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Abstract Expert elicitation plays a prominent role in fieldswhere the data are scarce.
As consulting multiple experts is critical in expert elicitation practices, combining
various expert opinions is an important topic. In the Classical Model, uncertainty
distributions for the variables of interest are based on an aggregation of elicited
expert percentiles. Aggregation of these expert distributions is accomplished using
linear opinion pooling relying on performance-based weights that are assigned to
each expert. According to the Classical Model, each expert receives a weight that is a
combination of the expert’s statistical accuracy and informativeness for a set of ques-
tions, the values of which are unknown at the time the elicitation was conducted. The
former measures “correspondence with reality,” a measure of discrepancy between
the observed relative frequencies of seed variables’ values falling within the elicited
percentile values and the expected probability based on the percentiles specified in
the elicitation. The later gauges an expert’s ability to concentrate high probability
mass in small interquartile intervals. Some critics argue that this performance-based
model fails to outperform the models that assign experts equal weights. Their argu-
ment implies that any observed difference in expert performance is just due to random
fluctuations and is not a persistent property of an expert. Experts should therefore
be treated equally and equally weighted. However, if differences in experts’ perfor-
mances are due to randomfluctuations, then hypothetical experts created by randomly
recombining the experts’ assessments should perform statistically as well as the
actual experts. This hypothesis is called the random expert hypothesis. This hypoth-
esis is investigated using 44 post-2006 professional expert elicitation studies obtained
through the TU Delft database. For each study, 1000 hypothetical expert panels are
simulated whose elicitations are a random mix of all expert elicitations within that
study. Results indicate that actual expert statistical accuracy performance is signif-
icantly better than that of randomly created experts. The study does not consider
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experts’ informativeness but still provides strong support for performance-based
weighting as in the Classical Model.

3.1 Introduction

Expert elicitation can play a prominent role in the decision-making process in risk
assessment, system safety, reliability, and many other fields, particularly in fields
where it is difficult to obtain data input (e.g., Einhorn 1974; Cooke and Goossens
2008; Mosleh et al. 1988; Singpurwalla 1988; Spetzler and von Holstein 1975;Wall-
sten and Budescu 1983; Otway and von Winterfeldt 1992; Aspinall 2010; Chap. 10,
this volume). Disciplines that involve high levels of uncertainty combinedwith insuf-
ficient data include, but not are limited to, disaster management, epidemiology, intel-
ligence, public and global health, environment, and security, all of which require
robust probabilistic assessments (e.g., Ryan et al. 2012; Keeney and VonWinterfeldt
1989; Hald et al. 2016). In such fields, there might be cost and time considerations,
as well as technical impracticalities to data collection, which result in limited scien-
tific data. Sometimes, it is not practical to collect data due to the nature of events.
Ultimately, absent or insufficient data lead to poor risk assessments and judgment,
resulting in failure either to make informed decisions or to design reliable decision-
making processes. Thus, in order to properly characterize the uncertainty in such
fields, experts’ inputs play a vital role (Cooke and Goossens 2008; Otway and von
Winterfeldt 1992). Experts, in the absence of empirical data, are requested to provide
information, which could be elicited in various forms such as probability elicitation,
parameter estimation, and quantity estimation (Clemen and Winkler 1999). These
forms of expert elicitations are essential for uncertainty characterization and risk and
policy models.

The standard expert elicitation practice is to consult withmultiple experts. Clemen
and Winkler (1999) note that the reason for consulting multiple experts is to collect
as much data as possible, which could be considered the same as a motivation to
increase the sample size in an experiment. This raises the concern on how to fully
encapsulate diverse expert judgments in a single input for the analysis. Morgan et al.
(1992) noted that factors that lead to combining expert opinions must be chosen so
that experts’ knowledge can be optimally reflected in the ultimate outcome. Thus, the
natural question that arises is “How should one combine multiple opinions?” While
a significant body of literature has addressed this issue (see for review Ouchi 2004;
Clemen 1989; Morgan et al. 1992), perhaps among the proposed methods, opinion
pooling has been the most commonly used approach. Stone (1961) initially coined
a strategy for combining opinions: opinion pooling, which was later substantially
reviewed by other scholars (see for example, French 1981; Genest and Zidek 1986).

The linear opinion pool is a very practical and straightforward axiomatic method.
It is, in fact, a weighted average of multiple probability distributions
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f (θ) =
n∑

i=1

wi fi (θ) (3.1)

Here, θ is the unknown quantity of interest, f i(θ ) is the density function of experti,
wi represents the weight assigned to experti, and n is the number of experts. The
combined distribution is represented by f (θ ), referred to as the decision maker’s
probability distribution. Eachweight can be interpreted as the expert’s relative contri-
bution. If the decision maker has little evidence to judge experts’ weights, then each
weight is simply distributed equally to the experts, that is wi = 1/n. This approach is
called EqualWeighting (EW), and treats each expert equally. However, this approach
does not give the decision maker the power to optimize the use of experts’ opinions.
The underlying assumption of using equal weights is that experts contribute equally.
A pre-commitment to EW usually implies that experts’ performance will not be
measured at all. Consequently, the EW decision maker’s performance cannot be vali-
dated. This potentially compromises the impact of expert judgment in science-based
decision making.

The most prevalent approach addressing this concern is the Classical Model
(Cooke 1991), which suggests a weighting mechanism that is based on experts’
performances, rather than weighting experts equally. Some scholars argue that
performance-based weighting does not outperform equal weighting in terms of the
proposed performance criteria. Clemen (2008) provided the most thorough critique
of the ClassicalModel. His results were based on a small sample of expert studies and
thuswere inconclusive. However, his work advanced the debate andmotivated subse-
quent studies (e.g., Eggstaff et al. 2014; Colson and Cooke 2017), which eventually
demonstrated the out-of-sample superiority of the Classical Model’s performance-
based approach, relative to equal weighting. Following on this work, this chapter
seeks to evaluate the appropriateness of the random expert hypothesis. This work is
novel in the sense of testing the fundamental premises of two aggregation approaches,
EW and PW. Simply stated, this hypothesis investigates the claim that any expert’s
performance in performance-based weighting is due to chance. In this chapter, the
random expert hypothesis will be evaluated with respect to the statistical accuracy
measures for 44 most up-to-date datasets from the TU Delft database (Cooke and
Goossens 2008).

