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Chapter 6
Carotenoids as Coloring Agents

Arnab Karmakar, Abhishek Kumar Das, Sumit Ghosh, and Parames C. Sil

6.1  Introduction

Pigments are the chemical compounds responsible for producing color on an organ-
ism and are present in photosynthetic plants and microbes including colored fruits, 
vegetables, leaves, flowers, bacterial colony, skin, eye and many more. Color is one 
of the essential features of foods, influencing its demand among consumers. The 
proper color increases its appeal, whereas inappropriate coloration leads to an 
impression that the food is ineligible of consumption [1]. Food colors can be of vari-
ous categories: (i) natural colors are pigments raised by living organisms, (ii) indus-
trially produced natural pigments are known as nature identical colors, (iii) synthetic 
colors are laboratory produced colors that are not found in nature, (iv) inorganic 
colors are obtained from inorganic salts and metallic compounds. The colorant is 
added to the food for various reasons like (i) enhancing or replacing the color lost 
during processing or storage, (ii) maintaining color uniformity due to seasonal 
(batch to batch) variation, (iii) coloring the uncolored food products, (iv) increasing 
the acceptability of food items to the consumers, etc. [2].

From ancient times, colorants are used for marketing purpose in better satisfac-
toriness of food products as well as cosmetics, textile and other kinds of stuff [3]. 
Although colored garments were found in the remnants of Mohenjodaro and 
Harappa civilization (3500 BC); the oldest written record of usage of natural dye 
was found in China dated 2600 BC. Subsequently uses of dyes were observed in 
other parts of the world including the Indian subcontinent, Egypt, Europe and Brazil 
[2]. The first synthetic organic dye was mauveine, discovered by Sir William Henry 
Perkin at 1856 [4]. Although the synthetic colorants gained huge popularity at that 
time, gradually the demand of natural colorants increased due to perspectives of 
toxicity, hygiene and environmental consciousness. Color additives used in food, 
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drug and cosmetics must be on a positive note as directed by different organizations 
like Food and Agricultural Organization (FAO), World Health Organization (WHO), 
Joint FAO/WHO Expert Committee on Food Additives (JECFA), etc. [5].

Based on the chemical structure, pigments are divided as tetraterpenoids (carot-
enoids), anthraquinones (carmine), flavonoids (anthocyanins) and tetrapyrroles 
(chlorophyll) [6]. Carotenoids are natural pigment synthesized by plants and 
microbes. These pigments may be red, yellow or orange depending on its necessity 
of fulfilling its physiological function [7]. Carotenoids are heavily used as a bio-
colorant. Large scale production of nature identical carotenoids has been flourished 
due to its demand.

6.2  Mechanism of Coloration by Carotenoids

Carotenoids are broadly characterized based on their molecular composition. 
Carotenoids made up of solely hydrogen and carbon is known as carotene 
(α-carotene, β-carotene, lycopene etc.) whereas molecules bearing oxygen atoms 
are known as xanthophylls (lutein, zeaxanthin, astaxanthin etc.) (Figs. 6.1 and 6.2) 
[7]. These molecules are tetraterpene derivatives, i.e., they are generated from 8 
isoprene molecules and bear 40 carbon atoms. Usually, carotenoids absorb light in 

Fig. 6.1 Different types of carotenes
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wavelengths ranging between 400–550 nm (i.e., violet to green light) causing the 
compounds to be yellow, red, or orange (Fig. 6.3). Their color is directly associated 
with their structure. The carbon-carbon (C=C) double bonds in their structure 
 interact with each other. This process of conjugation permits electrons in the mole-

Fig. 6.2 Different types of xanthophylls

Fig. 6.3 Color of various 
carotenoids: Carotenoids 
can have different colors 
based on the number of 
double bonds present in its 
polyene tail
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cule to move freely around the C=C regions [8]. With the increase in the number of 
conjugated double bonds, electrons associated with the conjugation system experi-
ence more space to move freely and the energy requirement for the change of state 
decreases. With the resultant decrease in the range of light energy absorbed by the 
molecule, higher the wavelength of light absorbed from the longer end of the visible 
spectrum, higher is the rate of acquisition of red appearance by the compounds. On 
the other hand, the length of the carotenoids plays an essential role in the coloration 
of plants. The length of the polyene tail defines the chromophore, thus determining 
the wavelengths of light to be absorbed by the plant. Wavelengths, not absorbed, are 
reflected as the plant’s color [9]. Therefore, different species of plants containing 
carotenoids of varying tail lengths allowing the absorption and reflection of differ-
ent colors. Carotenoid based coloration is more complicated in animals (Fig. 6.4). 
For example, the bright feather colorations of birds can be due to pigments or by 
well-organized tissue. Reports reveal that yellow plumage color of American gold-
finches is generated by both reflection of light from the white structural tissue and 
absorption of light by the carotenoids. Thus, structural components of feathers are 
linked with the carotenoid display of yellow color [10]. Several prominent carot-
enoids found on different classes of organisms are listed on Table 6.1.

