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Abstract. Cognitive Twins (CT) are proposed as Digital Twins (DT) with
augmented semantic capabilities for identifying the dynamics of virtual model
evolution, promoting the understanding of interrelationships between virtual
models and enhancing the decision-making based on DT. The CT ensures that
assets of Internet of Things (IoT) systems are well-managed and concerns
beyond technical stake holders are addressed during IoT system development. In
this paper, a Knowledge Graph (KG) centric framework is proposed to develop
CT. Based on the framework, a future tool-chain is proposed to develop the CT
for the initiatives of H2020 project FACTLOG. Based on the comparison
between DT and CT, we infer the CT is a more comprehensive approach to
support IoT-based systems development than DT.
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1 Introduction

Internet of things (IoT) is a network of items embedded with sensors which are con-
nected through the internet [1]. One IoT system consists of computing devices,
physical plants and networks defined as a system-of-systems (SoS) [2]. During
developing IoT systems, architectural dependencies across the entire SoS are chal-
lenged because of the massive compositions among them. During the lifecycle of IoT,
virtual model assets for system, subsystems and components are needed to specify,
detect and resolve dependencies across domains, such as interface definition. Com-
positions from different domains and hierarchies of IoT system are evolving fast. Well
managed and predictable evolution dynamics reduce the risks brought by new com-
positions, such as new characteristics and interoperability. Moreover, the architecture
of IoT systems should be permitted with easy connectivity, control and communication
among domain-specific applications. Thus, understanding the interrelationships
between systems, subsystems and components is very important.

The motivation of our work is to overcome the challenges identified in the above
paragraph and provide a new concept and framework to support IoT system devel-
opment as follows. First, during IoT development, the virtual model asset should be
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managed in a systematic way during initial phases. An integrated information infras-
tructure with virtual models should enable to describe the interrelationships of IoT
compositions to promote the understanding of their dependency and traceability.
Second, the dynamics of model evolution need to be identified in order to predict the
evolution of IoT system, subsystem and compositions. Third, topologies between
virtual model assets enable to represent interrelationships of IoT compositions. Thus,
the topologies are required to be managed.

Our contribution is to illustrate a new concept called Cognitive Twins (CT) and a
knowledge graph (KG)-centric framework supporting CT development. We first define
the concept of CT and digital twins (DT) to distinguish the differences between them.
Then based on the concept of CT, a KG-centric framework is proposed to develop CT.
Using KG, the topologies of virtual model assets are identified and managed. More-
over, a tool-chain concept is designed to support the framework for developing future
CT. The results will be used in the H2020 projects FACTLOG and QU4LITY.

The rest of the paper is organized as follows. We discuss the related work in Sect. 2
and introduce the definition of CT in Sect. 3. Moreover, the KG-centric framework is
proposed in this section to create CT models. In Sect. 4, a future tool-chain concept is
proposed for the related developments in the H2020 project FACTLOG1. Finally, we
discuss about CT in Sect. 5 and offer the conclusions with a summary in Sect. 6.

2 Related Work

The concept of DT was fostered by the rapid development of various existing tech-
nologies such as 3D modeling, system simulation, digital prototyping etc. [3]. In the
whitepaper [4] published in 2014, Grieves defined the concept of DT and proposed a
three-dimension model of DT based on the previous conception of “a virtual, digital
equivalent to a physical product”. According to Grieves, a DT model should at least
consist of three main parts including: physical products in Real Space; virtual products
in Virtual Space; and the connections of data and information that tie the virtual and
real products together [4]. Since then, DT and relevant technologies have been
evolving rapidly, which reflects that the virtual world and the physical world are
becoming increasingly linked to each other and integrated as a whole [5]. Tao F. et al.
extended the existing three-dimension DT model by adding two more dimensions, DT
data and services, and proposed a five-dimension model to promote the further
applications of DT in more fields [6]. In a recent study, Qi et al. [5] reviewed the
application fields, enabling technologies and tools for DT. Based on this study, it is
concluded that universal design and development platforms and tools for DT are
required to facilitate the integration of different technologies and tools which may have
different formats, protocols and standards.

Data from different platforms and sources might be heterogeneous in syntax,
schema, or semantics, which make data integration difficult. Semantic technologies
provide solutions to achieve semantic interoperability in a heterogeneous system [7].

