
Chapter 10
An In-Depth Perspective on the Classical
Model

Anca M. Hanea and Gabriela F. Nane

Abstract The Classical Model (CM) or Cooke’s method for performing Structured
Expert Judgement (SEJ) is the best-knownmethod that promotes expert performance
evaluation when aggregating experts’ assessments of uncertain quantities. Assessing
experts’ performance in quantifying uncertainty involves two scores in CM, the
calibration score (or statistical accuracy) and the information score. The two scores
combine into overall scores, which, in turn, yield weights for a performance-based
aggregation of experts’ opinions. The method is fairly demanding, and therefore
carrying out a SEJ elicitation with CM requires careful consideration. This chapter
aims to address themethodological and practical aspects of CM into a comprehensive
overview of the CM elicitation process. It complements the chapter “Elicitation in
the Classical Model” in the book Elicitation (Quigley et al. 2018). Nonetheless, we
regard this chapter as a stand-alone material, hence some concepts and definitions
will be repeated, for the sake of completeness.

10.1 The Classical Model: Overview and Background

Structured expert elicitation protocols have been deployed in many different areas of
applications (e.g. Aspinall 2010; Cooke and Goossens 2008; Hemming et al. 2018;
O’Hagan et al. 2006) and Part 4 of this book. Even though most are guided by similar
methodological rules, they differ in several aspects, e.g. the way interaction between
experts is handled and the way an aggregated opinion is obtained from individual
experts.
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Asmentioned in the introductory chapter of this book, the twomainways inwhich
experts’ judgements are aggregated are behaviourally (by striving for consensus via
facilitated discussion) and mathematically (by using a mathematical rule to combine
independent individual expert estimates). Mathematical rules provide a more trans-
parent and objective approach. A weighted linear combination of opinions is one
example of such a rule. While evidence shows that equal weighting frequently per-
forms well relative to unequal, performance-based weighting methods for reliably
estimating central tendencies (e.g. Clemen and Winkler 1999), when uncertainty
quantification is sought, differential weighting provides superior performance (Col-
son and Cooke 2017).

A widely used version of a differential weighting scheme is the Classical Model
(CM) for Structured Expert Judgement (SEJ) (Cooke 1991). CM was developed and
used in numerous professional applications1 involving the quantification of various
uncertainties required to aid rational decision-making. These uncertain quantities
usually refer to unknown variables measured on a continuous scale. Point/“best”
estimates are not sufficient when the quantification of uncertainty is the main aim,
since they do not give any indication of how much the actual (unknown) values may
plausibly differ from such point estimates. Expert uncertainties are thus quantified as
subjective probability distributions. Experts are, however, not asked about full dis-
tributions, or parameters of distributions, but rather about a fixed and finite number
of percentiles (usually three) of a distribution. From these percentiles, a minimally
informative non-parametric distribution is constructed. Parametric distributions may
be fitted instead, but these will add extra information to the three percentiles pro-
vided by the experts, when compared to the minimally informative non-parametric
distribution. This extra information may or may not be in accordance with experts’
views.

Experts are elicited individually, and face-to-face interviews were recommended
in the CM’s original formulation. Variants of the CM’s elicitation protocol involve
workshops (ranging from half a day to three days), remote elicitations or a com-
bination of these. Each method has its advantages and disadvantages. Having all
experts in one (potentially virtual) room may permit facilitated discussion prior to
the actual elicitation with the aim of reducing ambiguity, providing feedback on
practice questions and a better understanding of the heuristics to be avoided in order
to reduce biases. However, these may come to the price of group biases, halo-effects,
dominating or recalcitrant personalities, etc.

Rather than consensus, CM advances the idea of rational consensus, in which the
parties (experts and facilitators) pre-commit to a scientific method for aggregating
experts’ assessments. CM operationalises four principles which formulate necessary
conditions for achieving rational consensus (the aim of rational decision-making).
These principles are detailed in the introductory chapter of this book and repeated
here for convenience: scrutability/accountability, empirical control, neutrality and
fairness. Cooke argues that a rational subject could accept these principles, but not
necessarily accept a method implementing them. If this were the case, such a rational

1We call a professional application one for which the problem owner is distinct from the analyst.
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subject “incurs a burden of proof to formulate additional conditions for rational
consensus which the method putatively violates” (Cooke et al. 1999). Even though
part of the expert judgement community does not regardCMas an appropriatemethod
for expert judgement (Bolger and Rowe 2015a, b), to the best of our knowledge, no
additional conditions for rational consensus, as proposed by Cooke, were formulated
or identified as being violated. We note that there are numerous other sets of axioms
proposed within the literature, see, e.g. French (1985).

The empirical control requirement is essential to the CM and, some would argue,
e.g. Hanea et al. (2018), to any elicitation protocol which calls itself structured. It
is this requirement that justifies the use of seed (calibration) variables to derive
performance-based weights, providing an empirical basis for validating experts’
judgements that is absent in other approaches. We note, however, that other methods,
lacking empirical control, but eliciting expert judgements in a structuredmanner, fol-
lowing a rigorous protocol, are also considered SEJ protocols (ESFA 2014). “Seed”
(or calibration) variables are variables taken from the problem domain for which
ideally, true values become known post hoc (Aspinall 2010). However, this is rarely
feasible in practice, hence variableswith known realisations (values) are used instead.
The questions about the seed variables that the experts need to answer are called seed
questions. Experts are not expected to know the answers to these questions precisely,
but they are expected to be able to capture themwithin informative ranges, defined by
ascribing suitable values to the chosen percentiles (usually the 5th, 50th and 95th).

The theoretical background and mathematical motivation for many of the mod-
elling choiceswhich define theCMare detailed inCooke (1991).However interesting
and technically complete this book is, manyCMneophytes find it difficult to decipher
or navigate. For excellent short descriptions of the CM, written for practitioners and
less technically inclined audiences, we recommend (Aspinall 2008; Quigley et al.
2018).

CM is implemented in the software Excalibur, freely available from https://
lighttwist-software.com/excalibur/. Excalibur is a fully functioning application (if
somewhat old) which was originally developed at Delft University of Technology
and it is now maintained by Lighttwist Software.

This chapter aims to complement the existing CM descriptions, draw attention
to methodological and practical aspects which were not covered in the aforemen-
tioned descriptions, update recommendations made when the CM protocol was orig-
inally designed and clarify assumptions and misconceptions. As we will empha-
sise throughout the chapter, some issues arise from necessary theoretical require-
ments, while others are reasonable pragmatic assumptions. We stress that theoretical
requirements define the rigorous setting of the Classical Model, while the pragmatic
assumptions allow for model flexibility that can be explored by a more experienced
user.

The remainder of this chapter is organised as follows: Section10.2 discusses sev-
eral elements that need to be organised prior to the elicitation and dwells on aspects
which may be problematic or are critical for a successful elicitation. Section10.3
details some steps of the elicitation protocol, from constructing an expert’s distribu-
tion from elicited percentiles to evaluating experts performance using a calibration

https://lighttwist-software.com/excalibur/
https://lighttwist-software.com/excalibur/
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score, an information score and a combined score. These performance measures are
discussed from a theoretical, practical and intuitive viewpoint. Section10.4 discusses
different mathematical aggregations of experts’ distributions and ways to evaluate
them. Section10.5 concludes the chapter with a few remarks.

10.2 Pre-elicitation for the Classical Model

If decision-making is supported by quantitative models and the modelling is associ-
ated with uncertainties, then assessing uncertainty over the model inputs is essential.
Assume amodel is chosen appropriately (i.e. in accordancewith needs and resources)
and the sources of uncertainty are identified. Next, the modellers and analysts should
collate and evaluate the available resources (e.g. data, prior studies, related literature).
After completing this step, the data gaps will become apparent and the requirements
for expert input can be formulated. With this, we are entering what is often called
the pre-elicitation stage. Many elicitation guidelines cover this stage (e.g. ESFA
2014; Cooke et al. 1999), so in this section, we will merely complement the existing
guidelines by addressing only a few, less discussed, aspects.

