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Abstract

Nonmelanoma skin cancers including basal
and squamous cell carcinomas (SCC and
BCC) represent a significant clinical problem
due to their relatively high incidence,
imposing an economic burden to healthcare
systems around the world. It is accepted that
ultraviolet radiation (UVR: λ ¼ 290–400 nm)

plays a crucial role in the initiation and promo-
tion of BCC and SCC with UVB
(λ ¼ 290–320 nm) having a central role in
this process. On the other hand, UVB is
required for vitamin D3 (D3) production in
the skin, which supplies >90% of the body’s
requirement for this prohormone. Prolonged
exposure to UVB can also generate tachysterol
and lumisterol. Vitamin D3 itself and its
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canonical (1,25(OH)2D3) and noncanonical
(CYP11A1-intitated) D3 hydroxyderivatives
show photoprotective functions in the skin.
These include regulation of keratinocyte pro-
liferation and differentiation, induction of anti-
oxidative responses, inhibition of DNA dam-
age and induction of DNA repair mechanisms,
and anti-inflammatory activities. Studies in
animals have demonstrated that D3
hydroxyderivatives can attenuate UVB or
chemically induced epidermal cancerogenesis
and inhibit growth of SCC and BCC. Genomic
and non-genomic mechanisms of action have
been suggested. In addition, vitamin D3 itself
inhibits hedgehog signaling pathways which
have been implicated in many cancers. Silenc-
ing of the vitamin D receptor leads to increased
propensity to develop UVB or chemically
induced epidermal cancers. Other targets for
vitamin D compounds include 1,25D3-
MARRS, retinoic orphan receptors α and γ,
aryl hydrocarbon receptor, and Wnt signaling.
Most recently, photoprotective effects of
lumisterol hydroxyderivatives have been
identified. Clinical trials demonstrated a bene-
ficial role of vitamin D compounds in the
treatment of actinic keratosis. In summary,
recent advances in vitamin D biology and
pharmacology open new exciting
opportunities in chemoprevention and treat-
ment of skin cancers.
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Introduction to the Ultraviolet
Spectrum of Solar Radiation

Ultraviolet radiation (UVR: λ ¼ 290–400 nm),
depending on its wavelength (UVB:
λ ¼ 290–320 nm; UVA: λ ¼ 320–400 nm),
penetrates into different layers of the skin, with
UVB being predominantly absorbed by the epi-
dermis and reaching the upper portion of the

papillary dermis, while UVA penetrates deep
into the reticular dermis [69, 135, 164, 210, 238,
246]. UVR affects the integrity of DNA, RNA,
and proteins and cell and tissue homeostasis,
induces mutations, and changes the expression
of a plethora of genes including oncogenes and
tumor suppressor genes [29, 51, 132, 210, 241,
242]. It can also modify the expression and activ-
ity of growth factors, cytokines, neurohormones,
neuropeptides, and their receptors and have local
and systemic immunosuppressive [2, 30, 32, 62,
82, 105, 106, 126, 144, 156, 172, 174, 177–181,
193, 196, 210] as well as pro-pigmentary effects
[148, 176, 182].

Excessive exposure to UVR results in skin
aging, precancerous states such as solar/actinic
keratosis (SA), and finally skin cancers including
squamous cell carcinoma (SCC), basal cell carci-
noma (BCC), and melanoma (Fig. 13.1). There-
fore, UVR (UVB and UVA) is defined as a major
environmental stressor and full carcinogen
responsible for the development and progression
of BCC, SCC, and melanoma [11, 51, 100, 200].

UVB, while representing only ~5% of UVR
spectrum, exhibits a high efficiency for inducing
biological effects in the skin through its interac-
tion with cutaneous chromophores. It causes
direct damage to DNA (a chromophore for
UVB) by inducing covalent bond formation
between adjacent pyrimidines, which leads to
the production of mutagenic photoproducts such
as cyclobutane pyrimidine dimers (CPD) and
pyrimidine-pyrimidine adducts [29, 121, 241,
242]. To a lesser degree, its mechanism of action
is linked to production of reactive oxygen species
(ROS). UVB is an important etiological factor of
BCC and SCC [121, 200, 241, 242]. UVB finger-
print mutations in p53 and CDKN2A genes have
been identified in BCC and SCC [83]. UVB is
more efficient in inducing SCC and BCC than
UVA [52, 141] with some exceptions [151–153,
159]. The damaging effect of UVA, which is
approximately 1,000 less efficient than UVB
due to the limited number of target
chromophores, is predominantly secondary to
the action of ROS [24, 71, 245] or production of
nitric oxide (NO) and nitroxyl (HNO) [1, 170,
210].
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Vitamin D in the Skin

Vitamin D and Related Compounds
in a Nutshell

UVB is also required for vitamin D3 formation in
the skin which usually supplies >95% of the
body’s requirement for this prohormone [18, 84,
85] (Fig. 13.1). The transformation of
7-dehydrocholesterol (7DHC) to vitamin D3
(D3) after absorption of UVB energy represents
the most fundamental reaction in photobiology
[84, 87]. The initial photoproduct, previtamin
D3, undergoes thermal isomerization to vitamin
D3 in the skin. With sustained UVB, previtamin
D3 can undergo further photoisomerization to
lumisterol (L3) and tachysterol (T3) [84]. These
reactions are reversible and are dependent on the
temperature and UVB dose.

Vitamin D3 is a prohormone that is activated
by sequential hydroxylations in positions C25
and C1α, both at the systemic (liver and kidney)
and local (skin) levels, to produce 1,25(OH)2D3
[13, 84, 85]. The first reaction is catalyzed by
CYP2R1 or CYP27A1, while the C1α hydroxyl-
ation is catalyzed by CYP27B1 [15, 16, 84,
85]. Dietary vitamin D2 is activated to 1,25

(OH)2D2 by CYP2R1 and CYP27B1, and
inactivated by CYP24A1, by similar pathways
[15, 16, 228].

