
Chapter 5
Is a Transformed Low Discrepancy
Design Also Low Discrepancy?

Yiou Li, Lulu Kang, and Fred J. Hickernell

Abstract Experimental designs intended to match arbitrary target distributions are
typically constructed via a variable transformation of a uniform experimental design.
The inverse distribution function is one such transformation. The discrepancy is a
measure of how well the empirical distribution of any design matches its target
distribution. This chapter addresses the question of whether a variable transformation
of a low discrepancy uniform design yields a low discrepancy design for the desired
target distribution. The answer depends on the two kernel functions used to define the
respective discrepancies. If these kernels satisfy certain conditions, then the answer
is yes. However, these conditions may be undesirable for practical reasons. In such
a case, the transformation of a low discrepancy uniform design may yield a design
with a large discrepancy. We illustrate how this may occur. We also suggest some
remedies. One remedy is to ensure that the original uniform design has optimal
one-dimensional projections, but this remedy works best if the design is dense, or
in other words, the ratio of sample size divided by the dimension of the random
variable is relatively large. Another remedy is to use the transformed design as the
input to a coordinate-exchange algorithm that optimizes the desired discrepancy, and
this works for both dense or sparse designs. The effectiveness of these two remedies
is illustrated via simulation.
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5.1 Introduction

Professor Kai-Tai Fang and his collaborators have demonstrated the effectiveness
of low discrepancy points as space filling designs [4–6, 11]. They have promoted
discrepancy as a quality measure for statistical experimental designs to the statistics,
science, and engineering communities [7–10].

Low discrepancy uniform designs,U = {ui }Ni=1, are typically constructed so that
their empirical distributions, FU , approximate Funif, the uniform distribution on the
unit cube, (0, 1)d . The discrepancy measures the magnitude of Funif − FU . The
uniform design is a commonly used space filling design for computer experiments
[5] and can be constructed using JMP® [20].

When the target probability distribution for the design, F , defined over the exper-
imental domain Ω , is not the uniform distribution on the unit cube, then the desired
design, X , is typically constructed by transforming a low discrepancy uniform
design, i.e.,

X = {xi }Ni=1 = {Ψ (ui )}Ni=1 = Ψ (U ), Ψ : (0, 1)d → Ω. (5.1)

Note that F may differ from Funif because Ω �= (0, 1)d and/or F is non-uniform.
A natural transformation, Ψ (u) = (Ψ1(u1), . . . , Ψd(ud)

)
, when F has independent

marginals, is the inverse distribution transformation:

Ψ j (u j ) = F−1
j (u j ), j = 1, . . . , d, where F(x) = F1(x1) · · · Fd(xd). (5.2)

A number of transformation methods for different distributions can be found in [2]
and [11, Chap. 1].

This chapter addresses the question of whether the design X resulting from
transformation (5.1) of a low discrepancy design, U , is itself low discrepancy with
respect to the target distribution F . In other words,

does small Funif − FU imply small F − FX ? (Q)

We show that the answer may be yes or no, depending on how the question is
understood.Wediscuss both cases. For illustrative purposes,we consider the situation
where F is the standard multivariate normal distribution, Fnormal.

In the next section, we define the discrepancy and motivate it from three perspec-
tives. In Sect. 5.3 we give a simple condition under which the answer to (Q) is yes.
But, in Sect. 5.4 we show that under more practical assumptions the answer to (Q)
is no. An example illustrates what can go wrong. Section5.5 provides a coordinate
exchange algorithm that improves the discrepancy of a candidate design. Simula-
tion results illustrate the performance of this algorithm. We conclude with a brief
discussion.
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Table 5.1 Three interpretations of the discrepancy

Kernel Interpretation Discrepancy D(X , ν, K ) = D(X , �, K )

K (t, x) = 〈δt , δx〉M ‖ν − νX ‖M
f (x) = 〈K (·, x), f 〉H sup

f ∈H :‖ f ‖H ≤1

∣
∣∣
∣∣

∫

Ω

f (x) �(x) dx − 1

N

N∑

i=1

f (xi )

∣
∣∣
∣∣

K (t, x) = cov
(
f (t), f (x)

) √√
√√
√E

∣
∣∣
∣∣

∫

Ω

f (x) �(x) dx − 1

N

N∑

i=1

f (xi )