10.2.1 Formal Documents

Sometimes research that involves collecting subjective data from human participants
needs a human ethics approval. Moreover, some journals require such approval to
publish research informed by subjective data. Although less common in Europe and
the United States,2 this is very often a requirement in New Zealand and Australia.

A project description is another useful document. This will be outlining the pur-
pose of the project, the relevant time-frames, the required expert input and potential
payments. A consent form sometimes accompanies the project description, and it is
sent to participants to formalise their agreement to take part in the elicitation and to
disclose any conflict of interests.

A briefing document guides participants through the elicitation, including the
specific way to answer questions, the reasons behind asking the questions in a par-
ticular format and the ways in which the answers are evaluated. An example of such
document is Aspinall (2008).

The project description and briefing document are sometimes combined into one
single document as recommended in ESFA (2014). Alternatively, a much larger
document can be compiled and made available prior to the elicitation, as done in
the ample SEJ study described in the Chap. 16, this volume. This document is an

2In some instances, it has been ruled that experts in an elicitation are not experimental subjects.
If needed, human ethics only applies if the number of subjects is larger than nine, and only if the
elicitation is conducted by the Federal Government (R. M. Cooke, personal communication 2018).

http://dx.doi.org/10.1007/978-3-030-46474-5_16
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extended version of the briefing document, augmented with background information
and available literature, especially useful to inform assessments about the target
variables. However, the available literature should not contain the answers to the
seed variables, as this would invalidate the calibration exercise.

10.2.2 Framing the Questions

Themost common format of asking experts to quantify their uncertainty about a con-
tinuous variable is eliciting three percentiles, normally the 5th, 50th and the 95th per-
centiles. Eliciting five percentiles has also been used in practice (e.g. Van Elst 1997),
where the 25th and 75th percentiles are elicited additionally to the three percentiles
mentioned beforehand. Eliciting other percentiles or other number of percentiles (i.e.
four percentiles) is nonetheless possible, posing no theoretical or practical problems.
Excalibur supports formats with three, four or five elicited percentiles, which can be
specified by the analyst.

However, for certain types of questions, this is easier said than done. The diffi-
culties can arise from several reasons, and we will touch upon three of these: (1)
the underlying elicited variables are not continuous, (2) the questions are not about
variables that experts are familiar with, but rather they address the transformation
of these variables and (3) the experts are not statistically trained. The following dis-
cussion applies to both seed and target variables. Specific seed variables issues are
discussed in a dedicated subsection.

10.2.2.1 Modelling Discrete Data with Continuous Variables

Modelling discrete data with continuous random variables is not an unfamiliar prac-
tice in statistics, i.e. age of patients or months since surgery. Similarly, when eliciting
bounded variablesmeasured on a countable scale,most practitioners assume a contin-
uous approximation of these variables and use the percentile elicitation procedure.
This can be challenging for the experts. For example, assume a population of 10
healthy coral reefs. The experts are then asked about the number of future diseased
coral reefs. Assume an expert’s best estimate (corresponding to their median, the
50th percentile) is one. The only value strictly less than one that they can estimate as
their 5th percentile is zero. However, that means that there is a one in 20 chance for
the number of diseased coral reefs to be negative, which is physically impossible.

Situations like the one in the above example may lead experts to assign equal
values for two or even all three percentiles, or to assign physical bounds instead of
the extreme percentiles, even though they understand that in theory the percentiles
of a continuous variable have to be distinct, and different than the bounds.
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10.2.2.2 Unfamiliar Framing

Framing the question in a way that is different from the context experts are famil-
iar with dramatically increases the cognitive load and should be avoided whenever
possible.

For example, asking for three percentiles of variable X in relation to something
normally expressed as a ratio, say 1/X, can be awkward. It is even worse if the expert
thinks in terms of something which is naturally expressed as a different ratio, say,
X = Y/Z.

10.2.2.3 Statistical Proficiency

The assumption of an underlying continuous distribution comes with very clear the-
oretical constraints, among which: the extreme (upper and lower) elicited percentiles
should not equal the physical bounds of the support of the variable, and the three
percentile values should be strictly increasing. Above, we touched upon a situation
where these constraints may be violated because the modelled variable is not in
fact continuous (but rather approximated with a continuous variable). We now want
to draw attention to situations where these constraints are violated because of the
difficulty of the questions, coupled with an inadequate probabilistic and statistical
training of the experts.

Let us consider the example of eliciting percentages which are thought to be
extreme. When experts need to estimate a very small or a very large percentage,
they may assess the 5% percentiles to be 0% or the 95% percentile to be 100%. It
is the analyst’s job to emphasise that the elicited quantity is uncertain and to try to
guide the expert through probabilistic thinking. Advising experts to reason in terms
of relative frequencies may sometimes be a solution. However, if it does not help,
the experts’ assessments are usually slightly modified (i.e. by adding or subtracting
a very small number such as 10−8) to comply with the theoretical restrictions.

In certain situations, experts will assign equal values for two (or all three) per-
centiles even after a brief probabilistic training. If time allows, we advice that during
training, an example should be used to emphasise why equal percentiles are prob-
lematic for modelling distributions of continuous random variables. To exemplify
this, consider expert’s assessments for an unknown variable X to be 3 for the 5th
percentile, 3 for the 50th percentile and 10 for the 95th percentile. Then, the proba-
bility that the true percentage is 3 is 0.45, that is P(X = 3) = 0.45. Nonetheless, X
is assumed to be a continuous random variable and the probability that X attains any
specific value is zero, hence P(X = 3) should be zero. Obviously, the expert does
not acknowledge that her assessments do not correspond to a continuous random
variable. And it is the analyst’s job to clarify the setting. Finally, the requirement of
strictly increasing percentiles has also been implemented in Excalibur.

The facilitators and analysts need to be aware of these issues when framing the
questions. Sometimes, certain, possibly problematic formats cannot be avoided.
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Then, the experts need to be made aware of these difficulties and, if needed, be
contacted after the elicitation for re-assessment.

10.2.3 Seed Variables

The seed questions/variables are an essential element of CM, since one of the main
assumptions of CM is that prior performance on seed questions is a good predictor
of future performance on the target variable/questions of interest.3 When building
the differential weighted aggregated distributions, these aggregations are basically
fitted to seed questions and the entire model is calibrated on them. Their importance
is paramount. A strong recommendation for analysts and facilitators is to consult a
couple of domain experts when looking for and formulating seed variables (see also
the dry-run section below). Given their involvement with the seed questions, these
experts’ judgements cannot be formally elicited during the elicitation.

Seed variables and the purposes they serve are also discussed in detail in Sect. 2.3
of Quigley et al. (2018). We reiterate below the main four types of seed vari-
ables (domain-prediction, domain-retrodiction, adjacent-prediction and adjacent-
retrodiction), as categorised in Cooke and Goossens (2000), and qualify their desir-
ability.

As mentioned beforehand, the answers to seed questions should not be known by
experts during the elicitation. Table10.1 provides general guidance for selecting seed
variables. Ideally, the analyst should have access to ongoing studies or domain data
which become available shortly after the elicitation. These make great sources for
formulating domain-prediction variables. Examples can include data from official
reports which will become available shortly after the elicitation takes place. Suppose
experts have been asked several questions about the percentage of unvaccinated
children in Europe, in the period 2015–2018. The elicitation took place in November
2019, and the WHO official report, which is the only source for these questions, was
due to appear in December 2019. Since one of the questions of interest regards the
percentage of unvaccinated children in Europe in 2030, we regard the seed questions
to be domain questions.

