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Chapter 2
Managing Crop Rotations in No-till 
Farming Systems

Leonard Rusinamhodzi

Abstract  Crop rotation is an important pillar of no-till (NT) cropping systems for 
soil fertility management, and pests and disease control. In this chapter, the poten-
tial benefits of crop rotations under NT systems are discussed and challenges high-
lighted, including possible solutions where it was practical to do so. Cereal-grain 
legume rotations are the most ideal for small farms, especially the dual-purpose 
legumes, which play a significant role in nutritional diversity at the farm level. This 
is because the legume will produce edible leaves and grains  – and sometimes 
mature earlier than the main crop covering critical food deficit periods before the 
main crop is harvested. However, limited landholdings prevent widespread adop-
tion of cereal-legume rotations. Large scale farmers have many crop rotations 
options, and they are able to make a profit due to fuel and labor savings with NT in 
combination with cultivating cash legumes on a large scale, which have multiple 
uses as food or feed. In the future, the design of crop rotations has to address a 
range of issues, especially for small scale farmers, including: (a) small land sizes; 
(b) multiple uses of legumes crops, including leaves; (c) crop-livestock integration 
and use of crop residues as livestock feed; (d) poorly developed markets for 
legumes; (e) differences in planting techniques between legumes and non-legumes; 
and (f) farmers perception of risk. It is concluded that crop rotation is an integral 
component of good agricultural practice and is much more critical in NT systems 
where pests and diseases outbreak is high, and additional N from nitrogen fixa-
tion needed.
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2.1  �Introduction

Crop rotation is the strategic practice of growing different types of crops in a pre-
planned sequence on the same field. Crop rotation along with NT and mulch cover 
constitute the tripartite principles that define conservation agriculture (CA) or NT 
systems farming (see FAO CA web site: http://www.fao.org/ag/ca/1a.html). The 
retention of crop residues and absence of soil inversion in NT systems may prolifer-
ate pests and disease outbreaks, thus crop rotations are particularly important for 
pests and disease control in NT farming systems (Morrison et al. 2017).

Crop rotation options can start from the very simple 1-year rotation cycle includ-
ing only two crops, such as maize (Zea mays L.) followed by soybean (Glycine max. 
(L) Merr.), to more complicated 3-year rotation cycles involving as many as five 
crops. The choice of rotation cycle and the component crops depend on several 
agronomic and economic factors including source of moisture (rain or irrigation), 
soil nutrient status, input markets, crop duration, and crop uses, including consump-
tion or marketing (Jodha and Singh 1990). In Australia for example, the sequence of 
crops can flexible, long or short phase, not repeated or fixed, and depends of locality 
(Wolfe and Cregan 2003; Lawes 2015). The long-phase rotation system involves 
several years of a pasture phase followed by a number of years of cropping. The 
short-phase rotation comprises alternating years of pasture followed by a crop 
sequence such as wheat followed by lupin. When the conditions are favourable, the 
rotation of two or more crops such as maize followed by soybean and then vegeta-
bles can be done within 1  year (Wolfe and Cregan 2003; Kirkegaard and Hunt 
2010). Another interesting complex rotation comes from Brazil, NT production 
generally involves four main crops i.e. soybean, maize, wheat, and oats (Brown 
et al. 2001). Two crops are fitted in 1 year i.e. maize or soybean in summer and 
wheat or oat in winter (Brown et al. 2001). Some farmers may include other crops 
in the double-crop system, but this depends on the farmers production decisions and 
the costs.

Crop rotation can be considered as one of the best strategies for yield improve-
ment, although it requires increased expertise, equipment, and different manage-
ment practices. Certain insect pests and diseases may spread easily from one crop to 
the next through the crop residues and careful design and management is needed 
(Kirkegaard et al. 2014). The objective of this chapter is to discuss the agronomic 
importance of crop rotations in NT farming systems with a special focus on soil 
nutrient status, and pest, weed, and disease management. Additionally, crop rota-
tions options suitable for various systems, including those of different scale and in 
different climatic regions, and the challenges and opportunities for effective rotation 
cycles are discussed.
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2.2  �Effect of Crop Rotation on Soil Fertility

