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Preface

The 9th edition of the International Conference on Computational Advances in Bio and
medical Sciences (ICCABS 2019) was held during November 15–17, 2019, at Florida
International University in Miami, Florida. ICCABS has the goal of bringing together
researchers, scientists, and students from academia, laboratories, and industry to dis-
cuss recent advances on computational techniques and applications in the areas of
biology, medicine, and drug discovery.

There were 30 extended abstracts submitted in response to the ICCABS 2019 call
for papers. Following a rigorous review process in which each submission was
reviewed by at least two Program Committee members, the Program Committee
decided to accept 13 extended abstracts for oral presentation and one for poster pre-
sentation at the conference. The technical program of ICCABS 2019 included seven
invited talks presented at the 9th Workshop on Computational Advances for Next
Generation Sequencing (CANGS 2019) and five invited talks presented at the 2nd
Workshop on Computational Advances for Single-Cell Omics Data Analysis
(CASCODA 2019). Workshop speakers were invited to submit extended abstracts and,
following the same review process used for the main conference, one additional
extended abstract was selected for publication in this post-proceedings volume. All
extended abstracts included in the volume have been revised to address reviewers’
comments.

The technical program of ICCABS 2019 also featured keynote talks by four dis-
tinguished speakers: Prof. Yi Pan from Georgia State University gave a talk on
“Biological Multiple Sequence Alignment: Scoring Functions, Algorithms, and Eval-
uations,” Prof. Fangxiang Wu from University of Saskatchewan gave a talk on
“Artificial Intelligence for Medical Image Analytics,” Prof. Heng Huang from
University of Pittsburgh gave a talk on “Large-Scale Machine Learning for Biomedical
Data Science: AI Meets Health,” and Prof. Shibu Yooseph from University of Central
Florida gave a talk on “Identification of biomarkers and interactions from microbiome
data.” We would like to thank all keynote speakers and authors for presenting their
work at the conference. We would also like to thank the Program Committee members
and external reviewers for volunteering their time to review and discuss the submis-
sions. Last but not least, we would like to extend special thanks to the Steering
Committee members for their continued leadership, and to the finance, local arran-
gements, publicity, and publication chairs for their hard work in making ICCABS 2019
a successful event.

March 2020 Ion Măndoiu
T. M. Murali

Giri Narasimhan
Sanguthevar Rajasekaran

Pavel Skums
Alexander Zelikovsky
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Detecting De Novo Plasmodesmata
Targeting Signals and Identifying PD

Targeting Proteins

Jiefu Li1, Jung-Youn Lee2,3, and Li Liao1,3(B)

1 Department of Computer and Information Sciences, University of Delaware,
Newark 19716, USA

{lijiefu,liliao}@udel.edu
2 Department of Plant and Soil Sciences, University of Delaware,

Newark, DE 19716, USA
3 Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA

lee@dbi.udel.edu

Abstract. Subcellular localization plays important roles in protein’s
functioning. In this paper, we developed a hidden Markov model to detect
de novo signals in protein sequences that target at a particular cellular
location: plasmodesmata. We also developed a support vector machine
to classify plasmodesmata located proteins (PDLPs) in Arabidopsis, and
devised a decision-tree approach to combine the SVM and HMM for bet-
ter classification performance. The methods achieved high performance
with ROC score 0.99 in cross-validation test on a set of 360 type I trans-
membrane proteins in Arabidopsis. The predicted PD targeting signals
in one PDLP have been experimentally verified.

Keywords: Cellular localization · Support Vector Machines · Hidden
Markov models

1 Introduction

It is well known that proteins after being synthesized have to be transported
to their designated cellular location in order to fulfill the biological functions.
However, much detail of the transporting mechanisms remain unknown, and
subcellular localization prediction is an active research area in bioinformatics
[1,10,14].

Plasmodesmata (PD) are membrane-lined intercellular communication chan-
nels through which essential nutrients and signaling molecules move between
neighboring cells in the plant. This cell-to-cell exchange of molecules through
PD is fundamental to the physiology, development and immunity of the plant
and is a dynamically regulated cellular process. Several types of endogenous pro-
teins, including type-I transmembrane proteins, as well as numerous PD-targeted

The work is funded by National Science Foundation NSF-MCB1820103.

c© Springer Nature Switzerland AG 2020
I. Măndoiu et al. (Eds.): ICCABS 2019, LNBI 12029, pp. 1–12, 2020.
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2 J. Li et al.

proteins derived from plant viruses have been identified to associate with PD.
However, no universal or consensus PD-targeting signal has ever been discerned
nor molecular details are known as to how integral membrane proteins, including
the best characterized PD-located proteins (PDLPs), are targeted to PD-specific
membrane domains. As such, the current computational tools for cellular local-
ization prediction do not even have PD categorized as a target location [1,9].

So far, only eight PDLPs have been experimentally verified in Arabidopsis
thaliana, and these proteins share a signature topology, as depicted in Fig. 1.
Further experiments (unpublished) have narrowed PD targeting signal(s) down
to a region, called extracellular juxtamembrane domain (JMe), which is between
the DUF26 extracellular domain and the transmembrane domain (TMD). This
region spanned about 20-amino acid residues, 9 AA downstream of the last con-
served Cys residue of the DUF26 domain. Our experimental data (unpublished)
pinpointed that the JMe region of PDLP5 contained a sufficient primary struc-
ture for its targeting to PD. Intriguingly, the data also implicated the presence of
a second signal outside of the JMe region. However, the multiple sequence align-
ments of the eight Arabidopsis PDLP paralogs reveals no hints at the conserved
amino acid residues or recognizable patterns shown in Fig. 2.

Fig. 1. Structure of PDLP

In this work, we set out to develop computational approaches to: i) detect
subtle patterns that are associated with PD targeting, and ii) identify unknown
PDLPs in Arabidopsis and other species. The second task can be considered
as a classification problem, like other subcellular localization prediction prob-
lems. We adopted Support Vector Machine (SVM) [12] as a classifier and with
dipeptide features to characterize proteins sequences. The performance of this
straightforward approach is surprisingly good.

The first task of detecting PD targeting signal(s) turns out to be more chal-
lenging. Using the TMMOD tool [17] with customized training and feature selec-
tion, we detected some signals at the vicinity of the last conserved Cys of the
DUF in addition to the initially defined JMe region. As for PDLP5, this predic-
tion was consistent with the presence of a second signal. Further phylogenetic
analysis of orthologues of PDLPs from other plant species and MEME motif find-
ing [2] also identified similar but slightly stronger patterns in the same location
for a subset of PDLPs (consisting of PDLP1 to PDLP4), as shown in Fig. 3.

These findings from the computational analyses together with the prelimi-
nary experimental data for PDLP5 prompted us to hypothesize that: there is
the second PD-targeting signal outside of the JMe region might reside at the C-
terminal end of the DUF domain. Unlike TMD, which has a clear-cut boundary
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at both ends from computational predictions, the C-terminal end of the DUF
domain is not experimentally defined. This is why the previous experiments lim-
ited JMe as 20 AA adjacent to the N-terminal side of TMD, excluding 9 AA
to avoid overstepping into the DUF domain. Based on the new hypothesis that
this region likely contains a secondary signal for PD targeting, we newly define
the JMe as the 30-AA region located between the rightmost conserved Cys at
the very C-terminal end of the DUF domain and the N-terminal end of TMD.

Based on the aforementioned hypothesis, we then built a hidden Markov
model (HMM) [3–7] to capture the functional structure of the JMe. The model
has three states: state α for the left PD signal, state β for the right signal, and
state γ for the non-functioning linkers. Using the trained hidden Markov model,
we decoded the JMe region of the eight PDLPs, and the following-up experiments
have verified the two PD signals and their relative positions in PDLP1, PDLP3,
PDLP5 and PDLP8, as predicted by the model. Ongoing experiments are being
conducted to verify predicted PD targeting signals for the remaining four PDLP
proteins. Furthermore, the model was tested with predicting potential PDLPs in
a dataset containing 360 type I transmembrane proteins, and showed remarkable
performance as measured as ROC score in cross-validation.

Given the fact that PD targeting signals reside in JMe, we incidentally dis-
covered a pitfall with the SVM classifier, when testing with randomized JMe
to establish a baseline. SVM mistakenly classified these synthetic sequences –
which are the same of the real PDLPs except for the JMe being randomized.
To mitigate this issue, we propose a way to combine SVM and HMM to further
improve the classification performance.

The paper is organized as follows. In Sect. 2, we describe in details the struc-
ture of the HMM, its training, and integration with SVM. In Sect. 3, we present
the results on testing the hidden Markov model and SVM alone and the two
methods in tandem. Conclusions are presented in the last section.

Fig. 2. Alignment of PDLP JMe, TMD, and JMc regions
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Fig. 3. MEME motifs discovered for PDLP JMe regions. The red region and green
region are α state, β state in our HMM correspondingly. (Color figure online)

2 Methods

As mentioned in Introduction, we are tasked with detecting PD targing signals
in the sequence of PDLPs and identifying potential novel PDLPs in Arabidopsis
and other plant species. In this section, we describe in details the computational
methods we developed for these two tasks. Our methods are based on two pow-
erful machine learning methods – SVM and HMM. With the understanding the
issues of using either SVM or HMM alone, we describe a way of combinating
these two learning algorithms for better classification performance.

2.1 SVM with Dipepetide Features

SVM are a type of classifiers that take vectorized inputs and find the optimal
separating hyperplane in the vector space with the positive training examples on
one side of the hyperplane and negative training examples on the other side [13].
The optimization is to 1) maximize the margin between the hyperplane to the
support vectors, namely, these training examples that are closest to the hyper-
plane, and 2) minimize the penalty incurred from misclassification. For data
that are not linearly separable, the kernel technique can be used, which maps
the input to a higher dimension space (called feature space), where the data
become linearly separable. Once trained, an unseen data point can be mapped
to the input space or the feature space, and based on its relative position to
the hyperplane, its classification can be correspondingly made: positive if on the
positive example side; negative if otherwise.

SVM have been successfully applied to many classification tasks in bioin-
formatics, including cellular localization prediction, such as MultiLoc2 [9],
SlocX [19], APSLAP [20]. For our task, we adopted SVM with a linear ker-
nel. Since the multiple sequence alignment (see Fig. 2) does not show clear high
conservation patterns, we chose to use the alignment-free features to characterize
the proteins for classification, specifically the dipeptide features [8]. In our case,
the choice of dipeptide feature is a result of balancing the number of features and
the number of training examples: dipeptide features capture more information
than single amino acid composition and require less examples than tripeptide
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features and higher order k-mers, which have a dimension at 8000 and higher
and require significantly more training examples.

The dipeptide features are the occurrence frequencies of all 400 possible
amino acid pairs in a given protein sequence. Let xdipeptide denote the dipep-
tide feature, then xdipeptide(i, j) is the frequency of ith and jth amino acid as a
neighboring pair to appear in the protein sequence. It is calculated as following:

xdipeptide(i, j) =
count([aai, aaj ])

∑20
i=1

∑20
j=1 count([aai, aaj ])

(1)

As a common practice, the dipeptide features are normalized as follows:

xdipeptide−norm =
xdipeptide − xdipeptide

std(xdipeptide)
(2)

Although SVM with dipeptide features can be a powerful classifier, as shown
in literature [9,19,20], it is worth noting that dipeptide occurrence frequency
captures global features of the sequence as a whole and is hence not suitable
for picking up subtle features from within short regions that are nevertheless
important to the protein’s functions. And this issue is exacerbated with insuf-
ficient amount of positive training data. In such cases, many dipeptide pairs
may have zero counts in Eq. 1 – are these zeros real or will they become non
zero should enough training examples be available? Consequently, SVM trained
on these dipeptide features can be susceptible to overfitting and thus does not
generalize well on unseen data.

In our case, we have only eight PDLPs and the JMe region that is known
to contain PD-targeting signal is a very short region (around 30 amino acids
long) as compared with the whole sequence (up to 700 amino acids long). As
such, special attention should be paid to alleviate the aforementioned issues of
training SVM with dipeptide features, for otherwise it may give rise to false
positive predictions for the sequences that have similar dipeptide features but
do not contain PD-targeting signals. Note that these issues are not unique only
for SVM but for any classifiers that rely on features from full length sequences.
For comparison, we also trained random forest classifier on dipeptide features,
and the performances between the two classifiers are comparable, with SVM
being slightly better.

2.2 3-States HMM on JMe

In contrast to the dipeptide approach of capturing more global information, the
hidden Markov model we designed is focused on JMe region in order to detect
PD-targeting signals that the web-lab mutagenesis experiments have suggested.

Based on the signature topology as shown in Fig. 1, the JMe region of a
PDLP, or a potential PDLP such as type I transmembrane protein, can be easily
extracted by two step procedure: 1) finding protein’s transmembrane region via
various sophisticated tools such as TMDOCK [18] and TMMOD [17], and 2)
extracting 30 amino acids upstream of the transmembrane domain in step 1.
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Our hidden Markov model has the 3 states, denoted as α, β, and γ. State α
stands for PD-targeting signal A, and state β stands for PD-targeting signal B.
State γ stands for everything else in the JMe region but the PD-targeting signals.
The hidden states transition connections of these 3 states are shown in Fig. 4.
The direct edge between state α and state β is to allow the case in which there
are no linker residues between the two PD signals. Since we do not known for any
given residue, which of the three states it is – in other words, the training data
are unlabeled – we cannot train the HMM with counting as in a typical maximum
likelihood approach, or with a multiple sequence alignment as in typical profile
hidden Markov models for protein family classification. Instead, we adopted
Baum-Welch algorithm, which is an expectation maximization approach and
does not require the hidden states to be labeled in the training data [6].

After the model is trained, it is used for two tasks: 1) classifying PDLPs from
a set of 360 type I proteins in Arabidopsis thaliana; 2) decoding the JMe region,
i.e., marking out each residue as α, β or γ state.

Fig. 4. 3-state HMM hidden states connections

It is worth to note that, because our 3-state HMM focuses on modeling
with JMe, the model loses the global picture of PDLP sequences. For example,
not every protein sequence with valid JMe region can be considered as PDLP.
Furthermore, because HMM is not a discriminative model, the boundary between
predicted positive and predicted negative is not readily given by the model and
hence can be fuzzy. In the next subsection, we proposed a way to combine SVM
and HMM, where we devised a mechanism to impose a threshold on HMM
prediction score.

2.3 Combination of SVM with HMM

From the two previous subsections, we can see that SVM is good at capturing
characteristic amino acid composition for full length sequences with dipeptide
features, but less effective for short sequences like JMe region. This can poten-
tially lead to false positive in predicting some protein sequences as PD targeting
even though these proteins do not contain PD-JMe region. The issue becomes
more apparent when testing the trained SVM to make de novo prediction of
PDLPs in large dataset, in which more proteins may contain dipeptide features
or even overall topology similar to that of the real PDLPs. On the other hand,
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SVM 
Classifier

HMM 
Classifier

 Predict as 
none-PD

 Predict as 
PD

dipeptide 
feature 

JMe 
region

Else
Else

If SVM 
predict as 
none-PD

If 
log-likelihood 

of JMe > 
threshold

Fig. 5. Pipeline to combine SVM and HMM.

because the HMM focuses on the JMe region exclusively, it loses other features
of PDLPs, e.g., it is found experimentally that a mutant without a proper JMi
can not even be synthesized.

As such, the shortcomings of SVM and HMM both can give false positive
predictions, but for different situations. The SVM tends to give false positive
predictions for the sequences with none-PD JMe and PD like dipeptide feature,
whereas HMM tends to give false positive predictions for the sequences with PD-
JMe but none-PD’s other domains because HMM only focuses on JMe region.
Therefore, it is sensible to combine SVM and HMM in a complementary way
that can overcome their shortcomings with their advantages. An option is to use
decision tree on the predictions from SVM and HMM alone to choose a better
one. However, due to the limited number of data samples, training decision tree
by traditional method did not work. Fortunately, with the understanding of SVM
and HMM in this particular task, we proposed a simple decision tree and the
decision boundary for each node can be calculated properly, without use of a
large training set.

The structure of combining SVM and HMM through decision tree to make
final prediction is shown in Fig. 5. The node of SVM’s decision boundary is natu-
rally defined by the support vectors in the trained SVM. The decision boundary
of HMM node is slightly tricky to define. Since we have the trained HMM model,
synthetic JMe sequences can be generated. Given a large number of synthetic
JMe sequences, their log-likelihoods follow a Gaussian distribution. By tradi-
tional statistic convention, 95% confidence interval is used, and we pick the
lower bound of the interval as the decision boundary of HMM node.

3 Results

3.1 Datasets

Dataset A contains 360 type I membrane proteins in Arabidopsis thaliana,
including the 8 PDLP sequences, all retrieved from Uniport [11]. From Uni-
port, labels of protein cellular localizations and their transmembrane domain
are extracted, which account for 7 different types of membrane proteins, includ-
ing endoplasmic reticulum membrane, Endosome membrane, Golgi membrane,
Plasma membrane, Vacuole membrane, Vesicle membrane, and the PD mem-
brane. Table 1 lists each cellular localizations and the number of proteins in that
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category. In this work, for our purpose, the eight PDLPs are grouped into the
other class (PD) and the rest are lumped into one class (none-PD).

In order to train the HMM for the JMe region, a procedure described in the
Method section is applied to all sequences in the dataset to extract a valid JMe
region defined as 30 amino acids upstream of the transmembrane domain iden-
tified by TMMOD. This procedure eliminates Endosome and Golgi membrane
proteins from the dataset, as their JMe region is shorter than 30 amino acids.

Table 1. Different types of proteins in dataset A

Protein localization Endoplasmic reticulum Plasma PDLP Vacuole Vesicle

Number of proteins 17 322 8 7 6

To test the robustness of SVM and HMM in handling false positives, as
described in the Method section, we add to the dataset eight synthetic sequences,
which are the 8 PDLP sequences but with the origin JMe region being replaced
with random residues. Since JMe region contains PD-targeting signal, it is highly
confident that randomly replacing JMe region will lead to none-PD proteins. In
other words, these eight synthetic sequences are negative data. Dataset A plus
these eight synthetic sequences give rise to dataset B. Note that these eight
synthetic sequences will be only used for testing.

As there are only 8 PDLP sequences, the leave-one-out (or equivalently 8-
fold) cross validation scheme is adopted to ensure the maximum possible number
of training examples to train the models. Specifically, each one of the 8 PDLP
sequences is reserved as a positive test example once, and the remaining 7 PDLPs
are used as positive training examples. The 352 none-PD sequences, as the nega-
tive examples, are randomly split into 8 subsets of equal size (44 sequences). One
negative subset is picked to combine with the positive testing example to form
the test set (45 sequences); and the remaining 7 negative subsets are merged
together to form the negative training set. Note that, for the HMM, no nega-
tive training examples are needed. When dataset B is used, the whole process is
the same, except that the synthetic none-PD sequences are repeatedly used as
testing data for each fold.

3.2 Performance Metrics

To test the trained hidden Markov model M(θ), the test examples from the 8-fold
cross-validation are combined and ranked by their prediction score P (x|M(θ)),
which is the likelihood for sequence x to be emitted from the model, calculated
from the Forward algorithm. If a threshold is set for the prediction score, test
examples with score above the threshold are classified as positive – they are true
positive (TP) if their ground truth label is positive; they are false positive (FP) if
otherwise. Similarly, test examples with score below the threshold are classified
as negative – they are true negative (TN) if their ground truth label is negative;
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they are false negative (FN) if otherwise. We use receiver operating characteristic
(ROC) curve and ROC score, which is the area under the ROC curve, to evaluate
the performance. The ROC curve plots the true positive rate against the false
positive rate at the threshold sliding down the ranked list of test examples [15].
ROC curve starts (0,0) and goes to (1,1) in a monotonically manner. The perfect
classifier has ROC score 1.0, and a random classifier has ROC score 0.5. When
a natural choice of threshold is available, like the distance to the separating
hyperplane in SVM, we also use the precision and recall associated with that
threshold to evaluate the performance.

3.3 Evaluation: SVM Alone

In this experiment, we train and test a SVM with linear kernel on dipeptide
features extracted from full length sequences. The ROC score from 8-fold cross-
validation is 1.0 for dataset A but drops to 0.8837 for dataset B, because of
misclassifying the synthetic none-PD as PD, which confirms the our concern
that SVM alone can be susceptible to the overfitting issue. As comparison, the
performance from a RF classifier is: ROC score = 0.9984 for dataset A and ROC
score = 0.9177 for dataset B.

3.4 Evaluation: HMM Alone

In this experiment, we train the 3-state HMM as described in the method section.
The trained HMM is then tested with 8-fold cross validation the ROC score is
0.93 for dataset A and is 0.9408 for dataset B. Unlike SVM, HMM’s performance
remains about the same for both datasets, confirming that HMM is more robust
with false positives.

For the decoding task, the standard Viterbi algorithm [16] is used to scan
the sequence against the model, trained with PDLP5 and ten of its orthologues,
to annotate which residues belong to which of the three states, α, β or γ. So
far, there is no ground truth available yet to directly evaluate the triple state
annotation within JMe, except for PDLP5 and BAK1, the latter of which is
experimentally confirmed as non PD targeting, see Fig. 6. It is very encouraging
that the experiments for PDLP5 validated the existence of two PD targeting sig-
nals and their delineation is consistent with the annotation made by the model.
More web-lab experiments are planned to validate model annotation of other
PDLP paralogs.

3.5 Evaluation: Combination of SVM and HMM

From the experimental results in Subsects. 3.3 and 3.4, it is clear that SVM is
susceptible to the pitfall of misclassifying the synthetic none-PD, whereas HMM
is not affected. Also, by comparing the ROC score of SVM and HMM in dataset
A, SVM has better performance and it naturally gives a clear decision boundary.
In this experiment, we only focus on dataset B to show that by combining SVM
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Fig. 6. HMM decoding results for PDLP5 and BACK1. Red color and green color in
the sequence represent state α, state β regions correspondingly. The region without
color refers to state γ. (Color figure online)

Fig. 7. ROC for combining SVM and HMM with dataset B (red), with ROC score =
0.9997, and comparing with using HMM alone (green), SVM alone (blue) (Color figure
online)

with HMM via decision tree, performance can be improved, as compared to
either SVM or HMM alone.

Figure 7 shows the ROC curve for the method of combining SVM with HMM
(red) and the comparison with HMM (green) and SVM (blue) alone. The ROC
score of combining SVM with HMM is 0.9997. Moreover, the precision/recall
and ROC score comparison for all the three method for dataset B are shown in
Table 2. For comparison, when SVM is replaced with RF, ROC score = 0.9169.

Table 2. Comparison for all method in dataset B

Method ROC score Precision Recall

SVM with dipeptide feature 0.8837 0.1014 0.8750

HMM with JMe residues 0.9408 Not applicable Not applicable

Combining SVM with HMM 0.9997 1.0000 0.8750
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4 Conclusion and Future Work

In paper we presented computational approaches based on machine learning
techniques to solve a very challenging biological problem: detecting plasmodes-
mata targeting signals and identifying novel PDLP sequences. The challenges
arise from lack of clear sequence patterns, insufficient amount data, and unbal-
anced dataset. Without addressing these challenges, a straightforward applica-
tion of standard machine learning techniques can lead to unreliable prediction, as
demonstrated with using SVM on dipeptide features. In order to overcome these
challenges, we closely incorporated domain specific knowledge into our hidden
Markov model design, and devised a pipeline to leverage the predictive power
of different models to reduce false positives. As a result, we are able to detect
de novo PD targeting signals, verified by wet-lab experiments, and to classify
PDLPs with remarkably high accuracy.

It is worth noting that, in this study, we adopted some common practices
to avoid overfitting, such as the multi-fold cross-validation scheme and use of a
simple linear kernel versus a more powerful kernel in SVM. While the perfor-
mance from cross-validation as compared with training error does not indicate
overfitting, given the small positive training examples in this study, it is difficult
to know how well the trained classifiers will generalize to a large data set or data
from different genomes, especially in detecting de novo PD proteins, which are
actually being investigated in the web-lab experiments and no results to report
yet. On the decoding task with our HMM, half of the predicted PD targeting sig-
nals have already been verified to be correct in the web-lab experiments, which
are ongoing to verify the remaining predicted signals.

An online server will be deployed based the methods in the paper to assist
biologists discovering new PDLP members. With new discovered PDLP mem-
bers, an improved classifier can be built, which leads a positive feedback cycle
of PDLP prediction and new PDLP members discovery. For the signal detection
task, as the future work, the focus will be finding PD-targeting key residues in
JMe region by extracting knowledge from the HMM to help with understanding
the PD-targeting mechanism.
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Abstract. The response of a neuron when receiving a periodic input
current signal is a periodic spike firing rate signal. The frequency of
an input sinusoidal current and the surrounding environment such as
background noises are two important factors that affect the firing rate
output signal of a neuron model. This study focuses on the phase shift
between input and output signals, and here we present a new concept:
the agility of a neuron, to describe how fast a neuron can respond to a
periodic input signal. By applying the score of agility, we are capable
of characterizing the surrounding environment; once the frequency of
periodic input signal is given, the actual angle of phase shift can then
be determined, and therefore different neuron models can be normalized
and compared to others.

Keywords: Integrate-and-fire model · Balanced background noise ·
Poisson process · Neuron model · Cellular modeling · Agility · Phase
shift · Phase lag · Periodic signal · Sinusoidal current · Inter-spike
interval · Firing rate · Membrane potential

1 Introduction

The integrate-and-fire (IAF) neuron model, a well-known spiking neuron model
that has been studied for over a hundred years, becomes one of the most useful
ways to analyze the behavior of neural networks, nervous systems, or even brain
circuits [4,8,10,13,15]. Since the surrounding environment of a neuron in vivo is
always noisy, each single neuron receives hundreds to thousands of excitatory and
inhibitory postsynaptic potentials (EPSPs and IPSPs) within several seconds
all the time, and the behavior of a neuron changes under such an environment
[1,2,6,9,11,14]. A category of neuron models, called balanced leaky integrate-
and-fire model (balanced LIF model) [3,4,7,16,17], includes this feature with
additional parameters. A balanced LIF model contains two additional inputs
to the membrane potential, that is, the excitatory background noise and the
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inhibitory background noise. These two noise inputs are balanced in order to
keep the membrane potential under the firing threshold when there is no current
injection.

Because of the characteristics of the IAF neuron model, most of the important
information such as temporal coding and rate coding can be retrieved through
the study of a neuron’s output spike train, in contrast, the waveform and peak
height of a single action potential (spike) are relatively insipid [8]. The change
of firing rate pattern over time can be described by an inter-spike-interval (ISI)
firing rate function, which is often a smooth signal fluctuating in response to
the fluctuation of the strength of the input signal. Although the IAF neuron
model is not a linear time-invariant (LTI) system, with both of its input and
output signals being periodic, similar approaches to investigate a LTI system
can still be applied with some modifications [8,10]. An intuitive way to examine
the dynamics of a LTI system is to measure the frequency response between
periodic input and output signals. Frequency response is composed by amplitude
response and phase response [10], here we only focus on the latter one.

The time constant is an important parameter within a differential equation
describing the neuron membrane potential over time, governing how long it takes
for the level of membrane potential to drop back to the resting state level after
a fluctuation occurred. The value of time constant of a neuron model typically
falls within the range between 10 and 100 ms [8]. However, the time constant is
also a limitation of how fast a neuron can respond to an input stimulus and thus
causes the shift or delay phenomenon in the phase response. This makes a large
scale computational neuronal network containing more than tens of thousands of
neurons or even with several hierarchical structures sluggish and cannot respond
within a comparable time of a real nervous system in vivo. Previous studies [3,5]
showed that a neuron can act in a more rapid way beyond its time constant
limitation under background noise, indicating that the simple IAF neuron model
lacks some important information and hence the balanced LIF model should be
considered when investigating computational neuronal networks.

The remainder of this paper is organized as follows. First in Sect. 2, a balanced
LIF model together with the sinusoidal current injection and background noise
is constructed and the ISI firing rate function is then formulated. In Sect. 3, we
derive the equation describing phase shift between input and output signals, and
define the agility as one of the key factors that affect the phase shift. Relevant
conclusions are drawn in Sect. 4.

2 Methods

Our way to present neuron firing rate statistics under periodic current injection
can be learnt from Dayan and Abbott and Chance [7,8], and the balanced LIF
model was originally referred to the Troyer and Miller’s model [16]. The following
subsection introduces the model we adopted.
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2.1 The Balanced LIF Model

Troyer and Miller’s Balanced LIF Model. The balanced LIF model pro-
posed by Troyer and Miller is based on a typical in vivo cortical pyramidal cell
[12]. The membrane potential in this model can be derived as follows

τm
dV

dt
= −V + Vrest + gex(Eex − V ) + gin(Ein − V ) + Vext (1)

and

gex → gex + nexdex

gin → gin + nindin,

where gex and gin are the excitatory and inhibitory synaptic conductances respec-
tively, nex and nin are the numbers of EPSPs and IPSPs received in each time
step dt, and dex and din act as weighting factors that represent the resulting
excitatory and inhibitory synaptic conductance changes. Between arrivals, both
the excitatory and inhibitory conductances exponentially drop to zero governed
by their own time constant τex and τin,

τex
dgex

dt
= −gex

τin
dgin

dt
= −gin.

The values of parameters within (1) we applied here are listed in Table 1.
The conductances gex and gin are normalized by the input resistance of the
neuron and expressed in dimensionless unit. The arrivals of the excitatory and
inhibitory background noises are modeled as Poisson processes with rate λex and
λin respectively:

– Excitatory → 1000 Poisson inputs (Nex), each with 7 Hz rate (λex)
– Inhibitory → 200 Poisson inputs (Nin), each with 15 Hz rate (λin)

Table 1. Parameters of Troyer and Miller’s balanced LIF neuron model

τm Vrest Vth Vreset τex τin dex din

50ms −74 mV −54 mV −60 mV 5 ms 10ms 0.01 0.05

Sinusoidal Current Injection. Amplitude and frequency are the two param-
eters which can characterize a sinusoidal current injection. In this study, the
input current is of the form: I = I0 + I1 cos ωt where I0 is the DC part and
I1 cos ωt is the AC part of the current injection. The value of I0 ranges from
1.0 nA to 2.0 nA, and I1 from 0.1 nA to 0.5 nA. After the amplitude of the sinu-
soidal current injection is selected, different values of frequency ranging from
1 Hz to 1000 Hz are chosen in our experiment.
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Background Noise Tuning. In order to balance the background noise beneath
the firing threshold of the selected neuron model, there are several parameters we
can adjust to meet the requirement: numbers of excitatory and inhibitory noises
Nex and Nin, Poisson rates λex and λin, weights dex and din, time constants
τex and τin, and even the membrane resistance Rm, and specific membrane resis-
tance rm. Because even very tiny adjustment on λex, λin, dex, din, τex, and τin will
drastically change the behavior of our neuron model, we keep them untouched
and only consider the remaining pair of parameters, i.e., the numbers of excita-
tory and inhibitory background noises (Nex, Nin). The new parameter setting is
shown in Table 2.

Table 2. Parameter setting of excitatory versus inhibitory background noises in our
balanced LIF model.

Excitatory Inhibitory

800 N 240

7 λ(Hz) 15

0.01 d 0.05

5 τ(ms) 10

2.2 ISI Firing Rate Function for Leaky IAF Model

In this subsection, we will begin with the derivation for ISI firing rate function.
The differential equation for the subthreshold membrane potential V (t)

between action potentials from a basic leaky IAF neuron model is of the form:

cm
d

dt
V (t) = −gL(V (t) − EL) + Is(t)/A (2)

with the reset membrane potential V (0) = Vreset right after the action potential,
i.e., at t = 0.

By the Laplace transform, we have

V (s) =
V (0)

(s + 1/τm)
+

EL/τm

s(s + 1/τm)
+

Is(s)/Cm

(s + 1/τm)
. (3)

It can be seen that V (t) is a low-pass filtered version of Is(t) and by the inverse
Laplace transform, we have

V (t) = Vresete
−t/τm + EL(1 − e−t/τm) +

1
Cm

∫ t

0

dτIs(τ)e−(t−τ)/τm . (4)

When Is(t) = I0 + I1 cos ωt, (4) becomes

V (t) = (EL + I0Rm) − (EL + I0Rm − Vreset)e−t/τm

+ I1Rm

(
cos ωt + τmω sinωt

1 + τ2
mω2

− 1
1 + τ2

mω2
e−t/τm

)
. (5)
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The interspike interval tisi is the smallest solution of (5) by substituting V (t)
with Vth. When the frequency ω is not big, the instantaneous postsynaptic firing
rate can be approximated as

risi(t) ≈ 1
τm

[
ln

([
1 +

α + Vth − Vreset

EL + I0Rm + β − Vth

]
+

)]−1

+

(6)

where

α =
I1Rm√
1 + τ2

mω2

(
1√

1 + τ2
mω2

− cos(ωt − θ(ω))

)

β =
I1Rm√
1 + τ2

mω2
cos(ωt − θ(ω))

θ(ω) = cos−1 1√
1 + τ2

mω2
.

To add balanced background noise into our neuron model, we need to update
the differential equation of the membrane potential V (t) in (2). The balanced
background noise leaky integrate-and-fire neuron model will be discussed in next
subsection.

2.3 ISI Firing Rate Function for Balanced LIF Model

When we consider the background excitatory and inhibitory noises, the mem-
brane potential V (t) between action potentials becomes:

cm
d

dt
V (t) = −gL(V (t) − EL) +

gex

rm
(Eex − V (t)) +

gin

rm
(Ein − V (t)) +

Is(t)
A

(7)

again with V (0) = Vreset right after the action potential, i.e., at t = 0.
The ISI firing rate now becomes

risi(t) ≈ 1
γ − τeff ln (δ + ε cos(ωt − θeff(ω)))

(8)

where

τeff =
τm

1 + gex + gin

θeff(ω) = cos−1 1√
1 + τ2

effω2

γ = τeff ln

(
EL + gexEex + ginEin + I0Rm

+
I1Rm

1 + τ2
effω2

− (1 + gex + gin)Vreset

)

δ = EL + gexEex + ginEin + I0Rm − (1 + gex + gin)Vth

ε =
I1Rm√

1 + τ2
effω2

. (9)
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Equation (8) is our new ISI firing rate function for the balanced LIF neuron
model. Note that in our balanced LIF model, the reversal potential of the exci-
tatory background noise Eex is set to be zero, so actually the term gexEex = 0
in (8) and (9) when applied within this study, and thus we only need to consider
the γ and δ in (9) as

γ = τeff ln
(

EL + ginEin + I0Rm +
I1Rm

1 + τ2
effω2

− (1 + gex + gin)Vreset

)

δ = EL + ginEin + I0Rm − (1 + gex + gin)Vth. (10)

3 Results and Discussions

Figure 1 shows two situations that affect the phase. One is the adjustment of
the frequency of the sinusoidal current injection f and the other is the differ-
ent combinations on the number of background noise pair Nex vs Nin. Figure 2
illustrates that the degree of phase shift can be expressed as a function of the
(Nex, Nin) pair under different frequencies of the sinusoidal current injection.
As the total number of background noises increases, we can observe that the
angle Φ of the phase shift diminishes accordingly. Also, higher frequencies of the
sinusoidal current injection lead to larger angles of the phase shift.

The values of gex and gin here in (8), (9), and (10) are substituted correspond-
ingly by the average values gex and gin recorded through the whole simulation
course of 100 cycles with time step resolution Δt = 0.01 ms and 1000 ms per
cycle, i.e. the average value in 107 points. (see Fig. 3(a))

3.1 The Angle of Phase Shift

Taking derivative of risi(t) with respect to t yields

d

dt
risi(t) ≈ d

dt

(
1

γ − τeff ln (δ + ε cos(ωt − θeff(ω)))

)

=
τeffε

[γ − τeff ln (δ + ε cos(ωt − θeff(ω)))]2
· −ω sin(ωt − θeff(ω))
δ + ε cos(ωt − θeff(ω))

. (11)

From (11) we can observe that, when sin(ωt−θeff(ω)) = 0, i.e. ωt = θeff(ω)+
kπ where k ∈ Z this derivative equals to zero. So the very first zero occurs at
t = θeff(ω)/ω. This value is only determined by the effective time constant τeff

and the angular frequency ω of the sinusoidal current injection, and hence is only
determined by gex, gin and ω. Note that the quantity of this value has nothing to
do with the amplitude parameters of the current injection I0 and I1, which means
that the degree of phase shift phenomenon is controlled by the characteristics of
the background noise and the frequency of the sinusoidal current injection.
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Fig. 1. ISI firing rate curve comparison. The amplitude of the sinusoidal current injec-
tion is fixed at I0 = 1.0 nA, I1 = 0.5 nA. (a) The risi curve undergoes phase shift
when f increases from 1Hz to 1000 Hz with the number of background noise pair fixed
at Nex = 800 vs Nin = 240. In the upper panel, we select three risi curves under
f = 1, 50, 100 Hz representing lower frequency cases, while all different frequencies of
the sinusoidal current injection ranges from 1 Hz to 1000 Hz we tested are plotted within
the lower panel. (b) The risi curve undergoes phase shift with f fixed at 30Hz while
the number of background noise pair drops from Nex = 4600 vs Nin = 1000 down to
Nex = 200 vs Nin = 120.

Consequently, once these four parameters: f , τm, gex, and gin, are known, we
can directly derive the degree of phase shift through the following equation

Φ(◦) = arccos

[
1 +

(
2πfτm

1000(1 + gex + gin)

)2
]−1/2

· 360◦

2π
. (12)

The first two parameters mentioned above are relatively intuitive for one to
find out, since the frequency of the periodic current injection is always known in
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Fig. 2. Degree of phase shift corresponding to the pair (Nex, Nin) of background noise.

experiments and simulations, and so is the membrane time constant. The last two
parameters, gex and gin, are somewhat implicit and would be more convenient
for us to manipulate if we translate them into the number of background noise,
i.e. Nex and Nin.

In this study, the number of excitatory background noise Nex actually main-
tains a linear relationship with gex and so does Nin and gin except a small offset
(see Fig. 3(b)). Increasing every 200 excitatory background noise yields a slight
escalating of 0.07 to the value of gex, while increasing every 40 inhibitory back-
ground noise yields additional 0.3 to the value of gin, as shown in (13). The offset
observed at inhibitory case is because the lowest pre-set pair of our background
noise is starting from Nex = 200, Nin = 120, that is, if we further reduce the
number of background noise from the lowest pre-set pair to make Nex = 0, then
Nin = 80 instead of zero in our study.

gex =
0.07
200

Nex

gin =
0.3
40

Nin. (13)

Applying the linear relationship described in (13) to the denominator within the
parentheses in (12), the denominator becomes

1000(1 + gex + gin) = 1000 + 0.35Nex + 7.5Nin. (14)

The coefficients of Nex and Nin are actually product of the rest of the Poisson
parameters λ, d, and τ , so (12) can be written in a more general form

Φ(◦) = arccos

[
1 +

(
2πfτm

1000 + pex + pin)

)2
]−1/2

· 360◦

2π
(15)
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where

pex = Nexλexdexτex

pin = Ninλindinτin.

The range of Φ is 0◦ ≤ Φ ≤ 90◦. When the two products of Poisson parameters
pex and pin are very large and the frequency of current injection f is the smallest
value, i.e. f = 1, the value of Φ approaches to 0◦ with small τm. If background
noise is small enough to be neglected or just simply equals to zero, then with very
large frequency f and membrane time constant τm, the value of Φ approximately
equals to 90◦.

3.2 The Agility Score of a Neuron

Here, we introduce a new concept in order to better describe the neuron’s behav-
ior responding to the surrounding environment factors: the agility of a neuron.
Inspired by (12), the agility of a neuron is a function AG(τm, gex, gin) that coun-
ters the frequency of the periodic current injection. The AG function is defined
as

AG(Hz) � 1000(1 + gex + gin)
2πτm

, (16)

and in this study, the agility of a neuron AG(τm, pex, pin) is of the form

AG(Hz) � 1000 + pex + pin

2πτm
. (17)

From (16) and (17) we can see that the unit of agility score AG is Hz, which
is identical to the frequency of the periodic current injection f . Neurons with
higher AG-score can respond to a high frequency input more rapidly, and hence
is more agile comparing to lower AG-score ones.

Now look back to (12), it can be rewritten as a function of f and AG

Φ(◦) = arccos

[
1 +

(
f

AG

)2
]−1/2

· 360◦

2π

= arccos

(
AG√

AG2 + f2

)
· 360◦

2π
. (18)

The relationship among Φ, AG , and f is shown in Fig. 4. With this plot, one can
easily set up any criteria and then derive desired conditions. For example, when
the angle of phase shift constrained within only 5◦ under current injection f = 1
Hz is preferable in one’s consideration, then the AG-score should be at least
greater than 15 to guarantee such criteria; yet the AG-score must be at least
greater than 1150 to satisfy the same criteria under current injection f = 100 Hz,
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Fig. 3. (a) The distribution of gex and gin under the background noise pair Nex = 800
vs Nin = 240 can be fitted by normal distributions. There are 107 points of gex and
gin each, taken from one single arbitrary simulation course consisted of 100 cycles with
time step resolution Δt = 0.01 ms and 1000 ms per cycle. (b) The average values of
gex and gin corresponding to pairs of background noise.

and when the frequency of sinusoidal current injection raised up to 1000 Hz, the
AG-score now need to be greater than 11440 in order to keep the phase shift
within 5◦.

The tolerance of the angle of phase shift can also be set as the proportion of
one cycle alternatively, regardless of real time unit, for some simulation purposes.
For example, if the level of phase shift is to be controlled within 0.1% per cycle,
that is Φ ≤ 3.6◦, then under f = 1 Hz of current injection, the AG-score should
be greater than 160; while under f = 50 Hz, the demanding AG-score increased
up to at least 7960, and AG-score should be over 15920 to satisfy the same
criteria under f = 100 Hz of current injection. On the other hand, if the frequency
of the sinusoidal current injection is fixed at f = 1000 Hz, then the AG-score
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Fig. 4. (a) The AG scores corresponding to phase shift degree under different frequen-
cies of current injection. (b) A further zoom-in at smaller AG values.

needs to be up to 57300 or above to keep the angle of phase shift smaller than
1◦, while it only takes AG ≥ 2870 to keep the same criteria at the situation that
the sinusoidal current injection frequency drops down to f = 50 Hz.

4 Conclusion

The response of a neuron model to an external periodic stimulus can be affected
by two summarized factors, one is the active role f , and the other the passive role
AG . In this study, we present the agility function AG for a balanced LIF model
with Poisson distributed background noise in the form of (17). This concept
can be further generalized under the form of (16) and applied onto the same
kind of neuron models like adaptive neuron models, or even onto conductance-
based neuron models such as Hodgkin-Huxley models, Connor-Stevens models,
etc. Previous studies also reported similar results [3,5] between background noise
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and the phase shift but were lack of quantitative descriptions. The novelty of this
study is that we present an explicit function as a tool for us to directly calculate
the exact degree of phase shift and the method of derivation of the equations
presented here is relatively easy and straightforward for further applications. The
AG score allows us to normalize various neuron models from different studies
and makes them comparable with each other under the same conditions. This
result also provides an explanation for how large-scale computational neuronal
networks are able to overcome the input-output delay problem.
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Abstract. Given a collection of records, the problemof record linkage is to cluster
them such that each cluster contains all the records of one and only one individual.
Existing algorithms for this important problem have large run times especially
when the number of records is large. Often, a small number of new records have to
be linked with a large number of existing records. Linking the old and new records
together might call for large run times. We refer to any algorithm that efficiently
links the new records with the existing ones as incremental record linkage (IRL)
algorithms and in this paper, we offer novel IRL algorithms. Clustering is the basic
approach we employ. Our algorithms use a novel random sampling technique to
compute the distance between a new record and any cluster and associate the
new record with the cluster with which it has the least distance. The idea is to
compute the distance between the new record and only a random subset of the
cluster records. We can use a sampling lemma to show that this computation is
very accurate. We have developed both sequential and parallel implementations
of our algorithms. They outperform the best-known prior algorithm (called RLA).
For example, one of our algorithms takes 71.22 s to link 100,000 records with
a database of 1,000,000 records. In comparison, the current best algorithm takes
140.91 s to link 1,100,000 records. We achieve a very nearly linear speedup in
parallel. E.g., we obtain a speedup of 28.28 with 32 cores. To the best of our
knowledge, we are the first to propose parallel IRL algorithms. Our algorithms
offer state-of-the-art solutions to the IRL problem.