However, this not always possible, and data from recent studies within the sub-
ject matter or, less desirable, in adjacent subject matters are often the only option.
Typically, data from official, yet not public, reports are used to define calibration
questions. For example, existing confidential reports that document outbreaks of
Salmonella in different provinces in The Netherlands could be used to define seed
questions. If the questions of interest regard the number of cases of infection with
Salmonella in the same provinces, then the seed questions are seen as being retrodic-
tions and from the same domain. If, on the other hand, the question of interest regards
the number of cases of infection with Salmonella at the national level, or even at the
European Union level, the seed questions can be regarded as being from an adjacent

3From here on, we will call questions of interest the questions related to the target variables.
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Table 10.1 Types of seed variables and their desirability. The reasonably desirable options are the
ones usually used in practice

Prediction Retrodiction

Domain/Subject matter Most desirable Reasonably desirable

Adjacent/Contingent subject
matter

Reasonably desirable Last resort

subject matter. Even though the question of interest refers to the same bacteria, it is
defined in a different context than the calibration question and can, therefore, be seen
as from an adjacent subject matter. Another, more clear, example of using adjacent
subject matter calibration questions is the following. Suppose the question of interest
refers to the effects of Bonamia ostreae parasite in Ostrea chilensis oysters. Since
this parasite–host combination is new, data are lacking and domain calibration ques-
tions are not possible. Calibration questions have been chosen to study the effects of
different parasite–host combinations, i.e. Bonamia ostreae parasite in Ostrea edulis
and Bonamia exitiosa parasite in Ostrea chilensis.

Often, elicitations need to involve two or more sub-disciplines. The set of seed
questions should have then a balanced selection of items from each discipline. How-
ever, the boundaries between sub-disciplines are sometimes blurry and we are yet
to learn how well can experts extrapolate their knowledge to answer questions from
adjacent domains. This should be carefully dealt with prior to the elicitation and, if
resources allow, consider separate panels of experts to answer different (sub-domain
specific) seed questions.

Not only the domain of the seed variables is important, but also their formula-
tion. We argue that the seed questions should be asked in exactly the same format
as the questions of interest. There is no reason to believe that good performance
on a certain type of task is transferable to different tasks. On the contrary, a couple
of studies (Morales-Napoles et al. 2014; Werner et al. 2018) comparing the perfor-
mance of experts when quantifying one-dimensional distributions using percentiles,
with quantifying dependence between these one-dimensional margins, indicated a
negative relationship.

Given that the domain and the formulation of the seed questions are appropriate,
the next thing to consider is what sort of thinking they trigger from experts. Answer-
ing the seed questions should certainly not be a memory test about factual knowledge
alone. To be able to differentiate expert performance better, the seed questions should
also be as diverse as possible. Experts need to be able to make judgements of appro-
priate uncertainties, hence the seeds should require experts to think about composite
uncertainties, in the same way they would need to do when answering the questions
of interest.

The seed questions may be asked before the questions of interest and feedback
may be presented to the experts before they start answering the questions of interest.
Another format of the questionnaire may have all questions in random order. Some
(retrospective) seed questions will be identified as such by the experts, however, the



10 An In-Depth Perspective on the Classical Model 233

predictive ones may not stand out as seeds. An argument for having a questionnaire
where seed questions and questions of interest are randomly intermixed relates to
the level of experts’ fatigue, as increased fatigue affects the ability of experts to
concentrate towards the end of the elicitation exercise.

For continuous quantities, between eight and ten seed questions were recom-
mended (Cooke 1991) independent of the number of questions of interest. We argue
that a minimum of 15 should be used when there are not more than 35 questions of
interest and at least a one day workshop. These are of course guidelines derived from
experience and practice, rather than results of proper studies on experts behaviour
and fatigue.

Many of the more recent studies using CM published all questions as supple-
mentary material, but some of the older studies did not necessarily do so. As a
future recommendation, aligned with the need for transparency imposed by Cooke’s
principles of rational consensus, we suggest all questions to bemade available.More-
over, identifying and reporting the type of seed variables used, as characterised in
Table10.1, is highly recommended.

10.2.4 Dry-Run

A dry-run of the elicitation is strongly encouraged. Such an exercise is essential in
decreasing the linguistic uncertainty (ambiguity), which is almost certainly present in
the project description and, most importantly, in the formulation of the questions (of
interest and seeds). It is also a good exercise for checking if all relevant information is
captured and properly conveyed (in a language that is familiar to the experts). One or
two domain experts should be asked to provide comments on all available documents,
the questions, the additional information given for each question appreciated, and to
estimate a reasonable time required to complete the elicitation.

10.2.5 Elicitation Format

There is no single best way to carry on an expert elicitation using CM. The origi-
nal setting proposed in Cooke (1991) involves a face-to-face individual interaction
between the facilitator and the expert. That is, the facilitator meets separately with
each expert, trains them if necessary, discusses practice question(s) and then pro-
ceeds to guide the expert through the elicitation questions. Willy Aspinall (personal
communication) carried out many of his numerous elicitations in a workshop setting.
More recently, a number of elicitations have also been performed remotely, using
one-to-one Skype interviews. In such cases, a teleconference with all experts may
be held prior to the individual elicitation interviews. During this teleconference, the
procedure, scoring and aggregation methods should be explained, and a couple of
practice questions should be answered (see Chap. 16, this volume).

http://dx.doi.org/10.1007/978-3-030-46474-5_16
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If the elicitation is done remotely and the seed questions are retrospective, the
calibration exercise needs to be done “face-to-face” and the experts should work
with the facilitator (e.g. in individual Skype sessions). The questions of interest can
be then finished on a more relaxed time-frame and without the facilitator’s virtual
presence. However, if all the seeds are predictive, individual (remote) interviews are
not a requirement.

Special attention needs to be given to experts’ uncertainty training.Reasoningwith
uncertainty and expressing uncertainty prove to be a challenging endeavour. Practice
questions are therefore desirable. Some practitioners choose practice questions from
the same domain as the seed variables and questions of interest. Others choose a
different subject matter, e.g. questions regarding weather, in order to focus primarily
on how experts express their uncertainty.

For more details on the elicitation format, we refer to Sect. 2.4 from Quigley et al.
(2018).

10.3 Elicitation with the Classical Model

The many details decided upon in the pre-elicitation stage determine the elicitation
itself. These include the number and type of questions, the number and expertise of
experts, the typeof feedbackgiven to and interactionpermitted between experts.Once
the required estimates are elicited, they are scored and the scores are used to form
weights. Several weighted combinations are calculated; they form several so-called
Decision Makers (DM) distributions. It is worth mentioning that a decision maker in
this context represents a mathematically calculated distribution which corresponds
to a virtual expert. The real decision maker would adopt one of the DMs distribution
as their own.

10.3.1 From Assessments to Distributions

It is important to stress again that CM, as largely known from the literature, applies
to continuous variables. That is, the elicited seed variables, as well as the variables
of interest, are modelled as continuous variables and the questions are formulated in
terms of percentiles of continuous distributions.Moreover, allmajor CMapplications
made use of continuous variables. As already emphasised in places, this chapter
provides an in-depth perspective on the Classical Model when using continuous
random variables. Eliciting discrete random variables, in terms of the probabilities
of their states, and scoring the experts’ performance, even though proposed in Cooke
(1991), has scarce applications and has not been implemented in Excalibur.4 It is

4Theperformance scores are calculated differently for discrete variables. Informativeness is replaced
with entropy and the calibration score, even though still based on a similar test statistic, is different
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also noteworthy that CM should not be used for mixed types of questions, that are
both discrete and continuous. Moreover, the questions (seed and of interest) should
be either all continuous or all discrete.

The rest of this chapter refers solely to eliciting continuous random variables.
It is worthwhile discussing first how expert’s distribution is actually constructed

from the expert’s assessed percentiles within the CM. In order to specify expert’s dis-
tribution, we first need to determine the support of the distribution. Assume N experts
provide their assessments. Denote expert’s ei assessments for a given question as qi

5,
qi
50 and q

i
95 for the 5th, 50th and 95th percentiles, respectively, and i = 1, 2, . . . , N .

