
Chapter 7
Adversarial Risk Analysis as a
Decomposition Method for Structured
Expert Judgement Modelling

David Ríos Insua, David Banks, Jesús Ríos, and Jorge González-Ortega

Abstract We argue that adversarial risk analysis may be incorporated into the struc-
tured expert judgement modelling toolkit for cases in which we need to forecast the
actions of competitors based on expert knowledge. This is relevant in areas such
as cybersecurity, security, defence and business competition. As a consequence, we
present a structured approach to facilitate the elicitation of probabilities over the
actions of other intelligent agents by decomposing them into multiple, but simpler,
assessments later combined together using a rationality model of the adversary to
produce a final probabilistic forecast. We then illustrate key concepts and modelling
strategies of this approach to support its implementation.

Keywords Structured expert judgement · Adversarial risk analysis ·
Decomposition · Security · Cybersecurity

7.1 Introduction

Structured Expert Judgement (SEJ) elicitation has a long history of successes, both in
methodology and applications, many of them stemming from Roger Cooke’s work,
e.g.Cooke (1991) andGoossens et al. (1998).Hence, it has becomeamajor ingredient
within risk and decision analysis (Bedford and Cooke 2011). A significant feature
in the practice of these disciplines, as already acknowledged in the classic book by
Raiffa (1968), is the emphasis in decomposing complex problems into smaller pieces
that are easier to understand and recombining the piecewise solutions to tackle the
global problem.
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In particular, belief assessment benefits from decomposition, typically through
the argument of extending the conversation. Direct elicitation of probabilities can
be a very difficult cognitive task. For example, there may be many factors influenc-
ing the occurrence of an outcome of interest whose effects experts would have to
identify and balance in their heads to produce a probability judgement. Thus, rather
than directly assessing this probability (with a standard SEJ technique), one could
find a conditioning partition and estimate the probabilities of the outcome given the
corresponding events. From these, and the probabilities of the conditioning events,
the law of total probability enables calculation of the unconditional probability of
the outcome. Ravinder et al. (1988) and Andradottir and Bier (1997, 1998) provide a
methodological framework to validate the advantages of this approach, empirically
tested in e.g. MacGregor and Kleinmuntz (1994) and MacGregor (2001). Tetlock
and Gardner (2015) call this approach Fermitisation and present it as a key strategy
for the success of their super-forecasters, and SEJ at large. Decompositions uncover
the complexity underlying a direct probability assessment, eliminating the burden on
experts to perform sophisticated modelling in their heads. This simplifies complex
cognitive tasks, reveals assumptions experts make in their judgements and mitigate
their reliance on heuristics that can introduce bias, ensuring that they actually analyse
the relevant problem (Montibeller and von Winterfeldt 2015). Decompositions typi-
cally entail more assessments, though these tend to be simpler and more meaningful,
leading to improved judgements and decisions. In turn, this would allow for better
harnessing expert knowledge e.g. by assigning the proper expertise to the different
sub-tasks of an assessment.

Inmany settings, especially in contexts such as security, counterterrorismor cyber-
security, experts will have to face adversarial problems in the sense that they need
to deal with probabilities referring to actions carried out by opponents. As an exam-
ple, in Chen et al. (2016), nearly 30% of the questions posed to experts somehow
involved adversaries (e.g. Will Syria use chemical or biological weapons before
January 2013?). Though we could think of using the standard SEJ tools as illus-
trated in other chapters in this volume, we present Adversarial Risk Analysis (ARA)
as a decomposition strategy to support SEJ when forecasting adversarial actions.
Regardless of the many issues associated with how an expert can translate domain
knowledge into a probability, there is always the problem of how to best structure the
elicitation process to get to a probability.When this is too difficult to assess but can be
expressed as a combination of other simpler probabilities, decomposition becomes
a critical part of the SEJ procedure. Our focus is on how ARA, as a structured SEJ
technique, determines what the right questions to ask are and how experts’ answers
to these questions are combined to produce an adversarial probabilistic forecast.

After sketching the ARA approach to decomposition (Sect. 7.2), we show how
this can actually improve expert assessment of opponent actions (Sect. 7.3). We then
propose several ways to implement ARA in practice (Sect. 7.4), include a numerical
example (Sect. 7.5) and end with a discussion (Sect. 7.6).