∣
∣∣
∣∣

2

5.2 The Discrepancy

Experimental design theory based on discrepancy assumes an experimental region,
Ω , and a target probability distribution, F : Ω → [0, 1], which is known a priori.We
assume that F has a probability density,�. It is convenient to alsoworkwithmeasures,
ν, defined on Ω . If ν is a probability measure, then the associated probability distri-
bution is given by F(x) = ν((−∞, x]). The Dirac measure, δx assigns unit measure
to the set {x} and zero measure to sets not containing x. A design, X = {xi }Ni=1,
is a finite set of points with empirical distribution FX = N−1∑N

i=1 1(−∞,xi ] and
empirical measure νX = N−1∑N

i=1 δxi .
Our notation for discrepancy takes the form of

D(FX , F, K ), D(X , F, K ), D(X , �, K ), D(X , ν, K ), D(νX , ν, K ), etc.,

all of which mean the same thing. The first argument always refers to the design, the
second argument always refers to the target, and the third argument is a symmetric,
positive definite kernel, which is explained below.We abuse the discrepancy notation
because sometimes it is convenient to refer to the design as a set, X , other times
by its empirical distribution, FX , and other times by its empirical measure, νX .
Likewise, sometimes it is convenient to refer the target as a probability measure, ν,
other times by its distribution function, F , and other times by its density function, �.

In the remainder of this sectionwe provide three interpretations of the discrepancy,
summarized in Table5.1. These results are presented in various places, including [14,
15]. One interpretation of discrepancy is the norm of ν − νX . The second and third
interpretations consider the problem of evaluating the mean of a random variable
Y = f (X), or equivalently a multidimensional integral

μ = E(Y ) = E[ f (X)] =
∫

Ω

f (x) �(x) dx, (5.3)

where X is a random vector with density �. The second interpretation of the discrep-
ancy is worst-case cubature error for integrands, f , in the unit ball of a Hilbert space.
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The third interpretation is the root mean squared cubature error for integrands, f ,
which are realizations of a stochastic processes.

5.2.1 Definition in Terms of a Norm on a Hilbert Space
of Measures

Let (M , 〈·, ·〉M ) be a Hilbert space of measures defined on the experimental region,
Ω . Assume that M includes all Dirac measures. Define the kernel function K :
Ω × Ω → R in terms of inner products of Dirac measures:

K (t, x) := 〈δt , δx〉M , ∀t, x ∈ Ω. (5.4)

The squared distance between two Dirac measures in M is then

‖δx − δt‖2M = K (t, t) − 2K (t, x) + K (x, x), ∀t, x ∈ Ω. (5.5)

It is straightforward to show that K is symmetric in its arguments and positive-
definite, namely:

K (x, t) = K (t, x) ∀t, x ∈ Ω, (5.6a)
N∑

i,k=1

ci ck K (xi , xk) > 0, ∀N ∈ N, c ∈ R
N \ {0}, X ⊂ Ω. (5.6b)

The inner product of arbitrary measures λ, ν ∈ M can be expressed in terms of a
double integral of the kernel, K :

〈λ, ν〉M =
∫

Ω×Ω

K (t, x) λ(dt)ν(dx). (5.7)

This can be established directly from (5.4) for M0, the vector space spanned
by all Dirac measures. Letting M be the closure of the pre-Hilbert space M0 then
yields (5.7).

The discrepancy of the design X with respect to the target probability measure
ν using the kernel K can be defined as the norm of the difference between the target
probability measure, ν, and the empirical probability measure forX :
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D2(X , ν, K ) := ‖ν − νX ‖2

=
∫

Ω×Ω

K (t, x) (ν − νX )(dt)(ν − νX )(dx)

=
∫

Ω×Ω

K (t, x) ν(dt)ν(dx) − 2

N

N∑

i=1

∫

Ω

K (t, xi ) ν(dt)

+ 1

N 2

N∑

i,k=1

K (xi , xk). (5.8a)

The formula for the discrepancy may be written equivalently in terms of the proba-
bility distribution, F , or the probability density, �, corresponding to the target prob-
ability measure, ν:

D2(X , F, K ) =
∫

Ω×Ω

K (t, x) dF(t)dF(x) − 2

N

N∑

i=1

∫

Ω

K (t, xi ) dF(t)

+ 1

N 2

N∑

i,k=1

K (xi , xk), (5.8b)

=
∫

Ω×Ω

K (t, x) �(t)�(x) dtdx − 2

N

N∑

i=1

∫

Ω

K (t, xi ) �(t) dt

+ 1

N 2

N∑

i,k=1

K (xi , xk). (5.8c)

Typically the computational cost of evaluating K (t, x) for any (t, x) ∈ Ω2 is
O(d), where t is a d-vector. Assuming that the integrals above can be evaluated at a
cost of O(d), the computational cost of evaluating D(X , ν, K ) is O(dN 2).