The range [L ,U ] is given by

L = min
1≤i≤N

{qi
5, realisation},

U = max
1≤i≤N

{qi
95, realisation},

for a given seed variable. Note that L denotes the minimum among all experts’
lower bounds and the realisation, whereas U denotes the maximum between all
experts’ upper bounds and the realisation. For the questions of interest, the lower and
upper bounds are determined exclusively by the experts’ percentiles, i.e. L = min{qi

5}
and U = max{qi

5}, for i = 1, . . . , N . The support of experts’ distributions is then
determined by the so-called intrinsic range

[L∗,U ∗] = [L − k · (U − L),U + k · (U − L)],

where k denotes an overshoot and is chosen by the analyst (usually k = 10%, which
is also the default value in Excalibur). The intrinsic range, therefore, allows for
an extension of the interval determined by the interval [L ,U ]. The extension is
symmetrical for simplicity. For some questions, the intrinsic range can be specified
a priori by the analyst.5 For example, when eliciting percentages, a natural intrinsic
range is [0, 100].

Each of the expert’s distribution is constructed then by interpolating between
expert’s percentiles such that mass is assigned uniformly within the inter-percentile
ranges. Consequently, by assuming a uniform background measure, the distribution
of expert ei is given by

as well, and it requires many more seed variables for reliable estimation. The interest in this topic
has been revived recently with a theoretical research on calibration scores (Hanea and Nane 2019).
5This is however not possible in Excalibur. Unrealistic ranges obtained in Excalibur need to be
truncated externally.
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Fig. 10.1 Cumulative distribution functions (a) and probability distribution functions and using
the intrinsic range [0,100]. (b) for two experts whose assessments are (5, 15, 25) (for Expert 1) and
(40, 50, 60) (for Expert 2)

Fi (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for x < L∗
0.05

qi5−L∗ · (x − L∗), for L∗ ≤ x < qi
5

0.45
qi50−qi5

· (x − qi
5) + 0.05, for qi

5 ≤ x < qi
50

0.45
qi95−qi50

· (x − qi
50) + 0.5, for qi

50 ≤ x < qi
95

0.05
U ∗−qi95

· (x − qi
95) + 0.95, for qi

95 ≤ x < U ∗

1, for x ≥ U ∗.

The distribution is piecewise linear on the four intervals determined by the assessed
percentiles. Note that the cumulative distribution Fi is continuous. The cumulative
distribution and the corresponding density function for two experts with assess-
ments (5, 15, 25) (Expert 1) and (40, 50, 60) (Expert 2) are depicted in Fig. 10.1.
The intrinsic range has been assumed [0, 100], which can be considered appropriate
as the quantities are percentages.

The above construction of distributions is arguably the most popular method of
constructing distributions.

10.3.2 Measures of Performance

CM measures experts’ performance as uncertainty assessors. Performance may be
regarded as being determined by the properties of experts’ assessments that we value
positively. Three of these properties are accuracy, calibration and informativeness.
Often, in the judgement and decision-making literature, accuracy is understood as
the distance from the “best estimate” to the true, realised value (e.g. Einhorn et al.
1977; Larrick and Soll 2006). In the CM, the best estimate is operationalised as
the median (the 50th percentile). To avoid difficulties related to estimating average
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accuracy across multiple seed variables, which will unavoidably be measured on
different scales, the CM does not score accuracy as defined above. In turn, it scores
calibration and informativeness.

Confusingly, from a terminological point of view (in the context outlined above),
the CM calibration is also called statistical accuracy.6 We recall the technical def-
initions of calibration and informativeness and provide an accompanying intuitive
explanation.

10.3.2.1 Calibration

Assume there are N experts, e1, e2, . . . , eN and M seed variables/questions SQ1,

SQ2, . . . , SQM . Denote expert’s ei assessments on question j as qi, j
5 , qi, j

50 and qi, j
95 for

the 5th, 50th and 95th percentiles, respectively; the index j is sometimes omitted for
convenience to denote the percentiles assessed for a random question (rather than for
a given question j). The notationwill then reduce to qi

5, q
i
50 and q

i
95. For each question

and each expert, the probability range is divided into four inter-percentile intervals,
corresponding to inter-percentile probability vector p = (0.05, 0.45, 0.45, 0.05).
Suppose the realisations of these seed questions are x1 for SQ1, . . . , xM for SQM .
We may then form the sample distribution of expert ei ’s inter-percentile intervals
by simply counting how many of the M realisations fall within each inter-percentile
interval. Formally, let

s1(ei ) = |{k|xk ≤ qi
5}|

M
=

M∑

k=1

1{xk≤qi,k5 }

M
,

s2(ei ) = |{k|qi
5 < xk ≤ qi

50}|
M

=

M∑

k=1

1{qi5<xk≤qi50}

M
,

s3(ei ) = |{k|qi
50 < xk ≤ qi

95}|
M

=

M∑

k=1

1{qi50<xk≤qi95}

M
,

s4(ei ) = |{k|qi
95 < xk}|
M

=

M∑

k=1

1{qi95<xk }

M
.

where

1{x≤a} =
{
1, when x ≤ a

0, otherwise

6The terminology was changed from calibration to statistical accuracy because of another potential
terminological clash with the engineering interpretation of the term calibration.
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is the indicator function.
Then s(ei ) = (s1(ei ), s2(ei ), s3(ei ), s4(ei )), i.e. the empirical distribution for

expert i . Note that if the expert assesses the uncertainty effectively, then we expect
the distribution of the M counts to be multinomial, with parameters 0.05, 0.45, 0.45
and 0.05. Alternatively, if the realisations are indeed drawn independently from a
distribution with percentiles as stated by the expert, then the quantity

2MI (s(ei ), p) = 2M
4∑

l=1

sl(ei ) ln
sl(ei )

pl
, (10.1)

is asymptotically distributed as a chi-square random variable with 3 degrees of free-
dom. Hence, we can score expert ei as the statistical likelihood of the hypothesis

Hei : the inter-percentile interval containing the true value for each variable is drawn independently

from probability vector p.

In Eq. (10.1), M is the number of seed questions, and I (s(ei ), p) is the Kullback–
Leibler divergence (Kullback and Leibler 1951), which Cooke calls the relative infor-
mation of one distribution with respect to another (e.g. Cooke and Goossens 2008).
The relative information score measures how one distribution, s in this case, diverges
from another distribution, p here. In other words, if the experts would indeed give
values which correspond to the 5th, 50th and 95th percentiles of distributions, on the
long run, their sample distribution s should be equal to p. Then I (s(ei ), p) = 0 and
this should correspond to the highest possible calibration score. As s starts diverg-
ing from p, the value of I (s(ei ), p) increases, and the calibration measure should
decrease, penalising the fact that the experts are not answering corresponding to the
stated percentiles. A simple test for this hypothesis uses the test statistic defined by
Eq.10.1.

The p-value of this hypothesis is defined as the calibration (score or statistical
accuracy)

Cal(ei ) = Prob{2MI (s(ei ), p) > r |Hei },

where r is the value of the expression from equation (10.1) based on the observed
values7 x1, . . . , xM . It is the probability, under hypothesis Hei , that a deviation at
least as great as r should be observed on M realisations if Hei were true.

With a finite, relatively small number of questions, often s cannot equal p. Most
of the time, they differ, because of, for example, M being an odd number. An even
number of seed questions does not guarantee equality either, for example for themost
commonly used number of questions, ten, an expert can achieve a maximum calibra-
tion score of 0.83 when s = (0.1, 0.4, 0.4, 0.1).8 This is important when comparing
calibration scores. How different should calibration scores be to conclude that one

7If s is equal to p, then r = 0 and Cal = 1.
8The minimum number of questions needed to obtain a calibration score of 1 is 20.
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Fig. 10.2 Two experts’ assessments on 10 seed questions. The starting and ending points of any
line in this graph correspond to the 5th and the 95th percentiles, the blue dot corresponds to the 50th
percentile and the cross corresponds to the realisation. The blue dot is not visible when it coincides
with the realisation

is much better than another? The answer to this question is not straightforward. The
following example illustrates an interesting situation which is slightly unrealistic,
but not impossible.