Vitamin D can also be activated by CYP11A1,
the first enzyme in the steroid biosynthesis path-
way [78, 184, 185]. The major products of
CYP11A1 action on vitamin D3 are 20(OH)D3
and 20,23(OH)2D3 [192, 224]. Other products of
CYP11A1 action on vitamin D3 are 22(OH)D3,
20,22(OH)2D3, 17,20(OH)2D3, and 17,20,23
(OH)3D3 [184, 224, 225]. The CYP11A1-derived
metabolites can be further hydroxylated by
CYP27A1, CYP27B1, CYP2R1, and/or
CYP3A4 producing many more metabolites
including 1,20(OH)2D3, 1,20,23(OH)3D3, 20,24
(OH)2D3, 20,25(OH)2D3, and 20,26(OH)2D3
[213, 215, 217, 218, 223, 228]. Most of these
metabolites have been detected in the human
skin and/or serum indicating that the pathways
occur in vivo (Fig. 13.2), and most have been
tested in cultured cells and found to display
biological activity, including inhibition of skin
cell proliferation [192, 202–204,
228]. CYP11A1 can also act on vitamin D2 pro-
ducing 20(OH)D2, which displays activities sim-
ilar to 20(OH)D3, plus a number of other
metabolites, including 17,20(OH)2D2 [140, 185,

Fig. 13.1 Ultraviolet B as the double-edge sword in skin
health
UVB not only induces skin cancers but also is necessary
for phototransformation of 7DHC (7-dehydrocholesterol)

to vitamin D3. BCC basal cell carcinoma, SCC invasive
squamous cell carcinoma. (Reprinted from [208] with
permission from Elsevier)
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Fig. 13.2 Detection of CYP11A1-derived 7DHC and D3
hdroxyderivatives in the human epidermis and serum
LC-MS spectra were measured on fractions with retention
times corresponding to either 22(OH)7DHC or 20,22
(OH)27DHC or 20(OH)D3, 22(OH)D3, or 25(OH)D3
that were pre-purified on a Waters C18 column
(250 � 4.6 mm, 5 μm particle size) with a gradient of
acetonitrile in water as described in [202]. Arrows indicate

the retention times of the corresponding standards. Inserts
show the mass spectra corresponding to the retention time
of detected compound. In the outer panel, extracted ion
chromatograms are shown for human epidermis (a and d),
serum (b and e), and the pig adrenal (c and f). The work is
reprinted from [202] under the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/) with small modifications

https://urldefense.proofpoint.com/v2/url?u=http-3A__creativecommons.org_licenses_by_4.0_&d=DwMGaQ&c=o3PTkfaYAd6-No7SurnLt5qpge1aKYwPQyBFS7c8AA0&r=62nEmph-_XIOqd7DsxYaeg&m=k6a4Qi7YFm1mhwN-VuQR_2iUTwWZj1IDVfFF4edNEPA&s=Q0AbXdZCcHevl1PgJe0FXwmnVubHOBLJ5Svp8pO_yOs&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__creativecommons.org_licenses_by_4.0_&d=DwMGaQ&c=o3PTkfaYAd6-No7SurnLt5qpge1aKYwPQyBFS7c8AA0&r=62nEmph-_XIOqd7DsxYaeg&m=k6a4Qi7YFm1mhwN-VuQR_2iUTwWZj1IDVfFF4edNEPA&s=Q0AbXdZCcHevl1PgJe0FXwmnVubHOBLJ5Svp8pO_yOs&e=


188, 198, 228]. 20(OH)D2 can also be
metabolized further by CYP27B1.

Lumisterol (L3), the major 7DHC photoprod-
uct found in the skin following prolonged UVB
radiation [86], can be metabolized by both
CYP11A1 and CYP27A1 [206, 226,
227]. CYP11A1 produces primarily 22(OH)L3,
24(OH)L3, and 20,22(OH)2L3, with only minor
production of pregnalumisterol which contains a
cleaved side chain [226]. Lumisterol and its
hydroxyderivatives have been detected in the
skin and serum, illustrating that this pathway
occurs in vivo (Fig. 13.3). The presence of rela-
tively high concentrations of L3 in the serum
indicates that it can leave the site of its production
in the skin and potentially be delivered to tissues,
such as the adrenal cortex, which expresses a high
level of CYP11A1, for further metabolism
[206]. The major products of CYP11A1 action
on L3 are biologically active, with some, but not

all activities, being similar to those of 1,25
(OH)2D3 (see below) [41, 206]. More recently,
we reported that lumisterol is an excellent sub-
strate for CYP27A1, which converts it to 25(OH)
L3 and both C25 epimers of 27(OH)L3, which in
initial testing are able to inhibit melanoma cell
proliferation [227].

Finally, tissues expressing CYP11A1 are able
to transform 7DHC to 22(OH)7DHC, 20,22
(OH)27DHC, and finally to
7-dehydropregnenolone (7DHP) [183, 186,
191]. The latter can be further hydroxylated or
converted to dehydroprogesterone by steroido-
genic enzymes [191]. 20(OH)7DHC has been
identified in human epidermis [206], while 22
(OH)7DHC, 20,22(OH)27DHC, and 7DHP were
detected in human epidermis and serum
(Fig. 13.2) [202]. 7DHP and its metabolites can
be transformed by UVB to the corresponding
secosteroids, as predicted [183] and as has been

Fig. 13.3 Detection of novel lumisterol hdroxyder-
ivatives in the human epidermis and serum
LC-MS spectra were measured on fractions with retention
times corresponding to either of the hydroxyderivatives
listed that were pre-purified on a Waters C18 column as
described in [202]. Arrows indicate the retention times of

the corresponding standards. Inserts show the mass spectra
corresponding to the retention time of the detected com-
pound. The work is reprinted from [202] under the Crea-
tive Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/) with small
modifications
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experimentally substantiated [251–253]
(Fig. 13.4). In addition, 20(OH)7DHC, 22(OH)
7DHC, and 20,22(OH)27DHC can be converted
to the corresponding vitamin D3, lumisterol and
tachysterol hydroxyderivatives, after absorption
of UVB energy by the B-ring (Fig. 13.4).

Phenotypic Effects of Active Forms
of Vitamin D: An Overview

1,25(OH)2D3, in addition to regulating calcium
homeostasis, has important pleiotropic activities
that include stimulation of differentiation and
inhibition of proliferation of different cell types,
anti-cancerogenic effects, stimulation of innate
immunity, and inhibition of adaptive immunity

and inflammation [13, 15, 28, 46–48, 55, 65,
73–75, 84, 85, 149, 240]. In the skin, vitamin
D3 plays a significant role in the formation of
the epidermal barrier and adnexal structures,
including hair follicles, and has a wide variety
of ameliorating effects in skin cancer and
proliferative and inflammatory cutaneous
diseases [12, 14, 23, 63, 84, 85, 94, 143, 157,
158]. These properties of 1,25(OH)2D3 have been
extensively reviewed as listed above and, there-
fore, will not be detailed.

