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Abstract. RNA-seq andRibo-seq arewidespreadquantitativemethods for assess-
ing transcription and translation. They can be used to detect differential expression,
differential translation, and differential translation efficiency between conditions.
The statistical power to detect differential genes is affected by multiple factors,
such as the number of replicates, sequencing depth, magnitude of differential
expression and translation, distribution of gene counts, and method for estimating
biological variance. As power estimation of translational efficiency involves the
combination of both RNA-seq measurements and Ribo-seq measurements, this
task is particularly challenging. Here we propose a power assessment tool, called
RiboSimR, based purely on data simulation.RiboSimR, produces semi-parametric
simulations that generate data based on real RNA and Ribo-seq experiments,
with customizable choices on baseline parameters and tool configurations. We
demonstrate the usefulness of our tool by simulating data based on two published
Ribo-seq datasets and analyzing various aspects of experimental design.
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1 Introduction

RNA-seq and Ribo-seq are popular techniques for investigating the transcriptional and
translational landscape [1, 2]. The techniques use next-generation sequencing to pro-
duce genome-wide high-resolution snapshots of the total populations of mRNAs and
translating ribosomes, respectively. Although it is a less widely used assay, Ribo-seq
has shown that it can be used to assess the dynamics of ribosome activity during trans-
lation at a nucleotide specific resolution [1]. These techniques generally produce count
tables, which quantify transcription and translation for each gene. These tables can be
used to measure changes in transcription and translation across biological conditions,
treatments, or timepoints by calculating differential expression (DE), differential transla-
tion (DT), and differential translation efficiency (DTE). Differential translationmeasures
changes in translationwithout taking changes in transcript abundance into account, while
differential translational efficiency assesses changes in translation after accounting for
changes in transcript abundance [3].

In order to determine statistical significance when testing for differential genes,
sample replication is used to account for biological and technical variability [4].
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The amount of replication researchers should employ is a complicated but important
aspect of experimental design in and sequencing experiment. Additionally, for both
Ribo-seq and RNA-seq, there exists a minimum sequencing depth threshold for iden-
tifying biologically important genes [5]. Sequencing under this threshold reduces the
power of the test to identify differential genes, while sequencing above this threshold has
diminishing returns in terms of the yield of differential genes per amount of sequencing.
As we are dealing with read count data, which is commonly modeled using a negative
binomial distribution, counting error plays a role in gene determining optimal sequencing
depth [6, 7]. Genes with low counts are more greatly affected by this counting error than
thosewith high counts, and therefore, our ability to detect a differential gene is dependent
on the count value of the gene. Determining the appropriate levels of sample replica-
tion and sequencing depth for Ribo-seq and RNA-seq are critically important aspects of
experimental design and should to be assessed prior to conducting any experiment.

Our ability to detect differential genes can also be affected by which methods we
choose to usewhen performing tests for statistical significance. As sample sizes are often
limited, empirical Bayes methods are commonly used to estimate gene-specific biolog-
ical variation by shrinking variance estimates towards the average trend across all genes
[6, 7]. These procedures are typically effective at providing variance estimates which
are closer to the biological variance, but can also introduce dependencies amongst genes
that violate some of the assumptions of the error-controlling procedures during multiple
testing correction. It is essential that researchers understand the differences in method-
ologies between tools for differential analysis, as they often contain different variance
estimation procedures and multiple testing correction methods, both of which can have
significant effects on the results of the tests. Other seemingly simple decisions, like
choosing a statistical significance threshold to use when determining differential genes,
can be of great importance. The level of change that is considered biologically signifi-
cant can vary based on the purpose of an experiment, as can trends in the relationship
between p-values and effect sizes [8].