6.3  Carotenoid Coloration in Microbes

Microorganisms are massively used in industries to produce various enzymes [11], 
organic acids [12], insecticides [13], antibiotics, recombinant proteins [14], bread 
and other beverages [15] along with pigments and natural colors. The large-scale 

Fig. 6.4 Mechanism of color formation
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production of pigments from microorganisms is developing very fast due to easy 
fermentation, low cost production from agro waste products and relatively easy 
isolation process. Several critical factors are considered during pigment formation 
like optimum temperature, pH, carbon source, nitrogen source, fermentation time, 
etc [16].

6.3.1  Algae

Characteristically, algal carotenoid is present in a complex form inside chloroplasts. 
The accumulation of pigments is observed under different stress conditions like 
high light intensity, high temperature, nutrient starvation, etc. [17]. Among the chlo-
rophyte algae (green algae), Dunaliella bardawil is the most notable green algae, 
acting as a source of a massive amount of β-carotene [18]. Dunaliella salina is rich 
in 9-cis-β-carotene and lutein [19]. Another green algae, Haematococcus pluvialis, 
is rich in astaxanthin [20], canthaxanthin and lutein [21]. Scenedesmus sp. contains 
lutein and β-carotene [22]. Chlamydomonas reinhardti, another type of green algae, 
produce zeaxanthin under stress conditions [23]. Other microalgae like Isochrysis 
galbana (haptophyte), Mallomonas sp., Phaeodactylum tricornutum (ochrophyta) 
and Odontella aurita (bacillariophyte) contains fucoxanthin and diatoxanthin [24]. 
Rhodophytes or red algae contain α- and β-carotene derivatives [25].

Table 6.1 Major carotenoids found in different classes of organism

Organism Possible carotenoids found

Green algae β-Carotene, lutein, astaxanthin, canthaxanthin, zeaxanthin
Micro algae Fucoxanthin
Paracoccus Astaxanthin, zeaxanthin
Fungi β-Carotene, astaxanthin, neurosporaxanthin, etc.
Yeast β-Carotene, torulene, torularhodin etc.
Plants β-Carotene, xanthophyll, lycopene, capsanthin, lutein, violaxanthin, etc.
Sea sponge Bastaxanthin
Corals Diadinoxanthin, pyrrhoxanthin, peridinin, etc.
Sea 
anemones

Actinioerythrin, 2-nor astaxanthin

Arthropods Canthaxanthin, astaxanthin, crustacyanin, 3-hydroxy echinenone, etc.
Molluscs β-Carotene, astaxanthin, alloxanthin, fucoxanthin, pectenolone, 7,8-didehydro 

astaxanthin, etc.
Echinoderms β-Carotene, 4-keto depoxy neoxanthin, etc.
Tunicates Fucoxanthin, diatoxanthin
Fishes Tunaxanthin, taraxanthin, eichinenone, β-carotene, lutein
Birds β-Carotene, xanthophyll, etc.
Mammals β-Carotene, lutein, astaxanthin, etc.
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6.3.2  Bacteria

Pigments in bacteria are mainly found as secondary metabolites [26]. Different spe-
cies of Brevundimonas [27] and Paracoccus [28] are rich in astaxanthin. Zeaxanthin 
can be found on Paracoccus zeaxanthinifaciens [29], Erwinia herbicola [30] and 
Synechocystis sp. [31]. Another carotenoid Canthaxanthin is mostly found on 
Bradyrhizobium sp. which is used in salmon and poultry feed as a colorant [32]. 
Apart from the native carotenoid producing bacterial strains, several other E. coli 
strains are present with modified metabolic pathways to produce a more consider-
able amount of β-carotene and other carotenoids [33].