7 Adversarial Risk Analysis as a Decomposition Method for Structured … 181

7.2 ARA as a SEJ Decomposition Method

ARA was originally introduced to deal with game-theoretic problems studied from
a Bayesian perspective, (Ríos Insua et al. 2009; Banks et al. 2015). It stems from
the observation that common knowledge assumptions in standard game-theoretic
approaches based on Nash equilibria and their refinements do not hold in many
applications, such as counterterrorism or cybersecurity, as competitors try to conceal
information. Games are formulated in a Bayesian manner, as in Kadane and Larkey
(1982) and Raiffa (2003), and operationalised by providing procedures to forecast
the actions of the adversary.

To simplify the discussion,we consider the basicARAapproach through a sequen-
tial Defend–Attack game: agent D (she, defender) first makes her decision d ∈ D,
then agent A (he, attacker) observes d and chooses his alternative a ∈ A. The out-
come s of their interaction is a random variable S whose distribution depends upon
d and a. As an example, imagine that a company deploys cybersecurity controls and
then, having observed them, a cybercriminal decideswhether to launch a cyberattack.
The cost to the company would be a random variable that is conditioned upon both
decisions (the controls deployed and the attack launched). The problem that agent
D faces is depicted in the influence diagram in Fig. 7.1.

To solve it, she requires pD(s | d, a), which reflects her beliefs on the outcome
given both agents’ actions, and her utility function uD(d, s), modelling her pref-
erences and risk attitudes over the consequences, which we assume depends on the
outcome and the defence implemented. Besides, she needs the distribution pD(a | d),
which is her assessment of the probability that A will choose action a after having
observed her choice d. Once D has completed these judgements, she can compute
the expected utility of decision d as

ψD(d) =
∫ [∫

uD(d, s) pD(s | d, a) ds

]
pD(a | d) da,

and seek for the optimal decision d∗ = arg maxd∈D ψD(d).
This is a standard risk or decision analysis exercise except for the elicitation of

pD(a | d), which entails strategic aspects. D could try to assess it from a standard
belief elicitation perspective, as in Cooke (1991) or O’Hagan et al. (2006), but ARA
usefully suggests a decomposition approach to such assessment that requires her

Fig. 7.1 The decision
problem as seen by D

SD A

uD
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Fig. 7.2 D’s analysis of the
decision problem as seen
by A

SD A

uA

to analyse the problem from A’s perspective, as shown in the influence diagram in
Fig. 7.2.

Thus, D puts herself in A’s shoes. She would use all the information she can
obtain about A’s probabilities pA(s | d, a) and utilities uD(d, s), assuming he is an
expected utility maximiser. Then, instead of using point estimates for pA and uA to
find A’s optimal response for a given d, her uncertainty about A’s decision would
derive from her uncertainty about (pA, uA), through a distribution F on the space
of probabilities and utilities. This induces a distribution over A’s expected utility,
which for each d and a is

�A(d, a) =
∫

UA(a, s) PA(s | d, a) ds,

where (PA,UA) follow the distribution of F . Then, D finds the required pD(a | d)

as PF
[
a = arg maxx∈A �A(d, x)

]
, in the discrete case and, analogously, in the con-

tinuous one. She could use Monte–Carlo simulation to approximate pD(a | d), as
shown in Sects. 7.3 and 7.5.

Observe that the ARA approach weakens the standard, but unrealistic,
common knowledge assumptions in game-theoretic approaches (Hargreaves-Heap
and Varoufakis 2004), according to which the agents share information about their
probabilities and utilities. In our case, not having common knowledge means that
D does not know (pA, uA), and thus we model such uncertainty through F . The
approach extends to simultaneous decision making problems, general interactions
between both agents, multiple agents, agents who employ principles different than
maximum expected utility, as well as to other contexts presented in Banks et al.
(2015). Here, we exclusively explore the relevance of ARA as part of the SEJ toolkit.

7.3 Assessing ARA Decompositions

We hereafter study ARA as a decomposition approach through the sequential
Defend–Attack model described above, comparing direct SEJ and the ARA decom-
position.
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7.3.1 Framework

As mentioned, there are two possible ways to assess the distribution pD(a | d):

• One could do it directly with standard SEJ procedures (Cooke 1991). Denote such
assessment by pSE J

D (a | d).
• Otherwise, one could determine it indirectly throughARA as in Sect. 7.2. D would
model her uncertainty about A’s beliefs andpreferences, representedby (PA,UA) ∼
F , and then solve A’s decision making problem using these random probabilities
and utilities to estimate

pARA
D (a | d) = PF

[
a = arg maxx∈A

∫
UA(x, s) PA(s | d, x) ds

]
.