Similar effects are exerted by CYP11A1-
derived hydroxyderivatives of vitamin D3,
including mono, dihydroxy, and trihydroxy
forms with or without the hydroxyl group at posi-
tion C1α (reviewed in [197, 205, 207, 208]).
Specifically, they exert antiproliferative,

Fig. 13.4 UVB-induced phototransformation of 7DHC,
its hydroxyderivatives, and 7DHP to the corresponding
secosteroidal, lumisterol, and tachysterol compounds
Shown is the metabolism of 7DHC by CYP11A1, the skin,
and the subsequent transformations to the corresponding
photoproducts after exposure to UVB. (?) – the enzyme
transforming 7DHC to 20(OH)7DHC remains to be

identified, since none of the products of 7DHC hydroxyl-
ation by CYP11A1 has its retention time. Because of the
similarity of 20(OH)7DHC and 20-hydroxycholesterol, it
is likely to be the same enzyme that transforms cholesterol
into 20-hydroxychaolesterol, which is also detectable in
the epidermis. (Reprinted from [208] with permission
from Elsevier)
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pro-differentiation, and anti-inflammatory effects
in cultured cells that are comparable or stronger
than those of 1,25(OH)2D3 [41, 95, 96, 112, 114–
116, 119, 123, 189, 190, 194, 195, 207, 225,
248]. In addition, they exhibit antifibrotic
activities both in vitro [189, 194, 195] and
in vivo [194]. They also display anti-melanoma
and antitumor properties that are cell type-
dependent [44, 97, 173, 187, 188, 190, 195,
207, 234, 235, 237]. Moreover, similar to 1,25
(OH)2D3, they can stimulate different elements of
the cutaneous hypothalamus-pituitary-adrenal
axis in human keratinocytes including CRH,
urocortins, and POMC, together with their
corresponding receptors CRHR1, CRHR2,
MC1, MC2, MC3, and MC4 [238]. The newly
identified hydroxyderivatives of lumisterol also
show antiproliferative and pro-differentiation
properties in human normal and malignant epi-
dermal keratinocytes [41, 206]. Finally, vitamin
D-, lumisterol-, and tachysterol-like compounds
with a short or absent side chain also show
antiproliferative and antitumor properties
[102, 145, 186, 187, 195, 235, 252, 253]. Impor-
tantly, 20(OH)D3 and 20,23(OH)2D3 are
non-calcemic, while 1,20(OH)2D3 show
low-calcemic activity [44, 187, 194, 234].

Receptors for Vitamin D in the Skin

Vitamin D Receptor (VDR)

An Overview The main phenotypic activities of
canonical hydroxyderivatives of vitamin D are
mediated through their interaction with the
ligand-binding domain of the nuclear receptor,
vitamin D receptor (VDR, NR1I1) [22, 28, 39,
46, 81, 130, 131, 142]. This interaction promotes
heterodimerization of the VDR with the retinoid
X receptor (RXR) and its translocation to the
nucleus where it interacts with VDR-responsive
elements (VDRE) to regulate the transcription of
target genes (transactivation or repression). VDR
is expressed in all tissues, including the skin
[22, 28, 39, 157], and is reported to regulate
approximately 3% of the mammalian genome.
The human epidermis is rather unique in this

context in that it is both the source of vitamin D3
and a target tissue. The CYP11A1-derived
secosteroids with a full-length side chain can
bind to the VDR and act via a VDRE-dependent
mechanism, with compounds containing a
hydroxyl group at C1α exhibiting a higher affinity
than those without it [102, 118, 119, 188,
207]. Most importantly, the crystal structures of
20(OH)D3, 1,20(OH)2D3, and 1,25(OH)2D3
bound to the genomic LBD of the VDR were
obtained [118, 119] which illustrated similarities
and differences between these compounds in their
interaction with the VDR receptor (Fig. 13.5), as
reported in [119].

VDR transcriptional activity is dependent on the
availability of VDR agonists and antagonists and
their effect on receptor conformation (allostery
[160], the recruitment of different cofactors
[18, 22], and chromatin accessibility [39, 136,
142]). Moreover, VDR activity can be influenced
by single-nucleotide polymorphisms (SNPs)
[254]. This plays, for example, a role in the etiol-
ogy of nonmelanoma skin cancers (NMSC) and
melanoma [38, 54, 104, 111, 117]. Interestingly,
CYP11A1-derived D3 hydroxyderivatives with-
out a hydroxyl group at C1α display a subset of
the activities possessed by 1,25(OH)2D3 (see
above) and lack calcemic activity, acting as
biased agonists on the VDR [197, 207].

In addition to genomic (G), VDRE-mediated
regulation of gene expression, the VDR can also
induce rapid responses via a non-genomic, mem-
brane-associated mechanism that involves an
alternative ligand-binding site (A-pocket)
[81, 130, 131]. The list of ligands interacting
with the A-pocket of VDR includes 25(OH)D3,
1,25(OH)2D3, 1,25(OH)2L3 [57, 130], and some
CYP11A1-derived hydroxylumisterol derivatives
[206], but not CYP11A1-derived vitamin D3
hydroxyderivatives [207]. An additional cell
membrane-linked mechanism of action includes
the interaction between VDR and caveolin-
associated signal transducers [249].

Finally, different alternatively spliced forms of
VDR have been described [5, 64, 68, 212]. It has
been suggested that they can have different
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transcriptional activity and promote VDR-ligand-
independent functions [5]. Most recently, alterna-
tively spliced forms have been detected in human
melanoma cells [236]. Using the same methodol-
ogy and the same primers with sequencing of the
resulting cDNA fragments [49, 236], we
identified VDR isoforms a, b, c, 1a, 1d, and 1f,
similar to those described previously [49, 236], in
normal adult and neonatal human epidermal
keratinocytes and the skin fragments from white
and black subjects. The immediate challenges in
this area are to determine whether alternatively
spliced VDR isoforms exhibit distinct functions
in skin cells and regulate the expression of differ-
ent genes and whether the alternative splicing is
regulated by endogenous or environmental
factors, as has been shown for other receptors
such as CRH-R1 [146, 147, 196, 250]. In addi-
tion, it further needs to be determined whether
these isoforms display different affinities for dif-
ferent vitamin D3 hydroxyderivatives and exhibit
differences in their interaction with RXR,
cofactors, and DNA or to understand mechanisms
by which they regulate VDR-ligand-independent
functions.

