive value of sophisticated features.
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Abstract. In this work, we develop an attention convolutional neu-
ral network (CNN) to segment brain tumors from Magnetic Reso-
nance Images (MRI). Further, we predict the survival rate using various
machine learning methods. We adopt a 3D UNet architecture and inte-
grate channel and spatial attention with the decoder network to perform
segmentation. For survival prediction, we extract some novel radiomic
features based on geometry, location, the shape of the segmented tumor
and combine them with clinical information to estimate the survival
duration for each patient. We also perform extensive experiments to show
the effect of each feature for overall survival (OS) prediction. The exper-
imental results infer that radiomic features such as histogram, location,
and shape of the necrosis region and clinical features like age are the
most critical parameters to estimate the OS.

Keywords: Glioma · Tumor segmentation · Survival estimation ·
Attention · Regression

1 Introduction

Gliomas develop from glial cells, are the most common brain tumor with the
highest mortality rate. The mean occurrence of gliomas is close to 190,000 cases
annually in worldwide [4]. The average survival time of the glioma patients
remains at approximately 12 months [6], and nearly 90% of patients are dead
after 24 months of surgical resection [15]. Early detection, automatic delineation,
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and volume estimation are vital tasks for survival prediction and treatment plan-
ning. However, gliomas are often difficult to localize and delineate with conven-
tional manual segmentation due to their high variation of shape, location, and
appearance. In addition, close supervision from a human expert is required to
manually annotate the segmentation of tumor tissue, which is time-consuming
and tedious. Automatic segmentation and survival rate prediction models will
help the diagnosis and treatment to be much accurate and faster.

In recent years, deep learning has dominated most of the tasks like segmenta-
tion [9,11,12], tracking [8,10], and classification [13] in medical image analysis.
Many studies are for brain tumor segmentation, and survival prediction uti-
lizes deep learning techniques, especially convolutional neural network (CNN).
In this paper, we design a 3D attention based UNet [19] for brain tumor seg-
mentation from MR images. To predict the survival days for each patient, we
extract shape and geometrical features and combine them with clinical features
and train to analyze the performance of various regression techniques like Sup-
port Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest
and XGBoost.

2 Methods

2.1 Segmentation

Fig. 1. Our proposed segmentation architecture 3D attention UNet by composing of
sequential channel and spatial attention mechanism.

We adopt the UNet [19] architecture and convert it to 3D and integrate the 3D
attention module with the decoder blocks. Further, we propose a 3D attention
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model with decoder blocks to enhance segmentation prediction [7]. Our proposed
attention module consists of a channel and spatial attention in parallel with skip
connection. Nonetheless, fusing parallelly exciting features may create inconsis-
tency in feature learning. Integrating skip connection reduces this redundancy
and sparsity of the network, as illustrated in Fig. 2. The overall architecture is
illustrated in Fig. 1.

C 
W 

H 

1x1xC 

HxWx1 

1x1xC 
Favg.pool(.)

FC
Fsigmoid(.)

Fsigmoid(.)FConv-1x1(.)

Fig. 2. Visual representation of the 3D spatial and channel attention with skip
connection.

3D Skip Attention Unit. Spatial and channel attention enhances the qual-
ity of encoding throughout its feature hierarchy. Therefore we introduce 3D
attention units to generate 3D spatial and channel attention by exploiting 3D
inter-spatial and inter-channel feature relationships (as illustrated in Fig. 2). To
obtain the 3D attention map, we first perform a 1× 1×C convolution to aggre-
gate all spatial feature correlations into the H×W× 1 dimension. In parallel, we
perform average pooling and feed it to the neural network to get the 1× 1×C
channel correlation. The encoded 3D attention map encodes rich spatial and
channel attention. Further, we fuse skip-connection to reduce sparsity and singu-
larity caused by these parallel excitations. Moreover, integrating skip connection
makes the learning more generic and enhancing the segmentation prediction.

2.2 Survival Prediction

Feature Extraction. Features that give information about the geometry, frac-
tal nature of the tumor hold an important role in the number of days of survival
as in our previous work [9]. The combination of features used in [9] produces
the best accuracy for BraTS 2018 overall survival (OS) prediction task for the
validation task. However, due to over-fitting of the data on the regression model,
the method failed during the BraTS 2019 test phase. Therefore, the same com-
bination of features is used in this work improvising the learning methods. The
first axis, second axis, and third axis coordinates and lengths are extracted as
geometrical features. In addition, centroid coordinates, eigenvalues, meridional
and equatorial eccentricity, fractal dimensions, histogram features of the image
including entropy, skewness, and kurtosis are also extracted for necrosis, tumor
core, and whole tumor. All the features are normalized to 0–1 range to avoid the
magnitude differences.
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Feature Selection. To optimize the regression model prediction, we need to
feed the model with the most decisive features for survival prediction. Thus, we
explore recursive feature elimination (RFE) for feature ranking. The core idea
of this method is to obtain the most significant features. The number of features
is increased one by one to find the optimum number of features, which involves
mostly for the overall survival (OS) prediction task.

Regression Model. We utilize the state-of-art XGBoost regression model [5]
on the selected features, to predict the overall survival (OS). We tune the hyper-
parameters such as maximum tree depth, learning rate, the degree of verbosity,
L1, and L2 regularization terms on weights to obtain the best performing model.
As L1 and L2 terms control the sparsity and over-fitting, the utilization of regu-
larization terms is an advantage in regression tasks. We also apply several other
machine learning tools that are used commonly for regression tasks. For example,
multi-layer perceptron (MLP), support vector machine (SVM) [21] and random
forest (RF) [14].

3 Experiments

3.1 Dataset

Brain tumor dataset of BraTS 2019 [1–3,16] is used to conduct all the experi-
ments in work. The train set of BraTS 2019 consists of 335 cases with high and
low-grade glioma of 259 and 76, respectively. There are 125 and 166 cases in the
validation and test set, respectively. Each case contains MRI images of 4 modali-
ties - a) native (T1) b) post-contrast T1-weighted (T1Gd), c) T2-weighted (T2),
and d) T2 Fluid Attenuated Inversion Recovery (T2-FLAIR). The voxel size of
the modality is 240× 240× 155. There is also a segmentation annotation in the
train set where 3 regions are labels as 1, 3, and 4 pixels values. The annotated
labels denote the necrotic and non-enhancing tumor core (NCR/NET: 1), the
peritumoral edema (ED: 2), and GD-enhancing tumor (ET: 4).

3.2 Implementation Details

Our model is trained using Pytorch [18] deep learning framework. The learning
rate and weight decay are adopted as 0.00015 and 0.005, respectively. We use
the ADAM optimizer to train the model. Two NVIDIA GTX 1080 Ti 12 GB
GPUs are exploited to conduct all the experiments in this work.

As a model input, we use the 3D voxel in 4 available modalities by cropping
the brain region. The study [17] utilizes the 3D data of 128× 128× 128 to fit
the GPU memory and achieves the best accuracy in BraTS 2018 challenge. We
apply a random crop of 128× 192× 192 and mean normalization inside the data
loader to prepare our model input.
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4 Results

To evaluate our model prediction, we submit the model prediction into the BraTS
2019 portal and obtain several measurement metrics such as Dice, Hausdorff,
Sensitivity, and Specificity. The performances of the BraTS 2019 validation set
are demonstrated in Table 1. The visualization of the validation set prediction is

   Flair T1       T1ce Ground-Truth T2 Prediction 

Fig. 3. Flair, T1, T1ce, and T2 modalities of the brain tumor visualized with the
Ground-Truth and Predicted segmentation of tumor sub-regions for BraTS 2019 cross-
validation dataset. Red label: Necrosis, yellow label: Edema and Green label: Edema.
(Color figure online)

Fig. 4. Performance comparison between our proposed model 3D attention UNet and
original model 3D UNet.
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illustrated in Fig. 3. The performance graph of our proposed 3D attention UNet
and original 3D UNet is plotted in Fig. 4. It is clearly shown that 3D attention
UNet outperforms the original model for all the regions such as ET, WT, and
TC.

The quantitative results for the BraTS 2019 test set are showed in Table 2.
In Fig. 5, we can infer the prediction of our model for the BraTS 2019 testing
dataset.

Table 1. Dice, Hausdorff, Sensitivity, and Specificity metrics evaluation of BraTS 2019
validation set for segmentation task.

Dice Hausdorff Sensitivity Specificity

ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.704 0.898 0.792 7.05 6.29 8.76 0.751 0.900 0.816 0.998 0.994 0.996

StdDev 0.311 0.070 0.190 13.09 11.14 13.95 0.284 0.086 0.191 0.003 0.005 0.007

Median 0.835 0.917 0.868 2.23 3.31 4.24 0.859 0.926 0.894 0.999 0.996 0.998

Flair T1 T1ce T2 Prediction

Fig. 5. Flair, T1, T1ce and T2 modalities of the brain tumor visualized with the
Ground-Truth and Predicted segmentation of tumor sub-regions for BraTS 2019 testing
dataset. The annotation color can be interpreted as red - necrosis, yellow - enhance
tumor, and green - edema. (Color figure online)
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Table 2. Dice and Hausdorff metrics evaluation of BraTS 2019 testing set for segmen-
tation task.

Dice Hausdorff

ET WT TC ET WC TC

Mean 0.7780 0.8689 0.7771 3.6730 7.3071 6.8196

StdDev 0.2111 0.1496 0.2873 6.1930 13.6302 11.3926

Median 0.8389 0.9130 0.8949 2.0000 3.6055 3.08114

Table 3. Performance comparison of SVM, XGBoost, MLP and Random Forest (RF)
on validation set for overall survival prediction. MSE and stdSE denotes as the mean
square error and standard deviation of the predicted survival days.

Method Accuracy MSE MedianSE stdSE

XGBoost [5] 42.86% 110012.835 38444.333 207273.871

MLP [20] 41.4% 102839.036 49823 138563.601

Random Forest [14] 35.6% 268310.586 58369.883 12603.182

SVM [21] 32.9% 107569.325 72686.271 106573.219

Table 4. Quantitative results for XGBoost based survival prediction on the BraTS19
validation and test dataset

Dataset Cases Accuracy MSE MedianSE stdSE SpearmanR

Valid 94 48.3% 127478.649 35101.147 211645.67 0.187

Test 107 38.3% 417633.26 68150.079 1215799.813 0.238

4.1 Survival Prediction

Several state-of-the-art regression models are used to estimate the survival rate in
our study. There are 125 cases in the validation set, but only 29 anonymous cases
are chosen to validate the model in BraTS 2019 evaluation portal. We have done
4-fold cross-validation to evaluate the regression model on the training dataset.
Table 3 shows the performance comparison among all the models. We observe
that XGBoost outperforms all other regression models with the highest accu-
racy where MLP achieves the lowest MSE. We select XGBoost to evaluate the
validation and test set by considering performance. Table 4 shows the XGBoost
OS performance on BraTS 2019 validation and test dataset.
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Fig. 6. Bland Altman plot obtained from the training cross-validation results of overall
survival prediction model (a) Bland Altman plot obtained for all the extracted features.
This gives a mean difference of 10.75 days. (b) Bland Altman plot obtained for the
selected 14 features. This gives a mean difference of 5.95 days.

5 Discussion

The results infer that our 3D attention UNet produces better accuracy than
the original 3D UNet. Especially, the prediction of tumor core boosts up in our
model (as shown in Fig. 4), which is a very important region to define tumor
prognosis. To estimate the OS, we exploit 4 different regression models where
XGBoost outperforms in terms of accuracy. To design an efficient model, we
select the 14 most important features and train the models. A Bland Altman
plot in Fig. 6 (a and b) represents the distribution of regression output for all
extracted features and 14 selected features. The mean difference between the
ground truth and the predicted survival rate is almost half (5.93 days) for the
selected features comparing to all features.

Figure 7 demonstrate the importance of the selected features for the model
performance. SHAP (SHapley Additive exPlanations) analysis, based on game
theory, is an approach to explain the output of tree ensemble methods such
as XGBoost. The red color represents the high feature values, and blue repre-
sents the low values. The y-axis of the plot shows the 14 features selected for our
experiments. We can infer that age has the highest contribution to model perfor-
mance. In addition, the histogram of necrosis, eigenvalue, whole tumor volume,
and 2nd axis length of the tumor voxel are some of the significant features that
contributed to predicting OS. Figure 8 shows the regression plot of the ground
truth and the prediction of the model.
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Fig. 7. Effect of the features for the outcome of the model. The red color represents the
high feature values, and blue represents the low values to determine the significance of
the features in model prediction. (Color figure online)
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Fig. 8. Regression scatter plot for the predicted overall survival and ground truth
overall survival in days.

6 Conclusion

In this paper, we present a segmentation and survival prediction model for auto-
matic brain tumor prognosis using MRI. We adopt UNet and integrate the 3D
attention technique into a novel way to capture the significant features in model
learning. We also extract many novel geometric and shape features to estimate
the survival days using the regression model. We observe that the location, shape,
and size of the necrosis region is the most significant parameters in glioma prog-
nosis estimation.
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Abstract. Semantic segmentation plays an important role in the pre-
vention, diagnosis and treatment of brain glioma. In this paper, we pro-
pose a dense channels 2D U-net segmentation model with residual unit
and feature pyramid unit. The main difference compared with other
U-net models is that the number of bottom feature components is
increased, so that the network can learn more abundant patterns. We
also develop a multiple feature extraction network model to extract rich
and diverse features, which is conducive to segmentation. Finally, we
employ decision tree regression model to predict patient overall survival
by the different texture, shape and first-order features extracted from
BraTS 2019 dataset.

Keywords: Brain tumor segmentation · 2D U-net · Dense channels ·
Multiple feature extraction · Feature pyramid

1 Introduction

The most primary malignant brain tumor is gliomas with different histological
sub-regions including edema, necrotic core, enhancing and non-enhancing tumor
core [1–5]. Usually, multi-modal MRI scans are used to detect the various sub-
regions of gliomas by different intensity distribution [1–5]. Therefore, how to
segment the multi-modal MRI of gliomas automatically becomes an important
clinical solution for tumor prevention, diagnosis, and treatment.

VGG [6], FCN [7] and U-net [8] are commonly used methods for medical
image segmentation. U-net is the most frequently used method for medical image
segmentation. The typical characteristic of U-net network is that its structure is
U-symmetrical, the left side is the encoder, and the right side is the decoder [8].
Another characteristic is that each convolution layer of U-net network encoder
will concatenate to the upsample layer of the corresponding decoder, so that the
resulting feature map contains not only features of high-level, but also features
of low-level, then it achieves the integration of features under different scales, by
retaining the location information, to improve the segmentation performance [8].

c© Springer Nature Switzerland AG 2020
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In practice, the number of medical images training samples is less and the
scanning position and number of slices will be different, so the 2D segmentation
model is undoubtedly more flexible in the real application. In this paper, we
propose a dense channels 2D U-net model, as an extension of 2D U-net inte-
grating the idea of feature pyramid network [9,10] and residual network [11]. By
increasing the number of channels, the segmentation performance is improved.
In order to conserve computational resources and extract more diverse features,
based on dense channels 2D U-net model, we develop a multiple feature extrac-
tion network to segment the multi-modal MRI scans of brain tumor. Finally,
by the different texture, shape and first-order features extracted from BraTS
2019 dataset, we employ decision tree regression model to predict patient overall
survival.

2 Segmentation Methods

2.1 Dense Channels 2D U-net Model

2D U-net model is the most commonly used model in medical image segmen-
tation, and its segmentation accuracy is higher than other traditional models.
2D U-net model’s unique skip connection structure enables it to obtain location
information of low-level features, which is conducive to segmentation [8]. How-
ever, the segmentation performance of 2D U-net model can be improved because
the details of tumor can not be accurately segmented [10]. We propose a dense
channels 2D U-net model (DCU-net) which consists of three parts: encoder,
decoder and feature pyramid structure to extract more features and improve
the segmentation performance [9,10]. The structure of dense channels 2D U-net
model is shown in Fig. 1.

The encoder is composed of five residual units (RU) [10] and four down-
sampling units, which processes the image down sampling. The decoder is com-
posed of four residual units and four skip connection units (SCU), which can
get the location information of low-level features. The feature pyramid structure
is composed of three up-sampling units and one convolution layer, which can
obtain both low-level location information and high-level detail information.

Encoder. The data is sampled by encoder. The encoder is composed of five
residual units (RU) [10] and four down-sampling units. The residual unit consists
of two convolution operations with 3×3 convolution kernel size in series and one
convolution operation with 1 × 1 convolution kernel size in parallel. The strides
of the convolution operation is 1 × 1, and the activation function is RELU.
The main function of residual unit is to extract image features and solve the
problem of gradient disappearance of network [10]. From the top to bottom, the
number of features extracted by each residual unit is 256, 256, 512, 512 and 512,
respectively. Down-sampling operation by maxpool with 2 × 2 kernel size and
2 × 2 strides changes the image to half of the original size.
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Fig. 1. Architecture of the dense channels 2D U-net model.

The input data is normalized artificially for each sample. The distribution
of input data in each back layer of the network is always changing, because the
updating of the training parameters in the front layer will lead to the changing
distribution of input data in the back layer. In order to solve this problem, we
use batch normalization operation after each convolution operation [10,12].

Decoder. The decoder is designed for restoring the data processed by the
encoder to the original image size. The decoder consists of four residual units
(RU) and four skip connection units (SCU). The structure of residual unit is the
same as that of residual unit in encoder. From the bottom to top, the number
of features extracted by each residual unit is 512, 512, 256 and 256, respectively.
The skip connection unit consists of an upsample operation with 2 × 2 kernel
size and 2 × 2 strides and a concatenate operation. The main function of the
skip connection unit is to connect the encoder and decoder so that the decoder
can obtain the position information of the pixels [10].

Feature Pyramid Structure. We employ the feature pyramid structure to
achieve the combination of low-level and high-level features [9,10]. In tradi-
tional neural networks, low-level features focus on location information, while
high-level features focus on semantic information [9,10]. We combine low-level
features with high-level features to achieve more accurate segmentation of med-
ical images. Traditional segmentation networks ignore the influence of low-level
features, resulting in poor segmentation performance. In the feature pyramid
structure, we select feature maps of different levels. First, we upsample fea-
ture maps of different levels to the same size as the original maps. Then, we
adjust them by a convolution operation with kernel size and strides of 1× 1 and
RELU activation function. The number of features extracted by each convolution
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operation is 32. Finally, we add these feature maps of the same size together, so
that we can get both high-level features and low-level features [9,10].

2.2 Multiple Feature Extraction Network Model

Due to the large number of feature components, dense channels 2D U-net model
needs a lot of computational and storage resources. We propose a multiple feature
extraction network model (MFEN). Compared with dense channels 2D U-net
model, multiple feature extraction network model can extract more abundant
and different features, and conserve computational and storage resources at the
same time. The structure of multiple feature extraction network is shown in
Fig. 2.

Multiple feature extraction network model consists of four parts: encoder,
decoder, pre-segmentation structure and feature pyramid structure. The pre-
segmentation structure consists of a traditional FCN [7] model and an attention
unit. The encoder is composed of five multiple feature extraction units [16] and
four down-sampling units. The decoder is composed of four multiple feature
extraction units and four skip connection units. The feature pyramid structure
is composed of three up-sampling units and one convolution layer.

Pre-segmentation Structure. The pre-segmentation structure makes a rough
segmentation of the image. The segmentation result and the original image
are sent to the subsequent structure for more accurate segmentation. The pre-
segmentation structure consists of a traditional FCN [7] model and an attention
unit. The attention unit (AU) multiplies the FCN model segmentation result
with the original data, then adds the multiplied result with the original data,
and finally concatenates the added result and the original data. The attention
unit not only roughly segment the original data, but also retain the information
of the original data, which contributes to the subsequent accurate segmentation.

Encoder. The overall structure of the encoder is similar to that of the encoder
in dense channels 2D U-net model, but residual units are replaced by multiple
feature extraction units (MFEU) [16]. The input data is firstly processed by five
different parallel operation modules. The five operation modules are one convo-
lution operation with 1 × 1 convolution kernel size, one convolution operation
with 3 × 3 convolution kernel size, two convolution operations with 3 × 3 convo-
lution kernel size in series, three convolution operations with 3 × 3 convolution
kernel size in series and one maxpool operation with 3 × 3 kernel size [15,16].
These five operation modules can extract a large number of rich and more differ-
ent feature components. The data processed by these five operation modules are
concatenated, then one convolution operation with 1 × 1 convolution kernel size
is used to reduce the number of features to conserve computational and storage
resources. Finally, the original data is convoluted by one convolution operation
with 1 × 1 convolution kernel size to get the same number of features, and then
added with the reduced number of features. This operation is equivalent to a
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Fig. 2. Architecture of the multiple feature extraction network model.

residual unit, which can solve the problem of gradient disappearance of network.
The strides of the all operations is 1 × 1, and the activation function is RELU.
Batch normalization operation is used before the activation function. From the
top to bottom, the number of features extracted by each multiple feature extrac-
tion unit is 32, 64, 128, 256 and 512, respectively.

Decoder. The structure of decoder is the same as that of dense channels 2D
U-net model, and residual units are replaced by multiple feature extraction units.
The structure of multiple feature extraction unit is exactly the same as that
described in encoder. From the bottom to top, the number of features extracted
by each multiple feature extraction unit is 256, 128, 64 and 32, respectively.

Feature Pyramid Structure. Compared with dense channels 2D U-net model,
the structure of feature pyramid has more abundant information, because the
structure of feature pyramid obtains the information from FCN model, which is
more effective for segmentation results.

3 Prediction of Patient Overall Survival

3.1 Survival Prediction Methods

First, we separate the different tumor area from the four modalities, and then we
take the whole brain tumor area as mask to extract features on four modalities,
then take the edema area, the enhancing area, the non-enhancing and necrotic
area as mask to extract features on Flair, T1ce, T1 MRI scans. In this way, we
can get seven different tumor data in total. The following operations are carried
out on these seven data.
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Feature Extraction. We use pyradiomics toolkit to extract features from
multi-modal MRI scans of brain tumor patients [13]. In order to achieve the
prediction of patient overall survival task, 714 valid features are extracted. The
main feature types are shape feature, glcm feature, glszm feature, gldm feature,
first-order feature, glrlm feature and etc.

Feature Selection. Because we extract a large number of features in the pro-
cess of feature extraction, the impact factors of these features on prediction of
patient overall survival task are not the same, so we need to choose the features
with larger impact factors. The significance of feature selection lies in eliminat-
ing some irrelevant and repetitive features, ensuring the diversity of features and
reducing the number of features. In this paper, the correlation coefficients of each
feature are calculated to select the features with strong correlation coefficients
by f regression [13].

Regression Framework. In this paper, we employ decision tree regression to
complete the regression task [13]. The input is the training dataset, and the
output is the regression tree. In the input space where the training dataset is
located, each region is recursively divided into two sub-regions and the output
value of each sub-region is determined. A binary decision tree is constructed.

The prediction of patient overall survival regression framework is shown in
Fig. 3.

Fig. 3. Regression framework.

4 Experiments

4.1 Data

BraTS 2019 dataset is divided into training dataset, validation dataset and test-
ing dataset. There are 335 samples in the training dataset, of which 259 are
high-grade gliomas and 76 are low-grade gliomas. There are 125 samples in
the validation dataset and 166 samples in the testing dataset, including both
high-grade and low-grade gliomas. Each sample of training dataset, validation
dataset and testing dataset contains four modalities with size of 155×240×240,
which are Flair, T1, T1ce and T2. The training dataset also contains ground
truth with size of 155 × 240 × 240, including the enhancing tumor (label 4), the
edema tumor (label 2), and the necrotic and non-enhancing tumor (label 1) [1–5].
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The competition does not provide the ground truth of the validation dataset
and testing dataset. Four modal MRI scans and their ground truth are shown
in Fig. 4.

(a) Flair (b) T1 (c) T1ce (d) T2 (e) label

Fig. 4. Four modal MRI scans and their ground truth.

4.2 Preprocessing

The four modalities in the dataset provide the information of different regions of
the same tumor. In order to segment different regions of the tumor accurately,
the information provided by these four modalities must be used in the training
process of the network. We firstly reshape the data of four modalities into a
multi-channel data with the size of 155 × 240 × 240 × 4.

There are a lot of unlabeled data in the training dataset. These data do not
contribute to the training of the network, but will waste a lot of computational
resources, so we remove the slices of the label with all tags of zero and corre-
sponding four modalities of the slices. Then, we normalize the each modality
of whole dataset with mean value of zero and standard deviation of one, which
improves the convergence speed and accuracy of the model. After these prepro-
cessing steps, the size of the data eventually becomes slices × 240 × 240 × 4.

4.3 Results

Segmentation of Gliomas. Using our segmentation methods, the training
data processed in Sect. 4.2 are divided into five parts. Four parts are the train-
ing dataset and the other one is the validation dataset. We rotate half of the
training dataset 90◦, and rotate the other half of the training dataset −90◦. The
augmented training dataset is 2 times larger than the original one. Five exper-
iments are performed. The results of the last epoch validation dataset of each
experiment are averaged. The results are shown in Table 1.

In order to prove that our model is more effective, we designed a comparative
experiment. We selected some of the most commonly used models for medical
image segmentation tasks, including VGG [6], FCN [7], U-net [8] and HPU-net
[10]. All models use the same processed dataset, and the results of 5-fold cross
validation are shown in Table 1. Compared with other models, we can see that
the models in this paper is better in three evaluation indicators.
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Table 1. The 5-fold cross validation average performance on the training dataset.

ET dice WT dice TC dice

VGG 0.6383 0.8649 0.6631

FCN 0.6343 0.8813 0.6865

U-net 0.7136 0.8936 0.7558

HPU-net 0.7626 0.8985 0.7959

DCU-net 0.8266 0.9019 0.8394

MFEN 0.8155 0.9023 0.8284

Table 2. The segmentation results of dense channels 2D U-net model on the validation
dataset.

