
Chapter 9
Modified Robust Design Criteria
for Poisson Mixed Models

Hongyan Jiang and Rongxian Yue

Abstract The maximin D-optimal design (MMD-optimal design) and hypercube
design (HCD-optimal design) are two robust designs which overcome the problem
of design dependence on the unknown parameters. This article considers the robust
designs for Poisson mixed models. Given the prior knowledge of the fixed effects
parameters, a modification of the two robust design criteria is proposed by applying
the number-theoretic methods. The simulated annealing algorithm is used to find the
optimal exact designs. The results show that the modified optimal designs perform
better in the relative D-efficiency and programming time.

9.1 Introduction

In the fields of optimal experimental design, the Fisher information matrix plays
an important role. For nonlinear models or generalized linear models, the Fisher
information matrix depends on the unknown values of the parameters, which means
that the optimal design will depend on the parameters. Researchers can fix the value
based on their knowledge, or just guess, then the design will be locally optimal.

Robust design criterion is a good choice to overcome the problem of dependence
of a design on the unknown parameters, such as the maximin criterion and Bayesian
criterion [4]. The Bayesian approach maximizes the expected Shannon information
considering the prior information about the parameters of the model, while the max-
imin approach optimises over a specific domain of parameter values by maximizing
theminimal value of ameasure of the informationmatrix, inwhich the parameters are
assumed to belong to a known domain, without any hypothesis on their underlying
distribution [2].
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Aside from classical robust design criteria, the product design criterion, first sug-
gested byAtkinson and Cox [1], maximized the product of the determinants of Fisher
information matrices of the models of interest, scaled to the number of parameters
in each model. McGree et al. [11] applied the product design criterion to optimise
the product of the normalised determinants of Fisher information over eight dif-
ferent mixed effects bio-impedance models, which was combined by the 2.5th and
97.5th percentiles of all four fixed effect parameters in the model. Foo and Duffull
[9] proposed a hypercube D-optimality (HCD) criterion and a hypercube maximin
D-optimality (HCMMD) criterion, by setting the domain ΘHC of the fixed effect
parameters as various combinations of the 2.5th and 97.5th percentiles from the
known prior distribution of them in nonlinear mixed models. The HCD method is a
particular case of the product design criterion, and the result shows that this method
performs better at some combination of the extrema values of the parameters.What’s
more, a 100-fold improvement in the speed of this method compared to the Bayesian
optimal design is particularly attractive.

However, the percentiles of the prior distribution do not scatter as ‘uniform’ as
possible, and the underlying assumption of the HCD and HCMMD is that the effi-
ciency of any locallyD-optimal design of the 97.5%percentiles ismore or as efficient
to design of the parameter values located within the 97.5% interval [9]. We want to
generate a set of the parameter values which are uniformly scattered in a given
multi-dimensional prior distribution. Number-theoretic methods (NTMs) are used
in experimental design by Fang and Wang [5]. The set of the representative points
(RPs) based on NTMs is uniformly scattered under the notation of discrepancy. The
aim of this paper is to provide a robust method of obtaining optimal designs based on
the RPs. In what follows, given the prior distribution of the fixed effect parameters, a
D-optimality criterion based on the set of RPs, denoted by RPD-optimality criterion,
and a maximin optimality criterion based on the set of RPs, denoted by RPMMD,
are proposed.

The rest of the paper is organized as follows. The Poisson mixed models are
introduced in Sect. 9.2. Section9.3 gives a brief review on the existing criteria, and
presents amodification of the robust criteria by using theNTMs. Section9.4 evaluates
the new robust criteria via an one-variable first-order and second-order Poissonmixed
models by comparing among several designs. Section9.5 is the conclusion of the
paper.

9.2 The Poisson Mixed Model

In this section, a Poissonmixedmodel is introduced, and the quasi-likelihoodmethod
[12, 13, 16] is applied to Poissonmixedmodel to obtain the quasi-informationmatrix.