To compare both approaches, we make three simplifying assumptions:

(i) D has only two options, defend (d1) or not (d0);
(ii) A can solely choose between attacking (a1) or not (a0) and
(iii) if A decides to attack, the only two outcomes are success (s1) or failure (s0).

For A, the problem can be viewed as the decision tree in Fig. 7.3, with d ∈ {d0, d1},
which parallels the influence diagram in Fig. 7.2. The ARA approach obtains the
required conditional probabilities pARA

D (a | d) by solving the decision tree using D’s
(random) assessments over A’s inputs.

Suppose D thinks A bases his decision on a cost–benefit analysis. In that case, the
consequences for A are described in Table7.1. For this, Dmight use a multi-attribute
value model to decompose her judgement about A’s valuation of consequences into
simpler assessments regarding such costs and benefits. Later, she can aggregate these
estimates as shown in the row Profit in Table7.1, reflected in Fig. 7.3.

D A

S

−c

0

b − c

d

a0

a1

s0

s1

Fig. 7.3 Decision tree representing A’s problem. c represents the cost of implementing an attack;
b, the benefit of a successful attack
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Table 7.1 Cost–benefit analysis of A’s consequences

(Attack, Outcome)—(a, s)

(a0, s0) (a1, s0) (a1, s1)

Cost 0 c c

Benefit 0 0 b

Profit 0 −c b − c

This requires D to assess two quantities: c and b, A’s cost of undertaking an attack
and his benefit if successful, respectively. We assume that 0 < c < b, implying that
attacking is more costly for A than not attacking, but potentially more beneficial, and
that a successful attack is better for A than an unsuccessful one. Since D is generally
uncertain about these quantities, she will provide probability distributions to model
her beliefs about them. Suppose her self-elicitations lead to the uniform distributions

• A’s cost of an attack: c ∼ U (cmin, cmax).
• A’s benefit from a successful attack: b ∼ U (bmin, bmax).

These allow D to estimate the random values related to A’s consequences in
Table7.1. We have assumed that D believes that A’s costs and benefits are uniformly
distributed and, very importantly, independent. However, in many cases, there is
dependence; e.g. a more costly attack is most likely correlated with larger benefits
for A. In that case, one needs to model c and b jointly. For simplicity, this discussion
assumes independence.

If D believes that A is risk neutral (i.e. seeking to maximise expected profit),
she would now elicit her beliefs about A’s impression on his probability of success.
Otherwise, beforehand, she would have to model A’s risk attitudes. She could do
that by eliciting a utility function over profits for him and model his risk attitude
as shown in Sect. 7.4.2 and exemplified in Sect. 7.5, where her uncertainty about
the attacker risk attitude is captured through a probability distribution over the risk
aversion coefficient of a parametric utility function. Alternatively, because there are
just three possible outcomes for A (no attack, failed attack, successful attack), Dmay
directly assess her belief about his utility for each of them.Without loss of generality,
utilities of 0 and 1 can be, respectively, assigned to the worst and best consequences
for A. Since D believes that−c < 0 < b − c, uA(−c) = 0 and uA(b − c) = 1, even
if she does not know the exact values of b and c. Thus, she just needs to elicit her
distribution for uA(0) = u, knowing that 0 < u < 1, though being uncertain of A’s
exact value of u. Recall that this could be elicited as the probability at which A is
indifferent between getting profit 0 for sure and a lottery ticket in which he wins
b − c with probability u and looses c with probability 1 − u. This way, D could
elicit a distribution for the random variable UA that represents her full uncertainty
over A’s utility u.
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Having done this, D would also need to assess A’s beliefs about his chance of
success, determined by pA(s1 | d0, a1) = πd0 and pA(s1 | d1, a1) = πd1 . She should
model her uncertainty about these with random probabilities πd0 ∼ Pd0

A and πd1 ∼
Pd1
A , with πd1 < πd0 to ensure that defending (d1) reduces the chance of a successful

attack. Then, based on the above assessments, for each d ∈ {d0, d1}, D can compute
A’s random expected utilities as

�(d, a0) = uA(0) = u ∼ UA,

�(d, a1) = uA(b − c) × pA(s1 | d, a1) + uA(0) × pA(s0 | d, a1) = πd ∼ Pd
A ,

and the ARA probabilities of attack, given the implemented defence, through

pARA
D (a1 | d) = P(UA,Pd

A ) (u < πd) . (7.1)

These probabilities represent the defender’s ARA probabilistic predictions of how
A will respond to each of her possible choices. As an example, suppose that
we assess these distributions as UA ∼ Be(1, 2) (beta) and Pd0

A ∼ U(0.5, 1) and
Pd1
A ∼ U(0.1, 0.4). Then, using Monte–Carlo (MC) simulation, we estimate the

attack probabilities as p̂ARA
D (a1 | d0) ≈ 0.92 and p̂ARA

D (a1 | d1) ≈ 0.43 (based on an
MC sample size of 106). In this case, choosing to defend (d1) acts as a deterrent for
A to attack (a1).