Dice ET Dice WT Dice TC Hausdorff95 ET Hausdorff95 WT Hausdorff95 TC

Mean 0.6714 0.8855 0.7712 12.9919 19.7379 17.3661

StdDev 0.3209 0.0876 0.2359 26.0555 29.5509 26.3002

Median 0.8207 0.9089 0.8700 2.4495 4.2426 5.8310

25quantile 0.6113 0.8809 0.6995 1.4142 2.8284 2.4495

75quantile 0.8911 0.9329 0.9254 6.6575 27.9106 15.2725

Table 3. The segmentation results of multiple feature extraction network model on
the validation dataset.

Dice ET Dice WT Dice TC Hausdorff95 ET Hausdorff95 WT Hausdorff95 TC

Mean 0.6910 0.8867 0.7702 5.8884 21.1901 12.1920

StdDev 0.3079 0.0842 0.2484 10.8221 31.3611 19.2535

Median 0.8292 0.9098 0.8810 2.2361 4.1231 4.5826

25quantile 0.6275 0.8796 0.7108 1.4142 2.4495 2.2361

75quantile 0.8882 0.9367 0.9306 3.7417 28.7576 13.0384

Validation dataset is processed as follows. Firstly, multi-modal data is
reshaped into multi-channel data. Secondly, each modality of the dataset was
normalized to zero mean and one standard deviation. The segmentation results
of dense channels 2D U-net model on the validation dataset are shown in Table 2.
The segmentation results of multiple feature extraction network model on the
validation dataset are shown in Table 3.

According to the segmentation results of the validation dataset, we finally use
multiple feature extraction network model in the testing dataset. Testing dataset
is processed exactly the same way as the validation dataset. The segmentation
results of multiple feature extraction network model on the testing dataset are
shown in Table 4.
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Table 4. The segmentation results of multiple feature extraction network model on
the testing dataset.

Dice ET Dice WT Dice TC Hausdorff95 ET Hausdorff95 WT Hausdorff95 TC

Mean 0.7599 0.8645 0.7974 5.3315 21.1373 14.4187

StdDev 0.2434 0.1313 0.2723 13.5876 26.7395 25.3849

Median 0.8336 0.9073 0.9079 1.4142 5.5649 3.1623

25quantile 0.7325 0.8478 0.8219 1.4142 2.4495 2.0000

75quantile 0.9016 0.9399 0.9451 2.8284 41.2851 10.3051

Prediction of Patient Overall Survival. In the training phase, we also used
the 5-fold cross validation for prediction of patient overall survival task. In order
to evaluate the performance of the classification framework, the overall survival
data is divided into three classes: long-term data (>15 months), medium-term
data (≥10 months and ≤15 months) and short-term data (<10 months) [14].
The prediction results are shown in Table 5.

Table 5. The results of prediction of patient overall survival on the training dataset.
Horizontal column is a feature selection method and vertical column is a regression
method.

variance threshold f regression mutual info regression

Linear regression 0.375 0.394 0.361

Decision tree regression 0.446 0.493 0.375

KNN 0.412 0.408 0.365

Random forest regression 0.422 0.455 0.408

Adaboost 0.388 0.351 0.350

GBRT 0.365 0.379 0.342

XGboost 0.412 0.388 0.398

In order to find a better prediction performance, we achieved variance thresh-
old and mutual info regression methods besides f regression in this paper [13]. In
addition to the decision tree regression method, we also achieved linear regres-
sion, KNN, random forest regression, Adaboost, GBRT and XGboost regression
framework in this paper [13]. From the comparison results in Table 5, we can
see that the accuracy of model using f regression and decision tree regression is
better than other approaches. The results of patient overall survival task on the
testing dataset are shown in Table 6.
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Table 6. The results of prediction of patient overall survival on the testing dataset.

CasesExpected CasesEvaluated Accuracy MSE medianSE stdSE SpearmanR

107 107 0.486 488865.700 83521 1073912.00 0.229

5 Conclusion

We propose two image segmentation models based on extended 2D U-net model
and feature pyramid structure. These models extract a large number of feature
components in the process of segmentation, which is conducive to improving
the accuracy of segmentation. We also propose a patient overall survival predic-
tion framework, which uses the segmentation results of the above segmentation
model and multi-modal MRI data to extract features, and then uses decision
tree regression to predict patient overall survival based on these features. Our
models provide a good performance on the testing dataset.
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Abstract. In this paper, an algorithm for segmentation of brain
tumours and the survival prediction of a patient in days has been pro-
posed. The delineation of brain tumours from magnetic resonance imag-
ing (MRI) by experts is a time-consuming process and is susceptible to
human error. Recently, most methods in the literature have used con-
volution neural network architectures, its variants, and an ensemble of
several models to achieve the state-of-the-art result. In this paper, we
study a neural network architecture to classify voxels in 3D MRI brain
images into their respective segment classes. The study focuses on class
imbalance among tumour regions, and pre-processing. The method has
been trained and tested on the BraTS2019 dataset. The average Dice
score for the segmentation task in the validation set is 0.47, 0.43, and
0.23 for enhancing, whole, and core tumour regions, respectively. For the
second task, linear regression has been used to predict the survival of a
patient in days. It achieved an accuracy of 0.465 on the online evaluation
engine for the training dataset.

Keywords: Voxel classification · Neural network · Brain tumour
segmentation · Survival prediction · Linear regression

1 Introduction

Glial cells are support cells which surround the neurons in the brain. Tumours
that originate from these cells are known as gliomas. High-grade gliomas (HGG)
and low-grade gliomas (LGG) are two broad grades of tumours based on its
growth rate (aggressiveness) and capability to infiltrate nearby tissues. The
higher-grade is more deadly than its lower counterpart with the average sur-
vival for HGG falling between 12 to 14 months [11,18]. There are several MRI
modalities which give information about the difference in tissue water (T1, T2,
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FLAIR), water diffusion (DTI), and contrast-enhanced images (T1ce) [13]. This
information helps in the diagnosis and treatment planning of diseases. Human
experts will manually delineate the tumour, which is a time-consuming and
human error-prone task. They use rough measures to estimate tumours, which
results in inter-rater and intra-rater errors. Hence, a robust and accurate method
is required to perform the segmentation task [5,13].

There are several challenges in the segmentation of brain tumours from MRI
images. MRI images are 3D volumetric data in which each voxel location has
an intensity value. The intensity changes across MRI modalities are used to
identify a tumour and its sub-structures. For example, a set of voxels with the
highest intensity value in T1 contrast-enhanced (T1ce) images are used to iden-
tify enhancing tumours. Bias field artefacts affect the intensity values in an
image. It results in intensity inhomogeneity of voxels in the same region in a
single frame, across a series of frames, and in images acquired from the same
acquisition scanner at different intervals of time. The intensity in MRI images
varies across acquisition scanners as various scanners use different magnetic field
strength. High variability in size, shape and location of the tumour makes the
segmentation process more challenging [2,13].

In the literature, convolution neural networks and its variants have domi-
nated the segmentation task. These architectures use region-based segmentation
approach to achieve good results [10]. U-Nets have performed well in several
segmentation challenges across the image processing domain [7–10,12,14,16,17].
The winner of BraTS 2018 segmentation challenge, Andriy used an encoder-
decoder CNN based network. A large encoder has been used to extract deep
features. A decoder has been used to reconstruct the segmentation part. Varia-
tional auto-encoders have been used to reduce the problem of over-fitting [14].
Kamnitsas et al., the winner of BraTS 2017, proposed an ensemble model called
EMMA (Ensembles of Multiple Models and Architectures) for robust segmen-
tation. EMMA used the ensemble results of various segmentation models like
DeepMedic [10], FCN [12] and U-Net [17] to produce a target segmented image
[9]. Isensee et al. proposed a modified 3D U-Net. They claim that a well-tuned U-
Net architecture can achieve state-of-the-art results. They validated their model
in BraTS 2018 dataset. Their model achieved a Dice score of 78.62, 91.75, and
85.69 in enhancing, whole, and core tumour regions [8].

For survival prediction, Xue Feng et al. [7] with their linear regression model
achieved an accuracy of 0.32 in the validation set. They used age, resection sta-
tus, and 7 other extracted features from the tumour segmented image. Deep
learning neural network-based models require a lot of data for training. The lim-
ited number of features and instances for the training phase overfits such models
to the training data. Thus, deep learning neural network models failed to predict
patient survival when compared to traditional machine learning algorithms like
linear regression. A detailed review of BraTS 2018 segmentation and survival
prediction tasks are given in [4].

In this paper, we aim to solve the class imbalance among brain tumours and
it’s sub-structures especially enhancing tumour region. For which we segmented
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them using only intensity values in the MRI image modalities without the usage
of neighbourhood and temporal information. This is because balancing among
classes is easier in lower dimensions (intensity values - zero dimension (0D)) than
in neighbourhood (2D) and, (3D). We used a simple dense artificial neural net-
work (ANN) to carry out the segmentation. From the sensitivity and specificity
results, it is clear that the model can segment the tumour and its sub-structures
but it also classified healthy regions as tumourous regions.

2 Proposed Segmentation Model

The training phase of the tumour segmentation task consists of image pre-
processing, frame selection, voxel selection, and neural network architecture.
The trained neural network model is used to classify a voxel into background,
edema, core or enhancing tumour classes. Figure 1 shows the flow diagram for
the segmentation task.

Image Pre-
processing

Validation Phase

Training Phase

Learned
Weights

MRI Imaging
Modalities

Frame
Selection

Voxel
Selection

ANN Weight
Learning

Image Pre-
processing

Voxel
Classifier

Loss
Function

MRI Imaging
Modalities

Validation Phase

Image Pre-
processing

Voxel
Classifier

MRI Imaging
Modalities

Healthy/Tumour

Fig. 1. The flow diagram of the proposed segmentation task. The trained weights from
the training phase is used for voxel classification in the validation phase for each image.
All classified voxels are then reconstructed into an MRI image

The training phase of the patient survival prediction task consists of feature
extraction and fitting a linear regression model. The trained model is used to
predict the survival of a patient in days.

2.1 Pre-processing

The intensity for 3D MRI images varies over different acquisition scanners used
across several institutions [15]. So, the mean (Mo) of each MRI image (Io) has
been normalised to zero. Further, to normalise the distribution of intensities
across MRI images, the voxels in zero-mean images has been divided by the
standard deviation (Sdo) of the original image. Intensity values in the resulting
image have been scaled up by a factor of 100 as conversion from a floating-point
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value to an integer may result in loss of image intensity data. The resultant
normalised image is denoted as In. The normalisation is given by,

Normalized Image In = ((Io − Mo)/Sdo) · 100

Most of the voxel data belong to background or healthy tissue class. So, most
of the voxels can be ignored. To achieve this, the nth percentile intensity value
is calculated for each image and all voxels with intensity value less than the nth
percentile have been changed to 0. The value of ‘n’ is fixed as 98 as it produced
the best Dice score value.

2.2 Frame Selection

Each MRI image has 8,928,000 (240× 240× 155) voxels. Most of the voxels are
non-important redundant background information represented by ‘0’ intensity
value in the ground truth MRI image. Hence, the use of all these voxels may
result in large computation time in terms of hours to days. To avoid this, the sum
for each frame in a ground truth MRI image along each of its three-axis (axial,
coronal and sagittal) has been calculated. The frames with a sum of ‘0’ have been
dropped in all modalities (FLAIR, T1, T2 and T1ce). All the frames with a sum
greater than ‘0’ for a MRI image has been reconstructed and retained as a new
MRI image. This process has been repeated for all the images in the training set.
Thus, a new set of MRI images across all modalities with the selected frames
has been generated. This new set of MRI images have been used for further
processing.

2.3 Voxel Selection

The new set of MRI images generated in Sect. 2.2 have been used for voxel selec-
tion. All the voxels from the new T1, T2, T1ce and FLAIR MRI modalities have
been selected. The ground truth MRI image consists of four labels namely, ‘0’ for
background, ‘1’ for the core tumour area, ‘2’ represents edema, and ‘4’ enhanc-
ing tumour region. The class labels ‘0’, ‘1’, ‘2’, and ‘4’ consist of 60,981,446,
7,031,170, 17,438,190, and 5,561,228 voxels respectively for all 335 patients. Each
instance for a target class intensity label at a given voxel (x,y,z) consists of inten-
sity value from T1, T2, T1ce and FLAIR at that respective voxel (x,y,z). For
example, let the voxel (x,y,z) contain intensity values 453, 515, 823, and 652 in
T1, T2, T1ce, and FLAIR modalities. These four intensity values correspond to
a single input instance. Since the enhancing intensity value is significantly higher
than the remaining three intensities, the input instance is classified as label ‘4’.
This is tabulated in Table 1. The total number of instances is the sum of all
intensity class labels ‘0’, ‘1’, ‘2’, and ‘4’ which is a total of 91,012,034 instances.
Among all the instances, 67% of the voxels belong to intensity class label ‘0’.
Training on such target labels may bias any neural network towards the target
class with the most number of instances [16]. Hence, first ‘n’ instances have been
selected from each class label. ‘n’ is class intensity label with the least number of
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instances. Class intensity label ‘4’ has the least number of instances with a total
of 5,561,228 instances. Therefore, from classes ‘0’, ‘1’, and ‘4’, first 5,561,228
instances have been selected.

2.4 Network Architecture and Training

A simple neural network architecture has been designed to perform voxel classi-
fication. The input instance consists of intensity value from T1, T2, T1ce, and
FLAIR respectively for a corresponding voxel location. Therefore, the input layer
for the neural network consists of 4 neurons. There are 4 target class intensity
labels namely, background ‘0’, core ‘1’, edema ‘2’, and enhancing ‘4’. Therefore,
the output layer consists of 4 neurons with a single neuron for each class. Each
target class intensity label is a single value. So, the dimensions of the target
intensity value (1× 1) and the neuron output layer don’t match (1× 4). Hence,
each target intensity value is transformed into a one-hot vector of dimension
1×4. An input instance with a target class intensity value of ‘4’ will be changed
to 0,0,0,1 where the values represents the target class labels background ‘0’, core
‘1’, edema ‘2’ and enhance ‘4’ respectively. This is given in Table 1.

Table 1. Shows a sample input instance and it’s respective target one-hot vector

Input instance Target one-hot vector

T1

(x, y, z )

T2

(x, y, z )

T1ce

(x, y, z )

FLAIR

(x, y, z )

Background(0) Core(1) Edema(2) Enhance(4)

453 515 823 652 0 0 0 1

Softmax function has been used as the activation function in the output layer.
The architecture has used a two fully connected hidden layer with 100 and 500
respectively neurons. Leaky ReLu has been used as the activation function with
leakiness parameter α = 0.01. This is shown in Table 2.

Table 2. Shows the artificial neural network (ANN) architecture of the proposed model.

Type Neurons Activation fuction

Layer 1 Input 4 -

Layer 2 Hidden layer 1 100 Leaky ReLu

Layer 3 Hidden layer 2 500 Leaky ReLu

Layer 4 Output 4 Softmax

Adam has been used as the optimisation algorithm. Categorical cross-entropy
has been used as the loss function since the problem is a multi-class classification
problem. The small architecture and input size allowed the usage of a large batch
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size of 500000 instances per batch. There is a total of 22,244,911 instances in
which 20% (4,448,983) of it has been used for validation and the remaining
80% (17795928) has been used for training. The model has been trained for 50
epochs as the accuracy stopped improving around 40 epoch. Keras [6] has been
used to implement the mentioned architecture. The GPU provided by Google
Colaboratory has been used to implement the architecture. Each epoch took 15
seconds and the entire training took 12.5 min.

2.5 Tumour Volume Segmentation

All the voxels from the 3D MRI modalities (T1, T2, T1ce, and FLAIR) has
been flattened into a 1D array to perform tumour volume segmentation. Each
voxel (x,y,z) across modalities correspond to a single input instance with the
arrangement mentioned in Table 1. The input instances have been given to the
trained model and the respective predicted output is stored into a 1D array. The
1D array has been reshaped into an MRI image of dimension (240, 240, 155) and
saved as patient ID.nii.gz.

3 Proposed Survival Prediction Model

The survival prediction of patients consists of two stages namely, feature extrac-
tion from a segmented tumour, and linear regression for prediction of survival of
the patient in days. The flow diagram for the patient survival prediction task is
shown in Fig. 2. The training data consist of segmented tumour (ground truth),
a patients age, resection status, and the number of days the patient survived.
Resection of the tumour has been done on 101 out of 335 patients. Patients
(101 instances) for whom tumour resection has been done are considered for
survival prediction. The ground truth segmentation labels are used for feature
extraction in the training phase. Thus, the accuracy and robustness of prediction
depends on the quality of tumour segmentation. The features extracted from the
segmentations are:

1. Tumour volume (for 3 tumour classes) - obtained by counting the number of
voxels belonging to each class.

2. Tumour centroid (for 3 tumour classes) - obtained by averaging the x, y, and
z values of the voxels of each class.

3. Extent of the tumour (for 3 tumour classes) - obtained from iteratively check-
ing the minimum and maximum x, y and z values of voxels for each class.

4. Area of projection of tumour - obtained by flattening the 3D scan to 2D (by
adding values of all slices as matrices) and counting the number of non-zero
values in the resultant matrix.

Along with these features, the non-radiomic features namely, resection status
and age have been used for survival prediction. The volume feature has been
calculated by counting the number of intensity value belonging to each tumour
sub-class as discussed in [7]. Traditional machine learning models (excluding
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Fig. 2. The flow diagram for the proposed survical prediction system. Ground Truth
segmentation labels were used for survival prediction task

neural network models) like linear regression performed better than the deep
learning neural network-based models in BraTS 2018. Neural network models
overfit to the training data when the number of instances and features for train-
ing are limited. They also tend to overfit if the training data does not capture
all the principle features required for prediction [4]. Hence, a linear regression
model has been used for the training phase.

4 Experimental Results

4.1 BraTS Dataset

The Brain Tumour Segmentation (BraTS) challenge aims to provide a publicly
available dataset and a community benchmark. The BraTS 2019 challenge con-
sist of MRI images acquired from 19 different institutions. It is collected through
regular clinical evaluation of pre-operative scans for patients with glioblastoma
multiforma (GBM/HGG), or low-grade glioma (LGG). Each voxel in the MRI
image is normalised to 1 mm3 dimensions and the images are skull stripped [1,3].
Each 3D MRI image has dimensions 240× 240× 155. The patients’ data is split
into training and validation sets. The training set consists of 259 HGG and 76
LGG patients for a total of 335 patients. Each patient has a T1-weighted, T2-
weighted, T2 Fluid Attenuated Inversion Recovery (T2-FLAIR), post-contrast
T1 weighted image (T1Gd/T1ce), and the target ground truth segmentation.
The ground truth consists of four labels namely, ‘0’ for background, ‘1’ for the
core tumour area, ‘2’ represents edema, and ‘4’ enhancing tumour region. The
MRI images are stored in the Neuroimaging Informatics Technology Initiative
(NIfTI) format with ‘.nii.gz’ extension. The validation set consist of 125 patients
without ground truth segmented images [2,3].

4.2 Results of Segmentation

The segmentation for all the patients in the training (335 patients) and validation
(125 patients) datasets has been obtained, as discussed in Sect. 2. The resultant
MRI images have been evaluated on the online CBICA’s Image Processing Portal
(IPP). An example segmentation for a patient is shown in Fig. 3.

Segmentation of additional non-tumourous/healthy tissues along with
tumourous tissues has been observed. This is because some regions of the healthy
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Fig. 3. A single axial, coronal and sagittal slice of segmented brain tumour. The light-
grey area is the whole tumour region, dark-grey area is the core tumour area and, white
area is the enhancing tumour area. a) A slice of the Ground truth image b) The same
slice after segmentation using the proposed method

tissues exhibit tumorous hyperintensities. Also, some regions of the whole tumour
(light grey area) have been misclassified as core tumour region (dark grey area).
This may be due to bias field distortion resulting in inhomogeneity of voxels in
the same region. Hence, bias field correction may be required to improve the
signal-to-noise ratio as mentioned in [14].

The metrics used for evaluation are Dice score, sensitivity, specificity and
95 Hausdorff’s distance. They have been used to evaluate the segmentation of
edema, core, and enhancing tumour class intensity labels. The mean, standard
deviation, and median for Dice score and Hausdorff distance for training and val-
idation sets are given in Table 3, while Table 4 gives the sensitivity and specificity
values.

From Table 3, it can be observed that the Dice and Hausdorff distance for
enhancing tumour and whole tumour is better when voxels are suppressed.
Tumour core segmentation results are better without suppression. On analysing
the suppressed images before segmentation, it has been observed that tumour
core segments are voxels from T2 images and the 98% tumour suppression cap-
tured more healthy tissues along with tumour core class. The above excess mis-
classifications can be removed with an efficient post-processing algorithm. An
efficient pre-processing algorithm which can separate tumour sub-regions from
each other in terms of intensity values can also reduce misclassification among
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tumour regions. It can also be noted that the model learned whole tumour regions
from FLAIR and enhancing tumour regions from T1 image.

Table 3. Shows the mean Dice score, and Hausdorff-95 results of training and valida-
tion sets, where Dice represents dice score, Dist represents 95 Hausdroff distance, ET
represents enhancing tumour, TC represents tumour core and, WT represents whole
tumour

Dice ET Dice WT Dice TC Dist ET Dist WT Dist TC

Training No suppression 0.33937 0.43678 0.32676 81.20324 70.06155 81.82787

98% suppression 0.50729 0.42871 0.24424 57.53872 69.3061 82.73122

Validation No suppression 0.32712 0.44418 0.30087 85.59015 74.91022 85.05087

98% suppression 0.4736 0.43053 0.23625 59.6719 72.92901 84.63

From Table 4, high sensitivity shows that the model is fine-tuned to the pres-
ence of a tumour. Also, the high specificity value shows that the model can distin-
guish between various tumour regions accurately. Also, the sensitivity decreases
with suppression meaning that some tumourous regions are also suppressed.

Table 4. Shows the mean sensitivity, and specificity results of the training and vali-
dation sets, where Sen represents sensitivity, Spe represents specificity, ET represents
enhancing tumour, TC represents tumour core and, WT represents whole tumour

Sen ET Sen WT Sen TC Spe ET Spe WT Spe TC

Training No suppression 0.80658 0.90346 0.70311 0.9688 0.84367 0.93808

98% suppression 0.65864 0.71218 0.69739 0.99399 0.90164 0.90263

Validation No suppression 0.7505 0.8948 0.62438 0.97241 0.86056 0.94401

98% suppression 0.5834 0.72732 0.65418 0.99523 0.90716 0.90785

4.3 Results of Prediction

The survival prediction in days has been evaluated for patients who under-
went tumour resection. Tumour resection has been done for 101 out of 335
patients. The survival prediction result for the training dataset is 0.465 accuracy,
87198.948 mean square error (MSE), 26732.25 median square error (median SE),
170386.095 std SE, and 0.428 Spearman coefficient.

5 Conclusions and Future Work

In this paper, a voxel classification based segmentation algorithm using a neural
network has been proposed. Preprocessing steps have been done to prepare the
data for the neural network. The smaller size of the network allowed the use of
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large batch size for training and validation. The large batch size significantly
reduced the training time to 12.5 min for 50 epochs on Google Colaboratory.
However, the segmented results predicted the tumour and its sub-regions along
with additional outliers. This is mostly due to intensity inhomogeneity, brain
sub-structures with tumour-like hyperintensities, and a lack of neighbourhood
information.

A linear regression model with volumetric features [7] and additional features
for patient survival prediction in terms of days is presented and a training accu-
racy of 0.465 has been achieved. It is found that prediction models like linear
regression are better than neural network based models for this task because of
a small sample size.

In future work, bias correction [14] to improve the signal-to-noise ratio in
the 3D MRI images needs to be studied. Also, experiments with different ways
to select frames, voxels, and the need for additional preprocessing steps can be
analysed. The neural network architecture is experimental and further study is
needed to decide upon different architectures, the number of neurons, and hidden
layers for optimum performance. Finally, there is a need for post-processing to
remove segmented outliers which could give a better Dice score.
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Abstract. ONCOhabitats is an open online service that provides a fully auto-
matic analysis of tumor vascular heterogeneity in gliomas based on multipara-
metric MRI. Having a model capable of accurately segment pathological tissues is
critical to generate a robust analysis of vascular heterogeneity. In this study we
present the segmentation model embedded in ONCOhabitats and its performance
obtained on the BRATS 2019 dataset. The model implements an residual-
Inception U-Net convolutional neural network, incorporating several pre- and
post- processing stages. A relabeling strategy has been applied to improve the
segmentation of the necrosis of high-grade gliomas and the non-enhancing tumor
of low-grade gliomas. The model was trained using 335 cases from the BraTS
2019 challenge training dataset and evaluated with 125 cases from the validation
set and 166 cases from the test set. The results on the validation dataset in terms of
the mean/median Dice coefficient are 0.73/0.85 in the enhancing tumor region,
0.90/0.92 in the whole tumor, and 0.78/0.89 in the tumor core. The Dice results
obtained in the independent test are 0.78/0.84, 0.88/0.92 and 0.83/0.92 respec-
tively for the same sub-compartments of the lesion.

Keywords: Glioma � Convolutional neural network � Segmentation

1 Introduction

Gliomas are one of the most common central nervous system (CNS) tumors. Gliomas
comprise a very diverse group of CNS tumors that vary histologically from low grade
(LGGs; grade II) to high grade (HGGs; Grades III, IV) [1]. Knowing the extent and the
heterogeneity of the lesion is crucial to make a correct diagnosis, plan radiotherapy
treatment, analyze the response to treatment, and monitor the progression of the
disease.

Manual segmentation and volumetric studies of the different glioma tissues
involves an arduous, time-consuming and often unaffordable task for humans, that is
not often performed in clinical practice but only in some clinical studies.