1 H2020 Project FACTLOG: http://factlog.eu/.
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Semantic models enable to capture complex systems in an intuitive fashion, which can
be summarized in standardized ontology languages, and come with a wide range of off-
the-shelf systems to design, maintain, query, and navigate semantic models [8]. This
characteristic makes semantic modelling a promising paradigm to address the chal-
lenges that DT development is facing currently. The authors of [8] employed semantic
technologies to design a system that supports semantics-based DT. Many of existing
researches use ontologies as the knowledge base, but the manual construction of
ontologies is a very time-consuming task [9]. To overcome this limitation, more
advanced techniques such as KGs are being used. According to [10, 11] KGs acquire
and integrate information into an ontology and utilize a reasoner to derive new
knowledge and they can model information in the form of entities and relationships
between them. KGs have been adopted in some studies to accelerate the implemen-
tation of DT. For example, in [12] the authors anticipated the paradigm of the next
generation DT and KGs were considered as one of the main enabling technologies to
link and retrieve all kinds of data, descriptive and simulation models etc. In [13], the
authors analyzed the feasibility of backing DT with enterprise KGs based on the fact
that DT could be strengthened by using semantic technologies to provide a formal
representation of the DT domain. In [14] a graph-based query language was utilized to
extract and infer knowledge from large scale production line data, to help generate DT
models and therefore enhance manufacturing process management with reasoning
capabilities.

Despite the importance of semantic technologies and KGs for the development of
DT, there are still many gaps to be bridged, such as the lack of unified implementation
architecture, integration of enabling technologies and tools etc. More research efforts
are required for this topic.

3 Cognitive Twins

In this chapter, basic concepts of DT and CT are first introduced. Then the charac-
teristics of IoT are introduced in order to formulate the problem of IoT systems. Then a
KG- centric framework is proposed to construct CT for IoT systems.

3.1 Basic Concepts

In this chapter, concepts of DT and CT are introduced, as shown in Fig. 1, separately.
Based on their respective concepts, the differences between them are summarized.
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Digital Twins (DT). DT is a digital duplication of entities with real-time two-way
communication enabled between the cyber and physical spaces [4]. It aims to support
integration of IoT for connecting the physical and virtual spaces. As shown in Fig. 1, if
the physical twin is defined as an areo-engine, the virtual entities of areo-engine include
CAD models, FEM models etc. In this study, the concept of DT is formally defined as
follows:

DTSys ¼ PE Sysf g[VE RModel Ms;Mp;Mt;Ml;Mt;Mmð Þf g [
Comm RData EntitySt;EntityDe;Dtype;Datacontentð Þf g ð1Þ

where DTSys refers to a DT of system Sys; PE{Sys} refers to the physical twin of Sys;
VE{RModel(Ms, Mp, Mt, Ml, Mt, Mm)} refers to a collection of models related to Sys.
Each model includes several items:

• Ms (Model Structure): topology of models, inputs, outputs and parameters.
• Mp (Model purpose): the views of modeling, “why is the model needed?”
• Mt (Modeling theory): the mathematical foundation of modeling, e.g. differential-

algebraic system of equations.
• Ml (Modeling language): any language expressing information or knowledge or

systems in a structure that is defined by a consistent set of rules.
• Mt (Modeling tool): tools implementing models.
• Mm (Modeling method): a set of concepts to explain “how to develop models using

a given language in one modeling tool to represent the formalisms?”, e.g. finite
element modeling and structural equation modeling.

Fig. 1. Digital Twins vs Cognitive Twins
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Comm{RData(EntitySt, EntityDe, Dtype, Datacontent)} refers to data and infor-
mation flows between physical entities and virtual entities. Each flow includes several
items:

• EntitySt (Entities of Start): start of the data and information flow.
• EntityDe (Entities of Destination): destination of the data and information flow.
• Dtype (Type of data): type of data, such as real-time data and off-line data.
• Datacontent (Content of data): the data used in this data flow.

Cognitive Twins (CT). DTs are expected to support the industrial area of design,
production, prognostics, and health management, etc. [15]. Each DT has different
models which are difficult to manage, because the model versions are updated across
the lifecycle. Moreover, the virtual models in DT are across domains which are difficult
to identify their interrelationships. The CT is proposed to solve this problem as shown
in Fig. 1. One timestamp for each lifecycle spot is added to each virtual model.
Moreover, topologies of models are required to be described.