Keywords: Incremental record linkage · Edit distance · Blocking · K-mers ·
Parallel computing · Hierarchical clustering

1 Introduction

Record linkage is the problem of integrating records from different sources and cluster-
ing them so that each cluster has all the records belonging to one and only one individual.
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For instance, in the domain of health care, billions of records are stored and maintained
in different data sources electronically wherein there could be multiple records for indi-
viduals. Record linkage has crucial benefits including cost saving, in analyzing and
evaluating disease evolution, in the identification of disease origin and diversity, etc.
Record linkage is a challenging problem since, typically, there may not be any global
identifier. There are many algorithms to deal with the record linkage problem [1–3]. A
naive algorithm for this problem will compare every two records to find the matched
records. However, this method might demand too much time. Also, most of the cur-
rent efficient algorithms [4–8] link only two datasets at a time, while the algorithms in
[9–12] link more than two datasets simultaneously. Clustering techniques are typically
used for linking records. Clustering is an unsupervised method to divide records into
groups, called clusters, so that similar records are classified into the same cluster. In the
literature, there are many clustering techniques such as Fuzzy Clustering, Hierarchical
Clustering, Artificial Neural Networks for Clustering, Nearest Neighbor Clustering, etc.
[27–29].

Very often, to make decisions on an individual (or a small group of individuals), the
new records will have to be linked with an already existing (large) database of records.
The obvious way of linking the new records will be to add them to the database and
perform a linkage on all of the records together. Clearly, this may take an unacceptable
amount of time. For instance, consider the case when a physician is in the process of
figuring out the right treatment for an ER patient and wants to get information about the
patient and other patients with a similar set of symptoms from their previous records.
Linking all the records may not be a viable solution. We need algorithms that can link
the new records with the old ones efficiently. We refer to such algorithms as incremental
record linkage algorithms. Unfortunately, the existing algorithms [13–15] have large run
times.

In this paper we propose efficient sequential and parallel IRL algorithms. Our algo-
rithms employ agglomerative hierarchical clustering with single linkage. Also, we have
extensively tested our algorithms on a large number of synthetic and real datasets. The
results show that our proposed IRLA3 algorithm outperforms the best-known (tradi-
tional) record linkage algorithm RLA with a 94.84% consolidated accuracy and takes
137.46 s compared with 164.46 s and 94.12% accuracy for the RLA when the number
of new records is 20% of the total number of records in the existing real database. The
parallel algorithms achieve a very nearly linear speedup (e.g., the speedup is 28.28 for
32 cores in a single node).

2 Background

Hierarchical Clustering is a common technique used for record linkage [19–22]. Par-
allel solutions for record linkage are necessary due to performance degradation with
increasing data size [9, 10, 23–26]. The Hierarchical Clustering works in two differ-
ent ways based on how the distance between two clusters is measured: Agglomerative
(bottom-up) or Divisive (top-down). The distance between two clusters can be defined
in a number of ways. Two popular methods in use are complete linkage and single link-
age. If X and Y are any two clusters, then the single linkage distance between them is
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defined as min
x∈X,y∈Y d(x, y),where d(x, y) is the distance between the records x and y.

The complete linkage distance between X and Y is defined as max
x∈X,y∈Y d(x, y) [29].

There are many ways to measure the distance between two records, such as reversal
distance, truncation distance, and edit distance. It helps to think of each record as a string
(obtained by concatenating its attributes). The RLA in [12] used edit distance which is
widely used tomeasure the differences between records [30]. The edit distance computes
the minimum number of edit operations (deletions, substitutions, and insertions) in
order to convert one string to another one. For example, if S1 = “cemuterss” and S2 =
“computers”, in order to convert S1 to S2, the following operations can be used: replace
‘e’ with ‘o’ at index 1 of S1, insert ‘p’ at index 3 of S1, and delete ‘s’ at index 8 of S1.

Even though clustering algorithms are quite useful in record linkage, they typically
have large run times. For instance, the hierarchical clustering algorithm takes quadratic
time. To speed the clustering algorithms, one of the techniques widely used is block-
ing. In the literature [31–33], there are many blockingmethods such as string-map-based
indexing, suffix array-based indexing, sorted neighborhood indexing, canopy clustering,
and Q-gram-based indexing. Blocking can be thought of as a first level of coarse cluster-
ing. We first coarsely cluster the records into blocks and then perform a fine clustering
within the blocks.

Two records will be found in the same block if they share at least one l-mer. There
will be a block corresponding to every possible l-mer. The intuition behind blocking is
that if two records are very similar then they should share at least one l-mer. The coarse
clustering is done using this fact. For example, assume that we block using the LastName
attribute. Also let the value of l be 2. There will be a block corresponding every string of
length 2. Assume that we have three records with the following LastName values: art,
mark, and bill. The 2-mers of art are: ar and rt. The record with art as the LastName will
be placed in two blocks one corresponding to ar and the other corresponding to rt. The
record of mark will be placed in blocks corresponding to ma, ar, and rk. The record of
bill will be placed in three blocks. As we can see, both art and mark will be placed in the
same block corresponding to ar. In general, if two records share an l-mer, then they will
be placed in the same block corresponding to this l-mer. Nonidentical records might be
placed in the same block. The fact that they do not correspond to the same individual
will be revealed in the second fine clustering that we do.

After blocking, we have to perform linking only within the blocks. Even though
every record may be placed in multiple blocks, the overall run time will still be less
(than if we link all the records together).

In the RLA algorithm of [12] records are blocked based on l-mers of one of the
attributes (last name, for example). If we assume that the alphabet size is 26, there will
be 26 l blocks. Let d be the length of the attribute used for blocking. Then, each record
will be found in (d − l + 1) ≤ d blocks. If n is the number of records in D, then the
expected number of records in each block will be ≤ d.n

26l
. After blocking, the blocks will

be clustered independently. Finally, linking across the blocks will be done as needed.
One of the currently best known IRL algorithms is in [13]. We refer to this algorithm

as GDS. They show that their algorithm performs better than prior algorithms [14, 15].
Since the code of [13] is not accessible, we could not empirically compare our algorithm
with those in [13]. The time complexities of the algorithms in [13] are very high. For
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example, the run time of their GreedyCorr algorithm is O(|G + ΔG|6), where G is
the original graph and ΔG refers to the subgraph introduced by the new records. In
comparison, the run time of our algorithm is only O(|G|2).

3 Methods

3.1 Our Approaches

Wehave come upwith novel sequential and parallel algorithms for IRL (called IRLA and
PIRLA, respectively) that are asymptotically much faster than those of [13]. A summary
of our approach follows: LetD be the existing database and let X be a set of new records
that have to be incorporated into D. In IRLA we always keep the blocks of D. Given a
new record Rnew, we also block this record based on the same attribute used for blocking
D. The record Rnew will belong to ≤d blocks. We compare Rnew with each cluster in
each of these blocks. As a result, we identify the cluster c with which Rnew has the
least distance. We associate Rnew with c. To compute the distance between Rnew and any
cluster we use a novel random sampling technique.

The run time of our sequential algorithm is O(N d.n
26l

), where n is the number of
already existing records, N is the number of new records, and l is the blocking length.
The time complexity of our algorithm is O(|G|2), which is much better than those of
[13]. Depending on the sampling technique used to compute the distance between Rnew

and the relevant clusters, there are three variants of IRLA called IRLA1, IRLA2, and
IRLA3. In IRLA1, Rnew will be compared with each record in each cluster. In IRLA2,
Rnew will be compared with a 50% random sample of records from each relevant cluster.
In IRLA3, Rnew will be compared with only one randomly chosen record from each
cluster.

3.2 Sequential Algorithms

The IRLA, as shown in Algorithm 1, takes as input four parameters. Note that these
parameters (except Dnew) are outputs of the RLA algorithm [12]. blockArr stores the
results of blocking the existing database. Threshold is a user-specified parameter for
identifying records belonging to the same entity (or person). The Set of Single Linkage
Clusters (SLC) describes the clusters present in the existing database. These clusters
would have been obtained using any record linkage algorithm and some blocking tech-
nique. In our implementations, we have used the RLA algorithm [12] for generating
SLC and blockArr. The IRLA algorithm processes each new record Rnew in Dnew as
follows. First, in lines 2–4 of Algorithm 1, our algorithm marks Rnew as an “existing” or
an “unseen” record. Then, each Rnew will be added into an existing cluster from SLC,
only if its type is “existing” and the distance (i.e., edit distance) between Rnew and an
existing record is less than the Threshold. Otherwise, it will be added to a new cluster.
See lines 6–21 of Algorithm 1. Note that, to create a new cluster, Algorithm 1 utilizes
the createNewCluster method that creates a new cluster and adds the record Rnew, that
the method receives, into the new cluster and updates blockArr such that the id of the
new cluster is added to all the blocks of Rnew. Finally, in line 23, the algorithm returns
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an updated blockArr and SLC’ which is a set of all the clusters in SLC (updated or not
updated) and the newly created clusters.

Algorithm 1 : IRLA ( Incremental Record Linkage Algorithm).
Input:  a New dataset Dnew,     a Blockage Array (blockArr),    a Threshold, and   a Set of Single 
Linkage Clusters (SLC).
Output: An updated set of Single Linkage Clusters (SLC’ ) and an updated blockArr.
1.   For each new record Rnew in Dnew do
2.       Rnew type = “existing”.
3.       Find all the blocks (BLnew) of the “last name” attribute of Rnew. 
4.   If any of the blocks in BLnew has not been seen before in ( blockArr) Then Rnew type = “unseen”. 
5.           If Rnew type = “unseen” Then
6.               createNewCluster(Rnew).
7.           Else
8.               For each block b in BLnew do
9.                   Using blockArr, find the set of clusters CL in SLC that correspond to the block b. 
10.                 For each cluster c in CL do
11.                      Pick a set Q of Ω records from c and add the pair tr=(r, ci), for every r in Q to 

a Target Record List (TRL).
12.                 End For
13.             End For
14.             Compute the edit distance between each r and Rnew. 
15.            Find the record r that has the minimum edit distance (MED) with Rnew.
16.             If (Threshold – MED) >=0
17.                 Add Rnew to the cluster tr.c
18.             Else
19.                 createNewCluster(Rnew)
20. End if
21. End if
22.   End For
23.   Return the updated set of Clusters (SLC’ ) and an updated blockArr.

The expected complexity of the IRLA is O(NBCΩ), where N is the number of new
records in Dnew, B is the expected number of blocks a new record is placed in, C is the
expected number of clusters in each block, and � is the expected number of records in
each cluster. Note that the complexity of the createNewCluster method is O(1) since it
does not depend on the input data (i.e., Dnew).

3.3 Parallel Algorithm

The PIRLA algorithm, as shown inAlgorithm 2, receives five parameters. Note that these
parameters (excepting Dnew) are outputs of the PRLA algorithm [12]. PIRLA processes
each new record Rnew in Dnew as follows. One of the available processors is called the
master and the others are called slaves. The master processor performs two steps as
shown in lines 1 and 2 of Algorithm 2. In lines 4–7 of Algorithm 2, each processor j
marks Rnew as an “existing” or an “unseen” record. Then, each Rnew (in each processor)
will be either added into the Existing Clusters List (ECL), only if its type is “existing”
and the distance (i.e., edit distance) between Rnew and an existing record is less than the
Threshold, or into theNewClustersList (NCL) otherwise (see lines 8–24ofAlgorithm2).
Now, processor j has generated two lists, i.e., NCL and ECL, based on the set of records
that j has received. Then, in lines 26–27 of Algorithm 2, the master generates a Master
New Clusters List (MNCL) and a Master Existing Clusters List (MECL), respectively.
After that, in lines 28–37 of Algorithm 2, the master iterates through each R in MNCL
to add R into an existing cluster of SLC or into a new cluster, and adds all the records
inMECL into existing clusters of SLC as shown in lines 38–40 of Algorithm 2. Finally,
the algorithm returns the updated set SLC’ (see line 41 of Algorithm 2).

The expected time complexity of the PIRLA algorithm is O(NBCΩ/P), where N is
the number of new records inDnew, B is the expected number of blocks that a new record
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is placed in,C is the expected number of clusters of each block,Ω is the expected number
of records in each cluster, and P is the number of processors. Note that the complexity
of the createNewCluster method is O(1) since it does not depend on the input data
(i.e., Dnew).

Algorithm 2 : PIRLA (Parallel Incremental Record Linkage Algorithm).
Input:      a New dataset (Dnew), a Master Blocks Array (blockMasterArr), a Threshold, 

a Set of Single Linkage Clusters (SLC), and  Number of slave processors P. 
Output: An updated set of Single Linkage Clusters (SLC’ ) and an updated blockMasterArr.
1. The Master reads all records from dataset (Dnew).
2. The Master distributes the records nearly equally among the slave processors.

// Let be the portion of new data that processor j receives, for 1 ≤ j ≤ P. 
3.   For each processor do
4.   For each new record Rnew in do
5.       Rnew type = “existing”.
6.       Find the set BLj of all the blocks of the “last name” attribute of Rnew.
7.       If any of the blocks in BLj has not been seen before in (blockMasterArr) Then

Rnew type = “unseen”. 
8.           If Rnew type = “unseen” Then
9.               Add Rnew to a New Cluster List (NCL)
10.           Else
11.               For each block b in BLj 
12.                   Using blockMasterArr, find the set CLj of all the clusters in SLC that 
                          correspond to block b. 
13.                 For each cluster c in CLj do
14.                      Pick a set Q of Ω records from c and add the pair tr=(r, c) to 

a Target Record List (TRL), for every r in Q. 
15.                 End For
16.             End For
17.             Compute the edit distance between each r and Rnew. 
18.             Find the tr that has the minimum edit distance (MED) with Rnew. 
19.             If (Threshold – MED) 0  
20.                      Add Rnew to an Existing Cluster List (ECL) 
21.             Else
22.                      Add Rnew to a New Cluster List (NCL) 
23.                    End if
24.            End if
25.   End For 
26. The Master aggregates all NCLs from each processor into  a Master New Cluster List (MNCL);
27. The Master aggregates all ECLs from each processor into a Master Existing Cluster List(MECL) 

// The Master performs the following two loops
28. Define a Created Cluster List (CCL) to be empty;
29.         For each R in MNCL do
30.             Compute the edit distance (ED) between each C in CCL and R.
31.             If (Threshold –ED) >=0
32.                  Add R to the cluster C.c
33. Else If (Threshold –ED) <0 for all c
34.                 createNewCluster(R)
35.                 add the pair nc(R,C.c) to CCL
36.             End if
37.         End For
38.         For each tr in MECL do
39.              Add R to the cluster tr.c
40.         End For 
41.   Return the updated set of Clusters (SLC’ ) and an updated blockMasterArr.

4 Experimental Environments

Wehave performed all the experiments using real data.Wehave implemented the sequen-
tial versions of all the algorithms in C++ whereas the parallel algorithms have been
implemented in C++ with MPI library. For real datasets, due to security and confiden-
tiality reasons, we have deployed all the algorithms on laz-id1 server, UConn Health,
Farmington, University of Connecticut. This server has one node and 32 AMD Opteron
6274 @ 2.20 GH cores, 64 GB of RAM, and 1.0 PB of local storage.
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The random sampling reduces the run time nicely without much degradation in
accuracy. We can explain this with a probabilistic analysis. Let X be a given set of n
elements (real numbers for example) and let S be a random sample of X with s elements.
Let the minimum element in S be m and let M be the minimum element of X. Then the
expected value of m isM. Moreover, we can use Chernoff bounds to show that the value
of m will be close toM with a good probability. Consider an element q of S whose rank
in S is j. Let the rank of q in X be rj. Then a lemma of Rajasekaran and Reif [35] states
the following:

Prob.

[∣∣∣r j − j
n

s

∣∣∣ >
√
4α

n√
s

√
log n

]
< n−α for anyα > 0.

In our case j = 1 and if we apply the above lemma we realize that the differ-
ence between the sample minimum and the actual minimum will be small with a high
probability.

5 The Datasets

We have run all the experiments on real datasets. We have employed a database called
ChimeData that contains actual patient hospitalization data. This database is compiled
by the Connecticut Hospital Association (CHA) [34] and maintained by the Connecti-
cut Department of Public Health. The ChimeData has records pertinent to all acute care
hospital patients in the state. The dataset from ChimeData that we have used is called
“CHIME-partial” that contains information about one of the hospitals in Connecticut.
The CHIME-partial contains in total around 1,311,740 patients’ records for the years
2012 through 2017. Each record has six attributes: PatientID “PID”, LastName, First-
Name, gender, date of birth, and race. Our sequential and parallel algorithms have been
tested with various numbers of records from CHIME-partial dataset. We have run each
algorithm on 1,000,000 records (with an equal number of records from the 6 sub-datasets
of CHIME-partial) considered as the existing data. We have also tested the algorithms
on datasets of size ranging from 1,000, to 200,000 records taken from CHIME-partial
and treated as the new records.

In all the experiments, we have used the LastName attribute as the blocking field and
used a threshold value of 2. Blocking has been done on 3-mers. Also, in order to define
the distance between any two records, we have employed the edit distance method on
five attributes: namely LastName, FirstName, gender, date of birth, and race. We have
measured the efficiency and accuracy for each algorithm. For efficiency,wehave repeated
each experiment 10 times and report the average running times. Tomeasure the accuracy
for the incremental algorithms, we have used the PID attribute as the gold standard and
computed the accuracy as in the following equation:

Accuracy = the total number of records wi th correct labels

the total number of records
∗ 100

The RLA algorithm does not utilize any prior information. It starts from scratch
and links the records. On the other hand, the algorithms IRLA1, IRLA2, and IRLA3 use
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prior information about known clusters. For each individual, the prior data in general has
multiple records. When a new record is given, this record is compared with the existing
clusters. If each existing cluster is sufficiently large, then the probability that the new
record goes to an incorrect cluster is low. As a result, the accuracies of IRLA1, IRLA2,
and IRLA3 (on the new records) are better than that of RLA (on all the records). It may
not be fair if we compare the accuracy of the new algorithms (as measured only on the
new records) with the accuracy of RLA (as measured on all the records). To make a fair
comparison we define the following consolidated accuracy:

Consolidated Accuracy = Nold × Aold + Nnew × Anew

Nold + Nnew
,

where Nold is the number of existing records, Nnew is the number of new records, Aold

is the accuracy obtained while linking the existing records (using RLA, for example),
and Anew is the accuracy obtained by the new incremental algorithms for linking the new
records.

6 Results

We have performed many experiments to determine the effectiveness of our proposed
incremental record linkage algorithms IRLAs. We have tested IRLA1, IRLA2, and
IRLA3 and compared their performance with that of the best-known RLA [12] in terms
of the running time and the accuracy. These comparisons were done to understand for
what sizes of the new dataset Dnew will the algorithms IRLA1, IRLA2, and IRLA3 be
faster than running RLA on the old and new datasets together. In the next sections we
report the results for sequential and parallel algorithms on real datasets.

6.1 Results on Real Datasets for Sequential Algorithms

In this section, we present the implementation results of our proposed sequential algo-
rithms, namely, IRLA1, IRLA2, and IRLA3 and the best-known sequential RLA [12]
on real datasets. We assume that we already have a dataset with 1,000,000 records from
CHIME-partial. And we test the new algorithms when the number of new records ranges
from 1,000 to 200,000.

Table 1 summarizes the comparison of our proposed sequential IRLA algorithms
with the RLA algorithm. The first column of Table 1 shows the number of records in
the existing dataset. The second column lists the number of new records. For example,
if the number of new records is 1,000 it means that the algorithm RLA has been used
to link 1,001,000 records (i.e., with 1,000,000 records in the existing dataset and 1,000
new records).

IRLA algorithms have been run on 1,000 new records only (to be linked with an
existing database of size 1,000,000). The running times shown for RLA are the total
times for linking the old and new records while the running times shown for IRLA1,
IRLA2, and IRLA3 are for linking the new records only. From Table 1, we clearly see
that IRLA1, IRLA2 and IRLA3 outperform RLA in terms of the running time and the
accuracy when the number of new records is 3.85%, 7.71%, and 20% respectively, of the
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Table 1. Comparison results of our three proposed sequential IRLA algorithms with the best-
known sequential RLA algorithm on real datasets.

Size of
the
existing
dataset

Size of
the new
dataset

RLA IRLA1 IRLA2 IRLA3

Time Accuracy Time Consolidated
accuracy

Time Consolidated
accuracy

Time Consolidated
accuracy

1,000,000 1,000 114.33 93.60% 4.31 93.606% 2.47 93.605% 1.29 93.605%

1,000,000 5,000 116.17 93.60% 20.37 93.630% 12.15 93.627% 5.11 93.624%

1,000,000 10,000 118.59 93.61% 38.91 93.670% 24.42 93.664% 10.17 93.657%

1,000,000 25,000 121.26 93.66% 91.08 93.808% 56.13 93.788% 23.79 93.777%

1,000,000 50,000 126.78 93.72% 160.89 94.011% 97.92 93.970% 42.18 93.932%

1,000,000 75,000 132.6 93.78% 215.97 94.206% 131.13 94.153% 58.05 94.093%

1,000,000 100,000 140.91 93.84% 253.41 94.390% 158.79 94.325% 71.22 94.245%

1,000,000 125,000 145.41 93.92% 336.3 94.584% 205.98 94.493% 90.84 94.411%

1,000,000 150,000 151.89 93.99% 398.4 94.762% 238.41 94.662% 107.76 94.564%

1,000,000 175,000 158.04 94.06% 451.23 94.933% 268.59 94.820% 121.44 94.709%

1,000,000 200,000 164.46 94.12% 503.88 95.090% 304.56 94.965% 137.46 94.848%

total number of records in the existing real database. For every new record, the IRLA1
algorithm will compare this new record with all the records in each cluster, and IRLA2
will compare each new record with a random half of the records in each cluster. As
a result, the run times of these algorithms increase linearly with the number of new
records. For this reason, when the number of records is very large, there may not be any
gain in using an incremental linkage algorithm. Besides, on the average, IRLA3 is 2.25
times faster than IRLA2; IRLA2 is 1.65 times faster than IRLA1; and IRLA3 is 3.71
times faster than IRLA1.

Figure 1 displays a runtime comparison of our IRLA algorithms with the RLA
algorithm on 1,001,000 to 1,200,000 records of real datasets. Also, it shows that the
break-even points for IRLA1 and IRLA2 are 38,567 and 77,115 records, respectively.
As a result, our proposed IRLA3 is still outperforming the best-known RLA [12] with
94.84% consolidated accuracy and takes 137.46 s compared with 164.46 s and 94.12%
accuracy for the RLA on 200,000 incremental records.

6.2 Results on Real Datasets for Parallel Algorithms

Table 2 summarizes the comparison results in terms of running time in seconds, speedup,
and the accuracy of our three proposed PIRLA algorithms with the best-known PRLA
algorithm [12]. All the algorithms have been run on 1,200,000 records of a real dataset
on 1 to 32 cores. Figure 2 shows that the speedup for our proposed PIRLA algorithms
is almost linear. For instance, the speedup for PIRLA3 is 7.52 for 8 cores, 14.77 for 16
cores, and 28.28 for 32 cores in a single node. Also, as Table 2 shows, the consolidated
accuracy of our PIRLA algorithms is more than 94.77% compared to 94.04% for the
PRLA algorithm.
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Fig. 1. Runtime comparison of our three proposed sequential IRLA algorithms with the best-
known sequential RLA algorithm on real datasets. (x-axis denotes to total records in millions;
y-axis corresponds to the time in seconds).

Fig. 2. The speedup of our three proposed parallel IRLA algorithms with the best-known parallel
RLA algorithm on real datasets. (x-axis corresponds to the number of processors; y-axis denotes
speed up).

7 Conclusions

We have presented novel algorithms for the crucial problem of incremental linkage. Our
algorithms employ a novel random sampling technique and single linkage clustering
and outperform previous best-known algorithms in this category. Our proposed IRLA3
algorithm outperforms the best-known RLA algorithm when the number of incremental
records is up to around 20% of the total number of existing records. To the best of our
knowledge, we are the first who have proposed a parallel incremental record linkage
algorithm. Our sequential and parallel algorithms have been tested on synthetic and real
datasets. They achieve a consolidated accuracy of up to 95.09%, take less run times,
and attain a very nearly linear speedup compared to the best-known algorithms in this
category. Our parallel algorithms can be applied on hundreds of processors over millions
of records. Therefore, our proposed algorithms, IRLA and PIRLA offer state-of-the-art
solutions for the incremental record linkage problem.
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Abstract. Autism Spectrum Disorder (ASD) is a neurological disorder that
affects a person’s behavior and social interaction. Integrating machine learning
algorithms with neuroimages a diagnosis method can be established to detect
ASD subjects from typical control (TC) subjects. In this study, we develop autoen-
coder based ASD diagnosis methods. Firstly, we design an autoencoder to extract
high-level features from raw features, which are defined based on eigenvalues and
centralities of functional brain networks constructed with the entire Autism Brain
Imaging Data Exchange 1 (ABIDE 1) dataset. Secondly, we use these high-level
features to train several traditional machine learning methods (SVM, KNN, and
subspace discriminant), which achieve the classification accuracy of 72.6% and
the area under the receiving operating characteristic curve (AUC) of 79.0%. We
also use these high-level features to train a deep neural network (DNN) which
achieves the classification accuracy of 76.2% and the AUC of 79.7%. Thirdly,
we combine the pre-trained autoencoder with the DNN to train it, which achieves
the classification accuracy of 79.2%, and the AUC of 82.4%. Finally, we also
train SVM, KNN, and subspace discriminant with the features extracted from the
combination of the pre-trained autoencoder and the DNNwhich achieves the clas-
sification accuracy of 74.6% and the AUC of 78.7%. These results show that our
proposed methods for diagnosis of ASD outperform state-of-the-art studies.

Keywords: Autism Spectrum Disorder · Deep learning · Autoencoder ·
Functional magnetic resonance imaging · Brain networks

1 Introduction

Autism spectrum disorder (ASD) is a neuro dysfunction. It covers a wide range of
behavioral abnormality such as impaired social skills, co-occurring behaviors, reduced
speech, attention deficit, etc. The term spectrum in ASD refers to different conditions of
subjects. ASD affects different subjects differently. According to a report in [1], ASD
subjects are 2.5 times more likely to cause premature death than healthy controls (HC).
There is no acute treatment for ASD. However, a timely and precise diagnosis can help
the family take preliminary and effective steps to ensure the normal life of a patient.

Patients start to show symptoms of ASD during the first three years of life. However,
sometimes they grow normally and then start showing symptoms at the age of 18 to 36
months. Despite the extensive research into the diagnosis of ASD, it has been a difficult
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task to accomplish. Apart from monitoring the behavior and development of patients,
there are no other perceive signs for effective diagnosis of ASD. Traditional diagnosis
methods include Autism Diagnostic Observation Schedule [2] and Autism Diagnostic
Interview [3], where the diagnosis is done through the observation of behavior and
interview of a patient. However, these diagnosis methods are time-consuming and can
be false sometimes, as there are no specific behaviors that can be described as ASD.
Therefore, it is necessary to invent ways that can diagnose ASD more accurately and
more efficiently without relying on pure behavioral patterns.

The study of the neuroimages has been widely used to understand different brain dis-
eases. Machine learning techniques are combined with neuroimages to find biomarkers
and establish a diagnosis method for ASD. A better approach for studying the neu-
roimages is to use the Magnetic Resonance Imaging (MRI) as it can be used to extract
information about the structural and functional activities of a brain. Out of the differ-
ent MRI techniques, the resting-state functional MRI (rs-fMRI) provides information
about the neural activities of a person’s brain. However, instead of studying the rawMRI
images, a more effective way is the graph-theoretic or network based approaches. In net-
work based approaches a brain network is created fromMRI images by dividing a brain
into different regions of interest (ROIs). The main components of a network are nodes
and edges connecting nodes. In a functional brain network, ROIs are nodes while the
Pearson Correlation Coefficient (PCC) of the time series measurement of ROIs between
a pair of nodes is used to determine their edge weight.

There are a number of studies where the information from brain networks is incor-
porated into machine learning techniques for the diagnosis of ASD subjects from typical
control (TC) subjects. In [4], the authors proposed an ASD diagnosis method using brain
images from the Autism Brain Imaging Data Exchange 1 (ABIDE 1) dataset [5]. They
pre-trained a deep neural network (DNN) classifier using a stacked denoising autoen-
coder, where the input to the network was the PCC of all pairwise ROIs. They reported
a classification accuracy of 70.0% for all the sites of ABIDE 1 and the average classifi-
cation accuracy of 52.0% for individual sites. In [6], a classification accuracy of 70.1%
was reported for the diagnosis of ASD using the ABIDE 1 dataset. They used an autoen-
coder to pre-train a single layer perceptron. The autoencoder functioned as a feature
extractor and the perceptron has worked as the classifier. They also reported an average
classification accuracy of 63.0% for the individual sites of ABIDE 1. The Riemannian
geometry of the functional connectivity was studied in [7]. Using the log-Euclidean and
affine-invariant Riemannian matrices in the machine learning algorithms, their method
achieved an accuracy of 71.1% for the entire ABIDE 1 dataset. A DNN based ASD diag-
nosis method was presented in [8]. In their study, the authors have extracted features
from brain networks and used the F-score to select the dominant features. The features
were then used in a DNN classifier, which consisted of two stacked autoencoders con-
nected to a softmax function for classification. They achieved a classification accuracy
of 90.4%. However, they used data from only a single site of the ABIDE 1 dataset. In
some other studies, higher classification accuracy for diagnosing ASD subjects was also
achieved [9, 10]. Those studies also only included some parts of the ABIDE 1 dataset.
They haven’t proved the generalization of the methods by including the entire ABIDE
1 dataset. According to [11], the studies related to the diagnosis of ASD tended to have
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high accuracy for the small sample size and the accuracy declined with the increase of
the sample size. Therefore, it is appealing to establish a diagnosis method that has a high
classification accuracy using the whole ABIDE 1 dataset.

In [12] a set of new features was proposed for the diagnosis of ASD. They proposed
the spectrum of the Laplacian matrix of brain networks as raw features and combined
them with three network centralities: assortativity, clustering coefficient, and average
degree. Using traditional machine learning algorithms, they have achieved a classifica-
tion accuracy of 77.7%, which is considered to be the highest at that time for the entire
ABIDE 1 dataset.

In this study, we are extending the work proposed in [12]. We use the same 871
subjects from the ABIDE 1 dataset. We adopt the raw features proposed in [12] i.e. the
spectrum of Laplacian matrices, assortativity, clustering coefficient, and average degree
of brain networks to train an autoencoder to extract the high-level features. Then use these
high-level features train several machine learning models such as SVM, KNN, subspace
discriminant, and DNN to obtain classifiers for the diagnosis of ASD, whose average
performances are comparable to those of state-of-the-art methods. We further combine
the pre-trained autoencoder with a DNN and train this classifier, which achieves the
classification accuracy of 79.2%, and the area under the receiving operating characteristic
curve (AUC) of 82.4%, which are better than results reported in [12].We also train SVM,
KNN, and subspace discriminant with the features extracted from the combination of
the pre-trained autoencoder and the DNN which achieves the classification accuracy of
74.6% and the AUC of 78.7%, which is better than the studies in [4, 6, 7, 12, 13].

2 Materials and Methods

2.1 ABIDE

ABIDE1 [14] dataset is a very common dataset for studies related to the diagnosis ofAD.
In this dataset, there are rs-fMRI images, T1-weighted images, and phenotypic infor-
mation of subjects suffering from ASD along with TC subjects. The data are collected
from 17 different sites. In ABIDE 1 there are data of 1112 subjects. Out of the 1112 sub-
jects, 539 are ASD subjects and 573 are TC subjects. Analyzing the image acquisition
techniques and phenotypic information provided in [5], we can say that ABIDE 1 covers
a wide range of scanners, scanning parameters, ages, etc. Because of the heterogeneity
of the subjects and variance between inter-site data, ABIDE 1 is a very complicated
dataset to work with. As a result, a diagnosis method that works well with the ABIDE
1 should be able to tackle the variations in the real-world scenarios. To be consistent
with the study [12] and compare our study with other studies [4, 6, 7, 12, 13] we have
experimented with the same 871 subjects, among which 403 are ASD subjects and 468
are TC subjects.

2.2 Data Preprocessing and Brain Networks

Before creating brain networks from the rs-fMRI images it is necessary to preprocess
images. For the preprocessing, we use the AFNI (Analysis of Functional Neuroim-
ages) [15] and FSL (FMRIB’s Software Library) [16] software packages. We use both
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rs-fMRI and T1-weighted images. However, the only purpose of using T1-weighted
images is to register rs-fMRI images to the standard space. We adopt the identical
preprocessing steps as in [12] to remove the noises from rs-fMRI data.

A network consists of nodes and edges, where nodes are connected through edges.
To define nodes in the brain network, we adopt the 264 ROIs based parcellation scheme
[17]. Specifically, we divide the brain into 264 ROIs and defined each ROI as a node
of the network. Then we obtain the time-series measurements of each ROI. The PCC
between the time-series measurements of each pair of ROI is the edge weights of the
network. The PCC, rxy of any two time series, x and y is calculated as follows

rxy =
∑s

b=1 (xb − x̄)(yb − ȳ)
√∑s

b=1 (xb − x̄)2
√∑s

b=1 (yb − ȳ)2
(1)

where s is the length of time series, xb and yb are the b-th component of x and y,
respectively, x̄ and ȳ are the means of x and y, respectively. The PCC ranges from +1
to −1, where a positive PCC indicates the similarity between the activation of the ROIs
and a negative PCC indicates the dissimilarity between the activation of the ROIs.

2.3 Feature Extraction

To create a matrix representation of a brain network and for the simplicity of feature
extraction, we define a 264 × 264 connectivity matrix for each network. Each row and
column of the connectivity matrix represent a node in the network and each element of
the matrix represents edge weights. Similar to [12], we apply different threshold values,
T > 0 to filter noise edges in the connectivity matrix, CM = (

cmi, j
)
n×n and thus to

create the adjacency matrix, A = (
ai, j

)
n×n as follows

ai, j =

⎧
⎪⎪⎨

⎪⎪⎩

1, i f cmi, j ≥ T
−1, i f cmi, j ≤ −T
0, i f i = j
0, otherwise

(2)

Then we calculate the Laplacian matrix of an undirected graph G = (V, E) from the
adjacency matrix as follows

L(G) = D(G) − A(G) (3)

where A(G) is the adjacency matrix and D(G) is the degree matrix, D = (
di, j

)
n×n ,

which is calculated as follows

di, j =
{∑n

k=1 ai,k, i f i = j
0, otherwise

(4)

Therefore, the Laplacian matrix is the difference between the degree matrix and the
adjacency matrix.
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After creating the matrix representation of a brain network, we calculate the features
i.e. the spectrumof the Laplacianmatrix, assortativity, clustering coefficient, and average
degree. The spectrumof amatrix is the set of all eigenvalues of thatmatrix.Aneigenvalue,
λ of a matrix M can be obtained by solving its characteristic equation

P(λ) = det(M − λI ) = 0 (5)

where I is an identity matrix.
Apart from the spectrum, we also calculate the topological centralities: assortativity,

clustering coefficient, and average degree, as the raw features. To calculate the assortativ-
ity and the clustering coefficient, the adjacencymatrix A is transformed to Ā = (

āi, j
)
n×n

as follows

āi, j =
{
1, i f ai, j > 0
0, otherwise

(6)

The assortativity is then calculated using the MATLAB function defined in [18]. To
calculate the clustering coefficient, at first, we compute the number of triangles of each
node (denoted by βG ) as follows

βG = diag
(
Ā ×U

(
Ā
) × Ā

)
(7)

where diag is the MATLAB function which returns the diagonal elements of a matrix
and U

(
Ā

)
is the upper triangular matrix of Ā.

The clustering coefficient, C is calculated as follows

C = 1

f

(∑

i∈V 2 ×
(

βG(i)

di × (di − 1)

))

(8)

where for a network G = (V,E), f is the total number of nodes in the network and di
is the degree of node i .

The average degree (denoted by Q) of a network is calculated directly from the
adjacency matrix A = (

ai, j
)
n×n as follows

Q = 2

f
×

∑ f

i=1

∑ f

j=1
ai, j (9)

where for a network G = (V,E), f is the total number of nodes in the network.

2.4 Feature Extraction

The feature normalization is an important step for machine learning classifiers as the
uneven features may bias the results. Therefore, we have normalized the features before
applying them to the DNN. We have used MATLAB to calculate the spectrum of the
Laplacian matrix. As the size of the Laplacian matrix is 264 × 264, so there are 264
eigenvalues for each subject. The eigenvalues are sorted in ascending order for each
subject and they can range from −∞ to +∞. However, when the eigenvalues (say the
first eigenvalue of each subject) are normalized, the contribution of each eigenvalue is
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Fig. 1. Example of a simple autoencoder

measured over all the subjects. The contribution of that eigenvalue for that subject is
ignored in this scenario. So, in this study, we have normalized the eigenvalues for a
subject rather than normalizing each eigenvalue over all subjects using the equation as
follows

z′ = z − min(z)

max(z) − min(z)
(10)

where z is an original value, and z′ is the normalized value. After this normalization, the
maximum value and the minimum value in the spectrum of each Laplacian matrix are 1
and 0, respectively, which are excluded from the raw feature set.

We haven’t applied normalization to the assortativity and clustering coefficient, as
those are normalized when calculated. However, the average degree of the network is
normalized over all the subjects using Eq. 10.

2.5 Proposed Autoencoder

In simple words, an autoencoder is a neural network that learns to replicate its input.
Figure 1 shows the architecture of our proposed autoencoder. There are three main
components of the autoencoder: encoder, latent space representation, and decoder. The
encoder compresses the input data and creates a latent space representation (high-level
feature), which is the compressed representation of the input data, and the decoder tries
to reconstruct the input data from the latent space representation. There is a total of three
hidden layers, one input layer, and one output layer in our proposed autoencoder. In
the consecutive layers of the encoder, we have decreased the number of neurons from
267 (input layer) to 200 (hidden layer 1). Then the information learned by the encoder
is projected into the latent space representation through 10 neurons (hidden layer 2).
Then in the decoder, we have increased the neurons from 200 (hidden layer 3) to 267
(output layer). The decoder reconstructs the data from the latent view representation.
Therefore, the autoencoder is trying to recreate x ′ from the input data x by minimizing
the reconstruction error, L

(
x, x ′), where L is the mean squared error between original
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input and the consequent reconstruction. Rather than using the autoencoder to copy the
input information to the output, the latent space is used to teach the network the useful
attributes of the data.

Fig. 2. Proposed deep neural network classifier

The autoencoder can be used both as a feature extractor and a classifier for the diag-
nosis of ASD. Using the autoencoder as a classifier, the information learned from the
autoencoder is incorporated into a classifier model for the classification [8]. Deploying
the autoencoder as a feature extractor, the latent view representation of the data is con-
sidered to be the high-level features, and these features are then used for diagnosis [19].
In the case of a feature extractor, the autoencoder is popular because it can approximate
the nonlinear relation of features through the nonlinear activation functions. Filtering,
wrapping, and embedding are some of the common feature selection methods. However,
all these methods can only find the linear relation among the features. The embedded
method can be used to find the nonlinear relationship of the features by using a nonlinear
kernel, but the learning of the model greatly depends on the kernel [20]. Also, in [20]
the authors have shown that an autoencoder based feature selection scheme works better
than the traditional feature selection algorithms.

3 Results and Discussion

At first, we implement an autoencoder based feature extraction method. As mentioned,
the decoder reconstructs the input data in the output from the latent space representa-
tion. Therefore, if the reconstruction error is small enough, it means the latent space have
learned the salient features of the input data. Thus, the latent space can produce discrim-
inate and salient representation (high-level features) of the input data. These features
can be used in machine learning algorithms for the purpose of classification between
ASD subjects and TC subjects. To evaluate the performance of the autoencoder based
feature extractor, we divide the entire dataset into 80% training data (697 subjects) and
20% testing data (174 subjects). Then we train the autoencoder using only the training



46 S. Mostafa et al.

Table 1. Performance analysis of the autoencoder based feature selector

Thresholding
condition

Linear
SVM (%)
(stdv)

Medium
Gaussian
SVM (%)
(stdv)

Coarse
Gaussian
SVM (%)
(stdv)

Medium
KNN (%)
(stdv)

Cosine
KNN (%)
(stdv)

Weighted
KNN (%)
(stdv)

Subspace
discriminant
(%) (stdv)

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

All edges
with positive
PCC

57.2
(2.0)

57.4
(3.7)

62.2
(1.8)

70.2
(2.1)

54.7
(1.9)

57.5
(1.5)

64.9
(3.2)

70.5
(3.0)

64.8
(1.2)

70.8
(2.0)

68.1
(3.1)

74.8
(2.5)

59.9
(1.4)

58.2
(2.0)

All edges
with negative
PCC

61.2
(2.1)

65.3
(1.9)

64.6
(1.7)

71.3
(1.2)

59.7
(2.7)

62.0
(2.5)

65.4
(1.3)

70.5
(1.1)

65.8
(3.1)

70.4
(2.0)

65.5
(1.7)

73.1
(1.3)

61.3
(2.4)

65.7
(1.8)

T = 0 61.3
(3.6)

66.4
(4.0)

67.5
(3.0)

72.2
(1.6)

57.3
(5.4)

62.2
(5.3)

63.6
(2.7)

68.7
(4.6)

63.3
(2.8)

68.1
(4.3)

65.3
(1.7)

71.0
(3.4)

61.0
(3.0)

64.6
(3.3)

T = 0.1 63.4
(2.1)

67.2
(1.1)

67.4
(2.1)

70.9
(0.9)

59.6
(0.6)

64.7
(0.9)

65.2
(1.6)

71.8
(1.8)

67.2
(2.1)

74.1
(1.0)

65.5
(1.6)

73.4
(1.6)

59.9
(1.5)

65.6
(1.7)

T = 0.2 66.7
(1.7)

71.0
(1.2)

69.3
(2.2)

73.3
(0.7)

67.6
(3.2)

71.6
(3.0)

66.1
(1.8)

72.9
(1.2)

68.5
(2.5)

74.7
(2.9)

66.6
(2.5)

74.3
(1.3)

68.9
(2.6)

72.2
(1.6)

T = 0.3 63.8
(1.1)

69.1
(0.7)

64.6
(2.9)

69.5
(2.6)

61.2
(3.8)

63.8
(3.2)

66.2
(3.0)

72.2
(2.6)

65.2
(2.2)

71.3
(1.8)

65.4
(2.9)

72.5
(3.2)

65.2
(2.9)

67.3
(1.6)

T = 0.4 68.0
(1.2)

71.4
(1.8)

72.2
(0.7)

78.0
(1.1)

66.9
(3.6)

70.9
(3.1)

72.4
(2.1)

77.7
(1.9)

72.6
(1.3)

79.0
(1.1)

72.4
(2.1)

77.6
(1.4)

69.6
(2.6)

72.1
(1.7)

T = 0.5 58.9
(5.6)

61.3
(8.0)

69.9
(2.1)

73.1
(1.5)

55.5
(3.5)

61.8
(2.8)

65.3
(1.8)

70.9
(1.4)

64.7
(2.2)

69.1
(2.3)

69.3
(1.7)

77.2
(2.0)

60.1
(2.3)

61.9
(4.8)

T = 0.6 54.3
(1.6)

55.1
(2.3)

62.9
(2.3)

62.6
(4.6)

56.0
(2.6)

58.1
(1.1)

64.5
(3.2)

69.3
(1.3)

60.9
(3.9)

63.6
(1.4)

63.7
(1.8)

67.9
(1.7)

54.9
(1.6)

57.7
(1.1)

data. After completing the training, the autoencoder is used to extract features from
the testing data. Then using the extracted features of the training data we have trained
all the machine learning algorithms available in the classification learner toolbox [21]
in MATLAB. However, SVM and KNN with different kernels, and subspace discrimi-
nant of the ensemble method have better and consistent results. Therefore, we include
the results of only the mentioned machine learning algorithms. The illustration of the
framework is shown in Fig. 3. We repeat this process 10 times to ensure the results aren’t
biased by the data. Also, we carry out the experiments varying the threshold value T
from 0 to 0.6 and using all the edges with positive PCC and all the edges with negative
PCC. We use the accuracy (ACC) and AUC to evaluate the performance and standard
deviation (stdv) to evaluate the stability. The results of the experiments are shown in
Table 1.