Researchers have previously shown that simulations can be used to examine different
experimental design setups for RNA-seq, including scenarios with varying sequencing
depth and replicate number [9–11].Wu et al. proposed a prospective power analysis setup
to visualize power in multiple forms and across various circumstances [9]. Similarly to
other studies, they simulate datasets using the negative binomial distribution, and draw
parameters from real experiments. In Ribo-seq, the complexity of these experimental
design questions only increases, as we must ask ourselves if our decisions might effect
each experiment type differently. Researchers also need to assess scenarios where there
are potentially large discrepancies in the level of sampling depth and replication between
RNA-seq and Ribo-seq experiments. Issues can also arise when testing for statistical
significance, as evident by the increased amount of discrepancy amongst methods which
employ more complex two factor tests to calculate differential translation efficiency
[12–15].

We therefore propose a comprehensive simulation strategy for the purpose of per-
forming dynamic power analyses of Ribo-seq experiments. We apply this strategy to
assess various questions in experimental design of Ribo-seq and RNA-seq experiments.
These questions include the optimal level of sample replication and sequencing depth,
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the tradeoff in value of increasing depth versus replication, the effect of a gene’s expres-
sion has on our ability to identify it as differential, the effect of adding differing amounts
of depth and replication to pre-existing experiments, and the effect of various tools and
parameters for performing differential analysis. We show the effects of this analysis
using two datasets in Arabidopsis thaliana and Toxoplasma gondii. Furthermore, we
present a R Shiny web application which allows users to perform simulations and power
analyses based on their own data or pilot datasets. This tool can be used to decide which
experimental parameters a user wants to use in a prospective project, or to aid them to
add to a preexisting study.

2 Methods

We propose the web application RiboSimR, which uses simulations to evaluate the
effect of experimental design on our power to identify differential genes in Ribo-seq
experiments. Our simulation methodology is largely adapted from Wu et al.’s work on
RNA-seq simulation, and our tool is composed of two similar steps [9]. Initially, we use a
semi-parametric simulation scheme to produce count tables for Ribo-seq and RNA-seq
experiments. These tables are made by drawing parameters from experimental count
tables provided within the tool, or optionally uploaded by the user. The simulations
therefore borrow multiple aspects from the real data, such as the distribution of bio-
logical dispersion within genes, the distribution of average transcription and translation
levels, the negative relationship between dispersion and count magnitude, and the posi-
tive association between average transcripts and footprints. Secondly, we assess power
and false discovery rates (FDRs) for the simulations using a large number of custom
visualizations.Within the output of RiboSimR, we highlight features like false discovery
cost, stratified power, and sequencing value. The tool allows users to customize various
parameters within both the simulation setup and output generation steps.

2.1 Simulation Strategy

In order to performdownstreampower analyses,wefirst use a negative binomialmodel to
simulate both RNA-seq and Ribo-seq count tables. Researchers commonly use negative
binomial models to generate RNA-seq and Ribo-seq count data, because the flexibility
of these models allows for accurate representation of the mean-variance relationship
found in these data [6, 7]. The NB distribution corresponds to a gamma-Poisson mix-
ture, with the gamma distribution representing the biological variation, and the Poisson
layer modeling the variability in sequencing read counts [9]. If Ygi is the count value for
gene g in replicate i, then Ygi ∼ N B(siμg, φg), where μg is the mean count for gene g,
φg is the dispersion for gene g, and si is the normalization factor for the library size of
replicate i. We use this technique to model RNA-seq and Ribo-seq counts separately, i.e.
each gene has a different mean count for Ribo-seq (YgiRibo) and RNA-seq (YgiRNA). Our
method uses non-parametric resampling ofmean count and dispersion parameters empir-
ically from existing datasets, as we lack a valid justification for drawing the parameters
parametrically. The dispersion parameter corresponds to the squared biological coeffi-
cient of variance, and can be thought of as representing the biological variation of gene
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expression between replicates [6, 7]. We choose to sample mean count and dispersion
parameters for individual genes as pairs in order to preserve their relationship, which has
been previously described [6, 7]. Additionally, we sample parameters for our simulated
RNA-seq and Ribo-seq counts in pairs, as there is a positive relationship between the
level of transcription and translation within genes. For example, for a simulated gene
g, we will sample parameters [μgRNA, ΦgRNA, μgRibo, ΦgRibo] from a single row of the
empirical count table.