3.1.1 Classical Model

The Classical Model is grounded in the argument that experts differ in terms of
their performances––that is, in their ability to assess uncertainty and communicate
it properly. Therefore, their performances should be quantified and then reflected
in the weighting framework. The model addresses the naturally arising question of
how experts’ performance can be measured. The model proposes that the Decision
Maker’s distribution, (1), is obtained via performance-based weights whose values
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are determined by the aforementioned measures of experts’ statistical accuracy and
informativeness.Theperformances on these twocriteria are assessedvia an elicitation
procedure using predetermined seed variables whose exact values are known by the
analyst.

The elicitation procedure involves requesting experts to provide their inputs for
a predetermined number, say N, of seed variables, the values of which are usually
known post hoc (Cooke 1991). The common practice is to ask experts for their
estimates of 5th, 50th, and 95th quantiles for seed variables though other percentile
could be used as well. The two performance criteria are measured using these elicita-
tions and the true realizations of the seed variables. The specified percentiles reflect
the experts’ judgments about this unknown quantity in terms of specified statistical
bins. For example, by specifying an elicitation for the 5th percentile, q5, the expert
considers that the probability that the true realization of the seed variable is smaller
than q5 is 0.05. Similarly, the 50th percentile, q50, suggests that the expert believes
that there is 50% probability of observing the true value to be less than q50, etc.

In addition to these assessed percentiles, the analyst specifies an overshoot
percentage (commonly 10%, see Cooke 1991 for more details) in order to determine
the complete support for the experts’ distributions. Once elicitations are compiled,
the analyst assesses the experts’ performances using the true realizations of the seed
variables. Specifically, the analyst determines how informative the expert distribu-
tions are relative to a minimally informative distribution on the support and howwell
the expert’s uncertainty assessments via the specified percentile values match with
the realization of the seed variables (i.e., statistical accuracy).

(1) Informativeness

Informativeness score gauges the additional contribution of the expert’s elicitation
relative to a background measure. That is, it answers the question of “does the expert
provide any additional information than a minimally informative distribution?” To
measure experts’ performancewith respect to this criterion, the analyst first combines
the expert opinions for each seed variable into a single range, the lower and upper
bounds of which are determined by, respectively, the minimum and the maximum of
elicited values for each seed variable and the realization of these variables. Then, by
using a 10% overshoot percentage, the entire cumulative distributions are computed
for each expert. These elicited distributions for each expert are compared with a
minimally informative background measure, usually the uniform distribution, which
expresses complete uncertainty over the range. The more additional information an
expert’s distribution gives relative to the base knowledge, the higher the information
scores he or she would receive.

(2) Statistical Accuracy

Statistical accuracy (a.k.a., calibration score) is a measure of the extent to which
the expert’s quantile assessment matches with reality. Cooke (1991) incorporated
this idea into the model by using a hypothesis test. The null hypothesis is that the
experts’ percentile assessments correspond to reality. The p value associated with



3 Are Performance Weights Beneficial? Investigating … 57

this hypothesis constitutes the statistical accuracy score. That is, lower p value indi-
cates less evidence about the experts’ statistical accuracy performance. Following
the computations below, the analyst determines the frequency of true realizations’
occurrence in specified inter-quantile intervals, bounded by the specified quantiles.

3.1.2 The Debate on Aggregating Expert Elicitations
Mechanisms: Performance-Based Weights (PW) Versus
Equal Weights (EW)

The debate around how to aggregate expert elicitations revolve around two funda-
mental approaches: combining expert elicitations based on equal weights (EW)
or based on their performance-based weights (PW). The Classical Model uses a
performance-based approach. The model’s main premise suggests that performance-
based weighting mechanism ensures higher quality and improves the task for which
the expert elicitation is done. There is a substantial body of knowledge that supports
the use of performance weights (e.g., Aspinall et al. 2016; Bamber and Aspinall
2013; Colson and Cooke 2017; Wilson 2017). However, others have advocated the
use of equal weights to combine expert elicitations (Clemen and Winkler 1999;
Clemen 1989). They argued that equal weights perform as well as performance-
based weights; therefore, there is no need to undertake an intensive expert elicitation
procedure (e.g., Clemen 2008). Some of these critics failed to provide substantial
evidence and details of their research procedure (e.g., replicable codes), so their
findings are not considered to be conclusive.

Perhaps, among the EW advocates, the most productive contribution was Clemen
(2008) who critiqued the Classical Model implementations for solely depending on
in-sample validation. He argued that the concern about this validation technique was
that it uses the dataset to determine the performances and also to validate the model.
He suggested using out-of-sample validation and comparedEWandPW.Specifically,
Clemen (2008) performed a remove-one-at-a-time (ROAT) method, whereby seed
variables are removed one at a time. Performance weights are computed based on the
remaining seed variables, and these weights are used to predict the removed item.
He found that PW failed to statistically outperform EW (PW outperformed EW in
9 out of 14 studies). Two concerns were raised about these findings: One, Clemen
(2008) used a nonrandom sample and failed to justify his data choices. Second, the
ROAT approach leads to systematic biases, whereby each removed item can penalize
an expert who did poorly on that particular item (Cooke and Goossens 2008; Colson
and Cooke 2017). This bias was addressed (Colson and Cooke 2017) by a more
substantial approach, the cross-validation technique that uses a certain percentage
of dataset, instead of a single seed variable. The dataset is split into a training set
to determine the performance weights and a test set to predict the removed items.
Eggstaff et al. (2014) performed an extensive cross-validation analysis on all possible
sets of training and test variables and found that PW statistically outperforms EW.
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These examples of previous studies confirmed the validity of the Classical Model;
nonetheless, the debate continues. The model has been validated in studies that
include different number of seed variables and experts (e.g., Tyshenko et al. 2011;
Jaiswal et al. 2012; Bamber et al. 2016; Aspinall 2010; Aspinall et al. 2016). The
debate so far focused on the validity of the Classical Model, in different validation
approaches (i.e., in-sample, ROAT, and cross validation). However, it is also neces-
sary to analyze the fundamental assumptions of the two competing approaches. No
previous studies have tested the core distinction between the two camps of the debate:
do the differences in performance reflect persistent differences in the experts, or are
they an artifact caused by random influences introduced by the elicitation itself?
For example, if the difference is due to one expert having a good day, or being
influenced by domestic or professional stressors, or having more information about
particular seed variable, etc., then the equal weighting scheme may be warranted.
The EW approach assumes that any apparent differences in expert performance are
due to such random influences and would not persist beyond the particular elicitation
context. On the other hand, the PW approach suggests that performance differences
reflect “properties of the experts,” which persist beyond particular elicitation context.
Focusing on the fundamental assumption that performance differences are persistent
enables the formulation of this assumption as a testable statistical hypothesis termed
the Random Expert Hypothesis (REH): apparent differences in expert performance
are due to random stressors affecting the elicitation.