From Table 1, we can see that higher classification results are achieved when a
threshold is applied to the connectivity matrix. Both ACC and AUC are the highest for
the threshold value of T = 0.4. However, a significant amount of information is lost
when applying a large threshold, which is evident from the results of threshold T = 0.5
and T = 0.6. Also, the results are comparatively better when the information of both
positive edges (edges with positive PCC) and negative edges (edges with negative PCC)
are combined.
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Fig. 3. Illustration of the main steps of using autoencoder as feature extractor

Table 2. Performance comparison of the DNN classifier with and without pre-training

Thresholding
conditions

ACC% (stdv%) AUC% (stdv%)

Without
pre-training

With pre-training Without
pre-training

With pre-training

All edges with
positive PCC

69.1 (7.4) 74.4 (1.4) 70.9 (10.3) 77.3 (1.3)

All edges with
negative PCC

69.5 (0.6) 73.6 (1.1) 72.4 (1.0) 76.9 (0.9)

T = 0 69.4 (5.2) 73.8 (1.7) 70.8 (7.0) 75.2 (2.1)

T = 0.1 70.3 (3.4) 74.3 (1.3) 72.1 (4.1) 76.7 (0.9)

T = 0.2 76.2 (4.1) 79.2 (0.8) 79.7 (0.7) 82.4 (0.8)

T = 0.3 72.9 (1.0) 76.7 (1.1) 76.6 (1.4) 79.8 (1.2)

T = 0.4 74.6 (1.1) 77.1 (1.8) 77.7 (0.9) 80.9 (1.4)

T = 0.5 75.5 (1.2) 77.5 (1.1) 80.4 (1.4) 82.2 (0.9)

T = 0.6 75.8 (1.7) 77.3 (1.5) 80.7 (1.9) 81.7 (3.4)

Apart from using the autoencoder as a feature extractor, we also develop a neural
network based classifier combinedwith an autoencoder. The architecture of our proposed
neural network is shown in Fig. 2. In the neural network, the first two hidden layers are
the same as the encoder and latent space representation of the autoencoder (Fig. 1).
However, after the latent space representation instead of the decoder we have used two
new layers (hidden layer 3′ and hidden layer 4′). Finally, the probability of data belonging
to a particular class is calculated at the output layer.

To develop the DNN based classifier at first, we train the autoencoder in a similar
way as the previous method. After completing the training of the autoencoder, we train
the DNN (Fig. 2). The first two hidden layers of the neural network are pre-trained using
the weights and biases of the first two hidden layers of the autoencoder. We use 10-fold
cross-validation to train and evaluate the performance of the DNN classifier. In this
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Fig. 4. Illustration of the main steps of neural network based classifier

Table 3. Performance analysis of features extracted from the combination of the pretrained
autoencoder and the DNN

Thresholding
conditions

Linear
SVM (%)
(stdv)

Medium
Gaussian
SVM (%)
(stdv)

Coarse
Gaussian
SVM (%)
(stdv)

Medium
KNN (%)
(stdv)

Cosine
KNN (%)
(stdv)

Weighted
KNN (%)
(stdv)

Subspace
discriminant
(%) (stdv)

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

All edges
with positive
PCC

62.8
(5.5)

66.1
(8.0)

66.3
(4.1)

70.1
(5.5)

55.3
(2.5)

60.8
(4.3)

67.8
(2.5)

71.4
(2.7)

66.1
(2.9)

69.9
(3.1)

67.7
(1.3)

72.4
(1.2)

60.7
(4.3)

63.3
(6.2)

All edges
with negative
PCC

66.0
(2.1)

71.4
(3.6)

66.6
(1.4)

74.2
(2.1)

63.7
(4.8)

68.1
(4.8)

66.8
(2.6)

72.4
(1.5)

66.7
(3.6)

72.3
(2.9)

67.2
(2.2)

73.8
(2.3)

66.6
(2.7)

70.9
(3.7)

T = 0 67.2
(4.4)

71.8
(4.8)

68.3
(2.1)

71.9
(2.2)

64.4
(6.7)

68.3
(7.0)

67.0
(2.6)

70.5
(3.1)

66.1
(3.4)

70.5
(2.5)

65.6
(2.9)

70.3
(3.0)

64.9
(4.1)

68.9
(5.3)

T = 0.1 67.0
(3.2)

71.2
(2.9)

69.1
(2.0)

74.7
(2.4)

66.6
(3.7)

71.2
(2.8)

68.4
(2.6)

74.5
(2.3)

67.9
(2.8)

76.0
(2.2)

67.9
(3.9)

75.1
(3.0)

67.1
(2.3)

71.1
(2.5)

T = 0.2 72.8
(2.9)

76.3
(3.4)

73.7
(1.6)

76.7
(1.6)

73.0
(2.5)

77.9
(1.4)

73.2
(1.7)

77.7
(2.1)

74.6
(1.9)

78.7
(2.1)

72.7
(2.2)

77.2
(2.0)

74.4
(1.1)

77.8
(1.5)

T = 0.3 66.1
(3.3)

71.7
(3.3)

66.4
(2.9)

71.9
(2.0)

63.0
(6.1)

67.7
(5.5)

67.1
(2.6)

72.8
(2.6)

66.9
(3.6)

72.1
(2.8)

66.4
(3.3)

72.9
(3.4)

67.8
(1.7)

71.6
(3.8)

T = 0.4 71.1
(4.7)

75.9
(3.8)

73.4
(1.1)

78.8
(1.0)

67.3
(3.1)

73.4
(3.1)

73.2
(2.5)

78.2
(1.8)

73.5
(1.2)

78.8
(1.1)

73.6
(1.5)

78.5
(1.5)

69.8
(3.8)

75.6
(2.8)

T = 0.5 64.4
(7.7)

69.9
(7.0)

70.3
(1.3)

73.1
(1.7)

60.2
(6.9)

64.9
(6.3)

67.7
(3.1)

72.5
(3.2)

67.2
(3.7)

72.8
(3.6)

70.6
(3.6)

76.7
(3.0)

64.0
(7.5)

68.5
(7.8)

T = 0.6 63.8
(3.1)

64.4
(3.2)

65.2
(3.8)

71.2
(3.0)

61.6
(2.8)

59.0
(1.9)

63.7
(1.8)

70.5
(1.5)

64.7
(1.9)

70.0
(2.2)

64.9
(2.6)

71.1
(2.5)

60.4
(3.0)

60.1
(1.9)

process of training, the DNN classifier is trained on 784 subjects, and the performance
of the model is evaluated on the testing set of 87 subjects. The classification accuracy of
the testing set is considered to be the accuracy of a particular fold. Finally, the average
accuracy over all the folds is the accuracy of the model. We have repeated 10 times the
process of training the autoencoder and 10-fold cross-validation of the DNN. Each time
the subjects are selected randomly. The process is illustrated in Fig. 4.
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To illustrate the effect of pre-training we also develop a DNN classifier without the
pre-training. Apart from pre-training, everything else is kept the same. We repeat the
10-fold cross-validation ten times for the classifier. The comparison of the performance
of the DNN with and without the pre-training is shown in Table 2.

From Table 2, the DNN without pre-training can achieve a classification accuracy
of only 76.2%. However, the accuracy increases to 79.2% when pre-training is applied
to the DNN. There is an increase in the classification accuracy for every thresholding
condition. From the standard deviation in Table 2, it can be seen that the DNN with
pre-training is more stable. However, in both cases, there is an increase of accuracy and
AUC after applying some threshold, rather than using all the edges in the brain network
and the results are maximum for the threshold of T = 0.2.

Table 4. Comparison of accuracy of proposed method and state of the art classification methods

Methods Accuracy (%)

Heinsfeld et al. [4] 70.0

Eslami et al. [6] 70.1

Wong et al. [7] 71.1

Mostafa et al. [12] 77.7

Xing et al. [13] 66.8

Proposed autoencoder based feature extractor 74.6

Proposed autoencoder based DNN classifier 79.2

We use the data from both ASD and TC subjects when training the autoencoder.
Even though the latent space representation creates a discriminate and salient represen-
tation of the input data, the difference in the features between different classes is not
satisfactory (Table 1). However, when the DNN with pre-training is trained, the weights
and biases of the hidden layers are updated to classify between ASD and TC subjects.
As a result, the weights and biases of the encoder and latent space representation are also
updated to create a more discriminate representation of the data. After completing the
training of the DNN, the first two hidden layers can be used to extract a more discrim-
inate representation of features. To enhance the performance of the feature extraction
at first, we train the autoencoder. Then, we train the DNN with pre-training using the
autoencoder. After completing the training of the DNN, we use the first two hidden
layers to extract features and train different machine learning algorithms. Table 3 shows
the performance of machine learning algorithms. Comparing Table 1 and Table 3 we can
see that there is an increase in performance due to pre-training. The highest accuracy
of 74.6% is achieved using the KNN classifier with the cosine kernel and the threshold
value of T = 0.2.

Table 4 shows a comparison of the proposed study with other state-of-the-art meth-
ods. We have compared our study with only those studies, where the entire ABIDE 1
dataset is used. As we can see from Table 4, our proposed autoencoder based classifiers
outperform all the previous studies.
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4 Conclusion

In this paper, we have studied autoencoder based ASD diagnosis methods using the set
of features proposed in [12]. In particular, we have pre-trained a neural network with an
autoencoder. We have shown that the classification accuracy of the neural network has
increased due to the pre-training. We have achieved a classification accuracy of 79.2%
using the proposed diagnosis method, which is better than the state-of-the-art methods
using the ABIDE 1 dataset. We have also proposed an autoencoder based feature selec-
tion method for the diagnosis of ASD. In this method, we have demonstrated that the
learning of the DNN classifier can be incorporated in the autoencoder for dimensionality
reduction. We have used traditional machine learning classifiers to evaluate the perfor-
mance of the autoencoder based feature selection method and achieved a classification
accuracy of 74.6%. In summary, our proposed diagnosis methods can diagnose ASD
more accurately and precisely than state-of-the-art methods.
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Abstract. N6-methyladenine is widely found in both prokaryotes and
eukaryotes. It is responsible for many biological processes including
prokaryotic defense system and human diseases. So, it is important to
know its correct location in genome which may play a significant role in
different biological functions. Few computational tools exist to serve this
purpose but they are computationally expensive and still there is scope
to improve accuracy. An informative feature extraction pipeline from
genome sequences is the heart of these tools as well as for many other
bioinformatics tools. But it becomes reasonably expensive for sequen-
tial approaches when the size of data is large. Hence, a scalable parallel
approach is highly desirable. In this paper, we have developed a new
tool, called FastFeatGen, emphasizing both developing a parallel fea-
ture extraction technique and improving accuracy using machine learning
methods. We have implemented our feature extraction approach using
shared memory parallelism which achieves around 10× speed over the
sequential one. Then we have employed an exploratory feature selec-
tion technique which helps to find more relevant features that can be
fed to machine learning methods. We have employed Extra-Tree Clas-
sifier (ETC) in FastFeatGen and performed experiments on rice and
mouse genomes. Our experimental results achieve accuracy of 85.57% and
96.64%, respectively, which are better or competitive to current state-of-
the-art methods. Our shared memory based tool can also serve queries
much faster than sequential technique. All source codes and datasets are
available at https://github.com/khaled-rahman/FastFeatGen.

Keywords: Genome sequence · Shared memory · Parallel feature
extraction · Prediction model

1 Introduction

N6-methyladenine (6mA) is very common in prokaryotes whose primary func-
tions lie in the host defence system [1]. It is an abundant modification in mRNA
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which has also been found in many multicellular eukaryotes such as Caenorhab-
ditis elegans [2] and Drosophila melanogaster [3], and hence it has been proposed
as a new epigenetic marker in eukaryotes [1]. Some studies have revealed that
6mA can control the acuity of infection and replication of RNA viruses like HIV
and Zika virus [4,5]. A recent study demonstrates that 6mA modification can
be heavily present in human genome and depletion of 6mA may lead to tumori-
genesis [6]. Identification of 6mA in the genome will be helpful to characterize
many biological functions and drug discovery.

Several experimental approaches exist to identify 6mA in genome. As
described in [1], an antibody against N6-methyladenine can identify N6-adenine
methylation in eukaryotic mRNAs which can further be used to identify
N6-methyladenine in DNA [7]. This technique is ambiguous due to the fact that
other adenine-based modifications can be recognized. Liquid chromatography
coupled with tandem mass spectrometry gives another comprehensive approach
to identify 6mA [8]. Some restriction enzymes are sensitive to DNA methylation
to differentiate between methylated nucleotides and unmethylated nucleotides
which can be used to identify 6mA [9]. Single Molecule Real Time (SMRT)
sequencing can determine kinetics of nucleotides during synthesis [10]. It has
been applied to map 6mA and 5mC at the same time in Escherichia coli [11].
Noticeably, it can not differentiate between 6mA and 1mA, though this tech-
nique is very expensive. There are other experimental methods in the literature
which have been found effective, e.g., liquid chromatography coupled with tan-
dem mass spectrometry [2], and capillary electrophoresis alongside laser-induced
fluorescence (CE & LIF) [12].

Most of the existing experimental methods are time consuming and expensive
as mentioned above. Since the distribution of 6mA sites in the genome is not
random and can follow some patterns, computational methods may be efficient
and cost-effective. There are few such methods (6mA-Pred [13] and iDNA6mA-
PseKNC [14]) which help to identify 6mA sites using supervised machine learning
approaches. But, these methods adopt a sequential approach to extract features
from DNA sequences which often slow down the process. Recently, convolutional
neural networks (CNN) model has been applied to this problem [15]. However,
comparison is not fair or ambiguous as jackknife testing is performed in 6mA-
Pred whereas Tahir et al. use 20% samples of the dataset. Hence, we exclude
this method from comparison due to inconsistency. There is still a need for a
robust and precise tool that can facilitate faster and efficient identification of
6mA sites.

Various tools exist that extract features from DNA/protein sequences for
prediction purposes, e.g., some tools extract features from genomic sequences to
predict on-target activity in CRISPR/Cas9 technology [16,17] whereas other
tools extract features from protein sequences to make efficient predictions
[18–21]. But, almost all authors use a sequential approach [22–24] for fea-
ture extraction. With the advent of multi-core processors [25,26], a single
machine can have two or more processing units which can lead to a significant
speed-up of a properly written program. In this paper, we introduce such a
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parallelization technique in FastFeatGen (Faster Feature extraction from
Genome sequences) to extract features from DNA sequences which can also be
applied to RNA/protein sequences as well with small modification. So, feature
extraction techniques from large scale datasets will be significantly accelerated
by our tool.

Over the years, a plethora of supervised machine learning based methods
have been applied to solve several bioinformatics problems [27,28]. However, to
the best of our knowledge, Chen et al. [13] were the first to tackle identification of
6mA sites in rice genome using Support Vector Machine (SVM). In this paper, we
advance this concept with faster feature extraction and selection techniques and
several supervised machine learning methods to achieve better performance. We
also apply widely used neural network models to this problem in both supervised
and unsupervised feature learning ways. Our extensive experimental results show
that unsupervised way of CNN model is unable to surpass supervised one. This
is likely due to the small size of the datasets, and, more interestingly, Extra-Tree
Classifier (ETC) proposed by [29] performs very well despite its small set of
features. We summarized our contributions as follows:

– We have introduced faster approaches for feature extraction techniques from
genome sequences (Sect. 2.2).

– We have applied a lucid feature selection technique to select important and
relevant features (Sect. 2.4).

– We have performed an extensive set of experiments using supervised machine
learning methods to find a robust model (Sect. 2.3).

– We have compared our results with other state-of-the-art methods to show
effectiveness and efficiency of our model (Sect. 3).

– We have also analyzed the processing time of new query sequences (Sect. 3.5).

2 Methods

The workflow of our tool is shown in Fig. 1. At first, features are extracted from
input genome sequences (datasets). Then, relevant features are selected using the
appropriate technique. After that, selected features are fed to machine learning
methods to build the predictor. At this stage, several parameters are tuned until
the model is optimized. Many existing methods follow Chou’s 5-step rules (see
[19]), and our tool is analogous to it. We describe each of these steps below.

2.1 Datasets

We have obtained two balanced datasets, Dataset1 and Dataset2 from [30] and
[31], respectively. Dataset1 contains 880 positive samples (6mA sites) and 880
negative samples (non-6mA sites). Positive samples are from the rice genome,
which are available at NCBI Gene Expression Omnibus1 with the accession num-
ber GSE103145. Dataset2 contains 1934 positive samples and 1934 negative
1 https://www.ncbi.nlm.nih.gov/geo/.

https://www.ncbi.nlm.nih.gov/geo/
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samples. Positive samples are curated from Mus musculus genome which are
available in MethSMRT database [31]. Each sequence of both datasets is
41-bp long and nucleotide “A” is present at the center. More details about these
datasets and negative samples generations can be found in [13] and [14].

We represent a 41-bp sequence by S = s1s2s3 . . . s41, where si represents a
nucleic acid in sequence S and 1 ≤ i ≤ 41. Thus a dataset is represented by
D = S1S2S3 . . . S|D|, where |D| is the size of dataset containing both positive
and negative samples. For both datasets, S1 . . . S|D|/2 are positive samples and
S|D/2|+1 . . . S|D| are negative samples.

2.2 Feature Engineering

Features are the heart of supervised machine learning methods. We manually
extract different types of information from given datasets and feed that infor-
mation along with their corresponding true class to machine learning algorithms

Input Sequences

Feature Extraction

Feature Selection

ML-methods

Optimized ? Tune Parameters

Output Model

yes

no

Fig. 1. Flowchart for FastFeatGen. Input Sequences - dataset containing DNA
sequences, Feature Extraction - extract features from DNA sequences, Feature Selec-
tion - select relevant features using feature importance score, ML-methods - apply
supervised machine learning methods on selected features, Optimized - check whether
model is better or not, Tune Parameters - tune several parameters in ML-methods
like learning rate, kernel function, etc., Output Model - produce optimized model for
prediction.
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for training and testing purposes. In this paper, we generate four types of features
which are discussed below.

Nucleic Acids Composition (NAC). This is also known as position inde-
pendent features or k-mers or n-grams. Each sequence may have certain short
length patterns (also known as motifs) of NACs which are consistent over the
whole dataset and so they may contribute to the learning model. In this tech-
nique, normalized frequency of a composition of nucleic acids is considered in
corresponding sequence and finally a feature vector is constructed for the whole
dataset. Length of a composition of nucleic acids is determined by order. For
example, if order is 2, then all compositions of two nucleic acids is considered to
extract features and a single feature vector is constructed for each composition.
We normalize the frequency dividing by length of the sequence. We can define
it mathematically as following:

NAC(K,Sj) =
1

LSj
− k

LSj
−k∑

i=1

I(K, si . . . si+k)

where K is a k-mer, S is a sequence, LSj
represents the length of Sj which is

jth sequence of the whole dataset, and I(.) is an identity function which returns
1 when K is same as si . . . si+k; otherwise, it returns 0.

Position Specific Features (PSF). Position of a motif in a genome sequence
may carry important information which can be found consistent over the whole
dataset. Undoubtedly, this position specific information can contribute to the
learning model. In this type of features, a binary feature vector is constructed
by checking the presence of a k-mer in certain position over the whole sequence.
We can also define it mathematically as following:

PSF (K,Sj , p) = I(K, sp . . . sp+k)

where, p is the starting position of k-mer and all other variables carry same
meaning as NAC.

Di-Gapped Nucleotides (DGN). Sometimes a gap between relative position
of two amino acids in a protein sequence carry important information which
may also contribute to supervised learning methods. We are motivated by this
technique and use it to extract features from genome sequences as well. We
construct a feature vector for each composition of two gapped nucleotides by
normalizing its frequency in a sequence. We can formally define DGN as the
following:

DGN(N1, N2, Sj , g) =
1

LSj
− g

LSj
−g∑

i=1

I(si = N1, si+g = N2)
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where, g is the gap length, N1 and N2 are two nucleotides. I(.) is an identity
function which returns 1 if ith symbol of sequence Sj is N1 and (i+ g)th symbol
of Sj is N2; otherwise, it returns 0.

Bayesian Posterior Probability (BPP). In this technique, we first calculate
the normalized frequency of each 2-mer for each position over the whole dataset.
As we consider 2-mer, there are 40 different positions in a 41-bp sequence and
we can have a total of 16 2-mers from all possible combinations of nucleotides.
We construct a 40 × 16 matrix for the positive and negative samples separately.
Then we extract BPP features in the following way: for each sequence we create
a vector of size 80 where first 40 entries represent the posterior probabilities
of position specific 2-mer in positive samples and last 40 entries represent the
posterior probabilities in negative samples. More details of this approach can be
found in [32].

Parallelization in Feature Extraction. We parallelize all the above fea-
ture extraction techniques in shared memory parallelism, which is accomplished
through Single Instruction Multiple Data (SIMD) computing combined with
multithreading. In this approach, instead of one sequence at a time, we pass nt
sequences at a time to extract features using nt cores. Figure 2 shows a schematic
diagram of our approach. A sequential feature extraction algorithm process one
sequence at a time whereas FastFeatGen can process c sequences at a time using
c available cores in a computing machine. It basically distributes all genome
sequences to available cores and keeps it processing in parallel which results in
faster running time.

Fig. 2. A schematic diagram of parallel feature extraction where each thread constructs
a specific feature using all input sequences.

2.3 Machine Learning Algorithms

In this tool, we use several supervised machine learning algorithms either to
select informative features or to train the model. For all these approaches, we
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incorporate the popular sklearn python package in our tool unless otherwise
mentioned explicitly. We provide short description for each of these models
below.

Support Vector Machine (SVM). In computational genomics and pro-
teomics, SVM is widely used for classification purpose. At first, the input dataset
is transformed to high-dimensional feature space and then a kernel function maps
the feature space to another dimension so that a boundary (also called margin)
can separate the positive/negative classes. It creates a hyper-plane between pos-
itive and negative datasets so that margin between nearest positive samples and
nearest negative samples is maximized. Nearest samples are often called support
vectors and we can precisely state that the larger distances from hyper-plane
equates to greater confidence levels in the predicted values. For SVM, we applied
linear kernel function for feature selection and radial basis kernel function for
classification purposes.

Random Forest (RF). RF is a popular ensemble method that is widely used
for feature selection as well as for classification. Decision tree is the building
block of RF which constructs rule sets over the feature space of training dataset,
put class labels in the leaves of the tree, and branches denote conjunction of
different rules that result in a corresponding class label. RF generally consists of
a strategy to average a number of decision trees on various subsets of the dataset
at training time to reduce variance and over-fitting. We allow maximum depth
of RF trees to 500 in our model and use default values for other parameters.

Extra Tree Classifier (ETC). ETC is another ensemble method which is
similar to RF with few differences [29]. In ETC, each tree is trained using whole
training samples instead of a subset and randomization is used while top-down
splitting of a tree node i.e., a random split node is selected rather than selecting
a locally optimal split node based on information gain or gini impurity. This
random cut-point is selected from a uniform distribution. A final split node is
selected from all randomly generated splits which achieves the maximum score.
For the classification task, a prediction is made by aggregated scores of each tree
by majority voting. Here, we also allow maximum depth of ETC trees to 500 to
avoid possible over-fitting and default values for other parameters.

Neural Networks (NN). NN is one of the most popular feed-forward meth-
ods being applied in different research fields including image processing, speech
recognition, bioinformatics, etc. It consists of several cascaded layers (outputs
of one layer are inputs to next layer) and each layer has a finite set of nodes
(neurons in human brain). Each node of a layer is connected to all nodes to its
next layer which results in a fully connected network. Each connection (edge)
in the network represents a weight whose optimal value is learned by an itera-
tive optimization algorithm like stochastic gradient descent. Each node in the



FastFeatGen: Faster Parallel Feature Extraction from Genome Sequences 59

network adds up the products of inputs and weights and passes through the acti-
vation function, which determines how much information should proceed further
to influence the predictions.

We use a variation of the NN model called deep convolutional neural net-
works (CNN) which is very popular in computer vision. Unlike many conven-
tional supervised learning processes, CNN does not require manually extracted
features. Rather, it can extract features by itself, which is a large advantage for
automating the classification process. Manually extracted features can also be
fed to CNN to build a more diversified model. For CNN, we use one-hot encod-
ing approach to represent a sequence where ‘A’, ‘C’, ‘G’ and ‘T’ are encoded as
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1], respectively. As a result, each
41-bp sequence is represented by a 41 × 4 matrix.

2.4 Feature Selection

All extracted features do not contribute equally to build a better prediction
model; in fact, some features do not contribute at all. We must find such irrel-
evant features and discard them from the feature list. We use SVM and RF for
selecting and creating an important list of features that can help to train and
optimize the prediction model. We use linear kernel of SVM and use a cutoff
(threshold) value of 0.001 for each feature to be considered in our important
feature list. Similarly, we select important features using RF based on its impor-
tance score. In the literature, RF is suggested to select a less biased or completely
unbiased model [33], and many papers exist which use RF for feature selection. In
our experiment, we discard any feature with zero importance from the important
feature set.

2.5 Performance Evaluation

In the literature, cross-validation is a widely used technique to build a
model which reduces selection bias and overfitting problems [33]. We perform
10-fold cross-validation and jackknife testing (also known as leave-one-out cross-
validation) while performing experiments for training and testing our model. In
10-fold cross-validation, the dataset is partitioned into 10 equal folds. Among
these, 9 are used to train the model whereas the remaining fold is used for test-
ing purposes. This process is repeated 10 times with a different fold selected for
testing each time. In jackknife testing, n−1 samples are used to train the model
and the remaining sample is used for testing where n is the number of total
samples in the dataset. This process is repeated n times so that each sample is
considered once for testing. We use some notations of confusion matrix to define
performance metrics in the following: we denote the total number of positive and
negative samples by P and N , respectively; TP , TN , FP and FN represent the
number of samples predicted as true positive, true negative, false positive, and
false negative, respectively. We use four performance metrics, namely, Accuracy,
Sensitivity, Specificity and Matthew’s Correlation Coefficient which are denoted
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by Acc, Sn, Sp and MCC, respectively [20]. We express these performance met-
rics as following to compare our results with other tools.

Acc =
TP + TN

P + N
,Sn =

TP

P
, Sp =

TN

N

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Fig. 3. (a) Running time vs. number of cores. (b) Accuracy for different sets of features
in Dataset1. (c) Accuracy for different sets of features in Dataset2.

3 Results and Discussion

3.1 Experimental Setup

We perform all of our experiments in Haswell Compute Node of Cori super com-
puter located in Berkeley lab which is configured as follows: each node has two
sockets and each socket is populated with 16-core Intel R©XeonTMProcessor E5-
2698 v3 (“Haswell”) at 2.3 GHz, 32 cores per node, 36.8 Gflops/core and 128 GB
DDR4 2.13 GHz memory. We wrote the coding for our feature extraction tech-
nique in C++ and the machine learning models in Python. Our tool requires at
minimum GCC version 4.9, OpenMP version 4.5, and Python version 3.6.6. We
provide source code with proper documentation, results and other information
in our GitHub repository.

3.2 Parallel Feature Extraction Analysis

We use shared memory parallelism for feature extraction from genome sequences
which is highly scalable. To extract features from both datasets, we set k, p
and g for NAC, PSF and DGN as 5, 1 . . . 30, and 1 . . . 28, respectively. We
show the results of run time for both datasets in Fig. 3(a). For different num-
bers of cores, running times are reported in seconds. We observe that when we
increase the number of cores, running time decreases significantly and our tool
extracts features using 32 cores for the above settings within a fraction of a sec-
ond. FastFeatGen achieves a speed-up of around 10.3x for both Dataset1 and
Dataset2 using 32 threads. Our tool can be applied to a wide range of biologi-
cal sequence analysis problems for feature extraction where each given dataset
contains a large number of DNA/RNA/Protein sequences.
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3.3 Feature Importance Analysis

As discussed in Sect. 2.4, we select important features using linear SVM and
RF. We use RF-based relevant feature selection for ETC and linear SVM-based
feature selection for the SVM model. We show feature sets with accuracy for
Dataset1 and Dataset2 using ETC model in Fig. 3(b) and Fig. 3(c), respectively.
For Dataset1, our top-performing model contains 1237 features, among which 320
are from BPP; the rest of the features are mostly position specific. For Dataset2,
our top-performing model contains 1326 features, which is higher than the case
of Dataset1. 225 features are from BPP, and the rest of the features are mostly
from PSF. For Dataset1, we see that C 26, A 27, and TA 26 are some of the
features with higher importance scores. It indicates that Thymine in position 26
and Adenine in position 27 carry significant information for N6-methyladenosine
sites in the rice genome. On the other hand, G 21 and G 22 are two important
features for Dataset2, which indicates that Guanine in positions 21 and 22 carry
significant information for the mouse genome. We observe that the accuracy of
the ETC model is always higher with its combined list of features rather than its
individual features. So, we use combined list of features for prediction purposes.

3.4 Performance Analysis

Table 1. Comparison among different machine learning models for Dataset1.

Models Accuracy Models Accuracy

SVM 93.06 NN 80.96

ETC 84.88 CNN 48.41

Comparison Among Different Learning Models. To build one efficient
model from different machine learning algorithms discussed in Sect. 2.3, we con-
duct an extensive set of experiments. We compare SVM, ETC, NN and CNN
using 10-fold cross-validation and observe that SVM and ETC models are com-
petitive (see Table 1). SVM performs better than others because it uses a wide
range of features, but its running time is very slow. On the other hand, ETC
performs better than all other methods for a small set of features which also
executes query much faster than others. The performance of NN method is com-
parative to SVM and ETC while CNN is the worst performer. As both datasets
are small in size, CNN can not utilize its automatic feature extractions app-
roach in depth and hence shows worse performance. We select ETC model as a
representative of FastFeatGen for comparison with other state-of-the-art tools.
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Comparison with Existing Tools. We compare our model with 6mA-Pred
and PseDNC, which are considered as the state-of-the-art methods for Dataset1.
Following the trend of 6mA-Pred, we generate all results using jackknife test.
From Table 2, we see that FastFeatGen (with 1237 features) achieves an accuracy
of 85.56%, which is better than other existing tools. It also achieves higher Speci-
ficity and MCC which are better than other tools. Furthermore, FastFeatGen
still outperforms existing tools in terms of Accuracy, Specificity and MCC with
only 187 features.

Table 2. Comparison among different tools for Dataset1.

Tools\Metrics Accuracy Sensitivity Specificity MCC

FastFeatGen (1237 features) 85.56 81.47 89.65 0.71

FastFeatGen (187 features) 85.45 81.81 89.09 0.71

6mA-Pred 83.13 82.95 83.3 0.66

PseDNC 64.55 63.52 65.57 0.29

For Dataset2, we compare our method with iDNA6mA-PseKNC, which is the
only tool for the mouse genome. Here, we also perform jackknife testing following
the trend of iDNA6mA-PseKNC. From Table 3, we see that FastFeatGen is
better or very competitive in all metrics.

Table 3. Comparison among different tools for Dataset2.

Tools\Metrics Accuracy Sensitivity Specificity MCC

FastFeatGen (101 features) 96.63 93.49 100 0.94

iDNA6mA-PseKNC 96.73 93.28 100 0.93

3.5 Query Time Analysis

The general purpose of building a machine learning model is to make prediction
for more unknown genome sequences, which is expected to be faster. Most of the
sequence analysis tools or web-servers can not provide such facility, or authors
impose restrictions on the number of query sequences. FastFeatGen provides
a scalable solution to this problem which has no restrictions. Users can query
as many sequences as they want. We again employ parallel feature extraction
technique here and enable parallel job processing of ETC in sklearn package.
In summary, FastFeatGen can serve 200 queries within 0.7 second(s) using 32
threads.
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4 Conclusions

In this paper, we have introduced a novel tool called FastFeatGen which uses
multi-core processing for faster extraction of features from genome sequences.
Then, it performs lucid feature selection techniques that select high quality fea-
tures to feed into machine learning methods. Finally, we build a precise model
using extra tree classifier which performs very well using a small set of features.
We have shown that our tool performs better than state-of-the-art methods on
two publicly available datasets. FastFeatGen achieves an accuracy of 85.56% and
96.63% for rice and mouse genomes, respectively, which are superior or compet-
itive to current state-of-the-art methods. Our tool can predict for a wide range
of new query sequences within fraction of a second which is clearly an advantage
over web-server based tools.

Our future goal is to improve and apply our faster feature extraction tech-
niques to other biological problems that involves protein or RNA sequences. We
also would like to include more feature extraction techniques to FastFeatGen.
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Abstract. Single molecule sequencing contributes to overall human
advancement in the areas including but not limited to genomics, tran-
scriptomics, clinical test, drug development, and cancer screening. Fur-
thermore, fluorescence based sequencing is mostly employed in single
molecule sequencing among other methods, specifically in the fields of
DNA sequencing. Contemporary fluorescence labeling methods utilize a
Charge-coupled Device camera to capture snapshots of multiple pixels
on the single molecule sequencing. We propose a method for fluorescence
labeling detection with a single pixel, which excels in high accuracy and
low resource requirement in the low signal-to-noise ratio conditions. Such
a method also benefits from higher throughput compared to others. The
context in this study explores the single molecule synthesis process mod-
eling using negative binomial distributions. Also, including the method
of maximum likelihood and Viterbi algorithm in this modeling improves
signal detection accuracy. The fluorescence-based model is most benefi-
cial to simulate actual experiment processes and to facilitate in under-
standing the relations between fluorescence emission and signal receiving
event.

Keywords: Genomic sequencing · Fluorescence labeling ·
Fluorescence based model · Signal detection · Single molecule synthesis
process · Maximum likelihood · Viterbi algorithm

1 Introduction

As technology advances at an exponential rate, the distinctive field of biological
science has been in expansion specifically in nucleic acid detection, flourishing
into various analytical methods and strategies [11]. Evidently, the performance of
genomic sequencing detection also rises with new available nucleic acid detection
methods. Fluorescence signaling method has been one of the most efficient tools
in its league to explore within vast genomes [9]. Advantages include but not
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limited to an increased level of sensitivity, multiplexing capabilities, simultaneous
detection on fluorescence properties [3].

Numerous agent supplementing methods are employed to identify organic
molecules such as proteins and nucleic acids and to augment sensitive detectabil-
ity in the controlled assay. Fluorescence labeling excels in its ranks in which it
provides detectable sensitivity with light signal exposure when stimulated during
sequencing [8]. Additionally, each fluorescence agent has its own unique fluores-
cence property or light wavelength signature, thus the detection devices are able
to conduct the simultaneous observations on more than one molecule, saving
time resources and cutting down assay duration [10].

A molecule under a fluorescent event is excited and emits light at a different
wavelength than it was exposed to. Through the photoelectric effect, detection
devices, such as camera equipped with Charge-coupled Device (CCD) capability
or a group of photodiodes, are able to monitor an increased electric voltage or
bigger RGB values as fluorescent light emitted from the compound [13]. As from
the conventional fluorescence detection methods, signal-to-noise ratio (SNR) has
always been a bottleneck to data collection and integrity [7]. In such schemes,
the algorithm embedded in a CCD camera relies on optimized extraction and
signal strength comparison to increase SNR [6]. A matrix of pixels is mandatory
to accomplish such results. Even so, higher error rate, higher cost per base, and
lower throughput associated with such method are at a disadvantage comparing
to other techniques [1]. The consensus sequencing method is employed to com-
pensate for the high error rate [5]. However, it requires higher computing storage,
more complicated template, and more time resulting from repetitive iterations.

In the scenario described in this study, polymerase synthesis and fluorescent
emission are indispensable elements in single molecular sequencing. To improve
the signal integrity analysis and cost per base in sequencing, statistical modeling
is introduced to simulate polymerase synthesis and the fluorescent emission pro-
cess. Within such modeling, an algorithm containing the method of maximum
likelihood and Viterbi algorithm [14] measures and distinguishes the distinct
fluorescences in low SNR conditions, together with a single, three-junction pho-
todiode which records the RGB values of light emission [15].

2 Materials and Models

2.1 The Single Molecule Synthesis Process

The DNA polymerase synthesizes the DNA nucleotides in a sequence similar to
the single molecule synthesis process (SMSP) as in the previous study [2]. SMSP
is modeled as a discrete-time stochastic process {Z(t), t ≥ 1} on a state space
{A, T,G,C, d}, where state A (T , G or C) indicates that a dATP (dTTP, dGTP
or dCTP) is being incorporated by the DNA polymerase and state d indicates
that no dNTP is being incorporated.

Let Sn and Tn−1 be the start time and the stop time of the nth incorporation
of dNTP for n ≥ 1. Then

0 = T0 ≤ S1 < T1 ≤ S2 < T2 ≤ · · · ≤ Sn < Tn ≤ · · ·
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Let Xn ≡ Z(Sn) be the nth nucleotide to be incorporated. The length of the
nth interpulse duration is Wn = Sn −Tn−1 and the length of the nth incorpora-
tion period or pulse width (herebelow indicated as pulse width) is Yn = Tn −Sn.
Due to the lack of structural information of a short piece of DNA, it can be
assumed that {Xn, n ≥ 1} is an independent and identically distributed (IID)
sequence of random variables with uniform distribution over {A, T,G,C}, and
we will model the distributions of Wn and Yn by negative binomial distributions
with parameters (l, q) and (r, p) respectively:

P (Wn = k) = Ck−1
l−1 ql(1 − q)k−l, k = l, l + 1, l + 2, . . . . (1)

P (Yn = k) = Ck−1
r−1 pr(1 − p)k−r, k = r, r + 1, r + 2, . . . . (2)

With the above assumptions, the alternating process {(Wn, Yn), n ≥ 1} becomes
a discrete-time Markov chain {L(t), t ≥ 1} with the state space

S = {d1, d2, . . . , dl, A1, A2, . . . , Ar, T1, T2, . . . , Tr, G1, G2, . . . , Gr, C1, C2, . . . , Cr}

of size 4r + l. Let Si = {Ai, Ti, Gi, Ci}. The state transition diagram of the
Markov chain {L(t), t ≥ 1} is in Fig. 1(a) and the state transition probabilities
are

πdi,s =

⎧
⎨

⎩

1 − q, if s = di,
q, if s = di+1, for 1 ≤ i ≤ l − 1,
0, otherwise,

(3)

πdl,s =

⎧
⎨

⎩

1 − q, if s = dl,
q
4 , if s ∈ S1,
0, otherwise,

(4)

πAi,s =

⎧
⎨

⎩

1 − p, if s = Ai,
p, if s = Ai+1, for 1 ≤ i ≤ k − 1,
0, otherwise,

(5)

πAk,s =

⎧
⎨

⎩

1 − p, if s = Ak,
p, if s = d1,
0, otherwise.

(6)

With the assumption in Eq. (2), the transition probabilities, πAi,s, πTi,s, πGi,s,
and πCi,s are identical.

2.2 The Emission Process

When a dNTP is being incorporated by the DNA polymerase, a fluorescence
light will emit and be detected by a three-junction photodiode. While no dNTP
is being incorporated, only ambient light is detected, and of course, ambient light
also exists in an incorporation period. Consequently, the photodetector will out-
put the fluorescence plus ambient light intensity signal during an incorporation



68 H.-H. Chen and C.-C. Lu

period and the ambient light intensity signal only outside of the incorporation
period.

Let {E(t), t ≥ 1} be the output intensity signal of the photodetector asso-
ciated with the SMSP {Z(t), t ≥ 1}, called the emission process. Assume that
the emission vector E(t) depends only on the state Z(t) at time t. Note that
{Z(t), t ≥ 1} represents the SMSP {(Wn, Yn,Xn), n ≥ 1} and

Z(t) =
{

d, if
∑n−1

i=1 (Wi + Yi) < t ≤ ∑n−1
i=1 (Wi + Yi) + Wn,

Xn, if
∑n−1

i=1 (Wi + Yi) + Wn < t ≤ ∑n
i=1(Wi + Yi).

The Ambient Light Intensity Signal. Under the conditions that the ambi-
ent light source is originated from the dNTPs and the interpulse duration is in
the steady state, the ambient light intensity signal can be modeled by a con-
stant signal vector aZ(t), which is undetermined and will be estimated for the
photodetector in a pixel.

ax =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ad, if x = d,
aA, if x = A,
aT , if x = T,
aG, if x = G,
aC , if x = C.

The Fluorescence Light Intensity Signal. The fluorescence light intensity
signal during an incorporation period depends on the dye molecule bound with
the nucleotide under synthesis as well as the distance between the dye molecule
and the photodiode. The biochemical reactions take place in a closed space where
fluorescence light can be fully captured by the photodetector. Such a closed space
is called a synthesis well.

Assume that the DNA polymerase has a fixed position in the synthesis well
during an incorporation period so that the captured dNTP plus dye molecule
by the enzyme has a constant distance from the photodiode. Thus if Z(t) = x
for t ∈ [Sn, Tn − 1], where x ∈ {A, T,G,C}, then the fluorescence light intensity
signal will be Υtsx, t ≥ 1, where sx is the detected signal vector of the three-
junction photodiode to the fluorescence light emitted from the dye molecule
bound with a dxTP in a nominal distance from the photodiode. The above
assumption derives from our observations that the photoelectric effect is linear
within the fluorescent reactions.

Υt is the fading coefficient resulting from the variation of the true distance
from the dye molecule to the photodiode in the time t of the incorporation period
relative to the nominal distance. Since limitations exist in the photodetector and
the sequencing reactions, the emission intensity Υ (t) has the minimum and max-
imum values (IA,min, IA,max), (IT,min, IT,max), (IG,min, IG,max), (IC,min, IC,max)
when synthesizing ATP, TTP, GTP, CTP respectively. Each characteristic sig-
nal vector sx, x ∈ {A, T,G,C}, is an undetermined parameter vector and will
be estimated for each of the photodetectors. {Υ (t), t ≥ 1} is the fluorescence
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intensity process in photon/ms and can be modeled as a wide-sense stationary
or cyclostationary process depending on the movement kinematics of the DNA
polymerase in the synthesis well.

The Emission During an Interpulse Duration. The emission signal during
the nth interpulse duration [Tn−1, Sn − 1] is

E(t) = ad, t ∈ [Tn−1, Sn − 1].

The Emission During an Incorporation Period. The emission signal dur-
ing the nth incorporation period [Sn, Tn − 1] is

E(t) = Υ (t)sZ(t) + aZ(t), t ∈ [Sn, Tn − 1].

2.3 The Received Process

The photodetector, as well as the readout circuit, will introduce noise to the
emission process. From our noise measurement of the photodetector, the cross-
correlations between three junctions are close to zero and therefore negligible to
calculation. We model this noise as a white Gaussian vector process {N(t), t ≥ 1}
with covariance matrix

Λ =

⎡

⎣
σ2
1 0 0
0 σ2

2 0
0 0 σ2

3

⎤

⎦ ,

where σ2
i is the average noise power of the ith junction channel and will be

estimated for each pixel. The joint probability density function (jpdf) of the
noise vector N(t) at time t is

fN (n) =
1

√
(2π)3|Λ|e

− 1
2ntΛ−1n =

3∏

i=1

1
√

2πσ2
i

e
− n2

i
2σ2

i ,

where |Λ| is the determinant of the covariance matrix Λ. The noise process
{N(t), t ≥ 1} is assumed to be independent of the SMSP {Z(t), t ≥ 1} and the
fading process {Υ (t), t ≥ 1}.