Another important step in our simulations is to set effect sizes. As we seldom know
the precise amount of DE, DT, and DTE that is biological significant within an exper-
iment, this can be a risky assumption to make. These effect sizes are applied to mean
count parameters across the two conditions, in effect generating artificial differential
genes. For Ribo-seq experiments, we must assume separate effect sizes across the two
different experiment types. Several techniques have been used to set effect sizes for
simulated RNA-seq experiments, but we will focus on using a mixture model [9–11].
For a one factor test, such as a test for DE in RNA-seq, we let zg be the indicator
that gene g is differentially expressed across a given treatment, and the proportion of
differential genes be P(zg= 1) = π1. We have the effect size βg satisfying βg| zg=
0 = 0 and βg| zg= 1 ~ N(0,σ 2). This would be designated as a zero-inflated normal
distribution for βg. For Ribo-seq, because we are dealing with two experimental types,
we require both βgRibo, βgRNA and zgDT , zgDE , which describe the effect size and differ-
ential indicators for changes across conditions in either experiment type. We also define
the differential effect size between experiments as βgE where βgE= |βgRibo − βgRNA|,
and zgDTE as the indicator for differential translation efficiency. Therefore, we have four
possible types of differential genes:

1. βgRN A �= 0, βgRibo = 0, βgE �= 0 → zgDE = 1, zgDT = 0, zgDTE = 1
2. βgRN A = 0, βgRibo �= 0, βgE �= 0 → zgDE = 0, zgDT = 1, zgDTE = 1
3. βgRN A �= 0, βgRibo �= 0, βgE = 0 → zgDE = 1, zgDT = 1, zgDTE = 0
4. βgRN A �= 0, βgRibo �= 0, βgE �= 0 → zgDE = 1, zgDT = 1, zgDTE = 1

Up to this point, we have described genes with zg = 1 as differentially expressed,
but it may be the case that these genes are not biologically interesting, as |βgRNA| or
|βgRibo| may be extremely low but non-zero. We would expect to have little power to
detect these genes. Thus, we may be interested in defining differential genes of interest
with an indicator zg* = 1 if |βg| ≥ �. This allows us to investigate the power of finding
genes which we think are more likely to be biologically relevant. We can let the user
decide the ‘meaningful effect size’, �. The meaningful effect size can also be different
between experiment types, as users may expect larger overall differences to occur in
either RNA-seq or Ribo-seq, or want to relax constraints on either experiment type.

2.2 Differential Analysis

Once the count tables for both experiment types have been simulated, we can assess
differential expression, differential translation, and differential translation efficiency.
Table 1 depicts the scenarios for each type of differential test, assuming a meaningful
effect size. We have implemented four tools for analysis of differential genes: edgeR,



RiboSimR: A Tool for Simulation and Power Analysis of Ribo-seq Data 125

DESeq 2, limma-voom, and DSS for analysis of DE, DT, and DTE [6, 7, 17, 18]. Tests
for DE and DT essentially ignore counts from the opposite experiment type, while tests
for DTE perform a two factor test which investigates changes in translation levels after
accounting for changes in levels of transcription. This can be seen as conducting an
overall test for interaction using the formula~Experiment + Condition + Experiment:
Condition, where we are looking for genes which respond differently to the treatment
relative to the experiment type [6].

Table 1. Differential scenarios, assuming effect size �

|βgRibo| < � |βgRibo| ≥ �

|βgE| < � |βgE| ≥ � |βgE| < � |βgE| ≥ �

|βgRNA| < � z*gDTE = 0 z*gDTE = 1 z*gDTE = 0 z*gDTE = 1

z*gDE = 0 z*gDE = 0 z*gDE = 0 z*gDE = 0

z*gDT = 0 z*gDT = 0 z*gDT = 1 z*gDT = 1

|βgRNA| ≥ � z*gDTE = 0 z*gDTE = 1 z*gDTE = 0 z*gDTE = 1

z*gDE = 1 z*gDE = 1 z*gDE = 1 z*gDE = 1

z*gDT = 0 z*gDT = 0 z*gDT = 1 z*gDT = 1

2.3 Power Assessment

For our purposes,we are not interested in finding geneswith variation between conditions
which is less than the effect size�, and can therefore restrict our genes to two categories:
|βg| < � and |βg| ≥ �, where βg represents the effect size for the test of interest, be it
DE, DT, or DTE. Table 2, which has been adopted fromWu et al. and simplified, shows
the possible scenarios for any test [9].