9 Modified Robust Design Criteria for Poisson Mixed Models 147

9.2.1 Poisson Mixed Models

Suppose there are N independent individuals taken part in an experiment, and the
responses yij at the experimental settings xij of an explanatory variable x for individual
i follows a Poisson distribution, conditioned on an r-dimensional random effects
vector bi [12, 13]. It is assumed that yij’s are related to the fixed and random effects
via a log link, that is log (λij) = f Tij β + zTij bi, and

p(yij |bi) =
λ
yij
ij

yij ! exp(−λij), yij = 0, 1, 2, · · · , i = 1, 2, ...,N , j = 1, 2, · · · ,mi, (9.1)

where p(yij|bi) denotes the conditional probability density function of yij given bi.
Moreover, given the individual random effects bi, the observations yij are assumed
to be conditionally independent. The p × 1 vector fij is the design vector of the
explanatory variable at the jth measurement for individual i, β is the corresponding
p × 1 vector of unknown fixed effect parameters, zij is the r × 1 (r ≤ p) design
vector for the random effects which is usually a subset of vector fij, and bi, i =
1, 2, . . . ,N is the corresponding r × 1 vector of unknown random effects which are
drawn independently from a multivariate normal distribution with mean zero and
covariance matrix G.

Let the vector yi = (yi1, · · · , yimi )
T be the count responses of individual i, and y =

(yT1 , yT2 , · · · , yTN )T be the response vector of the experiment for the
N individuals.

9.2.2 Fisher Information Matrix of the Model

Our interest lies in measuring the responses under a reasonable experimental design
to estimate the fixed effect parameter β as accurately as possible. For simplicity we
will assume throughout that the covariance matrix G of bi is known. Note that the
covariance matrix G need not be of full rank, which allows for some or most of the
parameters to be fixed across the individuals.

The likelihood function of β is

L(β) =
N∏

i=1

∫ mi∏

j=1

p(yij|bi)p(bi)dbi, (9.2)

where p(bi) is the probability density function of bi. The maximum likelihood esti-
mator of β cannot be written down in closed form due to the random effects in
model (9.1). As mentioned in [12–14, 16], quasi-likelihood method is employed to
construct the quasi-likelihood function QL(β; y). See [8, 10, 16] for details. The
quasi-information matrix for the experiment is
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M (β) = DTV−1(μ(β))D =
N∑

i=1

Mi(β), (9.3)

where μ(β) is the marginal mean of y, V (μ(β)) is the marginal covariance matrix
of y, D = ∂μ(β)/∂β, and Mi(β) is the quasi-information matrix of individual i.

According to the technique of variance correction in [14], we define a variance
correction term

c(zij, zij′) = exp(zTij Gzij′) − 1,

and let Ci = (c(zij, zij′)) be the mi × mi matrix of the correction terms. Then the
quasi-information matrix of individual i is given by

Mi(β) = FT
i A

T
i (Ai + AiCiAi)

−1AiFi = FT
i (A−1

i + Ci)
−1Fi, (9.4)

where Ai is a diagnose matrix with the individual mean vector E(Yi) on its diagonal.
Note that

Di = ∂μi(β)

∂β
= AiFi,

where FT
i = (fi1, · · · , fimi ) is the design matrix of individual i.

In what follows we mainly consider the one-variable first-order Poisson mixed
model

λij = exp(β0 + bi0 + (β1 + bi1)xj), (9.5)

and the one-variable second-order Poisson mixed model

λij = exp(β0 + bi0 + (β1 + bi1)xj + (β2 + bi2)x
2
j ). (9.6)

In these models the design vectors for the fixed effects and the random effects are
equal, i.e., fij = zij in model (9.1).

9.3 Robust Optimal Designs

9.3.1 Locally D-Optimal Designs

In most practical situations, exact design with a given total number of design points
is required. The objective of this paper is to determine an optimal m-exact design of
the following form

ξm =
{
x1 x2 · · · xs
n1 n2 · · · ns

}
,
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where xk , k = 1, 2, · · · , s, are the s different settings for each individual, and nk
denotes the corresponding repetition times of observations at xk , k = 1, 2, · · · , s, and∑s

k=1 nk = m. The individual design with fixedm is considered, which is reasonable
in practice. Each exact design can be considered as a design measure over the design
region, which can be written as a probability measure with supports xk ’s:

ξ =
{
x1 x2 · · · xs
p1 p2 · · · ps

}
, pk = nk

m
,

s∑

k=1

pk = 1.