CTSys ¼ PE Sysf g[VE RModelt Mtt; Mpt; Mtt; Mlt; Mtt; Mmtð Þ;f
Ontopology entities, relationshipsð Þg [Comm RData EntitySt, EntityDe, Dtype, Datacontentð Þf g;
t ¼ 1; 2; 3; . . .; timespots in lifecycle

ð2Þ

Where CTSys refers to a CT of system Sys; PE{Sys} refers to the physical twin of
Sys; VE{RModelt(Mst, Mpt, Mtt, Mlt, Mtt, Mmt), Ontopology(entities, relationships)}
refers to a collection of models related to Sys. Different from DTs, each model in the
CT is added with a timestamp in the lifecycle. Except for the items in DTs, Ontopology
(entities, relationships) refers to ontology to represent the topology between Models.

• The entities refer to all the information related to models, such as compositions.
• The relationships refer to all the interrelationships of entities.

3.2 Problem Formulation

Based on the basic concept of proposed CT, a KG-centric framework is proposed
for supporting our EU Projects FACTLOG and QU4LITY and Swiss
InnoSwiss IMPULSE project on DTs. These three projects are mainly focusing on IoT
systems using DT. Based on the initiative definition [16], several technological and
social aspects related to IoT are investigated to identify the industrial concerns for
developing the framework in the next section.
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As shown in Fig. 2, seven aspects are considered during the entire lifecycle of IoT.
The details are introduced as follows:

• Social impacts of IoT, such as impacts and acceptance of users.
• Business models and ecosystems, a new business model for IoT systems.
• Services and application, including domain specific services.
• Software architecture, such as operational systems, middleware.
• Enabling technologies and systems architecture, sensors, energy management
• Security and privacy, such as management of personal data.
• Management, such as autonomics and self-organization of large IoT systems.

3.3 A KG-Centric Framework for Cognitive Twins

Fig. 2. IoT concerns

Fig. 3. A KG-centric framework for CT
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In order to construct CT for IoT systems, a KG-centric framework is proposed as
shown in Fig. 3. It requires inputs from business domains and performs outputs to asset
domains. The five main patterns of the KG-centric framework are shown in details as
follows:

Process Modeling and Simulation. IoT systems consist of computational composi-
tions, sensors, networks and plants which are considered as hybrid systems including
continuous systems and discrete systems [17]. DT is an integrated system consisting of
mathematical models and data, which is closed to a real-time synchronization between
real physical systems and their own virtual entities [18]. Such process can be repre-
sented as entire workflows where the computing composition and other plant nodes are
linked together. In this pattern, a process modeling and simulation approach is used to
formalize these workflows and to simulate the hybrid system behaviors.

Ontology-Based Knowledge Graph. KG models are at core to represent the topo-
logical interrelationships between physical entities and cognitive entities. Before
developing KG models, ontologies for KG models are first designed in order to develop
the semantics and syntax. Based on the basic concepts of CT and problem formulations
in Sect. 3.3, the ontology includes:

• IoT domains. This part focuses on the contents related to IoT domains including
physical entities and communications. Seven aspects in Sect. 3.2 are considered
when defining the ontology.

• Model objects. This part mainly focuses on the contents related to CT, such as
model structure and Ontopology (topology between models).

• Organizations. This part mainly focuses on the organizations related to IoT,
• such as suppliers and stores.
• KG objects. This part mainly focuses on the knowledge graphs including

description, structure, methodology, decision-making, reasoning and manuals.

Cognitive Twins for Dynamic Process Simulation. Artificial Intelligence (AI) APIs,
KG models, historical data and process models with dynamics are integrated to gen-
erate CT models. CT models aim to support decision-makings for dynamic processes of
physical entities.

CT-Based Analytics for Process Optimization. Based on the CT models and real-
time data, a tool is used to support process optimization. The optimization results are
performed to make decisions for manipulating the physical entities.

Service-Oriented Interfaces for Data Interoperability. Aservice-oriented approach
is proposed to develop interfaces for heterogeneous data. All the assets and business
domain data are transformed to unified formats through the developed interfaces. Such
unified data are used to support other patterns in the framework.
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4 A Future Tool-Chain for Developing Cognitive Twins

Based on the proposed KG-centric framework, a tool-chain is developed for developing
the CT models in which several tools are adopted as compositions of the tool-chain, as
shown in Fig. 4. The detailed tools are introduced in Table 1. MetaGraph is a DSM
tool to develop process models based on IDEF0 [19]. Moreover, MetaGraph generates
CIF models for process dynamic simulation for process models. The domain data
including process dynamic simulation results, real-time data and historical data of IoT
systems are represented as Open Services for Lifecycle Collaboration (OSLC) services
through datalinks (a tool for developing OSLC adapters). The OSLC services are
RESTful services for linking data through defined URIs. Moreover, we make use of
Protégé to formalize process models, process dynamic simulation results and OSLC
services from domain data. AI APIs including TensorFlow and KNIME are used to
generate CT models based on ontology and OSLC services. The CT models are used
for supporting optimize the IoT plants which optimization algorithms are developed
using Matlab and Python.