We assume that the noise process {N(t), t ≥ 1} is additive to the emission
process {E(t), t ≥ 1} so that the received signal process {R(t), t ≥ 1} is

R(t) =E(t) + N(t), t ≥ 1 (7)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ad + N(t), if Z(t) = d,
Υ (t)sA + aA + N(t), if Z(t) = A,
Υ (t)sT + aT + N(t), if Z(t) = T,
Υ (t)sG + aG + N(t), if Z(t) = G,
Υ (t)sC + aC + N(t), if Z(t) = C.

(8)
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3 Methods and Algorithms

In this section, the focus is positioned on the decoding and the parameter esti-
mation algorithms. As a first phase, the initial pixel parameters are prepared
by the default values or the values calculated from the experiment data. Next
phase, the entire sequence is detected by the decoding algorithm and the default
parameters.

1. Initial Phase: The initial pixel parameters sA, sT , sG, sC , aA, aT , aG, aC ,
ad and σ are given.

2. Decoding Phase: {I(t), t ≥ 1} and {α(t), t ≥ 1} of the alternating process
{L(t), t ≥ 1} and the fluorescence intensity process {Υ (t), t ≥ 1} are obtained
by the known training nucleotide sequence {xn, n ≥ 1} and the given esti-
mated pixel parameters sA, sT , sG, sC , aA, aT , aG, aC , ad and σ.

3.1 Estimation of the Initial Pixel Parameters

The initial pixel parameters sA, sT , sG, sC , aA, aT , aG, aC , ad and σ are from
the experimental measurement data. For the estimation of the parameters, a
simple linear regression is used, R(t) = Υ (t)si+ai+N(t), i ∈ {d,A, T,G,C} and
sd = 0, which is equivalent to Eq. (8). Moreover, the R-squared (R2) is calculated
to determine if the simple linear regression is well fitted. σ is calculated by the
measurement in the interpulse duration.

3.2 Decoding Phase

Assume that the estimated pixel parameters sA, sT , sG, sC , aA, aT , aG, aC ,
ad and σ are given. The likelihood function fR|Z,Υ (r|z, α) of the received signal
{R(t), t ≥ 1} to be {r(t), t ≥ 1}, given the SMSP {Z(t), t ≥ 1} to be {z(t), t ≥ 1}
and the emission intensity process {Υ (t), t ≥ 1} to be {α(t), t ≥ 1}, is

fR|Z,Υ (r|z, α) =
∏

t≥1

fR(t)|Z(t),Υ (t)(r(t)|z(t), α(t))

since the noise process {N(t), t ≥ 1} is a white Gaussian process, where

fR(t)|Z(t),Υ (t)(r(t)|z(t), α(t))

=

{∏3
j=1

1√
2πσj

e− 1
2 (τj(t))

2
, if z(t) = d,

∏3
j=1

1√
2πσj

e− 1
2 (ϕx,j(t))

2
, if z(t) = x ∈ {A, T,G,C}

where τj(t) = rj(t)−ad,j

σj

and ϕx,j(t) = rj(t)−ax,j−α(t)sx,j

σj
for z(t) = x ∈ {A, T,G,C}.

Now given the estimated pixel parameters sA, sT , sG, sC , aA, aT , aG, aC ,
ad and σ, the decoded versions {z(t), t ≥ 1} and {α(t), t ≥ 1} of the SMSP
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{Z(t), t ≥ 1} and the emission intensity process {Υ (t), t ≥ 1} can be obtained
by the method of maximum likelihood (ML),

(z, α) = arg max
(z,α)

∑

t≥1

ln fR(t)|Z(t),Υ (t)(r(t)|z(t), α(t)),

where ln fR(t)|Z(t),Υ (t)(r(t)|z(t), α(t))

=

{∑3
j=1 ln 1√

2πσj
− 1

2

∑3
j=1 (τj(t))

2
, if z(t) = d,

∑3
j=1 ln 1√

2πσj
− 1

2

∑3
j=1 (ϕx,j(t))

2
, if z(t) = x ∈ U

and U = {A, T,G,C}. Since the term
∑3

j=1 ln 1√
2πσj

is irrelevant to the maxi-
mization process, we will define a metric m(z(t), α(t)) as follows:

m(z(t), α(t)) =

⎧
⎨

⎩

∑3
j=1 (τj(t))

2
, if z(t) = d,

∑3
j=1 (ϕx,j(t))

2
, if z(t) = x ∈ U.

Then the ML decoded version of {Z(t), t ≥ 1} and {Υ (t), t ≥ 1} is

(z, α) = arg min
z

∑

t≥1

min
α(t)

m(z(t), α(t)).

Subsequently, given a hypothetical SMSP {z(t), t ≥ 1}, the minimization of
the sum

∑
t≥1 m(z(t), α(t)) of metrics m(z(t), α(t)) over the emission intensity

process {α(t), t ≥ 1} can be done by the minimization of the metrics m(z(t), α(t))
over the intensity α(t) at each time t.
Let α∗(t|z(t)) = arg minα(t) m(z(t), α(t)), then

α∗(t|z(t)) =
{

unknown, if z(t) = d,
Q

(
Ix,min, α

#(t|z(t)), Ix,max

)
, if z(t) = x ∈ U,

where for a < c,

Q(a, b, c) =

⎧
⎨

⎩

a, if b < a,
b, if a ≤ b ≤ c,
c, if b > c,

and

α#(t|z(t)) =

{
unknown, if z(t) = d,
∑3

j=1(ϕx,j(t))(sx,j/σj)
∑3

j=1(sx,j/σj)
2 , if z(t) = x ∈ U,

by doing the minimization of the metric m(z(t), α(t)) over all α(t) ∈ R.

m∗(z(t)) =

⎧
⎨

⎩

∑3
j=1 (τj(t))

2
, if z(t) = d,

∑3
j=1

(
(ϕx,j(t)) − α∗(t|z(t))

(
sx,j

σj

))2

, if z(t) = x ∈ U.
(9)
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Now the ML decoded versions {z(t), t ≥ 1} and {α(t), t ≥ 1} of the SMSP
{Z(t), t ≥ 1} and the fluorescence intensity process {Υ (t), t ≥ 1} are

(z, α) = arg min
(z,α#(t|z(t)))

∑

t≥1

m∗(z(t)). (10)

Next, the modified Viterbi algorithm is applied to solve this minimization prob-
lem in the above equation [14]. The difference between the general and the modi-
fied Viterbi algorithms is that paths in the trellis (Fig. 1(b)) follow the state tran-
sition diagram in Fig. 1(a) with the state transition probabilities in Eqs. (3)–(6).
Equation (10) and Fig. 1 establish the principle of the modified Viterbi algorithm.

Fig. 1. (a) The state transition diagram of the Markov chain {L(t), t ≥ 1}. In the
example shown, l = 2 and r = 2. (b) An example of the trellis diagram corresponds
with the state transition diagram (a).

4 Simulations

4.1 The Single Molecule Synthesis Process

To demonstrate the similarity of the distribution characteristics of our SMSP
model in Eqs. (1) and (2) to that of PacBio, we first look at the experiment
of PacBio [2]. We assume that the smallest pulse width and the smallest inter-
pulse duration in the SMSP are approximately 100 ms with the time unit in
the integrated circuit being 25 ms. That means l = 5 and r = 5 in Eqs. (1)
and (2). Moreover, the largest pulse width and the largest interpulse dura-
tion are restricted to 500 ms and 5 s respectively. As we limit the probability
p(Yn ≥ 21(500ms)) ≤ 10−2 and p(Wn ≥ 201(5s)) ≤ 10−3, the probability mass
functions are adjusted as in Fig. 2 to p = 0.48 and q = 0.06. The distribu-
tions of the simulation results are resembling that of PacBio in terms of pulse
characteristics and trace statistics [2].
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Fig. 2. The red line represents the PMF of the length of an incorporation period
in Eq. (2) with p = 0.48, and the blue line represents the PMF of the length of an
interpulse duration in Eq. (1) with q = 0.06. (Color figure online)

4.2 The Emission Process and the Received Process

The emission process is to utilize four single-wavelength LEDs (530 nm, 590 nm,
625 nm, and 656 nm) to simulate fluorescence effect on nucleotides (dATP, dTTP,
dGTP, and dCTP) where 530 nm LED represents the emission for the phospho-
linked dATP and so forth. LED light emission period and time elapsed between
light emission are defined as pulse width and interpulse duration in the SMSP
model; whereas the pulse width and the interpulse duration are assumed to be in
the average of 100 ms and 200 ms and the parameters p and q are estimated from
Eqs. (1) and (2) respectively. The intensity of LED light emission is adjusted in
the simulation in accordance with a specific series of SNR values. The simula-
tion of the received process involves voltages transformed from light emission
intensity and obtained from the photoelectric process, plus Gaussian noise. The
SNR is computed as

SNR = 10 · log
Psignal

Pnoise
.

The initial values of the characteristic signals, sx and ax ∀ x ∈ U , are mea-
sured by a single photodiode from four distinct LEDs and calculated through a
simple linear regression in Eq. (8). While the LED light intensity increases as time
progresses, the received RGB values are measured, in units of voltage, through
photoelectric conversion (PC). The relation between the LED light intensity and
the received values results in PC vectors shown in Table 1. The initial value ad

of the ambient light is measured under an LED-free lighting environment. The
noise is generated by adding a white Gaussian noise with the mean vector ad.

Data collection involves the sampling procedures detailed below. The inten-
sity of the LED light emission follows the eight patterns of random walk incre-
ments within the following eight ranges: [30, 60], [40, 80], [50, 100], [60, 120],
[70, 140], [80, 160], [90, 180], and [100, 200] (photon/ms). For each pattern, 100
samples are generated with each consisting of 1000 random nucleotides. The
emission intensity of each nucleotide follows the pattern of random walk , and
the durations of the emission depend on the length of the transition state from A
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Table 1. The table exhibits the PC vectors measured and calculated from the single
photodiode with distinct wavelengths of LED light emission.

Wavelength
(nm)

RGB PC Vector sx

(ms·mv/photon)
RGB PC Vector ax

(mv)

530 (0.145, 0.061, 0.024) (0.903, 1.157, 1.608)

590 (0.093, 0.062, 0.057) (1.386, 1.161, 1.439)

625 (0.073, 0.056, 0.073) (1.324, 1.122, 1.401)

656 (0.065, 0.053, 0.085) (1.073, 0.909, 1.041)

(T, G or C) to d. The corresponding mean SNRs are calculated from these differ-
ent levels of the light intensities as in Fig. 3. The measured nucleotide sequences
are derived through the detection methods in this study. The Smith-Waterman
algorithm is then applied to align between the expected sequences and the mea-
sured sequences [4,12].

30-60 40-80 50-100 60-120 70-140 80-160 90-180 100-200
Light Emission Intensity (photon/ms)
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Fig. 3. The relation between the fluctuating light emission intensity (X-axis) and the
SNR (Y-axis) of our simulations.

4.3 Results

Deducting from the modeling in above, the sequencing accuracy is beyond 90%
even with the fluctuating light emission intensity output ranging from 70 pho-
ton/ms to 140 photon/ms and the SNR is below 18 dB. Data analysis is detailed
in Fig. 3 and Table 2. In the modeling presented in this study, the accuracy is
well beyond 97% even with SNR below 22 dB. Additionally, except mismatches,
deletions and insertions of sequencing will not occur under the scenario of SNR
beyond 17 dB. The implication signifies that the modeling is outstanding at sig-
nal detection even under unfavorable low SNR environment.
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Table 2. The table exhibits the results from PacBio platform [2] and our simulations
(ML-Viterbi algorithm).

Platform : PacBio SNR : 22–30 dB

A555-dATP A568-dTTP A647-dGTP A660-dCTP

Pulse width (ms) 133 ± 22 91 ± 13 117 ± 14 96 ± 10

Interpulse duration (ms) 770 ± 250 670 ± 220 960 ± 210 790 ± 230

Correct Mismatches Insertions Deletions

Performance (percentage) 82.9% 4.4% 5.1% 7.6%

ML-Viterbi algorithm SNR : 16–18 dB

530-dATP 590-dTTP 625-dGTP 656-dCTP

Pulse width (ms) 100 ± 5.77 100 ± 5.77 100 ± 5.77 100 ± 5.77

Interpulse duration (ms) 200 ± 18.26 200 ± 18.26 200 ± 18.26 200 ± 18.26

Correct Mismatches Insertions Deletions

Performance (percentage) 91.57% 8.43% 0% 0%

ML-Viterbi algorithm SNR : 19–22 dB

530-dATP 590-dTTP 625-dGTP 656-dCTP

Pulse width (ms) 100 ± 5.77 100 ± 5.77 100 ± 5.77 100 ± 5.77

Interpulse duration (ms) 200 ± 18.26 200 ± 18.26 200 ± 18.26 200 ± 18.26

Correct Mismatches Insertions Deletions

Performance (percentage) 97.29% 2.71% 0% 0%

5 Discussion and Conclusions

In contrast to current image processing technology (multiple pixel inputs from
CCD camera), single photodiode detection improves processing speed due to
the single pixel processing, assuming all other conditions of the two detection
methods are identical. Again, the fluorescence labeling technique with single
photodiode outperforms conventional single molecule sequencing, especially in
the DNA sequencing, with its great accuracy (lower error rate), possible higher
throughput, and potentially lower cost. In a combination with the consensus
sequencing method, the data accuracy rate can be further improved to nearly
flawless [5]. However, the throughput level is highly dependent on how advanced
technology has to offer simultaneous sequencing on single photodiode groups.
Furthermore, detection accuracy will be greatly improved by augmenting the
difference between the fluorescence characteristics for labeling the four kinds of
dNTPs. In short, the modeling is definitely an excellent aid to the development
of fluorescence based sequencing.
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Abstract. The three-dimensional organization of the human genome is of cru-
cial importance for gene regulation. Results from high-throughput chromosome
conformation capture techniques show that the CCCTC-binding factor (CTCF)
plays an important role in chromatin interactions, and CTCF-mediated chromatin
loops mostly occur between convergent CTCF-binding sites. However, it is still
unclear whether and what sequence patterns in addition to the convergent CTCF
motifs contribute to the formation of chromatin loops. To discover the complex
sequence patterns for chromatin loop formation, we have developed a deep learn-
ing model, called DeepCTCFLoop, to predict whether a chromatin loop can be
formed between a pair of convergent CTCFmotifs using only the DNA sequences
of the motifs and their flanking regions. Our results suggest that DeepCTCFLoop
can accurately distinguish the convergent CTCF motif pairs forming chromatin
loops from the ones not forming loops. It significantly outperforms CTCF-MP, a
machine learning model based on word2vec and boosted trees, when using DNA
sequences only. Moreover, we show that DNAmotifs binding to ASCL1, SP2 and
ZNF384 may facilitate the formation of chromatin loops in addition to convergent
CTCF motifs. To our knowledge, this is the first published study of using deep
learning techniques to discover the sequence motif patterns underlying CTCF-
mediated chromatin loop formation. Our results provide useful information for
understanding the mechanism of 3D genome organization. The source code and
datasets used in this study for model construction are freely available at https://
github.com/BioDataLearning/DeepCTCFLoop.

Keywords: Deep learning · CTCF · Sequence motifs · Chromatin loops · 3D
genome

1 Introduction

The human genome with more than three billion base pairs is hierarchically organized
into three-dimensional (3D) structures to fit into the nucleus. The spatial organization
of the genome is critical for the transcriptional control of gene expression and is often
disrupted in disease conditions [1, 2]. To characterize the 3D genome architecture, high-
throughput techniques have been developed, including the chromosome conformation
capture (Hi-C) for detecting global chromatin interactions [3] and chromatin interaction
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analysis by paired-end tag sequencing (ChIA-PET) for capturing genome-wide chro-
matin interactions mediated by specific protein factors [4]. Data from these techniques
have shown that the genome is organized into chromatin loops and topologically associ-
ating domains (TADs) at the intermediate scale of the spatial organization [5, 6]. Notably,
the CCCTC-binding factor (CTCF) binds to the majority of chromatin loop anchors, and
CTCF-mediated chromatin loops mostly occur between convergent CTCF-binding sites
[5, 6]. The critical role of CTCF in chromatin folding has been confirmed by the loss of
loop structures upon CTCF depletion [7]. The functional significance of the convergent
orientation between CTCF-binding sites on long-range chromatin looping has also been
examined by inverting the CTCF-binding sites using CRISPR/Cas9 [8].

While the majority of CTCF-mediated chromatin loops contain CTCF motifs in
a convergent orientation, many pairs of convergent CTCF-binding sites do not form
chromatin loops. It is thus interesting to investigate whether and what sequence features
in addition to the convergentCTCFmotifs are important for establishingCTCF-mediated
chromatin loops.

To address this question, a machine learning model, called CTCF-MP, was devel-
oped using word2vec and boosted trees [9]. Word2vec is a widely used and compu-
tationally efficient method to learn representations of words (word embeddings) using
neural networks [10]. It can encode each word in a text corpus as a vector in a continuous
vector space where semantically similar words are located near each other. For CTCF-
MP, word2vec was used to encode words (k-mers) in the DNA sequences to reduce
the dimensionality of words and learn the sequence-based features. It was shown that
good model performance was achieved using the word2vec features alone, suggesting
the capability of word2vec to capture informative features from the input sequences.
However, because the word2vec features are difficult to interpret, the complex sequence
pattern underlying CTCF-mediated loop formation remains unclear.

Recently, convolutional neural networks (CNNs), which are designed to process
data in multi-dimensional arrays and most commonly applied to computer vision [11],
have attracted much attention in the field of biology because of the capability to discover
informative sequence motifs directly from input DNA/RNA sequences [12–14]. Besides
CNNs, several other advanced deep learning techniques, such as long short-termmemory
networks (LSTMs) for being able to learn long-range dependencies within sequences
[15] and attention mechanisms for being able to capture and emphasize the most impor-
tant features from the sequential inputs [16], have also been applied to many biological
problems [12, 13, 17]. However, these deep learning techniques have not yet been used to
discover the complex sequence pattern for the formation of CTCF-mediated chromatin
loops.

In this study, we have developed a deep learning model, called DeepCTCFLoop, to
predict whether a chromatin loop can be formed between a pair of convergent CTCF
motifs and to learn the sequence pattern hidden in the adjacent sequences of CTCF
motifs. DeepCTCFLoop utilizes a two-layer CNN and an attention-based bi-directional
LSTM (BLSTM) network to learn and emphasize the relevant features, including the
sequencemotifs, the high-level interactions between sequencemotifs, and the long-range
dependencies between high-level features.We show thatDeepCTCFLoop can accurately
predict the chromatin loop formation of convergent CTCF motif pairs within a cell type
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as well as across cell types. Moreover, our results suggest that the DNA sequence motifs
binding to ASCL1, SP2 and ZNF384 may facilitate the formation of CTCF-mediated
loops.

Fig. 1. Schematic diagram of convergent CTCF motifs used to compile the positive and negative
instances. The positive instances are defined as the DNA sequences of convergent CTCF motif
pairs in the chromatin loop regions and their flanking regions. The negative instances are the DNA
sequences of randomly selected convergent CTCF motif pairs not in the chromatin loop regions,
under the constraint that the distribution of the distances between the CTCFmotif pairs of negative
instances is similar as for the positive instances.

2 Materials and Methods

2.1 Data Collection and Preprocessing

DeepCTCFLoop was constructed using data from three different cell types, including
GM12878, Hela and K562. To discover the sequence pattern around the convergent
CTCF motifs for chromatin loop formation, positive and negative instances were only
derived from convergent CTCFmotif pairs, as described for CTCF-MP [9]. The positive
instances were compiled as the convergent CTCF motif pairs in the chromatin loop
regions (Fig. 1) plus 250 nucleotides (nt) on each side of a motif, resulting in a set
of DNA sequences of 1038 nt. The locations of CTCF motifs were determined by
scanning the human genome (hg19) using FIMO [18] with the known position weight
matrix (PWM) of CTCF. The chromatin loop regions of the cell lines GM12878 and
Hela were downloaded from NCBI’s Gene Expression Omnibus [19] (GEO accession:
GSE72816) and the regions of the cell lineK562were obtained fromENCODE [20]. The
chromatin loop regions were captured by ChIA-PET for CTCF. To investigate the impact
of the flanking region length on the model performance, we also extended the flanking
regions to 500 nt, resulting in a slightly worse performance. The negative instances
were generated by randomly selecting convergent CTCF motif pairs that were not in
the chromatin loop regions, under the constraint that the distribution of the distances
between CTCFmotif pairs of negative instances was similar as for the positive instances
(Fig. 1). The positive and negative instances for each cell type (21,301 positive and
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Fig. 2. Diagram of DeepCTCFLoop architecture. The DNA sequence of the convergent CTCF
motifs and their surrounding genomic sequences (250 nt) was taken as input by encoding into a
binary matrix. Then, a two-layer CNNwas adopted to learn the sequence motifs and the high-level
interactions between motifs. The BLSTM layer was used to learn the long-range dependencies
between the high-level features. Next, an attention layer was used to capture the most important
features to increase prediction accuracy. Lastly, two fully connected layers were used to combine
the output from the attention layer and make the binary prediction.

21,298 negative instances for GM12878; 9435 and 9432 instances for Hela; and 8205
and 8203 instances for K562) were randomly divided into training, validation and test
datasets with the ratio of 80% : 10% : 10%.

2.2 DeepCTCFLoop Model Construction

The architecture of DeepCTCFLoop is shown in Fig. 2. The input of the model is the
DNA sequence of convergent CTCF motif pairs and their flanking regions. The input
DNA sequence is one-hot-encoded into a 4× 1038 binary matrix with A= [1, 0, 0, 0], T
= [0, 1, 0, 0], G = [0, 0, 1, 0] and C = [0, 0, 0, 1]. Based on the input, DeepCTCFLoop
aims to predict whether a chromatin loop can be formed between a pair of convergent
CTCF motifs.
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The one-hot-encodedmatrix of the DNA input is first fed into a 1D convolution layer.
The N filters of the convolution layer with dimension 4 × L , where L is the length of
a filter, convolve over the input matrix, resulting in N activation maps. The activation
value asf i for the filter f at the position i of an input sequence s is computed as:

asf i = max

(
0,

∑L

l=1

∑4

d=1
w

f
ld si+l,d

)
(1)

Here, w f is the weight matrix for the filter f .
The filters function as motif detectors to discover the patterns within the input

sequences. The parameters of the filters can be interpreted as PWMs. High activation
values indicate the existence of a motif represented by a PWM at the corresponding
positions in the input sequences.

Amax pooling layer is used to get the maximum activation value of non-overlapping
sub-regions. With the down-sampling strategy, the max pooling layer can reduce input
dimensionality and thus avoid model overfitting. Then, a second convolution layer fol-
lowed by a max pooling layer is used to learn the high-level interactions between the
sequence motifs.

Next, a layer of bidirectional long short-term memory network (BLSTM) is used
to learn the long-range dependencies among the high-level features learned by the two-
layer CNN. LSTM is a variant of the vanilla recurrent neural network (RNN), which
scans the input in a sequential manner. Here, BLSTM is used to scan the input both
forward and backward. Each LSTM unit consists of an input gate, a forget gate and an
output gate. These gates decide what information should be thrown away, be stored, or
go to the output [15]. LSTM is thus able to remember the information and learn the
long-range dependencies.

Following the BLSTM layer, an attention layer is used to pay more attention on the
most important features by assigning more weights to them. The output is then fed into
a fully connected layer, and the sigmoid function is used to calculate the probability of
forming a chromatin loop.

In this study, the binary cross-entropy loss function was minimized using the Adam
optimization algorithm with minibatches [21]. Dropout and L2 regularization were
adopted to regularize the model. The early stopping procedure was also used to avoid
model overfitting. The model was implemented in Python using Keras 2.2.4 (https://
github.com/fchollet/keras) with TensorFlow 1.5.0 as the backend. The hyperparameters
of the model were tuned using Bayesian optimization via Hyperopt [22] with the data
from GM12878, resulting in the number of CNN filters (N) as 208, the length of filters
(L) as 13, the size of pooling layer as 4, the LSTM units as 64, the learning rate as 1e−4,
the L2 regularization as 5e−5, the dropout rate after CNN as 0.43, and the dropout rate
after the attention layer as 0.05. The average time used for model training and evaluation
was about 2 h with the data from the three cell types.

2.3 Motif Visualization and Analysis

The filters of the first convolution layer were converted into PWMs as described for
Basset [14]. Given a filter f with length L , it scanned all the positive test sequences

https://github.com/fchollet/keras
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and calculated an activation value for each position of a sequence. If an activation value
was greater than half of the maximum activation m of filter f over all positions of the
positive test sequences (Eq. 2), the subsequence corresponding to that activation value
was collected. The collected subsequences were aligned and converted into PWMs,
which were then visualized using WebLogo [23].

m = max
s,i

asf i (2)

The PWMs learned by DeepCTCFLoop were compared with the known motifs
in the JASPAR database (2018 vertebrates) [24] using the Tomtom program from the
MEME-Suite [25]. Motif pairs with E-value<=0.05 were considered to be significantly
matched.

2.4 Model Performance Evaluation

The performance of DeepCTCFLoop was evaluated using the test dataset with the
following metrics:

Accuracy = T P + T N

T P + T N + FP + FN
(3)

Sensitivity = T P

T P + FN
(4)

Specificity = T N

T N + FP
(5)

MCC = T P × T N − FP × FN√
(T P + FP)(T P + FN )(T N + FP)(T N + FN )

(6)

Here, TP, TN, FP, and FN represent the number of true positives, true negatives, false
positives and false negatives, respectively. Matthews correction coefficient (MCC) is
generally considered as a robust measurement of model performance with a balanced
or imbalanced dataset. Moreover, the receiver operating characteristic (ROC) curve and
the area under the ROC curve (ROC AUC) are also used for model evaluation. The ROC
curve and ROC AUC are considered to be more robust for an imbalanced dataset than
the other performance metrics.

3 Results and Discussion

DeepCTCFLoop has been developed to predict the chromatin loop formation between
convergent CTCF motif pairs, and to discover sequence motif patterns for the loop
formation (Fig. 1).
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3.1 DeepCTCFLoop Could Accurately Predict Chromatin Loops Formed By
Convergent CTCF Motifs

DeepCTCFLoop takes convergent CTCF motif pairs and their surrounding genomic
sequences as input to predict chromatin loop formation (Fig. 2). The performance of
DeepCTCFLoop was evaluated using datasets derived from three different cell types,
including GM12878, Hela and K562. The hyperparameters for model construction were
optimized using the dataset of GM12878 (see Materials and Methods). Dropout, L2
regularization and the early stopping procedure were used to avoid model overfitting.

Fig. 3. ROC curves of DeepCTCFLoop and CTCF-MP (word2vec features only) on the test
datasets of GM12878, Hela and K562.

As shown in Fig. 3 and Table 1, DeepCTCFLoop achieved the mean ROC AUC
of 0.925 for GM12878, 0.937 for Hela and 0.907 for K562 on the test datasets for
10 repetitions. The high model performance indicates that DeepCTCFLoop can learn
informative features besides the motif orientation from the DNA sequences to distin-
guish interacting convergent CTCFmotif pairs (positive instances) from non-interacting
ones (negative instances). By comparison, CTCF-MP [9] achieved relatively poor perfor-
mance on the same datasets with the mean ROC AUC of 0.776 for GM12878, 0.761 for
Hela and 0.697 for K562, when only using the DNA sequence features from word2vec
(Fig. 3 and Table 1). The superior performance of DeepCTCFLoop over CTCF-MP was
also suggested by the significantly higher accuracy, sensitivity, specificity and MCC
values (Table 1). Although word2vec may capture the contextual information between
k-mers (DNA words) by learning their semantical similarity, the results from this study
suggest that DeepCTCFLoop can capture more relevant information, such as sequence
motifs, from the input DNA sequences. This is consistent with the poor performance of
word2vec on detecting informative motifs in a previous study [26]. Taken together, our
results demonstrate the superior capability of DeepCTCFLoop to predict the formation
of chromatin loops mediated by convergent CTCF motif pairs.
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Table 1. Superior performance of DeepCTCFLoop over CTCF-MP when only using DNA
sequences as the input. For CTCF-MP, DNA sequences were encoded into vector features by
word2vec. The average accuracy, sensitivity, specificity, Matthews correction coefficient (MCC),
and the area under the receiver operating characteristic curve (ROC AUC) for 10 repetitions of
the two models on the test datasets from GM12878, Hela and K562 cells are shown.

Metrics DeepCTCFLoop CTCF-MP (word2vec)

GM12878 Hela K562 GM12878 Hela K562

Accuracy 0.854 0.870 0.834 0.703 0.682 0.622

Sensitivity 0.880 0.894 0.872 0.775 0.798 0.850

Specificity 0.828 0.846 0.798 0.629 0.571 0.392

MCC 0.709 0.741 0.672 0.410 0.375 0.274

ROC AUC 0.925 0.937 0.907 0.776 0.761 0.697

3.2 CTCF-Mediated Chromatin Loop Formation Could Be Predicted Across
Cell Types

Previous studies suggest that topological domain boundaries are largely invariant across
tissue types [27, 28], but the variability of chromatin loops across tissue types is still
unclear. Although most chromatin loops are found to be conserved among cell types
[5], some studies suggest that chromatin interactions within TADs are highly cell-type-
specific [29, 30]. Thus, it is of interest to check whether DeepCTCFLoop trained using
data from one cell type can predict CTCF-mediated loop formation in another cell type.

To obtain an unbiased performance evaluation, the positive and negative instances
shared between two cell types were removed from the test cell type (6806 positive and
3209 negative instances shared between GM12878 and Hela; 5730 and 3378 instances
between GM12878 and K562; 4209 and 3133 instances between Hela and K562). As
shown in Table 2, DeepCTCFLoop trained with the data from one cell type can accu-
rately predict the chromatin loops in the other two cell types. Moreover, the cross-
cell-type performance of DeepCTCFLoop is higher than the same-cell-type perfor-
mance of CTCF-MP using word2vec features, further suggesting the higher capabil-
ity of DeepCTCFLoop in capturing the complex sequence pattern for chromatin loop

Table 2. DeepCTCFLoop performance for the cross-cell-type prediction of chromatin loop
formation. The average area under the receiver operating characteristic curve (ROC AUC) from
10 repetitions is shown.

Test cell type Training cell type

GM12878 Hela K562

GM12878 0.925 0.814 0.791

Hela 0.852 0.937 0.843

K562 0.759 0.766 0.909
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Fig. 4. Sequence logos of the PWMs significantly matched to the DNA motifs of the proteins
CTCF, ASCL1, SP2 and ZNF384. The PWMs learned by DeepCTCFLoop from the GM12878,
Hela and K562 datasets were compared with the known motifs in the JASPAR database using
Tomtom.

formation. Taken together, the high performance of DeepCTCFLoop in cross-cell-type
prediction suggests its potential to predict CTCF-mediated chromatin loops in a new
cell type.

3.3 Interesting DNA Sequence Motifs Were Discovered by DeepCTCFLoop

The ability of DeepCTCFLoop to distinguish interacting CTCF motif pairs from non-
interacting ones suggests that it may have learned the complex sequence pattern for
CTCF-mediated loop formation. To understand the sequence pattern, the filters of the first
convolutional layer were converted into PWMs as described in Materials and Methods.
For the model built with data from GM12878 cells (GM12878 model), 189 PWMs were
derived and compared with the known transcription factor (TF) motifs in the JASPAR
database [24] using Tomtom [25]. With E-value <=0.05, 34 of the 189 PWMs were
significantly matched to the known motifs, including 30 PWMs matched to the motifs
of 34 non-CTCF proteins. It is likely that these DNA-binding proteins are involved in
the chromatin loop formation mediated by convergent CTCF motif pairs.

To discover the consistent motif pattern that may contribute to CTCF-mediated chro-
matin loop formation across different cell types, we performed the same motif analy-
sis for the models built using the data from Hela cells (Hela model) and K562 cells
(K562 model). Similarly, 34 of the 204 PWMs (Hela model) and 35 of the 208 PWMs
(K562 model) were significantly matched to 27 and 21 non-CTCF motifs, respectively.
Interestingly, besides CTCF, the DNA motifs of several proteins (ASCL1, SP2 and
ZNF384) were commonly matched by the PWMs learned from the three different mod-
els (GM12878, Hela and K562 model) (Fig. 4 and Table 3). ASCL1, an evolutionarily
conserved basic-helix-loop-helix (bHLH) transcription factor, has been shown to pro-
mote local chromatin accessibility at its target regions during neurogenesis and is asso-
ciated with transcription activation by mostly binding to distal enhancers [31–33]. As
CTCF-mediated chromatin loops are involved in promoter-enhancer interactions [34],
the binding of ASCL1 to distal enhancers may promote the loop formation. Moreover,
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ZNF384, a C2H2-type zinc finger protein, has been shown to be directly involved in
chromatin looping, like CTCF and the cohesin complex. The interaction of ZNF384
with CTCF may contribute to the sequence specificity of the chromatin loop formation
[35]. Although SP2, a member of the SP family with a conserved DNA-binding domain,
has not been reported to be involved in chromatin loop formation, it mainly localizes
to subnuclear foci associated with the nuclear matrix and is mostly involved in gene
activation [36]. The results suggest that the binding of these proteins to specific DNA
motifs may provide additional information for the chromatin loop formation mediated
by convergent CTCF motif pairs.

4 Conclusion

In this study, we have developed a deep learning model, called DeepCTCFLoop, to
predict whether a chromatin loop can be formed between a pair of CTCF motifs in
the convergent orientation, and to discover the sequence pattern besides the conver-
gent CTCF motifs for the loop formation. The CTCF motif pairs and their flanking
genomic sequences were used as model input. Through evaluating on three different
cell types (GM12878, Hela and K562), DeepCTCFLoop was demonstrated to be able
to accurately predict CTCF-mediated chromatin loop formation. It significantly outper-
formed a previous machine learning model (CTCF-MP with word2vec features only).
DeepCTCFLoop also showed high performance across cell types. Interestingly, theDNA
motifs of several proteins (ASCL1, SP2 and ZNF384) were significantly matched with
the PWMs learned by DeepCTCFLoop from the data of GM12878, Hela and K562 cells,
suggesting the potential roles of these proteins in CTCF-mediated loop formation. In
particular, ZNF384 has been reported to be involved in chromatin loop formation [35].
Previous studies suggest that mutations in the boundaries of chromatin loops could cause
loop alterations, leading to disrupted gene expression [37, 38]. Recently, the increasing
applications of whole-genome sequencing to various diseases lead to the identification
of many disease-associated non-coding variants, most of which have unknown mech-
anisms. DeepCTCFLoop can be applied to these non-coding variants to predict their
effects on the formation of CTCF-mediated chromatin loops, and thus help annotate
these non-coding variants.
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Abstract. Patients with Alpha-1 Antitrypsin Deficiency (A1AD) have
abnormally low levels of the protein Alpha-1 Antitrypsin (AAT) in their
blood, because of a double mutation that makes the protein misfold and
instead collect in the liver (sometimes even causing cirrhosis). The cur-
rently accepted single dosage (SD) of AAT supplements does not produce
AAT blood concentrations anywhere near normal levels; they typically
only reach the effect of having a single mutation. Some have therefore
advocated for a double dosage (DD) of these treatments, which gener-
ally would be enough to approach these normal concentrations. Levels
of cytokines, produced by the immune system in response to an attack,
have already been observed to drop dramatically when A1AD patients
consuming single dosage started taking double dosage, and then either
remain the same or increase again upon return to a single dosage reg-
imen. In this study we administer the same dosage sequence to A1AD
patients (SD, DD, SD) for one month each and view the effects on their
lung microbiome and metabolome. We analyze both at the end of each
stage, comparing and contrasting and discovering potential biomarkers
for each stage, and concluding with a discussion of potential implications.

Keywords: Microbiome · Metabolome · Networks · Alpha-1
Antitrypsin Deficiency (A1AD)

1 Introduction

Abnormally low blood concentrations of the protein Alpha-1 Antitrypsin (AAT)
produce a condition known as Alpha-1 Antitrypsin Deficiency (A1AD, [26]).
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AAT is a multi-function protein, modulating immunity, inflammation, proteosta-
sis, apoptosis, and cellular senescence [19]. These are all critical for lung main-
tenance, particularly against harmful substances (i.e., cigarette smoke). AAT
is produced in the liver, and transferred to the lung through the bloodstream.
However, if the gene that produces AAT becomes mutated the protein misfolds,
causing it to remain in the liver instead of entering the bloodstream. In addition
to potentially leading to cirrhosis [38], this misfolding produces abnormally low
levels of AAT in the bloodstream, resulting in not enough AAT being trans-
ferred to the lungs. Normal levels of blood AAT concentration are above 25µM.
A1AD carriers have a single mutation in the AAT gene, causing blood levels to
drop to around 15µM. Double mutations in this gene yield an A1AD diagnosis,
producing AAT blood concentrations as dangerously low as 4µM.

Treatments for lung diseases resulting from A1AD (i.e. emphysema or COPD)
involve augmentation or replacement therapy [18], where patients are given AAT
supplements from healthy donor blood plasma. The medically adopted standard
single dosage (SD), 60 mg/kg/week [41], will generally achieve a target AAT
blood concentration of about 11µM. This is slightly under carrier-level con-
centrations. Recent studies have questioned this dosage, with some advocating
for a double-dosage (DD) that produces AAT blood concentrations that app-
roach normal levels [6]. One in particular showed reduced cytokine (produced by
the immune system in response to an infection or attack) levels when patients
switched from SD to DD, many of which began increasing again upon return
to a SD [5]. These elevated cytokine levels (implying increased immune system
activity) for SD patients before and after their DD period call into question
whether or not the SD yields enough AAT lung transfer to maintain healthy
functionality.

The microbiome has recently gained attention because the number of micro-
bial cells in a human body are estimated to exceed that of the number of human
cells [36], and therefore hold enormous potential to contribute to our health, both
positively and negatively. Compared to the more heavily studied gut microbiome
the lung microbiome has a significantly lower biomass but despite this, generally
exhibits high diversity in its community [27]. This diversity has been shown to
be lower in the airway microbiome of asthma patients, and its composition can
even be used as a biomarker to indicate severity [10]. Pathogenic bacteria from
genera such as Pseudomonas and Staphylococcus have been implicated in Cystic
Fibrosis [42], and inhaled antibiotics have long been used as treatments [9].

Significance of the microbiome is largely because of metabolites produced by
member microbiota that become involved in underlying chemical reactions with
metabolites produced by other microbiota and the host, collectively influencing
host functionality. The collection of metabolites in a host or environment is
termed the metabolome, and this can help to explain the mechanisms behind the
influence of the microbiome on human health. It would be interesting therefore
to see if performing the same augmentation therapy that we mentioned (SD,
followed by DD, followed by SD) results in similar shifts in the microbiome
and metabolome to those observed in the cytokines. Additionally, such analyses
would increase our general depth of knowledge regarding the effects of both
dosages on important underlying biological circuitry.
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We collect metagenomics and metabolomics samples from A1AD patients on
an augmentation therapy plan of one month SD, followed by one month DD,
and finally one month SD. Our collection takes place at the end of every month.
Our analysis then compares and contrasts all pairs of sample sets from the
perspectives of diversity, composition and ecological relationships, and produces
lists of distinguishing microbes and metabolites for each sample set. We conclude
by discussing results, potential biological implications, and future directions.

2 Methods

We collected lung microbiome samples from ten subjects diagnosed with
A1AD, over a three-month clinical trial period. For the first month these
patients were administered the drug Zemaira [3] at a standard, FDA-approved
dosage of 60 mg/kg/week (SD1). They then were administered a double dose
(120 mg/kg/week, DD) for the second month, followed by one final month back
at the single (SD2). Samples were collected at the end of each of period, using a
bronchoscopy involving lung lavage, brushings and endobronchial biopsies. We
then performed metagenomics and metabolomics analyses on these samples.

Metagenomics. Zymo Research Metagenomic Services (Orange, CA) per-
formed our 16S sequencing, using standard protocols [2,13,17,20,24,29,40]. The
final set of amplicon sequences were compiled, clustered and then analyzed using
Qiime [7]. When classifying taxa, we used the SILVA [31] reference database and
removed singleton taxa. We then used Qiime for other downstream metagenomics
analysis, including alpha- and beta-diversity plots of the microbial communities
compared across all three sample sets. We also used Qiime to compare relative
abundances of each OTU in the three sample sets. Finally, we built Microbial
Co-occurence Networks (MCNs) [14] to analyze ecological relationships between
taxa within the microbiome.

Metabolomics. For metabolomics analysis we used several programs in the
MetaboAnalyst [44] suite of tools after normalizing our concentration data. We
produce distinguishing metabolites for each pair of sets using both volcano plots
and Partial Least Squares Differential Analysis (PLS-DA, [1]), and test agree-
ment between the metabolites they generate. PLS-DA has also become a stan-
dard classification tool in metagenomics, but it has some weaknesses [32] par-
ticularly with respect to over-fitting and a lack of cross-validation. Therefore
we also attempt to classify samples using a Random Forest [4], where agreement
between multiple decision tree learners can provide an indication of the quality of
dissimilarity between sample sets. We then produce another set of distinguishing
metabolites used by Random Forest when classifying sample sets.

3 Results and Discussion

3.1 Metagenomics

While beta-diversity results were inconclusive, alpha-diversity results exhibited
agreement across the four standard algorithms offered by Qiime as shown in
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Fig. 1: (a) The Chao metric [8] which measures richness, (b) Observed species,
or unique taxa counts in each sample, (c) PD whole tree which measures phy-
logenetic distance between community members, and (d) the Shannon index
[37]. The plots show SD1 (red), DD (blue), and SD2 (orange). Although error
bars were large enough to encompass all three curves, there is strong agreement
between all four plots on the average relative tracks of these curves, with DD
and SD2 close in magnitude and SD1 noticably lower.

Fig. 1. Alpha diversity for lung microbiome samples collected at SD1 (red), DD (blue)
and SD2 (orange) using (a) Chao richness, (b) observed species (unique taxa), (c)
phylogenetic distance, and (d) Shannon index. (Color figure online)

To view taxa most affected by the DD (DD), we extracted those with a
relative abundance change magnitude larger than 1% when comparing SD1 to
DD, and repeated the process to compare SD2 to DD. Table 1 summarizes our
results, with the “Notable Change” column designating the two augmentation
therapy stages being compared. There are two trends in this table of which we
take note. First, all taxa that decreased in relative abundance from SD1 to DD
tended to remain at that same lower abundance when moving to SD2. On the
other hand, taxa that significantly increased in relative abundance from SD1 to
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DD tended to return to the lower SD1 levels in SD2. This is an interesting paral-
lel with the cytokine behavior, which was also observed to either return to SD1
levels or remain the same in SD2. Secondly, we note a sharp (collectively over
20%) drop in the relative abundance of two highly abundant taxa (Propionibac-
terium and Streptococcus) when advancing from DD to SD2. About 8.14% of the
increase came from the genus Actinomyces, and the remainder came from genera
Pelomonas, Acinetobacterium, Cardiobacterium, Brevundimonas, and Neisseria
from the class Gammaproteobacterium. The last three were confired by LEfSe
[35] as potential biomarkers for SD2 compared to DD, and were almost uniformly
present in SD2 but not DD.

Table 1. Taxa with most notable changes between DD and SD1 (previous), and
between DD and SD2 (next) stages.