3.2 Random Expert Hypothesis (REH)

The REH states that apparent differences in expert performance are due to random
stressors of the elicitation. If this hypothesis were true, then randomly reallocating
the assessments among the experts should have no effect on the performance of the
expert panel. This “random scrambling” is precisely defined below. Under the REH,
the scores of the best and worst performing experts in the original panel should be
statistically indistinguishable from those of the best and worst experts after scram-
bling the assessments. The variation in expert scores in the original panel should be
statistically indistinguishable from the variation in the scrambled panels. There are
many ways of scrambling the experts’ assessments and this allows a determination
of the distributions of scores that result from randomly redistributing the stressors
over the experts.

Note that random scrambling will have no effect on the EW combination. This
underscores the fact that EW implies the REH. In consequence (modus tollens), if
REH is (statistically) rejected, then so is EW. In this sense, REH provides a more
powerful test of the assumption underlying the use of EW. Note also that if all experts
in a panel are “equally good” or “equally bad,” then the REH may actually be true
for that panel. Indeed, this sometimes happens. The use of PW depends on the fact
that such panels are in the minority. Testing the REH on a set of cases allows for
gauging the size of that minority.
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The REHwas tested by a process of creating random panels of experts whose elic-
itations are derived from the experts within the original expert panel. For example,
suppose an expert judgment panel includes ten experts, each of whom assessed
5th, 50th, and 95th percentiles for each seed variable. A hypothetical expert judg-
ment panel would have ten randomly created experts, each of whose elicitations are
randomly drawn without replacement from the original assessments for each vari-
able. This process is repeated 1000 times. If there is not a systematic difference
between randomly created experts and the original experts, as the REH implies, then
one would expect that in approximately half of those 1000 runs, the original experts
would outperform the random experts. The performancemeasure used in this study is
statistical accuracy; informativeness and full performanceweights will be considered
in a future study.

Figure 3.1 displays the process of random expert creation for three experts and
three seed variables. For example, Random Expert 1 takes the assessment of Original
Expert 2 for Seed Variable #1, the assessment of Original Expert 1 for Seed Variable
#2, and finally the assessment of Original Expert 3 for Seed Variable #3. Random
Expert 2 chooses randomly from the remaining experts, andRandomExpert 3 gets the
remaining elicitations. Ultimately, a hypothetical expert judgment panel is composed
by creating as many scrambled random experts as in the original experts.

Fig. 3.1 An illustration of random expert creation process. q5 corresponds to the 5th percentile
elicitation, the median corresponds to the 50th percentile elicitation, and q95 corresponds to the 95th

percentile elicitation
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TheClassicalModel assumes that expert performances in terms of statistical accu-
racy may vary systematically with respect to the persistent differences. Specifically,
such persistent differences are the reasonswhy the “best performing expert” performs
the best and the “poorest performing expert” performs the poorest. However, when
the elicitations are scrambled for a very large number of runs, then scrambled experts
should perform the same, statistically. That is, the “best performing expert” does no
longer perform asmuch better than the other experts; the “poorest performing expert”
does no longer perform as much poorly than the rest. In other words, the scram-
bling process eliminates the systematic variation, which implies a smaller standard
deviation.

If REH is false, then the original expert panel should look statistically different
from the population of scrambled panels. The systematic differences among experts,
as posited by the Classical Model, lead to a larger average score and smaller standard
deviation of the score. Themaximumscore (i.e., the best performing expert’s score) of
the original panel is expected to be higher than that of the scrambled panel. Similarly,
the minimum score (i.e., the poorest performing expert’s score) of the original panel
is expected to be lower than that of the scrambled panel.

There are a number of ways in which a test could be constructed to examine
whether the original expert panel comes from the same distribution as the scrambled
panels. In this study, four tests of REH are identified. Specifically, if REH were true,
then

(1) The probability is 50% that the average of the experts’ statistical accuracies in
the original panel is higher than that of a scrambled panel

(2) The probability is 50% that the standard deviation of the experts’ statistical
accuracies in the original panel is higher than that of a scrambled panel

(3) The probability is 50% that the maximum of the experts’ statistical accuracies
in the original panel is higher than that of a scrambled panel

(4) The probability is 50% that the minimum of the experts’ statistical accuracies
in the original panel is lower than that of a scrambled panel.

These predictions ofREHwere tested basedon experts’ statistical accuracyperfor-
mances measured by the statistical accuracy score. The statistical accuracy score is
the focus since it is the main characteristics of the performance-based weights (see
the Cooke 1991 for discussion), while the information score has a role of modulating
the statistical accuracy score.