VDR in the Skin VDR is expressed in all skin
cell types [17]. However, its level of expression
can change depending on the specific pathology,
as documented in VDR knockout mice. For
example, VDR-/- mice show significant defects
in cutaneous structures, alopecia [46, 143], and
have significantly increased propensity to
develop epidermal skin cancer [21, 23,
216]. The later indicates that VDR functions as
a tumor suppressor [19, 20].

With respect to melanomagenesis, significant
changes in the level of VDR expression were
observed during progression of melanocytic
tumors, with reduced nuclear and cytoplasmic
VDR levels correlating with tumor progression
and Clark levels, with highest VDR levels in
normal skin and common melanocytic nevi, and
with lowest VDR levels in advanced and meta-
static melanomas [33, 35]. Low or lack of VDR
expression also positively correlated with poor
prognostic markers of melanoma and poorer out-
come of the diseases as measured by shortening
of the survival and disease-free times
[33, 35]. The combined analysis of CYP27B1
and VDR showed an even stronger correlation

Fig. 13.5 Crystal structures of 20(OH)D3, 1,20(OH)2D3,
and 1,25(OH)2D3 in complexes with the VDR ligand-
binding domain
The crystal structures of 20S(OH)D3, in complex with the
Danio Rerio VDR (zVDR) LBD, were determined and
compared to those of 1,20(OH)2D3 and 1,25(OH)2D3
VDR complexes as described previously [119]. The
complexes with 20(OH)D3 (PDB ID 5OW9), 1,20
(OH)2D3 (PDB ID 5MX7), and 1,25(OH)2D3 (PBD ID
2HC4) are shown in cyan, yellow, and salmon, respec-
tively. Hydrogen bonds between the ligands and LBD are
represented by purple dashed lines. Details of the

interactions mediated by the side chains of 20(OH)D3
are in the second image from the left. Hydrophobic
interactions are indicated by gray dashed lines, and hydro-
gen bonds are depicted as pink dashed lines. Only residues
within 4 Å of the ligand are shown by stick representation.
The residue numbers correspond to human VDR. The
detailed description and analysis are in [119]. (The work
is reprinted from [119] under the Creative Commons
Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/) with small
modifications)
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with disease progression, with the lowest levels of
expression in highly advanced melanomas and
metastases [34]. Interestingly, an inverse correla-
tion between VDR and nuclear expression of
HIF-1α was found with the highest HIF-1α
expression observed in pT3-pT4 VDR-negative
melanomas [37]. Also, nuclear VDR expression
was significantly lower than in normal uveal cells
including melanocytes [125]. Finally, VDR
single-nucleotide gene polymorphisms are
associated with a higher probability of developing
melanoma and a poorer disease outcome
(reviewed in [205]).

NMSC studies performed in animal models
have convincingly demonstrated a role for VDR
in photoprotection and prevention or attenuation
of skin cancer development [12, 21–23, 40, 57,
92, 94, 233]. The latter involves inhibition of the
hedgehog andWnt signaling pathways and induc-
tion of keratinocyte differentiation [3, 79, 120,
216, 230]. Inhibition of the hedgehog pathway
has also been implicated in the attenuation of
other tumors, including rhabdomyosarcoma
[231] and renal carcinomas [60]. The inhibition
of hedgehog signaling by vitamin D compounds
might be mediated by VDR-dependent and
VDR-independent mechanisms [214].

Although VDR polymorphisms have been
linked to various malignancies, including cutane-
ous melanomas [205, 208], studies on the rela-
tionship between VDR polymorphisms and the
risk of developing NMSC (ApaI, BsmI, and
TaqI) [54, 80, 111] were not fully conclusive
with some, but limited, evidence indicating a
relationship between VDR SNPs and NMSCs.
In a German population, a correlation between
the combined ApaI/TaqI/BglI AaTtBb genotypes
of VDR with BCC risk was observed (aaTTBB
VDR genotype was found only in controls). The
aaTTbb VDR genotype was much more frequent
in BCCs and SCCs that in the control population.
Also, a higher frequency of the BB VDR geno-
type on sun-exposed versus nonexposed areas
both in BCCs and SCCs was identified. In addi-
tion, Apa1 and Taq1 genotypes were associated
with BCCs, but not with SCC photocarci-
nogenesis [104]. In a Polish population, the TT
genotype of FokI VDR polymorphism was

correlated with greater than tenfold higher risk
of BCC development [111]. Burns et al. found
that the BsmI b or TaqI t genotypes of VDR were
more frequent in NMSC patients, suggesting that
individuals with these genotypes are more likely
to develop skin cancer [38]. A very recent nested
case control study and meta-analysis showed that
patients with rs2228570, rs927650, and
rs1544410 recessive genotypes were
characterized by a lower risk of SCC develop-
ment, while rs7975232 and rs739837 recessive
genotypes were related to decreased BCC risk
[107]. Another study identified two new SNPs
in VDR binding sites (rs16917546 and
rs79824801) associated with BCC risk. This
study also confirmed the association of the
rs3769823 SNP in the VDR binding site with
increased BCC risk [117], while a study
performed on a population in the mid-south of
the USA (96 cases vs. 100 controls) showed that
subjects with BsmI SNP had two times higher
probability of developing NMSC in comparison
to controls [38]. Thus, VDR polymorphisms
should be considered as factors related to
NMCS risk; however, additional studies are
needed with larger population cohorts.

The vitamin D system has been analyzed in
cell cultures and clinical samples of NMSCs.
Reichrath’s group found a significant increase in
nuclear VDR expression (as detected with
immunohistochemistry) in SCC samples com-
pared to normal skin, however no correlation
with histological type, grading or markers for
proliferation, differentiation, or apoptosis, and
increased expression of VDR, CYP27A1,
CYP27B1 and CYP24A1 in SCC was observed
[155]. Reichrath et al. [154] and Mitschelle et al.
[129] also analyzed the expression of VDR in
BCCs and found a pattern similar to SCC, with
significantly elevated nuclear expression of VDR
in BCCs in comparison to normal skin, adjacent
epidermis, and unaffected epidermis. VDR
expression was moderate or strong, and the stron-
gest VDR expression was found in peripheral
palisade cells. VDR expression was not
correlated with a particular histological type of
BCC. Similar to SCCs, the expression of VDR,
CYP27B1, and CYP24A1, but not of CYP27A1,
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was increased in comparison to normal skin
[129]. We also detected the VDR in human
biopsies of BCC and SCC (Fig. 13.6). These
studies show that both receptors for active forms
of vitamin D and enzymes activating or
inactivating vitamin D are expressed in NMSC,
providing a rationale for targeting vitamin D sig-
naling in the therapy of NMSC.