A design ξ that makes the estimation of the unknown parameters in a model, β, as
effectively as possible, dominates over all other designs in the set of all design mea-
sures Ξ in the Löwner sense is called Löwner optimal. However, it is very difficult
to find the Löwner optimal design ξ , in general. A popular way is to specify an opti-
mality criterion, which is defined as a real-valued function of the information matrix
M (ξ ;β) of the model. The most commonly used function is logarithm of its deter-
minant log |M (ξ ;β)| and the corresponding optimality is known as D-optimality. A
design ξ is called a locally D-optimal in the Poisson mixed model (9.1) if for a given
nominal value of β, it maximizes log |M (ξ ;β)|, i.e.,

ξD = argmax
ξ

log |M(β)|. (9.7)

It is known that aD-optimal design ξD minimizes the content of the confidence region
of β and so minimizes the volume of the ellipsoid [2]. Note that the information
matrix M (ξ ;β) for a general model usually depends on the parameters β, and then
the design ξD is called locally D-optimal. In Sect. 9.4, the locally D-optimal designs
for the Poisson mixed models in (9.5) and (9.6) are calculated at the prior means of
β, respectively.

Niaparast and Schwabe [14] provides an equivalence theorem for checking
the optimality for a given candidate design for the Poisson mixed models. The
D-efficiency of an arbitrary design ξ compared to the D-optimal design ξD is defined
as [2]

Deff =
( |M (ξ ;β)|

|M (ξD;β)|
) 1

p

, (9.8)

where, p is the number of parameters for the fixed effects of the model.
A Bayesian D-optimal design, ξBD, helps to overcome the problem of design

dependence on the unknown parameters, is defined as follows:

ξBD = argmax
ξ

∫

β

log |M (ξ ;β)|η(β)dβ, (9.9)

where η(β) is a chosen prior distribution of β. The integration here will be calcu-
lated numerically by quasi-Monte Carlo (QMC) methods. It is known that the QMC
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methods for multi-dimensional numerical integration are much more efficient than
traditional Monte Carlo methods [5].

9.3.2 RPD-and RPMMD-Optimalities

Foo and Duffull [9] proposed a hypercube design criterion termed HCD-optimality,
which is a specific case of product optimality, where component models are formed
by the same structure model but with sets of parameter values taken at the 2.5th and
97.5th percentiles values of the prior distribution of β. A maximin design criterion
was also considered in [9] by setting the domain of parameters as ΘHC composed
of all the combinations of the 2.5th and 97.5th percentile values, which is called
HCMMD-optimality. The HCD-optimal design is defined by

ξHCD = argmax
ξ

∑

β∈ΘHC

log |M (ξ ;β)|, (9.10)

and the HCMMD-optimal design is defined by

ξHCMMD = argmax
ξ

min
β∈ΘHC

log |M (ξ ;β)|. (9.11)

The method in [9] is attractive for its short operating time and acceptable effective
at some nominal parameter values. The maximin optimal designs [4, 7, 17] are
particularly attractive since an appropriate range for the unknown parameters is only
required to specify. The major problem is that the maximin optimality criterion is
not differentiable and the equivalence theorem is elusive.

Note that the set of percentiles may not represent as much information of a Mul-
tivariate distribution as possible. We now consider the use of RPs of the prior dis-
tribution by NTMs. Fang and Wang [5] introduced two kinds of RPs based on the
F-discrepancy criterion and MSE criterion, respectively. Under the F-discrepancy
criterion, there exists a set of optimal RPs for a given continuous univariate dis-
tribution by directly using the inverse transformation method. For the multivariate
distributions with independent components, their RPs may also be obtained by using
the inverse transformation method. For the multivariate distributions with depen-
dence structures, Fang and Wang [5] proposed the NTSR algorithm to generate their
RPs, which can be implemented to obtain the RPs of the spherically symmetric dis-
tribution, multivariate l1-norm distribution, Liouville distribution, and so on. Zhou
and Wang [18] considered the RPs of Student’s tn distribution for minimizing the
MSE criterion. Very recently, Zhou and Fang [19] proposed a new criterion, termed
FM-criterion, to choose n RPs of a given distribution, which minimize the L2-norm
of the difference between the empirical distribution and the given distribution under
the constraint that the first n − 1 sample moments equal the population moments.
The empirical study in [19] shows that the RPs under the FM-criterion are better than
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other types of RPs. It is known that finding RPs under the MSE criterion is more
difficult, but more appropriate in the case of small sample size.