Taxon SD1 DD SD2 Notable change

Prevotella 7.0% 1.0% 1.6% SD1 to DD (−5.9%)

Veillonella 3.3% 1.2% 1.7% SD1 to DD (−2.1%)

Parvimonas 1.7% 0.4% 0.8% SD1 to DD (−1.3%)

Rothia 2.3% 7.6% 2.2% SD1 to DD (+5.3%)

Corynebacterium 2.2% 5.1% 2.1% SD1 to DD (+2.9%)

Propionibacterium 31.4% 32.1% 15.5% DD to SD2 (−16.6%)

Streptococcus 12.8% 11.2% 7.3% DD to SD2 (−3.9%)

Actinomyces 7.9% 7.9% 16.1% DD to SD2 (+8.1%)

The microbial co-occurrence networks (MCNs) are shown in Fig. 2. The nodes
correspond to microbial taxa and edges to Spearman [39] correlations with rank-
ing based on taxa abundance. Green (red) edges correspond to positive (nega-
tive) correlations. The MCNs are visualized using Fruchterman-Reingold [16],
with the eight nodes from Table 1 labeled with the taxon centered on the cor-
responding node. Finally, we perform clustering with the Affinity Propagation
algorithm [15] which works with signed networks, and color the clusters to which
the above nodes have connections. For clarity we remove all nodes with no edges,
except Corynebacterium in SD1 as it was one of the taxa from Table 1.

We note that the three taxa that dropped in abundance when going from
SD1 to DD (Prevotella, Veillonella, and Parvimonas) all occupied “centralized”
locations in the SD1 network and contributed positively to multiple clusters (col-
lectively 44 edges spanning five different clusters). Although most edges were still
positive in the DD network, there were far fewer (29) and some were negative
(to Acinetobacteria, Pelomonas and Ralstonia). Returning to a single dose (SD2)
had mixed effects. While it did increase the collective number of edges back into
the 40 s and also the number of positive connections, negatives remained that
were not present in SD1. The two taxa that increased in abundance when going
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Fig. 2. Microbial Co-occurence Networks (MCNs) for each augmentation therapy
period. SD1 = first single dose, DD = double dose, SD2= second single dose (Color
figure online)

from SD1 to DD (Rothia and Corynebacterium) seemed to become more “inte-
grated”, suggesting an increased interaction with other taxa during this transi-
tion. In particular, Corynebacterium, which was completely disconnected from
the SD1 network, was part of a cluster in the DD network with 11 positive edges
and connections to three other clusters. In SD2 that number grew to 23 edges,
all positive, to two larger and tightly connected clusters (particularly the red).
Note that Corynebacterium continued to become more integrated even as its
abundance dropped when moving from DD to SD2. Rothia seemed to experience
something similar, though was connected more negatively in SD1 (2 positive
edges, 4 negative) but became more integrated with time (5 positive edges and
2 negative in DD, 10 positive and 1 negative in SD2). The remaining three
taxa that experienced large fluctuations from DD to SD2 (Propionibacterium,
Streptococcus and Actinomyces), also showed some changes here. The SD1 shows
more “polarized” connections for the first two, with Propionibacterium having
all negative edges and Streptococcus all positive. This changes in DD and SD2,
particularly with Streptococcus in SD2 which is almost completely “pushed out”
of the network with its sole connection a strongly negative correlation to Anae-
rococcus. Interestingly, Anaerococcus is also the only positively correlated taxa
to Propionibacterium in this same network. The effect of Actinomyces also seems
to rise, culminating in ten edges (all positive) to five different clusters in SD2.

3.2 Metabolomics

Volcano Plots. Figure 3 shows volcano plots comparing each pair of stages:
((a) SD1 and DD, (b) DD and SD2, and (c) SD1 and SD2). On each plot, the
x-axis represents the log fold-change between sample set pairs and the y-axis the
negative log of the p-value. Distinguishing metabolites have high fold-change
and low p-value, and these are found in the upper left and right corners. The
most distinguishing metabolites are represented as pink dots, labelled with the
corresponding metabolite name.
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Fig. 3. Volcano plots assembled using normalized metabolite concentrations of pairs
of augmentation therapy stages, with most important metabolites colored and labeled.
(a) SD1 vs. DD; (b) DD vs. SD2; (c) SD1 vs. SD2.

PLS-DA. Additionally we ran Partial Least Squares Differential Analysis (PLS-
DA, [1]) a total of three times, once for each pair of augmentation therapy stages.
This produced a list of the most distinguishing metabolites between each pair of
stages. Table 2 shows these metabolites, the pair of stages they distinguish, and
the stage in which they were elevated in bold. It can be noted that key metabo-
lites discovered by the volcano plot and PLS-DA exhibit high level agreement,
offering mutual support. We also note a tendency for these metabolites to be
elevated in DD compared to other stages, and in SD2 compared to SD1. This
is significant because both DD and SD2 take place after the SD1. Table 3 shows
this tendency to continue across all distinguishing metabolites.

Table 2. Distinguishing metabolites when running PLS-DA.

Metabolite Distinguishes (Elevated)

5’CMP SD1/DD

Spermidine SD1/DD

3’GMP SD1/DD

Cholesterol SD1/DD

2-Aminoheptanoate SD1/DD

Ribonate DD/SD2

Lignoceroyl Sphingomyerlin DD/SD2

3-Hydroxy 3-Methylglutarate DD/SD2

N-Stearyl Shingosine DD/SD2

Caffeine DD/SD2

1-(1-Enyl-Palmitoyl)-2-Oleoyl-GPE DD/SD2

2-Aminoheptanoate SD1/SD2

5’CMP SD1/SD2

AMP SD1/SD2

Random Forest. For Random Forest we performed a total of six runs, since
Random Forest attempts to classify samples as belonging to a specific set, rather
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Table 3. Comparing concentration levels of 14 distinguishing PLS-DA metabolites
between pairs of augmentation therapy stages.

Comparison Elevated in SD1 Elevated in DD Elevated in SD2

SD1 vs. DD 1 13

DD vs. SD2 12 2

SD1 vs. SD2 3 11

than distinguishing between two sets (therefore SD1 vs. DD and DD vs. SD1
are now different). Results were mixed, but Random Forest exhibited the most
success when classifying SD1 samples (70% and 60% accuracy respectively along-
side DD and SD2 samples). The top ten metabolites identified by Random Forest
when distinguishing SD1 vs. DD and SD1 vs. SD2 are shown in Table 4. In each
column we denote the later stage along with elevated metabolites in that stage
in bold. We note the continuing trend of larger concentrations of significant
metabolites after the DD had been administered. All ten metabolites were ele-
vated in DD and eight were elevated in SD2 compared to SD1.

Table 4. Top 10 Random Forest metabolites distinguishing SD1 vs. DD and SD1 vs.
SD2. Bold metabolites are elevated later stages.

Rank SD1/DD SD1/SD2

1 Glutamine Serine

2 Cholesterol Choline Phosphate

3 Nicotinamide Glutamate

4 Spermidine Threonine

5 GPC GPE

6 Malate Fumarate

7 5’CMP Glycerate

8 Glutamate 5-Oxoproline

9 N-Stearoyl-Sphingosine Tryptophan

10 Serine Malate

4 Conclusions

Results of the earlier cytokine experiments indicated that DD immediately
affected their concentrations; they remained stable (suggesting a more perma-
nent impact) or returned to previous levels (suggesting that continued DD was
required). We see examples of both cases. The evident rise in alpha-diversity
in DD compared to SD1 that was maintained throughout SD2 indicates that
the DD could be creating a long-term environment where more bacterial taxa
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can survive. Analysis of taxa abundance changes showed the taxa most imme-
diately affected by the DD to be Prevotella, Veillonella, Parvimonas, Rothia,
and Corynebacterium. The taxa Prevotella, Veillonella, and Parvimonas declined
in DD and tended to stay low in SD2, while the taxa Rothia and Corynebac-
terium increased in DD and then seemed to return to previous levels in SD2. The
taxa Prevotella and Veillonella are interesting as they make up core microbiota
observed in bronchiectasis, a feature of A1AD [34]. This suggests that the DD
can help to produce a long-term reduction in these populations. Additionally,
the species Corynebacterium pseudodiphtheriticum has recently been touted as
a possible lung probiotic as it differentially improves the immune response in
mice to various lung infections [22]. This same study also indicated that a colo-
nization of this species is necessary to achieve this improvement, which becomes
interesting when we look at our networks. After SD1, Corynebacterium was com-
pletely disconnected and appeared to have no supporting taxa, but by the end of
DD had formed a significant number of positive connections, that continued to
grow throughout SD2 even when its relative abundance dropped. This could indi-
cate a progressive colonization of Corynebacterium throughout the augmentation
therapy. Additionally the rise in this abundance in DD, with the corresponding
return to SD1 levels in SD2, could indicate the DD may be playing an impor-
tant role in restoring balance after dysbiosis. It should not be ignored, however,
that the heavy dynamics in the Propionibacterium, Streptococcus, Actinomyces
and Gammaproteobacterium populations when going from DD to SD2 that were
not present when comparing SD1 to DD, appear to indicate that going from a
stronger dosage to a weaker had more effects on the overall microbial compo-
sition compared to going from a weaker to a stronger. SD2 analysis indicates
Anaerococcus may have an increasingly significant role in these dynamics.

Our volcano plots found the fewest important features when distinguishing
SD1 and SD2 compared to SD1/DD and DD/SD2, which also supports the pre-
vious analysis of “returning to original levels”. Viewing some of the important
metabolites discovered by the volcano plots and PLS-DA, it does seem that the
DD had some longer lasting effects, including the elevated 5’CMP (higher in DD
and SD2 compared to SD1) and the reduced 2-Aminoheptanoate (higher in SD1
compared to DD and SD2). The long term rise in AMP in SD2 compared to
SD1 could also be connected to the rise in the Actinomyces population, as could
be the rise in Glutamate shown in Random Forest. 68% of Actinomyces reac-
tion pathways in the PathwayTools [23] database involved at least one of these
two metabolites. Glutamate is particularly interesting because of its importance
for producing Glutamine [30], whose deficiency has heavily documented connec-
tions to several respiratory ailments, including the A1AD post-cursor COPD
[28]. Interestingly, Glutamine was discovered as #1 when distinguishing SD1 vs.
DD (and it was elevated in DD), but only Glutamate (not Glutamine) was dis-
covered as important in distinguishing SD1 vs. SD2. This indicates that although
a SD may be enough to increase Glutamate levels, the DD may be necessary
to maintain high levels of Glutamine. We also note Random Forest to have dis-
covered an interesting time series of important features involving Nicotinamide
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in SD1-DD (elevated in DD) followed by Malate in SD1-SD2 (elevated in SD1),
that parallels what we observe in the Krebs cycle [25] with Nicotinamide Adeno-
sine Dinucleotide (NAD) molecules facilitating the conversion of Malate to CO2

and Pyruvate. The increased presence of Nicotinamide in DD, followed by the
decreased presence of Malate in SD2, could indicate a long-term increased Krebs
cycle efficiency throughout augmentation therapy.

Our results provide a cursory overview of the observed effects of multiple
steps of augmented therapy on the microbiome and metabolome of a small set
of A1AD patients. Ultimately the microbiome and metabolome are interdepen-
dent systems, and their integrated dynamics involve a complex web of underlying
interactions involving members from both systems. Therefore to establish ade-
quate depth of knowledge to understand the causes of observable behaviors such
as those we have presented, finding points of connection between their results
will be fundamental (i.e. Actinomyces with AMP and Glutamate). Connections
could also be established with some of the specific proteases found to fluctu-
ate in concentration in the augmentation therapy [5], including serine proteases,
neutrophil-derived elastase, cathepsin G, and Aα-Val. This multi-omics analysis
will necessitate further data collection across multiple metabolomics databases
(i.e. PathwayTools, KEGG [21]) to continue to complete this puzzle. It also may
demand moving from 16 S sequencing to shotgun metagenomics, to reveal a more
complete genetic profile of taxa within each sample [43]. Additionally, similar-
ity metrics for signed and weighted networks such as SASCOS++ [12] would
provide a more quantitative metric for comparing networks, as opposed to our
more qualitative approaches. We also recommend centrality [11] analysis to view
important members of both systems; and potentially heterogeneous networks to
view relationships across systems. Signed Bayesian Networks [33] could prove
very useful in this area, due to their implications for causality. We see the analy-
sis presented here as a starting point for more in-depth biological interpretation,
wet lab experiments, and causal analysis.
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Abstract. MicroRNAs (miRNAs) are small non-coding RNAs that play
a key role in regulating gene expression and thus in many cellular activi-
ties. Dysfunction of cells in these tasks is correlated with the development
of several kinds of cancer. As the functionality of miRNAs depends on
the location of their binding on their targets, binding site prediction has
received a lot of attention in the last several years. Despite its impor-
tance, the mechanisms of miRNA targeting are still unknown. In this
paper, we introduce an algorithm that partitions miRNA target duplexes
according to hypotheses that each represents a different mechanism of
targeting. The algorithm, called multi-hypothesis learner, examines all
possible hypotheses to find out the optimum data partitions according
to the performance of these hypotheses for miRNA target prediction.
These hypotheses were then utilized to build a superior target predic-
tor for miRNAs. Our method exploited biologically meaningful features
for recognizing targets, which enables establishment of hypotheses that
can be correlated with target recognition mechanisms. Test results show
that the algorithm can provide comparable performance to state-of-the-
art machine learning tools such as RandomForest in predicting miRNA
binding sites. Moreover, feature selection on the partitions in our method
confirms that the partitioning mechanism is closely related to biologi-
cal mechanisms of miRNA targeting. The resulting data partitions can
potentially be used for in vivo experiments to aid in discovery of the
targeting mechanisms.
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1 Introduction

MicroRNAs (miRNAs) are short RNA sequences of approximately 22 nucleotides
that inhibit or repress gene expression. They perform as a guide to bind the RISC
(RNA Induced Silencing Complex) to sequence specific locations on mRNAs to
silence them [1]. These specific locations are called target sites and discovering
the functionality of each miRNA depends on recognition of its target sites. MiR-
NAs can control many critical cell processes such as proliferation, differentiation,
cell death, growth control and developmental timing [22]. Dysfunction of miR-
NAs could lead to tumor development and cancer in organs such as lung, brain,
colon and breast in addition to causing hematopoietic cancers [16].

Despite the importance of miRNAs the detailed mechanism of miRNA target
binding is poorly known. Lab experiments for finding targets are very slow and
costly, therefore there is a huge demand for computational approaches. In the last
decade dozens of algorithms, with a variety of approaches and techniques, have
been developed. These methods are either specific for a few species or general for
any kind. Methods for vertebrates include TargetScan and TargetScanS [20,21],
miRanda [9,17], DIANA-microT [19] and for flies RNAhybrid [30]. Some general
tools are miTarget [18] and MicroInspector [31].

The early computational approaches for target recognition were rule based,
i.e., they had a set of discriminative rules derived from experimental and bio-
logical knowledge, such as MFE (Minimum Free Energy), duplex binding pat-
tern, or target accessibility. Some popular rule based tools are RNAhybrid, Tar-
getScan, miRanda and MirBooking [37]. MirBooking is one of the recent rule
based methods that simulates the miRNA and mRNA hybridization competi-
tion and cellular conditions to improve the accuracy of target prediction. In the
last several years, with the increase of relevant data sets, data driven methods
have been attempted. These methods use sophisticated machine learning and
statistical models to learn more discriminative features for target identification
[39]. Some popular data driven tools are TargetSpy [33], miRanda-mirSVR [3]
and Avishkar [12]. However, such methods have yet to resolve the issue of high
false positive rate. The innovation of more advanced sequencing techniques, and
therefore more precise data sets, along with recent advances in machine learning
methods, could lead to the development of more accurate algorithms.

The miRNA targeting process has not been well understood; biologists are
especially interested in approaches that may provide insights about the mech-
anisms of target recognition. Recent experimental studies of miRNA targeting
reveal that there are multiple and different mechanisms for this process, while
the earlier belief was merely based on seed match of miRNA and target site
sequences [6]. Currently, it is still not clear how many different and exclusive
mechanisms guide miRNA targeting, therefore computational models which not
only work well but also give insight into the biological mechanisms, are very
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desirable. Some machine learning techniques such as Bagging and Boosting or
Random Forest aim to learn multiple hypotheses from the input data, but they
do not provide any clue to check if these hypotheses are biologically meaningful
or not. Biologically meaningful features here means those characteristics that
have been experimentally confirmed to be part of a miRNA targeting mecha-
nism, such as appearance of Adenine at the far 3' end of a target site.

In this work, we introduce a multi-hypothesis learning (MHL) method that
builds specific models and hypotheses for each mechanism of miRNA targeting.
We exploit the models for two main purposes; first to build an miRNA target
prediction algorithm with a superior performance, and second to partition the
miRNA target dataset in a biologically meaningful way that could be used for
further understanding the targeting mechanisms or to discover new target deter-
minants. To verify our approach we evaluated our method on human and mouse
data. The results show that the partitioning is indeed biologically meaningful.
Moreover, significant performance improvements on target prediction confirms
learning multiple hypotheses can help outperform top machine learning algo-
rithms such as RandomForest. Feature analysis of the partitions produced by
MHL reveals interactions in miRNA and target duplex that are verified by the
biology literature. This supports our conjecture that MHL could aid to mine
meaningful features, which could be used as part of in vivo experiments.

2 Data Sets

The success of data driven methods critically relies on the quality of the data. To
build the most accurate models and the most realistic evaluations, we extracted
our data from mirTarBase [15], one of the most up-to-date data sets and the
most referenced resource for miRNA target prediction research. In particu-
lar, mirTarBase contains more than 360,000 experimentally validated miRNA-
target duplexes from 18 different species. We are mostly interested in testing our
machine learning method with both human and mouse records.

From mirTarBase, human and mouse miRNA-target duplexes were extracted
whose secondary structures have been provided in research articles. Such
duplexes were selected as positive samples for our method. However, negative
samples are not directly available. Theoretically, any stretch of an appropriate
length other than the real target in the 3'-UTR of a targeted mRNA gene can be
considered a negative target of the corresponding miRNA. We randomly selected
ten locations in the 3'-UTR of a targeted mRNA gene to pick up the negative
samples for each positive sample with a ratio of ten to one. Each sample is a
pair of miRNA sequence of length 22 and a site sequence of length 25 which is
real target site for positive samples or a negative site that is not a target for the
miRNA.

2.1 Test Set and Training Set

We have one training set and two test sets. The human dataset is split 80%
to 20% into the training set and human test set. All mouse data composes our
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second test set. In the human data extracted from mirTarBase, there are 322
unique miRNAs, 3651 target site sequences and 3722 pairs of miRNA and target
sites. On average, each miRNA has >10 targets sites. If we randomly select test
set samples from the whole database, the odds of having many miRNAs in both
test and training sets is high. To avoid such overlaps and to have the most reliable
test set, we indexed pairs of miRNA and target sites by miRNA sequence. In
addition, to make a test set with a similar distribution to that of the whole
dataset, we sort samples by miRNA sequences, put four consecutive (based on
the sorting order) miRNA sequences and all their target and non-target sites in
the training set, then one miRNA sequence and all its targets and non-targets
into the human test set and so on. In this way and in terms of miRNA sequence,
not only do the human test set and training set have no overlaps but also the
test set has very similar distribution to that of the whole database. Both test
sets and training sets have ratio of 1:10 for positive vs. negative. The human
test set consists of 6127 samples (557 positives vs. 5570 negatives), and the total
size of the mouse test set is 517.

3 The Model and Method

In this section, we introduce a feature selection approach which not only is more
efficient for miRNA targeting than previous data mining feature selection meth-
ods, but also it is biologically meaningful too. Data mining algorithms could
not be applied directly on this problem because each sample is composed of
sequences of miRNA and target, and the miRNA sequence is identical among its
positive(s) and its negative samples. Hence when we ran Weka [38], a data min-
ing package, to extract features, all miRNA sequence nucleotides were excluded
from selected features set. To cope with this problem, features must be defined
based on correlations of miRNA and its target nucleotides rather than merely on
sequences of nucleotides. In addition, and to incorporate biological knowledge
of miRNA targeting, we extracted features from the secondary structure of a
duplex associated with every sample.

We customized RNAfold [24], a widely used secondary structure prediction
tool for RNA sequences, to predict a specific structure for a pair of miRNA and
target sequences given the most recent discoveries on the mechanisms of miRNA
targeting. Biologically, sequences of miRNA and target sites should not make
base-pairs with themselves but with the other sequence. In general, RNAfold
could predict structures in which miRNA or target site sequences might bind
to themselves. To avoid this problem, and include information about in vivo
process of miRNA target binding, we tuned RNAfold to predict the structure
of duplex based on rules we collected from biological literatures explaining the
actual mechanisms of miRNA targeting.

The seed of an miRNA consists of the nucleotides number 2 to 8 from the
5' end of the miRNA [21]. It is believed that the process of nucleotide binding
between the miRNA and its mRNA target starts from this region [32]. When the
binding in the seed region is continuous for 6 to 8 bps, it is called a canonical seed;
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otherwise it is called non-canonical [23]. Though the seed binding is considered
the most important identifier for miRNA targets in mammals [29], a recent study
shows it is not the only mechanism for miRNA targeting [6]. To have a more
comprehensive model, we considered correlations that occur not just in the seed
region but also in all other regions across a miRNA and its target.

3.1 RNAfold Customization and Feature Selection

RNAfold for a given biomolecule sequence of nucleotides predicts the most sta-
ble secondary structure of the molecule. To use it for predicting miRNA and
target site duplexes, we concatenated miRNA and target site sequences with a
subsequence of length four ‘X’s in between, as shown in Fig. 1. This sequence of
length four is the shortest sequence that we could add and still get the same MFE
(minimum free energy) for the structure as the MFE we get from RNAcofold
[24] when it predicts the duplex between miRNA and target site.

RNAfold can have a constraints file as an input parameter, to enforce the
structure prediction process to occur based on a user's domain knowledge. Here
we set these constraints for the miRNA targeting mechanism, to include rules
for base-pairs which are biologically expected to happen in seed, and rules pro-
hibiting miRNA nucleotides from binding to miRNA itself. Similarly, there are
rules avoiding target site sequence to bind over itself. We applied all these rules
for duplexes with canonical seeds, while releasing seed base pairing constraints
for non-canonical seeds.

Biological experiments and in vivo methods reveals several mechanisms for
miRNA targeting [6]. The earliest discovered and the most dominant method of

Fig. 1. RNAfold customization for a miRNA target duplex; sequences of miRNA and
target site are concatenated with a subsequence of length four ‘X’s in between. Base
pairing among nucleotides of one sequence is prohibited, either for miRNA or the
target site. A structural study on the mechanism of miRNA targeting [32] reveals that
the nucleotide in t1 goes into a pocket inside the Argonaute protein structure and
does not pair with the corresponding nucleotide on miRNA. we added a constraint to
prevent t1 from such a base pairing with the miRNA. Base-pairs (in purple color) are
enforced through the customization if the corresponding nucleotides are complimentary
matching. black dashed lines show possible locations of valid base-pairs, and we let
RNAfold to predict them. (Color figure online)
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targeting was based on seed matching [10,20]. In this mechanism, miRNA carried
by the Argonaute protein makes initial base pairs in the seed area. These bindings
open the groove of Argonaut molecule to accommodate the target site [32]. To
customize RNAfold for predicting duplexes in a similar fashion, we aligned the
seed part of miRNA with nucleotides 2 to 8 from 3' side of target and pair these
bases that can match to each other mutually; i.e. Adenine (A) to Uracil (U),
Cytosine (C) to Guanine (G), Guanine to Uracil and vice versa.

The secondary structure predicted by RNAfold is a list of base pairs between
nucleotides in an miRNA and its target site. To apply machine learning based
algorithms on the structure, we needed to map it to a vector of numbers. These
base pairing features are nominal and to convert them into numerical values while
maintaining their independence, we encoded them with the One-hot-encoding
(OHE) approach [34]. Biologically there is no significance to the ordering among
six different base pairs; to keep this independence, we encoded each matching
base pair with one bit, totaling six bits, and one extra bit for mismatches or
no base pairs. One and only one of these seven bits is hot or one at a time. In
an miRNA duplex structure there might be bulges on either miRNA or target
sequence. To incorporate this information into the vector we added two integer
values indicating size of bulges on the miRNA and on the target site, adjacent
to each nucleotide. These values are zero if there is no bulge in the structure
next to the current nucleotide. In total there are 9 features per each miRNA
nucleotide.

Experimental studies on human miRNA targets showed Adenine is a very
frequent base at the far 3' end of a target site, i.e. at t1 [20,32]. To add this
biological preference to features set, we added four bits corresponding to A,
C, G and U at t1. A study on the structural basis of miRNA targeting [32],
revealed that the nucleotide in t1 goes into a pocket inside the Argonaute protein
structure and does not pair to the corresponding nucleotide on miRNA, i.e. g1,
which is the first nucleotide on 5' end of the miRNA. Therefore, to reduce the size
of features set, we excluded g1 from being encoded. A factor indicating stability
of a structural binding is MFE, we included it as the last feature. We fixed the
length of miRNAs to 22 nucleotides, but g1 is not considered, therefore the total
number of features for each sample is 194 or (1 + 4 + 21 * 9). If the length of
miRNA is larger than 22, the sequence is trimmed to 22 from 3’ side of miRNA.
This procedure is illustrated inside dashed area of Fig. 2. Our MHL algorithm,
to be introduced in the next section, treats each sample as a vector of these 194
features and learns several hypotheses each corresponding to a different miRNA
targeting mechanism. Figure 2 shows all components of our bundle algorithm
including the feature selection part and the MHL algorithm.

3.2 The Algorithm

The idea of the algorithm is to divide the dataset into two disjoint subsets sb1 and
sb2 such that these two subsets have similar distributions of labels or classes. It
learns the major pattern in sb1 with classifier c1 and stores it as model m1. Then
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Fig. 2. Our bundle algorithm; it gets two
sequences of miRNA and target, concate-
nates them with subsequence ‘XXXX’.
The resulting sequence is passed to
RNAfold that we customized as explained
in Fig. 1. The customized RNAfold pre-
dicts the secondary structure of the
miRNA and the target duplex. The struc-
ture is encoded as a vector of features and
passed down to MHL (Shown in Fig. 3).

Fig. 3. The illustration of the MHL
recursion algorithm; Dataset D is split
to subsets A and B, then a classi-
fier ci is trained on A. It captures the
dominant pattern, here circles. The
trained model can detect the similar
pattern in B, i.e. circles; these form the
can decide set and are removed from
B. The remaining data in B, i.e. the
cannot decide set is combined with A
and split again. In each recursion a
model, or a hypothesis, is learned for
the current dominant pattern of data.
The recursive process continues until
no dominant pattern is left, then the
last model is trained on the remaining
samples and the process stops.

it partitions sb2 based on m1's performance into two parts can-decide or cannot-
decide samples. The subpartition can-decide contains instances where m1 can
predict their labels with confidence while the other subpartition includes those
that m1 is not sure about their classification. Subsets cannot decide and sb1 are
merged to yield a new training set. The process is repeated recursively on the
new merged set until no further partitioning into can-decide and cannot decide
is possible.
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The algorithm consists of two main parts: Trainer and Tester. Trainer gets
the training set T0, a classifier set C, and a desired sensitivity and specificity:
sen and spec. During a recursive procedure, Trainer builds regression models,

i.e. hypotheses, specific for different patterns of data, which are observed in the
input training set T0. It also stores each produced model M along with two
thresholds Tup and Tdown for the Tester part. For every sample evaluated by M
with a value ≥ Tup, it would be classified as positive while labeled as negative if
it's evaluation value is < Tdown. The model M guarantees the desired sensitivity
and specificity sen and spec for the can-decide partition. When the evaluation
value is between Tdown and Tup, the model does not classify the sample and it
would be added to the cannot decide set.

3.3 Trainer

Trainer consists of three functions: Splitter(), Model Builder(), and Threshold
F inder(). The Splitter (D,C) gets a dataset D and a set of classifiers C as

input. Classifiers are Weka training modules accessible through its API (Appli-
cation Programmable Interface). The Splitter() function splits the input set D
into two subsets A and B by the Stratification method [35] to maintain the
same ratio of positive samples versus negatives in these subsets as it is in D.
A and B are disjointing and complement of each other corresponding to D, i.e.
A ∪ B = D. By calling the function Model Builder(ci, A,B), the model mi is
built by classifier ci on dataset A. In addition, the function splits B into can-
decide and cannot decide subsets by evaluating mi on B samples. A is merged
with cannot decide and is returned as Dnew1, the new training set. Then the
process is recursively repeated on this new set. To avoid any bias toward the
way we split the data by the Stratification method: we swap the position of A
and B then repeat the process.

Depending on how high the thresholds sen and spec are chosen, the Model
Builder() function may not be able to build such a model and might not return

a new training set. In such a case, it returns the same set as the input training
set, indicating it failed to build the desired model. Given this condition, function
Splitter() builds a model with ci on the input training set D and stops.

There are two thresholds associated with each trained model; Tup and Tdown.
The algorithm Threshold F inder computes these thresholds such that the
model mi had a given and desired sensitivity and specificity sen and spec.
The higher sensitivity and specificity resulted in larger cannot decide subset in
B. We denote the cannot decide subset as β.
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Algorithm 1: Splitter (D,C)
1 foreach classifier ci ∈ C do
2 Split D into two subsets A and B by the Stratification method;

3 Dnew1 = Model Builder(ci, A, B) ; /* Model mi is stored as mia. */

4 if |Dnew1| < |D| then
5 Splitter (Dnew1, C);
6 end

7 Dnew2 = Model Builder(ci, B, A) ; /* Model mi is stored as mib. */

8 if |Dnew2| < |D| then
9 Splitter (Dnew2, C);

10 end

11 if |Dnew1| == |D| OR |Dnew2| == |D| then
12 train ci with D, store it as mi and stop;
13 end
14 end

Algorithm 2: Model Builder(ci, sa, sb)
1 Train classifier ci on set sa, store the trained model as mia ;
2 Evaluate set sb by model mia ;
3 Store the evaluations as a list Lb of Pair(sample.label, sample.evaluation);
4 Pair (Tdown, Tup) = Threshold Finder(Lb, sen, spec) ; /* find T's satisfying sensitivity and

specificity. */

5 β = subset of sb that evaluated as >= Tdown and < Tup ; /* the cannot decide subset. */

6 Store the model mia with (Tdown, Tup);
7 Store (sb − β) as an ARFF file ; /* sb − β is the can decide subset, store it for further

feature analysis. */

8 Return sa ∪ β.

Algorithm 3: Threshold Finder (Lb, sen, spec)
1 Tup =1, Tdown =0;
2 Votes [] = ∅;
3 do
4 foreach pair pi ∈ Lb do
5 if pi.evaluation >= Tup then
6 Votes[pi] = positive;
7 end

8 if pi.evaluation < Tdown then
9 Votes[pi] = negative;

10 end

11 end

12 Compute sentmp and spectmp for Votes[];
13 if sentmp < sen OR spectmp < spec then
14 stop and break;
15 end

16 Tdown+ = Δ ; /* Δ = 0.05 */

17 Tup− = Δ ;

18 while Tdown < Tup;

19 Return Pair(Tdown, Tup);
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3.4 Tester

The Tester procedure loads all model files, mi's, from the training step into the
memory and when a new and unlabeled sample is given for evaluation, all models
examine the sample. If a model evaluates the sample with a value between Tdown

and Tup then it does not vote, otherwise it votes with confidence as positive if
the value is ≥Tup and as negative for the value <Tdown. Each vote associated
with a weight, which is the size of the dataset used to build the model. The
weighted average of all votes is returned as the final prediction. If all classifiers’
evaluation values are between Tdown and Tup, that means there is no vote for
the sample and it is predicted with label zero.

4 Results and Discussion

In the training set, there might be several patterns of miRNA targeting, here we
denote them symbolically by circles, squares, triangles, and etc. as an example
shown in Fig. 3. Initially, circles are the dominant pattern. The MHL algorithm
divides it to subsets A and B. Classifier c learns circles pattern when it runs
over subset A and creates a model for circles, i.e. mc. Evaluating B with mc

divides B into two partitions; samples decidable by mc, i.e. the can decide set,
here circles, and samples that mc is not sure about, called cannot decide set.
Circles are removed from B because we have mc that can detect them, but the
rest of B are not recognizable by mc so they are added to A to form a new
training set. Now, in the new training set squares are the dominant pattern and
in next recursion step, a model is built for them. This recursion will continue
until all patterns are learned or there is no dominant pattern left. In later case,
a model for the remaining samples is created by c and recursion stops.

4.1 Test of Our Multi-hypothesis Learning (MHL) Bundle
Algorithm

To test the effectiveness of our algorithm, we compare the Area Under the Curve
(AUC) of different Machine Learning (ML) models from the Weka package [38]
versus our Multi-Hypothesis Learning (MHL) bundle algorithm. Table 1 and
Table 2 present these comparison results on the human (HSA) and mouse (MMU)
test sets, respectively. Columns of these tables are classifier(s) name, parameter
sensitivity and specificity i.e. sen and spec for MHL, AUC of ML models, and
AUC of our algorithm when the same ML classifier used as underlying model in
the MHL.

These tables show that our algorithm is effective, especially when the ML
model does not perform well on a test set. The tables show that our method
MHL has the best performance with Linear Regression. For the human test data
set, the AUC of this model for sequences of miRNA and target sites is 0.69 and,
when the samples are evaluated by MHL, it increases the AUC to 0.93. The
algorithm improves the AUC by 0.24 which is the highest increase over the ML
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Table 1. Area Under the Curve (AUC) of different Machine Learning (ML) models
versus our Multi-Hypothesis Learning (MHL) algorithm on HSA (Human) test set,
|HSA| = 6129 samples. The last two rows of the table show performance of miRanda [4]
and RNAybrid [30] on the test set [28]. RNAhybrid and miRanda performed similarly
and MHL surpasses these methods due to two main reasons; first RNAhybrid and
miRanda are rule-based while MHL is data-driven, and second MHL hypotheses are
trained on experimentally verified samples from mirTarBase records. miRNA duplexes
with non− canonical seeds [23] might have higher MFE than duplexes with canonical
seeds and MFE based target prediction tools such as RNAhybrid and miRanda may
not be able to detect them. On the other side, MHL learned specific hypotheses for
non − canonical samples, and this gives a unique advantage to MHL algorithm to
outperform these rule-based methods.

Classifier(s) ML models sen/ spec MHL algorithm Improvement

Random Tree 0.59 85/85 0.78 0.19

DecisionStump 0.58 85/85 0.75 0.17

REPTree 0.82 85/85 0.93 0.11

RandomForest 0.92 85/85 0.92 0.00

ANN 0.66 90/90 0.83 0.17

LinearRegression 0.69 85/85 0.93 0.24

M5P 0.85 90/90 0.93 0.08

RandomTree& DecisionStump N/A 85/85 0.84 N/A

REPTree& RandomForest N/A 80/80 0.93 N/A

miRanda 0.50

RNAhybrid 0.50

model itself. It seems the highest achievable AUC for our training and human
test sets is 0.93; Random Forest is the only classifier that our algorithm does
not have improvement over it as it already performed very well with AUC of
0.92. The effectiveness of the MHL algorithm is more obvious when it enables
mediocre-performed classifiers such as REPTree, Linear Regression and M5P
to beat Random Forest. Classifiers performing poorly on this test set such as
Random Tree, Decision Stump and Artificial Neural Networks (ANN) can also
be used in the MHL module to deliver a performance of 0.75 to 0.83 in AUC. The
AUC of ML models has an average of 0.73 with a standard deviation 0.13 while
our algorithm can perform with AUC average of 0.87 and standard deviation
0.08. Our algorithm improves the average performance by 14%. To compute the
averages, we did not consider combined classifiers, i.e., the last two rows in both
tables are left blank.

We conjectured that some patterns of data could be learned better with
a classifier than with the others, therefore we recursively searched all possible
combinations of partitioning with different classifiers. To test this idea, we used
combinations of RandomTree and DecisionStump in MHL and surprisingly, the
AUC increased to 0.84 from 0.78 for RandomTree and from 0.75 for Decision-
Stump, when these two classifiers were used individually in MHL. This combi-
nation outperformed these models by 0.25 if they were used independently and
without MHL.
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Table 2. Area Under the Curve (AUC) of different Machine Learning (ML) models
versus our Multi-Hypothesis Learning (MHL) algorithm when they were trained on
Human and tested on MMU (Mouse) test set, |MMU | = 517 samples.

Classifier(s) ML models sen/ spec MHL algorithm Improvement

RandomTree 0.74 85/85 0.95 0.21

DecisionStump 0.48 85/85 0.61 0.13

REPTree 0.93 85/85 1.00 0.07

RandomForest 0.98 85/85 0.99 0.01

ANN 0.75 90/90 0.97 0.22

LinearRegression 0.52 85/85 0.99 0.47

M5P 0.95 90/90 0.97 0.02

RandomTree& DecisionStump N/A 85/85 0.94 N/A

REPTree& RandomForest N/A 80/80 1.00 N/A

Human and mouse branched from a common ancestor about 80 million years
ago. They have similar genomes and virtually the same set of genes [11]. There-
fore, it is of interest to train a model by human genomic data and test it on
mouse data sets. Similarly we ran the same model used for testing human data,
on mouse dataset and the results are shown in Table 2. Our algorithm improves
over all ML classifiers and the maximum improvement again is for Linear Regres-
sion with an increase of 0.47 in AUC. The average performance of our algorithm
is 0.93 with a standard deviation of 0.14 while ML models have an average of
0.76 and standard deviation 0.14. The algorithm average performance surpasses
over ML methods average by 0.17.

Contrasting Table 1 with Table 2 shows that the ML models and our algo-
rithm performs slightly better on mouse than on human data. The similar perfor-
mance of these models on both mouse and human test sets suggests that miRNA
target duplexes and targeting mechanism features are evolutionary conserved
across both species. Some miRNAs have conserved sequences among human and
mouse, consequently there might be an small portion of samples with similar
sequences in both the (human) training set and the mouse test set. This could
be the reason for a larger performance improvement on the mouse versus the
human test set. In the human test set, we reduced the chance of miRNAs with
similar sequences in both training and test sets by sorting miRNAs and dividing
them between training and test sets alternatively with the given ratio of 10 to 1.
Moreover, the test set was subtracted from the training set to avoid any chance
of overlaps between sets. In the mouse test set, any correlation with the human
training set is due to evolutionary conservation. Therefore, a small portion of
miRNAs which are common between mouse and human, may lead to sample
similarity between human training set and mouse test set.

Some machine learning packages, for example RandomForest, or GraB-
miTarget [28] a hybrid model of a graph and an SVM (Support Vector Machine),
have AUC performance as high as 0.92, but the unique advantage of MHL over
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all other methods is to provide a clue into the available data and to partition
the data into data sets that are biologically meaningful clusters.

To examine if the clusters provided by MHL may have a different biological
meaning than the set of all training data, we compare features selected by CFS
(Correlation based Feature Selection) subset feature selection [14] from all train-
ing data versus the features extracted with the same method from the clusters.
From the Weka package we ran the CFS method on all training data; the fea-
tures extracted are shown in the first column of Table 3. The features are in the
format of i BP , i MisMatch, i Bulge on miRNA or i Bulge on target, where
i is the nucleotide index starting from 1 on 5' side of miRNA. BP composed
of two letters X and Y representing a canonical base pair between nucleotides
X and Y . As an example 2 AU depicts a base pair A − U where A is at index
2 of miRNA and U belongs to the target sequence. i MisMatch shows the
nucleotide at position i does not bind to the target. Features i Bulge on miRNA
or i Bulge on target represent a bulge at index i on miRNA or target respec-
tively. We then ran CFS on each of five subsets provided by the MHL method.
The extracted features by CFS for the subsets 1 to 5 are shown in Table 3 in
columns two to six. By contrasting columns two to six versus column one we can
see several biological details that are missing in column one; The appearance of
adenine in the first position of target, i.e., t1 A, is a major identifier of targets
for many human miRNAs [25] and MHL assigned all such samples to subset 2.
This t1 A is missing in column one which indicates CFS was not able to extract

Table 3. Feature selected by CFS (Correlation based Feature Selection), from complete
training set versus from five subsets partitioned by the MHL algorithm. The comparison
of first row with rows two to six shows that MHL can help to extract biological details
from subsets while they could not be captured by the CFS method on the complete
training set. In each feature the number represents the nucleotide index starting from
1 on 3' side of miRNA. For example, 2 AU means Adenine in the second position of
miRNA binds to a Uracil on target.
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it from the complete training set. There are several confirmed miRNAs with G:U
base-pairs or single nucleotide bulges in their seeds [5]. CFS on all training data
only has been able to detect bulges in positions 4 and 6 on miRNA, but with
MHL we can confirm these bulges in indexes 2, 3, 5 and 7, in addition to the
4 and 6 positions. Subset 2 includes miRNAs with bulges in indexes 2 and 3
and subset 4 contains miRNAs with no bulge in seed area. Subset 1 has miR-
NAs with bulges in the rear half of the seed, positions 4, 5 and 7. G:U wobble
base pairs have not been recognized in the first column (CFS without MHL),
but with MHL miRNAs with G:U base pairs have been detected and grouped
into subset 4. GC is a strong base-pair and a proposed biological mechanism of
targeting [32] claims base-pairs on positions 2, 3 and 4 make the groove inside
the Argonaut protein open to accommodate the target. MHL has been able to
cluster samples related to this mechanism into subsets 1, 2 and 5. Column one,
features extracted from all training data, does not include any GC base-pair in
miRNA target duplexes. Pairing to the 3' side of miRNA can compensate for
single-nucleotide bulges or mismatches in the seed region [2]. The first column
does not show a significant presence of such pairs, but columns 1 to 4 have con-
tiguous base-pairs and also have more individual pairs at the 3' side of miRNA;
Subsets 1 to 4 contain samples with adjacent pairs at positions 19 to 22. Subset
2, in addition, contains two more contiguous base pairs at indexes 16 and 17.
The feature 2 mismatch separates canonical seed samples from non-canonicals,
and MHL partitioned these two main type of samples into subsets 1, 3 and 5 for
canonicals, versus 2 and 4 for non-canonicals. Splitting samples into canonical
versus non-canonical subsets has not been explicitly coded into the MHL, but
MHL has been able to automatically learn exclusive hypotheses for them and
cluster the data accordingly.

These biologically interpretable details seen in subsets 1 to 5 could not be
extracted by the same feature selection algorithm on the complete dataset; in
other words the first column of the table lacks the details. This shows that the
MHL algorithm may provide subsets of the data that have biologically correlated
samples. The subsets can be further studied to determine targeting mechanism
of each sample and therefore for the associated miRNA. Based on the current
understanding of miRNA targeting mechanisms some subsets or features may
not have a known biological interpretation, but they can be used in in vivo
experiments to discover and verify new targeting mechanisms.

A unique advantage of MHL versus standard clustering algorithms is that
MHL clusters the data based on the optimum hypotheses it learns. To compare
the clustering performance of MHL with other popular algorithms, we ran several
clustering algorithms from Weka package - Canopy, Cobweb, EM (Expected
Maximization), FarthestFirst, FilteredClusterer and Xmeans [38] on our dataset.
The results are shown in Table 4; column one lists algorithms and the second
column is the number of clusters created by each algorithm. These methods
either created too many clusters or split the dataset into two large subsets.
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Table 4. This table compares MHL clustering performance versus other standard and
popular algorithms. We ran these methods from the Weka package, listed in the first
column, on our dataset. The second column shows the number of clusters created by
each algorithm. These algorithms either created too many clusters or split the dataset
into two large subsets. To evaluate the relevance of samples to each other in a cluster,
we then ran the CFS algorithm. If samples in a cluster are relevant, the CFS algorithm
gives a high Merit score for the selected features in the cluster. The Merit score is
between 0 and 1. For each algorithm, we computed the weighted average of Merit
scores for the clusters created by the algorithm, and it is shown in the column three.
By comparing columns two and three for other algorithms versus MHL, one can see
MHL could give better clusters in terms of the number of subsets and the average
Merit score for the subsets.