Other Receptors for Vitamin D: An
Overview
Other receptor candidates for 1,25(OH)2D3
include the 1,25D3-membrane-associated, rapid-
response steroid-binding protein (1,25D3-

MARRS), which is also known as ERp57/
GRp58 and also serves as a protein disulfide
isomerase A3 (PDIA3) that acts as a chaperone
protein [101, 137] and has additional unexpected
functions [138, 219]. According to some reports,
it functions as a membrane-bound receptor for
active forms of D3 and is involved in the regula-
tion of some of its phenotypic functions
[101, 137]. Other studies have shown interactions
between plasma membrane 1,25D3-MARRS,
VDR, and calveolin-1 via a non-genomic signal
transduction pathway initiated by 1,25(OH)2D3
[43, 169]. Our molecular modeling predicts that

Fig. 13.6 Immunohistochemical detection of RORα
(upper), RORγ (middle), and VDR (lower) in normal
skin (left panel), BCC (middle), and SCC (right). Scale
bar: 50 μm. Archival formalin-fixed paraffin-embedded
sections, after heat-induced antigen retrieval in Tris-
based antigen unmasking solution (Vector Laboratories,
Inc., Burlingame, CA) and endogenous peroxidase
blocking, were incubated over night at 4 �C with primary
antibodies (rabbit anti-RORα (provided by Dr. Anton
M. Jetten), 1:400; rabbit anti-RORγ (provided by
Dr. Anton M. Jetten), 1:50; rat anti-VDR (Abcam,

MA1-710; Thermo Fisher Scientific, Waltham, MA)).
Next, sections were incubated with secondary antibodies
conjugated with HRP (anti-rabbit ImmPRESS antibody
(ready to use, Vector Laboratories, Inc., Burlingame,
CA) for RORα and RORγ; anti-rat antibody (1:200,
Abcam, Cambridge, UK) for VDR), followed by peroxi-
dase substrate ImmPACT NovaRED (Vector Laboratories
Inc., Burlingame, CA, USA) application and mounting
with permanent mounting media and glass coverslip
(Thermo Fisher Scientific, Waltham, MA)
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the CYP11A1-derived secosteroids are unlikely
to interact with 1,25D3-MARRS [207].

Retinoic acid-related orphan receptors (ROR)
α and γ, members of the nuclear receptor super-
family, provide an alternative mechanism by
which vitamin D3 and its derivatives can regulate
biological functions and gene expression and
affect pathology [99, 199, 207]. CYP11A1-
derived hydroxyderivatives of D3 can act as
inverse agonists on RORα and RORγ. Similarly,
hydroxyderivatives of lumisterol can function as
RORα and RORγ inverse agonists [206]. Molecu-
lar modeling where these vitamin D3 metabolites
exhibit high docking scores predicts that they
interact strongly with the ligand-binding pocket
of RORα/RORγ [208]. These receptors are
expressed in normal and pathological skin
[36, 199], including BCC and SCC (Fig. 13.6).
Their expression inversely correlates with human
melanoma progression, and higher expression in
the nucleus correlates with significantly longer
overall and disease-free survival times [36]. Inter-
estingly, RORα and RORγ expression positively
correlates with HIF-1 expression in cutaneous
melanomas [37]. In uveal melanoma, expression
of RORs was lower than in normal uveal cells
[125]. This suggests that RORs may play an
important role in melanomagenesis, melanoma
progression, and host responses against the
tumor [205, 208]. RORγ is essential for the gen-
eration of T-helper 17 (Th17) cells and produc-
tion of the pro-inflammatory cytokine interleukin
17 (IL-17) which plays a critical role in various
autoimmune diseases, including psoriasis, and
also has antitumor as well as pro-tumor effects
in melanoma [42, 99, 211]. Thus, these
hydroxyderivatives could potentially inhibit
inflammation and tumor progression in the skin
through an RORγ-mediated mechanism.

Most surprising was a recent discovery
showing that hydroxyderivatives of vitamin D3,
including 20(OH)3, 20,23(OH)2D3, 17,20,23
(OH)3D3, and classical 1,25(OH)2D3, can act on
the aryl hydrocarbon receptor (AhR) in a manner
dependent on the positions of hydroxyl groups on
the structure [209]. This discovery is consistent
with the promiscuous nature of AhR and its activ-
ity [134]. It opens up an exciting opportunity to

study the regulation of the skin phenotype by
different vitamin D3 hydroxyderivatives acting
via AhR signaling, taking into consideration its
complex role in skin physiology and pathology
[27, 67, 93, 133] (Fig. 13.7).

Thus, different forms of vitamin D3, in addi-
tion to acting via the genomic canonical pathway
of VDR, can potentially act via noncanonical
pathways, including those involving the nuclear
receptors, RORs and AhR. While the classical
1,25(OH)2D3 can exert non-genomic activities
through action via the non-genomic binding site
of VDR or via 1,25D3-MARRS, similar
functions for CYP11A1-derived secosteroids are
less likely [207] and remain to be established
experimentally. The receptors for
pregnacalciferol derivatives [195] remain to be
identified.

In summary, vitamin D hydroxyderivatives
exhibit different affinities for multiple receptor
targets and through their modulation of these
distinct receptor signaling pathways regulate dif-
ferent physiological functions and influence
pathologies in different ways.