On the right hand side of Fig. 10.2, Expert e2 gave their percentiles for ten seed
questions. The left and right ends of each line correspond to the 5th and the 95th
percentiles, respectively. The blue dots correspond to the 50th percentiles, and the
crosses correspond to the realisations of the seed variable. The crosses are blue if they
are captured within the 90% credible interval, and red is they fall outside this interval.
In this example, s(e2) = (0.1, 0.4, 0.4, 0.1) and expert e2 achieves the maximum
possible calibration score of 0.83. Expert e1 gave exactly the same estimates for
all the questions with the exception of four medians, which happened to coincide
with the realisations of those variables (see the left-hand side of the same figure).
The empirical distribution of expert e1 is s(e1) = (0.1, 0.6, 0.2, 0.1). Expert e1 is
thus penalised as an artefact of the way the empirical distribution is constructed and
achieves what seems to be a much lower calibration score of 0.39.

These sort of examples are useful to understand what these differences in calibra-
tion scores canmean. In this case, both experts are well calibrated and the 0.44 differ-
ence between calibration scores should not be used to say that expert e2 ismuch better
calibrated than expert e1. However, when calibration scores are low with one of them
below 0.05, the former should be considered as an indication of better performance.
For example, if the empirical distribution of an expert is s(e3) = (0.3, 0.2, 0.2, 0.3),
their calibration score is with approximately 0.3 less then expert e1 calibration, mak-
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(a) Ten seed variables (b) 100 seed variables

Fig. 10.3 Histograms of 2MI (s(ei ), p) under null hypothesis that the inter-percentile interval
containing the true value for each variable is drawn independently from probability vector p (blue),
versus a random sample from a chi-square variable with 3 degrees of freedom (pink)

ing it of order 10−2. Expert e3 placed most of the mass in the tails of the distribution,
which should make one confident in considering them poorly calibrated.

The discussion above about the significance level aims to stress that any calibration
above a certain threshold (often chosen to be the familiar 0.05 fromclassical statistical
testing) may be considered a good calibration, and that the calibration score should
not be used to differentiate among very fine levels of calibration, but provide rather
indicative levels. This is, again, similar to conducting a hypothesis testing, where one
does not compare different p-values concluding that a higher p-value produces more
evidence to accept the null hypothesis, but one rather compares the p-values with the
significance level of, say, 0.05. Consequently, the conclusion is either enough or not
enough evidence to reject the null hypothesis H0.

Another reason for not taking the actual calibration scores and the differences
between them too seriously is the asymptotic nature of the test. For ten seed vari-
ables, the distribution of the test statistic is quite far from a chi-squared distribution.
This is illustrated in Fig. 10.3, where the histogram of the test statistic is determined
empirically and compared with the histogram obtained by sampling from a chi-
squared distributed variable. The figure on the left-hand side uses ten seed variables
and the one on the right-hand side uses 100 which is of course not feasible in prac-
tice. The right-hand side histograms in Fig. 10.3 agree not only on a visual level,
but also when comparing them using statistical tests. We repeatedly used the two-
sample Kolmogorov–Smirnov and the two-sample Cramer–Von Mises tests, and the
null hypothesis that the data in the two samples came from the same continuous
distribution was not rejected in 98% of the cases.

Calibration scores are absolute scores and can be compared across studies, if these
studies use the same number of seed questions. In other words, before comparing
calibration scores, it is appropriate to equalise the power of the different hypothesis
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Fig. 10.4 The calibration
scores of 322 experts across
the pre-2006 studies
available in the TU Delft
dataset. The red line denotes
the 0.05 significance level

tests by equalising the effective number of seed variables. Because the calibration
score uses the asymptotic distribution of the 2MI (s(ei , p), we adjust the power by
leaving s calculated on M questions but replacing 2M by 2M ′, with M ′ < M , M ′
representing the smallest number of seed variables. In this way, we use all the M
seed variables, but pretend that the relative information is based on M ′ rather than M
variables. The ratio M ′

M is called the power of the calibration test (called calibration
power in Excalibur).When the number of the seed questions increases, the calibration
scores decrease, but are still distinguished if the numerical implementation of the
scores is accurate enough. However, Cooke argued (Cooke 1991) that the degree
to which calibration scores are distinguished should be a model parameter one can
optimise for, and that reducing the power may be important in situations when all
experts are very poorly calibrated. When all experts are poorly calibrated (e.g. with
calibration scores of the order less than or equal to 10−4, spanning three or more
orders of magnitude) with one being better calibrated than the rest, all the weight
may go to this one (still very) poorly calibrated expert. By reducing the power,
several other combinations may be found optimal and the best of them should be
used.9 However, the accumulation of evidence since 1991 seems to suggest that in
such cases an equally weighted combination of experts’ distributions will be a much
better choice than a combination based on optimising the calibration power.

To close our little parenthesis on the calibration power, we advise reducing the
calibration power only for comparing calibration scores across studies with different
numbers of seed questions.

To give an indication of the range of experts’ calibration scores in professional
applications, Fig. 10.4 presents just over 300 of experts’ calibration scores extracted
from the studies collected in the Delft dataset, prior to 2006. The horizontal line

9If you do elect to optimise weights using reduced calibration power, you should evaluate perfor-
mance by introducing these weights as user weights and compare with other combinations without
power reduction.
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corresponds to the calibration score of 0.05, and it is quite clear that the majority
(73%) of individual calibration scores are below this level.10

A completely different picture will emerge when, in Sect. 10.4.1 of this chapter,
we will investigate the magnitude and spread of combinations of experts. Figure10.9
reveals the improved performance, in terms of the calibration score, of the combina-
tion of experts.

10.3.2.2 Informativeness

Alongwith the calibration score, experts’ assessments are evaluatedwith respect to an
information score. The information score is intrinsically connected with determining
experts’ distribution, given the three percentiles specifiedby the expert, as constructed
in Sect. 10.3.1. The information score reflects how informative expert’s distribution
is with respect to the background measure used to construct the distribution. If that
measure is the uniform distribution, then informativeness is calculated with respect
to the uniform. However, when the intrinsic range spans many orders of magnitude,
the log-uniform measure is used to construct the distributions. The informativeness
of such a constructed distribution is then evaluated with respect to the log-uniform
background measure as well.

Both background measures are available in Excalibur and the analyst should
choose between the two measures. As a rule of thumb, when the range of experts’
assessments for a question spans over four orders of magnitude, then it is advised to
use a log-uniform background measure11.

The background measure is assumed, for now, to be the uniform distribution over
the intrinsic range [L∗,U ∗]

U (x) = x − L∗

U ∗ − L∗ , for L∗ ≤ x ≤ U ∗.

One can derive the probability that an uniform random variable with distribution U
lies within each of the inter-percentile intervals. Experts assessments with respect to
the uniform background measure for each of the four inter-percentile intervals thus
yield

r1 =U (qi
5) −U (L∗) = qi

5 − L∗

U ∗ − L∗ , for x ∈ [L∗, qi
5],

r2 =U (qi
50) −U (qi

5) = qi
50 − qi

5

U ∗ − L∗ , for x ∈ (qi
5, q

i
50],

r3 =U (qi
95) −U (qi

50) = qi
95 − qi

50

U ∗ − L∗ , for x ∈ (qi
50, q

i
95],

10Similar pictures presented in a slightly different format are shown in Colson and Cooke (2017).
11There is no theory behind the choice of the background measure. It is chosen on the basis of
experiences and can later be subjected to sensitivity analysis.
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r4 =U (U ∗) −U (qi
95) = U ∗ − qi

95

U ∗ − L∗ , for x ∈ (qi
95,U

∗].

With respect to expert’s distribution F(·), let

f1 = F(qi
5) − F(L∗) = 0.05,

f2 = F(qi
50) − F(qi

5) = 0.45,

f3 = F(qi
95) − F(qi

50) = 0.45,

f4 = F(U ∗) − F(qi
95) = 0.05,

The information score of expert ei for question j is then determined by

I j (ei ) =
4∑

k=1

fk ln
fk
rk

.