7.3.2 Comparison

Wenow address whether this ARA decomposition approach leads to improved attack
probability estimates over those obtained by direct SEJ methods. Adopting a nor-
mative viewpoint, we show through simulation that under certain conditions, the
variance of the ARA estimates is smaller than those of the SEJ estimates.

In our case, due to the assumptions behind expression (7.1), we have no reason
to believe that D finds one attack distribution more (or less) likely than another,
except that an attack is more likely when no defence is attempted. That is, pSE J

d0
≥

pSE J
d1

where pSE J
di

= pSE J
D (a1 | di ), i = 1, 2. Thus, as a high-entropy benchmark, we

assume that pSE J
d0

, pSE J
d1

are uniformly distributed over the set {0 ≤ pSE J
d1

≤ pSE J
d0

≤
1}, whose variance–covariance matrix is analytically computed as

(
1
18

1
36

1
36

1
18

)
≈

(
5.56 2.78

2.78 5.56

)
· 10−2. (7.2)

In turn, D’s assessment of the ARA attack probabilities involves eliciting distribu-
tions (UA, P

d0
A , Pd1

A ). It is reasonable to assume that u is independent of πd0 and πd1 .
Since the support of all three random variables is [0, 1], an equitable framework for
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the benchmark may assume that UA ∼ U(0, 1) and (Pd0
A , Pd1

A ) are uniformly dis-
tributed over the set {0 ≤ πd1 ≤ πd0 ≤ 1}. We computed 104 MC estimates of the
attack probabilities using these distributions, each based on an MC sample size of
104, leading to a variance–covariance matrix for pARA

d0
and pARA

d1
of

(
2.24 1.10
1.10 2.22

)
· 10−5. (7.3)

Thus, as a result of the decomposition approach inherent to the ARA methodology,
both variance and the covariance in the ARA approach (7.3) are significantly smaller
than those in the benchmark (7.2), providing a more precise assessment.

Yet, typically, one would have more information about (UA, P
d0
A , Pd1

A ). For
example, suppose D believes that the mean values of the three random variables
are E[UA] = 2

5 , E[Pd0
A ] = 2

3 and E[Pd1
A ] = 1

3 . If she assumes they all are uni-

formly distributed with maximum variance, then UA ∼ U(0, 4
5 ), P

d0
A ∼ U( 13 , 1) and

Pd1
A ∼ U(0, 2

3 ) (with πd1 ≤ πd0 ). In this case, the estimated variance–covariance
matrix for pARA

d0
and pARA

d1
is

(
1.42 0.65
0.65 2.35

)
· 10−5.

Compared to (7.3), these assumptions reduce the variance for pARA
d0

and the covari-
ance, although slightly increase the variance of pARA

d1
. Finally, if the random variables

followed beta distributions with common variance 1
10 , then UA ∼ Be(0.56, 0.84),

Pd0
A ∼ Be(0.81, 0.41) and Pd1

A ∼ Be(0.41, 0.81) (and πd1 ≤ πd0 ), and the variance–
covariance matrix for pARA

d0
and pARA

d1
is

(
1.52 0.64
0.64 2.25

)
· 10−5.

Again, the covariance matrix is significantly more precise than the benchmark.
For further insights, assume that the direct elicitation process incorporates addi-

tional information, so that pSE J
d0

and pSE J
d1

are now uniformly distributed over the set
{ε ≤ pSE J

d1
≤ pSE J

d0
≤ 1 − ε}, requiring 0 ≤ ε ≤ 1

2 to be defined. Then, the variance–
covariance matrix for pSE J

d0
and pSE J

d1
is

⎛
⎝

(1−2ε)2

18
(1−2ε)2

36

(1−2ε)2

36
(1−2ε)2

18

⎞
⎠ . (7.4)

From (7.3) and (7.4), we see that one must take ε > 0.49, a very precise assessment,
so that the corresponding variance–covariance matrix of pSE J

d0
and pSE J

d1
becomes

less variable than pARA
d0

and pARA
d1

.
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All these comparisons indicate that although the ARA approach requires more
assessments to obtain the relevant probabilities of the adversarial actions, ARA tends
to provide more precise estimates. However, if the direct information is very precise,
then direct elicitation can outperform ARA in terms of reduced variance for the
relevant probabilities.