In recent years, and with the emergence of new deep learning technologies, a
substantial effort has been made to generate models capable of automatically delineate
glioma pathologic tissues with high accurate confidence. An example of the effort
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invested in this task is the creation of the multimodal Brain Tumour Segmentation
(BRATS) challenge. Since 2012 and until now, numerous researchers have focused
their efforts on generating more accurate brain tumor segmentation models, reaching
computational models with a performance close to human expert labelling [2]. Nev-
ertheless, there is still a need for more research to achieve completely reliable seg-
mentation models that can handle the wide range of heterogeneous tumors that can
arise in real clinical routine.

This work presents a segmentation model of gliomas that consists on a patch-based
3D U-net Convolutional Neural Network based on residual-Inception blocks. The
preprocessing includes noise reduction, bias correction, and intensity normalization.
A relabeling strategy was applied to differentiate HGG necrosis and LGG non-
enhancing tumor in the training stage. Finally, a postprocessing stage was implemented
to remove spurious or incoherent segmentation objects.

The proposed tumor segmentation model is included in the last version of
ONCOhabitats [3] online platform (https://www.oncohabitats.upv.es), provided by the
Polytechnic University of Valencia [4]. ONCOhabitats provides a fully automatic
analysis of tumor vascular heterogeneity [5], based on four vascular habitats within the
lesion from MRI images: the High Angiogenic Tumor (HAT), the Low Angiogenic
Tumor (LAT), the Infiltrated Peripheral Edema (IPE) and the Vasogenic Peripheral
Edema (VPE) [6, 7]. ONCOhabitats includes two main services: (1) glioma tissue
segmentation based on CNN; and (2) vascular heterogeneity assessment. In addition,
we provide to researchers and clinicians our computational resources, including a
system able to process about 300 cases per day including image preprocessing and
standardization, regions of interest (ROIs) segmentation, perfusion quantification and
vascular heterogeneity assessment of the lesion.

2 Materials

To train the proposed model, only the images provided in the 2019 edition of the
BRATS challenge were used [2, 8–11]. The training dataset includes 335 studies, each
one composed by pre- and post-contrast T1-weighted MRI, as well as T2-weighted,
T2-fluid attenuated inversion recovery (FLAIR) MRI. Additionally, the ground truth
maps are provided, distinguishing between 3 labels: label 1, which encloses necrosis,
non-enhancing tumor, cyst and hemorrhage tissues; label 2, which delineates the
edema; and label 4 that represents the enhancing tumor. The validation dataset com-
prises 125 images while the test set is composed of 166 images, both including the
same MRI sequences but without the ground truth maps. An online oracle is provided
to evaluate the proposed models in a blind manner.

2.1 Preprocessing

BRATS2019 dataset preprocessing performed by the organizers includes: 1) voxel
isotropic resampling to 1 mm3, 2) intra-patient registration to the T1ce sequence and
inter-patient registration to a common reference space, and 3) skull-stripping for cra-
nium removal.
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We have extended this preprocessing by including a denoising stage using the
Adaptive Non-Local Means filter proposed in [12]. We employed search windows of
7 � 7 � 7 and a patch window of 3 � 3 � 3, with Rician noise model. Additionally,
a bias field correction stage was performed using N4ITK software at different scale
levels [13], with 150 B-splines. Finally, z-score normalization was performed for each
image, only normalizing the voxels within the brain (i.e. excluding the background
from the normalization).

3 Methods

We propose a patch-based 3D U-net Convolutional Neural Network based on residual-
Inception blocks. The network takes as input 3D patches of 64 � 64 � 64 of three
channels being the T1 contrast enhanced, the T2 and the Flair sequences. T1 sequence
was discarded due to a worsening of the results when including it in the learning
process. Therefore, the network works with patches of 64 � 64 � 64 � 3. The
architecture details are described below.

3.1 Architecture

A U-net with 4 levels of depth is designed. The encoding path includes 3 downsam-
pling blocks consisting of Conv 3 � 3 � 3 (stride 2 � 2 � 2) + ReLU + Batch
Normalization. Likewise, the decoding path incorporates 3 analogous upsampling
blocks consisting of: TransposeConv 3 � 3 � 3 (stride 2 � 2 � 2) + ReLU + Batch
Normalization. Hence, the downsampling and upsampling operations are learnt by the
network instead of using Max Pooling or repeatable Upsampling operations.

The network is composed of 4 levels with 24, 48, 96, 192 filters at each level
respectively. Each level contains a Residual-Inception module to capture features at
different scales. The residual-Inception block has 4 parallel paths with the following
structure:

• Conv 1 � 1 � 1-NF + ReLU + Batch Normalization
• Conv 3 � 3 � 3-NF + ReLU + Batch Normalization
• Conv 3 � 3 � 3-NF + ReLU + Batch Normalization + Conv 3 � 3 � 3-NF +

ReLU + Batch Normalization
• Max Pooling 3 � 3 � 3 (stride 1 � 1 � 1) + Conv 1 � 1 � 1-NF + ReLU +

Batch Normalization,

where NF refers to the Number of Filters depending on the level of the U-net in
which the Residual-Inception block is. The output of these 4 paths is then feed to a
concatenation layer and the output is passed to a block of the form: Conv 1 � 1 �
1-NF + ReLU + Batch Normalization, to compress the information extracted by the 4
paths. Finally, a residual connection is introduced by summing the input of the
Residual-Inception block to the output. Figure 1 shows a diagram of the Residual-
Inception block. Note that each Simple block (except the Max Pooling) includes a
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Convolution + ReLU + Batch Normalization layers. Additionally, long-skip connec-
tion between symmetric levels are introduced to allow a better gradient flow during
training process. Figure 2 shows a diagram of the network architecture used in the
study.

Fig. 1. Diagram of the Residual-Inception block used in our model.

Fig. 2. Diagram of the 4-level residual network architecture. Residual-Inception blocks are used
as feature extraction modules. Downsampling and upsampling operations are performed through
strided conventional and transposed convolutions. Long concatenation-skip-connections are
employed between symmetric levels.
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3.2 Training Strategy

Label 1 in the BRATS 2019 dataset encloses a set of different glioma tissues, including
necrosis, non-enhancing tumor, cyst, hemorrhage, etc. Such tissues largely differ in
appearance in the MRI images, so in order to simplify the learning task for the network
we decided to re-label the label 1 in all the LGG cases by label 3. Such re-labelling
pursues the idea of associating the label 1 mostly to the necrosis tissue, typically
present in HGG; and the label 3 to the non-enhancing tumor tissue, typically pre-
dominant in LGG.

We followed a balanced training strategy by creating batches containing a uniform
proportion of patches containing predominantly edema (label 2), necrosis (label 1),
enhancing tumor (label 4), non-enhancing tumor (label 3) and healthy tissues (label 0).
Due to memory restrictions, batches of 4 samples was employed to train the network.

We also employed a combined loss consisting on the unweighted sum of cross-
entropy and dice losses. Additionally, we trained the network with label smoothing
with a factor 0.1, to relax the confidence in the labels. Adam optimizer was used with a
starting learning rate of 1e−3. We trained the network 35k iterations.

3.3 Postprocessing

In order to remove spurious or incoherent segmentation components, we developed a
simple postprocessing stage based on Connected Components (CC) analysis. As a rule
of thumb, we always save the biggest CC as it is the most probable that contains the
correct segmentation. The remaining CCs are analyzed and saved only if they met the
following criteria:

1. The CC contains a number of voxels of class 4, class 3 or class 1 greater than the
5% of the size of the CC.

2. The CC has more than 1000 voxels.

Such simple post-processing mostly intends to discard erroneous CCs produced by
magnetic bias field inhomogeneities in the images. Typically, these CCs are mainly
labeled as class 2 (edema-like pattern), due to hyperintensities in Flair or T2 images.
Thus, by the opposite, if the CC contains voxels segmented as enhancing tumor, non-
enhancing tumor or necrosis, it can serve as an indicator of the confidence in the
segmentation of the CC. Anyway, if the CC is big enough (more than 1000 voxels) we
also assume that it is not an inhomogeneity artifact and the CC is saved for the final
segmentation.

4 Results

The results obtained by ONCOhabitats glioma segmentation model on the independent
validation dataset provided by BraTS 2019 challenge are summarized in Table 1. Dice,
Sensitivity, Specificity and Hausdorff95 Distance metrics are reported.
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Additionally, box plot of the distribution of the Dice, sensitivity and specificity
metrics for the cases on the independent validation dataset evaluated on the Enhancing
Tumor (ET), Whole Tumor (WT) and Tumor Core (TC) regions are presented in
Fig. 3.

Similarly, the results obtained by the ONCOhabitats model on the test dataset are
presented in Table 2.

Table 1. Summary of the results obtained by ONCOhabitats glioma segmentation model on the
independent validation dataset for Enhancing Tumor (ET), Whole Tumor (WT) and Tumor Core
(TC) regions.

Dice Sensitivity Specificity Hausdorff95
ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.73 0.90 0.78 0.78 0.88 0.75 1.00 1.00 1.00 4.25 5.06 7.80
Std. Dev. 0.29 0.08 0.25 0.27 0.11 0.27 0.00 0.01 0.00 7.50 6.59 11.7
Median 0.85 0.92 0.89 0.87 0.91 0.87 1.00 1.00 1.00 2.24 3.16 3.39
25QT 0.73 0.89 0.73 0.77 0.85 0.64 1.00 0.99 1.00 1.41 2.24 2.00
75QT 0.90 0.94 0.94 0.95 0.95 0.94 1.00 1.00 1.00 3.32 5.10 9.26

Fig. 3. Box plot showing the distribution of the Dice, sensitivity and specificity metrics for the
cases on the independent validation dataset evaluated on the Enhancing Tumor (ET), Whole
Tumor (WT) and Tumor Core (TC) regions.
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Figure 4 shows a comparison between the results of our model in the validation and
the test set. An overall stable performance of the mean Dice is demonstrated, indicating
that the model is robust against unseen samples and suggest no overfitting. Moreover,
the ET and TC regions showed an improved performance in the test dataset with
respect to the validation dataset. Finally, comparing our Dice results in the Whole
Tumor sub-compartment with the Validation Leaderboard ranking, there is a small
difference of 0.01687 Dice points with respect to the 1st place team, but using a small
and therefore fast network.

Fig. 4. Bar plot showing the mean Dice for the cases on the independent Validation and Test
dataset evaluated on the Enhancing Tumor (ET), Whole Tumor (WT) and Tumor Core
(TC) regions. The error bars represent the standard deviation.

Table 2. Summary of the results obtained by ONCOhabitats glioma segmentation model on the
test dataset for Enhancing Tumor (ET), Whole Tumor (WT) and Tumor Core (TC) regions.

Dice
ET WT TC

Mean 0.78 0.88 0.83
Std. Dev. 0.22 0.11 0.25
Median 0.84 0.92 0.92
25QT 0.77 0.87 0.86
75QT 0.91 0.95 0.95
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Finally, Fig. 5 shows the segmentation results of several cases of the test dataset.

5 Conclusions

In this work, we propose a glioma segmentation model based on a residual U-Net
residual CNN together with an additional imaging pre- and post-processing stages to
remove spurious or incoherent segmentation objects. This segmentation model has
been trained using a relabeling strategy aimed to improve the segmentation of HGG
necrosis and LGG non-enhancing tumor. The proposed model is included in the current
version of ONCOhabitats open online service (https://www.oncohabitats.upv.es).

The results obtained show and improvement on the performance of the previous
segmentation model included on ONCOhabitats reported in [3]. This allows to sig-
nificantly improve the other services provided by ONCOhabitats, such as the vascular
heterogeneity assessment service, since they use as basis the glioblastoma segmentation
module.

Fig. 5. Examples of glioma segmentation of 5 cases from the test set. First row shows the
segmentation performed by the ONCOhabitats model over the T1ce sequence. Second, third and
fourth rows show the T1ce, T2 and FLAIR sequences respectively.
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Abstract. Accurate segmentation of different sub-regions of gliomas including
peritumoral edema, necrotic core, enhancing and non-enhancing tumor core
from multimodal MRI scans has important clinical relevance in diagnosis,
prognosis and treatment of brain tumors. However, due to the highly hetero-
geneous appearance and shape, segmentation of the sub-regions is very chal-
lenging. Recent development using deep learning models has proved its
effectiveness in the past several brain segmentation challenges as well as other
semantic and medical image segmentation problems. Most models in brain
tumor segmentation use a 2D/3D patch to predict the class label for the center
voxel and variant patch sizes and scales are used to improve the model per-
formance. However, it has low computation efficiency and also has limited
receptive field. U-Net is a widely used network structure for end-to-end seg-
mentation and can be used on the entire image or extracted patches to provide
classification labels over the entire input voxels so that it is more efficient and
expect to yield better performance with larger input size. In this paper we
developed a deep-learning-based segmentation method using an ensemble of 3D
U-Nets with different hyper-parameters. Furthermore, we estimated the uncer-
tainty of the segmentation from the probabilistic outputs of each network and
studied the correlation between the uncertainty and the performances. Prelimi-
nary results showed effectiveness of the segmentation model. Finally, we
developed a linear model for survival prediction using extracted imaging and
non-imaging features, which, despite the simplicity, can effectively reduce
overfitting and regression errors.

Keywords: Brain tumor segmentation � Ensemble � Uncertainty estimation �
Deep learning � Survival prediction � Linear regression

1 Introduction

Gliomas are the most common primary brain malignancies, with different degrees of
aggressiveness, variable prognosis and various heterogeneous histological sub-regions,
i.e. peritumoral edema, necrotic core, enhancing and non-enhancing tumor core. This
intrinsic heterogeneity of gliomas is also portrayed in their radiographic phenotypes, as
their sub-regions are depicted by different intensity profiles disseminated across
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multimodal MRI (mMRI) scans, reflecting differences in tumor biology. Quantitative
analysis of imaging features such as volumetric measures after manual/semi-automatic
segmentation of the tumor region has shown advantages in image-based tumor phe-
notyping over traditionally used clinical measures such as largest anterior-posterior,
transverse, and inferior-superior tumor dimensions on a subjectively-chosen slice [1,
2]. Such phenotyping may enable assessment of reflected biological processes and
assist in surgical and treatment planning. To compare and evaluate different automatic
segmentation algorithms, the Multimodal Brain Tumor Segmentation Challenge
(BraTS) 2019 was organized using multi-institutional pre-operative MRI scans for the
segmentation of intrinsically heterogeneous brain tumor sub-regions [3–5]. More
specifically, the dataset used in this challenge includes multiple-institutional clinically-
acquired pre-operative multimodal MRI scans of glioblastoma (GBM/HGG) and low-
grade glioma (LGG) containing a) native (T1) and b) post-contrast T1-weighted
(T1Gd), c) T2-weighted (T2), and d) Fluid Attenuated Inversion Recovery (FLAIR)
volumes [6, 7]. 335 training volumes with annotated GD-enhancing tumor, peritumoral
edema and necrotic and non-enhancing tumor. In addition, the segmentation uncer-
tainty, which represents how confident the model is on the automatically segmented
labels, is valuable in providing feedback to end users and in a more accurate evaluation
for the segmentation quality. Furthermore, to pinpoint the clinical relevance of this
segmentation task, BraTS’19 also included the task to predict patient overall survival
from images together with the patient age and resection status. To tackle these two
tasks, this study is performed with two goals: 1) provide pixel-by-pixel label maps for
the three sub-regions and background and estimate the uncertainty of the model; 2)
estimate the survival days.

Convolutional neural network (CNN) based models have proven their effectiveness
and superiority over traditional medical image segmentation algorithms and are quickly
becoming the mainstream in BraTS challenges. Due to the highly heterogeneous
appearance and shape of brain tumors, small patches are usually extracted to predict the
class for the center voxel. To improve model performance, multi-scale patches with
different receptive field sizes are often used in the model [8]. In contrast, U-Net is a
widely used convolutional network structure that consists of a contracting path to
capture context and a symmetric expanding path that enables precise localization with
3D extension [8, 9]. It can be used on the entire image or extracted patches to provide
class labels for all input voxels when padding is used. Furthermore, instead of picking
the best network structure, an ensemble of multiple models, trained on different dataset
or different hyper-parameters, can generally improve the segmentation performance
over a single model due to the averaging effect. In this study we propose to use an
ensemble of 3D U-Nets with different hyper-parameters trained on non-uniformly
extracted patches for brain tumor segmentation. During testing, a sliding window
approach is used to predict class labels with adjustable overlap to improve accuracy.
The probabilistic outputs of each network will be used to estimate model uncertainty.
With the segmentation labels, we will develop a linear model for survival prediction
using extracted imaging features and additional non-imaging features since the linear
models can effectively reduce overfitting and thus regression errors.
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2 Methods

For the brain tumor segmentation task, the steps in our proposed method include pre-
processing of the images, patch extraction, training multiple models using a generic 3D
U-Net structure with different hyper-parameters, deployment of each model for full
volume prediction and final ensemble modeling. The uncertainty is estimated from the
probabilistic outputs of the networks. For the survival task, the steps include feature
extraction, model fitting, and deployment. Details are described as follows.

2.1 Image Pre-processing

As MR images do not have standard pixel intensity values, to reduce the effects from
different contrasts and different subjects, each 3D image was normalized to 0 to 1
separately by subtracting the min values and divided by the pixel intensity range. After
normalization, for each subject, images of all contrast were fused to form the last
dimension so that the whole input image size becomes 155 � 240 � 240 � 4.

2.2 Non-uniform Patch Extraction

For simplicity, we will use foreground to denote all tumor pixels and background to
denote the rest. There are several challenges in directly using the whole images as the
input to a 3D U-Net: 1) the memory of a moderate GPU is often 12 Gb so that in order
to fit the model into the GPU, the network needs to greatly reduce the number of
features and/or the layers, which often leads to a significant drop in performance as the
expressiveness of the network is much reduced; 2) the training time will be greatly
prolonged since more voxels contribute to calculation of the gradients at each step and
the number of steps cannot be proportionally reduced during optimization; 3) as the
background voxels dominate the whole image, the class imbalance will cause the
model to focus on background if trained with uniform loss, or prone to false positives if
trained with weighted loss that favors the foreground voxels. Therefore, to more
effectively utilize the training data, smaller patches were extracted from each subject.
As the foreground labels contain much more variability and are the main targets to
segment, more patches from the foreground voxels should be extracted.

In implementation, during each epoch, a random patch was extracted from each
subject using non-uniform probabilities. The valid patch centers were first calculated by
removing edges to make sure each extracted patch was completely within the whole
image. The probability of each valid patch center pi;j;k was calculated using the fol-
lowing equation:

pi;j;k ¼ si;j;kP
i;j;k si;j;k

ð1Þ

in which si;j;k ¼ 1 for all voxels with maximal intensity lower than the 1st percentile,
si;j;k ¼ 6 for all foreground voxels and si;j;k ¼ 3 for the rest. The patch center was then
randomly selected based on the calculated probability and the corresponding patch was
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extracted. Since normal brain images are symmetric along the left-right direction, a
random flip along this direction was made after patch extraction. No other augmen-
tation was applied.

2.3 Network Structure and Training

A 3D U-Net based network was used as the general structure, as shown in Fig. 1. Zero
padding was used to make sure the spatial dimension of the output is the same with the
input. For each encoding block, a VGG like network with two consecutive 3D con-
volutional layers with kernel size 3 followed by the activation function and batch norm
layers were used. The parametric rectilinear function (PReLU), given as:

f xð Þ ¼ max 0; xð Þ � amax 0;�xð Þ ð2Þ

was used with trainable parameter a as the activation function. The number of features
was doubled while the spatial dimension was halved with every encoding block, as in
conventional U-Net structure. To improve the expressiveness of the network, a large
number of features were used in the first encoding block. Dropout with ratio 0.5 was
added after the last encoding block. Symmetric decoding blocks were used with skip-
connections from corresponding encoding blocks. Features were concatenated to the
de-convolution outputs. The extracted segmentation map of the input patch was
expanded to the multi-class the ground truth labels (3 foreground classes and the
background). Weighted/non-weighted cross entropy was used as the loss function.

The number of encoding/decoding blocks, the weights in the loss function and the
patch size were chosen as the tunable hyper-parameters when constructing multiple

Fig. 1. 3D U-Net structure with 3 encoding and 3 decoding blocks.
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models. Due to memory limitations, for a larger patch size, the number of features
needs to be reduced. In current implementation, due to constraint in computational
resources, six models were trained, with detailed parameters shown in Table 1. N de-
notes the input size, M denotes the number of encoding/decoding blocks and f denotes
the input features at the first layer. For weighted loss, 1.0 was used for background and
2.0 was used for each class of foreground voxels.

Training was performed on a Nvidia Titan Xp GPU with 12 Gb memory.
640 epochs were used. As mentioned earlier, during each epoch, only one patch was
extracted every subject. Subject orders were randomly permuted every epoch. The
Tensorflow framework was used with Adam optimizer. Batch size was set to 1 during
training. During testing, as a smaller batch size was very sensitive to the running
statistics, all batch norm layers did not use the running statistics but the statistics of the
batch itself. This is usually called a layer normalization as it normalizes each feature
map with its own mean and standard deviation. A learning rate of 0.0005 was used
without further adjustments during training. The total training time was about 60 h.

2.4 Volume Prediction Using Each Model

Due to the fact that the entire image cannot fit into the memory during deployment, a
sliding window approach needs to be used to get the output for each subject. However,
as significant padding was made to generate the output label map at the same size as the
input, boundary voxels of a patch were expected to yield unstable predictions when
sliding the window across the whole image without overlaps. To alleviate this problem,
a stride size at a fraction of the window size was used and the output probability was
averaged. In implementation, the deployment window size was chosen to be the same
as the training window size, and the stride was chosen as ½ of the window size. For
each window, the original image and left-right flipped image were both predicted, and
the average probability after flipping back the output of the flipped input was used as
the output. Therefore, each voxel, except for a few on the edge, will be predicted 16
times when sliding across all directions. Although smaller stride sizes can be used to
further improve the accuracy with more averages, the deployment time will be
increased 8 times for every ½ reduction of the window size and thus will quickly
become unmanageable. Using the parameters as mentioned on the same GPU, it took
about 1 min to generate the output for the entire volume per subject. Instead of

Table 1. Detailed parameters for all 6 3D U-Net models.

Model # M N f Loss type

1 3 64 96 Uniform
2 3 64 96 Weighted
3 4 64 96 Uniform
4 4 96 96 Weighted
5 3 80 64 Uniform
6 3 80 64 Weighted
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performing a thresholding on the probability output to get the final labels, the direct
probability output was saved for each model to the disk.

2.5 Ensemble Modeling

The ensemble modeling process was rather straightforward. The probability output of
all classes from each model was read from the disk and the final probability was
calculated via simple averaging. The class with the highest probability was selected as
the final segmentation label of each voxel.

2.6 Uncertainty Estimation

The research of Gal et al. [11] provides a Bayesian framework to estimate model
uncertainty utilizing Monte Carlo dropout during testing. For the same testing sample,
multiple outputs are generated, from which the mean probability or the variation of
different probability maps can be calculated to obtain the uncertainty estimation. In this
study, however, the ensemble of 3D U-Nets has the intrinsic advantage of producing
several outputs for one testing sample. Two volume-based uncertainty calculation
methods based on the given probability maps were implemented in this study. The first
one uses the mean probability of all foreground voxels, which is given by the sum-
mation of all foreground voxels’ mean probabilities divided by the total number of
foreground voxels. The second one uses the mean probability variation of all fore-
ground voxels. For each foreground voxel, the probability variation is defined as the
standard deviation of the 6 generated voxel-wise probability maps. The uncertainty is
then calculated by the summation of all foreground voxels’ probability variations
divided by the total number of foreground voxels. In order to compare the perfor-
mances of two uncertainty measures, the Pearson’s correlation coefficient between the
uncertainty measure and the actual dice score is calculated. The one with higher cor-
relation will be used to estimate voxel-wise uncertainty. The uncertainty is then nor-
malized to be between 0 and 100 based on its original range. For the first measure
(mean probability), the following equation describes the normalization step:

uncertainty ¼ 200� 0:5� p� 0:5j jð Þ ð3Þ

in which p denotes the voxel’s mean probability for one foreground class calculated
from 6 probability maps. If the prediction is certain, the mean probability should be
close to 0 or 1, and the uncertainty value should be close to 0.

2.7 Survival Prediction

To predict the post-surgery survival time measured in days, extracted images features
and non-image features were used to construct a linear regression model. 6 image
features were calculated from the ground truth label maps during training and the
predicted label maps during validation. For each foreground class, the volume (V) by

Brain Tumor Segmentation with Uncertainty Estimation 309



summing up the voxels and the surface area (S) by summing up the magnitude of the
gradients along three directions were obtained, as described in the following equations

VROI ¼
X

i;j;k
si;j;k ð4Þ

SROI ¼
X

i;j;k
si;j;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@s
@i
Þ2 þð@s

@j
Þ2 þð@s

@k
Þ2

s
ð5Þ

in which ROI denotes a specific foreground class and si;j;k ¼ 1 for voxels that are
classified to belong to this ROI and si;j;k ¼ 0 otherwise.

Age and resection status were used as non-imaging clinical features. As there were
two classes of resection status and many missing values of this status, a two-
dimensional feature vector was used to represent the status, given as GTR: (1, 0), STR:
(0, 1) and NA: (0, 0). A linear regression model after normalizing the input features to
zero mean and unit standard deviation was fit with the training data. As the input
feature size is 9, the risk for overfitting is greatly reduced.

3 Results

3.1 Brain Tumor Segmentation

All 335 training subjects were used in the training process. 94 subjects were provided
as validation and other 166 subjects were provided as testing. The dice indexes, sen-
sitivities and specificities, 95 Hausdorff distances of the enhanced tumor (ET), whole
tumor (WT) and tumor core (TC) were automatically calculated after submitting to the
CBICA’s Image Processing Portal. Table 2 shows the mean dice scores and 95
Hausdorff distances of ET, WT and TC for the training, validation and testing datasets.
Sensitivity and specificity are highly correlated with the dice indexes so that they are
not included.