LetG be the total number of genes tested, whereG1 are genes which exhibit an effect
size of at least �, and G0 are genes which do not. Dg is the decision on any gene, where
Dg = 1 is a discovery andDg = 0 is a non-discovery. Here V represents the total number
of type I errors, or false discoveries, S the number of true positive, and R the total number
of discoveries. The type 1 error is therefore P(V > 0) and the FDR is E[V/R]. The FDC,
described by Wu et al., can be defined as the number of false discoveries made for every
true discovery, and represented as E[V/S] [9].

Here we are labeling genes which have 0 < |βg| < � as false discoveries, meaning
that we only want to measure our ability to find genes with a meaningful effects size,
and penalize all other discoveries.

Therefore, when we talk about power, we are actually discussing a targeted power,
instead of a family-wise power, which is the probability of detecting all true differential
genes [8]. This is because we both doubt our ability to find genes with very small
effect sizes, and also question the biological importance of such genes. The targeted
power, which from now on we simply refer to as power, is therefore E[S/G1]. For each
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simulation, we calculate the power, false discovery cost, and true positive rate of the
discoveries made using a differential analysis tool and nominal FDR provided by the
user. Averages across a number of repeated simulations are reported.

Table 2. Differential scenarios, assuming �

Differential? Discovery? Total

z*g Dg = 1 Dg = 0

|βg| < �

|βg| ≥ �

0
1

V
S

G0 – V
G1 − S

G0
G1

Total R G − R G

2.4 Implementation

We have implemented the proposed methods for simulation and power analysis in a R
Shinyweb application calledRiboSimR, available at http://pjperki2.shinyapps.io/power.
The tool allows users to upload their own count files forRNA-seq andRibo-seq and create
simulated data sets based on the parameters of their experiments. Users may also test
different experimental scenarios for prospective experiments using provided pilot data
sets. The app allows multiple options to customize the simulations, by choosing the size
of the datasets they wish to simulate, the number of repetitions, and the meaningful
effect size. Users may also choose between a large number of different visualizations,
which include simulated variations of sample replication and sequencing depth, gene
count stratification, comparisons between differential analysis tools, etc.… The tool
also provides the choice of which type of test they want to conduct (DE, DT, DTE),
and which power metrics they want to assess (power, true positive rate, false discovery
cost). A description of the various tools and functionalities included in RiboSimR can
be found at the apps home page. Runtime for the simulations depends on the size of the
simulated data and the number of repetitions conducted, but a typical simulation with
20,000 genes and 20 repetitions takes approximately 10–30 min.

3 Results

3.1 Data Preparation

To display the utility of RiboSimR, we performed simulations and power analyses using
two published datasets. TheMerchante et al. data is fromArabidopsis thaliana seedlings,
and was used to study of the role of the phytohormone ethylene as a gene-specific regu-
lator of translation [19]. The data are split into two conditions, control samples treated
with air, and ethylene treated seedlings. The Hassan et al. data are from intracellular and
extracellular Toxoplasma gondii parasites [20]. This data was used to quantify the dif-
ferences in translation between the intracellular and extracellular stages of the parasites.

http://pjperki2.shinyapps.io/power
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Both datasets contain two replicates from two conditions for both RNA-seq and Ribo-
seq. These datasets were chosen because they originate from studies which focus on
using both RNA-seq and Ribo-seq data to identify genes which show differential trans-
lation efficiency between two treatments, and because they are from different organisms,
and show varying levels of biological variability.