7.4 ARA Modelling Strategies

We have shown that the ARA decomposition can have advantages over the plain SEJ
approach. Consequently, it is worth describing how to implement it. We thus present
a catalogue of strategies to model the random probabilities and utilities necessary to
put ARA into practice.

7.4.1 Random Probabilities

We focus first on D’s assessments over A’s perspective of the different random events
involved in the problem, that is, the random probabilities. To fix ideas, assume we
have a single chance node S which depends on both D’s and A’s choices. Our task is
to develop a (random) distribution PA(s | d, a) that reflects D’s uncertainty about A’s
prospect of S. We distinguish three cases. In all of them, as shown in Sect. 7.4.1.1,
Bayesian updating could be used to dynamically adjust the assessed priors as data
accumulates, thus attaining subsequent random posterior distributions that better
reflect D’s information and perspective over A’s uncertainty.

7.4.1.1 Probability of a Single Event

Suppose first that the chance node S consists of a single event which may (s = 1) or
not (s = 0) happen. Then, pA(s | d, a) is completely determined by pA(s = 1 | d, a),
for each pair (d, a), as pA(s = 0 | d, a) = 1 − pA(s = 1 | d, a).

One possibility would be to base PA(s = 1 | d, a) on an estimate πD of pA(s =
1 | d, a), with some uncertainty around it. This may be accomplished in several ways.
We could do it through a uniform distribution U(πD − μ,πD + μ) centred around
πD in which the parameter μ would have to be assessed also. For example, if we get
that the expected variance of the distribution is ν, we get μ = √

3ν. Another option
would be to use a beta distribution Be(α,β) in which πD may be regarded as the
mean (or the median or the mode) of the distribution and we would have to assess
the parameters α and β to shape the distribution, e.g. based on a further assessment
of the variance ν. This would lead, when πD is the mean, to
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α = πD

ν
(πD (1 − πD) − ν) , β = 1 − πD

ν
(πD (1 − πD) − ν)

Note that when D thinks that A has information similar to hers, an adequate best
guess for πD could be based on her own assessment pD(s = 1 | d, a).

If the possible occurrence of event s were to be repeated over time, random
prior distributions could be reassessed by means of Bayesian updating. Consider, for
example, the second case in which a beta distribution Be(α,β) is used. If event s has
had y opportunities to happen and materialises only z of them, our random posterior
would be Be(α + z,β + y − z).

7.4.1.2 Probabilities of Multiple Events

We assume now that the chance node S includes N events {s1, . . . , sN }. In this
case, probabilities pA(s = s1 | d, a), . . . , pA(s = sN−1 | d, a) determine pA(s | d, a)

completely, for eachpair (d, a), as pA(s = sN | d, a) = 1 − ∑N−1
n=1 pA(s = sn | d, a).

Therefore, we only need to model PA(s = s1 | d, a), . . . , PA(s = sN−1 | d, a), which
we jointly designate PA(s | d, a).

In line with the previous case, we could base PA(s | d, a) on a best guess
πD(s), for example pD(s | d, a) when D believes that A has similar information,
with some uncertainty around it. We could use a parametric probability distribu-
tion, randomising each of its parameters much as we have done in the preced-
ing subsection. In this manner, for each pair d and a, we could estimate πD,n of
pA(s = sn | d, a)∀n ∈ {1, . . . , N − 1} and, then, incorporate the uncertainty through
a uniform U(πD,n − μn,πD,n + μn) or a beta distribution Be(αn,βn) centred around
πD,n , making sure that their sum does not exceed 1.

A more effective way would model PA(s | d, a) as a Dirichlet distribution with
mean πD(s) and parameters assessed based on one further judgement concerning,
e.g. the variance of one of the probabilities. To do this, for each pair (d, a), we would
obtain from D an estimate πD,n of pA(s = sn | d, a) ∀n ∈ {1, . . . , N } and associate
random variables Sn such that E [Sn] = πD,n . Their joint distribution could then be
described as Dirichlet, (S1, . . . , SN ) ∼ Dir(α), with parameters α = (α1, . . . ,αN ).
If α̂ = ∑N

n=1 αn , it follows that

E [Sn] = αn

α̂
, Var [Sn] = αn(α̂ − αn)

α̂2(α̂ + 1)
;

and it suffices to elicit one value, e.g. Var [S1], to calculate the required αn param-
eters.
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7.4.1.3 The Continuous Case

We consider now the case in which the chance node S involves a continuous set
of events. Techniques are similar to those described to assess the probabilities of
multiple events. We could base PA(s | d, a) on a guess πD(s), say pD(s | d, a), with
someuncertainty around it. For example, thismaybe achieved bymeans of aDirichlet
process, with base distribution πD(s) and concentration parameter ρ as perceived
by D, which allows to sample approximate distributions of PA(s | d, a). Other non-
parametric approaches such as hierarchical Pitman–Yor processes (Teh and Jordan
2010) could be used with reference to the above guess.