Crop rotation influences soil fertility through several aspects and mechanisms 
including, soil erosion control through increased infiltration, reduced soil compac-
tion, reduced soil crusting, nutrient addition such as N, soil organic matter build up, 
and increased biological activity (Franzluebbers 2002; Rusinamhodzi et al. 2009, 
2011; Castellanos-Navarrete et al. 2012; Fuentes et al. 2012; Nyamadzawo et al. 
2012). Yield increases under real farmer conditions are often used as a proxy for 
improved soil fertility. As can be shown in Fig. 2.1, crop rotation with NT is supe-
rior to NT without rotation, especially in the long-term (Rusinamhodzi et al. 2011). 
Although the magnitude of effects differ in time and place, there is widespread 
agreement on the positive effects of crop rotations on system productivity, including 
yield (Rusinamhodzi et al. 2012; Thierfelder et al. 2013). Most studies that have 
assessed crop rotation in NT systems generally reported positive effects on crop 
yields, agreeing with Karlen et al. (1991), who reported that rotations are likely to 
produce higher yields across soil fertility regimes. Higher yield for NT with rotation 
than with continuous monocropping is attributed to a combined effect of multiple 
factors that include reduced pest infestations, improved water use efficiency, 
improved soil quality as shown by increased organic carbon, greater soil aggrega-
tion, increased nutrient availability, and greater soil biological activity (Hernanz 
et al. 2002; Wilhelm and Wortmann 2004; Kureh et al. 2006).

Fig. 2.1  Weighted mean differences in maize grain yield over time between no-tillage with rota-
tion and no-tillage without rotation. Although effect sizes are generally positive, real yield benefits 
start after 20 years of production. (Adapted from Rusinamhodzi et al. 2011)
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2.2.1  �Effect of Crop Rotation and Soil N Status

Crop rotations involving legumes improve soil properties and reduce mineral N 
fertilizer requirements of the following cereal crop if biomass production is large 
and the harvest index is small (Ojiem et al. 2014; Franke et al. 2018). This is due to 
the decomposition of N-rich crop residues that the legume crop produces due to 
biological N fixation (Baijukya et al. 2006). Several factors determine the actual 
contribution of legume residues to the N nutrition of the next crop, including non-N 
nutrition provided to the legume, genetic potential, availability of the right strain of 
rhizobium for effective nodulation and symbiosis, as well as how the legume crop 
residues are managed at harvest (Giller 2001; Franke et  al. 2018). Ideally, the 
legume residues should be retained in situ to maintain a positive N balance, espe-
cially in N-poor environments. In some cases, carefully planned nutrient manage-
ment in combination with crop rotation can eliminate the need for purchased 
fertilizer. There is also the potential for non-N benefits in legume-cereal rotations 
e.g. during the legume phase of the rotation, the crop can utilize the residual soil P 
and K that were left-over during the non-legume phase of the rotation. There is also 
improved phosphorus (P) availability following a legume (Pypers et  al. 2007). 
Legumes contribute to P solubilization through acidification of the rhizosphere due 
to proton release from their roots.

2.2.2  �Effect of Crop Rotation on Soil Organic Matter (SOM)

The amount of organic matter in the soil is a common indicator of soil health and 
productivity (Cardoso et al. 2013). The build-up of SOM is directly related to the 
types of crops grown, root biomass production and distribution, above-ground bio-
mass production, as well the management of the crop residues at harvest (Magdoff 
1993). No-till in combination with high biomass crops, such as green manure 
legumes, have a very high chance of increasing SOM (Baijukya et al. 2005). No-till 
systems involving crop rotations are associated with reduced decomposition rates, 
which is beneficial in maintaining SOM mostly on the soil surface, though this 
depends on soil type and climatic conditions (Ogle et  al. 2019). Powlson et  al. 
(2014) after a meta-analysis observed that farmers who practice NT have a tendency 
to plough conventionally after a few years, such that the potential SOM benefits of 
NT are easily lost. For this reason, the actual effect of NT systems on SOM is con-
tested or require a long time to show (Govaerts et al. 2009; Sapkota et al. 2012)
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2.2.3  �Effect of Crop Rotation on Biological Activity

Soil microorganisms respond positively to the amount of crop residue or soil organic 
matter content in the soil, especially the upper top soil (Green et al. 2007). Crop 
rotations that deliberately include more crops are likely to lead to more soil organic 
matter and biological activity (Magdoff 1993). Soil organisms that are active in the 
soil, include bacteria, fungi, actinomycetes, protozoa, yeast, algae, earthworms, and 
insects.

Increased organisms and their diversity in the soil is important for regulating 
decomposition, nutrient cycling, soil organic matter dynamics, and improvement of 
soil physical properties. A comprehensive synthesis of NT systems under the rain-
fed conditions by Mafongoya et al. (2016) revealed high fauna population (termites, 
ants, centipedes, and beetle larvae) in NT systems compared with conventional till-
age practices. Nhamo (2007) observed that at least 120% more termites and 60% 
more earthworms were observed under NT than the conventional practice. The 
abundance of termites and earthworms in NT suggests that NT with retention of 
crop residues increases biological activity. Ayuke et al. (2019) in a similar long-term 
trial reported significant increases in soil fauna taxonomic richness and abundance 
in NT systems compared with conventional tillage practices. The increased abun-
dance of soil fauna under NT systems lead to improved soil physical properties such 
as infiltration, porosity, aggregate stability and hydrological properties (Briones 
2014). Additionally, the presence of a legume creates of a favorable microbial com-
munity within the root zone (Yusuf et al. 2009).