3.2 Uncertainty Measure

Figure 2 shows the correlation coefficients between each volume-based uncertainty
measure and the actual dice score for three foreground classes based on all validation
subjects. The mean probability of all foreground voxels has higher correlation with dice
score compared with the mean probability variation for all ROIs, indicating that the

Table 2. Performances of the ensemble on the training, validation and testing datasets.

Dataset Dice_ET Dice_WT Dice_TC Dist_ET Dist_WT Dist_TC

Training 0.7917 0.9094 0.8362 4.0186 3.8009 5.6451
Validation 0.7403 0.9061 0.8025 4.5864 4.2516 6.7645
Testing 0.7758 0.8810 0.8280 25.2965 9.0868 26.9982
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mean probability can serve as a good measurement of volume-based uncertainty, which
conforms to the results in [12].

Figure 3 shows one slice with segmentation results and the calculated uncertainty
maps. At the boundary of each ROI, the corresponding uncertainty map shows higher
values, indicating that the model is uncertain about the voxel label. After submitting the
normalized uncertainty measures, the mean dice indexes of the validation dataset for
WT, TC and ET were 0.897 ± 0.054, 0.790 ± 0.251, and 0.749 ± 0.272. Comparing
with the original dice indexes, the performances did not change significantly, if not
becoming slightly worse.

3.3 Survival Prediction

All 259 training subjects with survival data were used in the training process. 29 cases
were evaluated after submitting to the CBICA’s Image Processing Portal. The accuracy
was 0.31, MSE was 107639.326, median SE was 77906.27, std SE was 109586.733
and Spearman Coefficient was 0.204. The performance on the validation dataset is not
as accurate as other top teams in this task, however, our method achieved an accuracy
of 0.55 in the testing dataset and was ranked 3rd (tie) overall. The results suggest that a
linear model is robust against overfitting.

Fig. 2. Correlation between each uncertainty measure and the actual dice score.
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4 Discussion and Conclusions

In this paper we developed a brain tumor segmentation method using an ensemble of
3D U-Nets. Intensity normalization was used as pre-processing. 6 networks were
trained with different number of encoding/decoding blocks, input patch sizes and
different weights for loss. The preliminary results showed an improvement with
ensemble modeling. For survival prediction, we used a simple linear regression by
combining radiomics features from images such as volumes and surface areas of each
sub-region and non-imaging clinical features.

For segmentation, it is noted that the median metrics are significantly higher than
the mean metrics. For example, the median dice indexes were 0.867, 0.923 and 0.904
for ET, WT and TC in the final ensembled model. It makes sense in that the theoretical
maximum dice index is 1 and minimum dice index is 0. However, we noted that in
several cases, the dice indexes are as low as 0 for ET and TC and 0.6 for WT. It is
mostly due to the low sensitivity meaning that the model is not able to recognize the
corresponding tumor regions. The possible reason for these failed regions is that their
characteristics deviate a lot from the training dataset. This is also encouraging in that
for majority of the cases, the segmentation quality is very high.

In the 3D U-Net model, we found that the batch norm layer was helpful in
improving the model stability and performance. However, different with the canonical
application of the batch norm layer, in which the batch statistics is used in training and
the global statistics is used in deployment, it performed much better with batch
statistics in deployment than global statistics. Since the batch size is 1, a per-channel

Fig. 3. Segmentation results and the calculated uncertainty maps.
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normalization is actually performed by subtracting its own mean. One possible
explanation could be that by doing such normalization, the model focuses on the
differences of neighboring pixels in one channel and ignores the absolute values, which
may help the segmentation process. However, further investigation is needed to figure
out the exact reason.

Compared with the patch-based model that only predicts the center pixel, when
predicting the segmentation label maps for the full patch, different pixels are very likely
to have different effective receptive field sizes due to the zero padding in the edge. We
argue that a pixel should still be able to be predicted even based on partial receptive
field, which, for the very edge pixel, corresponds to only half of the maximal receptive
field. Furthermore, the significant overlap in the sliding windows during deployment
can improve the accuracy with more averages.

In the current implementation, 6 networks were trained due to limitations in
computation time. It is expected with more networks, the results can be further
improved, although the marginal improvement is expected to decrease.

To measure the model uncertainty, two volume-based uncertainty measurements
based on the probability maps generated by 6 networks were proposed and compared.
A simple calculation method based on the mean probability of all foreground voxels
was adopted to evaluate voxel-wise uncertainty. This method takes advantage of the
ensemble modeling, and does not require any modification to the network structure or
training procedure. Comparison with other uncertain measure could be performed in
future work.

For the survival prediction task, since it is very likely to overfit with such a small
dataset and we argue that as many other features may play more important roles in
overall survival such as histological and genetic features but unfortunately, they are not
available in this challenge, a linear regression model was the safest option to minimize
the test errors, although at the cost of its expressiveness. Further exploration of those
additional features through clinical collaboration is expected to improve the accuracy of
survival prediction.

In conclusion, we developed an ensemble of 3D U-Nets for brain tumor segmen-
tation. The network hyper-parameters are varied to obtain multiple trained models.
A linear regression model was also developed for the survival prediction task. The code
is available at https://github.com/xf4j/brats18.
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Abstract. A cascade of global context convolutional neural networks is
proposed to segment multi-modality MR images with brain tumor into
three subregions: enhancing tumor, whole tumor and tumor core. Each
network is a modification of the 3D U-Net consisting of residual connec-
tion, group normalization and deep supervision. In addition, we apply
Global Context (GC) block to capture long-range dependency and inter-
channel dependency. We use a combination of logarithmic Dice loss and
weighted cross entropy loss to focus on less accurate voxels and improve
the accuracy. Experiments with BraTS 2019 validation set show the pro-
posed method achieved average Dice scores of 0.77338, 0.90712, 0.83911
for enhancing tumor, whole tumor and tumor core, respectively. The
corresponding values for BraTS 2019 testing set were 0.79303, 0.87962,
0.82887 for enhancing tumor, whole tumor and tumor core, respectively.

Keywords: Brain tumor · Segmentation · Convolutional neural
network

1 Introduction

Gliomas are the most common primary brain tumors, which arises from glial
cells [17]. Gliomas can be categorized into two subtypes: low-grade gliomas
(LGG) and high-grade gliomas (HGG). Low-grade gliomas indicate a rela-
tively promising prognosis. On the contrary, high-grade gliomas have a worse
prognosis [19]. In the diagnosis of brain tumors, Magnetic Resonance Imag-
ing (MRI) is a powerful and useful methods for brain tumor analysis. The
MRI sequences usually consist of several modalities, such as T1-weighted, con-
trast enhanced T1-weighted (T1c), T2-weighted and Fluid Attenuation Inversion
Recovery (FLAIR). Different modalities provide complementary information to
differentiate glioma subregions. For example, FLAIR has a good contrast for
the whole peritumoral edema and T1c highlights the tumor without peritumoral
edema.

c© Springer Nature Switzerland AG 2020
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Automatic segmentation of brain tumors makes a contribution to better diag-
nosis and treatment planning. However, this segmentation is challenging because
(1) Tumor structures vary considerably across patients in terms of size, shape,
and location. The shapes of brain tumor and its subregions are quite irregular,
especially enhancing tumor core. Many small lumps, scattering in this region,
bring difficulties to accurate segmentation of some small enhancing tumor cores.
(2) The boundaries between adjacent structures are often ambiguous.

In recent years, methods based on convolutional neural networks (CNNs)
dominate the state-of-the-art performance on brain tumor segmentation [12,18,
23]. DeepMedic [14], a 3D CNN model with fully connected Conditional Ran-
dom Field (CRF), predicts a segmentation incorporating both local and non-
local contextual information. However, DeepMedic works on local image patches
and therefore is less efficient compared with more recent works [12,18,23].
With the success of encoder-decoder network architectures applied to seman-
tic segmentation, especially FCN [16] and U-Net [21], all top performing meth-
ods [12,13,18,23] in BraTS challenge are based on encoder-decoder networks
since 2017. Kamnitsas et al. [13] brought together a variety of CNN architec-
tures and explored Ensembles of Multiple Models and Architectures (EMMA) to
make their segmentation reliable. Wang et al. [23] used a cascade of FCN-based
networks consisting of multiple layers of anisotropic and dilated convolution fil-
ters, which is complex mainly because of cascade but helps a lot to improve seg-
mentation accuracy. Myronenko [18] used a encoder-decoder structure of CNN
with a large patch size of 160 × 192 × 128 and a variational auto-encoder branch
to regularize the shared encoder. Isensee et al. [12] modified the U-Net [21] and
used a combination of Dice loss and cross entropy loss, which demonstrated the
effectiveness of a well trained U-Net. Besides, there are some novel ideas recently
proposed for brain tumor segmentation. Wang et al. [24] provided voxel-wise and
structure-wise uncertainty information of the segmentation result which helps to
improve segmentation accuracy. Wang et al. [11] proposed global attention mul-
tiscale feature fusion module (GMF) and local dense multi-scale feature fusion
module (LMF) to exploit both local dense features and global context infor-
mation. Cheng et al. [6] decomposed the input modalities into the appearance
code and content code to enhance the robustness of multimodal learning frame-
work when some modalities are missed. Xu et al. [29] settled multi-tasks into
corresponding branches with a shared feature extractor and implicitly involved
subregions correlations as attention messages in a single model. However their
attention mechanism only focused on the relationships of sub-regions.

In this work, we decompose the brain tumor segmentation task into three sub-
tasks where the whole tumor, the tumor core and the enhancing tumor core are
segmented respectively. For each subtask, we follow the success of the encoder-
decoder structure of CNN and keep the skip connection of U-Net. We introduce
the Global Context (GC) block [5] to the decoder, which can capture long-range
dependency and inter-channel dependency. And we also make use of residual
connection [9], group normalization [27] and deep supervision [28]. Moreover, we
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use a modified Dice loss function to focus on less accurate labels, and we add it
to a weighted cross entropy loss to further improve the accuracy.
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Fig. 1. The proposed network for brain tumor segmentation. Each block encompasses
two convolutions with leaky ReLU and group normalization. The number besides each
block means output channel number of convolution. A Global Context (GC) block is
used at each resolution level of the decoder except the bottom one to capture the global
context information. Deep supervision is used to employ multi-scale features for the
final prediction.

2 Methods

2.1 Global Context Network Architecture

In our proposed method, we use a 3D U-Net [7] as our backbone due to its great
performance in medical image segmentation, and separately trained three net-
works to hierarchically segment whole tumor, tumor core and enhancing tumor,
as it is more challenging to segment these structures simultaneously with a single
network due to their different sizes and appearances [23].

The proposed network for each subtask is shown in Fig. 1. Our network is a
modification of the 3D U-Net [7]. Both encoder part and decoder part use resid-
ual blocks on account of their identity mapping to address the model degradation
problem for very deep networks [9]. Each block encompasses two convolutions
with leaky Rectified Linear Unit (ReLU) and group normalization. Group nor-
malization performs better than its batch normalization counterpart when batch
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Fig. 2. Global Context (GC) block is a combination of SE block with simplified non-
local block, which can capture long-range dependency and inter-channel dependency.
⊗ denotes matrix multiplication and ⊕ denotes broadcast elementwise addition.

size is small [27]. We utilize max-pooling for downsampling and trilinear inter-
polation for upsampling. We set the channel number in the first block as 30, and
it is doubled after each down-sampling layer in the encoder, as shown in Fig. 1.

To learn representative high-level and low-level features, we apply deep super-
vision to the last three end of decoders by upsampling their output features to
the resolution of the input and then concatenate them for the final prediction.
A GC block is used at each resolution level of the decoder except the bottom
one to capture the global context information, which will be introduced in the
following.

2.2 Global Context Aggregating

The GC block [5] is a combination between simplified non-local block [25] and
Squeeze-and-Excitation (SE) block [10]. These two blocks are shown as the con-
text modeling part and transform part in Fig. 2, respectively. In this paper, we
combine the GC block with the 3D U-Net by inserting it at multiple scales of the
decoding path, as shown in Fig. 1. Inspired by attention mechanisms that learn to
focus on the relevant image regions [8], non-local network [25] is a self-attention
method which can capture long-range dependencies and thus helps to obtain bet-
ter segmentation results. However, the original implementation [25] has a large
consumption of memory and it is not practical to use the non-local block at each
resolution level of the decoder. Therefore, we apply a simplified version [5], which
is more memory efficient without reducing the performance. Moreover, another
self-attention method SE [10] block can capture the inter-channel dependency
and then adaptively recalibrate channel-wise feature responses.

The non-local network generally implies the importance of the corresponding
positions to the query position through the query-specific attention weights.
Instead of aggregating query-specific global context to each query position as
the original version of non-local block [25] does, the simplified non-local block [5]
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explicitly uses a query-independent attention map for all query positions so that
the attention coefficients for every query position are almost the same. The
query-independent attention map here is a channel-wise global context. And
then, we add the global context features: query-independent attention map to
each query position. The simplified non-local is defined as:

yi = xi + Wv

N∑

j=1

exp(Wkxj)∑N
l=1 exp(Wkxl)

xj (1)

where x and y denote the input and output of the simplified non-local block
respectively, i and j denote two positions and N is the number of positions in
the feature map. Wk and Wv are linear transformation matrices and implemented
through 1×1 × 1 convolution here.

Before the global context is added to each query position, the global context
goes to SE block to recalibrate channel-wise feature responses, where layer nor-
malization eases optimization in the bottleneck transform. By integrating GC
blocks in all decoder blocks, we can capture the long-range dependency with a
slight increase of computational cost.

2.3 Logarithmic Dice and Weighted Cross Entropy

Inspired by the previous work [26], we propose a loss function which helps to
obtain accurate results:

Loss = LDice + LCross−Entropy (2)

It is a combination of the logarithmic Dice loss [26] and weighted cross entropy.
The logarithmic Dice loss gets a bigger decreasing gradient magnitude as dice
increases, therefore we can converge to a lower loss and focus on less accurate vox-
els. It intrinsically focuses more on less accurately segmented structures. Based
on the previous work [26] and our experience, the exponent parameter is set to
0.3 here. The weighted cross entropy is inspired by the heatmap in human pose
estimation [22] and it can guide the network to focus more on the target region:

LDice = (− log(Dice))0.3 (3)

LCross−Entropy = − 1
N

N∑

i=0

(yi ∗ log(pi) + (1 − yi) ∗ log(1 − pi)) ∗ hi (4)

where i denotes the pixel position. yi is the ground truth label at i, pi is the
probability of pixel i being the foreground, and hi is the weight of pixel i:

hi =

{
1, if i ∈ F

exp(−l2i /σ), otherwise
(5)

σ =
1
2
r

3
2 (6)
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Fig. 3. A typical segmentation example of the brain tumor (HGG) from our local
validation set, which is part of the official BraTS 2019 training set. The whole tumor
includes all colours, the tumor core includes yellow and red, the enhancing tumor is
shown in yellow. (Color figure online)

where F denotes the set of foreground voxels in the ground truth, and the
weight for foreground voxels is 1. r denotes the average size of the foreground
region along each axis. σ is a positive parameter that controls the weight for
background voxels, which is inspired by Gaussian distribution. li is the distance
to the center of foreground voxels and hi gets lower when the voxels are further
from the foreground voxels.

3 Experiments and Preliminary Results

Data and Implementation Details. We mainly used the Multimodal Brain
Tumor Segmentation Challenge (BraTS) 20191 [1–4,17] training and validation
set for experiments. BraTS focuses on the evaluation of state-of-the-art methods
for the segmentation of brain tumors in 3D MRI scans [1–4,17]. The BraTS 2019
training set consists of 335 cases (259 HGG and 76 LGG) with four 3D MRI
modalities (T1, T1c, T2 and FLAIR). Each case was annotated into 3 hetero-
geneous histological sub-regions by expert raters: peritumoral edema, necrotic
core and non-enhancing tumor core and enhancing tumor core. The evaluation

1 http://www.med.upenn.edu/cbica/brats2019.html.

http://www.med.upenn.edu/cbica/brats2019.html
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was based on the segmentation accuracy of three hierarchical regions: enhanc-
ing tumor (ET), tumor core (TC) which includes the ET, whole tumor (WT)
which includes the TC. The BraTS 2019 validation set contains images from
125 patients with brain tumors of unknown grade. The segmentation masks are
uploaded to the online evaluation platform and the segmentation performance is
measured based on the Dice score, sensitivity, specificity and Hausdorff distance.
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(a) FLAIR image (b) Ground truth (c) Segmentation 

Fig. 4. A typical segmentation example of the brain tumor (LGG) from a our local
validation set, which is part of the official BraTS 2019 training set. The whole tumor
includes all colours, the tumor core includes yellow and red, the enhancing tumor is
shown in yellow. (Color figure online)

We implemented our network in PyTorch [20]. We trained for 500 epochs
and used Adaptive Moment Estimation (Adam) [15] for training, with initial
learning rate 10−4, which was reduced by half when validation performance
has not improved for 30 epochs. We regularized with a L2 weight decay 10−5,
batch size 2. Training was implemented on two NVIDIA GeForce GTX 1080Ti
GPUs. The training patch size was 128 × 128 × 128 for each of the three binary
segmentation tasks: whole tumor, tumor core and enhancing tumor.

For pre-processing, each image was normalized by its intensity mean value
and standard deviation. Random crop, random elastic deformation, random rota-
tion and random mirroring were used for data augmentation to alleviate the over-
fitting problem. At test time, we just segmented three subregions in sequence
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and test time augmentation by mirror flipping the input image. Finally, we used
an ensemble of five models to improve the segmentation accuracy.

Table 1. Dice scores of our methods on our local validation set, which is a subset of
the BraTS 2019 training set. EN, WT, TC denote enhancing tumor, whole tumor and
tumor core respectively.

Dice

ET WT TC

Baseline 0.757 ± 0.271 0.905 ± 0.064 0.862 ± 0.127

Baseline + our loss 0.781 ± 0.254 0.907 ± 0.062 0.858 ± 0.141

Baseline + GC block 0.792 ± 0.224 0.909 ± 0.062 0.865 ± 0.136

Baseline + GC block + our loss 0.798 ± 0.233 0.910 ± 0.066 0.869 ± 0.121

Cascaded + GC block + our loss 0.803 ± 0.218 0.916 ± 0.055 0.874 ± 0.099

Table 2. Hausdorff distances of our methods on our local validation set, which is a
subset of the BraTS 2019 training set. EN, WT, TC denote enhancing tumor, whole
tumor and tumor core respectively.

Hausdorff distance (mm)

ET WT TC

Baseline 6.477 ± 23.483 1.727 ± 3.062 2.115 ± 3.027

Baseline + our loss 4.800 ± 15.942 1.713 ± 3.102 2.352 ± 3.229

Baseline + GC block 5.538 ± 19.341 1.584 ± 2.784 2.300 ± 3.693

Baseline + GC block + our loss 2.600 ± 6.770 1.483 ± 2.481 1.915 ± 2.430

Cascaded + GC block + our loss 5.633 ± 19.688 1.306 ± 2.020 1.948 ± 2.311

Segmentation Results. As a preliminary study, we first conducted our exper-
iment with BraTS 2019 training images to validate the effectiveness of our GC
block, from which we randomly selected 80% as the training set, and the remain-
ing was used for validation. Our baseline is a multi-class 3D U-Net used to seg-
ment three subregions with a Dice loss function. We compared the baseline with
or without GC block, the baseline with or without our loss function to investi-
gate the effect of our GC block and our loss function individually. Table 1 and
Table 2 show the results based on our local validation set, which is part of the
BraTS 2019 training set. It can be observed that both GC block and our pro-
posed loss function lead to improved segmentation results of enhancing tumor.
These tables also show that our cascade of three binary segmentation models
outperforms the baseline structure of a single multi-class segmentation model.
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Figure 3 and Fig. 4 show examples of qualitative segmentation of our local
validation images, which is from a subset of the BraTS 2019 training set. We
visualize the results and labels in the FLAIR image. The green, red, yellow
colors show the edema, non-enhancing and enhancing tumor cores, respectively.
Figure 3 shows the segmentation of whole tumor and tumor core is close to
the ground truth. However, the segmentation of enhancing tumor core is less
accurate, which is potentially because of the small and irregular target shape.
In Fig. 4, the LGG image does not contain enhancing tumors. The segmentation
of whole tumor and tumor core is also close to the ground truth.

Table 3. Dice and Hausdorff measurements of our method on BraTS 2019 validation
set. EN, WT, TC denote enhancing tumor, whole tumor and tumor core respectively.

Dice Hausdorff distance (mm)

ET WT TC ET WT TC

Proposed (a single model) 0.77266 0.90304 0.83256 4.44100 7.09542 7.67823

Proposed (ensemble) 0.77338 0.90712 0.83911 4.30514 5.20383 7.15621

team SCAN 0.77656 0.90791 0.84640 3.37916 4.80370 6.43485

team Questionmarks 0.80211 0.90941 0.86473 3.14581 4.26398 5.43931

Table 4. Sensitivity and specificity measurements of our method on BraTS 2019 vali-
dation set. EN, WT, TC denote enhancing tumor, whole tumor and tumor core respec-
tively.

Sensitivity Specificity

ET WT TC ET WT TC

Proposed (a single model) 0.77204 0.91863 0.82286 0.99852 0.99409 0.99769

Proposed (ensemble) 0.77369 0.89893 0.82907 0.99851 0.99575 0.99767

team SCAN 0.77540 0.89128 0.84790 0.99858 0.99575 0.99717

team Questionmarks 0.80383 0.92371 0.86215 0.99843 0.99425 0.99739

We then trained our proposed network with the entire set of BraTS 2019
training images, and applied the trained model to the BraTS 2019 validation
set. We also compared our method with the top-ranked methods. Team Ques-
tionmarks won the 1st place of the segmentation task of BraTS 2019. Table 3
presents Dice and Hausdorff measurements according to the online evaluation
platform in BraTS 2019. It shows that our Dice accuracy performance was com-
petitive according to the leaderboard2. Table 4 presents sensitivity and specificity
measurements according to the online evaluation platform in BraTS 2019.
2 https://www.cbica.upenn.edu/BraTS19/lboardValidation.html.

https://www.cbica.upenn.edu/BraTS19/lboardValidation.html
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Table 5 presents quantitative results on the BraTS 2019 testing set. It
includes the means, standard deviations, medians, 25 quantiles and 75 quan-
tiles of Dice and Hausdorff measurements of enhancing tumor, whole tumor and
tumor core. We achieved Dice scores of 0.79303, 0.87962 and 0.82887 for ET,
WT and TC, respectively. The results of enhancing tumor and tumor core are
close to our results on validation sets but scores for whole tumor are lower. It is
of interest to reduce the overfitting problems of whole tumors’ segmentation.

Table 5. Dice and Hausdorff measurements of our method on BraTS 2019 testing set.
EN, WT, TC denote enhancing tumor, whole tumor and tumor core respectively.

Dice Hausdorff distance (mm)

ET WT TC ET WT TC

Mean 0.79303 0.87962 0.82887 2.96669 6.35796 5.61115

StdDev 0.22185 0.14244 0.26101 6.08917 11.76922 13.13856

Median 0.84974 0.91866 0.92385 1.73205 3.00000 2.23607

25quantile 0.76702 0.87164 0.86590 1.00000 1.73205 1.41421

75quantile 0.91617 0.94839 0.95512 2.44949 5.65471 3.70763

4 Conclusion

We proposed a cascaded global context convolutional neural network to seg-
ment glioma subregions from multi-modality brain MR images. We train three
subtasks separately so that each task is simpler and easier to train. Our GC
block can capture long-range dependency and inter-channel dependency and
helps to improve the segmentation accuracy. Experimental results show that
our method achieved average Dice scores of 0.77338, 0.90712 and 0.83911 for
enhancing tumor, whole tumor and tumor core, respectively on the BraTS 2019
validation set. The corresponding values for BraTS 2019 testing set were 0.79303,
0.87962 and 0.82887 for enhancing tumor, whole tumor and tumor core, respec-
tively.
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Abstract. Accurate and reproducible detection of a brain tumor and
segmentation of its sub-regions has high relevance in clinical trials and
practice. Numerous recent publications have shown that deep learning
algorithms are well suited for this application. However, fully supervised
methods require a large amount of annotated training data. To obtain
such data, time-consuming expert annotations are necessary. Further-
more, the enhancing core appears to be the most challenging to seg-
ment among the different sub-regions. Therefore, we propose a novel and
straightforward method to improve brain tumor segmentation by joint
learning of three related tasks with a partly shared architecture. Next to
the tumor segmentation, image reconstruction and detection of enhanc-
ing tumor are learned simultaneously using a shared encoder. Meanwhile,
different decoders are used for the different tasks, allowing for arbitrary
switching of the loss function. In effect, this means that the architecture
can partly learn on data without annotations by using only the autoen-
coder part. This makes it possible to train on bigger, but unannotated
datasets, as only the segmenting decoder needs to be fine-tuned solely
on annotated images. The second auxiliary task, detecting the presence
of enhancing tumor tissue, is intended to provide a focus of the network
on this area, and provides further information for postprocessing. The
final prediction on the BraTS validation data using our method gives
Dice scores of 0.89, 0.79 and 0.75 for the whole tumor, tumor core and
the enhancing tumor region, respectively.

Keywords: BraTS 2019 · Brain tumor segmentation · Multi-task
learning · U-Net

1 Introduction

Automatic brain tumor segmentation can provide massive support in clinical tri-
als and practices, as manual annotation of 3D brain MRI images needs trained
personnel and is very labor intensive. For example, a recent study using a
deep learning tumor segmentation algorithm was carried out by Kickingereder
et al. [9], showcasing the clinical relevance of this task.
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However, a high variety of segmentation algorithms exist, and different inde-
pendent studies do not allow for direct comparisons of different algorithms.
To address this need, the BraTS Challenge was launched [11]. It focuses on
comparing the performance of automated segmentation algorithms on multi-
institutional, pre-operative MRI scans. Next to this task, participants are asked
to determine patient survival automatically.