In what follows, by Θn-RP we denote a set of n RPs generated by the inverse
transformation method under F-discrepancy criterion from a prior distribution of β

with independent components. We define two robust design criteria to against the
uncertainty of the fixed effects in the mixed model (9.1) by using the RPs in Θn-RP ,
and compare them with the existing criteria in (9.10) and (9.11).

A design is called RPD-optimal if it maximizes

	RPD(ξ) =
∑

β∈Θn-RP
log |M (ξ ;β)|, (9.12)

and a design is called RPMMD-optimal if it maximizes

	RPMMD(ξ) = min
β∈Θn-RP

log |M (ξ ;β)|. (9.13)

9.4 Numerical Studies

In this section we present Numerical studies for the RPD-and RPMMD-optimal
designs for the first-order model in (9.5) with three different covariance structures of
the random effects, and the second-order model in (9.6) with a diagonal covariance
matrix of the random effects, respectively. The design region is taken as [c, 1] with
c = 0.01, 0.2, 0.4, respectively, as used in [15].

We assume that β has a continuous multivariate prior distribution H (β) with
independent components. i.e., H (β) = H (β1, · · · , βp) =∏p

i=1Hi(βi), where Hi(βi)

(i = 1, · · · , p) are the marginnal distribution functions of β. We use the NTMs
as demonstrated in [5] to find the set of RPs of the prior distribution. Letting
{ck = (ck1, · · · , ckp), k = 1, · · · , n} is a set of n points which are uniformly scat-
tered in the unit cube Cs = [0, 1]s, e.g., a good lattice points (glp) set, then the set
Θn-RP is obtained by using the inverse transformation method, i.e., Θn-RP = {βk =
(H−1

1 (ck1), · · · ,H−1
p (ckp)), k = 1, · · · , n}.

To find the optimal m-exact designs that maximize the criteria defined in last
section, we use the simulated annealing (SA) algorithm. In our computation for
m = 8, 12, 24, the initial temperature in the SA algorithm is taken as T0 = 106, and
the temperature reduction factor is 0.9. It is known that the SA algorithm allows
the search patterns to move away from a path of strict descent, migrates through a
sequence of local extremum in search of the global solution, and recognizes when
the global extremum has been located [3, 6, 9].

It must be noted that the Bayesian D-optimality criterion (9.9) requires a com-
plicated integration over the prior distribution. The computation of the Bayesian
optimal designs involves two steps: (i) computation of criterion for a given design,
and (ii) finding an optimal design bymaximization of the criterion value. To compute
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the criterion (9.9) for a given design, we use the NTMs which is more efficient than
Monte Carlo methods to obtain a good approximation of integration.

9.4.1 Designs for the First-Order Poisson Mixed Model

For the first-order Poisson mixed model given in (9.5), we consider the following
three kinds of covariance matrices G of random effects b = (b0, b1)T :

G1 =
(
0.5 0
0 0

)
, G2 =

(
0.5 0
0 0.5

)
, G3 =

(
0.5 0.25
0.25 0.5

)
.

9.4.1.1 The Case of Normal Prior Distributions

Assume that the prior distribution of β = (β0, β1)
T is a normal distribution with

mean β̄ = (β̄0, β̄1)
T = (1,−3)T and an identity covariance matrix I2.

In order to compare with the design criterion using percentile points inΘHC which
contains 4 values of β, we will use the set Θ3-RP of the RPs of the prior distribution
β ∼ N2(β̄, I2). According to Theorem 1.2 in Fang and Wang [5], the set Θ3-RP can
be obtained by taking an inverse transformation of the following glp set in C2,

{(1
6
,
3

6

)
,

(3
6
,
1

6

)
,

(5
6
,
5

6

)}
.

The two sets Θ3-RP and ΘHC chosen from the prior distribution N2(β̄, I2) of β are
shown in Table9.1.

The optimal m-exact designs (m = 8,16,24) under the five optimality criteria in
(9.9)–(9.13) for the first-order model (9.5) with random effects covariance matrix
Gi (i = 1, 2, 3) are calculated numerically, where the sets Θn-RP and ΘHC used in
these criteria are given in Table9.1. To save space, we only show the optimal 8-exact
designs for the covariance matrix G2 in Table9.2.

It is observed from this table that for a given value of c, the designs have two
support points except for the HCD-optimal designs on the cases c = 0.01, 0.2. The
left endpoint of each design region is the common support of these designs, but the
weights on it can be different.