Writing the information score in terms of expert’s assessments and the intrinsic range
gives

I j (ei ) = 0.05 ln
0.05(U∗ − L∗)

qi5 − L∗ + 0.45 ln
0.45(U∗ − L∗)

qi50 − qi5
+ 0.45 ln

0.45(U∗ − L∗)
qi95 − qi50

+ 0.05 ln
0.05(U∗ − L∗)

U∗ − qi95
,

which can be re-written somewhat more compactly

I j (ei ) = 0.05 ln
0.05

qi5 − L∗ + 0.45 ln
0.45

qi50 − qi5
+ 0.45 ln

0.45

qi95 − qi50
+ 0.05 ln

0.05

U∗ − qi95
+ ln(U∗ − L∗),

(10.2)
as in Cooke (1991). The information score is a strictly positive function, which can
take, in principle, arbitrarily large values. It can be observed in (10.2) that the closer
expert’s assessments are, the larger I j (ei ) will be. One would wonder, however, how
large can the information score be, in practice, and how does the distribution of
information scores looks like. We have investigated the behaviour of information
scores from simulated data, as well as from expert elicitations data from previous
studies.

Firstly, the simulations have been performed assuming an intrinsic range of
[0, 100], as for the elicitation of percentages, and are depicted in Fig. 10.5a. Only
integer values have been assumed for the experts’ assessments, in order to simplify
calculations. Furthermore, simulations of information scores over an intrinsic range
of [0, 1000] and the histograms can be found in Fig. 10.5b.

While for an intrinsic range of [0, 100], information scores obtained are not larger
than 3.5, when the intrinsic range extends to [0, 1000], the maximum observed infor-
mation score is around 5.8. Repeated simulations have produced similar results for
the information scores. As mentioned beforehand, the intrinsic range of [0, 100] cor-
responds to integer percentage assessments, whereas the intrinsic range of [0, 1000]
corresponds, for example to eliciting percentages up to the first decimal.
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Fig. 10.5 Histograms of information scores over an intrinsic range of [0, 100] (a) and [0, 1000]
(b)

The information score of an expert over all seed questions is defined as the average
of information scores

I (ei ) = 1

M

M∑

j=1

I j (ei ).

Notice that the information score can be computed for the seed questions as well as
for the questions of interest, whereas the calibration score can only be computed for
the seed questions. Moreover, note that, while the calibration score of each expert is
computed independently of other experts’ assessments, the distribution of experts,
and hence the information score depends on all experts’ assessments, which makes
informativeness a group dependent measure.

Finally, it should be oncemore emphasised that the information score reflects how
informative is the expert’s distribution is with respect to the background measure,
which is usually assumed to be the uniform distribution. While the information score
could be thought of as a measure of spread in the expert’s assessments, that is, in
fact, not quite the case. Consider the following examples of experts’ assessments, as
depicted in the Table 10.2 below.

Even though Expert 3 assessments are quite spread, the percentiles result in a
skewed distribution, which is quite informative with respect to the background mea-
sure. The information score is almost the same as for Expert 2, where the probability
mass function is concentrated between 40 and 60. There is a significant difference
in the information score between Experts 1, 2, 3 and Expert 4. Whereas the highest
information score is attained by Expert 1, the difference with Expert 2 and 3 is not
that large. The cumulative distribution function and the probability density function
of the 4 experts are depicted in Fig. 10.6.

The information score can now be heuristically tied with expert’s distribution,
namely with how discrepant expert’s distribution is from the uniform distribution.
For example, it is quite obvious that Expert 4 (brown) is the least discrepant from the
uniform distribution (black). Similarly, Expert 1 (red) is the most discrepant and has
therefore the highest information score among the 4 experts. Additionally, it is quite



10 An In-Depth Perspective on the Classical Model 245

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Expert 1
Expert 2

Expert 3

Expert 4

(a)

0 800 10 20 30 40 50 60 70 90 1000 800 10 20 30 40 50 60 70 90 100
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24 Expert 1

Expert 2
Expert 3
Expert 4

(b)

Fig. 10.6 Cumulative distribution functions (a) and probability density functions (b) for four
experts whose assessments are included in Table10.2

hard to evaluate and compare the information scores of Experts 2 (blue) and 3 (green).
Their cumulative distribution functions are quite distinct, whereas the information
scores are almost the same.

Obviously, the higher the information score, the more informative the expert is
and an expert with high information score is preferred over an expert with a low infor-
mation score, assuming they have the same calibration. One can however wonder
when is an information score low, that is, when is an expert considered uninforma-
tive. Of course, an expert whose assessments coincide with the percentiles of the
uniform distribution will have an information score of zero. When the assessments
differ from the uniform percentiles, one could think that a test can determine whether
the differences are statistically significant or not. A number of tests can quantify the
difference between two distributions. Cramér-von Mises test, for example, evaluates
the integrated quadratic difference between two distributions. The distributions of
all four experts whose assessments are included in Table10.2 are statistically signif-
icantly different from the uniform distribution, according to the Cramér-von Mises
test, when using 100 or 1000 observations. An inspection of several examples leads to
the conclusion that information scores as low as 0.15 lead to the rejection of the null
hypothesis that expert’s assessments come from a uniform distribution. Furthermore,
an assessment of 10, 35 and 90 for the three percentiles leads to an information score
of 0.1, and the p-value of the Cramér-von Mises test is 0.21. However, it should be
born in mind that these results are dependent on the intrinsic range, which has been
chosen [0, 100] for our example.

Another question that might arise is whether information scores are significantly
different from a statistical point of view. This is nicely exemplified with the four
experts’ assessments above, that is, whether an information score of 1.15 is sig-
nificantly higher than an information score of 0.55. Cramér-von Mises test between
Expert 2 distribution (blue) and Expert 4 (brown) distribution as depicted in Fig. 10.6
leads to a p-value of 0.25, whereas the p-value for the test between Experts 3 and 4
is less than 2.2 × 10−16. This shows that determining statistically significant differ-
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Table 10.2 Example of four experts’ percentage assessments

5% 50% 95% Information score

Expert 1 5 15 25 1.21

Expert 2 40 50 60 1.14

Expert 3 15 17 75 1.15

Expert 4 30 50 70 0.55

Fig. 10.7 The information
scores of 322 experts across
the pre-2006 studies
available in the TU Delft
dataset

ences between information scores is arguably an important question that cannot be
answered without using more refined metrics.

To get an idea about the possible values and spread of information scores from
expert elicitation data, we plotted information scores obtained by the experts taking
part in the studies collected in the Delft dataset, prior to 2006. All scores are between
0.25 and 3.81 and half of these scores are larger than 1.47.

10.3.3 Combined Scores to Form Global and Item Weights

Measuringperformance servesmultiple purposes.Apart fromdifferentiatingbetween
experts’ performance, scores can be used to form weights which will then be used
to construct a differentially weighted linear combination of distributions over the
target variables. These mathematically aggregated distributions are considered to be
the rational consensus distributions. They can be thought of as virtual experts whose
“opinions” incorporate all experts’ opinions, weighted according to their validity. An
equally weighted linear combination is another virtual expert. These virtual experts
can be treated as any other expert and their constructed opinions can be scored in the
same way as experts’ opinions. The final aim of this exercise is to find the virtual
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expert who performs the best. Before discussing the different virtual experts, let us
return to how the scores presented in the previous sections can be combined and used
as weights.