Clustering algorithm Number of clusters Merit scores (weighted
average of clusters)

Canopy 100 0.629

Cobweb 917 0.016

EM 15 0.441

FarthestFirst 2 0.56

FilteredClusterer 2 0.51

Xmeans 2 0.51

MHL 5 0.548

If samples in a cluster are relevant, the CFS algorithm gives a higher Merit
score for the selected features than if the samples are not related. The Merit
score is between 0 and 1; a high Merit score means a low correlation between
the selected features and a high correlation to the sample label. For each cluster
provided by the algorithms, we ran CFS and used the Merit score as an estimate
for the relevance of samples in the cluster. As the number of clusters provided
by different clustering algorithms varies, we computed the weighted average of
Merit scores for each algorithm as shown in the column three of Table 4. Weight
for each score is the proportion of the cluster size to the total number of samples
in the training dataset. Sum of the weights for each clustering algorithm is one.

Table 4 shows that MHL does better clustering in terms of the number of
clusters and the average Merit score for the dataset. MHL created five clusters
with an average Merit score of 0.548. The only algorithms with better Merit
scores are FarthestF irst with the score 0.56 and Canopy’s average score is 0.629.
FarthestF irst has an tiny advantage for the Merit score but it created two large
clusters. Canopy has the highest score while it created 100 small clusters. MHL
is nicely in balance for both the number of clusters and the average Merit score
and that is because of our unique approach for clustering, i.e., clustering by the
learned hypotheses. For each hypothesis learned, MHL chooses those samples that
the hypothesis could either accept or reject with confidence, a vote close to one
or zero respectively. Other algorithms, however, partition the dataset based on
attributes similarity. Sample attributes have different correlations to the label, and
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this could mislead the clustering algorithm away from partitioning by the most
predictive attributes. MHL exhaustively searches for the hypotheses with the high-
est predictive performance and eventually those optimum hypotheses cluster the
dataset; thus MHL created clusters are biologically meaningful and lead to better
predictive performance.

Given the importance of miRNA target prediction, dozens of algorithms has
been published in the last two decades. These methods vary based on the infor-
mation they use, their accessibility, being rule-based or data-driven and their
fundamentals. For a fair comparison of our method versus state-of-the-art meth-
ods, we studied several of the renown tools, such as, TargetScan [1], TarPmiR
[7], miRBase [13], DIANA-microT [26], miRanda [4], miTarget [18], RNAhy-
brid [30], Avishkar [12], TargetSpy [33], miRWalk [8] and miRanda-mirSVR [3].
Some of these methods utilize other information, for example, TargetScan [1],
miRanda-mirSVR [3] and DIANA-microT [26] use sequence conservation across
species, conserved or non-conserved microRNA family, and miRBase annotation.
Our MHL target predictions rely only on sequences of the miRNA and its tar-
get site. Comparing MHL with methods like TargetScan would be technically
not feasible because our collected data do not have the information used by
TargetScan. Source code or executable files for some methods are not available,
and they are accessible through their online web sites, for instance, miRDB [36],
miTarget [18] and miRWalk [8]. Our test set composed of 6,646 samples (HSA
6,129 samples and MMU 517) and we could not submit the test set as thousands
of online queries manually. Functionality of some of these methods is different
than our method, for example, TarPmiR [7] finds targets across a given mRNA
for a miRNA sequence while our data samples are pairs of short miRNA and
target site sequences, and MHL is about finding out if a pair bind to each other.
From available software and methods for miRNA tareget prediction, we could
only use those with downloadable source code or executable code. Moreover,
for a fair comparison, such methods would also need to predict a target site,
merely based on sequences of miRNA and target site. Software tools satisfying
all requirements were miRanda [4] and RNAhybrid [30]. These methods rely
on fundamental principles of miRNA targeting mechanism such as a lower free
energy binding and a stable secondary structure duplex. These metrics have had
reliable performance, therefore miRanda and RNAhybrid are still widely used
either solely or as core components of other algorithms such as miRanda-mirSVR
[3] and miRanda-MiRBase [27].

In the previous work by the authors [28] on the same dataset, RNAhybrid and
miRanda performed similarly and with Area Under the Cure (AUC) of 0.5. For
miRanda, miRanda Score and miRanda MFE, and for RNAhybrid RNAhybrid
MFE were used to distinguish targets from non-targets. In terms of AUC, MHL
surpasses these methods with high margins and there are two main reasons for
that; first RNAhybrid and miRanda are rule-based while MHL is data-driven, and
second MHL hypotheses are trained on experimentally verified samples, i.e. on
mirTarBase records. miRNAs duplexes with non−canonical seeds [23] might have
higher MFE than duplexes with canonical seeds, due to mismatches in the seed
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area. 58% of mirTarBase are non − canonicals and MFE based target prediction
tools such as RNAhybrid and miRanda may not be able to detect them. On the
other side, MHL learned specific hypotheses for non−canonical samples, and this
gives a unique advantage to our algorithm to outperform rule-based methods.

5 Conclusion

miRNAs are small endogenous non-coding RNA molecules that have a critical
function in suppressing genes and their dysfunction has been associated with
many diseases including cancer. Due to the importance of their effects in several
cell mechanisms, biologists are very interested to discover their functionality.
Their function may be correlated with the way they recognize their targets. A
lot of research has been ongoing to develop algorithms for miRNAs' target pre-
diction. In this work, we presented a multi hypotheses learner algorithm (MHL)
that aims for two purposes; first to predict miRNA targets with a high accu-
racy and second to provide partitions of samples biologically correlating with
each other in a partition. These partitions can potentially be used for better
understanding of targeting mechanisms as well as providing sequences for in
vivo experiments, to discover new mechanisms.

Our evaluations and results show that the partitioning approach can sig-
nificantly improve the performance of a machine learning method. Moreover,
feature selection in the resulting partitions reveals that the MHL partitioning
mechanism is indeed biologically meaningful and partitions have exclusive and
distinctive features that are confirmed in the biology literature.
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Abstract. RNA-seq andRibo-seq arewidespreadquantitativemethods for assess-
ing transcription and translation. They can be used to detect differential expression,
differential translation, and differential translation efficiency between conditions.
The statistical power to detect differential genes is affected by multiple factors,
such as the number of replicates, sequencing depth, magnitude of differential
expression and translation, distribution of gene counts, and method for estimating
biological variance. As power estimation of translational efficiency involves the
combination of both RNA-seq measurements and Ribo-seq measurements, this
task is particularly challenging. Here we propose a power assessment tool, called
RiboSimR, based purely on data simulation.RiboSimR, produces semi-parametric
simulations that generate data based on real RNA and Ribo-seq experiments,
with customizable choices on baseline parameters and tool configurations. We
demonstrate the usefulness of our tool by simulating data based on two published
Ribo-seq datasets and analyzing various aspects of experimental design.

Keywords: Ribosome profiling · RNA-seq · Simulation · Power analysis ·
Experimental design · Differential analysis

1 Introduction

RNA-seq and Ribo-seq are popular techniques for investigating the transcriptional and
translational landscape [1, 2]. The techniques use next-generation sequencing to pro-
duce genome-wide high-resolution snapshots of the total populations of mRNAs and
translating ribosomes, respectively. Although it is a less widely used assay, Ribo-seq
has shown that it can be used to assess the dynamics of ribosome activity during trans-
lation at a nucleotide specific resolution [1]. These techniques generally produce count
tables, which quantify transcription and translation for each gene. These tables can be
used to measure changes in transcription and translation across biological conditions,
treatments, or timepoints by calculating differential expression (DE), differential transla-
tion (DT), and differential translation efficiency (DTE). Differential translationmeasures
changes in translationwithout taking changes in transcript abundance into account, while
differential translational efficiency assesses changes in translation after accounting for
changes in transcript abundance [3].

In order to determine statistical significance when testing for differential genes,
sample replication is used to account for biological and technical variability [4].
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The amount of replication researchers should employ is a complicated but important
aspect of experimental design in and sequencing experiment. Additionally, for both
Ribo-seq and RNA-seq, there exists a minimum sequencing depth threshold for iden-
tifying biologically important genes [5]. Sequencing under this threshold reduces the
power of the test to identify differential genes, while sequencing above this threshold has
diminishing returns in terms of the yield of differential genes per amount of sequencing.
As we are dealing with read count data, which is commonly modeled using a negative
binomial distribution, counting error plays a role in gene determining optimal sequencing
depth [6, 7]. Genes with low counts are more greatly affected by this counting error than
thosewith high counts, and therefore, our ability to detect a differential gene is dependent
on the count value of the gene. Determining the appropriate levels of sample replica-
tion and sequencing depth for Ribo-seq and RNA-seq are critically important aspects of
experimental design and should to be assessed prior to conducting any experiment.

Our ability to detect differential genes can also be affected by which methods we
choose to usewhen performing tests for statistical significance. As sample sizes are often
limited, empirical Bayes methods are commonly used to estimate gene-specific biolog-
ical variation by shrinking variance estimates towards the average trend across all genes
[6, 7]. These procedures are typically effective at providing variance estimates which
are closer to the biological variance, but can also introduce dependencies amongst genes
that violate some of the assumptions of the error-controlling procedures during multiple
testing correction. It is essential that researchers understand the differences in method-
ologies between tools for differential analysis, as they often contain different variance
estimation procedures and multiple testing correction methods, both of which can have
significant effects on the results of the tests. Other seemingly simple decisions, like
choosing a statistical significance threshold to use when determining differential genes,
can be of great importance. The level of change that is considered biologically signifi-
cant can vary based on the purpose of an experiment, as can trends in the relationship
between p-values and effect sizes [8].

Researchers have previously shown that simulations can be used to examine different
experimental design setups for RNA-seq, including scenarios with varying sequencing
depth and replicate number [9–11].Wu et al. proposed a prospective power analysis setup
to visualize power in multiple forms and across various circumstances [9]. Similarly to
other studies, they simulate datasets using the negative binomial distribution, and draw
parameters from real experiments. In Ribo-seq, the complexity of these experimental
design questions only increases, as we must ask ourselves if our decisions might effect
each experiment type differently. Researchers also need to assess scenarios where there
are potentially large discrepancies in the level of sampling depth and replication between
RNA-seq and Ribo-seq experiments. Issues can also arise when testing for statistical
significance, as evident by the increased amount of discrepancy amongst methods which
employ more complex two factor tests to calculate differential translation efficiency
[12–15].

We therefore propose a comprehensive simulation strategy for the purpose of per-
forming dynamic power analyses of Ribo-seq experiments. We apply this strategy to
assess various questions in experimental design of Ribo-seq and RNA-seq experiments.
These questions include the optimal level of sample replication and sequencing depth,
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the tradeoff in value of increasing depth versus replication, the effect of a gene’s expres-
sion has on our ability to identify it as differential, the effect of adding differing amounts
of depth and replication to pre-existing experiments, and the effect of various tools and
parameters for performing differential analysis. We show the effects of this analysis
using two datasets in Arabidopsis thaliana and Toxoplasma gondii. Furthermore, we
present a R Shiny web application which allows users to perform simulations and power
analyses based on their own data or pilot datasets. This tool can be used to decide which
experimental parameters a user wants to use in a prospective project, or to aid them to
add to a preexisting study.

2 Methods

We propose the web application RiboSimR, which uses simulations to evaluate the
effect of experimental design on our power to identify differential genes in Ribo-seq
experiments. Our simulation methodology is largely adapted from Wu et al.’s work on
RNA-seq simulation, and our tool is composed of two similar steps [9]. Initially, we use a
semi-parametric simulation scheme to produce count tables for Ribo-seq and RNA-seq
experiments. These tables are made by drawing parameters from experimental count
tables provided within the tool, or optionally uploaded by the user. The simulations
therefore borrow multiple aspects from the real data, such as the distribution of bio-
logical dispersion within genes, the distribution of average transcription and translation
levels, the negative relationship between dispersion and count magnitude, and the posi-
tive association between average transcripts and footprints. Secondly, we assess power
and false discovery rates (FDRs) for the simulations using a large number of custom
visualizations.Within the output of RiboSimR, we highlight features like false discovery
cost, stratified power, and sequencing value. The tool allows users to customize various
parameters within both the simulation setup and output generation steps.

2.1 Simulation Strategy

In order to performdownstreampower analyses,wefirst use a negative binomialmodel to
simulate both RNA-seq and Ribo-seq count tables. Researchers commonly use negative
binomial models to generate RNA-seq and Ribo-seq count data, because the flexibility
of these models allows for accurate representation of the mean-variance relationship
found in these data [6, 7]. The NB distribution corresponds to a gamma-Poisson mix-
ture, with the gamma distribution representing the biological variation, and the Poisson
layer modeling the variability in sequencing read counts [9]. If Ygi is the count value for
gene g in replicate i, then Ygi ∼ N B(siμg, φg), where μg is the mean count for gene g,
φg is the dispersion for gene g, and si is the normalization factor for the library size of
replicate i. We use this technique to model RNA-seq and Ribo-seq counts separately, i.e.
each gene has a different mean count for Ribo-seq (YgiRibo) and RNA-seq (YgiRNA). Our
method uses non-parametric resampling ofmean count and dispersion parameters empir-
ically from existing datasets, as we lack a valid justification for drawing the parameters
parametrically. The dispersion parameter corresponds to the squared biological coeffi-
cient of variance, and can be thought of as representing the biological variation of gene
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expression between replicates [6, 7]. We choose to sample mean count and dispersion
parameters for individual genes as pairs in order to preserve their relationship, which has
been previously described [6, 7]. Additionally, we sample parameters for our simulated
RNA-seq and Ribo-seq counts in pairs, as there is a positive relationship between the
level of transcription and translation within genes. For example, for a simulated gene
g, we will sample parameters [μgRNA, ΦgRNA, μgRibo, ΦgRibo] from a single row of the
empirical count table.

Another important step in our simulations is to set effect sizes. As we seldom know
the precise amount of DE, DT, and DTE that is biological significant within an exper-
iment, this can be a risky assumption to make. These effect sizes are applied to mean
count parameters across the two conditions, in effect generating artificial differential
genes. For Ribo-seq experiments, we must assume separate effect sizes across the two
different experiment types. Several techniques have been used to set effect sizes for
simulated RNA-seq experiments, but we will focus on using a mixture model [9–11].
For a one factor test, such as a test for DE in RNA-seq, we let zg be the indicator
that gene g is differentially expressed across a given treatment, and the proportion of
differential genes be P(zg= 1) = π1. We have the effect size βg satisfying βg| zg=
0 = 0 and βg| zg= 1 ~ N(0,σ 2). This would be designated as a zero-inflated normal
distribution for βg. For Ribo-seq, because we are dealing with two experimental types,
we require both βgRibo, βgRNA and zgDT , zgDE , which describe the effect size and differ-
ential indicators for changes across conditions in either experiment type. We also define
the differential effect size between experiments as βgE where βgE= |βgRibo − βgRNA|,
and zgDTE as the indicator for differential translation efficiency. Therefore, we have four
possible types of differential genes:

1. βgRN A �= 0, βgRibo = 0, βgE �= 0 → zgDE = 1, zgDT = 0, zgDTE = 1
2. βgRN A = 0, βgRibo �= 0, βgE �= 0 → zgDE = 0, zgDT = 1, zgDTE = 1
3. βgRN A �= 0, βgRibo �= 0, βgE = 0 → zgDE = 1, zgDT = 1, zgDTE = 0
4. βgRN A �= 0, βgRibo �= 0, βgE �= 0 → zgDE = 1, zgDT = 1, zgDTE = 1

Up to this point, we have described genes with zg = 1 as differentially expressed,
but it may be the case that these genes are not biologically interesting, as |βgRNA| or
|βgRibo| may be extremely low but non-zero. We would expect to have little power to
detect these genes. Thus, we may be interested in defining differential genes of interest
with an indicator zg* = 1 if |βg| ≥ �. This allows us to investigate the power of finding
genes which we think are more likely to be biologically relevant. We can let the user
decide the ‘meaningful effect size’, �. The meaningful effect size can also be different
between experiment types, as users may expect larger overall differences to occur in
either RNA-seq or Ribo-seq, or want to relax constraints on either experiment type.

2.2 Differential Analysis

Once the count tables for both experiment types have been simulated, we can assess
differential expression, differential translation, and differential translation efficiency.
Table 1 depicts the scenarios for each type of differential test, assuming a meaningful
effect size. We have implemented four tools for analysis of differential genes: edgeR,
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DESeq 2, limma-voom, and DSS for analysis of DE, DT, and DTE [6, 7, 17, 18]. Tests
for DE and DT essentially ignore counts from the opposite experiment type, while tests
for DTE perform a two factor test which investigates changes in translation levels after
accounting for changes in levels of transcription. This can be seen as conducting an
overall test for interaction using the formula~Experiment + Condition + Experiment:
Condition, where we are looking for genes which respond differently to the treatment
relative to the experiment type [6].

Table 1. Differential scenarios, assuming effect size �

|βgRibo| < � |βgRibo| ≥ �

|βgE| < � |βgE| ≥ � |βgE| < � |βgE| ≥ �

|βgRNA| < � z*gDTE = 0 z*gDTE = 1 z*gDTE = 0 z*gDTE = 1

z*gDE = 0 z*gDE = 0 z*gDE = 0 z*gDE = 0

z*gDT = 0 z*gDT = 0 z*gDT = 1 z*gDT = 1

|βgRNA| ≥ � z*gDTE = 0 z*gDTE = 1 z*gDTE = 0 z*gDTE = 1

z*gDE = 1 z*gDE = 1 z*gDE = 1 z*gDE = 1

z*gDT = 0 z*gDT = 0 z*gDT = 1 z*gDT = 1

2.3 Power Assessment

For our purposes,we are not interested in finding geneswith variation between conditions
which is less than the effect size�, and can therefore restrict our genes to two categories:
|βg| < � and |βg| ≥ �, where βg represents the effect size for the test of interest, be it
DE, DT, or DTE. Table 2, which has been adopted fromWu et al. and simplified, shows
the possible scenarios for any test [9].

LetG be the total number of genes tested, whereG1 are genes which exhibit an effect
size of at least �, and G0 are genes which do not. Dg is the decision on any gene, where
Dg = 1 is a discovery andDg = 0 is a non-discovery. Here V represents the total number
of type I errors, or false discoveries, S the number of true positive, and R the total number
of discoveries. The type 1 error is therefore P(V > 0) and the FDR is E[V/R]. The FDC,
described by Wu et al., can be defined as the number of false discoveries made for every
true discovery, and represented as E[V/S] [9].

Here we are labeling genes which have 0 < |βg| < � as false discoveries, meaning
that we only want to measure our ability to find genes with a meaningful effects size,
and penalize all other discoveries.

Therefore, when we talk about power, we are actually discussing a targeted power,
instead of a family-wise power, which is the probability of detecting all true differential
genes [8]. This is because we both doubt our ability to find genes with very small
effect sizes, and also question the biological importance of such genes. The targeted
power, which from now on we simply refer to as power, is therefore E[S/G1]. For each
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simulation, we calculate the power, false discovery cost, and true positive rate of the
discoveries made using a differential analysis tool and nominal FDR provided by the
user. Averages across a number of repeated simulations are reported.

Table 2. Differential scenarios, assuming �

Differential? Discovery? Total

z*g Dg = 1 Dg = 0

|βg| < �

|βg| ≥ �

0
1

V
S

G0 – V
G1 − S

G0
G1

Total R G − R G

2.4 Implementation

We have implemented the proposed methods for simulation and power analysis in a R
Shinyweb application calledRiboSimR, available at http://pjperki2.shinyapps.io/power.
The tool allows users to upload their own count files forRNA-seq andRibo-seq and create
simulated data sets based on the parameters of their experiments. Users may also test
different experimental scenarios for prospective experiments using provided pilot data
sets. The app allows multiple options to customize the simulations, by choosing the size
of the datasets they wish to simulate, the number of repetitions, and the meaningful
effect size. Users may also choose between a large number of different visualizations,
which include simulated variations of sample replication and sequencing depth, gene
count stratification, comparisons between differential analysis tools, etc.… The tool
also provides the choice of which type of test they want to conduct (DE, DT, DTE),
and which power metrics they want to assess (power, true positive rate, false discovery
cost). A description of the various tools and functionalities included in RiboSimR can
be found at the apps home page. Runtime for the simulations depends on the size of the
simulated data and the number of repetitions conducted, but a typical simulation with
20,000 genes and 20 repetitions takes approximately 10–30 min.

3 Results

3.1 Data Preparation

To display the utility of RiboSimR, we performed simulations and power analyses using
two published datasets. TheMerchante et al. data is fromArabidopsis thaliana seedlings,
and was used to study of the role of the phytohormone ethylene as a gene-specific regu-
lator of translation [19]. The data are split into two conditions, control samples treated
with air, and ethylene treated seedlings. The Hassan et al. data are from intracellular and
extracellular Toxoplasma gondii parasites [20]. This data was used to quantify the dif-
ferences in translation between the intracellular and extracellular stages of the parasites.

http://pjperki2.shinyapps.io/power
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Both datasets contain two replicates from two conditions for both RNA-seq and Ribo-
seq. These datasets were chosen because they originate from studies which focus on
using both RNA-seq and Ribo-seq data to identify genes which show differential trans-
lation efficiency between two treatments, and because they are from different organisms,
and show varying levels of biological variability.

For all of the following simulations, we generate 20,000 genes and repeat each of
the simulations 20 times. We assume that 2% of all genes fall into each of the four types
of differential genes described in Sect. 2.1. Therefore, accounting for overlap, 6% of the
total set of genes areDE, 6% areDT, and 6% areDTE. These simulation parameters were
chosen to mirror the conditions of similar RNA-seq experiments [9]. The effect size for
non-differential genes is set to 0, while the effect sizes of DE and DT genes are drawn
from a normal distribution~N(0, 1.52). Means and dispersions for simulated genes are
drawn from the real data in paired sets with dependency. Unless stated otherwise, we
employ the quasi-likelihood F-test in edgeR to calculate genes with DE, DT, and DTE.
A meaningful effect size of 0.5 is used to determine biologically meaningful genes. All
of the following results and figures represent output from riboSimR.

3.2 Simulation Results

Figure 1 examines how the power of our tests for DTE, DE and DT are affected by
artificially altering the number of sample replicates and the sequencing depth. The x-
axis represents the factor by which the empirical depth is multiplied. For DTE and DT, it
seems as though, for a given replicate number, sequencing depth increases cease to yield
increases in power at around 75% of the real dataset size. This indicates that increasing
sequencing depth beyond this point would have diminishing returns.

However, the power to identify DE genes continues to increase as sequencing depth
increases. For each type of test, it is clear that higher power can be achieved by increasing
the number of sample replicates. This increase in power does not seem to have dimin-
ishing returns, as increases are observed in up to ten replicates. Our power to identify
genes which showDE seemsmore largely reliant on both sequencing depth and replicate
number than tests for DT and DTE.

To further quantify the differing effects of increasing the sequencing depth and
replicate number, we can compare experiments in which the same number of total reads
are added, but added by increasing only either depth or replicate number. Figure 2A
shows the results of such an analysis, where the blue line indicates increasing the total
number of reads by increasing depth, and the orange line indicates increasing the total
number of reads by the same amount, but via increased replication. These results once
again highlight that, for the Merchante dataset, power can only be increased by adding
replicates.

We also investigated increasing replication and depth at differing levels in the two
experiment types. The x-axis of Fig. 2B represents increasing levels of Ribo-seq repli-
cates, while the different colored lines represent the different numbers of RNA-seq
replicates. These results indicate that increasing the number of RNA-seq replicates gen-
erally has a larger positive effect on power than increasing Ribo-seq replicates. Figure 2C
shows the result of a similar experiment, but increasing depth instead of replication. Here
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Fig. 1. Simulations based on Merchante et al. data for (A) DTE, (B) DE, and (C) DT. X-axis
represents the factor by which depth is changed relative to the complete dataset. Different colored
lines represent number of simulated replicates. (Color figure online)

A
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Reps Depth

Fig. 2. (A)Value comparison between increasing reads via replications and sequencing depth. (B)
Effect of increasing replication at differing levels across experiment types. (C) Effect of increasing
sequencing depth at differing levels across experiment types. (Color figure online)
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we are simulating the addition of reads to existing datasets, and therefore we begin sim-
ulating at 200% of empirical read levels. As previously noted, adding additional depth to
theMerchante dataset has proven to have little effect on power, and these results indicate
that addition of varying levels of RNA-seq or Ribo-seq have little effect on these results.

Figure 3 shows a quantification of the power to identify genes which show DTE,
stratified by average RNA-seq read (3A) count and Ribo-seq read count (3B). These
results indicate that, for a given replicate number, our power to detect genes with DTE
is largely reliant on both the RNA-seq and Ribo-seq count for the genes. Our power to
predict genes with lower than 50 average reads across replicates is significantly lower.
For the RNA-seq reads, the difference in power between different replicate values is
more pronounced in low read count genes, indicating that increasing the number of
replicates can have a significant effect on our ability to find low read count genes which
truly show DTE.

Fig. 3. Power stratification for DTE by average count value in (A) RNA-seq and (B) Ribo-seq.
Simulated based on data from Hassan et al.

We also look tomeasure the effects that our choice of tools and parameters havewhen
testing for differential genes. Figure 4 shows the use of four different tools, edgeR,
DESeq 2, limma-voom, and DSS, for detection of DTE. The tools are evaluated by
measuring power and FDR from simulations based on both the Merchante and Hassan
datasets. The simulations are performed for both 2 and 5 replicates. The results in Fig. 4A
and C indicate that DESeq 2 and edgeR generally achieve the highest power for each
of the experimental setups, while limma-voom and DSS yield lower power. Figures 4B
and D show that, in terms of FDC, limma-voom appears to outperform DESeq 2 and
edgeR for both datasets, while DSS performs well for the Hassan data and poorly for the
Merchante data. These results indicate that nuanced differences between program may
effect results differently on an experiment-by-experiment basis. It is therefore valuable
to have a way which we can evaluate each program for a user’s specified dataset.
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Fig. 4. Tool comparison results for power and FDC of (A, B) Merchante et al. data and (C, D)
Hassan et al. data. Line types differentiate between using 2 and 5 replicates.

Figure 5 show the effects of three different FDR significance thresholds on power,
true positive rate, and false discovery cost for the Merchante data. The simulations
are performed for 1,5 and 8 replicates. As can be expected, the use of less stringent
significance thresholds leads to a larger number of true positives and higher power,
as the number of genes which pass the threshold increases. However, as can be seen in
Fig. 5C, the false discovery cost when using less stringent thresholds can be significantly
higher. In most cases, researchers should choose parameters values by balancing their
ability to identify truly significant genes with the cost of making false discoveries.
Interestingly, these results also depict a relationship between the significant threshold,
replicate number, and FDC. The differences in power and FDC between the three FDR
thresholds changes seems to be more drastic for two replicates than five and eight.
This implies that the choice of FDR threshold has a larger effect on false discovery for
experiments with a limited number of replicates.



RiboSimR: A Tool for Simulation and Power Analysis of Ribo-seq Data 131

Fig. 5. The effect of using different FDR significance thresholds on (A) power, (B) true positive
rate, and (C) false discovery cost. Colors represent differences in number of replicates. (Color
figure online)

4 Conclusion

In this paper, we describe RiboSimR, an R Shiny web application for the analysis of
experimental design parameters in Ribo-seq and RNA-seq experiments. This tool can be
usedprior to performing sequencing in order to test experimental designparameters using
provided pilot data, or after the fact, to test the effects of adding additional sequencing
information to an existing study. Using two published Ribo-seq and RNA-seq datasets,
we demonstrate how RiboSimR can be used to investigate the effects of these various
factors on the power to detect genes which exhibit differential expression, differential
translation, and differential translation efficiency.

Firstly we showed that we can assess the effects that variations in replicate number
and sequencing depth have on power to detect differential genes.Weprovided an example
of an experiment which has reached a critical sequencing depth threshold in terms of
identifying DTE and DT genes. For researchers, having the ability to predict the effects
of increasing sequencing depth can save them valuable time and money. The results
from our simulations also confirm the previously asserted notion that increasing sample
replication yields larger increases in power than increasing sequencing depth.

We further looked and quantify the effects of increasing replication and depth differ-
ently between experiment types. This simulation setup can aid researchers in testing the
experimental design parameters of an experiment they have already conducted, and help
them predict how recreating the experiment with different factors, or adding additional
information to their experiment, might affect their results.



132 P. Perkins et al.

We unexpectedly found that increasing the number ofRNA-seq replicates has a larger
positive effect on power than increasing Ribo-seq replicates. Additionally, RiboSimR
can be used to analyze the effect that the magnitude of expression and translation have
our ability to detect genes as differential. We confirmed that we have less power to detect
genes with low counts, and found that increasing replication, especially for RNA-seq
samples, had a strong influence on our ability to detect genes with less than 50 reads.

Finally, we tested the effects of more downstream parameters of differential analysis,
including the choice of differential analysis tool and significance threshold. While it is
not our goal to recommend a specific tool for identifying differential genes, we believe
that a platform which allows the comparison of tools for individual experiments is of
great use to researchers. We also highlight the importance of balancing power and false
discovery cost when choosing tools and significance thresholds. These choices can have
large effects that vary from experiment to experiment, and using an out-of-the-box tool
or p-value threshold can lead to misleading results or loss of information. In conclusion,
RiboSimR allows users to quantify the consequences of important experimental design
choices at various points throughout the experimental process.
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Abstract. Prostate cancer (PCa) is a heterogeneous disease. PCa is
stratified into risk groups based on clinical factors such as T-stage, Glea-
son score, and baseline prostate-specific antigen. Treatments are selected
based on these risk groups. However, we hypothesize that non-clinical
factors such as the radiation therapy (RT) center may also impact treat-
ment selection, and we investigate the impact of these factors on treat-
ment selection practice and their adherence to recommended guidelines
from the national comprehensive cancer network (NCCN). A total of
552 patients with intermediate or high-risk localized PCa related data
was collected from 34 radiation therapy centers of the Veterans Health
Administration (VHA), who were treated with definitive RT and with
or without Androgen Deprivation Therapy (ADT) between 2010 and
2017. Patients’ clinical information is extracted by manually reviewing
their medical charts. We also extracted treatment intended and treat-
ment administered information from consult and end-of-treatment notes,
respectively. The random forest classification algorithm was used to
identify the impact of clinical and non-clinical factors in treatment selec-
tion, their adherence to the treatment guidelines, and treatment alter-
ation (i.e., change in intended and administered treatments). We created
models for predicting treatment intended as well as treatment adminis-
tered. Our results demonstrated that non-clinical (i.e., treatment center)
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factors, along with clinical factors, are significant for predicting the
adherence of treatment intended to the NCCN guidelines. Furthermore,
the center served as an important factor for prescribing ADT; however, it
is not associated with the duration of ADT and is weakly associated with
treatment alterations. This presence of center-bias in treatment selection
warrants further investigation on details of center-specific barriers for
NCCN guideline adherence, and as well as the impact of center-bias on
oncological outcomes.

Keywords: Prostate cancer · Radiation therapy · Treatment
selection · Machine learning · Clinical informatics

1 Introduction

Prostate cancer (PCa) is the most commonly diagnosed type of cancer after
breast and lung cancer. In 2018 alone, over 160,000 new prostate cancer cases
and over 29,000 prostate cancer-related deaths were estimated in the United
States [1]. PCa is also one of the most heterogeneous type of cancer specifically
with respect to intermediate or high-risk PCa [2]. The non-invasive prostate-
specific antigen (PSA) test that has led to an increase in early detection of PCa
leading to more localized PCa diagnosis in recent years [3].

The National Comprehensive Cancer Network (NCCN) provides clinical
practice guidelines that are created by physicians to determine the best way of
treating PCa patients (besides other types of cancers), depending on their diag-
nosis, disease stage, age and other factors. PCa is also treated with monotherapy
or polytherapy. Physicians select the treatment modality based on four major
criteria - age, race, life expectancy, and NCCN Risk. Factors such as patient
preferences, survivorship goals along with tumor biology also play a crucial role
in optimizing the treatment modality.

A major consideration during the treatment options for PCa is to check
whether the cancer is contained within the prostate gland (localized), or has
spread outside the prostate (locally advanced) or has spread to other parts
of the body (metastasized). Radical prostatectomy (RP), external beam radio-
therapy (EBRT) and brachytherapy (BT) are the common primary treatment
options for localized PCa. Hormonal therapeutics such as androgen depriva-
tion therapy (ADT) is also used as neoadjuvant/adjuvant therapy. However,
ADT as monotherapy is not recommended for intermediate and high-risk cancer
patients by NCCN. Ideally, a treatment option recommendation would be based
on the randomized controlled trials (RCT) that compare efficacy and morbid-
ity of alternative treatment methods. There are no randomized trials showing
that one treatment is better than the other for the above-mentioned treatment
options. Hence, physicians use their personal experience and expertise to predict
the outcome of these treatment methods. Physicians also tend to have difficulty
weighing the relative importance of each of these factors and inherently possess
biases when predicting the treatment outcomes.
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Based on the aforementioned considerations, determining an optimal treat-
ment plan for the patient can be a challenging task for the physician. In order to
assist the physicians with more accurate prognosis, subsequent treatment out-
come prediction, and to make informed decisions, numerous predictive tools have
been developed [4]. These include probabilistic models, lookup and propensity
scoring tables, risk-stratification tools, classification, and regression tree analy-
sis, nomograms, and artificial neural networks [5,6] However, to the best of our
knowledge, no models have been reported that can identify why a prescribed (or
administered) treatment plan do not adhere to NCCN guidelines.

The predictive models for treatment plan (or outcome) prediction have a
major disadvantage. Such models do not consider the impact of non-clinical
factors associated with the treatment center. The factors associated with the
treatment center have shown to play a determining role in the physicians’
treatment prescription practices. Non-clinical factors can be patient-related,
physician-related or practice-related. These factors include patient’s prefer-
ence/availability, patients’ adherence, physician’s availability, cost, geographical
proximity, treatment centers’ equipment condition/availability, treatment cen-
ters’ cultural aspects, type of practice (private vs. public), availability of health
resources [7–10]. However, there have not been many studies which have inves-
tigated the extent of the contribution of these factors in the treatment selection
process itself. Thus the motivation of this study is two-fold:

1. To use both clinical and non-clinical features for localized and locally
advanced PCa patients from multiple VHA centers and use machine learning
methods to predict the treatment prescribed; such methods provide a statisti-
cal approach for calculating the weight (impact) of these clinical/non-clinical
features from an empirical and retrospective point-of-view.

2. To perform quality assurance assessments across the different centers and ver-
ify if the prescribed treatments were in concordance with NCCN guidelines.

This study presents a comparative analysis of treatment prescription consistency
across multiple VHA centers.

2 Materials and Methods

2.1 Data Source

The study cohort comprised of patients from the United States VHA. The VHA
has 40 centers treating cancer patients with radiation therapy (RT) across the
US. The patient cohort was generated as a radiation oncology practice assess-
ment (ROPA) initiative, in which clinical data of the most recently treated 20
patients from each center was collected to assess the quality of the treatment.
From here on, the generated data set is referred to as the VHA-ROPA data set.
The study was approved by the clinical research ethics committee of the VHA.
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2.2 Study Population

A maximum of 20 patients from 34 VHA RT centers are selected whose treat-
ment was completed between 2010 to 2017. Patients were included if they had
localized intermediate or high-risk PCa. Patients were excluded if they had pre-
vious malignancy, M1 disease, or lymph node involvement. The final cohort had
552 patients from the 34 centers with NCCN risk classified as Intermediate or
High.

2.3 Definitions of Variables

Definitions of variables used in our study are as follows.

Clinical Variables: We considered pre-treatment PSA count, Gleason score
(GS) [primary grade, secondary grade], Gleason Grade, Tumor staging [TNM-
stage], NCCN risk group, performance status, and quality of life (QoL) measures.
The values for these clinical variables were manually extracted from the consult
notes.

Non-clinical Variable: We defined Center-ID as a non-clinical variable. It
designates a unique ID to identify the VA radiation treatment center.

ADT Duration: NCCN guidelines define ADT duration as short term (ST) or
long term (LT). ST duration is 4–6 months, and LT duration is 2–3 years. We
further differentiated ADT duration based on intended and administered dura-
tion. The intended duration signifies whether it was mentioned in consult notes
during treatment planning, whereas ADT administered duration is calculated
based on the dates of ADT injection. Table 2 shows the ADT injection type and
their effective period in months depending on the dose. Table 3 shows the dis-
tribution of ADT intended and administered duration. A third category of not
otherwise specified (NOS) was used to indicate cases where ADT duration was
not mentioned in consult as a treatment plan.

NCCN Concordance: We defined the treatment prescribed or administered is
concordant with NCCN guidelines if they were as per the NCCN guidelines [12].

2.4 Model Selection

In this section, we present the details of feature-set selection, predictive models,
machine learning algorithms, and model evaluation metrics.

We used machine learning algorithms as a statistical tool to find the associ-
ation between the treatments and clinical and non-clinical features. We used a
supervised machine learning algorithm called random forests (RF) [13], to find
these associations. The RF algorithm, as the name suggests, is the ensemble of
decision trees. The RF algorithm takes the features (clinical and non-clinical
variables) and target (treatments) to build the individual trees with randomly
selected uncorrelated features set. The majority target predicted from all trees
becomes the final model prediction. The model also provides the significance
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of features in classifying the targets. The significance of all features sums to 1,
where higher the significance of a feature stronger is its association with the
treatments, and lower significance indicates the weaker or no association.

Feature Selection. We created two feature sets using the clinical and non-
clinical features to highlight the contribution of non-clinical features. The feature
sets (FS) are as below

1. FS-1: Clinical features only.
2. FS-2: Clinical and Non-clinical (Center-ID) features.

Table 1. Details of the clinical factors in the VHA ROPA dataset and their frequency
distribution, NOS: Not Otherwise Specified.

Data element Count Percentage

Total patients 552

Centers 34

Gleason score

Primary + Secondary 549 99.50

3 + 3 17 3.00

3 + 4 219 39.67

4 + 3 128 23.18

3 + 5 18 3.26

4 + 4 79 14.31

5 + 3 2 0.36

4 + 5 61 11.05

5 + 4 19 3.44

5 + 5 3 0.54

NOS + NOS 2 0.36

PSA 549 99.50

T Stage 549 99.50

T1a - T2a 457 82.79

T2b - T2c 64 11.59

T3a -T3b 20 3.63

TX 1 0.18

NOS 7 1.26

Risk 545 98.73

Intermediate 304 55.60

High 241 44.40

Performance Status 523 94.75

Quality of Life 400 72.46

Treatment Prescribed 552 100.0

BT 24 3.07

BT-ADT 1 0.13

EBRT 132 20.23

EBRT-ADT 382 59.28

EBRT-BT 2 0.27

EBRT-BT-ADT 11 2.00
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Table 2. ADT injection effective period based on the injection type and dose

ADT injection Dose Effective period

Leuprolide 3.75 mg 1 month

7.50 mg 1 month

22.50 mg 3 months

30.00 mg 4 month

45.00 mg 6 months

Goserelin/Zoladex 3.60 mg 1 month

10.80 mg 3 months

Table 3. Treatment concordance with NCCN guidelines. ST: Short Term, LT: Long
Term, and NS: Not Specified

NCCN risk Treatment ADT Duration Intended Administered Concordance with

NCCN

Intermediate ADT-BT NS 1 – No

LT – 1 Yes

BT 24 24 Yes

EBRT 115 115 Yes

EBRT-ADT LT 8 15 No

NS 11 – No

ST 142 146 Yes

EBRT-ADT-BT ST 1 1 Yes

EBRT-BT 2 2 Yes

High EBRT 17 17 No

EBRT-ADT-BT LT 9 4 Yes

ST 1 6 Yes

EBRT-ADT LT 185 145 Yes

NS 18 – No

ST 12 70 No

Statistical Models. VHA-ROPA dataset has patients treated with six differ-
ent treatment methods (Table 1): BT, BT-ADT, EBRT, EBRT-ADT, EBRT-
BT, and EBRT-BT-ADT. Based on the available treatment plans, we built the
following two models.

1. Model-1: Initial Treatment (EBRT-ADT vs EBRT): This model predicts
whether the patients will be treated with EBRT and ADT (EBRT-ADT),
or EBRT alone. A total of 514 patients were treated with these two tech-
niques, among which 382 patients were treated with EBRT-ADT, and 132
patients were treated with EBRT alone.

2. Model-2: ADT Duration (EBRT-ADT-ST vs EBRT-ADT-LT): This model
predicts whether the ADT prescribed duration is short term or long term.
Model-2 is further divided into 2 A and 2B. Where 2 A is EBRT with
ADT intended duration and 2B is EBRT with ADT administered duration.
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382 patients were treated with EBRT and ADT. Table 3 shows the treatment
with intended and administered ADT duration.

These models will use machine learning techniques to serve the dual purpose of (i)
creating a predictive model of initial treatment selection or ADT duration based
on the clinical and non-clinical features and (ii) showing the statistical correlation
of the individual features in terms of impacting the treatment selection or ADT
duration process.

For each of the above mentioned models, the data set was split 80 : 20
ratio into training and test sets. We used random forest algorithm for building
predictive models. Models are evaluated with macro-average precision, recall,
and F1-Score.

3 Results

Here, we report the results from our proposed models. We observed that treat-
ment non-concordance with NCCN guidelines can be due to the following two
reasons:

Firstly, overall treatment may not be in concordance with NCCN guide-
lines. For example, high-risk cancer patients treated with EBRT alone are not
in concordance with NCCN. Figure 1(A) & (B) shows the center wise all non-
concordant treatment counts based on ADT intended duration (i.e., prescribed
ADT) and ADT administered duration treatments respectively.

Secondly, overall treatment is in concordance with NCCN however the treat-
ment guidelines may be partially not followed. For example, a high-risk cancer
patient is treated with EBRT and ADT, but ADT duration is for short-term
instead of long-term. Figure 2 (A) & (B) shows the partially non-concordant
patient count of each center when patients are treated with EBRT and ADT;
the counts are again based on the ADT intended and administered duration
respectively.

Table 4 shows the Precision, Recall, F1-Score for model-1 (EBRT-ADT vs
EBRT). The goal in this model was to classify patients with treatment intent
being either EBRT or a combination of EBRT and ADT (EBRT-ADT). Model 1
with FS-2 performed better in all metrics when compared to FS-1. We observed
that model-1 has F1-Score of 74% with FS-1 and 82% with FS-2. These
results clearly demonstrate the significance of non-clinical feature (Center-ID)
in improving the overall classification performance.

Table 4 also shows the results of model-2 (EBRT-ADT-ST vs EBRT-ADT-
LT). Interestingly, in this case, FS-1 and FS-2 perform quite similarly with
94% F1-Score for models with ADT intent labels (with FS-1), while F1-Score is
decreased when the ADT administered labels were used. This may mean that
some external factors (not considered in our feature sets) play a role for caus-
ing the alteration from treatment from the prescribed to administered. Also,
non-clinical feature (Center-ID) found to have no affect on predicting the ADT
duration type as opposed to Model-1 (EBRT-ADT vs EBRT). Based on these
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observations, we hypothesize that while centers do play a role in determining
whether to prescribe ADT or not, they do not impact the actual ADT duration,
in case it was administered; in other words, all centers follow similar practice in
administering ADT for localized intermediate or high-risk PCa treatment.

We next evaluated the individual significance (i.e., contributions) of each of
the features from FS-1 and FS-2 in our models; the feature significance were
generated using the RF algorithm. Table 5 shows the feature importance of all
features in all models.