For all of the following simulations, we generate 20,000 genes and repeat each of
the simulations 20 times. We assume that 2% of all genes fall into each of the four types
of differential genes described in Sect. 2.1. Therefore, accounting for overlap, 6% of the
total set of genes areDE, 6% areDT, and 6% areDTE. These simulation parameters were
chosen to mirror the conditions of similar RNA-seq experiments [9]. The effect size for
non-differential genes is set to 0, while the effect sizes of DE and DT genes are drawn
from a normal distribution~N(0, 1.52). Means and dispersions for simulated genes are
drawn from the real data in paired sets with dependency. Unless stated otherwise, we
employ the quasi-likelihood F-test in edgeR to calculate genes with DE, DT, and DTE.
A meaningful effect size of 0.5 is used to determine biologically meaningful genes. All
of the following results and figures represent output from riboSimR.

3.2 Simulation Results

Figure 1 examines how the power of our tests for DTE, DE and DT are affected by
artificially altering the number of sample replicates and the sequencing depth. The x-
axis represents the factor by which the empirical depth is multiplied. For DTE and DT, it
seems as though, for a given replicate number, sequencing depth increases cease to yield
increases in power at around 75% of the real dataset size. This indicates that increasing
sequencing depth beyond this point would have diminishing returns.

However, the power to identify DE genes continues to increase as sequencing depth
increases. For each type of test, it is clear that higher power can be achieved by increasing
the number of sample replicates. This increase in power does not seem to have dimin-
ishing returns, as increases are observed in up to ten replicates. Our power to identify
genes which showDE seemsmore largely reliant on both sequencing depth and replicate
number than tests for DT and DTE.

To further quantify the differing effects of increasing the sequencing depth and
replicate number, we can compare experiments in which the same number of total reads
are added, but added by increasing only either depth or replicate number. Figure 2A
shows the results of such an analysis, where the blue line indicates increasing the total
number of reads by increasing depth, and the orange line indicates increasing the total
number of reads by the same amount, but via increased replication. These results once
again highlight that, for the Merchante dataset, power can only be increased by adding
replicates.

We also investigated increasing replication and depth at differing levels in the two
experiment types. The x-axis of Fig. 2B represents increasing levels of Ribo-seq repli-
cates, while the different colored lines represent the different numbers of RNA-seq
replicates. These results indicate that increasing the number of RNA-seq replicates gen-
erally has a larger positive effect on power than increasing Ribo-seq replicates. Figure 2C
shows the result of a similar experiment, but increasing depth instead of replication. Here
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Fig. 1. Simulations based on Merchante et al. data for (A) DTE, (B) DE, and (C) DT. X-axis
represents the factor by which depth is changed relative to the complete dataset. Different colored
lines represent number of simulated replicates. (Color figure online)

A

CB

Reps Depth

Fig. 2. (A)Value comparison between increasing reads via replications and sequencing depth. (B)
Effect of increasing replication at differing levels across experiment types. (C) Effect of increasing
sequencing depth at differing levels across experiment types. (Color figure online)
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we are simulating the addition of reads to existing datasets, and therefore we begin sim-
ulating at 200% of empirical read levels. As previously noted, adding additional depth to
theMerchante dataset has proven to have little effect on power, and these results indicate
that addition of varying levels of RNA-seq or Ribo-seq have little effect on these results.

Figure 3 shows a quantification of the power to identify genes which show DTE,
stratified by average RNA-seq read (3A) count and Ribo-seq read count (3B). These
results indicate that, for a given replicate number, our power to detect genes with DTE
is largely reliant on both the RNA-seq and Ribo-seq count for the genes. Our power to
predict genes with lower than 50 average reads across replicates is significantly lower.
For the RNA-seq reads, the difference in power between different replicate values is
more pronounced in low read count genes, indicating that increasing the number of
replicates can have a significant effect on our ability to find low read count genes which
truly show DTE.

Fig. 3. Power stratification for DTE by average count value in (A) RNA-seq and (B) Ribo-seq.
Simulated based on data from Hassan et al.