In the following, taking for example, we make an efficiency comparison among
the optimal 8-exact designs in the case of c = 0.01. We compute the D-efficiencies
defined by (9.8) of the optimal 8-exact designs on the region [0.01, 1] obtained
under the criteria (9.9)–(9.13), respectively, with respect to each of the 100 locally
D-optimal designs where the 100 values of β are randomly sampled from its prior
distribution N2(β̄, I2). The results for each model with random effects covariance
matrix Gj (j = 1, 2, 3) are shown in Figs. 9.1–9.3. In each plot, column 1 stands for
the box plot of D-efficiency of the RPD-optimal design, column 2 for the box plot of
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Table 9.1 The sets Θ3-RP and ΘHC for the prior distribution β ∼ N2(β̄, I2)

Θ3-RP β0 β1 ΘHC β0 β1

β1
RP 0.0326 −3.0000 β1

HC 1 − 1.96 −3 − 1.96

β2
RP 1.0000 −3.9674 β2

HC 1 − 1.96 −3 + 1.96

β3
RP 1.9674 −2.0326 β3

HC 1 + 1.96 −3 − 1.96

β4
HC 1 + 1.96 −3 + 1.96

Table 9.2 The optimal 8-exact designs on [c, 1] for the first-order model (9.5) with random effects
covariance matrix G2 = 0.5 I2 based on the sets Θ3-RP and ΘHC in Table14.1

Criterion c = 0.01 c = 0.2 c = 0.4

Local D

(
0.01 0.7250

0.3125 0.6875

) (
0.2 0.8802

0.375 0.625

) (
0.4 1

0.375 0.625

)

HCD

(
0.01 0.5567 1

0.375 0.5 0.125

) (
0.2 0.7611 1

0.375 0.5 0.125

) (
0.4 0.9886

0.5 0.5

)

HCMMD

(
0.01 0.4688

0.375 0.5

) (
0.2 0.656

0.375 0.625

) (
0.4 0.8524

0.5 0.5

)

RPD

(
0.01 0.7075

0.375 0.625

) (
0.2 0.9081

0.375 0.625

) (
0.4 1

0.375 0.625

)

RPMMD

(
0.01 0.8199

0.375 0.625

) (
0.2 1

0.375 0.625

) (
0.4 1

0.375 0.625

)

Bayesian

(
0.01 0.7198

0.375 0.625

) (
0.2 0.9185

0.375 0.625

) (
0.4 1

0.5 0.5

)

D-efficiency of the HCD-optimal design, column 3 for the box plot of D-efficiency
of the Bayesian D-optimal design, column 4 for the box plot of D-efficiency of the
RPMMD-optimal design, and column 5 stands for the box plot of D-efficiency of
HCMMD-optimal design.

Figure9.1 shows the results for the first-order Poisson model with random inter-
cept. The median of the D-efficiency of the RPMMD-optimal design is the highest,
even better than Bayesian optimal design, and the performance of the HCMMD-
optimal design is the worst. Although the D-efficiency of the RPD-optimal design
is a little lower than that of the HCD-optimal design, its median is above 0.8, which
is acceptable in practice. Figures9.2–9.3 show the results for the first-order Poisson
model with both random intercept and random slope. These results show that the
difference of the five designs shrinks, and their performances are comparable. It is
noticed that theRPD-, RPMMD-andBayesianD-optimal designs performbetter than
the HCD-and HCMMD-optimal designs. In conclusion, the optimality criteria based
on the RPs is more efficient than that based on the hypercube method to overcome
the problem of dependence of designs on the unknown parameters of the model.