2.2.4  �Effect of Crop Rotation on Soil Physical Properties

Crop rotation can also lead to positive soil physical conditions in the soil. In rain-fed 
systems of agriculture, crop rotation plays an important role in water conservation 
and to some extent reduces challenges with soil salinity (Turner 2004). Although the 
interaction of NT and crop rotation are subtle and site specific and it is difficult the 
disentangle the contribution of each factor, the literature is replete with evidence of 
the positive influence of crop rotation. For example, Chan and Heenan (1996) 
observed that rotational effects on soil physical properties differed according to the 
crops in the rotation, and that the effect were likely related to these crops’ different 
abilities to promote soil structure formation and soil structure stabilisation. Similarly, 
Salvo et al. (2010) reported positive effect of crop rotation on aggregate stability 
and particulate organic matter (POM) at different depths of soil. In another study, 
Lal et al. (1994) reported a significant interaction between tillage and crop rotation, 
with the least bulk density and greatest total porosity of 58% occurring in the rotated 
compared to the continuous monocrop treatments. The greatest infiltration rates 
have also been reported among crop rotations, for example, during maize vegetative 
growth in a soybean–wheat/clover–maize rotation (Katsvairo et al. 2002). As has 

2  Managing Crop Rotations in No-till Farming Systems



26

been stated earlier, crop rotation increases biodiversity for both micro and macro- 
fauna which play an important role in soil structure formation. The deep legume 
taproots combined with abundant earthworm populations create burrows in the soil 
profile which can lead to increased soil porosity, gas exchange, and improved mois-
ture distribution in the soil profile.

2.3  �Effect of Crop Rotation on Pest, Disease 
and Weed Management

Crop rotation is an important pillar for breaking the soil borne pest and disease 
cycle (Jensen et  al. 2010) especially under NT farming systems. No-till farming 
systems are characterized by in-situ crop harvest residue retention, which can 
increase the likelihood of pests and disease build-up and carry-over in succeeding 
seasons (Hobbs et  al. 2008). Changing crops every season helps naturally break 
weed, insect, and disease cycles, thereby reducing the reliance on chemical pesti-
cides, and protecting the environment. Crop rotation has shown some significant 
control effect on diseases such as grey leaf spot in maize, take-all in wheat, and 
sclerotinia in soybeans (Dordas 2008).

Crop rotation has also shown promise in tackling fall army worm, a recent men-
acing pest that has destroyed maize fields in sub Saharan Africa (Tambo et al. 2019). 
Under low-input systems of the tropics where farmers have limited access to capital 
(Sanginga and Woomer 2009), crop rotation is often the only economically feasible 
method for reducing insect and disease damage. A rotation cycle may replace a crop 
that is susceptible to a serious pest or disease with another crop that is not suscep-
tible, or starve out the pest due to absence of a suitable host. For example, 
Rusinamhodzi et al. (2012) reported reduced Striga infestation in a maize crop fol-
lowing pigeonpea in central Mozambique. Moreover, maize in rotation with pigeon-
pea without added N yielded 5.6 Mg ha−1, six times more than continuous maize, 
which was severely infested by striga (Striga asiatica) and yielded only 0.7 Mg ha−1 
(Rusinamhodzi et al. 2012).

2.4  �Scale-Appropriate Crop Rotation Options

2.4.1  �Crop Rotation Design

The first step for any cropping system design is a comprehensive soil test for soil 
nutrient status (N, P, K, Mg, Ca, Zn, Mn), pH, and soil organic carbon (SOC). A 
crop rotation sequence is then planned based on production objectives, as well as 
addressing any concerns arising from the soil analysis. One of the strategies of a 
successful crop rotation is to grow a high N demanding crop such as maize 
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following a legume crop to benefit from the positive N balance left by the legume. 
Deep rooted crops are needed to take up nutrients from deeper layers and cycle 
nutrients, especially the more soluble nutrients such as nitrates. Crop rotations that 
promote increased biomass and provide a slow release of nutrients to the root zone 
are also beneficial. A well-planned crop-rotation system can help farmers avoid 
many challenges associated with NT, such as increased soil compaction, perennial 
weeds, plant diseases, and slow early season growth.

Based on results in the literature, cereal-grain legume rotations are the most ideal 
for small farms, especially dual-purpose legumes that can play a significant role in 
nutritional diversity at the farm level (Franke et al. 2018). This is because the legume 
will produce edible leaves and grains – and sometimes mature earlier than the main 
crop, thus covering critical food deficit periods before the main crop is harvested 
(Mucheru-Muna et al. 2009; Rusinamhodzi et al. 2012).