We also look tomeasure the effects that our choice of tools and parameters havewhen
testing for differential genes. Figure 4 shows the use of four different tools, edgeR,
DESeq 2, limma-voom, and DSS, for detection of DTE. The tools are evaluated by
measuring power and FDR from simulations based on both the Merchante and Hassan
datasets. The simulations are performed for both 2 and 5 replicates. The results in Fig. 4A
and C indicate that DESeq 2 and edgeR generally achieve the highest power for each
of the experimental setups, while limma-voom and DSS yield lower power. Figures 4B
and D show that, in terms of FDC, limma-voom appears to outperform DESeq 2 and
edgeR for both datasets, while DSS performs well for the Hassan data and poorly for the
Merchante data. These results indicate that nuanced differences between program may
effect results differently on an experiment-by-experiment basis. It is therefore valuable
to have a way which we can evaluate each program for a user’s specified dataset.
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Fig. 4. Tool comparison results for power and FDC of (A, B) Merchante et al. data and (C, D)
Hassan et al. data. Line types differentiate between using 2 and 5 replicates.

Figure 5 show the effects of three different FDR significance thresholds on power,
true positive rate, and false discovery cost for the Merchante data. The simulations
are performed for 1,5 and 8 replicates. As can be expected, the use of less stringent
significance thresholds leads to a larger number of true positives and higher power,
as the number of genes which pass the threshold increases. However, as can be seen in
Fig. 5C, the false discovery cost when using less stringent thresholds can be significantly
higher. In most cases, researchers should choose parameters values by balancing their
ability to identify truly significant genes with the cost of making false discoveries.
Interestingly, these results also depict a relationship between the significant threshold,
replicate number, and FDC. The differences in power and FDC between the three FDR
thresholds changes seems to be more drastic for two replicates than five and eight.
This implies that the choice of FDR threshold has a larger effect on false discovery for
experiments with a limited number of replicates.
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Fig. 5. The effect of using different FDR significance thresholds on (A) power, (B) true positive
rate, and (C) false discovery cost. Colors represent differences in number of replicates. (Color
figure online)

4 Conclusion

In this paper, we describe RiboSimR, an R Shiny web application for the analysis of
experimental design parameters in Ribo-seq and RNA-seq experiments. This tool can be
usedprior to performing sequencing in order to test experimental designparameters using
provided pilot data, or after the fact, to test the effects of adding additional sequencing
information to an existing study. Using two published Ribo-seq and RNA-seq datasets,
we demonstrate how RiboSimR can be used to investigate the effects of these various
factors on the power to detect genes which exhibit differential expression, differential
translation, and differential translation efficiency.

Firstly we showed that we can assess the effects that variations in replicate number
and sequencing depth have on power to detect differential genes.Weprovided an example
of an experiment which has reached a critical sequencing depth threshold in terms of
identifying DTE and DT genes. For researchers, having the ability to predict the effects
of increasing sequencing depth can save them valuable time and money. The results
from our simulations also confirm the previously asserted notion that increasing sample
replication yields larger increases in power than increasing sequencing depth.

We further looked and quantify the effects of increasing replication and depth differ-
ently between experiment types. This simulation setup can aid researchers in testing the
experimental design parameters of an experiment they have already conducted, and help
them predict how recreating the experiment with different factors, or adding additional
information to their experiment, might affect their results.
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We unexpectedly found that increasing the number ofRNA-seq replicates has a larger
positive effect on power than increasing Ribo-seq replicates. Additionally, RiboSimR
can be used to analyze the effect that the magnitude of expression and translation have
our ability to detect genes as differential. We confirmed that we have less power to detect
genes with low counts, and found that increasing replication, especially for RNA-seq
samples, had a strong influence on our ability to detect genes with less than 50 reads.

Finally, we tested the effects of more downstream parameters of differential analysis,
including the choice of differential analysis tool and significance threshold. While it is
not our goal to recommend a specific tool for identifying differential genes, we believe
that a platform which allows the comparison of tools for individual experiments is of
great use to researchers. We also highlight the importance of balancing power and false
discovery cost when choosing tools and significance thresholds. These choices can have
large effects that vary from experiment to experiment, and using an out-of-the-box tool
or p-value threshold can lead to misleading results or loss of information. In conclusion,
RiboSimR allows users to quantify the consequences of important experimental design
choices at various points throughout the experimental process.
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