
Chapter 7
Construction of Uniform Designs
on Arbitrary Domains by Inverse
Rosenblatt Transformation

Mei Zhang, Aijun Zhang, and Yongdao Zhou

Abstract The uniform design proposed by Fang [6] and Wang and Fang [17] has
become an important class of designs for both traditional industrial experiments and
modern computer experiments. There exist established theory and methods for con-
structing uniform designs on hypercube domains, while the uniform design construc-
tion on arbitrary domains remains a challenging problem. In this paper, we propose
a deterministic construction method through inverse Rosenblatt transformation, as a
general approach to convert the uniformly designed points from the unit hypercubes
to arbitrary domains. To evaluate the constructed designs, we employ the central
composite discrepancy as a uniformity measure suitable for irregular domains. The
proposed method is demonstrated with a class of flexible regions, constrained and
manifold domains, and the geographical domain with very irregular boundary. The
new construction results are shown competitive to traditional stochastic representa-
tion and acceptance-rejection methods.

7.1 Introduction

The uniform design of experiments has generated a great amount of research papers
and impact cases ever since it was first proposed by Fang [6] and Wang and Fang
[17]. It has been successfully used for both traditional industrial experiments and
modern computer experiments; see the monographs [7, 9].
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To construct uniform designs on the unit hypercube Cs = [0, 1]s , there exist both
theoretical approaches and numerical optimization methods; see the latest book of
Fang et al. [8] for a complete treatment. Among these methods, the classical good
lattice point (GLP) method based on number theory is simple yet effective, and it
is also widely used in quasi-Monte Carlo sampling [14]. For the GLP method with
respect to the classical star-discrepancy criterion, Fang and Wang [9] (Appendix A)
provides a catalogue of generating vectors up to 18 dimensions. For two-dimensional
uniform designs in particular, it is well-known that the GLPs generated through
Fibonacci numbers enjoy the low star-discrepancy properties. However, it is not
clear whether such Fibonacci designs also enjoy the low centered-�2 discrepancy
(CD2) properties.

It is of our interest to construct the uniform designs on arbitrary experimental
domains, including regular and irregular regions. For regular regions such as ball,
sphere and simplex, Fang andWang [9] suggested the inverse transformation method
through establishing a non-trivial analytic stochastic representation (SR) for the ran-
dom vector uniformly distributed on each regular region, and then generating the
uniform designs by inversely mapping from the unit hypercubes. For mixture exper-
iments with single-factor constraints, Fang and Yang [10] proposed a conditional
distribution method that also takes a non-trivial SR form. This method is further
applied by Tian et al. [16] for generating uniform designs on tetragon and convex
polyhedrons. For an irregular region X ⊂ R

s that does not have the explicit SR
form, one usually resorts to the acceptance-rejection (AR) method that first gener-
ates uniform designs on a superset hypercube C ⊇ X , then retains only the design
points within the region of interest. Such AR method was suggested by Borkowski
and Piepel [2] for mixture experiments with complex multi-factor constraints. How-
ever, the AR method is less efficient especially when X is much smaller than C ,
and the resulting design inX sometimes has poor uniformity.

The construction of uniform designs on arbitrary domains remains a challenging
problem. Numerically, one may use the stochastic optimization methods to directly
search for the design points according to a certain uniformity criterion. Chuang and
Hung [5] proposed a central composite discrepancy (CCD) to measure uniformity
with regard to an arbitrary domainX , then used a switching algorithm to search for
the best design over a set of pre-specified points. Also based on the CCD criterion,
Lin et al. [13] applied the threshold accepting algorithm to optimize the U -type
designs on flexible regions, and Chen et al. [3] developed the discrete particle swarm
optimization algorithm with GPU acceleration. Other space-filling criteria can also
be used to directly measure the uniformity on irregular regions, e.g. the maximin
distance used by Chen et al. [4].