For both FS-1 and FS-2, PSA and Risk consistently ranked as significant fea-
tures in all the models. Specifically, for FS-1, PSA was ranked as the top feature
for Models 1, 2B. For Model-2A (ADT duration intended), Risk was ranked as
the top feature. This suggests that decisions on ST or LT ADT duration depend
primarily on the Risk with PSA being a secondary feature of importance; these
two features are primarily responsible in deciding the ADT course at the initial
treatment level; however, decisions in altering the treatment intent (as captured
in Model-2B with treatment administered) are impacted by the PSA and Total
Gleason score (which is the third ranked feature in this model). For Model-1, PSA
was ranked as the top feature with Risk as the secondary feature and T stage
as the third significant feature suggesting that decisions on treating the patients
with EBRT alone or a combination of EBRT and ADT depend primarily on the
Risk, PSA, and T stage values.

Fig. 1. Treatments in concordance with NCCN when all treatments are considered
at each center. Blue: treatments in concordance, Orange: not in concordance. (A):
Treatments prescribed at each center when ADT intent course is considered along
with all other treatments; (B): Treatments administered at each center when ADT
administered course is considered along with all other treatments (Color figure online)
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Fig. 2. Patients treated with EBRT and ADT (short term or long term). Blue: num-
ber of patients whose treatments are in concordance with NCCN, Orange: number of
patients whose treatments are partially not in concordance with NCCN. (A): Treat-
ments prescribed at each center when ADT intent course is considered (B): Treatments
administered at each center when ADT administered course is considered (Color figure
online)

Table 4. Precision, Recall, F1-Score, for Model-1:(EBRT-ADT vs. EBRT), Model-2:
(EBRT-ADT-ST vs. EBRT-ADT-LT) 2A:ADT Intended Duration, 2B:ADT Adminis-
tered Duration

Model ADT duration F-set Precision Recall F1-score

Model 1 – FS-1 0.75 0.73 0.74

FS-2 0.82 0.82 0.82

Model 2A Intended FS-1 0.95 0.94 0.94

FS-2 0.92 0.92 0.92

Model 2B Administered FS-1 0.74 0.73 0.73

FS-2 0.72 0.71 0.71

When we considered FS-2, PSA and Risk show similar significance. In this
case however, Center-ID plays a crucial role and shows up specifically as the
top ranked feature in Model-1 (EBRT-ADT vs. EBRT); this reconfirms our
earlier hypothesis that nonclinical factors like the center play a significant role
in determining whether patients undergo ADT treatment or not. However, it’s
significance is much lower in Model-2A (EBRT-ADT-ST vs. EBRT-ADT-LT)
with ADT intended duration. Center-ID also shows up as the fourth ranked
feature in Model-2B (EBRT-ADT-ST vs. EBRT-ADT-LT) for ADT duration
administered; thus we can hypothesize that nonclinical factors may have a role
to play in altering the treatment intent.
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Table 5. Feature importance in each model. Model 1:EBRT-ADT vs. EBRT, Model
2A: ADT course intended, Model 2B: ADT course Administered

FS Features Model 1 Model 2A ADT Intent Model 2B ADT
Administered

FS-1 PSA 0.52 0.14 0.39

Risk 0.25 0.79 0.30

Total GS 0.03 0.04 0.14

T stage 0.09 0.02 0.07

Primary GS 0.06 0.01 0.05

Secondary GS 0.05 0.01 0.05

FS-2 PSA 0.23 0.08 0.24

Risk 0.28 0.79 0.27

Total GS 0.02 0.03 0.19

T stage 0.07 0.02 0.05

Primary GS 0.13 0.02 0.04

Secondary GS 0.04 0.02 0.04

Center-ID 0.29 0.06 0.17

4 Discussion

In this study, we present an exploratory analysis of localized or locally advanced
PCa patients from 34 different VHA treatment centers. We compared the treat-
ments prescribed against the NCCN guideline recommendations and observed
that most of the treatment plans (prescribed or administered) matched with the
NCCN guidelines. We built machine learning based models to predict the treat-
ment plans for patients and also the likelihood of NCCN concordance of their
treatment plans. We observed that PSA and Risk were the top-ranked features
in determining the treatment plans for PCa patients.

Center-ID improved the performance of the model that predicts if the selected
treatment plan has ADT or not; however, it did not impact the models that pre-
dict if the prescribed ADT duration was ST or LT. We also observed some
variability in ADT treatments prescribed versus actual ADT treatments admin-
istered; the Center-ID, however, had a negligible role to play in such alterations
and instead PSA and total Gleason score had significant roles to play in such
decisions. We also noticed that the performance status measure had a negative
effect on model predictability and hence we dropped it from our feature set.
We feel that performance status will be a critical feature in treatment outcome
predictions in the future, currently which is outside the scope of this work. Addi-
tionally, Risk showed up as the primary feature in predicting ST vs. LT ADT
duration. We also observed that the primary reason for treatment plans to be
non-concordant with NCCN is due to the ADT course duration not following
the guidelines.
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Fig. 3. Pearson correlation between center details (Number of radiation oncolo-
gists, radiation physicists, radiation therapists and Other staff) vs. treatment non-
concordance (number of non-concordant patients considering all treatments prescribed,
all treatments administered, EBRT-ADT prescribed, and EBRT-ADT administered),
and treatment selections (number of patients treated with EBRT-only or with EBRT-
ADT).

To better understand the impact of non-clinical features like Center-ID in pre-
dicting whether the treatment plans were concordant with NCCN guidelines or
not, we computed the Pearson correlation between center-specific details (such as
staffing details) and the number of non-concordant patients undergoing EBRT-
ADT or EBRT-only treatments (either prescribed or administered). Figure 3
shows a small negative correlation between staff details and non-concordance;
specifically fewer number of radiation oncologists or radiation therapists led to
higher number of non-concordant patients in all cases; while the number of radi-
ation physicists or other staff members did not show any worthwhile correlation.
This can be potentially attributed to higher workloads and scheduling conflicts
for radiation oncologists/therapists leading to non-adherence to ADT treatment
duration requirements from NCCN.

Figure 3 also shows the impact of Center-ID in predicting whether a patient
will undergo EBRT-only or EBRT-ADT treatment. We can observe a strong
positive correlation between EBRT-only treatment selection and the number of
radiation therapists and a less pronounced positive correlation between EBRT-
ADT treatment selection and the number of radiation oncologists. While this
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positive correlation was expected as more radiation oncologists or therapists will
lead to more patients being treated with EBRT-ADT or EBRT-only respectively,
it is however not clear why the number of radiation physicists or other staff
members correlates poorly with these treatment types. It can arise from the bias
of the selected patient cohort.

Our findings corroborate previous studies showing the impact of non-clinical
factors on prostate cancer treatment patterns. For example, a recent study
done on SEERs data reported that prostate cancer treatment patterns were
not strictly influenced by outcomes data and varied significantly by patient age,
insurance status, financial model, regional bias and socioeconomic factors [11].
An earlier survey on factors influencing treatment selection for localized prostate
cancer suggests that recognizing the beliefs that patients hold about their can-
cer and its treatment could guide the counseling of patients about the treat-
ments available to them and ultimately, help patients make more informed deci-
sions about both their treatments and subsequent adjustments [14]. Prior work
on NCCN non-concordance was conducted on elderly patients with high-risk
prostate cancer from SEERs was reported that NCCN concordance in elderly
patients with aggressive prostate cancer is low [15]. These findings underline
the importance of non-clinical factors in treatment decisions, however, reported
results were based on single center data; hence they could not identify the center-
specific bias as reported in this paper. However, such non-clinical factors can vary
appreciably between multiple centers and result in the bias; our future work will
include such non-clinical features from the VHA centers to identify the proper
reasons behind such center-specific bias.

The VHA ROPA dataset was extracted from recently treated patients having
very little to no follow-up data for oncological outcome analysis. Similar predic-
tive models will be built in the future for treatment outcome analysis considering
a patient cohort that was treated at earlier dates. Additionally, the ADT dura-
tion is generally dependent on the type of drugs used. In this study, we calculated
ADT administered duration based on the ADT injection dates; the calculated
ADT duration may slightly change considering the ADT injection types. Finally,
our study depicts the importance of non-clinical factors, such as Center-ID, in
predictive models for treatment selection or concordance to NCCN guidelines.
In the future, we will investigate the effects of other types of non-clinical factors
(not limited to staffing) pertinent to the specific VHA centers considered here.
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Abstract. In this paper, we develop a forecasting model for the growth of Cryo-
genic ElectronMicroscopy (Cryo-EM) experimental data time series using autore-
gressive (AR) model. We employ the optimal modeling order that maximizes the
estimation accuracy while maintaining the least normalized prediction error. The
proposed model has been efficiently used to forecast the growth of cryo-EM data
for the next 10 years, 2019–2028. The time series for the number of released three-
dimensional Electron Microscopy (3DEM) images along with the time series of
the annual number of 3DEM achieving resolution 10 Å or better are used. The
data was collected from the public Electron Microscopy Data Bank (EMDB). The
simulation results showed that the optimal model orders to estimate both datasets
are AR(5) and AR(6) respectively. Consequently, the optimal models obtained
an estimation accuracy of 96.8%, and 85% for 3DEM experiments time series
and 3DEM resolutions time series, respectively. Hence, the forecasting results
reveal an exponential increasing behavior in the future growth of annual released
of 3DEM and, similarly, for the annual number of 3DEM achieving resolution
10 Å or better.

Keywords: Protein structure · Electron Microscopy · 3DEM · Single particle ·
Tomography · X-ray crystallography · NMR · Auto-regressive modeling ·
Auto-regressive prediction

1 Introduction

Proteins are complex molecules play a vital role and involved in every process within
cells. Proteins are linear copolymers built from a sequence of molecules called amino
acids, referred to residue, arranged linearly. Proteins are responsible for the vital biolog-
ical functionalities in every cell. Proteins perform vast type of essential biological func-
tions including signal transporting, providing mechanical support, immune protection,
cell adhesion and cell cycle [1, 2]. Proteins in nature fold into unique and energetically
favorable three-dimensional (3-D) structures which are crucial and unique to their bio-
logical function [3, 4]. The unique conformation in which the protein folds into is called
a native structure. The knowledge about the native structure of a given protein is essential
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to understand the structure-function relationships. Although the importance of structural
information, the ratio between proteins with unknown structures to those with known
structure is tremendous. The number of known sequences is about 147 million while the
number of resolved structures released by Protein Data Bank is little above 150 K [5–7].
Protein Data Bank (PDB) is a global portal maintain the 3D structural information of
biological molecules. It was announced in 1971 and since then it has been used to deposit
the newly discovered/determined structures. It contains molecules other than proteins
such as nucleic acids and DNA. Traditionally, one of three techniques determine the
structure of protein: X-ray crystallography, Nuclear Magnetic Resonance (NMR) and
Electron Microscopy (EM). X-ray crystallography is the dominant technique has been
used to determine the structure of the proteins. Nearly, 90% of released structures to
PDB have been determined by X-ray crystallography. NMR is the second major tech-
nique, until recently, and has been used to determine 8% of protein structures. Although
X-ray crystallography andNMRhave been the dominant techniques for protein structure
determination, they endure numerous limitations [8–11]. Some of these limitations are
the amount of the sample, the size of the molecule, and crystallization. These limitations
become troublesome for macromolecule machines and some protein molecules such as
viral capsids, ribosomes, and membrane proteins because most of these do not crystal-
lize easily. In addition, the size of such macromolecules is an existent problem for NMR
dynamics.

Fig. 1. Annual release rate of molecular structures and their determination techniques. The num-
ber of structures released to PDB by the three main techniques annually. X-ray crystallography
remains the dominant technique to date. EM becomes more popular than NMR recently. Since
2017, EM is used to produce more structures than NMR.

Recently, ElectronMicroscopy (EM) is gainingmuch attention. EM is an experimen-
tal imaging technique that aims at visualizing and interpreting unstainedmacromolecular
structures [12]. It produces 3D images (henceforth affectionately referred to as 3DEM)
of specimen by averaging thousands of 2D images that are taken from different orienta-
tion [13–15]. The resolution of 3DEMdetermines the information can be visualized/seen
about the specimen. The resolution can be obtained by nowadays’ technology ranges
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from near-atomic (<5 Å), sub-nanometer (5 Å–10 Å) and nanometer (>10 Å) resolution
[16–18]. Figure 1 shows the annual number of structures released by each of the three
main techniques to PDB since 1976 through 2018. To date, PDB contains 150,861 deter-
mined structures/entries. As illustrated in Fig. 1, X-ray crystallography (blue line) and
NMR (Orange line) have been the main techniques to reveal the high-resolution atomic
configuration of protein molecules. EM has recently become the second main technique
to determine molecular structure behind X-ray crystallography. Since 2017, it has been
used to determine the structure of 1,706 molecules. On the other hand, NMR is used
to determine the structure of 918 molecules. Due to current technologies and improved
detectors, these numbers are expected to increase and the gap to grow.

EM can capture the coexisting structural states of biological machines [25, 26].
Accordingly, it is proven to be a major source of the information about functional mech-
anisms andmotions of these machines. Although not all of images produced by EM have
been resolved at near-atomic (< 5Å) resolution [27, 28], recent advances in EMwill lead
to more images produced at near-atomic and sub-nanometer resolution. The number of
quality images to be analyzed rapidly grows with the greatly improved detectors that are
now available [18, 29]. In addition, the significant increase in signal-to-noise ratio (SNR)
represents an important contribution to EM [30–32]. It has been reported recently that
the resolution of structures determined by EM is approaching those determined by X-ray
crystallography [17]. Published 3DEM entries have resolutions approaching from near-
atomic to sub-angstrom resolution range for appropriate samples and can be directly used
to produce protein models. On the other hand, at resolutions worse than near-atomic (>
5 Å), substantial help can be provided by the computational algorithms and the hardware
power we have nowadays [33–36]. This will augment the number of available structural
models. As shown in Fig. 4, the annual number of 3DEM in EMDB achieving resolution
10 Å or better is increasing. The improvement of the resolution is obvious for single
particle technique.

Fig. 2. Overall growth rate of 3DEM released. The cumulative number of 3DEM released to
EMDB over years, since 1996, is shown as a black bar-chart with filled diamonds. In addition, the
annual deposition growth is shown as a green bar-chart with filled circles. (Color figure online)
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EM has been started as early as late 1990’s. Since the first 3DEM reported for
hepatitis B virus [19, 20], it was used to study many of macromolecular complexes
[21–24]. The Electron Microscopy Data Bank (EMDB) is the unified global portal for
deposition and retrieval of 3DEM, atomic models, and associated metadata [21]. The
EMDB currently holds more than 7,000 3DEM entries in addition to more than 3,000
PDB entries of fitted molecular models (e.g., atomic configurations). Figure 2 depicts
the release rate of 3DEM in EMDB through years 2002 to 2018. EM consists of four (4)
main types: Transmission Electron Microscope (TEM), Scanning Electron Microscope
(SEM), Reflection Electron Microscope (REM) and Scanning Transmission Electron
Microscope (STEM). These types differ slightly in the way the specimen is prepared and
the way the 3DEM is produced. Many techniques have been used to visualize molecules
and generate 3DEM such as tomography or single particle. The most technique has been
used to visualize macromolecules is single particle. Single particle is a TEM technique.
Figure 3 shows the major techniques have been used and their annual number of 3DEM
released. As illustrated in the figure, single particle has been the most technique used
since 2002.

Undoubtedly, the determination of protein structure is considered as one of the most
important objectives tracked by bioinformatician, as it is highly important in medicine
(i.e., drug design) and biotechnology (i.e., the design of novel enzymes) [37]. Therefore,
it is important to study the growth trend of high resolution 3DEM in EMDB. Generally,
deposition rate of 3DEMcan be analyzed as time series [38]with continuous evolution of
entries along with time. Thus, the 3DEM series can be modeled and predicted for further
analysis of the growth behavior.However, the trend prediction can be accomplished using
different efficient signal modeling and processing techniques such as the parametric
techniques of auto-regressive (AR) modeling. Auto-regressive (AR) model has been
widely used for signalmodeling and prediction formany different phenomena; including
engineering, social, environmental, and financial cases. Examples of using AR model

Fig. 3. Experimental techniques used to produce 3DEM. Single particle is the most technique
used to generate 3DEM. Tomography is the second most popular technique.
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Fig. 4. Experimentalmethods used to produce 3DEMand improvement in resolution. The number
of 3DEMresolved at (0Å–10Å) resolution is shown for differentmethods. The number of 3DEMis
increasing for all methods. Single particle has the most improvement growth rate. Some methods
have not released/resolved 3DEM entries during years (i.e., 2007–2009), therefore, some lines
show gaps.

for time series prediction purposes can be found in [39–44]. One objective of this paper
is to show that the growth rate of cryo-EM technology is exponential. This is important
for EM community to have statistical numbers and to know the exact trend of the growth
of EM data. We are using the Auto-regressive (AR) model to regenerate and analyze the
time series of annual number of 3DEM released for the last 18 years (i.e., from 2002 to
2018) and the annual number of 3DEM achieving 10 Å resolution or better for the same
time frame using optimal modeling order that maximizes the model fitting percentages
while minimizing the final estimation error. Specifically, the main contributions of this
paper can be summarized as follows (Fig. 4):

• We develop an AR model for the collected 3DEM time series that can maintain
optimal degree of AR modeling with minimum modeling error to optimize the time
series estimation and forecasting.

• We employ the optimal derived AR model to re-generate the time series of the mea-
sured data and predict the short-term future values up to year 2028 (i.e., ten years
ahead) of possible numbers of the following data-sets: the annual growth of 3DEM
released for the last 18 years (i.e., from 2002 to 2018) and the annual number of 3DEM
achieving 10 Å resolution or better (i.e., from 2002 to 2018).

• We provide simulation plots for the original collected signal along with the fore-
casted signal with analysis to gain insight into the developed model and the solution
technique.

The rest of this paper is organized as follows: Sect. 2 presents and discusses the
system model using AR technique and the simulation results by considering several
scenarios. Finally, Sect. 3 concludes the paper.
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2 Proposed Prediction Models

The autoregressive (AR) model is a recursive parametric modeling technique that uses
the feedback to generate the internal dynamics for the predicted signal [39]. Indeed, AR
model is a representation of a type of random process. It specifies that the output variable
depend linearly on its own previous values and on a stochastic term. The notation AR(p)
indicates an autoregressive model of order p. The AR(p) model is defined as:

Xn = c +
p∑

i=1

ai Xn−i + en

Where ai are the model parameters, c is a constant, and en is white noise. A simple
model, called AR(1) or the “autoregressive model of order 1,” can be derived as: Xn =
c+ a1Xn−1 + en , where current value Xn depends on the past only through Xn−1 since
AR(1) use the model order of one. The higher the order, the higher the dependency on
the past data. However, the appropriate model order for ARmodeling differs among time
series based on the number of observations in the time series and the level of linearity
among them [44].

In this work, we have developed an AR model to re-generate the time series signals
for the annual number of 3DEM released from 2002 to 2018 and the annual number of
3DEM achieving 10 Å resolution or better from 2002 to 2018 using optimal modeling
order, and thus predicting the next decade of signal tendency. In the previous section,
we showed the actual datasets for both time-series (i.e., the annual growth of 3DEM
released and the annual number of 3DEMwith resolution better than 10 Å from 2002 to
2018). For optimal time series modeling and estimation, we need to employ the optimal
order of AR model. Therefore, we have generated and plot the AR model estimation
errors vs. model orders in order to select the optimal model order number that minimizes
the error and the design cost as well. The prediction error can be calculated by different
methods such as by calculating (Norm(e)/Norm(y)) for each model order.

Figure 5 shows the relationship between the different order model values against the
final prediction error. The optimum model order is the order in which the model error
has the smallest value with acceptable design cost (i.e., when the error of two model
orders are close, then its preferable to select the lowest order that maximizes the accuracy
and minimizes the design cost). In our developed model, we have selected AR(5) and
AR(6) as the optimal model orders to re-generate and estimate the annual numbers of
3D images of ElectronMicroscopy (3DEM) time series and the annual number of 3DEM
data achieving resolution ≤10 Å time series respectively since, they correspond to the
least normalized final perdition errors (FPE) [45, 46]. Both of models have recorded
an accurate curve fitting percentage of 96.8% and 85% for 3DEM dataset and 3DEM
with resolution ≤10 Å time series, respectively. Such results conform to the expected
increasing growth in the tendency of both released numbers of EM Data. It should be
noted that the reason of achieving higher curve fitting accuracy for 3DEM dataset from
3DEM with resolution ≤10 Å time series 96.8% vs. 85%), is due to the higher level of
linear correlation data items for 3DEM dataset.

Figure 5 shows the relationship between the different order model values against the
final prediction error. The optimum model order is the order in which the model error
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Fig. 5. Normalized Final Prediction Error (FBE) vs. Model Order Number. We have selected
the optimal estimation order based on the relationship between model order and prediction error.
Thus, the model number of 3DEM time series and the annual number of 3DEM with resolution
≤10 Å have been estimated with optimal model orders: AR(5) and AR(6) respectively.

has the smallest value with acceptable design cost (i.e., when the error of two model
orders are close, then its preferable to select the lowest order that maximizes the accuracy
and minimizes the design cost). In our developed model, we have selected AR(5) and
AR(6) as the optimal model orders to re-generate and estimate the annual numbers
of 3D images of Electron Microscopy (3DEM) time series and the annual number of
3DEM data achieving resolution ≤10 Å time series respectively since, they correspond
to the least normalized final perdition errors (FPE) [45]. Both of models have recorded
an accurate curve fitting percentage of 96.8% and 85% for 3DEM dataset and 3DEM
with resolution ≤10 Å time series, respectively. Such results conform to the expected
increasing growth in the tendency of both released numbers of EM Data. It should be
noted that the reason of achieving higher curve fitting accuracy for 3DEM dataset from
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3DEM with resolution ≤10 Å time series 96.8% vs. 85%), is due to the higher level of
linear correlation data items for 3DEM dataset.

Fig. 6. Modeling the datasets: Actual Data (blue) vs. Estimated Data (red). In this figure, each
dataset was regenerated using its corresponding optimal order to see howmodeled signal is tightly
coupled with its pear of original measured data. Accordingly, all figures of the datasets proved a
high-level of confidence to estimate since they show very similar tendency to their peers of the
original datasets. (Color figure online)

Figure 6 illustrates the plots for both time series signals in terms of the actual mea-
sured dataset and the model estimated data using AR(5) and AR(6) models for the global
number of 3DEM time series and the annual number of 3DEM achieving resolution
≤10 Å time series respectively. As depicted from the figure, the estimation for both time
series signals are precise and consistent for almost all the measured dataset signals with
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minor variations observed to appear in the modeling of time series plot for the annual
number of 3DEM achieving resolution ≤10 Å. The reason of having such a significant
signal compatibility is due to the large level of signals’ linearity for the original measured
data which impact the estimation process of the linear AR parametric model especially
for the time series of the number of 3DEM released annually, and thus, can be used to
forecast the numbers for the next decade with high level of confidence (i.e., accuracy)
peaked at 96.8% of model fitting (Fig. 7).

Fig. 7. Forecasting the future decade for both-time series (up to year 2028). According to the
figures, the growth rate of number of entries released for 3DEM and for the annual number of
3DEM achieving 10 Å resolution or better showed an exponential increasing trend.
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3 Conclusion

An optimal auto-regressive (AR) process to model and forecast of two Cryo-EM data
series was proposed in this paper. In this paper, we proposed a predictive model of
the time series of the number of entries of 3DEM released annually to EMDB and
the number of 3DEM achieving 10 Å resolution or better using auto-regressive (AR)
model.We employed the optimalmodeling order thatmaximizes the estimation accuracy
while maintaining minimum prediction error. The proposed model was developed to
forecast the future 10 years, 2019–2028, for the two datasets in the study. The developed
scheme recorded a fitting accuracy of 96.8% for the fifth order of AR process, AR(5),
for the first dataset, number of released 3DEM. On the other hand, it recorded a fitting
accuracy of 85% for the sixth order of AR process, AR(6), for the second dataset, the
resolution of 3DEM entries. Note that the growth rate of the released 3DEM suggests a
faster exponential tendency. Therefore, the developed forecastingmodel has successfully
predicted the future decade of the expected growth of the two datasets. In future, this
work can be extended by adding a comparison with some other prediction models and
state-of-art works. Also, more statistical results, such amean value for all simulation and
confidence intervals, can be added and analyzed to gain more insight of the proposed
model. Final, we are going to study the trend for some other important datasets such
as the annual released protein structures into PDB and the annual growth of protein
structures determined by cryo-EM.
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Abstract. We are interested in the analysis of local and global popula-
tion stratification in WGS studies. We present a new R package (locStra)
that utilizes the covariance matrix, the genomic relationship matrix, and
the unweighted/weighted genetic Jaccard similarity matrix in order to
assess population substructure. The package allows one to use a tailored
sliding window approach, for instance using user-defined window sizes
and metrics, in order to compare local and global similarity matrices.
A technique to select the window size is proposed. Population stratifi-
cation with locStra is efficient due to its C++ implementation which
fully exploits sparse matrix algebra. The runtime for the genome-wide
computation of all local similarity matrices does typically not exceed one
hour for realistic study sizes. This makes an unprecedented investigation
of local stratification across the entire genome possible. We apply our
package to the 1,000 Genomes Project.

Keywords: Population stratification · WGS studies · Covariance
matrix · Genomic relationship matrix · genetic jaccard similarity
matrix

1 Introduction

Though being vulnerable to confounding due to population substructure [4],
genetic association studies are a popular mapping tool in population-based
designs. To address confounding, a variety of methods have been proposed [3,10].
Numerous methods that rely on the genetic relationship matrix [17], estimated
from observed genotypes, have been proposed: EIGENSTRAT, STRATSCORE,
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multi-dimensional scaling, etc. [5,7,8]. Despite their popularity, current software
implementations are computationally intensive and rely on prior linkage dise-
quilibrium (LD) pruning, which reduces the dataset dimension. Running times
ranging from hours to days for datasets of typical sizes are commonplace.

Though previous research showed strong evidence for local stratification
[6,9,18], the GRM computation is typically done globally to capture global pop-
ulation structure. This is due to the fact that for a comprehensive, genome-
wide analysis of local stratification, the computational burden has been too
prohibitive. Moreover, often genomic regions do not contain a sufficient number
of loci that are not in linkage disequilibrium (LD), thus causing problems for
matrix-based approaches which are designed for uncorrelated common variant
data.

Densely spaced rare variants (RVs) that are mostly not in LD became com-
monplace with the arrival of whole genome sequencing data (WGS). RVs are
more informative about recent admixture as they are genetically younger than
common variants, and approaches based on Jaccard similarity matrices [11,13]
that utilize RV/WGS data have been developed. Nevertheless, those approaches
continue to suffer from computational inefficiencies.

Our R package locStra allows the user to assess population stratification
in RVs at the local and global level using four approaches: (1) the covariance
matrix, (2) the genomic relationship matrix, (3) the unweighted and (4) weighted
Jaccard similarity matrices. All implementations in locStra are fully written
in C++, and all computations on similarity matrices are fully carried out on
sparse data structures to maximize computational efficiency. The generic sliding
window algorithm of locStra enables the fast analysis of local stratification at the
genome-wide level. To select appropriate window sizes we provide a data-driven
algorithm.

We illustrate the importance of investigating local substructure with locStra
using the 1,000 Genomes Project. Moreover, we evaluate the four similarity
matrix approaches with regards to their performance and assess locStra in terms
of runtime. The fast implementations in locStra allow for novel research in local
stratification in WGS studies and subsequent insights into association findings.

This article is structured as follows. Section 2 presents the functionality of the
locStra package. In Sect. 3, we illustrate the practical relevance of our contribu-
tion through an analysis of the 1,000 Genomes Project dataset. We conclude with
a discussion in Sect. 4. The appendix gives further details regarding the sparse
matrix computations in our implementation (Sect.A), theoretical runtimes for
all similarity matrix approaches (Sect. B), and it contains a comparison of our
locStra package with the standard tool PLINK2 [2,12] in Sect. C.

2 Implementation

Our package locStra is available online and can be downloaded from The Com-
prehensive R Archive Network. Its core relies on RcppEigen of [1] offering fully
sparse matrix algebra in C++.

This section presents the seven functions implemented in locStra.
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2.1 Dense and Sparse Matrix Implementation

The following functions provide C++ implementations of the four standard
approaches mentioned in Sect. 1. We provide separate code for dense and sparse
input matrices in order to maximize computational efficiency. The C++ imple-
mentation to be used can be selected with the boolean argument dense. The
default is dense=False.

1. The covariance matrix is computed with the function covMatrix. The input
is allowed to be any real valued matrix.

2. The genomic relationship matrix (GRM), defined in [17], is computed with
grMatrix. The input must be a binary matrix. The boolean flag robust can be
used to select either the classic or the robust version of the GRM (the default
is robust=True).

3. The Jaccard similarity matrix is computed with jaccardMatrix. The input
must be a binary matrix.

4. The weighted Jaccard matrix [14] is implemented in sMatrix. If the input
data is phased, this can be indicated with the boolean argument phased in
the function sMatrix (the default is phased=False). If a cutoff value for the
minimal number of variants to consider is desired, this can be specified with
the integer parameter minVariants (the default is minVariants=5 ).

2.2 Main Function

Our package offers a flexible way to tailor the local population stratification scan
of the data through the generic structure of our main function fullscan. It has
five arguments:

• The (sparse) matrix containing the sequencing data is the first input. We
assume that the input matrix is oriented in such a way as to contain the data
for one individual per column.

• The precise windows to be used in the sliding window scan are given in the
second argument as a two-column matrix (called windows). In the matrix
windows, the start and end positions of each window are the two entries
per row. We provide an auxiliary function called makeWindows (Sect. 2.3) to
facilitate the generation of the matrix containing the sliding window entries.

• The precise mechanism for processing each sliding window is specified with
the function matrixFunction (third argument), which operates on one matrix
input argument. In principle, any function can be used, though typical choices
include covMatrix, grMatrix, jaccardMatrix, or sMatrix.

• After processing each window, we need to specify a summaryFunction on
one input argument that is compatible with the output of matrixFunction.
In principle, this can again be any function though the computation of the
largest eigenvector with the help of the function powerMethod (Sect. 2.3) is
an intuitive choice.
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• Last, the fifth input argument to be specified is the function comparisonFunc-
tion which is needed to compare the summaries (e.g., first eigenvectors) on
a local and a global level. The comparisonFunction can be any function on
two arguments compatible with the output of the function summaryFunction.
The native R correlation function cor for two input vectors is a typical choice.

The global and local comparison values for each window are returned by
fullscan as a two column matrix. Each row in the matrix windows corresponds
to a row in the output of fullscan in the same order.

2.3 Auxiliary Functions

We provide two auxiliary functions which were already referred to in the descrip-
tion of fullscan:

1. The two-column matrix of non-overlapping or overlapping windows can be
created with the auxiliary function makeWindows. This function has three
arguments: the length of the data, the window size, and an offset. It creates
non-overlapping windows if the offset is equal or larger than the window size.
Otherwise, sliding windows of given window size and offset are created.

2. The power method is a fast iterative algorithm to compute the largest eigen-
vector [16]. Our R package provides a C++ implementation in the auxiliary
function powerMethod.

3 Local Stratification Analysis of the 1,000 Genome
Project

In this section we highlight the practical relevance of locStra by applying it to
all chromosomes of the 1,000 Genome Project [15]. We take a closer look at the
results for four chromosomes (precisely, chromosomes 5, 10, 12, and 16) to stress
the feasibility of local substructure analysis at the genome-wide level (Sect. 3.1).
Section 3.2 reports runtime results across all chromosomes, and Sect. 3.3 illus-
trates a procedure to select suitable window sizes for population stratification.

We prepare the raw data from the 1,000 Genome Project with PLINK2. In
particular, we selected rare variants with a cutoff value of 0.01 for option --max-
maf. LD pruning was applied with parameters --indep-pairwise 2000 10 0.01.
In the following we report results for the EUR super population of the 1,000
Genome Project.

3.1 Data Analysis Results for Certain Chromosomes of the 1,000
Genome Project

We apply our sliding window approach with a window size of 120, 000 RVs. This
value is suggested by the window selection algorithm we propose in Sect. 3.3.
Figure 1 displays the correlations between the first eigenvectors of all local sim-
ilarity matrices with the corresponding first eigenvector of the global similarity
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Fig. 1. Correlation of local to global eigenvector of the covariance matrix, GRM matrix,
s-matrix, and Jaccard matrix. Chromosomes 5 (top left), 10 (top right), 12 (bottom
left), and 16 (bottom right). Super population EUR of the 1,000 Genomes Project.
Window size 128000 RVs.

matrix for the four different types of similarity matrices and the four selected
chromosomes.

We observe several noteworthy features in the local substructure analysis.
The local substructure analysis shows only a couple of genomic regions in which
the local and global substructures are similar when measured with the help of the
first eigenvectors, independently of the similarity matrix used. When measured
via similarity matrices, we observe considerable variability overall in the local
substructure across the genome.

For chromosome 16 (Fig. 1, bottom right), we observe a small genomic region
where all correlations reach nearly 1. Otherwise, the correlations between the first
local and first global eigenvectors are very small throughout the genome for all
four similarity matrices. This could hint at the fact that the global substructure
is very different from the local substructure as captured by similarity matrices.
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Since association analyses are usually adjusted for using global eigenvectors to
minimize potential genetic confounding, this observation could have important
implications for association mapping. Future research will investigate whether
local adjustments based on RVs are beneficial in scenarios where the local and
global eigenvectors are very different.

Moreover, we observe that the standard Jaccard approach is able to maintain
the highest correlation values compared to the other similarity matrices even in
the areas where the correlation between the local and global first eigenvector is
generally low. On the other hand, we observe regions in which the first Jaccard
eigenvector is almost uncorrelated with the global one even though the local
first eigenvectors of covariance, GRM and s-matrix (weighted Jaccard matrix)
are highly correlated with the global first eigenvectors. To understand the reasons
behind these performance differences, additional methodological and substantive
research is required. This is beyond the scope of this manuscript and part of our
ongoing research efforts.

3.2 Runtime of locStra for the 1,000 Genome Project Analysis

We investigate runtimes for the case that sliding windows are processed using
the Jaccard similarity matrix. Figure 2 shows runtime measurements in seconds
for a full scan of the EUR super population (sample size is 503 study subjects;
maximal number of RVs per chromosome is 6267065) as a function of the window
size. All measurements were taken on a single Intel QuadCore i5-7200 CPU with
2.5 GHz and 8 GiB of RAM. For each specific window size, Fig. 2 shows the mean
runtime across all chromosomes as well as the minimal and maximal runtime
observed among any of the 22 chromosomes.
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of the window sizes. Minimal, maximal, and mean runtimes across all chromosomes.
Super population EUR of the 1,000 Genomes Project. Logarithmic scale on the x- and
y-axes.
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We observe that the runtime decreases for larger window sizes as expected.
Moreover, a complete scan of any chromosome has a mean runtime not exceeding
500 s. The runtime of any method is in the vicinity of one minute for a full scan
when using the realistic window size of 105 RVs suggested in Sect. 3.3.

For the other three approaches (covariance matrix, genomic relationship
matrix, weighted Jaccard matrix) the runtimes are similar and thus not reported.
Likewise, runtime measurements for the AFR super population of the 1,000
Genome Project show qualitative similar results which are not reported.

3.3 Selecting Suitable Window Sizes for Population Stratification

We address the question of selecting an appropriate window size for the pop-
ulation stratification scan. To this end, we observe that as the window size
increases, less windows are used in the scan of the data, thus causing the cor-
relation between local and global eigenvectors to increase (Fig. 3, left). On the
contrary, we obtain less data points when using fewer windows across the genome
(as implied by the larger window sizes), thus making results less meaningful. The
two quantities, increasing correlation and decreasing number of datapoints when
using larger window sizes, thus work against each other.
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Fig. 3. Mean correlation across all windows per chromosome (left) and mean corre-
lation across all windows multiplied by the number of windows (right) as a function
of the window size. Super population EUR of the 1,000 Genomes Project. Correlation
values computed between global and local eigenvectors of the Jaccard matrices.

In such cases, for a particular window size, the product of the mean correla-
tion among all chromosomes and the number of generated windows is a natural
tradeoff which we use as a measure for decision making (Fig. 3, right). The figure
shows that the product of mean correlation and number of windows is close to
zero for small and large window sizes. However, we observe a peak at a window
size of around 105 RVs for the 1,000 Genomes Project which seems to appear at
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an almost identical position across all chromosomes. The reason for the almost
identical position is the fact that the slope in Fig. 3 (left) is very similar across
all chromosomes, thus causing the product of mean correlation and number of
windows to have a similar functional shape in Fig. 3 (right).

Based on our proposed measure, we recommend a window size of around 105

RVs for the analysis of the 1,000 Genomes Project data. Qualitatively similar
results (not reported here) are obtained when carrying out the same analysis for
the AFR super population of the 1,000 Genome Project.

We suggest the heuristic approach of Fig. 3 (right) as a general technique for
selecting a window size in population stratification with sliding windows.

4 Conclusion

A comprehensive genome-wide analysis of local stratification in WGS studies
based on similarity matrices is possible using our R package locStra due to its
runtimes of around 500 s for the genome-wide analysis of all sliding windows in
the EUR super population (one Intel QuadCore i5-7200 CPU with 2.5 GHz and
8 GiB of RAM). This will enable the community to investigate local stratification
patterns at a genome-wide level in WGS studies.

Acknowledgment. The project described was supported by Cure Alzheimer’s fund,
Award Number (R01MH081862, R01MH087590) from the National Institute of Mental
Health and Award Number (R01HL089856, R01HL089897) from the National Heart,
Lung and Blood Institute.

A Details on the Implementation

The appendix provides two implementation details on the fully sparse matrix
algebra used in the computations of the covariance and Jaccard matrices. Default
implementations were used for the GRM matrix [17] and the s-matrix [14]. We
assume X ∈ R

m×n for the matrix containing (genomic) data of length m in each
of the n columns (one column per individual) throughout the section.

A.1 Covariance Matrix

We first look at computing the covariance matrix in dense algebra. Let the
column means of X be given as vector v ∈ R

n and denote as Y ∈ R
m×n the

matrix consisting of the rows of X with their mean substracted. Then

cov(X) =
1

m − 1
Y �Y.

In the sparse case, it is not possible to compute cov(X) as above. This is
because normalizing X as above by substracting the column means results in a
dense matrix which easily exceeds available memory. Thus the computation is
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split up suitably to always avoid the creation of dense matrices. Letting v be the
column means as above, and w ∈ R

n be the column sums,

cov(X) =
1

m − 1
(
X�X − wv� − vw� + mvv�)

.

We observe that computing X�X involves only the sparse input matrix and one
sparse matrix multiplication (which can be done efficiently). The other three
terms are vector-vector products resulting in dense n×n matrices, the (necessary)
size of the output covariance matrix.

A.2 Jaccard Similarity Matrix

Denoting the ith column of X as Xi, each entry (i, j) of the Jaccard matrix is
given as

jac(X)ij =
|{k : Xik ∧ Xjk}|
|{k : Xik ∨ Xjk}| .

For this we assume that X is binary.
Näıvely, we iterate over all the entries of the Jaccard matrix and compute

them as given above using binary and as well as binary or operations. This
turned out to be slow in our experiments. The following is a faster way to
compute the Jaccard matrix in practice even though the asymptotic runtime is
unchanged.

Recall that w ∈ R
n denotes the column sums of X. Using sparse matrix

multiplication, we compute Y = X�X ∈ R
n×n, which is a dense matrix. Let

Z ∈ R
n×n be the matrix obtained by adding w to all rows and all columns of −Y .

Observe that jac(X) = Y/Z, where the matrix division is performed entry-wise.
Since we only need one sparse matrix multiplication to compute Y (which can
be done efficiently), this approach is computationally very fast. The few other
operations on the matrices Y and Z are efficient since both matrices are already
of same size as the dense Jaccard output matrix.

Table 1. Theoretical runtimes for computing the four similarity matrices. Runtimes
differ between dense and sparse implementations. The parameters are: dimensions
m ∈ N and n ∈ N of the input data X ∈ R

m×n, matrix sparsity parameter s ∈ [0, 1].

Method Dense Sparse

Covariance matrix O(mn2) O(smn2 + n2)

Unweighted Jaccard O(mn2) O(smn2 + n2)

Weighted Jaccard O(mn2) O(smn2 + mn)

GRM matrix O(mn2) O(smn2 + n2)
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B Theoretical Runtimes

Table 1 shows the theoretical runtimes for both dense and sparse implementa-
tions. As can be seen, the theoretical runtimes for the dense computations are
equal, but runtimes for sparse implementations differ. A detailed overview of the
computations being carried out and their runtimes is given below. All efforts are
given in the dimensions m ∈ N and n ∈ N of the input data X ∈ R

m×n, and the
matrix sparsity parameter s ∈ [0, 1] (the proportion of non-zero matrix entries).

Computing the covariance matrix involves calculating the column means of X
and substracting them from the matrix X (O(mn) for the dense case and O(n2)
for the sparse case involving a correction with outer products, see Sect.A.1).
Multiplying Y �Y takes O(mn2) in dense and O(smn2) in sparse algebra.

Computing the Jaccard matrix involves calculating Y = X�X (O(mn2)
in dense and O(smn2) in sparse algebra) and adding the column sums of X
(computed in O(mn) in dense and O(smn) in sparse algebra) to all rows and
columns (O(n2) in both dense and sparse algebra).

Computing the weighted Jaccard matrix (or s-matrix) involves calculating
the row sums of the input matrix which are used as weights (O(mn) in dense and
O(smn) in sparse algebra), componentwise multiplication of all columns with the
weights (O(mn) in dense and O(smn) in sparse algebra), and one matrix-matrix
multiplication (O(mn2) in dense and O(smn2) in sparse algebra).

Computing the GRM matrix involves the calculation of population frequen-
cies across rows (O(mn) in dense and O(smn) in sparse algebra), one matrix-
matrix multiplication (O(mn2) in dense and O(smn2) in sparse algebra), as
well as multiplying the input matrix with the population frequencies (O(mn) in
dense and O(smn) in sparse algebra). Additionally, one outer vector product is
required (O(n2) in both dense and sparse algebra).

Table 2. Computation of the global eigenvector (global EV) and complete stratification
scan of chromosome 1 of the 1,000 Genome Project as a function of the window size.
Runtimes in seconds for locStra and PLINK2.

Window size locStra PLINK2

Global EV Full scan Global EV Full scan

1000 1.4 332.1 65.3 6343.6

10000 1.5 31.3 61.2 731.7

100000 1.5 4.9 66.7 189.1

C Comparison of locStra to PLINK2

Table 2 shows a runtime comparison between locStra and PLINK2. As test data
we use chromosome 1 of the 1,000 Genome Project. Before running either locStra
or PLINK2, we prepare the raw data from the 1,000 Genome Project using
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the same parameters as given in Sect. 3. However, locStra and PLINK2 require
different input files, and thus we write out the processed data once in the .bed
format for PLINK2, and once as .Rdata file containing a sparse matrix of class
Matrix in R.

A local stratification scan can be performed in PLINK2: With the command
--pca 1, the first eigenvector can be computed for an input .bed file. In order to
do a sliding window scan, we use the parameters --from and --to followed by the
rs numbers to specify a local window. All eigenvectors are written to an output
file with extension .eigenvec by PLINK2, from which we read the vectors and
compute correlations in R.

In the locStra package, the local stratification scan is performed using the
function fullscan as described in Sect. 2.2.