The formulas for the discrepancy in (5.8) depend inherently on the choice of the
kernel K . That choice is key to answering question (Q). An often used kernel is

K (t, x) =
d∏

j=1

[
1 + 1

2

(|t j | + |x j | − |x j − t j |
)]

. (5.9)

This kernel is plotted in Fig. 5.1 for d = 1. The distance between twoDirac measures
by (5.5) for this kernel in one dimension is

‖δx − δt‖M = √|x − t |.

The discrepancy for the uniform distribution on the unit cube defined in terms of
the above kernel is expressed as
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Fig. 5.1 The kernel defined in (5.9) for d = 1

D2(U , Funif, K ) =
∫

(0,1)d×(0,1)d
K (t, x) dtdx − 2

N

N∑

i=1

∫

(0,1)d
K (t, ui ) dt

+ 1

N 2

N∑

i,k=1

K (ui , uk)

=
(
4

3

)d

− 2

N

N∑

i=1

d∏

j=1

[

1 + ui j − u2i j
2

]

+ 1

N 2

N∑

i,k=1

d∏

j=1

[
1 + min(ui j , uik)

]
.

5.2.2 Definition in Terms of a Deterministic Cubature Error
Bound

Now let (H , 〈·, ·〉H ) be a reproducing kernel Hilbert space (RKHS) of functions [1],
f : Ω → R, which appear as the integrand in (5.3). By definition, the reproducing
kernel, K , is the unique function defined onΩ × Ω with the properties that K (·, x) ∈
H for any x ∈ Ω and f (x) = 〈K (·, x), f 〉H . This second property, implies that
K reproduces function values via the inner product. It can be verified that K is
symmetric in its arguments and positive definite as in (5.6).

The integralμ = ∫
Ω

f (x) �(x) dx, which was identified asE[ f (X)] in (5.3), can
be approximated by a sample mean:

μ̂ = 1

N

N∑

i=1

f (xi ). (5.10)
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The quality of this approximation to the integral, i.e., this cubature, depends in part on
how well the empirical distribution of the design, X = {xi }Ni=1, matches the target
distribution F associated with the density function �.

Define the cubature error as

err( f,X ) = μ − μ̂ =
∫

Ω

f (x) �(x)dx − 1

N

N∑

i=1

f (xi )

=
∫

Ω

f (x) d[F(x) − FX (x)]. (5.11)

Under modest assumptions on the reproducing kernel, err(·,X ) is a bounded, linear
functional. By the Riesz representation theorem, there exists a unique representer,
ξ ∈ H , such that

err( f,X ) = 〈ξ, f 〉H , ∀ f ∈ H .

The reproducing kernel allows us to write down an explicit formula for that repre-
senter, namely, ξ(x) = 〈K (·, x), ξ 〉H = 〈ξ, K (·, x)〉H = err(K (·, x),X ). By the
Cauchy-Schwarz inequality, there is a tight bound on the squared cubature error,
namely

|err( f,X )|2 = 〈ξ, f 〉2H ≤ ‖ξ‖2H ‖ f ‖2H . (5.12)

The first term on the right describes the contribution made by the quality of the
cubature rule, while the second term describes the contribution to the cubature error
made by the nature of the integrand.

The square norm of the representer of the error functional is

‖ξ‖2H = 〈ξ, ξ 〉H = err(ξ,X ) since ξ represents the error functional

= err(err(K (·, ··),X ),X ) since ξ(x) = err(K (·, x),X )

=
∫

Ω×Ω

K (t, x) d[F(t) − FX (t)]d[F(x) − FX (x)].

We can equate this formula for ‖ξ‖2H with the formula for D2(X , F, K ) in (5.8).
Thus, the tight, worst-case cubature error bound in (5.12) can be written in terms of
the discrepancy as

|err( f,X )| ≤ ‖ f ‖H D(X , F, K ).