6.3.3  Fungus

The main three carotenoids, namely β-carotene, astaxanthin and neurosporaxanthin 
are abundant among fungal families. β-carotene can be found in numerous species 
of the order Mucorales like Blakesleatri spora [34] and Phycomyces blakesleeanus 
[35]. Different types of basidiomycetes like Rhodosporidium sp., Sporidiobolus 
pararoseus, Sclerotinia sclerotiorum, Ustilagomaydis sp. were found to exhibit 
β-carotene biosynthetic pathways [36]. Several ascomycetes like Penicillium sp., 
Aschersonia aleyroides and Aspergillus giganteus also contain β-carotene [36]. 
Astaxanthin can be found on X. dendrorhous which is used in the industrial purpose 
for large scale pigment production. Neurosporaxanthin was first discovered in 
Neurospora crassa but can also be found on Fusarium fujikuroi [36] and Verticillium 
agaricinum [37]. Different types of yeast species are of industrial importance for 
carotenoid production. The yeast Phaffia rhodozyma sp. is used as an industrial 
source of astaxanthin [38]. Carotenoid profiling of Rhodotorula sp. has shown the 
presence of β-carotene, torulene and torularhodin. The latter two carotenoids are 
also synthesized by Sporidiobolus, Sporobolomyces and Rhodosporidium sp. [39].

6.4  Carotenoid Coloration in Plants

In plants, the carotenoids are synthesized in both chromoplasts and chloroplasts. 
They impart color to photosynthetic tissues and also to fruits, flowers, storage 
organs, etc. [40]. Carotenoids found in mature chloroplasts mainly take part in 
 photosynthesis [41, 42] whereas carotenoids found in chromoplasts primarily func-
tion as a coloring agent and lead to the attraction of some pollinators, some seed- 
distributing herbivores, etc. [43]. Chromoplast derived carotenoids are a rich source 
of antioxidants and pigments.

A. Karmakar et al.
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6.4.1  Leaves

Carotenoids are found in leaves and their occurrence varies according to the change 
of seasons. Tree leaves undergo senescence in autumn, which causes their color 
change from green to yellow.

During spring, some xanthophylls are found to be absent in tree leaves, whereas 
they come back during autumn. Earlier it was thought that some oxidation process 
in the plastid caused carotenoids formation, resulting in the phenomena. Later, 
detailed studies reported that the xanthophyll-carotene ratio increases during 
autumn, which causes a color change in leaves [44, 45].

6.4.2  Flowers

The flower coloration is solely dependent on the synthesis of carotenoids in chro-
moplast. Thus, carotenoids have a substantial impact on the flower industry mainly 
for aesthetic reasons as well as in the areas of traditional medicine because some 
carotenoids extracted from dried flowers are used as a food colorant and flavoring 
agents. The diversity and quantity of carotenoids differ widely in plants even within 
the same species. Flowers with white petals contain very few carotenoid molecules. 
In contrast, flowers with bright and dark colored petals consist up to 20-fold of the 
carotenoid content of leaves [46].

Marigold flowers are the major source of lutein, which is used commercially in 
flower and food industries. Lutein is responsible for the orange to yellow hues of the 
marigold petals [47]. Bright yellow colored flowers of Gentian (Gentiana lutea) are 
abundant in β-carotene and xanthophylls [48]. Development of such flowers shows 
upregulation of carotenoid synthesis as well as a shift in carotenoid profile from 
lutein to neoxanthin, zeaxanthin, and antheraxanthin [48, 49]. Another spectacular 
flower called Morning glory of genus Ipomoea is renowned for its diverse flower 
colors. Many species are rich in carotenoid due to their bright orange and yel-
low petals.

Interestingly, the Japanese morning glory (Ipomoea nil) lacks carotenoid accu-
mulation since its petals are white. In a particular study, an attempt was made to 
determine the accumulation of carotenoids by comparing Japanese morning glory to 
two yellow-flowered species of Morning glory [50]. It was found that during early 
development of the flowers, all the species accumulated β-carotene, lutein and vio-
laxanthin in the petals, the same carotenoids present in the leaves. During later 
development, however, the yellow flowers switched to chromoplast-derived carot-
enoid accumulation including zeaxanthin, β-cryptoxanthin and β-carotene [46, 51]. 
The white flowers did not accumulate any chromoplast derived carotenoid even in 
later developmental stages [50].