In this paper, we study a deterministic method based on the inverse Rosenblatt
transformation (IRT) for constructing uniform designs on arbitrary domains. It can
be viewed as a special kind of inverse method, as is remarked by Fang and Wang [9,
p. 54]. To distinguish the IRT from the existing inverse method based on the spe-
cific analytical SR, we call the latter as the SR method in this paper. Unlike the SR
methods reviewed above, the IRT method does not necessarily require the analytical
forms of conditional distribution functions, which can be easily approximated for a
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uniform experimental domain with irregular boundary. The IRT method includes the
conditional distributionmethod by Fang and Yang [10] as a special case for restricted
mixtures. We demonstrate how the proposed method can be used to construct uni-
form designs on a class of flexible regions, constrained and manifold domains, and
the irregular domains such as geographical maps. Among the uniformity criteria,
we employ the aforementioned CCD to evaluate the constructed designs on general
domains. For regular regions, the construction results by the IRT method are com-
pared with both SR and AR methods; while for irregular regions, they are compared
with the AR method.

The rest of this paper is organized as follows. In Sect. 7.2 we propose the IRT
method based on the marginal and conditional distributions subject to permutation,
and illustrate it through a synthetic example. Section7.3 presents the construction
results on a variety of regular and irregular domains. Some concluding remarks are
given in Sect. 7.4. In the Appendix, we provide a brief review of the GLP method for
constructing uniform designs on hypercube domains, which are used by the proposed
IRTmethod.We show that the leave-one-out Fibonacci designs achieve theminimum
centered �2-discrepancy for the mixed GLP method.

7.2 Inverse Rosenblatt Transformation Method

TheRosenblatt transformation [15] is a generalmapping ofmultivariate randomvari-
ables with a continuous distribution to the uniform distribution on unit hypercubes. It
can be used as a tool for construction ofmultivariate distributions and goodness-of-fit
testing; see e.g. Justel et al. [12] and Arnold et al. [1].

Let X ∈ X ⊆ R
s be a random vector with joint density

f (x1, . . . , xs) = f1(x1) f2|1(x2|x1) · · · fs|1,...,s−1(xs |x1, . . . , xs−1). (7.1)

Denote F1 as the marginal cumulative distribution function (CDF) of the first com-
ponent X1, and by F2|1, . . . , Fs|1,...,s−1 the consecutive conditional CDFs. Then, the
Rosenblatt transformation (RT) is defined by

{
U1 = F1(X1),

Uj = Fj |1,..., j−1(X j |X1, . . . , X j−1), j = 2, . . . , s.
(7.2)

It is clear that (a) U1, . . . ,Us are independent Uniform[0, 1] random variables,
(b) (X1, . . . , Xs) → (U1, . . . ,Us) is one-to-one from X to Cs , and (c) the Jaco-
bian of RT corresponds to the joint density function f . Note that RT is not
permutation-invariant and there exist s! kinds of different forms according to re-
ordering (X1, . . . , Xs). For each permutation (i1, . . . , is), denote T(i1,...,is ) as the RT
from the permutated (Xi1 , . . . , Xis ) to (U1, . . . ,Us).

Given the uniform distribution on Cs , the inverse T−1
(i1,...,is )

maps
u = (U1, . . . ,Us) back to x = (Xi1 , . . . , Xis ) ∈ X . More specifically, for a given
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observation (u1, . . . , us) ∈ Cs , the inverse Rosenblatt transformation (IRT) can be
expressed by

{
xi1 = Qi1(u1),
xi j = Qi j |i1,...,i j−1(u j |Xi1 = xi1 , . . . , Xi j−1 = xi j−1), j = 2, . . . , s

(7.3)

based on the quantile functions (i.e. inverse CDFs). To illustrate how the IRT works,
we consider the following example with two disjoint rectangular regions, where the
uniform distribution is assumed on each sub-region.

Example 7.1 (Two-rectangle Domain) Consider the uniform distribution on the
domain X with two disjoint rectangles, as shown in Fig. 7.1. It is clear the
marginal and conditional CDFs for either permutation (x1, x2) or (x2, x1) are of
the piecewise linear forms, as depicted in Fig. 7.2. Suppose we are given a point
u = (0.2, 0.75) ∈ C2, then it is straightforward to apply the IRT in (7.3), we can

Fig. 7.1 Experimental domain X formed with two disjoint rectangles with the vertices
((0, 0), (2, 0), (2, 4), (0, 4)) and ((3, 0), (5, 0), (5, 1), (0, 1)), respectively. The two points at
(0.5, 3) and (4, 0.5) are converted from (0.2, 0.75) ∈ C2 through T−1

(1,2) and T−1
(2,1), respectively

Fig. 7.2 Themarginal and conditional CDFs used for obtaining the IRT points on the two-rectangle
domain in Fig. 7.1. The point (0.2, 0.75) ∈ C2 is taken as an example for performing the IRT



7 Construction of Uniform Designs on Arbitrary Domains … 115

obtain the corresponding points in X through both T−1
(1,2) and T−1

(2,1), as shown in
Fig. 7.1.