This implies our second interpretation of the discrepancy in Table5.1.
We now identify the RKHS for the kernel K defined in (5.9). Let (a, b) be some

d dimensional box containing the origin in the interior or on the boundary. For any
u ⊆ {1, . . . , d}, define ∂u f (xu) := ∂ |u| f (xu, 0)/∂xu, the mixed first-order partial
derivative of f with respect to the x j for j ∈ u, while setting x j = 0 for all j /∈ u.
Here, xu = (x j ) j∈u, and |u| denotes the cardinality of u. By convention, ∂∅ f :=
f (0). The inner product for the reproducing kernel K defined in (5.9) is defined as
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〈 f, g〉H :=
∑

u⊆{1,...,d}

∫

(a,b)
∂u f (xu)∂ug(xu) dxu (5.13)

= f (0)g(0) +
∫ b1

a1

∂ {1} f (x1)∂ {1}g(x1) dx1

+
∫ b2

a2

∂ {2} f (x2)∂ {2}g(x2) dx2 + · · ·

+
∫ b2

a2

∫ b1

a1

∂ {1,2} f (x1, x2)∂ {1,2}g(x1, x2) dx1dx2 + · · ·

+
∫

(a,b)
∂ {1,...,d} f (x)∂ {1,...,d}g(x) dx.

To establish that the inner product defined above corresponds to the reproducing
kernel K defined in (5.9), we note that

∂uK ((xu, 0), t) =
∏

j∈u

1

2

[
sign(x j ) − sign(x j − t j )

]

=
∏

j∈u
sign(t j )1(min(0,t j ),max(0,t j ))(x j ).

Thus, K (·, t) possesses sufficient regularity to have finiteH -norm. Furthermore, K
exhibits the reproducing property for the above inner product because

〈K (·, t), f 〉H
=

∑

u⊆{1,...,d}

∫

(a,b)
∂uK ((xu, 0), t)∂u f (xu, 0) dxu

=
∑

u⊆{1,...,d}

∫

(a,b)

∏

j∈u
sign(t j )1(min(0,t j ),max(0,t j ))(x j )∂

u f (xu, 0) dxu

=
∑

u⊆{1,...,d}

∑

v⊆u

(−1)|u|−|v| f (tv, 0) = f (t).

5.2.3 Definition in Terms of the Root Mean Squared
Cubature Error

Assume Ω is a measurable subset in R
d and F is the target probability distribution

defined on Ω as defined earlier. Now, let f : Ω → R be a stochastic process with a
constant pointwise mean, i.e.,
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E f ∈A [ f (x)] = m, ∀x ∈ Ω,

where A is the sample space for this stochastic process. Now we interpret K as the
covariance kernel for the stocastic process:

K (t, x) := E f ∈A ([ f (t) − m][ f (x) − m]) = cov( f (t), f (x)), ∀t, x ∈ Ω.

It is straightforward to show that the kernel function is symmetric and positive defi-
nite.

Define the error functional err(·,X ) in the same way as in (5.11). Now, the mean
squared error is

E f ∈A [(err( f,X )]2 = E f ∈A

{∫

Ω

f (x) dF(x) − 1

N

N∑

i=1

f (xi )

}2

= E f ∈A

{∫

Ω

( f (x) − m) dF(x) − 1

N

N∑

i=1

( f (xi ) − m)

}2

=
∫

Ω2
E f ∈A [( f (t) − m)( f (x) − m)] dF(t)dF(x)

− 2

N

N∑

i=1

∫

Ω

E f ∈A [( f (x) − m)( f (xi ) − m)] dF(x)

+ 1

N 2

N∑

i,k=1

E f ∈A [( f (xi ) − m)( f (xk) − m)]

=
∫

Ω2
K (t, x) dF(t)dF(x) − 2

N

N∑

i=1

∫

Ω

K (x, xi ) dF(x)

+ 1

N 2

N∑

i,k=1

K (xi , xk).

Therefore, we can equate the discrepancy D(X , F, K ) defined in (5.8) as the root
mean squared error:

D(X , F, K ) =
√
E f ∈A [(err( f,X )]2 =

√√√
√
E

∣∣∣∣∣

∫

Ω

f (x)�(x)dx − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣

2

.
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5.3 When a Transformed Low Discrepancy Design
Also Has Low Discrepancy

Having motivated the definition of discrepancy in (5.8) from three perspectives,
we now turn our attention to question (Q), namely, does a transformation of low
discrepancy points with respect to the uniform distribution yield low discrepancy
points with respect to the new target distribution. In this section, we show a positive
result, yet recognize some qualifications.