The Asiatic hybrid lily (Lilium sp.) is another commercially valuable ornamental 
plant which has flowers ranging from red, yellow to pink. Carotenoids impart the 
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red, orange and yellow colorations whereas the pink color is due to anthocyanin. 
Most carotenoids found in yellow petals are violaxanthin, antheraxanthin, cis-lutein, 
etc. An unusual accumulation of capsanthin is also found in red petals [52, 53].

6.4.3  Fruits and Vegetables

There are mainly three types of carotenoids found in fruits and vegetables: 
β-carotene, xanthophyll and lycopene. They are responsible for the orange-yellow 
and red pigmentation in various vegetables and fruits [54]. Orange-yellow carot-
enoids include carotene and xanthophyll occurring in fruits and vegetables. 
β-carotene is orange in color while α-carotene is yellow [55], and the former being 
more abundant in fruits and vegetables than the latter. β-carotene is found less in 
yellow colored fruits and vegetables and more in quantity in orange colored ones. 
Xanthophylls like lutein, which appear yellow and zeaxanthin which appears 
orange-yellow, are mainly found in many fruits and vegetables with yellow-orange 
color [56].

Vegetables like carrot, tomato and sweet potato are good sources of β-carotene. 
Along with that, many green vegetables are also reported to have a decent amount 
of β-carotene [57]. Tomato (Solanum lycopersicum) is the widely researched plant 
model system for the study of carotenoid accumulation [58]. Green leafy vegetables 
from the genera of Moringa, Brassica, Coriandrum, Solanum, etc. are reported to 
contain lutein and zeaxanthin [59, 60].

Lycopene is abundant in fruits like pink grapefruit, watermelon, papaya, etc. 
[61]. The red color of ripe fruits shows the accumulation of lycopene. The red col-
oration is believed to be originated from lycopene, though contributions from antho-
cyanins [62, 63] and xanthophylls [64–66] are also reported. Similarly, orange 
colored fruits like mango, papaya, pink guava, watermelon, etc. are good sources of 
β-carotene. Commercially important kiwi fruit of genus Actinidia is an important 
model for studying carotenoid accumulation in fruits. This fruit comes in a range of 
colors including green, red, purple, orange and yellow. In ripe kiwi fruit, A. delici-
osa, green flesh is a distinguishing feature and it is due to the retention of chloro-
phyll during ripening. The carotenoids occurring in this species are those related to 
the chlorophyll containing tissues [67] including 9′-cis-neoxanthin, lutein, violax-
anthin and β-carotene. A. chinensis Cv. Hort16A is a recently commercialized selec-
tion ZESPRI Gold Kiwi fruit. It has bright yellow flesh and also the presence of 
green color with varying levels of brightness is seen. It has been found that its yel-
low color is due to the presence of lutein and violaxanthin, but there is an absence 
of chlorophyll-b which is present in A. deliciosa. Also, the bright orange color of 
A. macrosperma is due to the presence of high level of lutein and β-carotene. 
Concentrations of β-carotene are high at about ~20 mg/100 g of fresh fruit weight 
that provides a total carotenoid concentration higher than that of most other yellow 
colored fruits [68]. Another fruit of this genus, A. polygama, is light orange to yel-
low in color. Here, the concentration of xanthophylls was found to be higher than in 
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other species. Moreover, it showed a high degree of β-carotene and zeaxanthin con-
centration [69].

6.5  Carotenoid Coloration in Animals

Carotenoids in animals are not synthesized de novo; instead, they are taken from 
food or modified metabolically [70, 71]. Various kinds of carotenoids with struc-
tural diversity are found in marine animals, birds, etc.

6.5.1  Poriferans

Phylum Porifera consists of a diverse group of sponges with brilliant colors because 
of the presence of carotenoids. Mostly aryl carotenoids are found in the sponges 
such as renierapurpurin, isorenieratene and renieratene [72]. Aryl carotenoids are 
also found in green sulfur bacteria other than sea sponges. So, it has been assumed 
that the aryl carotenoids in sponges originate from symbiotic bacteria. Bastaxanthins, 
a class of acetylenic carotenoids have been isolated from sea sponge Ianthella basta 
[73], which are thought to be metabolites of fucoxanthin, a carotenoid found in 
microalgae.

6.5.2  Coelenterates

In jellyfishes, the most dominant form of carotenoid found is astaxanthin, which 
comes from the zooplanktons that they feed on. Other forms like the diadinoxan-
thin, pyrrhoxanthin and peridinin in some corals [74] come from the symbiotic 
dinoflagellates. Sea anemones are another group of brightly colored coelenterates 
that possess carotenoids. For example, Actinia equina and Tealia feline [73] possess 
two unique carotenoids: 2-nor astaxanthin and actinioerythrin, respectively.