http://dx.doi.org/10.1007/978-3-030-46161-4_14
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Fig. 9.1 Box plots of the
D-efficiencies of the five
optimal 8-exact designs with
respect to the 100 locally
D-optimal 8-exact designs on
[0.01, 1] for the first-order
model (9.5) with random
effects covariance matrix G1
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Fig. 9.2 Box plots of the
D-efficiencies of the 8-exact
optimal 8-exact designs with
respect to the 100 locally
D-optimal 8-exact designs on
[0.01, 1] for the first-order
model (9.5) with random
effects covariance matrix G2
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Furthermore, we examine the affect of the number of RPs on the RPD- and
RPMMD-optimal exact designs on [0.01, 1] for the first-order model (9.5) with
random effects covariance matrix Gj (j = 1, 2, 3). The RPD-and RPMMD-optimal
8-exact designs are carried out under three sets Θn-RP (n = 3, 5, 8), and the D-
efficiencies of these designs are calculated with respect to the locally D-optimal
8-exact designs at each of 100 values of β which are randomly sampled from the
prior distributionN2(β̄, I2). For space reason, in Fig. 9.4 we only report a part of these
D-efficiencies of the RPD-and RPMMD-optimal designs for the first-order model
(9.5) with random effects covariance matrix G1. These results show that the number
of RPs has a slight impact on the RPD-and RPMMD-optimal designs.

9.4.1.2 The Case of Noncentral t Prior Distributions

We consider the case of non-normal prior distributions of the fixed effects. For illus-
tration purpose, we assume that β0 and β1 in the first-order model (9.5) are indepen-
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Fig. 9.3 Box plots of the
D-efficiencies of the five
optimal 8-exact designs with
respect to the 100 locally
D-optimal 8-exact designs on
[0.01, 1] for the first-order
model (9.5) with random
effects covariance matrix G3
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Fig. 9.4 Box plots of the
D-efficiencies of the
RPD-and RPMMD-optimal
8-exact designs under three
sets Θn-RP (n = 3, 5, 8) with
respect to the 100 locally
D-optimal 8-exact designs on
[0.01, 1] for the first-order
model (9.5) with random
effects covariance matrix G1
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dent and follow noncentral t distributions having means 1 and −3, respectively. Let
β0 ∼ t(q0, δ0) and β1 ∼ t(q1, δ1). By assuming the degrees of freedom q0 = 4 and
q1 = 3, the noncentrality parameters are then obtained by solving the equations

E(βi) = δiΓ (
qi−1
2 )

Γ (
qi
2 )

√
qi
2

, i = 0, 1,

which are δ0 = 0.7979 and δ1 = −2.1708, respectively. The set of RPs can also be
obtained by the NTMs. Our computation is carried out in Matlab, and the sets Θ3-RP
andΘHC ofβ with this prior distribution are given inTable9.3. The results inTable9.4
are the optimal 8-exact designs under the five optimality criteria in (9.10)–(9.13) for
the first-ordermodel (9.5) with random effects covariancematrixG2 = 0.5 I2 and the
noncetral t prior distribution of β, where the setsΘn-RP andΘHC used in these criteria
are as in Table9.3. Compared with the results in Table9.2, we observed that both
the RPD-and RPMMD-optimal designs on the region [c, 1] are very similar (except
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Table 9.3 The sets Θ3-RP and ΘHC of β = (β0, β1)
T whose components are independent and

follow prior distributions t(4, 0.7979) and t(3,−2.1708) respectively

ΘRP β0 β1 ΘHC β0 β1

β1
RP −0.1823 −2.3957 β1

HC −1.4604 −9.4003

β2
RP 0.8505 −4.4759 β2

HC −1.4604 −0.2209

β3
RP 2.1199 −1.1984 β3

HC 4.3557 −9.4003

β4
HC 4.3557 −0.2209

Table 9.4 The optimal 8-exact designs on [c, 1] for the first-order model (9.5) with random effects
covariance matrix G2 = 0.5 I2 and the noncentral t prior distribution of β, based on the sets Θ3-RP
and ΘHC in Table9.3