Algorithm 3 Inverse Rosenblatt Transformation Method
Input: An arbitrary domainX with closed boundary, and an n-run uniform design {ui }ni=1 on C

s .
1: Choose a permutation (i1, . . . , is) of (1, . . . , s), then find the corresponding T(i1,...,is ) based on

uniform distribution within in the given boundary.
2: Use IRT to convert {ui }ni=1 to the domain X :

xi = T−1
(i1,...,is )

(ui ), i = 1, . . . , n.

3: Evaluate the CCD criterion (7.4) for the resulted X = {xi }ni=1.
4: Repeat Steps 1–3 for all s! permutations. Output the best design X∗ with the lowest CCD score.

The two-rectangle domain examplemotivates us to develop a practical IRTmethod
for constructing uniform designs on arbitrary experimental domains, as presented in
Algorithm 3. For any domain with uniform distribution and closed boundary, in the
first step,we canfind itsRT’s T(i1,...,is ) subject to a different permutation. Themarginal
and conditional CDFs can be either derived analytically by (multiple) integration, or
obtained through hyperrectangle approximation. In the latter situation, each CDF is
approximated by a non-decreasing piecewise linear function.

In the second step, we can apply (7.3) to each point of a given n-run uniform
design onCs , so as to generate the corresponding points onX . Aswe have reviewed,
there are a rich collection of existing methods for constructing uniform designs on
unit hypercubes. See the Appendix about the GLP method together with the elegant
Fibonacci designs on unit squares.

Each uniform design on Cs leads to at maximum s! different designs since there
are s! versions of IRT T−1

(i1,...,is )
subject to different permutations. To determine the

best design on X , we employ the aforementioned CCD criterion as a measure of
uniformity on arbitrary domains. According to Chuang and Hung [5], for any interior
point z in X , it can be treated as the Cartesian center to cut X into 2s quadrants,
then the �2 form of CCD is defined by

CCD(X) =
{

1

V (X )

∫
X

1

2s

2s∑
k=1

∣∣∣∣N (Xk(z), X)

n
− V (Xk(z))

V (X )

∣∣∣∣
2

dz

}1/2

, (7.4)

where N (Xk(z), X) denotes the number of design points in Xk(z), and V (X )

and V (Xk(z)) denote the volumes of X and Xk(z), respectively. In practice, the
integration overX can be approximated byMonteCarlo average over a large number
of equal-spaced grid points (say, 100 grid points along each coordinate).

Note that in Algorithm 3, when the domain X is symmetric in two or more
coordinates, some permutations can be relaxed and we only need consider all per-
mutations for asymmetric coordinates. For the symmetric flexible regions in R

2
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Fig. 7.3 Construction results of 20-run uniform designs on the two-rectangle domain in Fig. 7.1.
Left panel: ARmethod; Center panel: IRTmethodwith permutation (1, 2); Right panel: IRTmethod
with permutation (2, 1)

to be discussed in next section, there is no need to consider permutations, so
the evaluation of CCD criterion can be also skipped. Take the cylinder domain
X = {(x1, x2, x3) : x21 + x22 ≤ r2, a ≤ x3 ≤ b} ⊂ R

3 as another example. We only
need consider three permutations (1, 2, 3), (1, 3, 2) and (3, 1, 2).

Let us test the proposed IRT algorithm to construct the uniform design on the two-
rectangle domain in Example 7.1. Using the LOO-Fibonacci designwith n = 20 runs
(see Fig. 7.8), we obtain the IRT construction results shown in Fig. 7.3. It turns out
the permutation (x1, x2) leads to smaller CCD score than the permutation (x2, x1).
In contrast, the AR method is also tested with 39-run uniform design on the outer
rectangle with vertices ((0, 0), (5, 0), (5, 4), (0, 5)). The accepted 20-run sub-design
within the domain of interest has a relatively worse CCD score.

7.3 Construction Results

In this section, we present the construction results by the IRTmethod for four kinds of
experimental domains inR2. Numerical comparisons of effectiveness are conducted
between the proposed method and the existing SR and AR methods.