3.3 Expert Judgment Data

TU Delft database provides extensive datasets of expert elicitations that were
conducted based on Classical Model framework (Cooke and Goossens 2008). This
database has been recently updated with new studies that were performed starting
from 2006 to 2015 (Colson and Cooke 2017). As summarized by Colson and
Cooke (2017), these studies were done by organizations such as Bristol University,
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the British Government, United States Department of Homeland Security, World
Health Organization, and the US Environmental Protection Agency, etc. Studies
were performed in two formats of structured expert judgment, in three percentiles
and five percentiles. Experts are asked to elicit the seed variables for 5th, 50th, and
95th percentiles in the former format, and 5th, 25th, 50th, 75th, and 95th percentiles
in the latter format. These elicitations were compiled by Cooke and Goosens (2008)
and made available to the researchers and recently updated (available at http://rog
ermcooke.net/). This study focuses on all 44 datasets that are available in the new
post-2006 expert judgment database. 27 of these 44 datasets came from studies,
which were performed in three-percentile format, and 17 of the 44 datasets were
performed in five-percentile format: experts were asked to provide five percentiles
for the elicited variables.

Table 3.1 summarizes the names, the percentile format, number of experts, number
of seed variables, and associated references for each expert judgment panel. The
studies are across wide range of domains such as environmental risk, bioterrorism,
air traffic control, and volcano eruptions. The number of experts in the panels of
these studies ranged from 4 to 21, and the number of seed variables ranged from 8 to
48. The three-percentile format data has 298 experts who elicited 386 seed variables
in total, which yielded 4597 elicitations in total. The five-percentile format data has
111 experts who elicited 170 seed variables in total, which yielded a total of 1117
elicitations.

3.4 Hypothesis Testing

44 studies presented in Table 3.1 are used to test the random expert hypothesis. For
each study, hypothetical expert judgment panels consisting of randomly scrambled
experts are simulated in 1000 runs. The extent to which this data support the REH can
be statistically examined by a Binomial test for each of the four statistical metrics,
namely, average, standard deviation, maximum, and the minimum scores of expert
panels for each study.

H0 : r = 0.5

Ha : r > (<)0.5

where r is the percentage of the studies in which the original experts outperform the
random experts.

r is the success probability in which the success, “outperformance,” is defined as
follows:

1. The average statistical accuracy score of the original expert panels is higher than
that of a scrambled expert panel

http://rogermcooke.net/
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Table 3.1 Expert judgment studies are illustrated with the number of seed variables and experts,
and percentile formats

Study Percentile format # of experts # of seed variables Subject

UMD 3 9 11 Nitrogen removal in
Chesapeake Bay

USGS 3 18 32 Volcanos

arsenic 3 9 10 Air quality levels for
arsenic

Biol Agents 3 9 10 Human dose–response
curves for bioterror
agents

Geopolit 3 9 16 Geopolitics

ATCEP 3 5 10 Air traffic controllers
human error

Daniela 3 4 10 Fire prevention and
control

eBBP 3 14 15 XMRV blood/tissue
infection transmission
risks

create 3 7 10 Terrorism

effErupt 3 14 8 Icelandic fissure
eruptions: source
characterization

erie 3 10 15 Establishment of Asian
Carp in Lake Erie

FCEP 3 5 8 Flight crew human
error

Sheep 3 14 15 Risk management
policy for sheep scab
control

Hemophilia 3 18 8 Hemophilia

Liander 3 11 10 Underground cast iron
gas-lines

PHAC 3 10 12 Additional CWD
factors

TOPAZ 3 21 16 Tectonic hazards for
radwaste siting in
Japan

SPEED 3 14 16 Volcano hazards
(Vesuvius and Campi
Flegrei, Italy)

TDC 3 18 17 Volcano hazards
(Tristan da Cunha)

(continued)
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Table 3.1 (continued)

Study Percentile format # of experts # of seed variables Subject

GL 3 9 13 Costs of invasive
species in Great Lakes

Goodheart 3 5 10 Airport safety

Ice 3 10 11 Sea level rise from ice
sheets melting due to
global warming

puig-gdp 3 9 13 Emission forecasts
from Mexico

puig-oil 3 6 19 Oil emissions and
prices

YTBID (CDC) 3 14 48 Return on investment
for CDC warnings

Gerestenberger 3 12 13 Probabilistic
seismic-hazard model
for canterbury

CWD 3 14 10 Infection transmission
risks: Chronic wasting
disease from deer to
humans

Nebraska 5 4 10 Grant effectiveness,
child health insurance
enrollment

San Diego 5 7 10 Effectiveness of
surgical procedures

BFIQ 5 7 11 Breastfeeding and IQ

France 5 5 10 Future antimicrobial
resistance in France

Italy 5 4 8 Future antimicrobial
resistance in Italy

Spain 5 5 10 Future antimicrobial
resistance in Spain

UK 5 6 10 Future antimicrobial
resistance in UK

Arkansas 5 4 10 Grant effectiveness,
child health insurance
enrollment

CoveringKids 5 5 10 Grant effectiveness,
child health insurance
enrollment

dcpn_Fistula 5 8 10 Effectiveness of
obstetric fistula repair

(continued)
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Table 3.1 (continued)

Study Percentile format # of experts # of seed variables Subject

Florida 5 7 10 Grant effectiveness,
child health insurance
enrollment

Illinois 5 5 10 Grant effectiveness,
child health insurance
enrollment

Obesity 5 4 10 Grant effectiveness,
childhood obesity

Tobacco 5 7 10 Grant effectiveness,
childhood obesity

Washington 5 5 10 Grant effectiveness,
child health insurance
enrollment

cdc-roi 5 20 10 Return on investment
for CDC warnings

IQ-earn 5 8 11 Effects of increases in
IQ in India on the
present value of
Lifetime earnings

Note The references to the data can be found in the Appendix

2. The standard deviation of statistical accuracy scores of the original expert panels
is higher than that of a scrambled expert panel

3. The maximum statistical accuracy scores of the original expert panels is higher
than that of a scrambled expert panel

4. The minimum statistical accuracy scores of the original expert panels is lower
than that of a scrambled expert panel.

3.5 Results

The data were analyzed in two different formats: (1) in three-percentile format data,
including all 44 available datasets (thus five-percentile datasets were converted to
three-percentile datasets), (2) in five-percentile format data, including only five-
percentile elicitations.