CM accounts for both calibration score and informativeness and proposes a com-
bined score, which is the product of the calibration and the information score and it
uses a cutoff level α, below which calibration scores are undesirable. The calibration
score is often described as being a fast function, which means that its value changes
quickly with the addition of every seed question and its associated response. Infor-
mativeness, on the other hand is said to be a slow function, which means that it is
less sensitive to a small change in the number of questions. When multiplied, the
calibration will dominate the value of the combined score, therefore CM values the
calibration score more in comparing experts. This is also intuitively desired, as one
would not prefer an informative over a poorly calibrated expert, which reflects only
overconfidence. The combined score for expert i is given by

CS(ei ) = Cal(ei ) · I (ei ) · 1α (Cal(ei )) ,

for i = 1, . . . , N and α ≥ 0; the weight of expert i will be proportional to their score

wi = CS(ei )
N∑

k=1

CS(ek)

, (10.3)

for i = 1, . . . , N . Experts with calibration scores below α will receive weight zero
and their judgements will not be directly used in the final linear combination of
opinions. However, all experts’ assessments determine the support of all variables,
therefore, all experts contribute to the virtual expert’s distribution. A value α larger
than zero ensures that the weights are asymptotically strictly proper. For detailed
information on scoring rules, see Cooke (1991).

Note that the information score is actually calculated per question (item), and then
averaged across all questions. This suggests that a combined score can be computed
for each expert and seed variable

CSj (ei ) = Cal(ei ) · I j (ei ) · 1α (Cal(ei )) ,

for j = 1, . . . , M and i = 1, . . . , N . The information score I j (ei ) denotes how infor-
mative expert i is on question j . This combined score leads to the weights

w
j
i = CSj (ei )

N∑

k=1

CSj (ek)

,



248 A. M. Hanea and G. F. Nane

for expert i and question j , where i = 1, . . . , N and j = 1, . . . , M . The weights
are called “item weights”, and they are calculated per item, per expert. Thus, an
expert can receive different weights for each seed variable. It should be born in
mind, however, that the calibration score remains the same for each seed variable,
therefore, dramatic changes in the itemweights should not be expected, especially for
experts with very low calibration scores. Furthermore, these weights are potentially
more attractive, as they allow an expert’s weight to be higher or lower for individual
items/questions/variables, according to their knowledge about each question. Know-
ing less is usually translated into choosing percentiles further apart, and by doing
that, lowering the information score for that item. The combined score for expert i
is then different for each question j .

In contrast, the weights in (10.3) are referred to as global weights. For both
global and itemweights, calibration dominates over informativeness; the information
score serves to modulate between more or less equally calibrated experts, with one
exception, which will be discussed in the next section.

10.4 Post Elicitation

As mentioned in the previous section, the performance-based weights are used in
CM to combine experts’ judgements using a linear pool. The aggregation of expert
distributions is usually referred to as a Decision Maker (DM). We reiterate that a
DM in this context is a mathematically calculated distribution which corresponds to
a virtual expert. The real decision maker would adopt this distribution as their own,
representing rational consensus.

The performance-based weights distinguish between global and item weights,
which lead to two DMs, the Global Weight Decision Maker (GWDM) and the Item
Weight DecisionMaker (IWDM).Moreover, different GWDMand IWDMcombina-
tions can be obtained by choosing different values for the cutoff α parameter. The α

values which lead to distinct GWDMand IWDMare, in fact, the calibration scores of
the experts. Using α equal to the smallest calibration score results in the combination
of all experts’ assessments into the DMs. Choosing the next larger calibration value
translates into formingDMs using all but one expert. Choosing the largest calibration
as a cutoff level translates into DMs which are the same as the best-calibrated expert.
We distinguish between GWDM and optimised GWDM; GWDM uses α = 0 (but it
is essentially the same as using α equal to the smallest calibration which is usually
larger than zero), therefore accounts for all experts’ assessments, whereas optimised
GWDM uses α such that the combined score of GWDM is maximum. Similarly, we
have IWDM and optimised IWDM.

For the IWDM, the weights are different for each question, hence IWDM uses a
set of weights. If GWDM uses a vector of weights, IWDM uses a matrix of weights,
where each row represents the vector of weights corresponding to each question,
of interest or calibration. Concluding, for GWDM, experts’ weights are constructed
exclusively based on the calibrations questions. IWDM uses, alternatively, weights
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that are constructed both on calibration questions, as well as on questions of interest.
More specifically, the weights for each question of interest are computed using the
calibration score and experts’ information score of the question of interest.

The aggregation of expert distributions can also be done by using equal weights,
which gives the equal-weight decision maker, denoted by EWDM.

Finally, it is worth mentioning that even though CM aggregates experts’ distri-
butions, other approaches are possible, such as aggregating experts’ percentiles. A
discussion between emerging differences in DM’s distributions as well as DM’s per-
formance when aggregating distributions versus percentiles has been addressed in
Colson and Cooke (2017).

10.4.1 DMs and Their Scores

The final, and perhaps most important use of the performance-based scores is to
evaluate the performance of the many DMs and be able to choose the best one, as
measured by performance, which is expressed in terms of the combined score defined
in Section 10.3.3. This is arguably the only valid way of motivating one choice of
aggregation over others available.

DM distributions for the questions of interest are used as a final output of the
elicitation study. DM can however be regarded as an expert itself, albeit virtual, and
therefore one can derive its assessments also for the seed questions. These assess-
ments can be evaluated with respect to the calibration and information score, just
as for any other expert. The calibration score and informativeness of DM can be
compared to single experts’ performance. Moreover, both GWDM and IWDM can
be optimised by choosing the value of α which maximises the combined score of the
resulting DM. The combined scores of GWDM, IWDM and EWDM can be com-
pared; the combined scores are available in Excalibur and they are a standard output
of CM studies.

Excalibur also allows the users to export the DMs percentiles, which can then be
used to derive the DMs distribution and plot it along with the other experts’ distri-
butions. Figure10.8 presents the cumulative distribution functions and the density
functions of three experts along with the GWDM. Expert 1 and 2’s assessments
can be found in Table10.2, whereas Expert 5’s assessments are 70, 85 and 90. The
normalised weights are 0.8, 0.15 and 0.05, for Expert 1, Expert 2 and Expert 5,
respectively.

DMs distributions can be evaluated in terms of the performance scores. The range
of DMs’ calibration scores in professional applications can be seen in Fig. 10.9,
where the scores for EWDMs, the optimised GWDM and optimised IWDMs of 74
studies from the Delft dataset are shown12. The horizontal line corresponds to a

12There are 79 professional studies for which the DMs’ scores were reported in Colson and Cooke
(2017), Cooke and Goossens (2008). We were able to identify, re-run and reproduce scores for 74
of them.
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Fig. 10.8 Probability distribution functions (a) and cumulative distribution functions (b) of three
experts along with DM

Fig. 10.9 The calibration scores of 222 DMs (74 EWDM, 74 optimised GWDM and 74 optimised
IWDM) across studies available in the Delft dataset. The red line denotes the 0.05 significance level

calibration score of 0.05 and, contrary to the individual scores (see Fig. 10.4), the
minority (6.7%) of DMs’ calibration scores is below this level.

We consider separately the EWDMs and the GWDMs and analyse their perfor-
mance. This evaluation of the performance is usually referred to as an in-sample
validation. That is, the performance of DMs is evaluated on the questions that were
used to determine the DMs. Figure10.10 shows the GWDM scores on the x-axis and
the EWDM scores on the y-axis. The horizontal and vertical lines indicate the 0.05
significance level, which can be regarded as a threshold for the calibration score.
Very rarely one combination is below this threshold while the other is above. The
main diagonal represents equal performance from the calibration view point, and
again the two DMs are equally calibrated in very few cases. Given the discussion in
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Fig. 10.10 Pairs of 63 calibration scores for optimised GWDMs versus EWDMs across the studies
from the Delft dataset using at least 10 seed questions

Sect. 10.3.2.1 about small differences in the calibration scores, we may consider a
region around the main diagonal, where we cannot distinguish between calibration
scores (see the area bounded by dashed lines in Fig. 10.10). We consider only the
studies which used at least ten seed variables (63 out of the 74 used above). It results
that 41.27% of the scores fall within that region, and in 50.79% of the cases, the
GWDM calibration score is clearly better than the EWDM’s calibration score. In
only 7.94% of the studies was the EWDM’s calibration better than the GWDM’s.
Some would consider this as irrefutable evidence that the optimised GWDM com-
bination is either as good or better than the EWDM.