7.3.1 Flexible Regions

The flexible regions on R
2 controlled by a shape parameter m > 0 are defined by

X (m)
F = {

(x1, x2) ∈ [0, 1]2 : |2x1 − 1|m + |2x2 − 1|m ≤ 1
}
. (7.5)

Figure7.4 shows the boundaries of such flexible regions with m = ∞, 2, 1 and 0.5,
respectively. The circled points within each flexible region represent the constructed
88-run uniform designs by the proposed IRT method derived below.
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Fig. 7.4 Uniform designs with n = 88 runs on flexible regions with varying shape parameters. For
m = ∞, the design is obtained by the GLP method (LOO-Fibonacci design) on the unit square (see
Fig. 7.8). The design points in them = ∞ case are then converted by the IRT method to the flexible
regions for m = 2, 1 and 0.5

The flexible regions are symmetric in (x1, x2), so there is no need to consider
permutations. For the randomvector X = (X1, X2) ∼ Uniform(X (m)

F ), themarginal
CDF F1(x) of the first component X1 is

F1(x) =
∫ x

0

∫ 0.5+(1−|2x1−1|m )1/m/2

0.5−(1−|2x1−1|m )1/m/2

1

V (X (m)
F )

dx2dx1

where V (X (m)
F ) = ∫ 1

0 (1 − |2x1 − 1|m)1/mdx1. Note that
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∫ x

0
(1 − |2x1 − 1|m)1/mdx1

=
{
x, m = ∞;
B( 1

m , 1
m +1)

2m

[
1 + sign(x − 0.5)I|2x−1|m

(
1
m , 1

m + 1
)]

, 0 < m < ∞,

where B(a, b) and Ic(a, b) (with a, b > 0, c ∈ [0, 1]) are the values of Beta function
and Incomplete Beta ratio with the following forms

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt, Ic(a, b) = Bc(a, b)

B(a, b)
=

∫ c
0 ta−1(1 − t)b−1dt∫ 1
0 ta−1(1 − t)b−1dt

.

Therefore, the marginal CDF is given by

F1(x) =
{
x, m = ∞;
1
2 + sign(x−0.5)

2 · I|2x−1|m
(
1
m , 1

m + 1
)
, 0 < m < ∞.

(7.6)

and its inverse is given by

F−1
1 (u) =

{
u, m = ∞;
1
2 + sign(u−0.5)

2

(
I−1
|2u−1|

(
1
m , 1

m + 1
))1/m

, 0 < m < ∞.

Moreover, the conditional CDF F2|1(x |x1) of the second component given the
value of the first component being x1 is given by

F2|1(x |x1) =
{
x, m = ∞;
x−(0.5−(1−|2x1−1|m )1/m/2)

(1−|2x1−1|m )1/m
, 0 < m < ∞ (7.7)

and its inverse is given by

F−1
2|1 (u|x1) =

{
u, m = ∞;
0.5 + (u − 0.5)(1 − |2x1 − 1|m)1/m, 0 < m < ∞.

Thus we obtain the analytical IRT T−1
(1,2) for [0, 1]2 → X (m)

F as follows:

T−1
(1,2)((u1, u2)) = (

F−1
1 (u1), F−1

2|1
(
u2|F−1

1 (u1)
))

. (7.8)

The effectiveness of the IRT method can be compared with traditional AR and
SR methods. We use the CCD criterion to evaluate the uniform designs for n =
10, 20, . . . , 100 runs based on different construction methods. For the AR method,
for each target n, we search the uniform designs on C2 with sizes n + 1, n + 2, . . .
in order to find such a design with exactly n runs falling into X (m)

F . Note that such
AR method has the chance to find no appropriate design with the target number of
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runs. For the SR method, form = 2, the method by Fang andWang [9] is employed;
for m = 1, the method by Tian et al. [16] is employed; for m = 0.5, there exists no
SR method in the literature. All the needed uniform designs in C2 are generated by
the mixed GLP method (see Appendix). The numerical results for flexible regions
withm = 2, 1, 0.5 are listed in Table7.1. It can be found that IRT shows competitive
performances in most cases.