Nonmelanoma Skin Cancers

Human Skin Cancer: An Overview

NMSCs, encompassing SCC and BCC, are the
most common malignancies in humans. The cost
of their treatment is an enormous economic bur-
den to the healthcare system of the USA and to
healthcare systems worldwide [113]. The role that
UV radiation plays in the pathogenesis was first
proposed in the late nineteenth century by Unna,
who made the important observation that sailors,
who had chronic exposure to sunlight, had a
disproportionate increase in the incidence of
skin cancer [25]. In fact, over 80% of NMSCs
occur in sun-exposed skin sites, i.e., head and
neck and back of the hands [11, 51, 100, 162,
200]. Studies in experimental animal models have
demonstrated that wavelengths within the UVB
range are primarily responsible for these
malignancies [25, 66]. Immunocompromised
patients, including solid organ transplant
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recipients who require drugs that suppress immu-
nological function in order to prevent rejection of
their transplanted organ, are at greatly increased
risk of developing nonmelanoma skin cancers,
particularly cutaneous squamous cell carcinomas
[6]. Tumors in this population behave more
aggressively and are more likely to metastasize
[6]. Military personnel also have an increased risk
of NMSCs [7]. They are exposed to high doses of
UVR during deployment to locations with high
solar radiation including the desert and high-
altitude environments. This often happens in
situations in which adequate attention to
photoprotective measures is unavoidable. It
should be noted that there was an unusually
high incidence of NMSCs in World War II

veterans who served in the Pacific and elsewhere
in the tropics. Currently, the incidence of skin
cancer in the military is greater than in the general
population.

Although there has been an intensive effort by
healthcare institutions around the world to take
preventative measures against excessive sun
exposure, the incidence of these malignancies
continues to rise [161]. Therefore, there is an
urgent need to establish proper measures to stim-
ulate photoprotective or reparative mechanisms in
the skin of civilian and military personnel against
UVR-induced damage. These measures need to
be taken at as early an age as possible for young
and older individuals alike, since skin cancers
often develop after a long latency period.

Fig. 13.7 Vitamin D
metabolism and mechanism
of action of vitamin D and
its hydroxyderivatives at
the cellular level
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Therapy of NMSC

The mortality for most NMSCs is low. However,
they, and the treatment required for their removal,
can be disfiguring with significant morbidity.
Given the frequency with which they occur, the
management of NMSC is a tremendous economic
burden [113]. In the USA alone, the estimated
cost for the treatment of actinically damaged
skin is $1.68 billion [113].

Guidelines and appropriate use criteria for the
management of both basal cell carcinomas and
squamous cell carcinomas have been created by
the American Academy of Dermatology and the
National Comprehensive Cancer Network [4, 9,
10, 103, 244]. In most instances, the treatment of
nonmelanoma skin cancers is surgical. This
includes electrodessication and curettage, exci-
sion with appropriate tumor-free margins, and
Mohs micrographic surgery. Electrodessication
and curettage is used primarily for lower risk
skin cancers, chiefly on the trunk and extremities.
The procedure involves scraping away malignant
tissue with a curette followed by electrodes-
sication of the treatment area; the procedure is
repeated up to three times. The cure rate has
been reported to be up to 95% for low-risk lesions
but is considerably lower for higher-risk tumors
[9, 45, 108]. Standard excision followed by histo-
logical evaluation of margins is another option.
Recurrence or metastasis rates of less than 6% can
be achieved for primary tumors; cure rates for
recurrent lesions, however, are substantially
lower [163]. Subclinical involvement for cutane-
ous squamous cell carcinomas is present in up to
15% of primary tumors and up to 50% of recur-
rent squamous cell carcinomas [8, 110]. For this
reason, Mohs micrographic surgery is the treat-
ment of choice for most high-risk nonmelanoma
skin cancers. Mohs micrographic surgery is an
outpatient surgical procedure in which the tumor
is debulked. Then a thin layer of underlying tissue
is removed and examined histologically by frozen
section to determine if it is free of tumor. If not,
then further surgical layers are removed until
there is no microscopic evidence of tumor. Sur-
gery is performed all in one session with the

patient remaining in the clinic while tissue
sections are evaluated. Mohs micrographic sur-
gery minimizes the amount of normal tissue that
must be taken and provides microscopic verifica-
tion that the tumor has been completely removed.
Retrospective studies have found a 5-year cure
rate of 97% for primary tumors and 90% for
recurrences [229]. This is compared with 92%
for primary tumors and 77% for recurrences
with other procedures.

Radiotherapy, especially for low-risk tumors,
is employed in some situations based on patient
preference or other factors [9, 10]. It is
contraindicated in patients with certain
genodermatoses such as basal cell nevus syn-
drome and in individuals less than 60 years of
age because of the potential for long-term
consequences. Five-year cure rates of 93% for
primary tumors and 90% for recurrent tumors
have been accomplished with radiotherapy [9].

Topical imiquimod has received regulatory
approval for treatment of superficial BCCs and
premalignant actinic keratoses [10, 70, 139, 150,
166, 171]. It has also been used off-label for
nodular BCCs [77, 239]. Imiquimod stimulates
innate and acquired immunity by binding to the
TLR7 and, as a consequence, stimulates dendritic
cells and augments production of interferon-
gamma, TNF-alpha, and other pro-inflammatory
cytokines [77]. Recent studies have shown that it
also has actions independent of TLR7 stimulation
[232]. The end result is an antitumor immune
response capable of eradicating BCCs. Treatment
requires daily application of imiquimod for
6 (superficial BCC) to 12 (nodular BCC) weeks.
Five-year response rates with imiquimod are sig-
nificantly less than with surgical excision [239].

While metastasis of BCC is very rare, it can
occur. Furthermore, neglected BCCs can enlarge
to the point at which sufficient destruction of
cutaneous and even non-cutaneous tissue occurs,
making it impossible to remove the lesions surgi-
cally. The sonic hedgehog pathway plays an
essential role in BCC pathogenesis. Two oral
sonic hedgehog inhibitors, vismodegib and
sonidegib, are commercially available, and both
cause BCC regression [61, 122, 128, 168]. They
are employed for the treatment of locally
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advanced and metastatic BCC. These agents have
many adverse effects including hair loss, muscle
spasms, weight loss, and dysgeusia, which reduce
patient compliance. Moreover, BCCs can develop
resistance to these medications, and discontinua-
tion often results in BCC regrowth. Thus, these
medications are not used for routine BCCs.

Other treatment options for nonmelanoma skin
cancers include cryotherapy, PDT, 5-FU, and
intralesional methotrexate but are only utilized
in special circumstances [9, 10, 103, 244].