The picture changes dramatically whenwe consider the information scores. These
are shown in Fig. 10.11a. The vast majority of the scores are higher for the GWDM,
pattern which is repeated when looking at the combined score (see Fig. 10.11b).

Item weights sometimes improve over global weights. In the same dataset of 74
professional studies (that is all studies we initially considered and not just those with
more than ten seed questions), the informativeness of the IWDM is larger than the
informativeness of GWDM in 57.1% of the studies, IWDMs’ calibrations are only
20.6% of the times larger than that of the GWDMs. IWDMs’ combined scores are
larger than the PWDMs score for 41.3% of the studies.

Of course, the above analysis only serves as an in-sample validation of our intu-
ition that performance-based combinations are at least as, or more calibrated than,
and certainly more informative than the equally weighted combinations. Out of
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(a) Pairs of 63 information scores for optimised
GWDMs versus EWDMs across the studies from
the Delft dataset using at least 10 seed questions.

(b) Pairs of 63 combined scores for optimised
GWDMs versus EWDMs across the studies from the
Delft dataset using at least 10 seed questions.

Fig. 10.11 Optimised GWDMs versus EWDMs information scores (a) and combined scores (b)
across the studies from the Delft dataset using at least 10 seed questions

sample validation studies confirming the same results have been published in Col-
son and Cooke (2017), and the random expert hypothesis has been investigated in
Chap. 3, this volume. An ultimate proof that the observed differences in scores are
indeed important would be the possibility to use the different combinations in their
respective decision problems and confirm that such differences in performance result
in differences in decisions. Unfortunately, this does not seem to be possible. Maybe
future SEJ studies should follow up with such an analysis.

10.4.2 Optimised DMs

Optimised performance-based DM’s have been considered in the analysis of the
professional studies in the previous subsection. Even though clarified and discussed
with every opportunity, the optimisation procedure (which ensures that we are using
a proper scoring rule, at least asymptotically) seems to still make analysts and young
facilitators nervous, because this procedure is perceived as excluding experts (by
assigning them zero weight) from the final combination of judgements.

Weight zero does not mean value zero. Most of the time, this means that those
experts’ knowledge was already contributed by other experts. The value of un-
weighted experts is seen in the robustness of the answers against the loss of experts.
Excalibur has the option to perform such a robustness analysis and to recalculate the
scores thatwould have been obtained if expertswere completely excluded (rather than
weighted zero) from the analysis. One of the very important contributions experts
make is in determining the support of the variables. All experts contribute to these
ranges and, when one expert’s assessments are not taken into account, both the cali-

http://dx.doi.org/10.1007/978-3-030-46474-5_3
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(a) Robustness analysis for experts in the ice sheet
application detailed in [3].

(b) Item Weights Decision Maker Optimised combina-
tion for the ice sheet application detailed in [3].

Fig. 10.12 Weight zero does not mean value zero

bration scores and the information scores of the remaining experts may change. This
sometimes results in a worse calibrated DM. Below is one such example from the
ice sheet application published in Nature Climate Change.

Figure10.12a shows a snapshot from Excalibur obtained when clicking on the
Robustness (experts) button. Row i corresponds to the scores that would have been
obtained if Expert i was not part of the expert panel. The last row shows the scores
obtainedwhen all experts are involved. Figure10.12b shows the optimal combination
of experts when item weights are assigned. Only experts 1 and 7 are weighted in the
optimal combination. However, the robustness analysis shows that if one of them
is removed from the analysis, there is only a slight, irrelevant (given the number
of seeds) decrease in calibration. However, if expert 3, whose weight is zero in the
combination, is completely removed from the panel, the calibration drops from 0.7
to 0.3.

In the example above, the optimised IWDM (and GWDM) uses a combination of
the two best-calibrated experts from the panel. In this case, as in many other cases,
the optimised combination affords a higher calibration score than the two experts
individually. Even though this seems intuitive, it is not always the case. Hence, there
are cases when the optimised DM performs worse than the best expert. The reason
behind this is the following: when the optimised DM is used, the optimisation is
based on the calibrations scores alone.When there are two (or more) experts with the
same best calibration, the optimised DM includes them all in the final combination,
independent of the differences between their information scores. Their respective
weights will be differentiated using their information scores, but this may still result
in “optimal” DM whose calibration (or even combined score) is worse than the best
experts’ calibration. An explanation for this behaviour may be what Cooke calls a
“peculiar” sort of correlation, which “has never been observed in practice” (page
197 from Cooke 1991). However, since the book was written, this phenomenon was
observed in practice, even though in a different context than the one explored in

https://www.nature.com/articles/nclimate1778
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(a) Optimised Decision Makers for a recent defence ap-
plication detailed in [16].

(b) Robustness analysis for experts in a recent de-
fence application detailed in [16].

Fig. 10.13 The optimised DM is not alway optimum

Table 10.3 Correlation matrix of the three best-calibrated experts

Expert 1 Expert 3 Expert 10

Expert 1 1 −0.07 0.55

Expert 3 −0.07 1 −0.24

Expert 10 0.55 −0.24 1

Cooke (1991). We conjecture that these situations occur when the experts’ answers
are correlated in a certain way; however, it is not clear yet what this “certain way”
may mean. In a recent application detailed in Hemming et al. (2019), there were
three experts who received the best possible calibration (0.928) score to be obtained
on 13 seeds (which is the number of seeds used for this elicitation). Even though
it is common for two (or even three) experts to have the same calibration score,
it is rather unusual for three of the experts to have the same best calibration score
Fig. fig:defencespsrobDM.

Returning to the ice sheet example, we note that the combination of the three best
experts (experts 1, 3, and 10) leads to poorer performance for both theGWDMand the
IWDM. However, taking one of the best-calibrated experts out of the combination
restores the score of the DMs to equal that of the best-calibrated experts. This is
true only when we take expert 1 out of the analysis, as shown in Fig. 10.13b. The
dependence structure between these three experts in Table10.3 is depicted.

Expert 1’s assessments seem to be positively correlated with those of expert 10
and uncorrelated with those of expert 3. The two experts whose combination would
be better calibrated seem to be slightly negatively correlated (even though on 13 sam-
ples this correlation is not significantly different than zero). The correlation values
were calculated based on the medians of the experts rather than all three quantiles, in
a similar way to the calculations performed in other studies that investigated depen-
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dence between experts’ assessments (seeKallen andCooke 2002;Wilson and Farrow
2018).

There is an unequivocal need for more research into these issues and more aware-
ness of the possibilities.

10.5 Closing Remarks

This chapter draws attention to some (maybe less discussed) aspects of the theoretical
background of CM. One of these aspects is the misinterpretation of the differences
between calibration scores. Another one regards the intuitive relation between the
wideness of the uncertainty bounds and the information score. The chapter also aims
to provide a thorough overview of practical aspects and choices that practitioners
face before and during the elicitation process.

“The qualifier structured means that expert judgement is treated as scientific data,
albeit scientific data of a new type” (Cooke 1991). The name of the method itself the
“ClassicalModel” emphasises the close connectionswith classical statistics. Further-
more, the method has auspiciously laid grounds for further statistical endeavours,
such as goodness of fit and validation. If one regards the DM’s performance as a
goodness of fit measure, then the optimised DM’s distributions are constructed such
that they best fit the expert data. The evaluation of the performance-based DM has
also been referred to as an in-sample validation. Furthermore, notable effort has been
undertaken (Colson and Cooke 2017) to validate CM out-of-sample. The scores of
performance-based DM’s are hence evaluated on questions that have not been used
to construct DM’s distributions.

Despite the demanding nature of CM, the results from the studies show that the
effort of forming and using performance-based combination of experts’ distributions
is definitely worthwhile.
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