Table 7.1 CCD scores for uniform designs constructed on the flexible regions with m = 2, 1, 0.5

m n AR SR IRT

2 10 – 0.054329 0.048877

20 0.027465 0.030055 0.025930

30 0.020286 0.024471 0.020323

40 0.014839 0.021816 0.017132

50 0.013721 0.018935 0.013708

60 0.012722 0.015926 0.013522

70 0.012529 0.013691 0.012670

80 0.011813 0.013876 0.011595

90 – 0.013461 0.011708

100 0.012388 0.012752 0.011157

1 10 0.041046 0.047865 0.044335

20 0.033795 0.045915 0.026233

30 – 0.018906 0.021509

40 0.018492 0.016612 0.018882

50 0.012644 0.025909 0.015558

60 0.015144 0.014044 0.015588

70 0.015771 0.013879 0.014514

80 0.015241 0.013489 0.014223

90 0.017004 0.021852 0.013704

100 0.012856 0.014312 0.013199

0.5 10 0.048221 – 0.048607

20 0.035220 – 0.032163

30 0.034672 – 0.027973

40 0.028218 – 0.028656

50 0.033651 – 0.023997

60 0.025663 – 0.025844

70 0.029249 – 0.025079

80 0.024936 – 0.025046

90 0.024674 – 0.024543

100 0.020609 – 0.025098
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7.3.2 Constrained Domain

Tian et al. [16] studied a tetragon shape of constrained domain for drug combination
experiment, as defined by

XT = {
(x1, x2) ∈ R

2
+ : 20 < 101.91 − 31.17x1 − 9.56x2 < 80

}
. (7.9)

They constructed a 19-run uniform design on this domain by the SR method, as
shown in the left panel of Fig. 7.5. In this section, we apply the proposed IRTmethod
for constructing a competitive uniform design on this specific constrained domain
with the same number of runs.

First we can convert the domain XT to the following symmetric domain

XT̃ = {
(x̃1, x̃2) ∈ R

2
+ : 21.91 < x̃1 + x̃2 < 81.91

}
,

where x̃1 = 31.17x1 and x̃2 = 9.56x2. Write c1 ≡ 21.91 and c2 ≡ 81.91, then it is
easy to get the marginal CDF:

F1(x̃1) =
{

2x̃1
c1 + c2

, if 0 ≤ x̃1 ≤ c1;
1 − (c2 − x̃1)2

c22 − c21
, if c1 < x̃1 ≤ c2.

(7.10)

For eachfixed x̃1, the conditionalCDF F2|1(x̃2|x̃1) is given by the uniformdistribution
with the range [c1 − x̃1, c2 − x̃1] if x̃1 ∈ [0, c1] and the range [0, c2 − x̃1] if x̃1 ∈
[c1, c2].

Using the IRT method based on a 19-run uniform design on C2, we first obtain
the transformed design onXT̃ , then convert the design points back toXT as plotted
in the right panel of Fig. 7.5. This new design is more uniform than Tian et al. [16]’s
result according to the CCD criterion.

7.3.3 Manifold Domain

Other than the flexible regions discussed in the previous section, we consider another
special manifold domain defined by the ring constraint:

XR =
{
(x1, x2) ∈ R

2 : 1
4

≤ x21 + x22 ≤ 1

}
. (7.11)

To get the marginal and conditional CDFs, instead of striving to derive the analytical
forms, we adopt the following approximation method:

(1) Partition the x1-coordinate from [−1, 1] into N = 1000 equal-spaced intervals,
each interval with mid-point zk = (2k − 1)/N − 1 for k = 1, . . . , N .
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Fig. 7.5 Uniform designswith 19 runs on a constrained domain (with x2 shifted 1.04 units upward).
Left panel: SR method by Tian et al. [16]; Right panel: IRT method

Fig. 7.6 Uniform designs with 20 runs on the ring domain. Left panel: AR method; Center panel:
SR method by Zhang [19]; Right panel: IRT method

(2) Obtain the approximate marginal CDF for x1 based on the midpoints:

F̂1(zk) =
√
1 − z2k −

√
1/4 − z2k · I (|zk | ≤ 1

2 )

∑N
k=1

(√
1 − z2k −

√
1/4 − z2k · I (|zk | ≤ 1

2 )

) , k = 1, . . . , N .

(7.12)
(3) When x1 takes discretized zk-values, obtain the conditional CDF for x2|x1 by

the uniform distribution with the range

[
−

√
1 − z2k ,

√
1 − z2k

]
if |zk | ≥ 1/2 or

the range

[
−

√
1 − z2k ,−

√
1/4 − z2k

]
∪

[√
1/4 − z2k ,

√
1 − z2k

]
if |zk | ≤ 1/2.