2.4.2  �Challenges of Effective Rotation Cycles

Crop rotation is easier to design and apply on large farms, and many of the chal-
lenges of crop rotation apply to small farms. Most smallholder farming systems do 
not allow systematic crop rotations due to a plethora of reasons. The major chal-
lenges hampering small farmers, especially in the tropics, from practicing success-
ful crop rotation and maximizing the benefits are based on the following factors:

•	 Small land sizes - inadequate for multiple cropping in a single season;
•	 Multiple uses of legumes crops – leaves consumed leading to reduced residue 

retention;
•	 Crop-livestock integration – crop residues fed to livestock;
•	 Poorly developed markets for legumes – poor seed and/or fertiliser availability 

for legumes, and limited markets for the sale of crop produce;
•	 Differences in planting techniques – the different seed sizes of different crops 

may need different equipment; and
•	 Farmers perception of risk – the legume phase is considered a loss

While positive plot-level benefits of associations and rotations are known and 
widely reported, applying these under farmers’ conditions seems to be problematic. 
It is clear that the economic returns for rotation are marginal, not least because of 
low yield but also because the support services sector, especially the output markets, 
are either poor or non-existent. Thierfelder et  al. (2013) reported that in eastern 
Zambia, farmers grow maize in rotation with cowpeas on small plots and record 
increased maize yield after cowpea of between 20% and 30%, but the legume phase 
is economically challenging due to small returns. It has been reported that in most 
cases economic considerations and dysfunctional input and output markets for seed 
and produce are responsible for slow adoption of rotations (Snapp et  al. 2002; 
Rusinamhodzi et al. 2017). It is therefore critical that the legume component is dual 
purpose for it to the integrated into the farming system.
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Generally, small-scale farmers in sub-Saharan Africa allocate their priority land 
to food security crops (maize and sorghum) and legumes are only planted later and 
on about 10% of the land, which means only a small portion can be put under rota-
tion. Dual purpose legumes are desirable, but if crop residue is extensively har-
vested, starting with the green leaves for food or feed and finally the grain for food, 
it can reduce soil quality benefits due to reduced biomass return to the soil. 
Availability of seed for both grain legumes and green manure cover crops is often 
problematic especially when the rotational crops have little extra benefits other than 
soil fertility increase or protection against soil erosion. A possible solution has been 
to use green manure cover crops (GMCCs), that are planted in rotation, and inter- or 
relay cropped with maize to increase soil cover and contribute N. However, these 
are not preferred by farmers because of (a) poor financial returns during the legume 
phase, (b) GMCC compete for water and nutrients with the main crop, and (c) dys-
functional input-output markets for most of the GMCCs.

In farming operations of any scale, high levels of crop residue contribute to 
cooler and wetter soils at planting and can interfere with seed placement, sometimes 
resulting in uneven crop stands. In addition, maize residues with wide C:N ratio can 
cause immobilization (Cadisch and Giller 1997). The contribution of residual N in 
these fields means through crop rotation is more critical, with some N needed at 
planting to avoid N deficiency early in the season (Williams et al. 2018). Too much 
residue also interferes with the performance of herbicides, resulting in poor weed 
control from pre-emergent herbicides (Araldi et al. 2015). In wheat systems, the 
wheat cycle sometimes leaves the soil hard or compacted, limiting the potential of 
the succeeding NT crop, most likely soybean, or too many years of NT can lead to 
build-up of pathogens requiring conventional tillage after a few years (Kirkegaard 
et al. 2014).

2.5  �Conclusions

Crop rotations are needed to achieve good agronomic practices in general, but more 
critically are an important integral component of NT cropping systems and are 
responsible for improving nutrition, and pests and disease control. Cereal-grain 
legume rotations are the most ideal for small farms, especially the dual-purpose 
legumes which play a significant role in  nutritional diversity at the farm level. 
However, limited landholdings prevent the widespread adoption of cereal-legume 
rotations for smaller farms. Large scale farmers have many crop rotations options, 
and they are able to make profit due to fuel and labor savings with NT in combina-
tion with cultivating cash legumes on a large scale. In the future, the design of crop 
rotations has to address the following issues, especially for small scale farmers (a) 
small land sizes; (b) multiple uses of legumes crops including leaves; (c) crop-
livestock integration and use of crop residues as livestock feed; (d) poorly devel-
oped markets for legumes; (e) differences in planting techniques between legume 
and non-legume; and (f) farmers perception of risk. It is concluded that crop rotation 
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is an integral component of good agricultural practice and is much more critical in 
NT systems where pests and diseases outbreak can be high, and additional N from 
nitrogen fixation needed.
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