3.5.1 The Analysis of the Three-Percentile Format Data

The average, standard deviation, the maximum, and the minimum scores of the
original experts are compared with those of the random experts in each randomly
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created 1000 expert panels. The Binomial tests are performed for all 44 datasets
available in three-percentile format.

The statistical accuracy scoreswere computed for the three-percentile format data,
consisting of 27 studies that were originally performed as a three-percentile format,
and17five-percentile studies thatwere converted to three-percentile format. Table 3.2
provides the statistical summaries of the original experts’ statistical accuracy scores:
summaries, average, standard deviation, maximum, and minimum scores of expert
panels.

Then, four statistical metrics—average, standard deviation, maximum, and
minimum of the statistical accuracy scores—were computed for the original expert
panels and for each of the 1000 scrambled expert panels. Then, for each expert panel,
the percentage that the original experts’ corresponding statistics ranked higher than
(lower for the minimum) those of the 1000 scrambled expert panels was determined.
Under the REH, the original expert panels’ metrics should be ranked above (below)
those of the scrambled expert panels 50% of the time. Table 3.3 illustrates the actual
percentages determined for each dataset.

For example, in Table 3.3, the corresponding percentage for the average score in
the study UMD is shown as 99.7%. This indicates that in 99.7% of the scrambled
panels (997 out of 1000 simulation runs), the average scores of the original experts are
greater than those of the randomly scrambled experts. Similarly, in the UMD study,
in 96.4% of the scrambled panels (964 out of 1000 simulation runs), the standard
deviation of the experts in the original panel are greater than those of scrambled
experts, indicating a larger variation in the original expert score in most cases. The
best performing expert in UMD study outperforms the best performing expert of the
scrambled panels in 95.4%of the time. Thismeans that, in 954 out of 1000 simulation
runs randomly created expert panels, the best performing experts are outperformed by
the original best performing expert. Finally, 100% for the minimum score displayed
in Table 3.3 shows that the minimum score of the original expert panel was lower
than those of all scrambled panels, indicating that the score of the poorest performing
expert of the original panel performed the poorest compared to all random experts.

Figure 3.2 shows that in 16 out of 44 studies, the original experts outperformed
more than 95% (i.e., 950 out of 1000 simulation runs) of the scrambled expert panels.
Similarly, in 5 studies, the original experts outperformed the scrambled experts in
85–95% of the time. In total, in 33 out of 44 studies, the original experts’ average
scores ranked higher than those of the scrambled experts from 1000 expert panels at
least 80% of the time.

Figure 3.3 shows that, in 10 studies, the standard deviationof the experts’ statistical
accuracy scores in the original panel is larger than those in more than 95% of the
1000 randomly created expert panels. In 28 out of 44 studies, the variation in the
original expert data is larger than the variation in the scrambled expert panels at least
80% of the time.

Figure 3.4 shows that, in 10 studies, the best performing expert in the original
expert panel outperforms the best performing expert in the random expert panels in
more than 95% of the time. In 26 out of 44 studies, the best performing original
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Table 3.2 Statistical accuracy scores of the original experts for the three-percentile format
elicitation data

Study No. Study name Average Standard deviation Max Min

1 UMD 1.33E-01 2.69E-01 7.06E-01 3.21E-14

2 USGS 3.15E-03 1.17E-02 5.55E-02 7.12E-13

3 arsenic 4.84E-03 1.18E-02 3.57E-02 9.86E-07

4 Biol Agents 5.70E-02 1.16E-01 3.11E-01 1.42E-06

5 Geopolit 5.10E-02 1.01E-01 2.30E-01 1.42E-06

6 ATCEP 2.99E-02 4.47E-02 1.01E-01 1.42E-06

7 Daniela 1.88E-01 2.57E-01 5.54E-01 4.35E-07

8 eBBP 2.00E-01 2.63E-01 8.33E-01 8.91E-06

9 create 3.57E-03 6.37E-03 1.71E-02 8.91E-06

10 effErupt 2.91E-02 5.46E-02 1.85E-01 8.91E-06

11 erie 2.27E-01 2.46E-01 6.61E-01 1.08E-08

12 FCEP 1.75E-01 2.84E-01 6.64E-01 5.12E-05

13 Sheep 5.64E-02 1.70E-01 6.43E-01 1.62E-11

14 hemophilia 1.88E-01 2.28E-01 6.64E-01 2.66E-04

15 Liander 3.18E-04 8.37E-04 2.81E-03 3.50E-08

16 PHAC 9.71E-03 2.46E-05 7.50E-05 2.43E-10

17 TOPAZ 3.08E-02 1.00E-01 2.43E-10 4.42E-12

18 SPEED 1.83E-02 6.03E-02 2.27E-01 2.88E-12

19 TDC 1.03E-01 2.72E-01 9.89E-01 1.02E-12

20 GL 6.13E-02 1.51E-01 4.54E-01 1.91E-09

21 Goodheart 1.47E-01 2.76E-01 7.07E-01 7.99E-04

22 Ice 8.53E-02 1.50E-01 3.99E-01 5.84E-06

23 puig-gdp 3.68E-02 9.16E-02 2.77E-01 5.04E-12

24 puig-oil 1.72E-03 4.17E-03 1.02E-02 3.27E-12

25 YTBID (CDC) 1.43E-01 2.23E-01 9.68E-01 5.80E-07

26 Gerestenberger 6.35E-02 6.29E-02 1.52E-01 1.88E-05

27 CWD 7.62E-02 1.47E-01 4.93E-01 1.07E-06

28 Nebraska 1.89E-03 3.71E-03 7.46E-03 4.54E-10

29 San Diego 3.45E-04 5.91E-04 1.31E-03 8.36E-11

30 BFIQ 1.24E-01 2.33E-01 6.38E-01 2.28E-04

31 France 1.56E-01 3.09E-01 7.07E-01 1.54E-07

32 Italy 1.70E-01 3.14E-01 6.40E-01 5.86E-07

33 Spain 4.70E-06 9.07E-06 2.08E-05 1.29E-10

34 UK 1.49E-01 2.72E-01 6.83E-01 6.17E-09

35 Arkansas 8.00E-02 1.56E-01 3.14E-01 1.07E-06

36 CoveringKids 2.76E-01 3.02E-01 6.83E-01 9.86E-07

(continued)
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Table 3.2 (continued)