7.4.2 Random Utilities

We draw now attention over D’s beliefs on A’s preference assessments over the
consequences of the decisions, that is, the random utilities. We shall usually have
some information about A’s multiple interests. For example, when dealing with
terrorism cases, Keeney (2007) and Keeney and von Winterfeldt (2010) present
extensive classifications of criteria amongst which to choose. Keeney (2007) then
advocates that standard utilitymethodsmay be adopted by interviewing experts in the
problem at hand, therefore developing utility functions modelling A’s preferences.
However, note that such preferences are not directly elicited from A, but rather
through a surrogate. Thus, intrinsically, there is uncertainty about A’s preferences.

An alternative approach, illustrated in Banks et al. (2015), is to aggregate the
objectives with a weighted measurable value function, as in Dyer and Sarin (1979).
As an example, we could consider an additive value function for A in which his
objectives v1, . . . , vR are aggregated using weights w1, . . . , wR ≥ 0,

∑R
r=1 wr = 1

as vA = ∑R
r=1 wr vr . The uncertainty about the weights could be modelled using a

Dirichlet distribution, as in Sect. 7.4.1.2, so that we may estimate their value and
then associate random variables Wr such that E [Wr ] = wr , their joint distribution
being Dirichlet, (W1, . . . ,WR) ∼ Dir(α), with parameters α = (α1, . . . ,αR) with
one further judgement, e.g. fixing the variance of one of the parameters. Finally,
using the relative risk aversion concept (Dyer and Sarin 1982), we could assume
different risk attitudes when modelling A’s utility function. Continuing the example
and assuming an exponential utility function, we may transform the (random) value
function VA = ∑R

r=1 Wr vr into one of the three following utilities depending on
A’s risk attitude: risk aversion,UA = 1 − exp(−λ VA + c), λ > 0; risk neutrality,
UA = VA + c; or risk proneness,UA = exp(λ VA + c), λ > 0. Further uncertainty
about the risk coefficientλ and the adjusting constant cmay bemodelled, e.g. through
uniformdistributions� ∼ U(λ1,λ2) andC ∼ U(c1, c2). In any case, to determine all
the required distributions, we may ask experts to directly elaborate such distributions
or request them to provide point estimates of the weights and coefficients and build
the distributions from these.
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An alternative to building a distribution over A’s preferences is described inWang
andBier (2013).As before, suppose that they are represented through amulti-attribute
utility function, which involves the above attributes v1, . . . , vR as well as an unob-
served one v0. For simplicity, consider A’s utility to be linear in the attributes. Then
we ask several experts to provide rank orders of A’s action valuations and derive prob-
ability distributions that can match those orderings to obtain the (random) weights
(W0,W1, . . . ,WR) for his utility function. For this, we consider as input such rank-
ings and as output a distribution over A’s preferences (expected utilities) for which
two methods are suggested. One is an adaptation of probabilistic inversion (Neslo
et al. 2008); essentially, it identifies a probability distribution Q over the space of
all possible attribute weights (W0,W1, . . . ,WR) that can match the empirical dis-
tribution matrix of expert rankings with minimum Kullback–Leibler divergence to
a predetermined (e.g. non-informative, Dirichlet) starting probability measure Q0.
The other one uses Bayesian density estimation (Müller et al. 2015) based on a prior
distribution Qp (e.g. chosen in accordance to a Dirichlet process with base distri-
bution Q0) over the space of attribute weights (W0,W1, . . . ,WR) and treating the
expert rankings as observations to update that prior leading to a posterior distribution
Q, obtained through the Gibbs sampling.