Vitamin D in Chemoprevention
of NMSC

Photoprotective Activity of Active Forms
of Vitamin D3

A significant number of studies have shown pro-
tective effect of different vitamin D analogs
against UVR in human skin cells and hairless
mice [53, 56, 58, 59, 72, 76, 109, 127, 220,
243]. Specifically, 1,25(OH)2D3 and 1,25
(OH)2L3 reduced UV-induced DNA damage
including formation of CPD and reduced produc-
tion of pro-inflammatory cytokines in human
keratinocytes in culture and in mouse and
human skin [127]. The photoprotective effects
of these compounds were also connected with
increased expression of P53 in the nucleus and a
decrease in the number of apoptotic sunburn cells
and attenuation of UVB-induced immunosup-
pression [57]. The authors suggested
non-genomic actions of 1,25(OH)2D3 and 1,25
(OH)2L3 [57]. Similarly, topical application of
CYP11A1-derived 20(OH)D at 23 or 46pmol/
cm2 protected mouse skin against UVB-induced
DNA damage at comparable level to that of 1,25
(OH)2D3 [221]. It also reduced the sunburn
edema and protected against UVR-induced
immunosuppression in a similar manner to 1,25
(OH)2D3. Thus, these in vivo photoprotective
effects were independent of C1α-hydroxylation
[221]. The same group demonstrated that in addi-
tion to 1,25(OH)2D3, low-calcemic analogs of D3
reduced UV-induced CPDs in both skin
fibroblasts and keratinocytes and their cell death

after UV exposure [58]. They were equally effec-
tive as 125(OH)2D3 in increasing levels of p53 in
cultured human keratinocytes. In a hairless mouse
line, these compounds reduced UV immunosup-
pression. However, the low-calcemic analog was
not as effective as 1,25(OH)2D3 in reducing
tumorigenesis [58]. Most recently, an interesting
mechanism of action for 1,25(OH)2D3 in
UVB-irradiated keratinocytes was demonstrated.
Specifically, it enhanced glycolysis along with
energy-conserving processes such as autophagy
and mitophagy, resulting in increased repair of
CPDs and decreased oxidative DNA damage
[165]. Finally, high doses of vitamin D3 given
orally shortly after exposure to UVB could
reverse the induced skin damage with attenuation
of the inflammation and induction of barrier
repair mechanisms [167].

Our studies on photoprotective functions of 20
(OH)D3 and 20,23(OH)2D3 in cultured human
epidermal keratinocytes, melanocytes, and
HaCaT keratinocytes have shown that they can
attenuate ROS, H2O2, and NO production
induced by UVB to a similar level to that for
1,25(OH)2D3, with 25(OH)D3 and 20(OH)
7DHC having lower efficiency [201]. The
photoprotection was accompanied by increased
expression of genes involved in defense against
oxidative stress. Furthermore, these compounds
reduced the UVB-induced CPDs and DNA frag-
mentation in the comet assay and enhanced
expression of p53 phosphorylated at Ser-15, but
not at Ser-46 [201]. The most recent tests on an
extended list of CYP11A1-derived vitamin D3
and lumisterol hydroxymetabolites (1,25(OH)
2D3, 20(OH)D3, 1,20(OH)2D3, 20,23(OH)2D3,
1,20,23(OH)3D3, 20(OH)L3, 22(OH)L3, 20,22
(OH)2L3, and 24(OH)L3), and lumisterol itself,
have shown that they can protect human epider-
mal keratinocytes against UVB [41]. Treatment
of cells with the D3 or lumisterol derivatives
showed a dose-dependent reduction in
UVB-induced oxidant formation, protection
against DNA damage, and/or induction of DNA
repair by enhancing the repair of 6-4PP and
attenuating CPD levels and the tail moment of
comets. They also stimulated the expression of
antioxidant response genes downstream of Nrf-2
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(GR, HO-1, CAT, SOD1, and SOD2) and expres-
sion at the protein level of HO-1, CAT, and
MnSOD [41]. With respect to their mechanism
of action, these compounds increased the phos-
phorylation of p53 at Ser-15 with stimulation of
p53 and Nrf2 translocation into the nucleus. We
have also shown that not only pre-treatment but
also posttreatment of keratinocytes with D3 and
lumisterol derivatives can reverse UVB-induced
keratinocyte damage [41] which is similar to
other natural products [98, 175]. Thus,
CYP11A1-derived D3 or lumisterol derivatives,
and to some degree lumisterol itself, act as
photoprotectors with their mechanism of action
involving stimulation of the Nrf2-dependent and
p53 responses, as well as stimulation of the DNA
repair system.

Chemoprevention Against UVR
and Chemically Induced NMSC in Animal
Models

As discussed in subheading “Vitamin D Receptor
(VDR)”, the chemopreventive and potentially ther-
apeutic roles of D3 hydroxyderivatives in NMSC
are indicated by experiments with VDR-/- and
RXR-/- (partner for VDR) mice on cutaneous car-
cinogenesis [12, 21–23, 40, 57, 92, 94, 233]. For
example, Dixon et al. [57] have shown that 1,25
(OH)2D3 and 1,25(OH)2L3 inhibited
UVB-induced development of papillomas and
squamous cell carcinomas in immunocompetent
mice (Skh:hr1). They suggested a non-genomic
mechanism of action, at least in part [57]. Studies
on low-calcemic analog, 1α-hydroxymethyl-16-
ene-24,24-difluoro-25-hydroxy-26,27-bis-
homovitamin D3, have shown that while it
protected against UVB-induced damage, it was
not as effective as 1,25(OH)2D3 in reducing
tumor formation and progression [58].

Others using 1,25(OH)2D3 have shown that it
inhibits proliferation and growth of BCC of Ptch
mutant mice in vivo and of established murine
BCC lines in vitro [230]. Two mechanisms of
action have been shown, e.g., the activation of
the VDR and induction of keratinocyte differenti-
ation and inhibition of Hh signaling at the level of

Smo in a VDR-independent manner [230]. The
1,25(OH)2D3 effects on BCC growth were stron-
ger than those of the cyclopamine (Hh inhibitor),
indicating that its dual action makes 1,25
(OH)2D3 an excellent therapeutic for BCC and
other tumors in which Hh signaling is disrupted
[230]. Of great interest was the study showing
that unmodified D3 inhibited Hh signaling and
growth of murine BCCs both in vitro and in vivo
[214]. D3 blocked both proliferation and Hh sig-
naling to similar degree as cyclopamine. 7DHC,
25(OH)D3, and 1,25(OH)2D3 were less effective
in these actions. The D3 effect appeared to be
independent of the VDR [214]. An important
study led by Epstein on UVB-induced BCC car-
cinogenesis in Ptch1(+/�) mice showed that inhi-
bition of UVB-induced production of D3 in the
skin accelerated BCC carcinogenesis [124]. Fur-
thermore, topical application of the D3
prohormone inhibited UVB-induced BCC
tumorigenesis, while orally delivered D3 had no
protective effect [124]. The authors concluded
that UVB-induced production of D3 in
keratinocytes significantly restrains murine BCC
tumorigenesis and that UVB has anti-BCC carci-
nogenic effects through induction of D3
formation [124].