Study No. Study name Average Standard deviation Max Min

37 dcpn_Fistula 6.54E-04 1.13E-03 2.81E-03 9.86E-07

38 Florida 2.24E-02 2.36E-02 4.70E-02 5.21E-06

39 Illinois 1.75E-02 3.23E-02 7.50E-02 5.45E-08

40 Obesity 6.67E-02 9.06E-02 1.92E-01 2.47E-10

41 Tobacco 2.06E-01 2.39E-01 6.83E-01 5.99E-03

42 Washington 6.29E-02 1.04E-01 2.44E-01 5.99E-04

43 cdc-roi 1.08E-01 1.46E-01 4.93E-01 3.50E-08

44 IQ-earn 6.88E-02 1.26E-01 3.70E-01 1.70E-07

Note First 27 datasets were expert elicitations based on three-percentile format (5th, 50th, and 95th

percentiles) and last 17 studies were converted into three-percentile format by truncating the 25th

and the 75th percentiles)

Table 3.3 The percentage of original experts’ corresponding statistics ranked higher than (lower
for the minimum) those of the 1000 randomly created expert panels (the entire available data in
three-percentile format)

Study No. Study name Average (%) Standard deviation (%) Max (%) Min (%)

1 UMD 99.70 96.40 95.40 100.00

2 USGS 86.60 84.50 79.40 80.10

3 arsenic 57.80 60.80 56.50 43.40

4 Biol Agents 84.20 73.10 60.30 69.80

5 Geopolit 87.20 82.70 76.30 54.80

6 ATCEP 95.80 94.70 93.90 99.50

7 Daniela 91.90 64.70 63.60 99.70

8 eBBP 99.10 91.40 83.30 88.30

9 create 23.00 34.70 20.80 13.10

10 effErupt 85.90 80.50 54.00 88.80

11 erie 87.10 71.10 75.00 100.00

12 FCEP 93.30 84.50 85.00 92.00

13 Sheep 98.80 97.70 97.80 99.20

14 hemophilia 90.40 77.30 24.20 34.70

15 Liander 21.20 26.50 25.30 36.40

16 PHAC 56.60 48.70 22.50 99.70

17 TOPAZ 98.00 98.00 98.00 8.00

18 SPEED 97.90 97.50 97.50 97.60

19 TDC 100.00 100.00 97.50 99.10

20 GL 100.00 99.40 99.10 98.80

21 Goodheart 82.70 83.90 83.10 34.70

22 Ice 95.00 91.50 82.10 55.00

(continued)
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Table 3.3 (continued)

Study No. Study name Average (%) Standard deviation (%) Max (%) Min (%)

23 puig-gdp 96.70 96.40 96.30 99.30

24 puig-oil 97.20 97.20 97.20 73.60

25 YTBID (CDC) 97.90 94.20 80.30 88.70

26 Gerestenberger 6.35 6.29 15.19 73.80

27 CWD 82.90 79.80 78.40 71.50

28 Nebraska 76.80 78.70 78.70 97.80

29 San Diego 91.10 90.40 85.10 74.10

30 BFIQ 80.10 90.40 80.60 48.30

31 France 99.80 98.90 98.90 97.20

32 Italy 80.50 85.80 81.60 99.70

33 Spain 59.40 40.80 35.70 88.30

34 UK 96.30 89.10 88.50 99.90

35 Arkansas 97.90 96.20 95.20 81.90

36 CoveringKids 96.00 85.00 62.90 98.70

37 dcpn_Fistula 11.60 14.90 9.30 17.10

38 Florida 54.20 33.70 14.70 60.30

39 Illinois 79.40 72.80 72.70 76.40

40 Obesity 93.10 90.50 90.50 99.90

41 Tobacco 40.40 49.30 36.30 58.10

42 Washington 26.70 40.80 37.70 50.90

43 cdc-roi 94.80 61.10 58.10 91.60

44 IQ-earn 2.30 16.60 26.40 99.60

expert outperformed the best performing random expert in at least 80% of the 1000
scrambled expert panels.

Figure 3.5 shows that, in 19 studies, the poorest performing expert in the original
expert panel performed poorer than the poorest performing expert in the randomly
created expert panels. In 26 out of 44 studies, the original experts’ minimum score
is lower than the random expert panel’s minimum score in at least 80% of the 1000
expert panels.

In above results, the percentage score may be a function of the number of experts
and the corresponding spread in the calibration scores of the experts. The exact
determination is a subject of future research. However, the empirical results from
above suggest that the REH may not be appropriate. To more formally test the
REH, a statistical test is needed. The test selected was the Binomial test due to its
appropriateness for dichotomous outcomes and its nonparametric nature.

The Binomial test results show that the average of the statistical accuracy results
of the original experts outperformed the randomly created experts more than 50% of
the time, in three statistical metrics: on average (p= 2.65E-06), on standard deviation
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Fig. 3.2 Distribution of percentage of original experts’ average statistical accuracy scores ranked
higher among those of scrambled experts in 1000 hypothetical expert panels based on 44 studies
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Fig. 3.3 Distribution of percentage of the standard deviation of the original experts’ statistical
accuracy scores ranked higher among those of scrambled experts in 1000 hypothetical expert panels
based on 44 studies

(p = 1.94E-04), and on maximum scores (p = 6.3E-04). Also, the minimum of the
original experts performed significantly poorer than the poorest performing randomly
created experts more than 50% of the time (p = 1.27E-05).

Overall, the results of the random expert hypothesis testing show that, in a signif-
icant number of studies, the scrambled experts fail to perform as well as the original
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Fig. 3.4 Distribution of percentage of the maximum of the original experts’ statistical accuracy
scores ranked higher among those of scrambled experts in 1000 hypothetical expert panels based
on 44 studies
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Fig. 3.5 Distribution of percentage of the minimum of the original experts’ statistical accuracy
scores ranked lower among those of scrambled experts in 1000 hypothetical expert panels based on
44 studies

experts. Specifically, in most studies, the original experts outperformed the scram-
bled experts in an overwhelmingly large percentage of the hypothetical expert panels.
Binomial test results suggest that the original experts ranked higher than the scram-
bled experts in three statistical summaries, the average, standard deviation, and
the maximum of statistical accuracy score, and ranked lower than in terms of the
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minimum score. This indicates that the hypothesis that expert performances occur
due to randomness is extremely unlikely.