In 2012, the BraTS Challenge appeared for the first time in conjunction with
the International Conference Medical Image Computing and Computer Assisted
Interventions (MICCAI). Since then, this challenge has yearly hold a worldwide
competition of novel methods for automatic segmentation of brain tumors. Over
50 competitors participated in the BraTS Challenge in 2018.

A manually annotated training data set [3] is provided to the participants,
while segmentations of a validation- and test data set remain unseen for the
participants. Finally, the participants are ranked based on the quality of their
predicted segmentations, which are compared to a manually annotated ground
truth.

Motivated by the recent success of deep learning neural networks on different
image segmentation tasks and the promising results from the BraTS challenge
in the last few years, we present a novel method that seeks to improve the
segmentation by multi-task learning and including unlabeled data.

2 Related Work

Extensive research has been presented in the field of brain tumor segmentation.
In recent years, most publications rely on encoder-decoder type deep learning
models. These types of models also performed best in the BraTS challenges of
the last two years [4].

The best performing submissions of the BraTS challenge 2017 include the
work of Kamnitsas et al. [8], which won the first place with an ensemble method,
and the work of Wang et al. [17], who achieved the second place with a cascaded
anisotropic architecture.

In 2018, Lachinov et al. [10] also employed a cascaded 3D U-Net architecture
for the BraTS challenge. Within the cascaded structure, they implemented a
multiple encoders U-Net architecture, which trained each encoder for one MRI
modality. Comparing their results to the standard U-Net, they had significantly
better predictions for the tumor core region, while the improvements for the
whole tumor and enhancing tumor region are marginal. Finally, Sherman [16]
demonstrated that training the V-Net architecture as proposed by Milletari
et al. [12] with a multi-class Dice loss could achieve competitive Dice scores.

However, compared to the winners of the BraTS challenge 2017, the best
performing teams of the BraTS challenge 2018 employed less complex architec-
tures, which still outperformed previously proposed approaches. The first place
went to Myronenko [14], who employed a customized encoder-decoder structure
with an asymmetrically large encoder to extract deep image features. A varia-
tional autoencoder branch was also added to the overall architecture in order to
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regularize the shared encoder. The second place went to Isensee et al. [7] with a
plain 3D U-Net.

A multi-task learning approach for weakly annotated data was presented Mly-
narski et al. [13] in 2018. The network was jointly trained for segmentation and
classification tasks with weakly-annotated 2-D images and voxelwise annotated
3D MRI scans. It was shown that such this multi-task approach could provide
significant improvements over a segmentation-only network. In their system the
segmentation network was trained on voxelwise annotations while the classifi-
cation sub-network learned a simple tumor detection score. The two networks
shared parameters. A combined loss function for training took both the perfectly
annotated volumes as well as the weakly annotated images into account.

3 Data Set

Deep learning algorithms learn the features and the properties of the data set.
Therefore, the quantity and quality of the training data set is very important
for the performance of the algorithm.

The BraTS challenge 2019 training data consists of 335 annotated multi-
modal MRI scans of glioma patients, comprising 259 glioblastoma patients and
76 lower-grade glioma patients. As our method can leverage unlabeled data for
training, we include the BraTS 2018 test data and the BraTS 2019 validation
data as unlabeled data. The BraTS data originate from 19 different institu-
tions worldwide that use various MRI scanners [1,2]. All the available multi-
modal MRI scans were pre-operative and uniformly pre-processed, for instance
co-registered to the same anatomical template, interpolated to the same reso-
lution (1mm3), and skull-stripped. For each brain tumor patient, four different
MRI sequences are available, from which precise information about the location,
size, shape, and the sub-regions of the glioma can be extracted. T1, T2, FLAIR
and a contrast-agent enhanced T1 image (T1GD) are available.

The ground truth labels have been annotated by more than one expert into
three glioma sub-regions, and examined by experienced neuroradiologists. The
three sub-regions are the enhancing tumor region (ET), visible in T1Gd, the
necrotic and non-enhancing tumor core (NET) region with increased brightness
as visualized by T2 weighted images, and the peritumoral edema (ED), which is
typically hyperintense in the FLAIR image.

4 Methods

4.1 Preprocessing

Since the output of MRI scanners is not quantitative, and the BraTS data set
originates from different institutions using various scanners, further preprocess-
ing of the data is necessary for intensity normalization. Z-score normalization is
chosen, which linearly scales the input images. Thus, it keeps the relative tis-
sue contrast constant even for unusually high or low intensities. With z-score
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normalization, each MRI scan is subtracted by its mean μ and divided by its
standard deviation σ individually.

Due to the increasing depth of the network, the image size for the input
needs to be adjusted as a trade-off. This motivates a patch-based training with
sequentially extracted patches of the dimension 128 × 128 × 128. Before the
patches are generated, each MRI scan is cropped to the brain mask, i.e. all
voxels outside the mask are discarded such that only the brain region is left
(Fig. 1).

Fig. 1. Preprocessing of a T2 slice: Original data, cropped, z-score normalized,
extracted patch (from left to right).

4.2 Multi-task Learning Based Segmentation

A multi-task learning (MTL) network needs to minimize a sum of several differ-
ently weighted loss functions. This leveraging process during the training pre-
vents the trained network from overfitting on the one hand, and, on the other
hand, encourages the network to focus on features that are important for all
tasks. Incorporating similar but unlabeled data into the training data set, as
well as determining the presence or absence of the enhancing tumor region, are
to a certain extent related to the original segmentation task. Overall, the multi-
task loss

LMTL = w1 · LL2 + w2 · LKL + w3 · Lclass + w4 · Ldice

with fixed weights wk, variational autoencoder losses LL2 and LKL, classification
loss Lclass, and segmentation loss Ldice is employed. An overview over the net-
work is given in Fig. 2, and the different branches are specified in the respective
sections.

Segmentation. For the classical deep learning segmentation task, a 3D U-
Net [6] with a depth of 4 is employed. The first layer consists of 28 feature maps.
Compared to the original U-Net, normalization layers are replaced by group-
norm layers and LeakyRelu is used for all activation functions. A multi-class
Dice loss [12] was chosen as segmentation loss.
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Fig. 2. Semi-supervised segmentation network architecture. ET: Enhancing, NET:
Non-Enhancing

Autoencoder Reconstruction. Using an autoencoding branch as auxiliary
task in brain tumor segmentation was introduced by Myronenko [14] in the
BraTS challenge 2018, where it was used for regularizing effects during train-
ing. However, an autoencoding branch provides further possibilities: training
the network jointly with labeled and unlabeled data to make the network more
robust against scanner variations. Baur et al. [5] experimented with different
network architectures for unsupervised brain tumor segmentation, and demon-
strated that fully convolutional variational autoencoder produces better results
than their densely connected counterpart. Thus, a FCVAE architecture was cho-
sen for this auxiliary task. The internal construction of the utilized FCVAE is
listed in Table 1.

Table 1. Architecture of the decoder part for the FCVAE: GN stands for group nor-
malization with a group size of four; UpLin is 3D trilinear upsampling.

Name Operations Input Output Kernel Padding Repeat

DownStage3 Conv3D 244 100 × 163 1 No 0

Mean μ Conv3D 100 50 × 163 1 No 0

Std σ Conv3D 100 50 × 83 1 No 0

Sample Conv3D 50 100 × 163 1 No 0

DC4 GN+ReLu+Conv3D 100 224 × 163 3 Yes 1

Up3 Conv3D+UpLin 224 224 × 323 1 No 0

DC3 GN+ReLu+Conv3D 224 112 × 323 3 Yes 1

Up2 Conv3D+UpLin 112 112 × 643 1 No 0

DC2 GN+ReLu+Conv3D 112 56 × 1283 3 Yes 1

Up1 Conv3D+UpLin 56 56 × 1283 1 No 0

DC1 GN+ReLu+Conv3D 56 28 × 1283 3 Yes 1

VAEOut Conv3D 28 4 × 1283 1 No 0
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Enhancing Tumor Detection. We found that the mean Dice score of the
enhancing tumor region is strongly affected by outliers. These outliers were
mainly due to falsely detected enhancing tumor voxels for cases with no or a
very small enhancing tumor region. For a more accurate segmentation and cor-
rection in the absence of enhancing tissue, a classification branch was added
to the segmentation network. This classification network learns to distinguish
whether the given input contains an enhancing tumor region.

The internal construction of the developed classification branch is listed in
Table 2. The bottleneck region is first connected to two further convolutional
layers, followed by two fully connected layers. Furthermore, a dropout layer
(p = 0.5) is incorporated in order to prevent the network from overfitting.

Table 2. Architecture of the classification network after the bottleneck region.

Name Operations Input Output

Bottleneck Conv3D 448 × 83 256 × 83

Reduced Conv3D 256 × 83 128 × 83

Dense1 Linear 128 × 83 32

Dropout - - -

Dense2 Linear 32 2

Softmax - - -

Training Procedure. A stratified five-fold cross-validation is used on the train-
ing dataset, i.e., five different networks are trained on equally sampled subsets of
the data. Supervised and unsupervised examples are selected in random order.
Evaluating different training hyperparameters, the following were chosen: Batch
size = 2, learning rate = 0.0001, weight decay = 0.00001. During training, no data
augmentation was used. The different loss functions were weighted as follows:

LMTL = 0.1 · LL2 + 0.1 · LKL + 0.1 · Lclass + 1 · Ldice

Our contribution to the BraTS challenge was implemented using pyTorch
[15]. Training and prediction is carried out on two Nvidia 1080 Ti GPUs, each
with a memory size of 11 Gb.

Inference. During inference, the reconstruction part of the segmenter is deacti-
vated. Meanwhile, the output of the classification network is saved, and used for
correction of the segmentation result. If the classification network has identified
an absence of enhancing tumor in the image and in addition none or only a
marginal amount of enhancing voxels are detected using a threshold, all enhanc-
ing areas in the segmentation map will be suppressed.
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Test-time augmentation is employed for both, the segmentation and the clas-
sification task. For this, the input images are mirrored with respect to each
axis and the resulting predictions are averaged in order to obtain the final
segmentation.

4.3 Survival Prediction

In the BraTS challenge 2018, we participated with a linear regression on patient-
age only [19] for the survival prediction task. This basic approach won the third
place in the challenge. Subsequently, a study was published that shows that
radiomic features do well in predicting survival of brain tumor patients if the
tumor is not totally resected, but are unreliable for gross total resection (GTR)
patients [18]. Thus, we did not change our approach and submitted a linear
regression on patient-age, based on GTR patients only.

5 Results

5.1 Segmentation

For the BraTS training dataset, we provide the results of the five-fold cross
validation, i.e. the five different networks predict the subset that was excluded
during training. The final prediction on the BraTS validation dataset is obtained
by a majority vote of all independent predictions. The scores can be seen in
Table 3, and were taken from the online submission system. Our results varied
strongly depending on the patient.

(a) Exemple: good segmentation results (b) Exemple: bad segmentation results

Fig. 3. Qualitative segmentation result compared to the groundtruth using the multi-
task network. Green: Edema, Yellow: Necrosis and non-enhancing tumor core, Red:
Enhancing tumor. Our results are the right images of each image pair. (Color figure
online)

An exemplary good as well as an exemplary bad result are presented in Fig. 3.
It can be seen that the segmentation results are excellent in some cases, but can
deviate strongly from the groundtruth in other cases.
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Table 3. Mean results for the segmentation challenge. All measures are according to
the online submission system.

Dataset Dice Hausdorff 95

ET WT TC ET WT TC

Train set 0.65 0.82 0.76 9.20 11.4 10.5

Val set 0.75 0.89 0.79 6.14 5.76 9.11

Test set 0.75 0.85 0.78 5.76 7.98 8.25

5.2 Survival Prediction

In Fig. 4 the age-only linear regression approach is shown. The obtained model
is plotted together with the 95% confidence interval on the BraTS 2019 training
dataset. Only GTR patients were used for fitting, as the resection of tumor can
strongly influence the survival time.
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Fig. 4. Linear regression on the age of the patient. All GTR patients are plotted as
single dots, and the obtained linear regression model as well as the 95% confidence
interval is displayed.

Detailed scores for the survival task can be found in Table 4. These scores
were extracted from the online submission system. While all scores on the train-
and validation set are similar, the mean square error (MSE), median error (medi-
anSE), and standard deviation (stdSE) are much higher for the test set than for
the val and train set. However, the accuracy as well as the SpearmanR are similar
for the three different data sets.
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Table 4. Mean results for the survival prediction challenge. All measures are according
to the online submission system.

Dataset Accuracy MSE medianSE stdSE SpearmanR

Train set 0.485 88822 21135 181864 0.48

Val set 0.448 90109 36453 123542 0.27

Test set 0.533 395190 60264 1199488 0.36

6 Discussion and Conclusion

Reproducible and accurate segmentation of brain tumors for an appropriate
treatment has high clinical relevance. Since manual annotation of the tumor
area is tedious and prone to errors, an automatic or semi-automatic approach is
desirable.

To address this need, a multi-task method is proposed, that trains the net-
work for three related tasks: Tumor segmentation, image reconstruction and
enhancing tumor detection. These three tasks share an encoder but have dif-
ferent decoder architectures. For the tumor segmentation task, an architecture
similar to a 3D U-Net architecture was chosen, with small changes as suggested
by recent advances in the field of deep learning. The brain reconstruction branch
is based on a FCVAE, which has shown promising results on unlabeled data for
brain tumor segmentation. The third part of the architecture, the enhancing
tumor detection network, can reduce falsely detected enhancing tumor voxels
during segmentation, especially for low-grade gliomas without enhancing tis-
sue. In future, different variants of the existing architecture in terms of network
depths, the amount of filter maps, and the spatial dimension of the latent space
need to be evaluated in order to identify optimal settings. Further, an optimal
weighting of the different loss functions still needs to be determined.

For the survival prediction task, we relied on a very simple model, a linear
regression on the age of the patient. This model does not depend on the accuracy
of the tumor segmentation step and is one of the most basic approaches possible.
Thus, it should be robust against variations in the image data, and impossible
to overfit on the training data. Still, the MSE, medianSE, and stdSE varied
strongly between the validation- and test set. However, the obtained accuracy
was even better on the test set than on the train- and validation sets.
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Abstract. The paper demonstrates the use of the fully convolutional
neural network for glioma segmentation on the BraTS 2019 dataset.
Three-layers deep encoder-decoder architecture is used along with dense
connection at the encoder part to propagate the information from the
coarse layers to deep layers. This architecture is used to train three tumor
sub-components separately. Sub-component training weights are initial-
ized with whole tumor weights to get the localization of the tumor within
the brain. In the end, three segmentation results were merged to get the
entire tumor segmentation. Dice Similarity of training dataset with focal
loss implementation for whole tumor, tumor core, and enhancing tumor
is 0.92, 0.90, and 0.79, respectively. Radiomic features from the segmen-
tation results predict survival. Along with these features, age and sta-
tistical features are used to predict the overall survival of patients using
random forest regressors. The overall survival prediction method outper-
formed the other methods for the validation dataset on the leaderboard
with 58.6% accuracy. This finding is consistent with the performance on
the test set of BraTS 2019 with 57.9% accuracy.

Keywords: Brain tumor segmentation · Deep learning · Dense
network · Overall survival · Radiomics features · U-net

1 Introduction

Early-stage brain tumor diagnosis can lead to proper treatment planning, which
improves patient survival chances. Out of all types of brain tumors, Glioma is one
of the most life-threatening brain tumors. It occurs in the glial cells of the brain.
Depending on its severity and aggressiveness, glioma has grades ranging from
grade I to grade IV. Grade I, II are Low-Grade Glioma (LGG), and grade III and
IV are High-Grade Glioma (HGG). A Brain tumor can further be divided into
constituent components like - Necrosis, Enhancing tumor, Non-enhancing tumor,
and Edema. Tumor core consists of necrosis, enhancing tumor, non-enhancing
tumor. In most cases, LGG does not contain enhancing tumor, whereas HGG
contains necrosis, enhancing, and non-enhancing sub-components. Edema occurs
from infiltrating tumor cells, as well as a biological response to the angiogenic
c© Springer Nature Switzerland AG 2020
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and vascular permeability factors released by the spatially adjacent tumor cells
[3].

It is crucial to find tumor sub-components as it plays a vital role in treatment
planning. Non-invasive Medical Resonance Imaging (MRI) is the most advis-
able imaging technique as it captures the functioning of soft tissue adequately
compared to other imaging techniques. MR images are prone to inhomogeneity
introduced by the surrounding magnetic field, which introduces the artifacts in
the captured image. Besides, the appearance of various brain tissues is different
in various modalities. Such issues increase the time in the study of the image.

Furthermore, the human interpretation of the image is non-reproducible as
well as dependent on the expertise. It requires computer-aided MR image inter-
pretation to locate the tumor. Also, even the initially detected tumor is com-
pletely resected, such patients have poor survival prognosis, as metastases may
still redevelop, which leads to an open question to the accurate overall survival
prediction.

Authors in [2] discussed the basic, generative, and discriminative techniques
for brain tumor segmentation. Nowadays, Deep Neural Network (DNN) has
gained more attention for the segmentation of biological images. In which, Con-
volution Neural Networks (CNN), like DeepMedic [16], U-net [25], V-Net [21],
SegNet [4], ResNet [13], DenseNet [14] give state-of-the-art results for semantic
segmentation. Out of all these methods, U-net is a widely accepted end-to-end
segmentation architecture for brain tumors. In [17] the authors used an ensemble
of various DNN architectures and supplied and utilized brain parcellation atlas
for brain tumor segmentation. Connectomics data, parcellation information, and
tumor mask were used to generate features for survival prediction. Authors of
[5] supplied 3D patches to 3D U-net for tumor segmentation and used radiomics
features for survival prediction. Biomedical image segmentation in [10] imple-
mented using dense, residual, and inception modules. Authors in [22], used Res-
Net like blocks in encoder-decoder architecture with group normalization after
the convolution layer and variational auto-encoder approach to cluster the fea-
tures at the encoder part. Authors in [15] implemented a variation of 3D-U-net
with leaky ReLU activation function, instance normalization with a multiclass
dice loss function. In [19], the authors used densely connected dilated convolu-
tion stack for pooling free connections in U-net architecture. The ensemble of 6
3D U-Nets implemented in [12] with various input patch sizes and kernel sizes
and an average of the segmentation output considered as the final output. Voxel
volume, surface area, age, and resection status supplied to the linear regression
model for OS prediction. Authors in [24] implemented FCN pre-trained on the
VGG network for tumor segmentation. Three slices of the image volume act
as three color channels in FCN and final segmentation considered the majority
voting from the segmentation. Relative volumes of three sub-components, cen-
troid coordinates of the tumor within the brain depending on the atlas created
and centroid coordinates of the tumor core, were supplied to Random Forest
(RF) classifier for OS prediction. The ensemble of Cascaded Anisotropic Con-
volutional Neural Network, DFKZ Net from German Cancer Research Center,
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and 3D U-Net with the majority voting for tumor segmentation and RF regres-
sor on selected radiomic features for OS prediction implemented in [26]. [29]
implemented cascaded 3D U-Nets for tumor segmentation and linear regressor
for survival prediction on four features extracted from the network segmentation
results.

All the approaches mentioned above use encoder-decoder deep learning archi-
tecture. Moreover, according to [1], inductive transfer learning improves network
performance. In this paper, the U-net of [11,25] is implemented with reduced
network depth. Reduction in network depth has reduced the number of network
parameters. In addition to the depth reduction, the dense module at the encoder
replaces the convolution module. The network training uses focal loss function.
Initially, the network trains on the whole tumor, and then its weights are trans-
fer to substructure network training. This transfer learning has improved the
network training as well as the segmentation results.

The remaining paper is as follows: section two of the paper focuses on the
BraTS 2019 dataset, section three demonstrates the proposed method section
four provides implementation details, and section five shows the results. The last
section covers the conclusion and future work.

2 Dataset

The dataset [8,9,20] contains 259 HGG and 76 LGG pre-operative scans. All
the images have been segmented manually, by one to four raters, following the
same annotation protocol to generate the ground truths. The annotations were
approved by experienced neuro-radiologists [6,7]. Annotations have the enhanc-
ing tumor (ET label 4), the peritumoral edema (ED label 2), and the necrotic
and non-enhancing tumor core (NCR/NET label 1). Images are co-registered
to the same anatomical template, interpolated to the same resolution (1 mm x
1 mm x 1 mm), and skull-stripped. Features like age, survival days, and resection
status for 213 HGG scans are provided separately for Overall Survival (OS). The
validation dataset consists of 125 scans, with the same preprocessing as well as
additional features, as mentioned for OS. The test dataset includes 166 scans.

3 Proposed Method

3.1 Task 1: Tumor Segmentation

A Fully Convolution Neural Network (FCNN) provides end-to-end semantic seg-
mentation for the input of the arbitrary size and learns global information related
to it. Our network is based on the network proposed by [11]. The network uses
three-layer encoder-decoder architecture with the dense connections between
the successive convolution layers and skip-connections across peer layers at the
encoder side, as shown in Fig. 1. The network contains three dense modules
and two convolution modules. Each convolution layer in the dense module is
followed by ReLU activation function. Dense connections between the layers in
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the dense module allows to obtain additional inputs (collective knowledge) from
all earlier layers and passes on its feature-maps to all subsequent layers. Dense
connections allow the gradient to flow to the earlier layers directly, which pro-
vides in-depth supervision on preceding layers by the classification layer. Also,
dense connections provide diversified features to the layers, which leads to hav-
ing richer patterns identification capabilities. Each dense module generates 64,
128, and 256 feature maps, respectively. Each convolution module generates 128
and 64 feature maps applying 1×1 convolution at the end to generate a single
probability map for binary classification of the sub-component.

Fig. 1. Network architecture

Brain tumor segmentation task deals with highly imbalanced dataset where
tumorous slices are less than non-tumorous slices; such an imbalance dataset
reduces network accuracy. The approach of transfer learning mentioned in [23]
deals with such an issue. Authors have shown the usefulness of the transfer
learning for training a network with/without labels for similar or different tasks.
Initially, we have trained the network for the whole tumor. The number of slices
is more for the whole tumor compared to sub-components. This step provides
tumor localization in the brain. The sub-component (i.e., edema, enhancing
tumor and necrotic core) training uses whole tumor parameters for faster con-
vergence and better localization.

We have trained the network separately with two types of loss functions: soft
dice loss function and focal loss function.

– Soft Dice Loss: is a measure to find overlap between two regions.

SoftDiceLoss = 1 − 2
∑

voxels ytrueypred∑
voxels ypred

2 +
∑

voxels ytrue
2

(1)
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ytrue represents ground truth and ypred represents network output probabil-
ity. The dice loss function directly considers the predicted probabilities with-
out converting into binary output. The numerator provides standard correct
predictions between input and target, whereas the denominator provides indi-
vidual separate correct predictions. This ratio normalizes the loss according
to the target mask and allows learning even from the minimal spatial repre-
sentation of the target mask.

– Focal Loss [18]: It is dependent on the network probability pt. It balances
negative and positive samples by tuning α. It also deals with easy and hard
examples by focusing on parameter γ.

FL(pt) = −αt(1 − pt)γ log(pt) (2)

The modulating factor (1− pt)γ adjusts the rate at which easy examples are
down-weighted.

3.2 Task 2: Overall Survival Prediction

OS prediction deals with predicting the number of days for which patients survive
after providing appropriate treatment. We have used the following features to
train Random Forest Regressor (RFR):

– Statistical Features: the amount of edema, amount of necrosis, amount of
enhancing tumor, the extent of tumor and proportion of tumor

– Radiomic Features[28] for necrosis: Elongation, flatness, minor axis
length, primary axis length, 2D diameter row, 2D diameter column, spheric-
ity, surface area, 2D diameter slice, 3D diameter, and

– Age (available with BraTS dataset)

Necrosis plays a significant role in the treatment of tumors. Gross Total
Resection (GTR) of necrosis is comparatively easy concerning enhancing tumor.
Considering this, shape features of necrosis are extracted using a radiomics pack-
age [28]. In addition to those features, whole tumor statistical features from the
segmentation results and age are considered to train RFR.

4 Implementation Details

4.1 Pre-processing

Pre-processing boosts network training and improves the performance. The Z-
score normalization on individual MR sequence is applied where each sequence
was subtracted by its mean from the data and divided by its standard deviation.
Also, data is augmented by rotation, flip, elastic transformation, shear, shift,
and zoom on MRI sequences.
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4.2 Training

Input to the network is 2D slices from four modalities (T1, T2, T1c, FLAIR).
The network is trained on 85% dataset as training images and 15% dataset as
validation (part of training dataset). The first five and last ten slices of all the
volumes do not contain any useful information. That is why the preparation of
the training and validation datasets do not use such slices. The network is trained
for two different loss functions separately; namely, 1) dice loss function and 2)
focal loss function with α = 0.25 and γ = 0.5. In both cases, initially, the network
is trained for the whole tumor, and afterward, sub-component network training
initializes with these weights. The network is trained for 30 epochs with batch
size 10. Segmentation results for each sub-component (i.e., necrosis, enhancing,
and edema) are combined based on the higher values of probabilities.

5 Results

Segmentation results are generated for dice loss function as well as the focal loss
function. Evaluation metrics covers both the loss functions, i.e., in Table 1 and
Table 2 for the training dataset and in Table 3 and Table 4 for the validation
dataset. The results show that the implementation with focal loss improves the
segmentation results; for the test dataset, results use that implementation only,
and results are in Table 5. Table 6 shows a comparison of training dataset results
of the proposed method with an average of the top ten methods according to the
leader board. This comparison is irrespective of multiple submissions, as well as
without the knowledge of the segmentation method used.

Table 1. DSC, Sensitivity and Hausdorff95 for BraTS 2019 training dataset with dice
loss.

DSC Sensitivity Hausdorff95

ET WT TC ET WT TC ET WT TC

Mean 0.74 0.89 0.85 0.73 0.83 0.80 5.42 6.41 5.82

StdDev 0.25 0.10 0.17 0.22 0.13 0.19 13.13 6.25 7.73

Median 0.83 0.92 0.90 0.78 0.87 0.86 2 4.90 4

25quantile 0.72 0.88 0.85 0.66 0.81 0.77 1.41 3.46 2.83

75quantile 0.89 0.94 0.93 0.87 0.91 0.90 3.16 7.31 6

Figure 2 and Fig. 3 show the segmentation of a tumorous slice with different
loss functions.