6.5.3  Arthropods

The crustaceans have carapace with bright color due to the presence of carotenoids, 
mostly astaxanthin. They feed on algae from where they acquire β-carotene and 
metabolize it to astaxanthin via other intermediates, namely echinenone, 
3-hydroxyechinenone, canthaxanthin and adonirubin [70]. This astaxanthin exists 
in carapace in the form of carotenoproteins like crustacyanin and results in yellow, 
purple and blue color formation.

6 Carotenoids as Coloring Agents
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Accumulation of carotenoids by insects to acquire color in their body, eggs and 
even galls are seen widely. The green color in some insects and the purple-blue 
color in other arthropods are due to the presence of carotenoids. This alteration in 
color is due to the reaction with specific carotene protein or some of the chlorophyll 
degradation products like pterobilin [75]. Blue pigments like pterobilin combine 
with carotenoids to impart cryptic coloration in insects [76]. Studies have shown 
that carotenoids are responsible for the various intraspecific color morphs in aphids. 
Torulene imparts red coloration to the color morphs of aphid [77]. The bright red 
color of elytra in several ladybirds is also found to be derived from carotenoids [78]. 
Carotenoids are extracted from hair tuft and body of several lepidopterans [79] 
including the monarch butterflies where it confers the dramatic yellow stripes of 
caterpillar [80]. The green color of butterfly larva and stick insect (Dixippus moro-
sus) is due to the combination of carotenes with other blue pigments [81]. 
Carotenoids, along with chlorophyll degraded products, impart green color to many 
lepidopteran larvae.

6.5.4  Molluscans

Chitons are molluscan herbivores, which mainly feed on algae. Carotenoids found 
in chitons are zeaxanthin, fucoxanthin, lutein and some of their metabolites [82]. 
Carotenoids found in sea snails like Haliotis discus and Turbo cornutus are zeaxan-
thin, fucoxanthin, lutein, α-carotene and β-carotene [74]. Apart from the herbivores, 
there are carnivores like the sea snails which feed on corals and zooplankton. The 
carotenoids found in them are mostly dependent on their diet as in the case of 
Charoniasauliae, which feeds on starfish, has been found to have 7,8,7′,8′-tetrade-
hydroastaxanthin, 7,8-didehydroastaxanthin and astaxanthin which are some of the 
specific carotenoids of starfish. Diadinoxanthin and peridinin present in corals are 
also found in the sea snails (Drupella fragum) which prey upon these corals [74]. In 
spindle shells (Fushinus perplexus), (3S)-adonirubin and (3S,3′S)-astaxanthin are 
the major carotenoids [83]. Sea hares and sea slugs are herbivores who feed on red 
and brown algae. Apocarotenoids are found in sea hares and sea slugs [75]. In 
Aplysia kurodai, apocarotenoid derived from zeaxanthin, lutein and β-carotene are 
found [84]. Bivalves modify the carotenoids they accumulate from dietary microal-
gae. Major carotenoids reported in bivalves are the metabolites of diadinoxanthin, 
diatoxanthin, alloxanthin and fucoxanthin [70]. Oxidative metabolites of alloxan-
thin and diatoxanthin like 4-hydroxyalloxanthin, 4-ketoalloxanthin, pectenolone 
and pectenol are widely distributed among ark shells and scallops [70, 71]. Bright 
red and orange colors are found to be present in some edible clams. Major carot-
enoids found in Meretrix petechialis, Ruditapes philippinarum and Mactra chinen-
sis are mostly fucoxanthinol 3-ester and fucoxanthin [85]. In cuttlefish and octopus, 
major carotenoids found are astaxanthin and its esters.
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6.5.5  Echinodermatans

Echinenone, an oxidative metabolite of β-carotene, is found in the gonads of sea 
urchin [70]. Starfishes mainly feeding on small crustaceans and bivalves have been 
reported to acquire astaxanthin, 7,8,7′,8′-didehydroastaxanthin and 
7,8- didehydroactaxanthin. Acanthaster planci also called the crown-of-thorns star-
fish is a nocturnal sea star which preys on coral polyps. Four new carotenoids, 
namely 3′- epigobiusxanthin, 7,8-dihydrodiadinoxanthin, 4-keto-4′-
hydroxydiatoxanthin and 4-ketodepoxyneoxanthin are found in A. planci as the 
minor components and 7,8-didehydroastaxanthin, peridininol and astaxanthin as 
significant components [86]. Ophioxanthin is reported in Ophioderma longicau-
dum, the brittle star. Astaxanthin and canthaxanthin are found in the gonads of sea 
cucumber as the major carotenoids [87]. Lutein, zeaxanthin and astaxanthin have 
been isolated from spiny sea star Marthasterias glacialis [88].