3.5.2 Analysis of the Five-Percentile Format Data

The conventional elicitation format in Structured Expert Judgment practices is three-
percentile format; however, in some cases, analysts would prefer five-percentile
format where they ask experts their elicitations in five percentiles such as 5th, 25th,
50th, 75th, and 95th percentiles. Therefore, it is deemed important to test the REH
on alternative elicitation formats. In this section, the same analyses performed in the
previous section to the entire dataset available were computed for 17 studies that
were originally performed as five-percentile format.

Table 3.4 shows statistical accuracy scores of five-percentile elicited data. The
summary statistics shown in the table were incorporated into the next analyses where
the corresponding statistics of the scrambled panels were compared with the original
experts. Table 3.5 shows the percentages that the average, standard deviation, and
the maximum of the original experts outperformed the random expert panels, and the

Table 3.4 Average, standard deviation, max, andmin of original experts’ statistical accuracy scores
for the five-percentile format elicitation data

Study No. Study name Average Standard deviation Max Min

28 Nebraska 8.35E-03 1.64E-02 3.30E-02 7.34E-09

29 San Diego 6.97E-04 1.43E-03 3.82E-03 1.02E-09

30 BFIQ 1.45E-01 2.56E-01 6.92E-01 3.02E-04

31 France 1.37E-01 2.88E-01 6.52E-01 1.99E-07

32 Italy 1.37E-01 2.88E-01 6.52E-01 1.99E-07

33 Spain 7.02E-06 1.00E-05 2.24E-05 1.02E-09

34 UK 6.42E-02 9.21E-02 1.85E-01 1.96E-08

35 Arkansas 1.93E-02 3.39E-02 6.98E-02 1.15E-05

36 CoveringKids 3.28E-01 3.40E-01 7.56E-01 6.23E-06

37 dcpn_Fistula 1.81E-03 3.10E-03 7.62E-03 6.23E-06

38 Florida 3.81E-02 4.63E-02 1.25E-01 1.18E-05

39 Illinois 3.68E-02 5.48E-02 1.32E-01 3.32E-07

40 Obesity 1.66E-01 2.11E-01 4.40E-01 4.09E-09

41 Tobacco 2.06E-01 2.61E-01 6.88E-01 1.05E-03

42 Washington 3.14E-02 3.09E-02 6.98E-02 3.82E-03

43 cdc-roi 1.30E-01 2.25E-01 7.20E-01 2.18E-07

44 IQ-earn 7.96E-02 1.56E-01 4.54E-01 6.97E-07
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Table 3.5 The percentage of original experts’ corresponding statistics ranked higher (lower for
minimum) than those of the 1000 scrambled expert panels for five-percentile format elicitation data

Study name Average (%) Standard deviation (%) Max (%) Min (%)

Nebraska 85.30 85.60 85.60 97.70

San Diego 88.60 88.60 88.70 79.50

BFIQ 82.50 87.70 86.60 59.20

France 99.70 99.70 99.70 99.30

Italy 96.50 97.60 98.20 100.00

Spain 62.30% 50.30 47.90 90.40

UK 48.30 51.30 45.00 99.90

Arkansas 72.70 74.90 74.80 76.00

CoveringKids 96.40 82.00 75.50 98.60

dcpn_Fistula 18.80 20.90 15.60 10.70

Florida 50.00% 32.10 29.30 71.30

Illinois 80.10 70.90 72.20 82.60

Obesity 99.20 94.90 94.90 99.80

Tobacco 32.20 50.80 45.70 91.10

Washington 3.50 4.00 3.00 18.80

cdc-roi 96.50 92.10 77.00 94.80

IQ-earn 2.60 17.10 17.00 99.80

minimum of the original expert score is lower than the minimum of the scrambled
experts.

Figure 3.6 shows that, in 7 out of 17 studies, the original experts outperformed
more than 95% (i.e., 950 out of 1000 simulation runs) of the scrambled expert panels.
In total, in 11 out of 17 studies, the original experts’ average scores ranked higher
than those of the scrambled experts from 1000 expert panels at least 80% of the time.

Figure 3.7 shows that, in 6 studies, the standard deviation of the experts’ statistical
accuracy scores in the original panel is larger than those in more than 95% of the
1000 randomly created expert panels. In 10 out of 17 studies, the variation in the
original expert data is larger than the variation in the scrambled expert panels at least
80% of the time.

Figure 3.8 shows that, in 3 studies, the best performing expert in the original
expert panel outperforms the best performing expert in the random expert panels
in more than 95% of the time. In 9 out of 17 studies, the best performing original
expert outperformed the best performing random expert in at least 80% of the 1000
scrambled expert panels.

Figure 3.9 shows that, in 8 studies, the poorest performing expert in the original
expert panel performed poorer than the poorest performing expert in the randomly
created expert panels. In 11 out of 17 studies, the original experts’ minimum score
is lower than the random expert panel’s minimum score in at least 80% of the 1000
expert panels.