Studies on the chemically induced develop-
ment and progression of SCC in mice showed
that calcipotriol (analog of 1,25(OH)2D3)
inhibited the cancerogenesis and growth of
tumors [50]. The mechanism of anti-cancerogenic
action included induction of thymic stromal
lymphopoietin [50].

Vitamin D in Chemoprevention or
Adjuvant Therapy in NMSC in Humans

Currently, a few clinical trials have investigated
the effects of vitamin D on NMSCs. The syner-
gistic effects of calcipotriol and 5-FU treatment in
optimally activating a CD4+ T cell-mediated
immunity against actinic keratoses in
randomized, double-blind clinical trial involving
131 participants were reported [50]. Another
human trial has shown that calcipotriol combined
with methyl aminolaevulinate photodynamic
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therapy (MAL-PDT) was more efficacious than
MAL-PDT alone and well tolerated [222]. The
already completed Dutch phase II clinical trial
(ClinicalTrials.gov Identifier: NCT01358045,
start date November 2011, completed date May
2013) ([31], https://clinicaltrials.gov/ct2/show/
NCT01358045?term¼vitamin+d&cond¼BCC&
rank¼3) was a randomized trial on the treatment
of primary, histologically confirmed BCC (nodu-
lar of superficial subtype) with topical application
of vitamin D3, diclofenac, or a combination of
both twice daily under occlusion on BCC lesion.
After 8 weeks, tumors were excised, and prolifer-
ation (Ki-67) and antiapoptotic (Bcl-2) markers
were examined, and no effect of calcitriol alone
was found. Combination therapy resulted in
decreasing Ki-67 level in superficial BCC sub-
type, while diclofenac application was related to a
significantly reduced expression of both Ki-67
and B-cl2 in superficial BCC. Another two clini-
cal trials are related to BCC in basal cell nevus
syndrome (BCNS) treatment with photodynamic
therapy (PDT) and vitamin D as neoadjuvant. The
first one is a clinical, double-blinded, randomized
trial (ClinicalTrials.gov Identifier:
NCT03467789, start date October 2018) (https://
clinicaltrials.gov/ct2/show/NCT03467789?
term¼vitamin+d&cond¼BCC&rank¼2) on the
vitamin D effect (10,000 IU/day) prior to the
first or second PDT visit (treatment for 14 days
when patients are deficient for 25-hydroxy-D3
serum levels or 5 days when 25-hydroxy-D3
levels are normal, and to maintain vitamin D3
level patients are supplemented with 2000 IU/
day or 1000 IU/day for adults and children,
respectively). The tumor clearance measured as
change in lesion diameter per month is the pri-
mary outcome of this trial. The second one is
randomized Phase 1 clinical trial (ClinicalTrials.
gov Identifier: NCT03483441, start date March
2018, (https://clinicaltrials.gov/ct2/show/study/
NCT03483441?term¼vitamin+d&cond¼BCC&
rank¼1), with a similar study design. Patients will
take 10,000 units of cholecalciferol for several
days prior to PDT, and differences in tumor
BCC tumor diameter between treatments will be
measured. The recruitment to these clinical trials
has been opened; however, no results are

available yet. There is also a completed early
Phase 1, double-blinded clinical trial on actinic
keratosis, a precursor of SCC, treated with
calcipotriol plus 5-fluorouracil (5-FU) in patients
with multiple actinic keratoses (ClinicalTrials.
gov Identifier: NCT02019355, start date October
2013, completed date March 2015, ([50], https://
clinicaltrials.gov/ct2/show/NCT02019355)). A
significantly reduced number of actinic keratosis
was found in patients treated for 4 days with
calcipotriol plus 5-FU when compared to only
5-FU treated patients. Currently, there is no
open clinical trial on SCC treatment with vitamin
D. Thus, vitamin D could enhance NMSC treat-
ment; however, additional clinical trials are
needed to fully justify its use and to select the
most optimal vitamin D derivative for treatment
of keratinocyte-derived cancers.

Perspective and Conclusions

The pleiotropic activities of D3 that are in addi-
tion to the regulation of body calcium homeosta-
sis and include radioprotective and
anticarcinogenic activities are consistent with
the actions of multiple vitamin D derivatives pro-
duced in the human body and multiple target
receptors in addition to the VDR. In vivo and
in vitro studies reviewed above clearly docu-
ment an important if not crucial role for different
vitamin D compounds and the VDR, not only in
photoprotection but also in the prevention or
attenuation of NMSCs. With respect to cutaneous
carcinogenesis, a key question is which chemical
configurations of vitamin D compounds are the
most efficacious with relatively minimal site
effects and what is their mechanism of action,
e.g., genomic or no-genomic. For genomic
activities, new receptor candidates in addition to
the VDR are emerging such as RORα and RORγ
and AhR, which may be targeted in addition to
the targeting of the Hh signaling pathway.
Finally, different routes of delivery with preferred
topical application have to be considered that
require proper formulation.

Due to toxic (calcemic) effects, the therapeutic
use of 1,25(OH)2D3 at pharmacological doses or
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chronic oral use of D3 has its limitations. The
discovery of an alternative pathway of D3 activa-
tion initiated by CYP11A1, producing at least
15 metabolites (OH)nD3) with a full-length side
chain and potentially several others with a short
or absent side chain, opens new possibilities for
treatment, since they have antiproliferative,
pro-differentiation, anti-inflammatory
photoprotective effects on normal and malignant
epidermal cells. Many of them are non-calcemic
and non-toxic at suprapharmacological doses.
Furthermore, with the contribution of UVB acting
on Δ7-steroids or sterols produced in the skin, the
corresponding lumisterol and tachysterol
compounds can be produced with photoprotective
properties. Thus, novel secosteroids, lumisterol,
and/or tachysterol compounds are excellent
candidates to serve as radioprotectors and
chemopreventive agents for skin cancers. They
potentially can induce the repair of damaged
DNA and/or attenuate or reverse UVR-induced
skin aging [26].

In summary, recent advances in vitamin D,
lumisterol and 7DHC biochemistry, skin biology,
and pharmacology are opening up new exciting
opportunities in skin healthcare and treatment of
different cutaneous pathologies.
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