Figure7.6 (right panel) shows the IRT constructed 20-run uniform design on the
ring domain. In contrast, on the left panel is the result by the AR method based on



122 M. Zhang et al.

Table 7.2 CCD scores for uniform designs constructed on the ring-shaped domain

n AR SR IRT

10 0.051980 0.048791 0.047818

20 0.028322 0.031075 0.027798

30 0.016596 0.021944 0.017866

40 0.013043 0.017600 0.015126

50 0.013418 0.015682 0.014486

60 0.011472 0.012808 0.011033

70 0.009177 0.011868 0.010474

80 0.011507 0.011086 0.009580

90 0.009958 0.009751 0.009025

100 0.012203 0.009791 0.007863

28-run uniform design on the unit cube. On the center panel is the result by the SR
method through xi1 = √

ui1 sin(2πui2), xi2 = √
ui1 cos(2πui2); see Zhang [19]. It

is found that in this case the IRT outperforms AR and SRmethods. Moreover, we run
through n = 10, 20, . . . , 100 to compare the three methods, with numerical results
presented in Table7.2. We can see that the IRT method always outperforms the SR
method, and sometimes have better performance than the AR method.

7.3.4 Geographical Domain

Lastly, we consider the geographical domain that is usually rather irregular. In this
section we consider the Land Map of China as the experimental domain Xmap. The
entire domain consists of several closed subregions. It is difficult to determine the
exact form of Rosenblatt transformation, so we use the approximated CDFs.

To approximate the marginal and conditional CDFs on the map domain, we find
a rectangle to completely cover Xmap and establish a cartesian coordinate system.
The rectangle has the resolution of 1297 × 1083 pixels, and the contour of Xmap

contains N = 675328 pixels in total. The marginal CDF of x1 is approximated by

F̂1(x1) = 1

N

N∑
i=1

I (xi1 ≤ x1), x1 = z1, . . . , z1297. (7.13)

For x1 = z1, . . . , z1297, the conditional CDF of x2|x1 is approximated by

F̂2|1(x2|x1 = zk) = 1

|�k |
∑
j∈�k

I (x j2 ≤ x2), (7.14)
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Fig. 7.7 Uniform designs with 143 runs on China map domain. Left panel: IRT method with
permutation (1, 2); Right panel: IRT method with permutation (2, 1). The vertical and horizontal
gray lines represent the partitions of the map for approximating the conditional CDFs

where �k denotes the subset of pixels { j : x j1 = zk}. Similarly for permutation
(x2, x1), we can obtain F̂2(x2) and F̂1|2(x1|x2).

Suppose we are given a 143-run LOO-Fibonacci design (see Fig. 7.8). We may
use the IRT method with respect to permutations (x1, x2) and (x2, x1) to construct
the corresponding uniform designs onXmap. The construction results are visualized
in Fig. 7.7, with the permutation (x2, x1) leading to a slightly lower CCD score. In
each permutation, there are two points to represent the Hainan and Taiwan islands
on the map, respectively.

7.4 Conclusion

The construction of uniform designs on irregular regions has been a relatively chal-
lenging task as compared with the case on regular regions. Inspired by the stochas-
tic representation method in Fang and Wang [9], we propose to construct uniform
designs on arbitrary domains by the inverse Rosenblatt transformation (IRT) based
on marginal and conditional distributions. We have demonstrated how to use this
method in multiple kinds of experimental domains in two-dimensional space, and
the construction results are rather competitive and promising.

There are several interesting problems that are worth further study. First, the IRT
method is proposed for not only two-dimensional space, but also higher dimensional
space. In the latter case it is however computationally demanding. It is important to
develop a highly efficient algorithm for approximating the marginal and conditional
distribution functions. Second, there exist othermanifold domains than the ring shape
and flexible regions, e.g. the sphere and donut kinds of surfaces in high-dimensional
space. It is interesting to extend the IRT method to these manifold cases. Third, in
this study we find that the central composite discrepancy is an imperfect measure
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of uniformity on arbitrary domains. For example, it lacks the property of invariance
under rotation. It is among our research plans to develop a better kind of discrepancy
measure for space-filling designs on arbitrary domains with general distributional
assumption.
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Appendix: Good Lattice Point Method