Fig. 4. Overview of the tool-chain

Table 1. The initial tool-chain for developing CT models

Tools Descriptions

MetaGrapha & MetaEdit+ [20] Process modelling
CIF simulator [21] Process dynamic simulation
Protégé [22] Ontology modeling
KNIME [23] & Tensorflow [24] Develop CT models
Datalinksb Developing OSLC services for domain data
Matlab [25] & Python [26] Design optimization toolset for the dynamic processes
aA Domain-Specific Modeling tool of Z.K. Fengchao http://www.zkhoneycomb.com/.
bA tool for developing OSLC services [27] of Z.K. Fengchao http://www.zkhoneycomb.
com/.

112 J. Lu et al.

http://www.zkhoneycomb.com/
http://www.zkhoneycomb.com/
http://www.zkhoneycomb.com/


5 Discussion

Currently, DTs are proposed to support the entire lifecycle of IoT. Physical entities,
virtual entities, data, service and connections between them are always concerned by
industries, such as NASA [15]. From the literature review, traditional DTs at core focus
on connections between the physical entities and virtual entities. The main difference
between DT and the proposed CT are replacing the virtual entities by CTs. The CTs
add timestamp for each model and provide topologies between all the models. Thus,
the cognitive models are dynamically evolved rather than being static according to the
physical entities. Several use cases are defined when CT is used (Table 2):

Taking an example of aeroengines, DTs are used for constructing the prognostic
health management system, which the physical engine is connected with the digital
models in order to realize real-time aeroengine monitoring and fault detection. How-
ever, the lifecycle of aeroengine is very long leading to that there are various versions
of models used before the aeroengine is finalized. Moreover, the aeroengine consists of
different compositions which are used for different scenarios of production, operation
and maintenances. The topologies between different virtual models with different
versions, domains and hierarchies identify the lifecycle dynamics and domain inter-
relationships of each model which provide clues about dynamics of system lifecycle
and a decision-making solution based on system-level data. Thus, several advantages
are summarized:

• The time stamps for each model of CTs promote the dynamics of the virtual model
evolution. Based on this dynamics, decision-making based on the CTs enable to
predict not only the behaviors of physical entities, but also the model updates of the
virtual entities (concepts in DTs).

• Ontology for representing interrelationships between models also provides more
clues for analyzing the behaviors of physical entities.

This paper focuses on IoT system development, operation and maintenance. The
IoT system developers expect to have a good dependency from requirement, function,
behaviors and architecture when developing IoT systems. Moreover, the lifecycle of
IoT systems is shorter than traditional equipment, such as areo-engine. The components

Table 2. The initial tool-chain for developing CT models

Use case Description

Lifecycle dynamics The added timestamp for each model is used to analyze the dynamics
of virtual model evolutions

Decision-makings The lifecycle dynamics provide clues for decision-makings for the
system evolution

Data analysis across
domains

The topology of virtual entities provides a unified description of
across domain data which is the basis for data analysis at entire
system level
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are renewed quickly which means the entire IoT systems evolve fast. Furthermore, IoT
requires flexible and standardized interfaces during they are developed because of such
fast evolutions.

Based on the summarized advantages of CT, ontology promotes the understanding
of dependencies between models, such as requirement models. In order to support fast
evolution of IoT systems, dynamics of virtual models are useful to analyze the system
changes and to identify the requirements for new system components. The flexible and
standardized interfaces also require a good understanding of interrelationships between
physical components or between models. Totally, CT has the better capabilities to
support IoT system development compared with DTs.

6 Conclusion

This paper presents a conceptual definition of CTs supporting IoT system development
and maintenance. Based on the definition, a knowledge graph based framework is
proposed to develop CT models. Based on the framework, a future tool-chain concept
is used to support an initiative solution for the H2020 project FACTLOG.
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