3 Are Performance Weights Beneficial? Investigating … 73

0

1

2

3

4

5

6
N

um
be

r 
of

 S
tu

di
es

Percentage of Original Expert Scores > Scrambled Expert Scores 

Fig. 3.6 Distribution of percentage of the average statistical accuracy of the original experts’
statistical accuracy scores ranked higher among those of scrambled experts in 1000 hypothetical
expert panels based on 17 studies that were originally elicited in five-percentile formats
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Fig. 3.7 Distribution of percentage of the standard deviation of the original experts’ statistical
accuracy scores ranked higher among those of scrambled experts in 1000 hypothetical expert panels
based on 17 studies that were originally elicited in five-percentile formats

The Binomial results show that the average statistical accuracy scores of the
original experts outperformed the randomly created experts in more than 50% of the
17 studies (p=0.024).However, theBinomial test results show that the proportions of
the studies in which standard deviation and maximum scores of the original experts
outperform those of random experts were not statistically significant (p = 0.167
and p = 0.17, respectively). Finally, the Binomial test results indicate a significant



74 D. Marti et al.

0

1

2

3

4

5
N

um
be

r 
of

 S
tu

di
es

Percentage of Original Expert Scores > Scrambled Expert Scores 

Fig. 3.8 Distribution of percentage of the maximum of the original experts’ statistical accuracy
scores ranked higher among those of scrambled experts in 1000 hypothetical expert panels based
on 17 studies that were originally elicited in five-percentile formats
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Fig. 3.9 Distribution of percentage of the minimum of the original experts’ statistical accuracy
scores ranked lower among those of scrambled experts in 1000 hypothetical expert panels based on
17 studies that were originally elicited in five-percentile formats

proportion of the studies in which the minimum of the original expert statistical
accuracy scores was outperformed by the minimum of the random experts (p =
0.00117). As expected, the statistical tests with only 17 studies have much lower
power.
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3.5.3 A Sign Test Between the Three-Percentile Format
and Five-Percentile Format Elicitation Data

Studies that were originally conducted to collect as in five percentiles (i.e., 5th, 25th,
50th, 75th, and 95th percentiles) formatwere converted into the three-percentile format
(5th, 50th, and 95th percentiles). The average statistical accuracy scores of original
experts in both formats were computed and compared by a two-sided sign test. This
test was done in R, using “Wilcoxon Rank Sum and Signed Rank Test” function. The
test results show that the difference between three and five-percentile formats were
not statistically different (W = 144, p = 1). The corresponding test results for the
standard deviation (W = 145, p = 1), maximum (W= 137, p = 0.81), and minimum
(W = 118, p= 0.37) were also not significant, indicating that when experts are asked
their elicitations in either three or five-percentile formats, their statistical accuracy
did not significantly change. This implies that the number of probability bins and
in turn bin range (e.g., whether covers 25% or 45%) do not significantly influence
experts’ statistical accuracy.

Furthermore, the sign test was performed to test whether the original experts’
outperformance percentages differed in three-percentile format than in five-
percentile format. Sign test results show that there was not a statistical difference
between the three-percentile format analysis and five-percentile format analysis in
terms of percentages that the original experts outperform the scrambled experts in
1000 simulations (W = 146.5, p = 0.96). Similar analysis was done for standard
deviation (W = 146, p = 0.97; i.e., the percentage that the original experts outper-
form the random experts in their standard deviation), for the maximum (W = 141,
p = 0.92; i.e., the percentage that the original experts outperform the scrambled
experts in their maximum scores), and for the minimum (W = 131 p = 0.65; i.e., the
percentage that the minimum score of the original experts is less than the minimum
score of the random expert panels).

3.6 Concluding Remarks

This book chapter addresses the fundamental limitation of the equal weighting
approach, namely that experts are expected to be interchangeable. This assumption
has severe implications because it treats the best performing experts equally with
the poor performing experts. Specifically, it leads to a depreciation of the maximum
value of the expert input by undervaluing useful expert elicitations and overvaluing
redundant ormisleading elicitations of poorly performing experts. In order to address
the aforementioned limitation of the equal weighting approach, the random expert
hypothesis was used to test if experts should be treated equally. The results provide
strong evidence that the original expert panels outperform randomly created experts.
Specifically, the performances of the original experts with those of randomly scram-
bled experts were compared in terms of their statistical accuracy. Results show that
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the original experts perform better than the randomly created experts; their statis-
tical accuracy scores spread more since there are good and poor performing experts,
which illustrates the potential problem of the equal weight approach. It may not be
reasonable to assign all experts equal weights.

The present study also tested whether the results are replicated in the different
elicitation format, specifically three versus five-percentile format. This analysis has
significant practical implications. Showing the differences in statistical accuracy in
different elicitation formats offers valuable insights to analysts so that they can decide
the number of bins that they would ask experts to elicit. If there are performance
differences between the three and five-quantile formats, they are too small to be
detected with the current dataset. This question could be revisited in the future as
more data become available.

This study focused on comparing performances in terms of statistical accuracy
scores. As proposed by the Classical Model (e.g., Cooke 1991; Cooke et al. 2008),
the statistical accuracy score is the dominant component in expert decision weight
computations. Specifically, the Classical Model gives the power to the analyst to
exclude the assessment of an expert whose statistical accuracy performance is less
than a given threshold. In other words, it is the statistical accuracy that determines
whether an experts’ input is included into the analysis. As aforementioned, the infor-
mation score functions serve as a modulating factor for evaluating expert perfor-
mances. There may be cases where experts can provide large intervals indicating
greater uncertainty in their estimates, which would still guarantee a high statistical
accuracy score yet may not be as informative. Information score is an effective way
to penalize those experts. Therefore, it is encouraged to investigate the random expert
hypothesis based on decision weights that encompasses both statistical accuracy and
information score. In future studies, thorough analyses including large dataset will
be analyzed.

Finally, it is useful to compare this study with previous cross-validation studies
(Eggstaff et al. 2014; Colson and Cooke 2017). Those studies considered all non-
trivial splits of the statistical accuracy variables into training and test sets. The Clas-
sical Model performance weight was initialized on each training set and compared to
equal weighting on the respective test sets. Although these studies showed significant
out-of-sample superiority for performance weighting, the results were tempered by
the fact that the performance weighting based on each training set is not the same
as the performance weighting based on all variables. There was an out-of-sample
penalty for statistical accuracy which decreased with training set size, but which
obviously could not be eliminated. Hence, the superiority of performance weighting
was largely driven by the higher informativeness of the performance weighted deci-
sion maker. The present results utilize the full set of statistical accuracy variables and
do not consider informativeness. This suggests that performance weighting is also
superior with respect to statistical accuracy in addition to informativeness. Working
this out is a task for future research.
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