6.5.6  Protochordates (Tunicates)

Being filter feeders, phytoplankton and diatoms, are the main sources of food of 
tunicates. Carotenoids originating from diatoms, like the metabolites of fucoxan-
thin, alloxanthin and diatoxanthin are mostly found in the tunicates [70].

6.5.7  Pisces

Predominant carotenoids found in fishes are tunaxanthin (yellow), α-β-dordexanthin 
(yellow), β-carotene (orange), lutein (greenish yellow), canthaxanthin (orange-red), 
zeaxanthin (yellow-orange), taraxanthin (yellow), eichinenone (red) and astaxan-
thin (red). These carotenoids are the metabolites of other carotenoids which fishes 
accumulate in their body through diet. Astaxanthin is the primary carotenoid found 
in ornamental as well as exotic fishes which causes their red and pink coloration. 
Accumulation of carotenoids mainly occurs in the gonads and integuments of fishes. 
Interestingly, salmonids accumulate astaxanthin in muscles. Salmonidae and 
Perciformes fishes cannot synthesize astaxanthin. Hence, the astaxanthin present in 
their body comes solely from the dietary zooplanktons. Perciformes fishes are found 
to possess tunaxanthin which imparts the bright yellow color to the skin and fins of 
these marine fishes [70, 89]. Cyprinid fish oxidatively metabolize zeaxanthin and 
synthesize 3S,3’S-astaxanthin. Micropteroxanthins, some unique apocarotenoids, 
are found in the integuments of Micropterus salmoides [90].
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6.5.8  Birds

Carotenoids impart the red, yellow and orange coloration to the plumage in the 
majority of birds [91, 92]. As birds cannot synthesize carotenoids de novo, they 
modify dietary carotenoids biochemically [92]. The main dietary carotenoids for 
most of the birds are β-carotene, zeaxanthin & β-cryptoxanthin and these are con-
verted biochemically to red ketocarotenoids and yellow canary xanthophylls which 
get deposited in the feathers and some bare parts [92]. It has been found that wild 
type canaries deposit xanthophylls in the feathers that impart the yellow coloration 
unique to this species [93].

6.5.9  Mammals

Marine mammals like dolphins are reported to have β-carotene and lutein [94]. 
Whales accumulate astaxanthin as a result of their preferred feeding habit on krill, 
which are small crustaceans carrying this carotenoid type in their body.

6.6  Carotenoids as Food Colorants

The range of colors of carotenoids varies from yellow to dark red. β-carotene is the 
most widespread carotenoid which occurs naturally in many foods like egg yolk, 
fish, milk, butter, spinach, tomato, corn, oranges, pineapples, mangoes, etc. β-apo-8′ 
carotenal (apo-carotenal) is found in citrus fruits, spinach, marigold, grass, other 
green plants and animal tissues. Canthaxanthin (4,4′-diketo-β-carotene) is another 
carotenoid which is distributed in algae, crustaceans, sea trout, edible mushrooms, 
etc. Therefore, it is relevant that carotenoids are used as food coloring agents artifi-
cially as well [95, 96].

The β-carotene is used in several forms to color different food items. 30% 
β-carotene liquid suspension is used for coloring oil and fat products, cheese, mar-
garine, frozen egg yolk, winter butter, etc. 24% β-carotene semisolid suspension is 
used in margarine and other fat based products. 22% β-carotene HSR liquid suspen-
sion is used for coloring cooking oil (heat stressed) and in fat based foods where the 
stability of carotene is required in a greater way. 3.6% β-carotene liquid emulsion is 
used for colouring fruit juice blends especially orange color drinks. Dry 10% 
β-carotene beadlets are used to color water-based foods, beverages and reconstitut-
ing dry products in warm water. Dry 2.4% β-carotene beadlets is used for coloration 
of beverages, reconstitution of water based liquid and dry foods in water [95, 96].