The results in Table 1 show that even for the computation of the single global
eigenvector, locStra is considerably faster than PLINK2. All runtimes for both
locStra and PLINK2 include the time to read the .Rdata or .bed input files. For
a full scan, PLINK2 needs to (inefficiently) write the eigenvector data for each
local window into a file. In comparison to PLINK2, locStra is around one order
of magnitude faster, where the speed-up is more pronounced for larger window
sizes.
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Abstract. Due to the advancement in high throughput technologies and
robust experimental designs, many recent studies attempt to incorporate
heterogeneous data obtained from multiple technologies to improve our
understanding of the molecular dynamics associated with biological pro-
cesses. Currently available technologies produce wide variety of large
amount of data spanning from genomics, transcriptomics, proteomics,
and epigenetics. Due to the fact that such multi-omics data are very
diverse and come from different biological levels, it has been a major
research challenge to develop a model to properly integrate all available
and relevant data to advance biomedical research. It has been argued
by many researchers that the integration of multi-omics data to extract
relevant biological information is currently one of the major biomed-
ical informatics challenges. This paper proposes a new graph database
model to efficiently store and mine multi-omics data. We show a working
model of this graph database with transcriptomics, genomics, epigenet-
ics and clinical data for three cancer types from the Cancer Genome
Atlas. Moreover, we highlight the usefulness of graph database mining
to extract relevant biological interpretations and also to find novel rela-
tionships between different data levels.

Keywords: Graph database · Data integration · Multi-omics data ·
Information mining

1 Introduction

Molecular function of a cell can be traced back to its cellular components and
processes. These processes can be regulated at multiple levels through differ-
ent cellular mechanisms such as mutations and copy number aberration in the
genomic landscape, DNA methylation in epigenetics and gene expression in tran-
scription. Due to the advancement in genomic and transcriptomic technology
platforms such as SNP Array, RNASeq and Methylation Assay, a single study
can have multitude of data types. Large-scale studies with heterogeneous data
types have been successfully implemented. The Cancer Genomic Atlas (TCGA)
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I. Măndoiu et al. (Eds.): ICCABS 2019, LNBI 12029, pp. 171–183, 2020.
https://doi.org/10.1007/978-3-030-46165-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46165-2_14&domain=pdf
http://orcid.org/0000-0002-3594-1631
http://orcid.org/0000-0002-8016-6144
https://doi.org/10.1007/978-3-030-46165-2_14


172 I. Thapa and H. Ali

is a comprehensive resource for cancer genomic profiles [24]. Among many data
types, TCGA has data for clinical, image, DNA sequencing, miRNA sequencing,
mRNA expression, DNA methylation and Copy Number information for more
than 30 cancer types. Similar multi-level datasets can be found in the Cancer
Cell Line Encyclopedia (CCLE), which compiles gene expression, chromosomal
copy number and sequencing data together with pharmacological profiles of 24
anticancer drugs [4]. At a smaller scale, many studies have been carried out to
integrate genomics, transcriptomics, proteomics, and metabolomics in an indi-
vidual experimental setting [11,17,21]. As the biomedical research community
continues to produce more multi-omics data, we will need sophisticated method-
ologies to mine useful information from the integrated data source.

1.1 Integration of Multi-omics Data

Due to high dimensionality in each data level, dependencies across the layers in
multi-level data, and the differences in technologies, it is challenging to integrate
multi-omics data effectively. Many general-purpose data exploration methods
such as finding correlations across data levels, extracting relevant information
at different levels using principal component analysis or independent component
analysis have been used for multi-omics data integration. The MethyCancer
database provides MethyView and Methy&Cancer, visualization tools to study
the interplay between DNA methylation, gene expression and cancer [10]. The
cBioPortal is a web portal to explore, visualize and analyze multidimensional
cancer genomics data [9]. The GenomeSnip is a web-based visual analytics plat-
form for exploration of human genome and its relationship to other features [6].
The canEvolve web portal provides visualization and analysis tool for integrative
oncogenomics [22]. The GenomeSnip platform provides an interactive visualiza-
tion tool that allows genome exploration and retrieval of different relationships of
genomic features [6]. For systematic integration of the heterogeneous data types,
multivariate analysis such as (multiple) co-inertia analysis has been applied in
a number of studies [8] and [16].

1.2 Graph Database

Recently, newer studies have been proposed to use a graph database for integra-
tion of heterogeneous biological data [3,23,27]. A graph database is a database
management system, which allows create, read, update and delete (CRUD)
methods to be performed on a graph data model. Unlike other database sys-
tems where the relationships are inferred from properties such as foreign keys,
the graph data model defines the relationships as equally important to nodes/en-
tities [20]. Neo4J is an open source graph database management system that is
ACID (Atomicity, Consistency, Isolation, Durability) compliant [20]. Yoon et al.
have compared MySQL and Neo4J and showed an increase in performance level
while using a graph database for complex biological relationships [27]. A number
of recent studies have used Neo4J as their graph database in different biologi-
cal contexts. Balaur et al. have implemented Neo4J database in order to model
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human metabolic network [2] and epigenetic and genetic interdependencies in
colon cancer [3]. Fabregat et al. presented Neo4J graph database to facilitate
easy traversal and knowledge discovery and thereby reducing the average query
time by 93% [7]. More studies such as [5,13,25] show feasibility of using graph
database and Neo4J while modeling different biological data sources.

In this paper, we show how multi-omics data can be stored as a graph model
in a graph database such as Neo4J. We also highlight the queries applied to
this database and their corresponding results that show more relevant biological
information than given by the existing databases for cancer genomics. We also
discuss the efficacy of this database in discovering novel relationships. The graph
database contains transcriptomics, genomics, epigenetics and clinical data from
multiple cancer types. We implemented the graph database in Neo4J to store,
analyze and query multi-omics data from the cancer samples and used pattern-
matching queries written in Cypher language.

2 Method

This section describes how the graph database for multi-omics data is created
with an example dataset from the Genomic Data Commons (GDC), formerly
called the TCGA data atlas. Although we utilize data from only three cancer
types in this paper, the methodology described in this section can be applied to
create a comprehensive graph database for all types of cancer for which the data
is available in GDC. The version of the GDC data release is 10.1.

2.1 Dataset

For this study, we selected transcriptomics (gene expression), epigenetics (methy-
lation) and genomics (mutation) data from GDC, for three forms of cancer, viz.
breast cancer (BRCA), prostate adenocarcinoma (PRAD) and the pancreatic
adenocarcinoma (PAAD). Additionally, we obtained the clinical information for
all of the samples in these three groups. Table 1 shows the summary about the
dataset used for this study. Using the GDC Data Portal, we apply GDC queries
such as shown in Listing 1.1 to obtain the manifest files and then download the
files for all four types of data (gene expression, methylation, mutation and clin-
ical) using the gdc-client tool. The manifest file is a table containing metadata
such as unique identifier, filename, md5 hash, size and the status of the files to
be downloaded.

files.analysis.workflow_type in ["HTSeq - Counts"] and files.data_category in ["
↪→ Transcriptome Profiling"] and files.access = "open" and cases.project.project_id
↪→ = "TCGA-PRAD"

Listing 1.1. GDC query for transcriptomics data for prostate cancer samples
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2.2 Data Pre-processing

In order to store meaningful data from the 7409 files from 12 of the data sources
(see Table 1), we pre-process all the files to extract and/or reformat the data.
For the methylation data type, only the genes that have been hyper or hypo-
methylated are extracted. We used the threshold β > 0.9 for hyper-methylation
and β < 0.1 for hypo-methylation found in the island region. For the transcrip-
tomics data type, all the htseq count values are normalized to log2CPM (Counts
Per Million) values and the ENSG IDs are converted to gene symbols using the
annotation file provided by the GDC. For the mutation data type, only the mis-
sense mutations (resulting into different amino acid) are extracted. From the
clinical files, all of the data is stored in the database.

Table 1. Summary of the dataset used for this study

Data type No. of samples:BRCA No. of samples:PRAD No. of samples:PAAD

Clinical 1097 500 184

Methylation 1234 553 194

Gene expression 1234 553 194

Mutation 986 498 182

2.3 The Proposed Graph Database for omics Data

We use the Property Graph Model, a variant of graph modeling, to capture the
entities and the relationships in our data. The property graph model requires
the relationships to be named and directed with a start and end node. Figure 1
shows entities and the relationships in our graph database, both of them con-
taining key-value pair properties. Nodes (entities) are represented in circles and
the relationships are represented by the edges. Individual case (patient) in the
TCGA data can have multiple samples. Sometimes, there is expression data from
both normal and tumor tissues for the same patient. If there was a follow-up
visit and the samples were collected again, there can be multiple samples for a
single case. Hence, we have Case and Sample as two different nodes connected by
HAS SAMPLE relationship (see Fig. 1). This relationship has a property called
sample type that describes whether the sample is from tumor or normal tissues.
All of the clinical information about the patient is stored as the node property of
the Case as shown in Table 2. Each cancer type shares some clinical properties
to other cancer types but it may also have unique subset of clinical information
about the patient. Hence, the property keys are not always the same for all of
the Case nodes. Unlike relational databases where the attributes of an entity are
fixed, the property graph model allows to have different property keys for the
same entity class. This is very much useful especially in storing data from differ-
ent diseases because clinical information for patients with different diseases have
very unique measures. For instance, ‘her2 receptor status’ is specific to breast
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cancer dataset to represent if sample has positive or negative role of ‘her2’. Next,
all of the transcriptomics, methylation and mutation information is summarized
at the gene level; therefore, we have Gene as a node. For each Sample-Gene pair,
the gene expression value that is captured by the normalized htseq count (log2
count of reads per million mapped reads) is stored as a relationship property
between the Sample-Gene pair (see Fig. 1). For genes with multiple transcripts,
multiple relationships are created with different ENSG ids and expression val-
ues as their relationship properties. The hyper/hypo-methylation and mutation
events are stored as distinct relationships between a Sample-Gene pair with the
chromosome number and the location as the relationship properties (see Table 3).

Case

Sample

HAS_SAMPLE

Gene

HAS_EXPRESSION {ensg, ncount}

HAS_HYPOM_AT {chr, loc}
HAS_HYPERM_AT {chr, loc}

HAS_MUTATION_AT {chr, loc}

Fig. 1. Graph database for transcriptomics, methylation and mutation data

To implement above described property graph model, we used Neo4J commu-
nity edition of version 3.2.0 as our database. The entities (nodes), relationships
and their properties are imported into the Neo4J database using neo4j-import
tool. We have also written Python programs using Neo4J Python driver to assign
and update property values of the nodes.

2.4 Data Mining from Graph Database

Graph databases also provide graph based query languages to extract informa-
tion from the database. Neo4J provides query language called Cypher for this
purpose. A Cypher query contains a pattern that is searched in the graph and
returns a sub-graph with the input pattern and local matches. Example cypher
queries are shown in Listing 1.2 where the first query can be used to query for
nodes (Case) with specific property values such as disease code and pathologic
stage. In the second example, query for a path from Case to Sample that contains
the HAS SAMPLE relationship is being shown. In these examples, the search
pattern has specific nodes and relationships to look for. However, cypher queries
can deal with anonymous nodes or relationships by simply removing their labels
from the query. More complex queries will be illustrated in the results section.
Neo4J also provides Neo4J Browser for querying the database and visualization
of the results. The cypher queries such as mentioned in Listing 1.2 can be run
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Table 2. Entities (Nodes) and their properties in the graph database (the Case entity
property differ slightly between different cancer types)

Node/Entity Node properties

Case adenocarcinoma invasion, age at initial pathologic diagnosis,
anatomic neoplasm subdivision, batch number, bcr, bcr drug
barcode, bcr drug uuid, bcr followup barcode, bcr followup
uuid, bcr p, atient barcode, bcr patient uuid, caseId, day of dcc
upload, day of form completion, days to birth, days to death,
days to drug therapy end , days to drug therapy start , days to
initial pathologic diagnosis, disease code, drug name, ethnicity,
family history of cancer, file uuid, followup case report form
submission reason, followup treatment success, gender,
histological type, history of neoadjuvant treatment, icd 10,
icd o 3 histology, icd o 3 site, informed consent verified, initial
pathologic diagnosis method, lost follow up, lymph node
examined count, maximum tumor dimension, measure of
response, month of dcc upload, month of form completion,
neoplasm histologic grade, new tumor event after initial
treatment, number of lymphnodes positive by he, other dx,
pathologic M, pathologic N, pathologic T, pathologic stage,
patient barcode, patient id, person neoplasm cancer status,
primary lymph node presentation assessment, primary therapy
outcome success, project code, race, radiation therapy, residual
tumor, source of patient death reason, surgery performed type,
system version, targeted molecular therapy, therapy ongoing,
therapy type, tissue prospective collection indicator, tissue
retrospective collection indicator, tissue source site , tobacco
smoking history, tumor tissue site, tumor type, tx on clinical
trial, vital status, year of dcc upload, year of form completion,
year of initial pathologic diagnosis

Gene “Symbol”, “geneId”

Sample “sample barcode”, “sampleId”

Table 3. Relationships and their properties in the graph database

Relationships Relationship properties

HAS EXPRESSION ENSG, normalized count

HAS HYPERM AT Chromosome, location

HAS HYPOM AT Chromosome, location

HAS MUTATION AT chromosome, location

HAS SAMPLE sample type
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in the Neo4J Browser to visualize the result and to export it into other formats
such as CSV or PNG.

MATCH (c:Case) WHERE c.disease_code=’PAAD’ AND c.pathologic_stage="Stage IIA" RETURN c
MATCH r= (:Case)-[:HAS_SAMPLE]->(:Sample) RETURN r

Listing 1.2. Sample Cypher queries

3 Results

We next highlight the graph database created using the clinical information, gene
expression, methylation and mutation data and showcase several graph-based
queries and their results from the graph database. Furthermore, we illustrate
how novel relationships can be mined from the integrated database.

3.1 The Integrated Graph Database

The graph database containing gene expression, methylation, mutation and clin-
ical data for samples from the three types of cancer (BRCA, PRAD and PAAD)
consisted of 62,232 nodes and 268,018,177 relationships. The Table 4 shows exact
number of nodes and relationships for each of their types. The database takes
19 GB of disk space.

Table 4. Number of nodes and relationships in the database

Node counts

Case 1781

Sample 2016

Gene 58,435

Relationship counts

HAS EXPRESSION 113,854,650

HAS HYPERMETH AT 15,606,784

HAS HYPOM AT 138,458,403

HAS MUTATION AT 98,340

3.2 Querying the Database

Since the graph database can be queried for nodes and relationships, we show
results of few cypher queries, which only involve the nodes as well as those with
nodes and relationships.

Demographic Queries. Following two queries listed in Listing 1.3 show how
nodes with specific property values can be obtained from the graph database.
We show two important demographics from the PAAD dataset, viz. (a) number
of patients for each stage and (b) number of patients per race. The Table 5 shows
the results from these queries.
match (c:Case) where c.disease_code="PAAD" return c.pathologic_stage,count(c.caseId) order

↪→ by c.pathologic_stage
match (c:Case) where c.disease_code="PAAD" return c.race,count(c.patient_barcode)

Listing 1.3. Cypher query for number of patients for different stages in PAAD
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Table 5. Result of queries related to demographics (left: pathologic stage, right: race)

c.pathologic stage count(c.caseId)

Stage I 1

Stage IA 5

Stage IB 15

Stage IIA 30

Stage IIB 122

Stage III 4

Stage IV 5

null 3

c.race count(c.patient barcode)

Asian 11

African American 7

White 162

null 5

Gene Expression of Selected Genes in Prostate Cancer Across Mul-
tiple Sample Types. Next we show how the graph database can be used to
extract information on how the gene expression values for a subset of genes
vary across different sample types such as normal tissue, primary tumor and
metastatic. We choose the PRAD dataset in this case and show the genes
TSPAN13 and MCM7 both have higher expression in tumor samples than in
normal (see Table 6). The authors of [19] and [1] have individually shown the
overexpression of MCM7 and TSPAN13 genes in prostate cancer.

MATCH (c:Case{disease_code:"PRAD"}) -[hs:HAS_SAMPLE]->(s:Sample) -[e:HAS_EXPRESSION]->(g:
↪→ Gene) where g.symbol in [’TSPAN13’,’MCM7’] return hs.sample_type, avg(toFloat(e.
↪→ ncount)),g.symbol

Listing 1.4. Cypher query for gene expression values in different tissue types in PRAD

Frequently Mutated Genes in Each Cancer Type. Next we show how
top ten mutation events and the genes with those frequent mutations can be
obtained from the graph database. The Listing 1.5 shows the Cypher query
used to generate the frequently mutated list of genes and the mutation counts

Table 6. Result from query in Listing 1.4 (nPrimaryTumor = 517, nSolidTissueNormal =
52, nMetastatic = 1)

hs.sample type avg (toFloat(e.ncount)) g.symbol

Metastatic 8.22 TSPAN13

Primary Tumor 7.512208835 TSPAN13

Solid Tissue Normal 6.5775 TSPAN13

Metastatic 7.23 MCM7

Primary Tumor 6.207148594 MCM7

Solid Tissue Normal 5.795576923 MCM7
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presented in Table 7. Most of these genes are already known to have frequent
mutations. In Sect. 5, we discuss further regarding these genes from this result
and highlight its significance. The TTN gene being the longest gene in human
genome is more frequently mutated in all three cancer types.

Table 7. Result from query in Listing 1.5

Cancer Gene Frequency

BRCA

PIK3CA 340

TTN 258

TP53 204

MUC16 137

RYR2 73

USH2A 62

HMCN1 61

FLG 60

SYNE1 59

DMD 53

Cancer Gene Frequency

PAAD

KRAS 140

TTN 75

TP53 72

MUC16 33

USH2A 22

RYR3 20

SYNE1 20

LRP1B 17

COL5A1 17

RYR1 17

Cancer Gene Frequency

PRAD

TTN 62

SPOP 54

TP53 39

MUC16 32

SYNE1 28

SPTA1 24

OBSCN 22

LRP1B 20

RYR2 16

RYR1 16

match p=(c:Case {disease_code:"BRCA"}) -[hs:HAS_SAMPLE]->(s:Sample)-[e:HAS_MUTATION_AT]->(g
↪→ :Gene) return g.symbol,count(e.ncount) as ec order by ec desc

Listing 1.5. Cypher query for finding top 10 mutation events in patients with BRCA

Sub-network of Samples and Genes Mutated in Stage IV Patients in
PAAD. We queried the graph database to find genes that are mutated in at
least two samples in stage IV patients in PAAD. The Fig. 2 shows a sub-graph
containing the genes (green nodes), KRAS and TP53, which have mutations in
at least two patients (pink nodes) in Stage IV of PAAD. Furthermore, the KRAS
mutation is observed in chromosome 12 at position 25245350 for all five samples
while the TP53 mutation in three of the samples are in three different locations.

Methylation Status of Specific Genes from Pancreatic Cancer Sam-
ples. Next, we show how the integrated graph database can be used to extract
epigenetic events relevant to cancer. Specifically, we use pancreatic cancer sam-
ples and find out number of patients who have hyper-methylation events in
previously known hyper-methylated genes. We used CACNA1G, TIMP2 and
RUNX3 genes, previously shown to have hyper-methylation activity in pancre-
atic cancer, to identify PAAD samples from our dataset with hyper-methylation
events in these genes [18,26]. We show that a large number of samples (out of
184 total) have hyper-methylation in these three genes (see Table 8).
match p=(c:Case {disease_code:"PAAD"}) -[hs:HAS_SAMPLE{sample_type:"Primary Tumor"}]->(s:

↪→ Sample)-[e:HAS_HYPERM_AT]->(g:Gene) where g.symbol in [’CACNA1G’,’TIMP2’,’RUNX3’]
↪→ return g.symbol, count(distinct(c.patient_barcode))

Listing 1.6. Cypher query for finding count of patients with hyper methylation
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Fig. 2. Resulting subgraph finding genes mutated in stage IV patients in PAAD

Table 8. Result from query in Listing 1.6 to count the number of samples with hyper-
methylation events in PAAD dataset (n = 184)

Gene Count of patients with Hyper Methylation in CpG islands

CACNA1G 139

RUNX3 184

TIMP2 182

Mutation Count and Different Pathologic Status. To examine if the
mutation count is increased in advanced stages of cancer compared to early
stages, we used the graph database to query for number of patients and the
number of mutations in each stage of cancer from breast cancer dataset. We
aggregated the results from different stages within each stage. For instance, we
combined the numbers from Stage I, Stage IA, Stage IB and represented as Stage
I (see Table 9). It was observed that the average mutation per patient in Stage

Table 9. Average number of mutations per stage in BRCA dataset

Stages Count of mut Count of cases Average mut

Stage I (combined) 4664 93 50.15

Stage II (combined) 39813 617 64.53

Stage III (combined) 9746 248 39.30

Stage IV 1667 20 83.35
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IV is the highest among all four stages. However, the trend across all stages
doesn’t show a clear pattern.

4 Availability

The source code, a demo dataset and basic instructions on how to populate
the graph database and run database server are available in GitHub repository
at the URL, https://github.com/ishworthapa/graphd. The source code requires
Python3 and the instructions are written for Debian based Linux distributions.
The Neo4J database server that is being utilized is the community edition.

5 Discussions

We presented a graph database that integrates the mutation, DNA methyla-
tion, gene expression and clinical information from cancer patients in the cancer
genome atlas (TCGA). Previous studies such as [27] and [7] have shown an
increase in performance while using a graph database for biological data as com-
pared to traditional relational database. The Neo4J graph database and its query
language, Cypher provided a strong platform for efficient storage and access to
heterogeneous data from multi-omics studies. Comparing the performance of
property graph model with other graph models such as resource description
framework (RDF) can be a future step. We highlighted several powerful and
unique example queries and results that are relevant for cancer researchers and
not as easily available in existing platforms. Most of the results we showed were
discovered in previous literatures. However, we want to highlight that by query-
ing to this database and analyzing the query results, researchers can formulate
novel data-driven hypothesis. The mutations in LRP1B gene that have been
shown to be associated with hepatocellular, lung and other cancer forms was
found to be frequently mutated in PRAD and PAAD in our study (see Table 7)
[12,15]. Similarly we found that the RUNX3 gene expression is decreased from
normal tissue (5.1325) to primary tumor (3.65) to metastatic tissue (2.06) using
a query similar to Listing 1.4, where we changed the gene name to RUNX3. We
also note that the RUNX3 gene is frequently hyper-methylated in PAAD (see
Table 8). It has been shown that hyper-methylation of RUNX3 down-regulates
its gene expression in other cancers. The relationship between multiple data
levels such as hyper-methylation and down-regulation of gene expression can be
uniquely studied using our graph database. Moreover, similar studies can explore
the role of hyper-methylation in TIMP2, another frequently hyper-methylated
gene in PAAD cancer.

In future, more data types such as copy number aberration and miRNA
sequencing data, which are available with open access in TCGA, will also be
incorporated into the graph database. The Gene node can be expanded with
gene lengths that can help in generating tumor mutational burden. To make
this graph database richer, information from other databases such as MutSig
can be added for each mutation site [14]. In addition, we intend to include data

https://github.com/ishworthapa/graphd
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from all forms of cancer that are available in TCGA and make the platform
publicly available. We envision that this platform will allow cancer researchers
to widely use publicly available data from TCGA with a holistic view from
multiple heterogeneous data sources.
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ported by Nebraska Research Initiative (NRI).
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24. Tomczak, K., Czerwińska, P., Wiznerowicz, M.: The cancer genome atlas (TCGA):
an immeasurable source of knowledge. Contemp. Oncol. 19(1A), A68 (2015)
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Abstract. SMART2 is an enhanced version of the SMART pipeline
for mitogenome assembly from low-coverage whole-genome sequencing
(WGS) data. Novel features include automatic selection of the opti-
mal number of read pairs used for assembly and the ability to assem-
ble multiple sequencing libraries when available. SMART2 succeeded in
generating mitochondrial sequences for 26 metazoan species with WGS
data but no previously published mitogenomes in NCBI databases. The
SMART2 pipeline is publicly available via a user-friendly Galaxy inter-
face at https://neo.engr.uconn.edu/?tool id=SMART2.

Keywords: Mitogenome assembly · Multi-library assembly ·
Low-coverage sequencing

1 Introduction

Mitochondria are cellular organelles present with very rare exceptions in all
eukaryotic cells. In most animals, the mitochondria have their own genome, a
double-stranded circular DNA molecule typically ranging in size between 15–
20 Kb that encodes 37 genes (2 ribosomal RNA genes, 13 protein coding genes, and
22 transfer RNA genes). The mitochondrial genome is inherited maternally, and
has much higher copy number than the nuclear genome [24]. The small size, high
copy number, and the presence of both coding and regulatory regions that mutate
at different rates make the mitochondrial genome an ideal genetic marker. Indeed,
mitochondrial sequences have been used in applications ranging from maternal
ancestry inference and tracing human migrations [6] to forensic analysis [19]. The
mitochondrial DNA has also become the workhorse of biodiversity studies since
many non-model species do not have yet a sequenced nuclear genome [12,16].

To date, most such biodiversity studies have been based on sequencing a sin-
gle gene fragment, such as the Cytochrome C oxidase I (COI) gene, which has
been adopted as the preferred “barcode of life” [14,21]. Recently there have been
a renewed appreciation for the improved accuracy of taxonomic and phylogenetic
analyses performed based on complete mitogenome sequences assembled from
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low coverage whole genome shotgun (WGS) reads generated using next gener-
ation sequencing (NGS) technologies. Indeed, full length mitogenome sequences
capture evolutionary events such as genome rearrangements that are missed in
single gene analyses [18]. Furthermore, the exponential decrease in NGS costs has
led to an explosion in the number of WGS datasets generated from non-model
organisms. For mammals alone, there are currently over two hundred species
with paired-end WGS data available in the NCBI SRA database but for which
no complete mitogenome is available. Recent studies have also demonstrated
that WGS data of sufficient depth for reconstructing mitogenomes can be gen-
erated from preserved museum specimens [23], making the approach applicable
to rare or even extinct species.

Leveraging the available WGS datasets to expand the number of complete
mitogenomes requires bioinformatics pipelines that can assemble and annotate
high-quality mitogenomes quickly and with minimal human intervention. Unfor-
tunately, standard genome assemblers often fail to generate high quality mito-
chondrial genome sequences due to the large difference in copy number between
the mitochondrial and nuclear genomes [13]. This has led to the development
of specialized tools for reconstructing mitochondrial genomes from WGS data,
mainly falling within three categories. Reference-based methods such as MTool-
Box [8] require the mtDNA sequence of the species of interest or a closely related
species, which are often not available for the less-studied species of interest in bio-
diversity studies. Seed-and-extend tools such as MITObim [13] and NOVOPlasty
[11] use a greedy approach to extend available seed sequences such as the COI
but can have difficulty handling repetitive regions present in some mitochondrial
genomes [16]. Finally, de novo methods such as Norgal [2] and plasmidSPAdes
[7] use coverage-based filtering to remove nuclear WGS reads before performing
assembly using the de Bruijn graph of remaining reads.

In [5] we introduced a hybrid method called Statistical Mitogenome Assembly
with RepeaTs (SMART), which uses a seed sequence to estimate the mean and
standard deviation of mtDNA k-mer counts, then positively selects reads with k-
mer counts falling within three standard deviations of the estimated mean before
performing de novo assembly. Experiments in [3] show that for low-depth WGS
datasets the positive selection approach implemented by SMART yields higher
enrichment for mtDNA reads than the negative selection of Norgal. Furthermore,
SMART was shown to produce complete circular mitogenomes with a higher
success rate than both seed-and-extend tools MITObim and NOVOPlasty and
de novo assemblers Norgal and plasmidSPAdes.

In this paper we present an extension of the SMART pipeline, referred to as
SMART2, that can take advantage of multiple sequencing libraries when avail-
able and automatically selects the optimal number of read pairs used for assem-
bly. We also present experimental results comparing read filtering and assembly
accuracy of SMART2 with that of existing state-of-the-art tools, along with the
results of a pilot “orphan mitogenomes” project in which SMART2 was used to
generate 15 complete and 11 partial mitogenomes for 26 mammals and amphib-
ians without previously published mitogenomes. All novel mitogenomes have
been submitted to GenBank as Third Party Annotation (TPA) sequences [9].
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2 Methods

The SMART2 pipeline is deployed using a customized instance of the Galaxy
framework [1] and is publicly available via a user-friendly Galaxy interface at
https://neo.engr.uconn.edu/?tool id=SMART2 (see Fig. 1). The pipeline was
designed for processing paired-end reads in fastq format from one or two WGS
libraries. In addition to fastq files, the user specifies the sample name and a seed
sequence in fasta format. By default the number of reads is selected automat-
ically as described below, but the user can override the default and manually
specify it. Advanced options also allow the user to change the default choices for
the number of bootstrap samples (default is 1), k-mer size (default is 31), num-
ber of threads (default is 16), and the genetic code used for MITOS annotation
(default is the vertebrate mitochondrial code).

Fig. 1. Galaxy interface of SMART2.

https://neo.engr.uconn.edu/?tool_id=SMART2
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Fig. 2. SMART2 workflow.
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The main steps of the SMART2 pipeline follow those of SMART with adap-
tations for multi-library inputs:

1. Automatic adapter detection and trimming, performed independently for each
library.

2. Random resampling of a number of trimmed read pairs, either specified by
the user or automatically determined using the doubling strategy described
below.

3. Selection of mitochondrial reads based on coverage estimates of seed sequence
k-mers – aggregated across libraries using one of the methods described below
(2-dimensional Gaussian mixture modeling using MCLUST, Union, or Inter-
section).

4. Joint preliminary assembly of reads passing the coverage filter in the two
libraries, performed using SPAdes.

5. Filtering of preliminary contigs by BLAST searches against a local mitochon-
drial database.

6. Secondary read filtering by alignment to preliminary contigs that have signif-
icant BLAST matches, performed independently for each library.

7. Joint secondary assembly of selected reads, performed using SPAdes.
8. Iterative scaffolding and gap filling based on maximum likelihood.
9. Prediction and annotation of mitochondrial genes using MITOS.

As for SMART, steps 2–8 of SMART2 can be repeated a user-specified number of
times to compute the bootstrap support for the assembled sequences. A detailed
flowchart of the SMART2 pipeline is shown in Fig. 2.

Fig. 3. Mitochondrial k-mer coverage distribution estimated by MCLUST using seed
k-mer counts generated from (a) 800k read pairs sampled from library SRR630623 of
the Anopheles stephensi dataset, and (b) 400k read pairs sampled from each of the two
libraries of the Anopheles stephensi dataset.
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2.1 Coverage-Based k-mer Classification

For a single library SMART2 uses the same method as SMART for classifying k-
mers as mitochondrial or nuclear in origin. Specifically, SMART2 uses MCLUST
[22] to fit a two-component Gaussian mixture model to the one-dimensional
distribution of counts of seed sequence k-mers. The upper component of the
fitted model is taken as a proxy for the corresponding mtDNA k-mer count
distribution, and all k-mers that have a count within 3 standard deviations of the
estimated upper component mean are classified as mitochondrial (see Fig. 3(a)).

For two libraries the natural extension of this approach would be to fit a
two-component Gaussian mixture model to the two-dimensional distribution
of counts of seed sequence k-mers (see Fig. 3(b)). Unfortunately experimen-
tal results in Sect. 3 show that this approach (referred to as “MCLUST”) has
relatively poor read filtering performance. Consequently, we implemented in
SMART2 two alternative approaches for k-mer classification. Both rely on first
independently classifying each k-mer as mitochondrial or nuclear based on fitting
two-component Gaussian mixture models to the one-dimensional distributions of
counts of seed sequence k-mers of each library. The “Union” method ultimately
classifies a k-mer as mitochondrial if it is classified as such based on either one
of the libraries, while the “Intersection” method does so if the k-mer is classified
as mitochondrial according to both libraries.

Table 1. Multi-library WGS datasets with published mtDNA sequences.

Species Library ID Read

length

% mtDNA Seed ID Seed length Reference ID Reference

length

A. stephensi SRR630623 2× 101 0.041% MK726121 704 KT899888 15,371

SRR630669 2× 101 0.041%

A. funestus SRR630620 2× 101 0.03% MK300232 709 MG742199 15,349

SRR630619 2× 101 0.032%

D. mauritiana SRR1560275 2× 76 1.033% HM630860 560 AF200830 14,964

SRR1560276 2× 76 1.120%

P. major SRR2961765 2× 100 0.313% GQ482300 694 NC 040875 16,777

SRR2961767 2× 100 0.313%

P. humilis SRR765709 2× 101 0.215% EU382177 620 KP001174 16,758

SRR765710 2× 101 0.294%

2.2 Automatic Selection of Bootstrap Sample Size

The number of read pairs in a bootstrap sample has a significant effect on the
quality of resulting assembly. Too small a number of reads may produce frag-
mented assemblies due to lack of coverage for some regions. Too large a number
may be detrimental by increasing the complexity of the assembly graph and
making it more difficult to remove tangles generated by sequencing errors. In
the original version of SMART [5] the number of read pairs in a bootstrap sam-
ple is specified by the user, and this can lead to many trial-and-error runs to
find the optimal coverage.
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In SMART2 we implemented a simple doubling strategy for automatically
selecting the number of read pairs used in each bootstrap sample. Based on
SMART experiments with manually specified numbers of read pairs we noted
that a mean read coverage of the mitochondrial genome between 20× and 40×
generates complete mitogenomes with high success rate. Unfortunately, it is diffi-
cult to analytically estimate the number of read pairs that yields a mitochondrial
coverage in this range since the percentage of mitochondrial reads in real WGS
datasets can vary by orders of magnitude [3] and the exact sizes of the nuclear
and mitochondrial genomes are often not known a priori. For a single WGS
library, SMART2 starts with 100,000 read pairs and then iteratively doubles the
number of pairs until reaching an estimated mean mitochondrial read coverage
of 20× or more. For two WGS libraries, SMART2 uses a similar doubling strat-
egy starting with 100,000 read pairs and stopping when the sum of the mean
mitochondrial read coverages estimated from the two libraries is 20× or more.

3 Results and Discussion

3.1 Comparison of Coverage-Based Filters and Assembly Accuracy
on WGS Datasets from Species with Published Mitogenomes

For a detailed assessment, including evaluating the effectiveness of the SMART2
coverage-based filters and comparing assembly accuracy with previous methods
we used five two-library datasets from species with published mitogenomes. The
datsets are comprised of three insects (Anopheles stephensi, Anopheles funestus,
and Drosophila mauritiana) and two birds (Parus major and Pseudopodoces
humilis). Accession numbers and basic statistics for the five datasets are provided
in Table 1.

Fig. 4. Accuracy of single and multi-library coverage-based filters on 100k–3.2M read
pairs randomly selected from libraries in Table 1.
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Figure 4 plots the True Positive Rate (TPR), Positive Predictive Value
(PPV), and F1 score (harmonic mean of TPR and PPV) achieved by the
MCLUST, Union, and Intersection filters of SMART2 as the total number of
read pairs is varied between 100k and 3.2M. All values are averages over the
five species in Table 1. For comparison we include the average TPR, PPV, and
F1 score of single library filters (L1 and L2). The results underscore the poor
performance of the 2-dimensional mixture model (MCLUST), and the different
tradeoffs achieved between TPR and PPV by the Union and Intersection filters.
Specifically, for a fixed number of reads, the Union filter typically achieves a
higher TPR but lower PPV than single library filters, while the Intersection fil-
ter does the opposite. In these experiments, the Intersection filter yields an F1
score comparable with single library filters for the lower range of tested num-
ber of read pairs, but both the Union and Intersection filters converge towards
the performance of single library filters as the number of read pairs exceeds one
million.

Assembly accuracy results generated by SMART2 and three other tools (Nor-
gal [2], NOVOPlasty [11], and PlasmidSPAdes [7]) on the datasets described in
Table 1 are given in Table 2. The number of read pairs used for assembly, indi-
cated in last column for both single and two-library runs, was selected using
the doubling strategy implemented described in Sect. 2. For each method, the
assembled sequence length and percentage identity to the published reference
are typeset in bold when the reconstructed sequence is a circular genome.

On all datasets Norgal failed to generate any contigs or generated nuclear
rather than mitochondrial contigs, consistent with the poor performance
reported for low-coverage WGS data in [3]. NOVOPlasty generated circular
mitogenomes from two of the ten libraries, but failed on one library, and gen-
erated only incomplete mitogenomes from the remaining seven. PlasmidSPAdes

Table 2. Assembled sequence length and percentage identity to the published reference
for low-coverage WGS datasets from species with published mitogenomes. Numbers in
bold indicate a complete circular mitogenome.

Species Library Norgal NOVOPlasty PlasmidSPAdes SMART2 #Pairs

A. stephensi SRR630623 Nuclear 2,962 14,974 15,153 800k

66.6% 99.5% 99.6%

SRR630669 Nuclear 2,428 15,324 15,412 800k

99.8% 99.5% 99.5

Both N/A N/A N/A 15,283 2× 400k

99.8%

A. funestus SRR630620 – 2,105 12,819 13,424 800k

99.6% 41.6% 99.5%

SRR630619 – 2,402 15,176 13,369 800k

99.4% 99.5% 99.4%

Both N/A N/A N/A 10,502 2× 400k

99.5%

(continued)



192 F. Alqahtani and I. Măndoiu

Table 2. (continued)

Species Library Norgal NOVOPlasty PlasmidSPAdes SMART2 #Pairs

D. mauritiana SRR1560275 Nuclear 14,922 15,411 15,462 400k

99.9% 96.5% 96.7%

SRR1560276 Nuclear 9,327 15,245 15,643 400k

99.9% 97.9% 95.3%

Both N/A N/A N/A 15,397 2× 200k

97%

P. major SRR2961765 – 16,774 16,791 16,814 1,6M

99.8% 99.7% 99.6%

SRR2961767 Nuclear 16,774 16,790 16,813 1.6M

99.8% 99.7% 99.6%

Both N/A N/A N/A 16,814 2× 800k

99.6%

P. humilis SRR765709 Nuclear – 16,852 16,797 1.6M

98.8% 99.1%

SRR765710 – 8,139 16,774 16,797 800k

99.5% 99.3% 99.1%

Both N/A N/A N/A 16,797 2× 400k

99.1%

generated circular mitogenomes from three of the ten libraries, while SMART2
succeed on five of the ten single-library runs and two of the five two-library runs.

3.2 SMART2 Assembles Novel Mitogenomes

In a pilot project to assemble “orphan mitogenomes” for species with publicly
available WGS data but no published mitogenome sequence we ran SMART2
on WGS datasets from 18 mammals (Abrocoma cinerea, Arvicola amphibius,
Babyrousa babyrussa, Canis rufus, Coendou bicolor, Cratogeomys planiceps,
Ctenodactylus gundi, Cuniculus paca, Grammomys surdaster, Heteromys oasi-
cus, Hippotragus niger kirkii, Hippotragus niger niger, Pipistrellus pipistrel-
lus, Pusa hispida saimensis, Rhacophorus chenfui, Sciurus carolinensis, Sorex
palustris, and Urocitellus parryii) and 8 amphibians (Agalychnis moreletii,
Brachycephalus ferruginus, Brachycephalus pombali, Cycloramphus boraceiensis,
Hyla arborea, Hylodes phyllodes, Melanophryniscus xanthostomus, and Oophaga
pumilio). Basic information about the 26 datasets is given in Table 3. The num-
ber of read pairs was selected automatically using the doubling strategy for all
datasets except A. cinerea, G. surdaster, and H. arborea, for which we manually
increased the number of read pairs after automatic selection failed to assemble
complete circular genomes.
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Table 3. WGS datasets from 26 metazoans without published mitogenomes. mtDNA
content was estimated by aligning the reads against the SMART2 assembly only when
the latter was a complete sequence. The number of read pairs was selected automat-
ically by using the doubling strategy described in Sect. 2 except for the three species
marked with a dagger for which it was manually increased after automatic selection
failed to assemble a complete circular mitogenome. A “*” indicates datasets for which
all available read pairs were used.

Species Run ID Read length % mtDNA #Pairs Used Seed ID

Abrocoma cinerea SRR8885043 2× 151 1.490 2,000,000† AF244388

Agalychnis moreletii SRR8327212 2× 182 NA 1,600,000 EF125031

Arvicola amphibius ERR3316036 2× 151 0.002 51,200,000 LT546162

Babyrousa babyrussa ERR2984475 2× 100 0.022 12,800,000 AY534302

Brachycephalus ferruginus SRR5837605 2× 251 NA 856,599* HQ435708

Brachycephalus pombali SRR5837604 2× 251 NA 846,282* HQ435714

Canis rufus SRR8066613 2× 101 0.565 400,000 U47043

Coendou bicolor SRR8885018 2× 151 3.372 100,000 U34852

Cratogeomys planiceps SRS4613652 2× 151 2.537 100,000 AY545541

Ctenodactylus gundi SRR8885020 2× 151 0.246 400,000 U67301

Cuniculus paca SRS4613635 2× 151 0.371 400,000 JF459150

Cycloramphus boraceiensis SRR4019528 2× 305 NA 1,776,547* KU494395

Grammomys surdaster SRS4524074 2× 151 0.689 10,000,000† KY753991

Heteromys oasicus SRR8885041 2× 151 0.965 200,000 ABCSA423-06

Hippotragus niger kirkii SRS4184270 2× 101 0.017 25,600,000 AF049388

Hippotragus niger niger SRR8366604 2× 101 0.012 51,200,000 AF049393

Hyla arborea SRR2157967 2× 101 NA 10,000,000† JN312692

Hylodes phyllodes SRR4019434 2× 305 NA 1,055,455* DQ502873

Melanophryniscus xanthostomus SRR5837589 2× 251 NA 977,403* KX025607

Oophaga pumilio SRR7627571 2× 49 NA 3,200,000 KX574023

Pipistrellus pipistrellus ERR3316150 2× 151 0.007 25,600,000 HM380206

Pusa hispida saimensis ERR2608991 2× 170 0.098 1,600,000 JX109798

Rhacophorus chenfui SRR5248583 2× 300 NA 3,477,603* KP996818

Sciurus carolinensis ERR3312500 2× 151 2.791 100,000 JF457099

Sorex palustris SRR8451745 2× 150 NA 6,400,000 MG421461

Urocitellus parryii SRR8263911 2× 151 0.609 200,000 KX646821

As shown in Table 4, out of the 26 datasets, SMART2 generated 15 com-
plete circular mitogenomes and 11 partial mitogenomes, for a total of 403,541
bp. NOVOPlasty and PlasmidSPAdes generate only 5 and 1 complete circular
mitogenomes, respectively. As seen in Fig. 5, when all three methods succeed,
agreement between the assembled sequences is very high. However, NOVOPlasty
and PlasmidSPAdes have a much higher failure rate than SMART2, generating a
total of only 258,538 bp and 224,818 bp of mitogenomic sequences, respectively.

To further assess the accuracy of mitogenomes assembled by SMART2 we
performed a joint phylogenetic analysis with published complete mitogenome
sequences of up to two species in the same family, whenever the latter could be
identified (see Table 4 for accession numbers). The joint phylogeny annotated
using iTOL [17] is shown in Fig. 6. The phylogeny was constructed using Fast-
Tree [20] with 10,000 bootstraps and the jModelTest [10] model of sequence
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Fig. 5. Phylogenetic tree of mitogenomes assembled by SMART2, NOVOPlasty, and
PlasmidSPAdes.

Fig. 6. Phylogenetic tree comparing SMART2 mitogenomes with published
mitogenomes of related species.
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evolution from a multiple alignment generated using MAFFT [15]. The phy-
logeny places the sequences of each family within independent clades, supporting
the accuracy of SMART2 assemblies. Assembly accuracy is further supported by
the completeness of MITOS annotations (see Table 4 for the number of anno-
tated genes for each species). All mtDNA sequences assembled by SMART2 for
the 26 species in the pilot project have been submitted to GenBank as Third
Party Annotation (TPA) sequences (see Table 4 for TPA accession numbers).

4 Conclusions

In this paper we presented SMART2, an enhanced pipeline that can assem-
ble high quality mitochondrial genomes from low coverage WGS datasets with
minimal user intervention. SMART2 succeeded in generating mitochondrial
sequences – including 15 complete circular mitogenomes – for 26 metazoan
species with WGS data but no previously published mitogenomes in NCBI
databases. An additional complete mitogenome assembled using the multi-
library feature of SMART2 will be published separately [4]. The SMART2
pipeline is publicly available via a user-friendly Galaxy interface at https://
neo.engr.uconn.edu/?tool id=SMART2.
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