criterion c = 0.01 c = 0.2 c = 0.4

HCD

⎛

⎜⎝
0.01 0.2456 1

0.25 0.5 0.25

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4402 1

0.375 0.5 0.125

⎞

⎟⎠

⎛

⎜⎝
0.4 0.6527 1

0.375 0.5 0.125

⎞

⎟⎠

HCMMD

⎛

⎜⎝
0.01 0.24

0.375 0.625

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4209

0.5 0.5

⎞

⎟⎠

⎛

⎜⎝
0.4 0.6208

0.5 0.5

⎞

⎟⎠

RPD

⎛

⎜⎝
0.01 0.6979

0.375 0.625

⎞

⎟⎠

⎛

⎜⎝
0.2 0.8862

0.375 0.625

⎞

⎟⎠

⎛

⎜⎝
0.4 1

0.375 0.625

⎞

⎟⎠

RPMMD

⎛

⎜⎝
0.01 0.7204

0.375 0.625

⎞

⎟⎠

⎛

⎜⎝
0.2 0.7420

0.375 0.625

⎞

⎟⎠

⎛

⎜⎝
0.4 0.9498

0.375 0.625

⎞

⎟⎠

Bayesian

⎛

⎜⎝
0.01 0.7110 1

0.375 0.25 0.125

⎞

⎟⎠

⎛

⎜⎝
0.2 0.8658 1

0.5 0.25 0.25

⎞

⎟⎠

⎛

⎜⎝
0.4 0.9648 1

0.5 0.125 0.375

⎞

⎟⎠

RPMMD at c = 0.2), while others are much different, based on the two kinds of the
prior distribution of β.

9.4.2 Designs for the Second-Order Poisson Mixed Model

A similar discussion to the previous subsection is done to the second-order Poisson
mixed model in (9.6). For illustration, we assume that the covariance matrix of the
random effects b = (b0, b1, b2)T is G = 0.5 I3, and the prior distribution of the fixed
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effects β = (β0, β1, β2)
T is normal distribution with mean β̄ = (1,−3,−0.9)T and

covariance matrix I3. In this case, the percentile set ΘHC contains 8 points, and
for comparison we choose the set Θ7-RP having seven RPs of the prior distribution
β ∼ N3(β̄, I3), which is obtained by the inverse transformation method from the
following glp set,

{( 1

14
,
5

14
,
9

14

)
,

( 3

14
,
11

14
,
5

14

)
,

( 5

14
,
3

14
,
1

14

)
,

( 7

14
,
9

14
,
11

14

)
,

( 9

14
,
1

14
,
7

14

)
,

(11
14

,
7

14
,
3

14

)
,

(13
14

,
13

14
,
13

14

)}
.

The two sets Θ7-RP and ΘHC are shown in Table9.5.
Table9.6 shows the six kinds of optimal 8-exact designs on the region [c, 1] with

c = 0.01, 0.2 for the second-order model (9.6) with the random effects covariance
matrix Cov(b) = 0.5 I3. These designs are obtained numerically under the six opti-
mality criteria given in (9.7), (9.9)–(9.13), where the setsΘ7-RP andΘHC in Table9.5
are used in (9.10)–(9.13) correspondingly.

As in the previous subsection, we are going to make a comparison among these
designs. We generate randomly 100 values of β from the prior distribution β ∼
N3(β̄, I3), and find out the locally D-optimal 8-exact designs on the region [0.01, 1]
at each of these values of β. Then we calculate the D-efficiencies of the RPD-, HCD-
, Bayesian D-, RPMMD-and HCMMD-optimal 8-exact designs relative to each of
these locally D-optimal designs. The box plots of these D-efficiencies are shown in
Fig. 9.5.

As shown in Fig. 9.5, the medians of D-efficiencies of the RPD-, HCD-, Bayesian
D-, RPMMD-optimal designs are all greater than 0.95, while the median of
D-efficiencies of the HCMMD-optimal design is 0.8. The performance of the
RPD-optimal design is slightly better than theHCD-andBayesianD-optimal designs.
And the performance of the RPMMD-optimal design is much better than the
HCMMD-optimal design.

Table 9.5 The sets Θ7-RP and ΘHC for the prior distribution β ∼ N3(β̄, I3)

Θ7-RP β0 β1 β2 ΘHC β0 β1 β2

β1
RP −0.4652 −3.3661 −0.5339 β1

HC 1 − 1.96 −3 − 1.96 −0.9 − 1.96

β2
RP 0.2084 −2.2084 −1.2661 β2

HC 1 − 1.96 −3 + 1.96 −0.9 − 1.96

β3
RP 0.6339 −3.7916 −2.3652 β3

HC 1 − 1.96 −3 − 1.96 −0.9 + 1.96

β4
RP 1.0000 −2.6339 −0.1084 β4

HC 1 − 1.96 −3 + 1.96 −0.9 + 1.96

β5
RP 1.3661 −4.4652 −0.9 β5

HC 1 + 1.96 −3 − 1.96 −0.9 − 1.96

β6
RP 1.7916 −3 −1.6916 β6

HC 1 + 1.96 −3 + 1.96 −0.9 − 1.96

β7
RP 2.4652 −1.5348 0.5652 β7

HC 1 + 1.96 −3 − 1.96 −0.9 + 1.96

β8
HC 1 + 1.96 −3 + 1.96 −0.9 + 1.96
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Table 9.6 The optimal 8-exact designs on [c, 1] for the second-order model (9.6) with the random
effects covariance matrix Cov(b) = 0.5 I3