Similarly, apo-carotenoid is utilised in many forms for food coloration. Apo- 
carotenal is a good replacement for oleoresin of paprika in many dressing products. 
It not only improves the color stability but also offers a uniform composition as well 
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as colour. French dressings are also coloured readily with apo-carotenal. 20% Apo- 
carotenal liquid suspension is used in fat and oil product coloration, cheese and 
salad dressing. 2% carotenal solution is also used for salad dressing and coloring 
some fat-based products. Moreover, it is also used for plating dry spices and other 
breading mixers [95, 96].

Canthaxanthin is also used as a food colorant. Roxanthin Red 10® dry canthax-
anthin beadlets is used for the coloration of tomato products, meat products, dry or 
water based products which are reconstituted in warm water. 10% Canthaxanthin 
SD is also used for colouring water based products, tomato products and any other 
products for reconstitution in water [95, 96].

6.7  Carotenoids as Dyes

One of the most critical methods for the isolation of lipophilic pigments (e.g., lutein 
& zeaxanthin) from crude plant extracts involves high-speed counter-current chro-
matography (HSCCC). However, the pigments neoxanthin, violaxanthin, β-carotene, 
chlorophylls a and b can also be isolated by this process [97]. Another mode of 
extraction of carotenoids is by using magnetic stirring, which is an alternative to 
ultrasound extraction techniques [98].

Owing to their toxicity, nowadays, natural pigments are being explored as poten-
tial textile dyes. Fungi are significant sources of carotenoids. In a recent study, a 
fungal strain Talaromyces verruculosus from spoiled mango and capable of produc-
ing pigments suitable for textile dyeing, was isolated. The extracted pigment was 
applied to cotton fabric following a standard dyeing procedure and it exhibited 
adequate color yield. However, the exact nature and structure of the extracted pig-
ment are yet to be investigated [99].

In another study, carotenoids extracted from orange peels were investigated of 
their potency as textile dyes. Effect of combination of different solvents like ace-
tone, ethanol & hexane and their mixtures on the carotenoid yield from the orange 
peel wastes was studied. It was observed that acetone-hexane-ethanol (55–45-4%) 
mixture was able to extract more carotenoids than other mixtures. 3% alum of the 
net weight fraction of cotton and copper sulfate were used as mordants. Carotenoids 
dye isolated from orange peels were used as dyes for cotton fabrics with potent fast-
ness properties [100].

6.8  Carotenoids in Industry

Many industrial sectors like food, textile and cosmetics are leaning towards bio- 
colorants from synthetic artificial colors as they are more stable, less toxic and 
cheaper than the synthetic ones [101]. Pigments with microbial origin are gradually 
gaining special interest over synthetic dyes due to their higher yield, easy down-
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stream processing and higher shelf life [102]. The current market share of carot-
enoids is not clearly known, but several market research reports have shown a clear 
increasing trend of carotenoid market growth. BBC research has stated that the 
global carotenoid market had reached $1.5 billion in 2017 and it is expected to 
touch $2.0 billion by 2022 (www.bccresearch.com). Mordor Intelligence (www.
mordorintelligence.com) has predicted the total global feed carotenoid market to 
cross $2100 million in 2020 in their report ‘Feed Carotenoids Market - By Type, 
Animal Type and Geography-Trends and Forecasts (2017–2022). 60% of the total 
market share of carotenoids are made up of β-carotene, astaxanthin and lutein [103]. 
According to Grand View Research (www.grandviewresearch.com), the leading 
industrial source of β-carotene is from algae and fruit-vegetable. They have also 
presented a possible β-carotene market application showing dietary supplements 
and food & beverages as the prime consumption area.

6.9  Conclusion

Carotenoids act as important coloring agents. They are found to impart color in dif-
ferent types of microbes, plants and animals. The mechanism of color generation is 
dependent on the structure of different types of carotenoids. They impart colors in 
the range of yellow to red to orange, i.e., within a wavelength range of 440 to 500 
nanometers. Due to growing health consequences, the use of nature identical colors 
is increasing day by day. The use of microbial pigments is one of the major develop-
ing industries in the food sector. The industrial production of natural pigments is 
relatively low to compensate for the vast number of synthetic dyes that are being 
used. So, it is necessary to discover novel and new natural pigments. For large scale 
productions optimising several factors like metabolic engineering, biotechnological 
manipulations and strain specific fermentation can make better result in quality, 
quantity and cheap production of the pigments. Nano-pigments could be a solution 
for carotenoids with low solubility or stability, increasing its shelf life.
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