7.5 A Numerical Example

As an illustration, consider a sequential defend–attack cybersecurity problem. A user
(D, defender) needs to make a connection to a site, either through a safe, but costly,
route (d0) or through a cheaper, but more dangerous protocol. In the latter case,
she may use a security key, rendering the protocol less dangerous. While using the
dangerous protocol, whether unprotected (d1) or protected by a security key (d2), the
defender may be the target of a cybercriminal (A, attacker) who may decide to attack
(a1) or not (a0). The case may be viewed through the game tree in Fig. 7.4.
The following parameters are used:

(i) h is the cost of using the expensive protocol;
(ii) θ1 is the fraction of assets lost by the defender when attacked and unprotected;
(iii) θ2 is the fraction of assets lost by the defender when attacked but protected;
(iv) k is the security key’s cost;
(v) c is the defender’s scaling cost relative to the fraction of assets lost;
(vi) L is the uncertain cost of an attack and
(vii) G is the uncertain cybercriminal’s scaling gain relative to the fraction of assets

lost by the defender.

Table7.2 (respectively, Table7.3) displays the defender’s (respectively, attacker’s)
consequences, expressed as costs, for the various defend and attack possibilities,
reflected in the tree
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Table 7.2 Defender’s loss function

Attack

a0 a1

Defence d0 h –

d1 0 c θ1

d2 k k + c θ2

Table 7.3 Attacker’s loss function

Attack

a0 a1

Defence d0 0 –

d1 0 L − G θ1

d2 0 L − G θ2

The defender believes that the asset fractions θi follow distributions pD(θi | di , a1)
with θi ∼ Be(αD

i ,βD
i ), i = 1, 2. She is risk averse and her utility function is strate-

gically equivalent to 1 − eλD x , where x is her cost and λD > 0 her risk aversion
coefficient. She expects θ1 to be greater than θ2 (but not necessarily), reflected in the

choice of the beta parameters, with E [θ1] = αD
1

αD
1 +βD

1
>

αD
2

αD
2 +βD

2
= E [θ2]. Table7.4

provides the defender’s expected utilities uD under the various interaction scenarios.

D A

A

θ1

θ2

(c θ1, L − G θ1)

(0, 0)

(h, 0)

(k, 0)

(k + c θ2, L − G θ2)

d0

d1

d
2

a0

a1

a0

a1

Fig. 7.4 Game tree for the cybersecurity routing problem (losses). Outcomes after θi , i = 1, 2 are
continuous
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Table 7.4 Defender’s expected utility

Attack

a0 a1

Defence d0 1 − eλD h –

d1 0 1 − ∫
eλD c θ1 pD(θ1) dθ1

d2 1 − eλD k 1 − ∫
eλD(k+c θ2) pD(θ2) dθ2

D A

A

θ1

θ2

−162.32

0.00

−89.02

−3.48

−111.50

d0

d1

d
2

a0

a1

a0

a1

Fig. 7.5 Decision tree representing the defender’s problem (expected utilities)

Suppose we assess from the defender the following parameter values (with stan-
dard elicitation techniques):

(i) a protocol cost h = 150, 000 e;
(ii) a security key cost k = 50, 000 e;
(iii) a scaling cost c = 200, 000 e;
(iv) a risk aversion coefficient λD = 3 · 10−5;
(v) the distribution θ1 ∼ Be(αD

1 ,βD
1 ) with expected fraction (mean) of 0.6 of the

assets lost and standard deviation 0.15 when attacked and unprotected, leading
to αD

1 = 0.36 and βD
1 = 0.24

(vi) and the distribution θ2 ∼ Be(αD
2 ,βD

2 ) with expected fraction (mean) of 0.3 of
the assets lost and standard deviation 0.07 when attacked but protected, leading
to αD

2 = 0.6 and βD
2 = 1.4.

These are standard decision analytic assessments and the resulting problem faced by
her is described in the decision tree in Fig. 7.5.

The expected utility of the first alternative (d0, use the expensive protocol) may
be directly estimated as
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Table 7.5 Attacker’s random expected utility

Attack

a0 a1

Defence d0 0 –

d1 0
∫
e�A(G θ1−L) PA(θ1) dθ1 − 1

d2 0
∫
e�A(G θ2−L) PA(θ2) dθ2 − 1

ψD(d0) = 1 − eλD h ≈ −89.02,

since there is no chance of attack in this scenario. However, those of the other two
alternatives have the form

ψD(di ) =
1∑
j=0

pD(a j | di ) uD(di , a j ), i = 1, 2;

where uD(di , a j ) may be obtained from Table7.4 with the specific values indi-
cated in Fig. 7.5. Thus, we need to assess the attack probabilities pD(a1 | di ) (and
pD(a0 | di ) = 1 − pD(a1 | di ), i = 1, 2) and we adopt an ARA approach to assess
them.