RFR trains on features extracted from the 213 ground truth images. In the
trained RFR, features of network segmented images are supplied, to predict OS
days. If the network fails to identify/segment necrosis from the image, then the
feature extractor considers the absence of the necrosis and marks all the features
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Table 2. DSC, Sensitivity and Hausdorff95 for BraTS 2019 validation dataset with
dice loss.

DSC Sensitivity Hausdorff95

ET WT TC ET WT TC ET WT TC

Mean 0.60 0.70 0.63 0.59 0.63 0.61 11.69 14.33 17.10

StdDev 0.33 0.23 0.30 0.31 0.25 0.30 20.31 18.24 22.33

Median 0.75 0.80 0.75 0.70 0.73 0.73 3.61 7.81 8.25

25quantile 0.33 0.51 0.45 0.33 0.44 0.38 2 5.20 4.58

75quantile 0.85 0.88 0.88 0.84 0.83 0.87 10.18 13.45 16.28

Table 3. DSC, Sensitivity and Hausdorff95 for BraTS 2019 training dataset with focal
loss.

DSC Sensitivity Hausdorff95

ET WT TC ET WT TC ET WT TC

Mean 0.79 0.92 0.90 0.79 0.90 0.88 4.07 4.23 3.75

StdDev 0.25 0.09 0.12 0.21 0.12 0.14 11.66 6.39 7.79

Median 0.87 0.95 0.93 0.85 0.94 0.92 1.41 2.24 2

25quantile 0.81 0.91 0.89 0.77 0.89 0.88 1 1.41 1.41

75quantile 0.92 0.96 0.96 0.91 0.96 0.95 1.73 4.24 3

Table 4. DSC, Sensitivity and Hausdorff95 for BraTS 2019 validation dataset with
focal loss.

DSC Sensitivity Hausdorff95

ET WT TC ET WT TC ET WT TC

Mean 0.59 0.73 0.65 0.59 0.67 0.64 9.62 12.80 15.37

StdDev 0.34 0.24 0.30 0.33 0.25 0.31 15.83 16.86 19.90

Median 0.76 0.84 0.78 0.71 0.75 0.76 3.60 7.48 7.81

25quantile 0.29 0.65 0.51 0.33 0.54 0.41 1.93 4.58 4

75quantile 0.85 0.89 0.88 0.86 0.88 0.88 7.98 12.80 16.15

Table 5. DSC, Sensitivity and Hausdorff95 for BraTS 2019 test dataset with focal
loss.

DSC Hausdorff95

ET WT TC ET WT TC

Mean 0.64 0.72 0.66 55.11 41.30 57.12

StdDev 0.33 0.29 0.36 125.68 99.06 122.20

Median 0.78 0.84 0.86 2.24 6.40 5.51

25quantile 0.55 0.67 0.51 1.41 3.81 2.45

75quantile 0.86 0.91 0.92 10.47 13.24 18.45
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Table 6. Comparison of DSC, Sensitivity and Hausdorff95 for BraTS 2019 training
dataset with average of top 10 teams.

DSC Sensitivity Hausdorff95

ET WT TC ET WT TC ET WT TC

Average of top 10 teams 0.80 0.91 0.87 0.83 0.91 0.88 3.96 7.54 7.21

Proposed 0.79 0.92 0.90 0.79 0.90 0.88 4.07 4.23 3.75

(a) FLAIR (b) Ground Truth (c) Segmentation result

Fig. 2. Segmentation result with dice loss

(a) FLAIR (b) Ground Truth (c) Segmentation result

Fig. 3. Segmentation result with focal loss

except age as zero. OS accuracy for training, validation, and test datasets of the
images whose resection status is GTR are in Table 7. This method secured the
first rank for the survival prediction task.

According to the study [27], gender plays a vital role in response to tumor
treatment. The females respond to the post-operative treatment better compared
to males, which improve their life expectancy. The inclusion of the ‘gender’
feature into the existing feature list can significantly improve OS accuracy.
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Table 7. OS accuracy for training, validation and test dataset.

Dataset Accuracy MSE MedianSE StdSE SpearmanR

Training 0.564 73144.54 22891.69 136542.535 0.604

Validation 0.586 105061.874 16460.89 188752.439 0.404

Test 0.579 374998.775 46483.36 1160428.922 0.434

6 Conclusion

The proposal uses three-layer deep U-net based encoder-decoder architecture for
semantic segmentation. Each layer of the encoding side incorporates dense mod-
ules and decoding side convolution modules. The network achieves comparable
DSC for training datasets with other methods of the leader board but generates
little poor results for the validation dataset. In the future, pre-processing tech-
niques, in addition to Z-score normalization and augmentation, better design
of the decoding module, as well as post-processing, will be incorporated. The
network output compared with the more deeper network as well as other state-
of-art networks will be incorporated. Age, statistical, and necrosis shape features
of the ground truth are provided to train RFR with five-fold cross-validation for
OS prediction. Later, network segmentation for cases with GTR tests RFR for
OS prediction.
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Abstract. Convolutional neural networks have been broadly used for
medical image analysis. Due to its characteristics, segmentation of glioma
is considered to be one of the most challenging tasks. In this paper, we
propose a novel Multi-direction Fusion Network (MFNet) for brain tumor
segmentation with 3D multimodal MRI data. Unlike conventional 3D
networks, the feature-extracting process is decomposed and fused in the
proposed network. Furthermore, we design an additional task called Fine
Class Prediction to reinforce the encoder and prevent over-segmentation.
The proposed methods finally obtain dice scores of 0.81796, 0.8227,
0.88459 for enhancing tumor, tumor core and whole tumor respectively
on BraTS 2019 test set.

Keywords: Brain tumor segmentation · 3D convolution ·
Multi-direction fusion · Fine class prediction

1 Introduction

Convolutional Neural Networks (CNN) have made significant progress in several
computer vision tasks. As a result, more and more CNN-based algorithms are
proposed for medical image analysis, of which medical image segmentation is
an important part. The Brain Tumor Segmentation Challenge (BraTS) [1–4,14]
focuses on the segmentation of brain tumors, gliomas specifically. BraTS provides
magnetic resonance imaging (MRI) scans with four modalities: T1, T1Gd, T2
and FLAIR. The participants are required to produce segmentation of three
glioma sub-regions, which contains enhancing tumor (ET), tumor core (TC)
and whole tumor (WT).

In recent years, fully convolutional networks like U-Net [20] have been widely
used for brain tumor segmentation. The winner of BraTS 2017 [9] used Ensembles
of Multiple Models and Architectures (EMMA) containing DeepMedic [10], FCN
[13] and U-Net. The second place [21] used three cascaded networks to predict
three tumor sub-regions separately. In BraTS 2018, large 3D networks like 3D
U-Net [5] became popular and performed well. The winner [16] used a large
amount of 3D convolution and auto-encoder as regularization. The second place
[8] used 3D U-Net architecture and extra data for co-training.
c© Springer Nature Switzerland AG 2020
A. Crimi and S. Bakas (Eds.): BrainLes 2019, LNCS 11992, pp. 349–358, 2020.
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Fig. 1. Three planes of medical image.

In this paper, we combine the theories of deep learning and medical analysis
and propose a new Multi-direction Fusion Network (MFNet) for glioma segmen-
tation. Keeping the basic encoder-decoder structure, we replace 3D convolutional
blocks with multi-direction fusion modules. The proposed module uses dilated
pseudo-3D convolution rather than standard 3D convolution to decompose spa-
tial information, reduce parameters and improve performance. Meanwhile, dif-
ferent information on three medically defined planes (i.e., sagittal, coronal and
axial plane in Fig. 1) is extracted in parallel and integrated as final features.
Furthermore, an additional Fine Class Prediction task is introduced for better
local segmentation.

2 Methods

2.1 Network Structure

The overall structure of the Multi-direction Fusion Network (MFNet) is shown
in Fig. 2. We keep the basic fully convolutional encoder-decoder architecture and
skip-connection for semantic segmentation, while each level of the network con-
tains a multi-direction fusion module rather than conventional convolutional
block. The multimodal inputs are downsampled and encoded through three
stride convolution layers. The decoder is divided into two parts. One part uses
transpose convolution to upsample and finally recovers resolution for pixel-wise
semantic segmentation. Another part only contains convolution layers for fine
class prediction. Details will be shown in the following subsections.

2.2 Multi-direction Fusion Module

There are several ways to deal with the three dimensions of medical volumetric
data. We notice that though experienced human experts label pixels on each
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Fig. 2. Network with Multi-direction Fusion and Dilated Convolution (MFNet).

image, they can actually estimate the position of each slice in brain and thus
know what kind of organs or tissues might appear. In other words, information
from three dimensions is decomposed. Inspired by this fact, we introduce the
pseudo-3D-A [18] module to decompose 3D convolution. It uses a 1 × 3 × 3 con-
volution to extract 2D features first and then a 3×1×1 convolution for features
from the third dimension. In this way the network can decouple information as
human experts do.

Note that there are three different planes in a volume, defined as axial, sagit-
tal and coronal planes for medical data. These planes view brain from three
directions and contain different spatial information. Meanwhile, the direction
of convolutions in P3D can also be changed. Therefore we propose the Multi-
direction Fusion (MF) module, which contains three different-direction P3D con-
volutions in parallel. Each of them focuses on features from one direction and
information from the third dimension in addition. The complete Multi-direction
Fusion module (see Fig. 3) contains residual connection [6] for better perfor-
mance and quicker convergence. We also replace Batch Normalization (BN) [7]
with Group Normalization (GN) [22] due to limited batch size.

2.3 Replace Pooling with Dilated Convolution

For semantic segmentation, local information is as important as global infor-
mation to generate pixel-wise prediction. However, deep convolutional networks
often use downsampling operations like max pooling or stride convolution to
enlarge the receptive field and capture global information. Though we can use
upsampling to recover resolution, it is inevitable to lose local spatial information
during resolution changes. For example, the encoder of V-Net uses four stride
convolution layers and can finally get a 194×194×194 receptive field, while the
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Fig. 3. Multi-direction Fusion Module. 1 × 1 × 1 convolution is used to match dimen-
sions for shortcut.

size of feature maps shrinks from 128 × 160 × 160 to 8 × 10 × 10. We believe
that this is harmful to brain tumor segmentation, which has very small tumor
sub-regions like enhancing tumor and thus needs more reliable local information.

To avoid this problem, dilated convolution [23] is applied in deep layers and
the last stride convolution layer in V-Net is removed when we stack the proposed
modules to form the MFNet (see Fig. 3). Note that dilated convolution is only
applied to the 2D convolutions in our module, i.e., 1 × 3 × 3, 3 × 1 × 3 and
3 × 3 × 1 convolutions. With dilated convolution, we extend the final receptive
field from 78 × 78 to 158 × 158 and meanwhile keep the size of feature maps.
Since our module uses branches in parallel, the receptive field is smaller than
that of V-Net. But it can still cover the whole brain and is sufficient for brain
tumor segmentation.

2.4 Fine Class Prediction

The segmentation of enhancing tumor is the most difficult part of brain tumor
segmentation. The size of ET changes dramatically depending on the patient’s
condition. There exists many hard samples that can be over- or under-predicted
and the dice scores fall to zero. To handle this problem, we propose the Fine
Class Prediction (FCP).

Unlike traditional class prediction [19] which simply distinguishes the exis-
tence of tumor in the whole volume, we utilize the downsampling architecture
of network and add a class prediction branch in the deepest layer. The size of
feature maps is 16 × 20 × 20, and each voxel represents an 8 × 8 × 8 cube in
the original volume. The network thus needs to make class predictions for each
small cube rather than the whole input. We believe the encoder can learn more
reliable representations to generate accurate local segmentation. Therefore, the
decoder part is designed to be light and only contains one MF module for better
back-propagation in the encoder part.



Multi-direction Fusion and Fine Class Prediction for Tumor Segmentation 353

2.5 Hybrid Loss

For semantic segmentation task, we design a hybrid loss combining dice loss [15]
and focal loss [12]:

Lseg = Ldice + ω1Lfocal, (1)

Ldice = 1 − 2 ∗ ∑
i pigi + ε

∑
i pi +

∑
i gi + ε

, (2)

Lfocal = −
∑

x∈Ω

(1 − pl(x)(x))γ log (pl(x)(x)), (3)

where pi, gi are binary predicted label and ground truth respectively and ε is a
smoothing constant. l(·) is the true class and pl(·)(·) is the predicted probability
of the true class for each pixel.

For fine class prediction, we choose binary focal loss:

Lclass = −
∑

c

[I(c)(1 − p(c))γ log (p(c)) + (1 − I(c))p(c)γ log (1 − p(c))], (4)

where I(c) is ground truth and p(c) is predicted probability of the existence of
tumor sub-regions. The total loss is:

Ltotal = Lseg + ω2Lclass = Ldice + ω1Lfocal + ω2Lclass. (5)

In our experiments, ω1 and ω2 are set to 1 for equal weights. The factor γ in
focal loss is set to 2.

We further try to build tight connection between segmentation and class
branches. Therefore, we explore the effect of a synchronous loss to constrain the
predictions of two branches:

Lsync = −
∑

c

[S(c) log (p(c)) + (1 − S(c)) log (1 − p(c))]. (6)

p(c) is defined in Lclass, and S(c) is calculated from segmentation prediction:

S(c) = I(
∑

x∈C(c)

I(p(x) − τ)), (7)

where I(·) is indicative function, τ(= 0.5) is the binarization threshold. Here x ∈
C(c) indicates that we use the summation of 8 × 8 × 8 segmentation predictions
in the cube which is represented by the voxel in fine class prediction branch as
reference result to synchronize these two branches.
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3 Experiments

3.1 Dataset

The training set of BraTS 2019 contains 259 high grade gliomas (HGG) and
76 low grade gliomas (LGG). In each sample there are four modalities and a
segmentation map annotated by experts. All of them are co-registered to a com-
mon template, resampled to 1mm3 and skull-stripped, with the final size of
240 × 240 × 155. 125 samples without grades and annotations are provided for
validation. The results of validation set are evaluated by the online evaluation
platform1.

3.2 Implementation Details

All of our experiments are based on PyTorch [17] and trained on a single NVIDIA
TITAN Xp for 200 epochs. We use Adam [11] optimizer with the initial learning
rate 0.0003. The learning rate decreases 5% every 5 epochs and batch size is set
to 1 due to limited memory.

During training, the grade of gliomas, i.e., HGG or LGG, is not distinguished.
For data augmentation, we choose random rotation, random flip, random scal-
ing and random noise. Input data is normalized based on non-zero voxels and
randomly cropped to 160 × 160 × 128. No additional data or post-processing
method is used.

3.3 Results

Table 1 shows our single-model results on BraTS 2019 validation set (team name
LSA). The performance of MFNet validates the effectiveness of the proposed
Multi-direction Fusion Module. Furthermore, we report the results of MFNet
with fine class prediction (MFNet+FCP). As shown in the table, introducing
fine class prediction improves segmentation of enhancing tumor significantly.

Table 1. Results on BraTS 2019 validation set (Dice and HD95).

Model Dice HD95

WT TC ET WT TC ET

MFNet 0.90642 0.83626 0.7596 4.37827 6.71071 3.72688

MFNet+FCP 0.90187 0.83333 0.77534 5.86396 6.61492 3.70443

MFNet+FCP+post 0.90352 0.83375 0.77994 5.5749 6.49542 3.47492

MFNet+FCP+sync+post 0.90603 0.83077 0.77959 4.97514 6.72179 3.57613

To make full use of the fine class prediction, we design a simple post-process
method: set regions where the tumor sub-region doesn’t exist according to fine

1 https://ipp.cbica.upenn.edu/.

https://ipp.cbica.upenn.edu/
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Table 2. Results on BraTS 2019 validation set (Spec. and Sens.).

Model Sensitivity Specificity

WT TC ET WT TC ET

MFNet 0.90793 0.82875 0.76523 0.99512 0.99728 0.99849

MFNet+FCP 0.90544 0.83686 0.78475 0.995 0.99686 0.99834

MFNet+FCP+post 0.90415 0.82952 0.77996 0.99516 0.99708 0.99837

MFNet+FCP+sync+post 0.9053 0.82613 0.77194 0.99521 0.9972 0.99852

class prediction as background. This method (MFNet+FCP+post) mainly han-
dles the over-segmentation problem. It further improves the results for enhancing
tumor and whole tumor, but usually doesn’t work well for tumor core. Therefore,
we consider it proves that the main difficulty of tumor core segmentation is the
under-segmentation of the necrotic and non-enhancing regions. The additional
synchronous loss also improves the dice score of whole tumor. We believe this
result benefits from the connection between two branches.

Results of sensitivity and specificity are shown in Table 2. The FCP module
mainly improves sensitivity on enhancing tumor, which decreases the number of
false negative samples. Results of specificity, however, are extremely high on all
models. But we find this is because the great imbalance between the number of
true negative and false positive samples. The former is much more and makes
specificity abnormally high. Over-segmentation is still a tough problem for some
samples.

Results on BraTS 2019 test set are shown in Table 3. We use an ensemble of
three models: MFNet, MFNet+FCP+post and MFNet+FCP+sync+post.

Table 3. Results on BraTS 2019 test set.

Dice HD95

WT TC ET WT TC ET

Mean 0.88459 0.8227 0.81796 5.57825 4.58734 2.39516

StdDev 0.12415 0.25656 0.18411 7.83032 7.15944 2.75358

Median 0.92041 0.91642 0.86307 3 2.23607 1.41421

Some segmentation samples are shown in Fig. 4. On the top row, MFNet over-
predicts the region of enhancing tumor, while model with fine class prediction
predicts correctly. The bottom row is a under-segmentation sample of MFNet.
Adding FCP also makes network distinguish sub-regions better.
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Fig. 4. Segmentation results on BraTS 2019 validation set. Blue: enhancing tumor
(ET). Red: necrotic and non-enhancing tumor core (NCR/NET). Yellow: peritumoral
edema (ED). TC contains ET and NCR/NET, while WT covers TC and ED. (Color
figure online)

4 Conclusion

In this paper, we propose a novel network for brain tumor segmentation. The
most important part, Multi-direction Fusion module, uses three branches of
dilated pseudo-3D convolution in parallel to extract and assemble features from
three direction of a MRI volume data simultaneously as a replacement of stan-
dard 3D convolution block. We further design the Fine Class Prediction branch
which significantly improves the performance. Our MFNet shows strong com-
petitiveness on the BraTS 2019 online validation set and obtains dice scores of
0.77994, 0.90352, 0.83375 for enhancing tumor, whole tumor and tumor core
respectively. The final results on BraTS 2019 test set are 0.81796, 0.88459 and
0.8227.

Another advantage of proposed model that we don’t emphasize in this paper
is the reduction of parameters compared with conventional 3D networks, thanks
to the multi-direction design. Since the concept of axial, sagittal and coronal
planes is common for all medical data, we believe this method deserves further
researches for not only brain tumor but also other medical image segmentation
tasks, to achieve a better balance of effectiveness and efficiency.
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Abstract. We propose an ensemble of 2D convolutional neural networks to
predict the 3D brain tumor segmentation mask using the multi-contrast brain
images. A pretrained Resnet50 and Nasnet-mobile architecture were used as an
encoder, which was appended with a decoder network to create an encoder-
decoder neural network architecture. The encoder-decoder network was trained
end to end using T1, T1 contrast-enhanced, T2 and T2-Flair images to classify
each pixel in the 2D input image to either no tumor, necrosis/non-enhancing
tumor (NCR/NET), enhancing tumor (ET) or edema (ED). Separate Resent50
and Nasnet-mobile architectures were trained for axial, sagittal and coronal
slices. Predictions from 5 inferences including Resnet at all three orientations
and Nasnet-mobile at two orientations were averaged to predict the final prob-
abilities and subsequently the tumor mask. The mean dice scores calculated
from 166 were 0.8865, 0.7372 and 0.7743 for whole tumor, tumor core and
enhancing tumor respectively.

Keywords: Convolutional neural network � Ensemble networks � Residual
learning � Brain tumor segmentation

1 Introduction

Automated brain tumor segmentation [1–6] from magnetic resonance images is a
challenging task due to variations in the acquisition protocol at different imaging sites.
Different imaging parameters including field strength, acceleration factors, resolution,
etc. causes variance in the MR images which makes it difficult for automated algo-
rithms to accurately segment the brain tumor regions. Accurate segmentation of brain
tumor or gliomas is an important task in grading and monitoring of the disease
progression.

Brain tumor segmentation challenge (Brats) is an annual competition which pro-
vides manually segmented brain tumor dataset [7–11] to assess the performance of
brain tumor segmentation algorithms. Brats challenge started with brain tumor seg-
mentation and have been extended to the task of survival prediction and quantification
of uncertainty in segmentation. In recent times, with the availability of large annotated
dataset and compute power, most of the best performing algorithms in the challenge are
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based on deep learning [12]. The best performing algorithms proposed different real-
izations of the encoder-decoder neural network architectures. Algorithms based on the
variations of 3D Unet [13] have been used in the Brats challenge. Since the imple-
mentation of 3D Unet requires a large amount of memory, a patch-based approach is
often used. The patch-based approach involves training the 3D Unet on a 3D patch of
the image often a cube of 64 or 128 depending on the available memory and
width/depth of the network. The large memory requirement of the 3D Unet restricts the
width and depth of the network. Contrary a 2D Unet [14] requires comparatively less
memory than the 3D counterpart at an expense of loss of information from the third
spatial dimension. In 2D Unet each image slice is processed independently without
considering any information from the rest of the slices within the volume.

In this work, we improve our previous method [15] and propose to use an ensemble
of 2D encoder-decoder networks with each network predicting segmentation proba-
bilities for a different orientation (axial, sagittal and coronal). The predicted proba-
bilities from the different orientation are averaged to predict the final probability maps
and the segmentation mask for the whole 3D volume. Since probability maps from each
individual encoder-decoder are from a different orientation the final averaged proba-
bility may contain the 3D information. We hypotheses that false positives from one
orientation will be suppressed, when its predicted probability is averaged with the
probability map from another orientation.

2 Methods

2.1 Dataset

Manually segmented dataset of brain tumor MR images was provided by the organizers
of BRATS challenge. The dataset consisted of two types of brain tumor images namely
high-grade tumor (HGG) and low-grade tumor (LGG). Four different contrast T1, T2,
T1 contrast-enhanced and T2 Flair image were provided with the manually segmented
masks. The mask consisted of three different labels, the necrotic and non-enhancing
tumor core (NCR/NET - label 1), the peritumoral edema (ED - label 2), GD-enhancing
tumor (ET - label 4) and everything else is classified as label 0. A total of 335 subjects
were present consisting of 259 HGG and 76 LGG. The whole dataset was divided into
two, one for training and another for validation. Following was the composition of the
training and local validation dataset.

• Training dataset: consisted of 288 HGG and 61 LGG subjects.
• Local validation dataset: consisted of 51 HGG and 61 LGG subjects.

Apart from the local validation dataset, another 125 cases were provided to validate
the generalization of the model. These 125 cases were provided without the ground
truth and segmentation performance was evaluated online using the CBICA Image
Processing Portal (https://ipp.cbica.upenn.edu).
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2.2 Network Architecture

Our approach consisted of using a 2D convolutional neural network on the individual
slices of the whole 3D brain image. We performed end to end training with input being
multi-contrast brain images (T1, T2, Tl-CE, T3-Flair) and output being the segmen-
tation mask. The overview of the segmentation process is depicted in Fig. 1, we used
an ensemble of 2D networks to predict the segmentation of the whole 3D volume.

The encoder-decoder architecture similar to the Unet was the building blocks of the
ensemble network. Specifically, we used five separately trained encoder-decoder net-
works in the ensemble. The encoder-decoder architectures consisted of three networks
with Resnet50 [16] as encoder and two networks with Nasnet-mobile [17] as an
encoder. A spate encoder-decoder network was trained for each orientation (axial,
sagittal and coronal).

The decoder part in each of the network was the same and consisted of a series of
convolution and upsampling operations. One block of a decoder is depicted in Fig. 2,

Fig. 1. Overview of the segmentation process. Six separate networks were trained consisting of
three Resne50 encoder-decoder architecture for axial, sagittal and coronal orientations and three
Nasnet mobile encoder-decoder architecture for axial, sagittal and coronal orientations. The
probabilities from the individual predictions were averaged and the segmentation mask was
generated from the averaged probabilities.
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which consists of a 2D upsampling operation by a factor of 2 using bilinear interpo-
lation. The upsampling layer increases the spatial dimension of the features using
bilinear interpolation and increased size features are then concatenated with the features
from the encoder part having the same spatial dimension. The concatenated features are
then passed through the two blocks of convolution, batch normalization, spatial
dropout and rectilinear activation (ReLU). The number of features for each convolu-
tional layer in the decoder was 256 at each scale except the last scale where it was 128.
The convolution kernel size was always 3 � 3 in the decoder network. The last layer of
the decoder network consisted of four features, a softmax activation was applied on the
last layer, which converts the features into probability maps corresponding to the four
classes (NCR/NET, ED, ET or no tumor).

As depicted in Fig. 1, at the time of inference individual slices of the 3D image at
different orientations, were processed through the 2D encoder-decoder networks. For
Resnet50 predictions were made for axial, sagittal and coronal orientations while for
Nasnet-mobile predictions were made for axial and coronal orientations. With Nasnet-
mobile encoder-decoder we did not find performance improvement with the sagittal
orientation hence it was not used for inference on sagittal orientation. The predicted
probabilities from individual 2D slices were stacked to form a 3D volume and 3D
volumes from all orientations were averaged for the whole 3D volume. An argmax
along the channel dimension on the averaged probability map classified each pixel into
one of the four classes (NCR/NET, ED, ET or no tumor).