The uniform designs constructed on the unit hypercubes by the GLPmethod are also
known as the NT-nets [9], which uses the classical star-discrepancy for evaluating the
uniformity of the candidate designs. In Algorithm 4 we write the GLP method using
the centered-�2 discrepancy (CD2), a more popular criterion proposed by Hickernell
[11]. Meanwhile, it is easy to check that the GLP designs (7.15) always include a
point xn = (1 − 1/2n, . . . , 1 − 1/2n) ∈ Cs . The leave-one-out (LOO) GLPmethod
is to remove such a dummy point, then scale the remaining points by n/(n − 1) in
all coordinates. Thus, in order to construct an n-run uniform design, we can use a
mixed GLP method by selecting the lower-CD2 design between the GLP (with input
n) and LOO-GLP (with input n + 1) outputs.

It is well-known that for s = 2 and n = Fk (Fibonacci numbers 5, 8, 13, 21, …),
the lattice designs generated by h1 = 1 and h2 = Fk−1 enjoy the remarkable low star-
discrepancy property [18]. It is of our interest to investigate whether such Fibonacci
designs may also attain low discrepancy with respect to the CD2 criterion. As a
key difference, the star-discrepancy is anchored at the origin of the unit hypercube,
while the CD2 is anchored at the center. It turns out the Fibonacci designs are sub-
optimal under CD2. Nevertheless, we find that the LOO-Fibonacci designs with
n = Fk − 1 (Fk ≤ 1597) runs remarkably minimize the CD2 criterion among all the
generating vectors for the mixed GLPmethod. See Fig. 7.8 about the LOO-Fibonacci
designs with 20, 88 and 143 runs. See Table7.3 for the numerical results based on

Fig. 7.8 Scatter plots of LOO-Fibonacci designs for n = 20, 88 and 143 runs
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Algorithm 4 Good Lattice Point Method
Input: The number of factors s, and the number of runs n.
1: Form a generating vector (h1, h2, . . . , hs) by choosing distinct positive integers that are less

than and relatively prime to n.
2: Form the n-run lattice design X = [xi j ]n×s with entries

xi j =
{
2ih j − 1

2n

}
, i = 1, . . . , n, j = 1, . . . , s (7.15)

where {z} is the factorial part of z.
3: Evaluate the criterion of the centered-�2 discrepancy

CD2(X) =
{(

13

12

)s

− 2

n

n∑
i=1

s∏
j=1

(
1 + 1

2

∣∣∣xi j − 1

2

∣∣∣ − 1

2

∣∣∣xi j − 1

2

∣∣∣2
)

+ 1

n2

n∑
i,k=1

s∏
j=1

(
1 + 1

2

∣∣∣xi j − 1

2

∣∣∣ + 1

2

∣∣∣xk j − 1

2

∣∣∣ − 1

2
|xi j − xk j |

) }1/2

.(7.16)

4: Repeat Steps 1–3 for all distinct generating vectors. Output X∗ with the lowest CD2 value.

Table 7.3 LOO-Fibonacci designs with h1 = 1 and h2 = Fk−1 minimize the CD2 criterion for the
mixed GLP method, where h∗

2 represents the best found generating vectors per each method

n = Fk − 1 h2 = Fk−1 h∗
2 (LOO-GLP) min-CD2 h∗

2 (GLP) min-CD2

4 3 2, 3 1.275E–01 3 1.350E–01

7 5 3, 5 7.631E–02 3, 5 8.122E–02

12 8 5, 8 4.557E–02 5 5.058E–02

20 13 8, 13 2.843E–02 9 3.133E–02

33 21 13, 21 1.764E–02 14, 26 1.947E–02

54 34 21, 34 1.117E–02 35 1.288E–02

88 55 34, 55 7.010E–03 37 7.661E–03

143 89 55, 89 4.456E–03 63 4.823E–03

232 144 89, 144 2.806E–03 147 3.115E–03

376 233 144, 233 1.784E–03 165 1.916E–03

609 377 233, 377 1.123E–03 256 1.224E–03

986 610 377, 610 7.128E–04 579 7.600E–04

1596 987 610, 987 4.484E–04 617 4.859E–04

exhaustive search up to Fk = 1597. From Table7.3, it can be found that the LOO-
Fibonacci designswith n = Fk − 1 also include h1 = 1 and h2 = Fk−2 as the optimal
generating vector. This can be actually justified by the reflection-invariant property
of the CD2 criterion.
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