The attacker has different beliefs about θi , pA(θi | di , a1), with θi ∼ Be(αA
i ,βA

i ),
i = 1, 2; the defender’s uncertainty about αA

i and βA
i inducing its randomness. He is

risk prone and his utility function is strategically equivalent to e−�A x − 1, where x is
his cost and �A > 0 his uncertain risk proneness coefficient. Table7.5 provides the
attacker’s random expected utilities, respectively, UA under the various interaction
scenarios.
Suppose that, in line with Sect. 7.4, we assess that

(i) L ∼ U(104, 2 · 104) with an expected cost of 15, 000 e;
(ii) G ∼ U(104, 5 · 104) with an expected scaling gain of 30, 000 e;
(iii) �A ∼ U(10−4, 2 · 10−4) with an expectation of 1.5 · 10−4;
(iv) the distribution θ1 ∼ Be(αA

1 ,βA
1 ) has a expected fraction (mean) of 0.6 assets

lost when the defender is attacked but protected, with αA
1 ∼ U(5, 7) and βA

1 ∼
U(3, 5) and

(v) the distribution θ2 ∼ Be(αA
2 ,βA

2 ) has a expected fraction (mean) of 0.3 assets
lost when the defender is attacked but protected, with αA

2 ∼ U(2, 4) and βA
2 ∼

U(6, 8).

We may then use Algorithm 1 to estimate the required probabilities p̂D(a1 | d),
where �n

A(di , a) designates the expected utility that the cybercriminal obtains when
the defender implements d, he chooses action a and the sampled parameters are
ln, gn,λn

A,α
A,n
i and βA,n

i .
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Algorithm 1 Numerical example: Simulation of p̂D(a1 | d)
Data: Number of iterations N .

1: Set p1, p2 = 0.

2: For n = 1 to N do
3: Draw ln from U(104, 2 · 104), gn from U(104, 5 · 104).
4: Draw λn

A from U(10−4, 2 · 10−4).

5: Draw αA,n
1 from U(2, 7), βA,n

1 from U(1, 5).

6: Draw αA,n
2 from U(0, 3), βA,n

2 from U(1, 6).

7: For i = 1 to 2 do
8: �n

A(di , a0) = 0.

9: �n
A(di , a1) =

∫
eλn

A(gn θi−ln ) θ
αA,n
i −1

i (1 − θi )
βA,n
i −1

Beta(αA,n
i ,βA,n

i )
dθi − 1.

10: If �n
A(di , a1) ≥ �n

A(di , a0) then
11: pi = pi + 1.
12: End If
13: End For
14: End For

15: For i = 1 to 2 do
16: p̂(a1 | di ) = pi/N .
17: End For

In our case, with N = 106, we obtain p̂(a1 | d1) = 0.66 (and, consequently,
p̂(a0 | d1) = 0.34). Similarly, p̂(a1 | d2) = 0.23 (and p̂(a0 | d2) = 0.77). Then, we
have ψD(d0) = −89.02, ψD(d1) = −107.13 and ψD(d2) = −28.32. Thus, the opti-
mal cyberdefense is d∗

ARA = d2, that is, employing the dangerous protocol protected
by the security key.

7.6 Discussion

ARA is an emergent paradigm when supporting a decision maker who faces adver-
saries so that the attained consequences are random and depend on the actions of
all participating agents. We have illustrated the relevance of such an approach as a
decomposition method to forecast adversarial actions in competitive contexts, there-
fore being of relevance to the SEJ toolkit. We have also presented key implementa-
tion strategies. We have limited the analysis to the simpler sequential case, but ideas
extend to simultaneous problems, albeit with technical difficulties, due to the belief
recursions typical of level-k thinking.

As usual, in applications, this tool could be combined with other SEJ strate-
gies. For example, when assessing pD(a|d), we could use extending the conver-
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sation through
∑

i pD(a|bi , d)pD(bi ) and then assess the pD(a|bi , d) probabilities
through ARA. Similarly, throughout the discussion, we have assumed just one single
expert available to provide the p(a|d) probabilities throughARA. In practice, several
experts might be available and we could aggregate their ARA probabilities through
e.g. Cooke’s classical method (Cooke 1991). Diverse adversarial rationalities, such
as non-strategic or prospect-maximising players, could be handled by means of
mixtures.

The ARA decomposition strategy breaks down an attack probability assessment
into (random) multi-attribute utility and probability assessments for the adversary.
This approach may lead to more precise probabilities than the ones that would have
been directly obtained and, also, that the corresponding increased number of neces-
sary judgements are cognitively easier. Behavioural experiments will be conducted
to validate these ideas.
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