Fig. 2. One block of the decoder network, which first upsamples the input features by a factor of
2 using bilinear interpolation and concatenate the upsampled features with the same scale features
form the encoder network. The concatenated features are passed through two blocks of
convolution with batch normalization and ReLU activation.
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2.3 Pre-processing

The spatial dimension of the input image was 240 � 240 � 155. However, all the 2D
networks were trained on 256 � 256 images. The 2D input images were first zero-
padded symmetrically to make the 2D input to be 256 � 256.

Since the data was sourced from multiple sites, a preprocessing is required to
normalize the images. We used a simple pre-processing of normalizing the mean and
standard deviation of the whole 3D volume to zero mean and unity standard deviation
using Eq. 1.

xpp ¼ x� �xð Þ
std xð Þ ð1Þ

where xpp is the preprocessed 3D volume, x is the input 3D volume, �x is the mean of the
input volume and std xð Þ is the standard deviation of input.

2.4 Training

The training of the network was performed on the Keras [18] deep learning library with
Tensorflow backend. The adaptive stochastic gradient descent Adam optimizer was
used for training the network with a batch size of 4 and initial learning rate of 0.0001.
We considered the training of 2000 batches as one epoch. The learning rate was
decreased with a step decay of 0.96 per epoch. All the networks were trained for 100
epochs and the network for which the average dice score was maximum on the local
validation dataset was chosen as the best model and used for inference on the no
ground truth validation dataset.

The loss function used to train the Resnet encoder-decoder architecture consisted of
a weighted sum of categorical cross-entropy and soft dice loss. The soft dice loss is
defined as:

dice loss ¼ 2 �P pp � pt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p2p � p2t
q ð2Þ

where pp is the predicted probability map and pt is the true probability map.
We trained the Resnet50 encoder-decoder with the weighted sum of categorical

cross-entropy loss and dice loss with a weight of 1.0 for cross-entropy and weight of
0.1 for dice loss. For the Nasnet-mobile encoder-decoder, only categorical cross-
entropy was used as a loss function.

The results of segmentation were evaluated using the dice score, sensitivity (true
positive rate) and specificity (true negative rate) and Hausdorff distance (95%). The
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evaluation on the validation dataset was calculated using online web-portal provided by
the BRATS organizers.

3 Results and Discussion

The individual predictions of the trained networks were ensemble as depicted in Fig. 1
and the segmentation masks were uploaded to the online validation portal. Figure 3
shows the dice scores for the 125 validation subjects and 166 test subjects calculated by
the online portal. The median dice scores were higher than the mean dice scores for
both the test and validation dataset, suggesting that few difficult cases were segmented
by the network with lower accuracy. The dice scores for the test dataset were higher
than the validation dataset and also the sample size for the test dataset was larger 166
compared to 125 for the validation dataset. Higher dice score for test dataset (sample
size 166) suggests that the algorithm works well for most of the cases but does require
further improvements to accurately predict the segmentation for a few subjects that
were segmented with lower accuracy.

Fig. 3. Bar plot showing the mean dice score using the proposed method; (a): bar plot for
validation dataset from 125 subjects (b): bar plot for test dataset from 166 subjects
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Table 1 shows the mean and median dice score, sensitivity and Hausdorff distance
on the 125 validation subjects and Table 2 shows the mean and median dice score and
Hausdorff distance for 166 test subjects.

The medians of the dice scores are higher than that of the mean for all three
categories of the tumor. The higher median indicates that there are a few harder cases
where the algorithm fails to perform well. Usually, the performance on the enhancing
tumor class is more challenging compared to the other two classes. However, it is
worthwhile to note that the performance of our algorithm on the enhancing tumor class
is comparatively higher compared to the tumor core class. This suggests that there is a
scope of improvement for the core tumor class, which may require further training and
fine-tuning of the network. Two representative segmentations are shown in Fig. 4, one
for a highly accurate prediction with average dice score of 0.9508 (Fig. 3 (a)) and
another for less accurate segmentation with average dice score of 0.6301 (Fig. 3 (b)).

This work aimed to reduce the memory footprints of the 3D networks by trans-
forming it into multiple 2D networks. This transformation constitutes a trade-off
between the computational complexity and memory requirements, the proposed
approach reduces the memory footprints but increases the computational complexity.
For instance, a 3D network of similar architecture would require 3 times more com-
putation compared to 2D counterpart. However, an ensemble of five 2D networks
makes the computational complexity to be 5 times than the single 2D network.

Table 1. Quantitative score on validation dataset of 125 subjects calculated using the online IPP
portal

Whole tumor Core tumor Enhancing tumor

Dice score (mean) 0.8865 0.7372 0.7743
Dice score (median) 0.9163 0.8855 0.8666
Hausdorff distance 4.2348 5.7720 8.1844
Sensitivity (mean) 0.8602 0.6996 0.7786
Sensitivity (median) 0.9054 0.8510 0.8510

Table 2. Quantitative score on test dataset of 166 subjects calculated using the online IPP portal

Whole tumor Core tumor Enhancing tumor

Dice score (mean) 0.8851 0.8586 0.8052
Dice score (median) 0.9186 0.9224 0.8463
Hausdorff distance 6.4109 4.6700 3.4515
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4 Conclusion

In this work, we have presented an approach to predict the brain tumor segmentation
for the whole 3D volume using an ensemble to the 2D CNN. Specifically, we used
resnet50 and nasnet-mobile architectures for the predictions. The results are promising
with the average dice score of 0.8851, 0.8586 and 0.8052 for whole tumor, core tumor
and enhancing tumor respectively.

Fig. 4. Segmentation results for two representative images with red color: NCR/NET, orange
color: edema and white color: ET. The bottom of the figure shows the dice score for whole tumor
(WT), tumor core (TC) and enhancing tumor (ET) respectively. (a): first row shows ground truth
segmentation; second row shows predicted segmentation results for one of the highly accurate
prediction; (b): first row shows ground truth segmentation; second row shows predicted
segmentation results for one of the less accurate prediction. (Color figure online)
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Abstract. Our contribution to the BraTS 2019 challenge consisted of
a deep learning based approach for segmentation of brain tumours from
MR images using cross validation ensembles of 2D-UNet models. Fur-
thermore, different approaches for the prediction of patient survival time
using clinical as well as imaging features were investigated. A simple
linear regression model using patient age and tumour volumes outper-
formed more elaborate approaches like convolutional neural networks
or radiomics-based analysis with an accuracy of 0.55 on the validation
cohort and 0.51 on the test cohort.

Keywords: UNet · Segmentation · Radiomics · Linear regression ·
Deep-learning · Ensemble · Survival analysis

1 Methods

1.1 Data Set

The data set used in the BraTS 2019 challenge [1] includes multi-institutional,
clinically acquired, pre-operative multi-modal magnetic resonance (MR) images
of glioblastoma and lower grade glioma patients. The training and validation
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cohorts consisted of 332 and 125 patients, respectively. Imaging for each patient
comprises a native (T1), a post-contrast T1-weighted (T1c), a T2-weighted (T2),
and a T2 fluid attenuated inversion recovery (FLAIR) MR sequence [2,3]. All
imaging data sets were manually segmented to define the contrast-enhancing
tumour, the peritumoral edema and the necrotic and non-enhancing tumour
core regions [4,5]. In addition, patient age and resection status were collected as
clinical variables to predict overall survival of the patients.

All data were part of the BraTS 2019 challenge. No external data were used.

1.2 Image Pre-processing

The N4ITK bias correction algorithm was applied to the T1, T1c, T2 and FLAIR
images to reduce MR intensity non-uniformity [6]. Subsequently, a non-local
means denoising approach was used to reduce image noise [7].

Prior to segmentation, each MR sequence in the imaging data set was nor-
malised using z-score normalisation. For this purpose, the surrounding air was
excluded. Furthermore, to reduce the computation time, all images were cropped
to the smallest possible volume that included the brain tissue of all patients. Sub-
sequently, to be divisible by 25, the images were padded with zeros, leading to
a final input shape of 160 × 192 × 160 for each of the four sequences.

1.3 Brain Tumour Segmentation

Network Structure and Training. A 2D-UNet architecture [8] was applied
for the segmentation task and co-registered axial slices of each sequence were
used as input (Fig. 1). Each of the five encoding blocks contained two consec-
utive 2D convolutional layers, each followed by a batch normalisation and a
Leaky-ReLU activation function (α = 10−2), as well as by a max-pooling layer.
Furthermore, symmetric decoding blocks were used with skip-connections from
corresponding encoding blocks, resulting in a model with 70 750 468 trainable
parameters. For the output, we use the one-hot encoded segmentation and opti-
mise on the individual layers with a sigmoid activation.

The Sørensen-Dice coefficient loss was combined with an L2-norm regularisa-
tion term of 10−7 and used as loss function to reduce model overfitting. Network
parameters were optimised using the Adam optimiser. The optimiser had an ini-
tial learning rate of 10−3. The learning rate was reduced through multiplication
by 0.25 if loss did not improve for three consecutive epochs.

We used a 5-fold cross validation scheme to train the model for a maxi-
mum number of 100 epochs. In case the loss did not improve for six consecutive
epochs, model training was stopped early. Due to GPU memory limitations,
models were trained using a batch size of 64 image slices. Data augmentation
was performed during training to improve generisability of the model. The image
was randomly rotated, scaled and cropped using the framework by F. Isensee
et al. (www.github.com/MIC-DKFZ/batchgenerators). Training resulted in five
models which were subsequently combined into an ensemble for inference on the
validation data. To that end, the sigmoid predictions produced by each model

www.github.com/MIC-DKFZ/batchgenerators
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were averaged and the label with the highest probability was used as the final
label for each voxel.

Above, we used 2D axial slices for training. This potentially limits the infor-
mation contained in the sagittal and coronal directions. We therefore created a
second ensemble of 15 models using the same approach as described above, but
using sagittal and coronal slices in addition to axial slices. During inference, each
model is fed slices of the appropriate direction.

All segmentation models were trained using the Keras framework with the
Tensorflow backend.

Fig. 1. Structure of the 2D-UNet used for prediction of segmentation masks from
four MR sequences. A block represents a combination of convolutional layer, batch
normalisation and Leaky-ReLU activation function. Numbers of filters are provided
above each block.

1.4 Survival Prediction

We investigated different approaches for the prediction of overall survival after
surgery. We created:

– two linear regression models based on clinical information and tumour vol-
umes.

– three different deep-learning based models.
– a linear regression model based on clinical information, tumour volumes and

survival time predicted by a deep-learning model.
– a conventional radiomic model based on handcrafted image features computed

from the segmentations of each sequence.

The classification performance of the models into the three survivor classes
(‘short’ for patients with survival <10 months, ‘mid’ for patients with survival
between 10 and 15 months, ‘long’ for patients surviving more than 15 months)
were measured by the accuracy (ACC). In addition, mean square error (MSE),
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median square error (medianSE), standard deviation of the square error (stdSE)
and the Spearman correlation coefficient (SpearmanR) were computed. The
model that achieved the highest ACC in the validation cohort will be applied to
the final test cohort.

Linear Regression Model Based on Clinical Features. To predict the
post-surgery survival time, two linear regression models were constructed.

Patient age and survival time were moderately correlated in the training
cohort (Pearson’s ρ = −0.486). Correlations between survival time and tumour
volumes were weak, from −0.06 for enhancing tumour to 0.11 for edema, despite
higher tumour volume often being related to worse outcome prognosis. There-
fore we evaluated two regression models. The first model included patient age
as the single predictor (LM-Age). The second model also included patient age
and, in order to capture basic imaging information, additionally the three vol-
ume parameters for the enhancing, edema and necrotic areas as predictors (LM-
Age+Vol). Volume was measured by summation of the segmentation masks. No
feature normalisation was performed.

Deep-Learning Based Multi-task Regression Model (DL-MTR). A seg-
mentation UNet (as presented in Fig. 1) has likely learned relevant features of
the tumours during training. Transfer-learning may exploit these features in a
multi-task learning problem to simultaneously predict log-transformed survival
time and survival class labels (short-, mid- and long-term survivors).

For this purpose, the pre-trained encoder branch of the segmentation UNet of
the first of the five cross validation folds was extended by a global-max-pooling
layer followed by two dense layers (size: 64 and 16, respectively) with Leaky-
ReLU activation (α = 0.2). Finally, the model outputs were computed based on
two dense layers (sizes 1 and 3 for regression and classification, respectively) with
a linear output for the log-transformed survival time and a softmax function for
the class label prediction. As with segmentation, a batch size of 64 image slices
was used together with the Adam optimiser. Mean-absolute error and categori-
cal cross-entropy were used as loss functions for the regression and classification
tasks, respectively. Imaging from 32 axial slices per patient, consisting of the
tumour slice with the largest total tumour region and the 15 slices below and
16 slices above this slice, were used as input. Survival time for each patient
was predicted by averaging the predicted log-survival times for each slice after
exponential transform. The predicted class label was not considered for the final
patient prediction since classification loss served only as an auxiliary optimisa-
tion function during training.

During the training phase, the encoder branch of the pre-trained UNet was
fine-tuned based on a 10-fold cross validation that was repeated three times.
Fine-tuning was performed in two steps. First, to adjust the network to the
specific prediction task, only the extended part of the UNet was trained for
10 epochs with a learning rate of 1e−3. Subsequently, all layers of the model
were fine-tuned using a lower learning rate of 1e−5 for 20 epochs. Finally, for
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each patient, an ensemble prediction was constructed using the median predicted
survival time of all 30 models (DL-MTR-Ensemble-30).

In addition, the survival time predicted by the model ensemble was included
as a fifth predictor in the linear regression model for age and volume (LM-
Age+Vol+DL-MTR-Ensemble-30).

A further ensemble, containing seven models, was created by using only those
models that achieved an accuracy score of at least 0.4 on the validation folds
(DL-MTR-Ensemble-7).

Deep-Learning Based Cox Proportional Hazards Model and Elastic-
Net (DL-Cox-ElasticNet). The second deep-learning model was also based
on transfer learning. In this case, the encoder branch of the developed UNet was
re-trained to predict hazard values instead of the survival times directly. There-
fore, an optimisation of the partial log-likelihood of the Cox-proportional hazard
model was performed using the 32 selected slices for each patient in the training
cohort. All 30 models were used this time to compute an ensemble hazard score
for each slice of a patient by averaging over model outputs. To obtain survival
times, an elastic net regression model was trained on the ensemble average of
predicted hazards for each patient.

Radiomic-Based Prediction Model. Radiomic imaging features were com-
puted for each of the segmentations in every MR sequence. Nine additional
images were created for each sequence by spatial filtering of the base image to
emphasise image characteristics such as edges and blobs. Eight of nine addi-
tional images were created using a stationary coiflet-1 wavelet high-/low-pass
filter along each of the three spatial dimensions [9,10]. The remaining image was
created by averaging five images that were individually filtered using a Lapla-
cian of Gaussian filter with a kernel width of 1.0, 2.0, 3.0, 5.0, and 6.0 mm,
respectively [11]. Subsequently, 18 statistical, 38 histogram-based and 95 tex-
ture features were extracted from each tumour segmentation within each MR
image sequence (base image and 9 transformed images). 28 morphological fea-
tures were computed within the T1 MR base image only. The extracted texture
features were based on the following texture matrices: grey-level co-occurrence
matrix (GLCM) [12], grey-level run length matrix (GLRLM) [13,14], neighbour-
hood grey tone difference matrix [15], grey-level size zone matrix [16], grey-level
distance zone matrix [17] and neighbourhood grey level dependence matrix [18].
For this purpose the tumour segmentations were discretised using 32 quanti-
sation levels before calculation of texture matrices and the intensity histogram
[19,20]. GLCM and GLRLM-based features were first calculated for each of
the thirteen different spatial directions and subsequently averaged. All features
were calculated using a volumetric approach, and not slice by slice. Thus, 24927
features were computed in total per patient. Image pre-processing and feature
extraction were performed according to the guidelines of the image biomarker
standardisation initiative [21].
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Four feature selection methods and three learning algorithms found as most
reliable in a previous systematic evaluation were used for predictive modelling
[22,23]. The following feature selection methods were applied: Spearman correla-
tion (Spearman) [24], mutual information maximisation (MIM), mutual informa-
tion feature selection (MIFS) [25] and minimum redundancy maximum relevance
(MRMR) [26]. For model building we used random forest (RF) [27], boosting
trees gaussian linear model (BT-Gaussian) and boosted generalised gaussian lin-
ear model (BGLM-Gaussian) [28].

The subset of patients (n = 101) with gross total resection status was used
as the training cohort for creating radiomic models using our in-house modelling
framework [23]. Models were developed and selected in two stages: (I) an internal
cross-validation for model selection and (II) the final model development.

(I) The model selection step was based on a 5-times repeated 5-fold cross-
validation with four major processing steps: feature pre-processing, feature
selection, hyper-parameter optimisation, model building. All features in the
training folds were standardised by z-normalisation. Subsequently, hierarchi-
cal clustering was performed to identify mutually redundant features [29].
Features with an average intra-cluster Spearman correlation of >0.90 were
replaced by a new meta-feature. This meta-feature was created by sample-
wise averaging of the values of all features in the same cluster. During the
feature selection step the most relevant features are identified in the training
fold. Prior to feature selection the training fold was bootstrapped 50 times
using the .632 bootstrap method with replacement to be able to select sta-
ble, relevant features. Subsequently, the top 20 best features were aggregated
according their rank and their frequency of occurrence over all bootstrap
samples. Model hyper-parameters, such as the number of input features, were
subsequently optimised using a grid-search in pre-defined parameter space.
Finally, the learning algorithms were trained on 50 bootstrap samples for
the training fold using the top rank features as well as the optimised hyper-
parameter set.
(II) The average internal validation accuracy for the predicted survival class
was used to select the final combination of feature selection method and
model from 12 potential combinations. To determine the predicted survival
class, we first averaged the predicted survival time for the validation fold over
the 50 models [30]. Patients in the validation fold were then assigned to one
of three survival classes, and the accuracy computed. This was repeated until
an accuracy score was obtained for each cross-validation step.

The combination of feature selection method and model with the highest
average accuracy was then used to develop a final model. For this purpose
only a subset of features was used, namely those that were included at least
once into a model for the selected combination during the cross-validation
steps in stage I. Then, the steps described below were repeated using the full
training cohort of 101 patients, with the exception that feature selection and
model development were conducted using 1000 bootstraps.
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2 Results and Discussion

2.1 Brain Tumour Segmentation

Table 1 presents the performance of the ensemble models for segmentation on the
validation cohort, as computed by the competition website. The larger ensemble
comprised of axial, coronal and sagittal directions showed slightly worse results
for the mean Dice score, but a considerable improvement for the Hausdorff dis-
tance (95th percentile).

This is probably due to the fact that the larger ensemble is prone to eliminate
small structures, which leads to less false positive regions outside the actual
tumour, but at the same time creates false negatives for small foreground objects
(see Fig. 2 and Table 2).

Table 3 provides segmentation performance of the axial ensemble on the
test cohort. Compared to the validation cohort, we observed similar dice coeffi-
cients for all tumour sub-regions but increased Hausdorff distances for enhancing
tumour and tumour core.

Table 1. Performances of the different ensemble models for the segmentation on the
validation cohort.

Model Dice Hausdorff95

enh. whole core enh. whole core

Axial slices

Mean 71.04 85.11 71.03 6.57 8.85 10.28

StdDev 28.94 12.94 29.62 10.07 13.16 13.18

Median 82.01 89.48 84.65 2.24 4.47 5.48

Axial+coronal+sagittal slices

Mean 70.51 85.17 70.68 4.73 7.29 7.71

StdDev 30.95 15.19 31.39 7.83 10.78 10.81

Median 83.89 90.05 85.48 2.24 4.12 4.36

Table 2. Quantitative results of the comparison of two different ensemble models
applied to patient BraTS19 CBICA AMU 1 of the validation cohort.

Model Dice Hausdorff95

enh. whole core enh. whole core

Axial slices 83.48 92.76 91.45 2.83 5.39 21.40

Axial+coronal+sagittal slices 84.27 93.13 94.83 2.00 4.90 2.83
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Fig. 2. Qualitative results of the comparison of two different ensemble models. The
ensemble model based on axial slices segmented areas in the frontal part of the brain
falsely as necrotic tumour, while the ensemble model using all three directions correctly
segments the area as edema. The image refers to patient BraTS19 CBICA AMU 1 of
the validation cohort.

Table 3. Performance of the axial ensemble on the test cohort.

Model Dice Hausdorff95

enh. whole core enh. whole core

Axial slices

Mean 78.33 87.19 82.03 20.36 7.50 22.07

StdDev 22.10 11.29 24.58 79.86 29.32 79.61

Median 84.20 90.45 91.13 2.00 3.61 2.83

2.2 Survival Prediction

Table 4 shows the performance measures for all considered modelling approaches.
The linear regression model using patient age and the tumour volumes (LM-
Age+Vol) achieved the highest performance (ACC = 0.55) on the external vali-
dation cohort.

The different deep-learning based models obtained higher ACC values on
the training cohort compared to the LM-Age+Vol model. This is likely due
to overfitting, as the accuracy of the predictions on the validation data cohort
was considerably lower (ACC ≤ 0.41). Interestingly, direct use of deep-neural
networks as predictors worked slightly worse than using their outputs in an
additional regression model (here: ElasticNet). Compared to training, the DL-
MTR models also showed a large MSE for the validation cohort, which may
be indicative of instability of the trained models. Also, incorporation of the
ensemble prediction into the linear regression model as an additional predictor
affected validation performance negatively.
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For the conventional radiomics approach, the combination of MIM feature
selection and RF model algorithm achieved the best validation accuracy in the
internal cross-validation (ACC = 0.38). The accuracy of this model combination
on the entire training cohort and the external validation cohort were 0.58 and
0.38, respectively. The developed radiomics signature consisted of a first-order
statistic feature based on the enhancing tumour region and a first-order statistic
meta-feature extracted from the edema region. Both features were computed
and extracted from wavelet-transformed images. Based on these findings, the
LM-Age+Vol model was selected as a final model to be applied to the final
test cohort (Table 4). This model achieved an ACC of 0.51 and SpearmanR of
0.416, similar to the training and validation cohort. However, we note a large

Table 4. Performances of the different modelling approaches for the prediction of
the survival time on the whole training (train) and the external validation (valid)
cohort. Best validation results for each metric are marked in bold. Furthermore, the
performance of the final model (LM-Age+Vol) on the test cohort is shown.

Model Performance metrics

ACC MSE medianSE stdSE SpearmanR

LM-Age

Train 0.48 88822.0 21135.3 181864.0 0.479

Valid 0.45 90109.0 36453.5 123542.2 0.265

LM-Age+Vol

Train 0.48 85456.6 28490.4 164291.8 0.465

Valid 0.55 88463.9 31817.6 142106.5 0.277

Test 0.51 424151.8 50412.7 1256964.5 0.416

DL-MTR-Ensemble-7

Train 0.70 58090.0 6509.8 159519.0 0.826

Valid 0.38 2.47e+25 43215.0 1.3e+26 0.256

DL-MTR-Ensemble-30

Train 0.70 58160.5 6192.7 164442.8 0.849

Valid 0.34 1.13e+24 42090.1 5.97e+24 0.248

LM-Age+Vol+DL-MTR-Ensemble-30

Train 0.75 37638.2 5830.8 92566.3 0.852

Valid 0.38 447543.8 67653.0 829805.3 0.298

DL-Cox-ElasticNet

Train 0.69 50341.1 11756.0 108240.3 0.782

Valid 0.41 126882.9 81595.1 145380.7 0.354

RF-MIM

Train 0.58 79782.3 16522.9 199069.9 0.692

Valid 0.38 130423.3 23532.1 280367.6 0.116
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increase for MSE on the test cohort, which may be due to the imperfect volume
estimations coming from our segmentation model.
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Abstract. We introduce a modification of our previous 3D-to-2D fully
convolutional architecture, DeepSCAN, replacing batch normalization
with instance normalization, and adding a lightweight local attention
mechanism. These networks are trained using a previously described loss
function which mo els label noise and uncertainty. We present results
on the validation dataset of the Multimodal Brain Tumor Segmentation
Challenge 2019.

1 Introduction

Brain Tumor segmentation has become a benchmark problem in medical image
segmentation, due to the existence since 2012 of a long-running competition,
BRATS [4,19], together with a large curated dataset [1–3] of annotated images.
Both fully-automated and semi-automatic approaches to brain-tumor segmen-
tation are accepted to the challenge, with supervised learning approaches dom-
inating the fully-automated part of the challenge. A good survey of approaches
which dominated BRATS up to 2013 can be found here [5]. More recently, CNN-
based approaches have dominated the fully-automated approaches to the prob-
lem [7,11,22].

We present a network architecture for semantic segmentation, incorporating
dense blocks, [8] and dilated convolutions [26]: it is based on our 3rd-place entry
to the BRaTS 2018 segmentation challenge [16], which has also been applied to
the segmentation of MS lesions [18], and brain anatomy [17]. In this paper we
describe a variant of the architecture with the addition of a lightweight attention
mechanism, and in which batch normalization is replaced by instance normal-
ization. The bulk of the network is composed of 2D convolutions, but to provide
3D context the initial layers of the network are 3D convolutions. As a result, the
network has an anisotropic receptive field, which is intended to take advantage
of the symmetries of the human brain. The network is trained on sagittal, coro-
nal, and axial views of the brain: the final result of the network is derived by
ensembling over those three views at test time. The network is trained using a

c© Springer Nature Switzerland AG 2020
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heteroscedastic loss function, previously described in [16,17]. We report prelim-
inary results on the validation portion of the BRATS 2018 dataset.