criterion c = 0.01 c = 0.2

Local D

⎛

⎜⎝
0.01 0.3365 0.9665

0.25 0.375 0.375

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4923 1

0.25 0.375 0.375

⎞

⎟⎠

HCD

⎛

⎜⎝
0.01 0.2807 0.7627 1

0.25 0.375 0.25 0.125

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4582 0.8337 1

0.25 0.375 0.125 0.25

⎞

⎟⎠

RPD

⎛

⎜⎝
0.01 0.3186 0.8872 1

0.25 0.375 0.25 0.125

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4772 0.9316 1

0.25 0.375 0.125 0.25

⎞

⎟⎠

HCMMD

⎛

⎜⎝
0.01 0.2122 0.6354

0.25 0.375 0.375

⎞

⎟⎠

⎛

⎜⎝
0.2 0.3868 0.8163

0.25 0.375 0.375

⎞

⎟⎠

RPMMD

⎛

⎜⎝
0.01 0.3412 1

0.25 0.375 0.375

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4644 1

0.25 0.375 0.375

⎞

⎟⎠

Bayesian D

⎛

⎜⎝
0.01 0.3219 0.8124 0.9686

0.25 0.375 0.25 0.125

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4766 0.9905

0.5 0.375 0.125

⎞

⎟⎠

Fig. 9.5 Box plots of the
D-efficiencies of the five
optimal 8-exact designs
relative to the 100 locally
D-optimal 8-exact designs on
[0.01, 1] for the second-order
model (9.6) with random
effects covariance matrix
Cov(b) = 0.5 I3
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Fig. 9.6 Box plots of the
D-efficiencies of the
RPD-and RPMMD-optimal
8-exact designs under three
sets Θ7-RP ,Θ11-RP , Θ13-RP
with respect to the 100
locally D-optimal 8-exact
designs on [0.01, 1] for the
second-order model (9.6)
with random effects
covariance matrix
Cov(b) = 0.5 I3
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We here examine the affect of the number of RPs used in the RPD- and
RPMMD-optimality criteria on the optimal designs for themodel (9.6). TheRPD-and
RPMMD-optimal 8-exact designs on [0.01, 1] under three setsΘn-RP (n = 7, 11, 13)
are calculated numerically, and the D-efficiencies of these designs are computed with
respect to the locally D-optimal 8-exact designs at each of the 100 values of β which
are randomly sampled from the prior distribution N3(β̄, I3). These results in Fig. 9.6
show that the number of RPs has a slight impact on the RPD-and RPMMD-optimal
designs.

9.5 Concluding Remarks

This paper concerns with optimal and robust design problems for Poisson mixed
models. Two optimality criteria, termed RPD-optimality and RPMMD-optimality,
for the Poisson mixed model are introduced by using the RPs of the prior distribution
of fixed effects. The purpose of these two criteria is to overcome the dependence
problemofD-optimality on the values of unknown parameters. By assuming the prior
distribution of fixed effects is a multivaraite normal distribution with independent
components, we obtain the RPs by using the transformation method. The numerical
results for the first-and second-order models show that the optimal designs based
on the RPs are more robust than those based on the hypercube method. Moreover,
the number of RPs has a slight impact on both RPD-and RPMMD-optimal designs.
Therefore, a small number of RPs used in the RPD-and RPMMD-optimality criteria
may yield a good robustness against parameter uncertainty. Hence, our results will
give more options to the experimenters.

In aspects of computation, the running times of constructing the RPD-and
RPMMD-optimal designs are much less than that of the HCD-andHCMMD-optimal
designs, respectively. The computation time of constructing the Bayesian D-optimal
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design is much longer than others due to the long time required in computation of
the Bayesian criterion for a given design.

Moreover, in our computation the prior distribution of the fixed effects is assumed
to have independent components, and then the RPs are obtained by using the inverse
transformation method. If the prior distributions of the fixed effects have corre-
lated components, the RPs can be generated by other methods proposed in, e.g.,
[5, 18, 19] and the references therein.
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