2 Heteroscedastic Classification Models

Heteroscedastic classification networks (those which predict the variance of their
preactivation outputs) were introduced in [12]. In that paper heteroscedastic
classification was shown to improve street-scene segmentation: this increase in
performance can be attributed to learned loss attenuation, in which gradients
from examples with possibly erroneous labels are attenuated. Aside from our
previous work on brain segmentation [17], use of heteroscedastic classification
networks in medical image segmentation has been so far limited, with authors
focusing on uncertainty derived from dropout [9,10,15,23] or test-time augmen-
tation [25]. Predictive variance was explored, together with other measures of
uncertainty, as a method of filtering MS lesion segmentations by Nair et al. [20].
A multi-task network using a homoscedastic (per task rather than per example)
measure of task uncertainty was presented by Bentaib et al. [6].

The term “heteroscedastic regression” refers to regression models which do
not assume constant variance of residuals, but rather predict both the mean and
the variance of the predicted quantity [21]. This notion of uncertainty is dis-
tinct from Bayesian Uncertainty (for example as approximated using Bayesian
Dropout techniques); the two were contrasted and presented in a combined form
by Kendall and Gal [12]. In regression modelling, heteroscedasticity can be mod-
elled by assuming that model outputs form a Gaussian distribution, and predict-
ing the mean and variance of that distribution. The form of the loss function
is such that gradients from training examples with high predicted variance con-
tribute less than those with low predicted variance: heteroscedastic regression
therefore performs a sort of learned loss annealing.

For classification problems, the correct notion of heteroscedasticity is not
immediately clear. To make the subject easier to grasp, we restrict to the topic of
binary classification. Given a network output p ∈ [0, 1], and a ground truth value
x ∈ {0, 1}, we want to model some quantity that represents the uncertainty of p
as a model output predicting x. This is somewhat confusing at first sight, as the
value of p already contains, in some sense, a measure of certainty. Some insight
may be gained, however, from viewing a classifier as a latent variable model in
logit space. In the predictive variance method of Kendall and Gal [12], the logit
output logit(p) of the network (i.e. the output of the network before application
of a sigmoid nonlinearity) is assumed to follow a Gaussian distribution with
nonconstant variance. For each example the network outputs a probability, p,
and a log variance, log(σ2). Unlike for heteroscedastic regression the loss function
cannot be computed as an analytic function of p, σ2 and x, the true label. Instead
the loss is approximated by averaging a loss not involving σ2 over T Monte-Carlo
samples, in each of which the logit is perturbed by a normally distributed noise
term with mean zero and s.d. σ.
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In this paper we make use of an alternative heteroscedastic network, in which
the uncertainty in the logit is directly modelled by the probability q of disagree-
ment with the ground truth, or ’label-flip’. This has the advantage that the loss
function is analytic in p, q and x. For each example of a binary classification
problem, the network outputs a p ∈ (0, 1) denoting class membership, and an
output q ∈ (0, 0.5) predicting the probability that the ground truth and classifier
disagree. If x ∈ {0, 1} is the label of the voxel, according to the ground truth,
the label-flip loss at to that voxel is

BCE(p, (1 − x) ∗ q + x ∗ (1 − q)) + BCE(q, z) (1)

where z is the indicator function for disagreement between the classifier (thresh-
olded at the p = 0.5 level) and the ground truth, and BCE is binary cross-
entropy. Unlike for predictive variance this loss can be formulated in closed form
and is differentiable, and so can be used directly in backpropogation. Label-flip
loss can be seen as a form of loss attenuation: the loss at voxels with low label
noise is dominated by the first loss term, and the loss at voxels with substan-
tial label noise is dominated by the second term. It can also be seen as learned
label smoothing : a hard labels are replaced by a soft labels according to the
uncertainty in the data [24].

Both of the above notions of heteroscedastic network may be easily formu-
lated in either a binary or multi-class setting. In this paper, we focus on the
binary case for two reasons: ease of presentation, and because we may easily
translate between the two notions in the binary setting. Specifically, if a model
predicts a logit logit(p), and a variance σ2, the associated flip-probability is
Φ(|logit(p)|/σ): the probability that a draw from a normal distribution with
mean logit(p) and variance σ2 has a different sign to logit(p). Conversely, a
label-flip probability q can be viewed as a variance. The expression of this vari-
ance is simplified if we assume that the logit of p follows not a Gaussian but a
logistic distribution (as is the standard assumption in classical statistical learn-
ing theory). The probability that a sample drawn from a logistic distribution
with mean logit(p) and scale s has a different sign to logit(p) (and therefore
produces a label flip) is

1
1 + e−|logit(p)|/s = logit−1(−logit(p)/s) (2)

From the moments of the logistic distribution, we can derive that associated
variance is (logit(p)2π2)/3logit(q)2.

3 Application to Brain Tumor Segmentation

3.1 Data Preparation and Homogenization

The raw values of MRI sequences cannot be compared across scanners and
sequences, and therefore a homogenization is necessary across the training exam-
ples. In addition, learning in CNNs proceeds best when the inputs are standard-
ized (i.e. mean zero, and unit variance). To this end, the nonzero intensities
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in the training, validation and testing sets were standardized, this being done
across individual volumes rather than across the training set. This achieves both
standardization and homogenization.

3.2 The DeepSCAN Architecture with Attention

Fig. 1. The DeepSCAN classifier, as applied in this paper to Brain Tumor Segmentation

Our model architecture (shown in Fig. 1) was implemented in Pytorch: it consists
of an initial phase of 3D convolutions to reduce a non-isotropic 3D patch to 2D,
followed by a swallow encoder/decoder network using densely connected dilated
convolutions in the bottleneck. This architecture is very similar to that used
in our BraTS 2018 submission: principal differences are that we use Instance
normalization rather than Batch normalization, and that we add a simple local
attention mechanism between dilated dense blocks.

We use multi-task rather than multi-class classification: each tumor region
(Whole tumor, tumor core, enhancing tumor) is treated as a separate binary
classification problem. To combat data imbalance between foreground and back-
ground problem, we use focal loss [13] with parameter γ = 2. The loss functions
for our heteroscedastic networks use focal loss as a base loss function as a base
loss function. Inputs to the network (5*196*196 patches) were sampled randomly
from either axial, sagittal or coronal direction. We perform simple data augmen-
tation: reflection about the (approximate) midline, rotation around a random
principal axis through a random angle, and global shifting/rescaling of voxel
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intensities. The network was trained with RMSprop, using a batch size of 2 and
a cosine annealing learning rate schedule with restarts [14], where the learning
rate was varied from 10−4 to 10−7 every 20000 learning steps:(we refer to this
rather loosely as an epoch).

Models were trained using five-fold cross-validation. We trained our model for
20 epochs without the uncertainty loss and then for a further 80 epochs with a
sum of focal loss and label-flip uncertainty loss. We also trained the same model
without uncertainty loss (i.e. just focal loss) for 100 epochs, and an example of
our previous model (with batch normalization, and without attention) for 100
epochs. Smoothed curves showing the cross-validated dice coefficients for the
three experiments, stratified by LGG and HGG, are shown in Fig. 2.

Final segmentations were derived by ensembling axial, sagittal and coronal
views by averaging logits.

4 Variance and Model Ensembling

After cross-validation, we have five trained classifiers. We applied these classifiers
to the validation data in the saggital, axial and coronal directions, and averaged
their logit outputs. Given the 30 different model outputs, we want to ensemble
them in a way which respects uncertainty, meaning that

1. Confident predictions count more than unconfident predictions
2. We can provide a confidence/flip-probability for the ensembled output.

Our chosen ensembling method is weighted ensembling of logits: if mi denotes
the ith logit, then the ensembled logit is

mens = Σ30
i=1wimi

where
Σ30

i=1wi = 1

The variance of this ensemble is then given by

σ2
ens = Σ30

i=1wiσ
2
i

(if we make the simplifying assumption that all 30 models make independent
errors).

To convert the variance of the ensemble to a flip-probability, we assume that
the weighted ensemble follows a Gaussian distribution, with mean mens and
variance σ2

ens: the flip probability qens is then Φ(|mens|/σens).
We compared weighting with a fixed weight of 1/30, weighting by variance,

and weighting by a weight defined as follows:

wi = |ni/mi|
where mi is the logit output, and ni the logit of the flip probability. The latter
gave best performance over our cross-validation.

Subsequently, we filtered the results of our classifier according to principles
derived from tumor biology and our uncertainty measure. Specifically
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Fig. 2. Learning curves of the three model variants trained: Oldnet (Our entry to
BRATS 2018), Newnet (The network with instance normalization and attention) and
Newnet Uncert (The network with instance normalization, attention, and label flip
uncertainty from epoch 20). Results are split between LGG and HGG cases.

– Connected components of whole tumor or tumor core or that were primarily
uncertain (median label flip probability > 0.3) were deleted.

– Connected components of enhancing tumor that were primarily very uncer-
tain (median label flip probability > 0.4) were deleted.

– Small components (< 10 voxels) of any tissue class were deleted
– If no tumor core was detected (primarily a problem in LGGs), the whole

tumor was assumed to consist of tumor core.
– If a tumor core was detected, then tumor components containing no tumor

core were deleted.

These heuristics were hand-crafted, by examining mistake made on the worst-
performing cases in the validation set.

5 Results

Results of our classifier, as applied to the official BraTS validation data from
the 2019 challenge, as generated by the official BraTS validation tool, before
and after filtering for uncertainty and plausible tumor morphology, are shown in
Fig. 1.
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Table 1. Results on the BRATS 2019 validation set using the online validation tool.
Raw output denotes the ensembled results of the five classifiers derived from cross-
validation.

Dice
ET

Dice
WT

Dice
TC

Hausdorff95
ET

Hausdorff95
WT

Hausdorff95
TC

Raw output 0.75 0.91 0.81 4.35 5.97 6.21

Filtered Output 0.77 0.91 0.83 3.92 4.52 6.27

This method was used as our entry into the BraTS 2019 challenge: 166 addi-
tional cases were supplied, to which we applied our method. Results, as provided
by the challenge organizers, are shown in Table 2. The method was ranked third
in the 2019 challenge.

An uncertainty component to the challenge was also run in 2019: this method
was mentioned by the organizers as being among the four best-performing meth-
ods in this part of the challenge, but no further details were released.

Table 2. Results on the BRATS 2019 testing set.

Label Dice
ET

Dice
WT

Dice
TC

Hausdorff95
ET

Hausdorff95
WT

Hausdorff95
TC

Mean 0.81 0.89 0.83 2.74 4.85 3.99

StdDev 0.20 0.11 0.25 5.21 6.90 6.01

Median 0.86 0.92 0.92 1.41 2.91 2.24

25quantile 0.78 0.88 0.87 1.00 1.73 1.41

75quantile 0.91 0.95 0.96 2.24 4.56 3.74
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Abstract. Early diagnosis and accurate segmentation of brain tumors
are imperative for successful treatment. Unfortunately, manual segmen-
tation is time consuming, costly and despite extensive human exper-
tise often inaccurate. Here, we present an MRI-based tumor segmenta-
tion framework using an autoencoder-regularized 3D-convolutional neu-
ral network. We trained the model on manually segmented structural T1,
T1ce, T2, and Flair MRI images of 335 patients with tumors of variable
severity, size and location. We then tested the model using independent
data of 125 patients and successfully segmented brain tumors into three
subregions: the tumor core (TC), the enhancing tumor (ET) and the
whole tumor (WT). We also explored several data augmentations and
preprocessing steps to improve segmentation performance. Importantly,
our model was implemented on a single NVIDIA GTX1060 graphics unit
and hence optimizes tumor segmentation for widely affordable hardware.
In sum, we present a memory-efficient and affordable solution to tumor
segmentation to support the accurate diagnostics of oncological brain
pathologies.

Keywords: Brain tumor · U-Net · Autoencoder

1 Introduction

An estimated 17,760 people will die from a primary brain tumor this year in the
US alone [1]. Another 23,820 will be diagnosed with having one [1]. The earlier
and the more accurate this diagnosis will be, the better the patients chances are
for successful treatment. In cases of doubt, patients typically undergo a brain
scan either using computed tomography (CT) or magnetic resonance imaging
(MRI). Both techniques acquire a 3D image of the brain, which then serves as
the basis for medical examination. To understand the severity of the disease and
to plan potential treatments, a critical challenge is identifying the tumor, but
also to estimate its spread and growth by segmenting the affected tissue. This
process still often relies on careful manual assessment by trained medical staff.

In recent years, a growing number of algorithmic solutions were proposed
to aid and accelerate this process [2–4]. Most of these automatic segmentation
c© Springer Nature Switzerland AG 2020
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methods build on convolutional neural networks (CNNs) trained on manual brain
segmentations of a large cohort of patients. Given enough training data, they
learn to generalize across patients and allow to identify the tumor and its spread
in new, previously unseen brains. However, there are at least two challenges
associated with CNN’s. First, they tend to overfit to the training data, making
it necessary to either have large data sets to begin with, or to use a variety
of data augmentations to make them generalize more robustly. Second, many
current CNN implementations require powerful computational resources to be
used within a reasonable time.

To solve such challenges and to promote the further development of automatic
segmentation methods, the brain tumor segmentation challenge (BraTS) [2,5–
8] provides large data sets of manually segmented brains for users to test new
implementations. Here, we used this data to implement a convolutional autoen-
coder regularized U-net for brain tumor segmentation inspired by last year’s
BraTS challenge winning contribution [3]. As model input, we used structural
(T1) images, T1-weighted contrast-enhanced (T1ce) images, T2-weighted images
and fluid-attenuated inversion recovery (Flair) MRI images of 335 patients with
tumors of variable severity, size and location. As training labels, we used the
corresponding manual segmentations.

The model training comprised three parts (Fig. 1). First, in an encoding
stage, the model learned a low-dimensional representation of the input. Second,
the variational autoencoder (VAE) stage reconstructed the input image from
this low-dimensional latent space. Third, a U-Net part created the actual seg-
mentations [9]. In this model architecture, the VAE part is supposed to act as
a strong regularizer on all model weights [3] and therefore to prevent overfitting
on the training data. The resulting segmentation images were compared to the
manual segmentation labels. This process was repeated until the optimal model
weights were found. These optimal parameters were then tested on new valida-
tion data of 125 patients, localizing and segmenting each brain tumor into three
tissue categories: whole tumor, enhancing tumor and tumor core.

Importantly, all of these steps were conducted on a single NVIDIA GTX1060
graphics unit while using data exclusively from the BraTS challenge 2019. In
addition, we explored various model parameters, data augmentations and pre-
processing steps to improve model performance. Therefore, we address above-
introduced challenges by presenting a memory-efficient and widely-affordable
solution to brain tumor segmentation in line with the aims of the GreenAI ini-
tiative [10].

2 Methods

2.1 Model Architecture

As mentioned above, our model is inspired by earlier work [3], but was adapted
as described in the following (see also Fig. 1). We adjusted the model architecture
to incorporate a patch-wise segmentation of the input image, as the full input
with a resolution of 240×240×155 voxel as used in the original model is too big
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to fit most commercially available graphics cards (GPU). This is true even with
a batch size of 1. We therefore used 3D blocks of size 80 × 80 × 80 and adjusted
the number of filters to make full use of the GPU memory available, leading to
32 filters in the first layer with a ratio of 2 between subsequent layers. We also
replaced the rectified linear unit (ReLU) activation functions with LeakyReLU
[11] as we observed an improvement in performance in a simplified version of
our model.

Notably, we tested various other factors, which did not lead to an improve-
ment in model performance, but are nevertheless included here as null-report.
These included a) changing the downsampling in the convolutional layers from
strides to average or max pooling, b) adjusting the ratio in the number of filters
between layers (including testing non-integer steps), c) varying the number of
units in the bottleneck layer, d) increasing the number of down-sampling and
subsequent up-sampling steps and e) replacing the original group norm by batch
norm. Due to our self-imposed computational constraints, we could not system-
atically test all these adjustments and possible interactions using the full model.
Instead, we tested these parameters in a simplified model with only 8 filters at
the input stage.

The overall model architecture follows a similar structure as a U-Net [9], with
an additional variational autoencoder module [12] to regularize the segmentation
of the tumor masks. As loss functions we used the mean-squared error between
the reconstructed and real input image and the Kullback-Leibler loss to ensure a
normal distribution in the latent space. The weights for both losses were down-
weighted by a factor of 0.1. The (soft Dice) segmentation loss was averaged
across all voxels belonging to the whole tumor (WT), enhancing tumor (ET)
and tumor core (TC).

2.2 Optimization

For training the model we used an adjusted version of the Dice loss in [3]:

LDice = 1 −
(
2 ∗

∑
(ytrue ∗ ypred) + s

(
∑

y2
true +

∑
y2
pred) + s

)
(1)

with ytrue being the real 3D mask and ypred being the corresponding 3D pre-
diction. This version of the Dice loss ensured that the loss estimate lies within
the interval [0,1]. The smoothness term s ensured that the model is allowed to
predict 0 tumor voxels without incurring a high loss in its overall estimate. In
line with [13] we decided to use s = 100.

The autoencoder part of our model consisted of two loss terms. As a recon-
struction loss we used the mean-squared error between the reconstructed and
the real input image:

LL2 = ||ytrue − ypred||22 (2)

In addition, we used a Kullback-Leibler loss to ensure a normal distribution
in our bottleneck layer, with N being the number of voxels in the input:

LKL =
1
N

∑
μ2 + σ2 − log σ2 − 1 (3)
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Fig. 1. Model architecture of our memory-efficient autoencoder-regularized U-Net. As
input to the model we used patches of size 80 × 80 × 80 and stacked the MRI modalities
in the channel dimension (n = 4). We used 3D convolutions with a kernel size of 3×3×3
throughout. We used residual blocks [14], using 3D convolutions with LeakyReLU
activations, interspersed with Group Normalization [15]. For upsampling to the original
image size, we used 3D bilinear upsampling and 3D convolutions with a kernel size of
1 for both the autoencoder and the segmentation part.

with μ and σ2 the mean and variance of the estimated distribution. In line
with [3] we weighted the autoencoder losses by 0.1, resulting in an overall loss
according to:

L = 0.1 ∗ LL2 + 0.1 ∗ LKL + 0.33 ∗ LDicewt
+ 0.33 ∗ LDicetc + 0.33 ∗ LDiceet (4)

We tested different weighting for the tumor subregions, but did not observe
a clear change in model performance using the smaller test model. We therefore
used the average of the three regions.

For training the model, we used the Adam optimizer [16], starting out with
a learning rate of 1e-4 and decreasing it according to

α = α0 ∗ (1 − e

Ne
)0.9 (5)

with e the epoch and Ne the number of total epochs (n = 50). We evaluated 2101
samples in each epoch, stopping early when the validation loss did not decrease
further for 2 subsequent epochs.

2.3 Data Augmentation

In line with [3] we used a random scaling between 0.9 and 1.1 on each image
patch, and applied random axis mirror flip for all 3 axes with a probability of 0.5.
We experimented with additional augmentations. In particular, we computed a
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voxel-wise similarity score for each participant’s T1 comparing it to a healthy
template brain. We co-registered an average template of 305 participants without
any tumors [17] to each patient’s T1 using translations, rotations and scaling and
calculated a patch-wise Pearson’s correlation with a searchlight-sphere size of
7 mm. The resulting correlation images were normalized and concatenated with
the 4 MRI modalities as an additional channel in the input (Fig. 2). However, in
our hands, this procedure did not further improve model performance. Future
work could test different across-image similarity measures.

Fig. 2. Local similarity score. To aid model performance, we computed a local similar-
ity score image, which served as additional input. We linearly co-registered a healthy
template brain [17] to each participant’s T1, and computed a patch-wise Pearson cor-
relation between the two. Patch-size was 7 mm. The correlation between healthy and
pathological brain drops in tumor regions.

A shortcoming of using discretized patch-input is the lack of information
about the anatomical symmetry of the tested brain images. Strong asymmetry in
MRI images can indicate the presence of a tumor, which is in most cases limited
to one hemisphere. The other hemisphere should hence rather approximate how
the healthy brain once looked like. Therefore, for each patch we also provided
the mirrored patch from the opposite hemisphere as an additional input. This
mirroring of image patches was only done on the sagittal plane of the MRI
images. Looking forward, we believe this approach has the potential to benefit
the model performance if measures other than Pearson’s correlation are explored
and mirror symmetry is factored in.

We used test time augmentation to make our segmentation results more
robust, for this we mirrored the input on all three axes and flipped the cor-
responding prediction to match the original mask orientation. This gave us 16
model estimates (2 ∗ 2 ∗ 2 ∗ 2), which we averaged and thresholded to obtain our
segmentation masks. We decided to directly optimize for tumor regions instead
of the intra-tumoral regions as this resulted in better estimates during training of
how well our model will perform on the BraTS 2019 competition benchmark. We
optimized the values at which we thresholded our masks on the training data
and used 0.55, 0.5 and 0.4 for whole tumor, tumor core and enhanced tumor
respectively.
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3 Results

Here, we present an autoencoder regularized U-net for brain tumor segmenta-
tion. The model was trained on the BraTS 2019 training data, which consisted
of 335 patients separated into high-grade glioma and low-grade glioma cases.
Initial shape of the input data was 240 × 240 × 155, with multi-label segmen-
tation masks of the same size, indicating NCR & NET (label 1), edema (label
2), and enhancing tumor (label 4). We created an average tumor template from
all segmentation masks to locate the most prominent tumor regions via visual
inspection. Based on that, we created our initial slice resulting in image dimen-
sions of 160 × 190 × 140. We then used a sliding window approach to create
patches of size 80×80×80, feeding these patches through the model while using
a sampling procedure that increased the likelihood of sampling patches with a
corresponding tumor (positive samples).

Table 1. Validation results. ET: enhancing tumor, WT: whole tumor, TC: tumor core.

Dice score Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.787 0.896 0.800 0.782 0.907 0.787 0.998 0.994 0.997 6.005 8.171 8.241

Std 0.252 0.085 0.215 0.271 0.088 0.246 0.003 0.008 0.004 14.55 15.37 11.53

Median 0.870 0.922 0.896 0.884 0.934 0.895 0.999 0.997 0.999 2.000 3.162 3.605

We used an ensemble of two separately trained models to segment the MRI
images of validation and testing set into different tumor tissue types. This allowed
us to test the model on previously unseen data (Table 1, Figs. 3, 4, team-name:
CYHSM). The mean Dice scores of our model on the validation dataset (n = 125)
are 0.787 for enhanced tumor, 0.896 for whole tumor and 0.800 for tumor core.

In Fig. 3, we show the model segmentations for one exemplary patient from
the validation set overlayed on the patient’s T1 scan. For this patient we obtained
Dice scores of 0.923 for whole tumor, 0.944 for tumor core and 0.869 for enhanc-
ing tumor from the online evaluation platform: https://ipp.cbica.upenn.edu. The
distribution of Dice scores across patients can be seen in Fig. 4 [18]. The ensem-
ble model performed well on most patients (∼ 0.9 median Dice score), but failed
completely in a few.

To examine why the model performed poorly in some few patients, we exam-
ined the model error pattern as a function of brain location. We calculated the
average voxel-wise Dice score for the whole tumor for all 125 validation sub-
sets and registered them to the Colin27-MNI-template (Fig. 5). We found that
our model performed well in superficial gray matter (average Dice-score >0.9),
but failed to segment the tumors accurately in white matter, predominantly
in deeper structures in the temporal lobes. Moreover, our model segmented the
whole tumor most accurately, but struggled to differentiate the enhancing tumor
from the tumor core. It especially misclassified low-grade glioma cases in which
no enhancing tumor was present (Dice score of 0).

https://ipp.cbica.upenn.edu


394 M. Frey and M. Nau

Fig. 3. Tumor segmentations. Validation data shown for one exemplary patient. We
depict the T1 scan (upper panel) as well as the segmentation output of our model
overlaid on the respective T1 scan (bottom panel) for sagittal, horizontal and coronal
slices. Segmentations were color-coded.

4 Discussion

Tumor segmentation still often relies on manual segmentation by trained medical
staff. Here, we present a fast, automated and accurate solution to this problem.
Our segmentations can be used to inform physicians and aid the diagnostic pro-
cess. We successfully segmented various brain tumors into three tissue types:
whole tumor, enhancing tumor and tumor core in 125 patients provided by the
BraTS challenge [2]. Importantly, our model was implemented and optimized on
a single GTX1060 graphics unit with 6GB memory. To meet these low graph-
ics memory demands, we split the input images into multiple 3D patches. The
model iterated through these patches and converged on the most likely brain seg-
mentation given all iterations in the end. We hence present a memory efficient
and widely affordable solution to brain segmentation. Naturally, one limitation
of this low-cost approach is that the model is still relatively slow. Naturally,
more computational resources would alleviate this problem. In addition, more
graphics memory would allow to upscale the input patch size further, in turn
likely also benefiting the model performance greatly.

In addition, we implemented the model using data provided for this year’s
BraTS 2019 challenge alone. No other data was used. Earlier work including
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Fig. 4. Group-level segmentation performance (Dice score) for enhancing tumor (green,
left), tumor core (blue, middle) and whole tumor (petrol, right) for the validation
data set. We plot single-patient data overlaid on group-level whisker-boxplots (center,
median; box, 25th to 75th percentiles; whiskers, 1.5 interquartile range) as well as the
smoothed data distribution. (Color figure online)

Fig. 5. Model error (1-Dice Score) overlaid on structural T1-template in MNI-space.
Hot colors indicate high errors. The model performed well in superficial gray matter,
but failed in deeper structures, especially in white matter tracts in the temporal lobe.
(Color figure online)

previous BraTS challenges showed that incorporating additional data, hence
increasing the training data set, greatly improves model performance [4]. Here,
we aimed at optimizing brain tumor segmentation explicitly in the light of these
common computational and data resource constraints. One interesting observa-
tion was that the model performed well on most patients (3), but failed com-
pletely in a few. The reasons for this remain unclear and need to be explored in
the future.

Taken together, our results demonstrate the wide-ranging applicability of
U-Nets to improve tissue segmentation and medical diagnostics. We show that
dedicated memory efficient model architectures can overcome computational and
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data resource limitations and that fast and efficient brain tumor segmentation
can be achieved on widely-affordable hardware.

Acknowledgements. We are grateful to Christian F. Doeller and the Kavli Institute
for Systems Neuroscience for supporting this work.
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