Consider some symmetric, positive definite kernel, Kunif : (0, 1)d × (0, 1)d → R,
some uniform design U , some other domain, Ω , some other target distribution, F ,
and some transformation Ψ : (0, 1)d → Ω as defined in (5.1). Then the squared
discrepancy of the uniform design can be expressed according to (5.8) as follows:

D2(U , Funif, Kunif)

=
∫

(0,1)d×(0,1)d
Kunif(u, v) dudv − 2

N

N∑

i=1

∫

Ω

Kunif(u, ui ) du

+ 1

N 2

N∑

i,k=1

Kunif(ui , uk)

=
∫

Ω×Ω

Kunif(Ψ
−1(t),Ψ −1(x))

∣∣
∣∣
∂Ψ −1(t)

∂ t

∣∣
∣∣

∣∣
∣∣
∂Ψ −1(x)

∂x

∣∣
∣∣ dtdx

− 2

N

N∑

i=1

∫

Ω

Kunif(Ψ
−1(t),Ψ −1(xi ))

∣∣
∣∣
∂Ψ −1(t)

∂ t

∣∣
∣∣ dt

+ 1

N 2

N∑

i,k=1

Kunif(Ψ
−1(xi ),Ψ −1(xk))

= D2(X , F, K )

where the kernel K is defined as

K (t, x) = Kunif(Ψ
−1(t),Ψ −1(x)), (5.14a)

and provided that the density, �, corresponding to the target distribution, F , satisfies

�(x) =
∣∣∣∣
∂Ψ −1(x)

∂x

∣∣∣∣ . (5.14b)

The above argument is summarized in the following theorem.

Theorem 5.1 Suppose that the designX is constructed by transforming the design
U according to the transformation (5.1). Also suppose that conditions (5.14) are
satisfied. Then X has the same discrepancy with respect to the target distribution,
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F, defined by the kernel K as does the original designU with respect to the uniform
distribution and defined by the kernel Kunif. That is,

D(X , F, K ) = D(U , Funif, Kunif).

As a consequence, under conditions (5.14), question (Q) has a positive answer.

Condition (5.14b)may be easily satisfied. For example, it is automatically satisfied
by the inverse cumulative distribution transform (5.2). Condition (5.14a) is simply
a matter of definition of the kernel, K , but this definition has consequences. From
the perspective of Sect. 5.2.1, changing the kernel from Kunif to K means changing
the definition of the distance between two Dirac measures. From the perspective of
Sect. 5.2.2, changing the kernel from Kunif to K means changing the definition of the
Hilbert space of integrands, f , in (5.3). From the perspective of Sect. 5.2.3, changing
the kernel from Kunif to K means changing the definition of the covariance kernel
for the integrands, f , in (5.3).

To illustrate this point, consider a cousin of the kernel in (5.9), which places the
reference point at 0.5 = (0.5, . . . , 0.5), the center of the unit cube (0, 1)d :

Kunif(u, v) =
d∏

j=1

[
1 + 1

2

(∣∣u j − 1/2
∣∣+ ∣∣v j − 1/2

∣∣− ∣∣u j − v j

∣∣)
]

(5.15)

= K (u − 0.5, v − 0.5) for K defined in (5.9).

This kernel defines the centered L2-discrepancy [13]. Consider the standard multi-
variate normal distribution, Fnormal, and choose the inverse normal distribution,

Ψ (u) = (Φ−1(u1), . . . , Φ
−1(ud)), (5.16)

where Φ denotes the standard normal distribution function. Then condition (5.14b)
is automatically satisfied, and condition (5.14a) is satisfied by defining

K (t, x) = Kunif(Ψ
−1(t),Ψ −1(x))

=
d∏

j=1

[
1 + 1

2

(∣∣Φ(t j ) − 1/2
∣
∣+ ∣∣Φ(x j ) − 1/2

∣
∣

− ∣∣Φ(t j ) − Φ(x j )
∣
∣)] .

In one dimension, the distance between two Dirac measures defined using the ker-
nel Kunif above is ‖δx − δt‖M = √|x − t |, whereas the distance defined using the
kernel K above is ‖δx − δt‖M = √|Φ(x) − Φ(t)|. Under kernel K , the distance
between two Dirac measures is bounded, even though the domain of the distribution
is unbounded. Such an assumption may be unpalatable.
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5.4 Do Transformed Low Discrepancy Points Have Low
Discrepancy More Generally

The discussion above indicates that condition (5.14a) can be too restrictive. We
would like to compare the discrepancies of designs under kernels that do not satisfy
that restriction. In particular, we consider the centered L2-discrepancy for uniform
designs on (0, 1)d defined by the kernel in (5.15):

D2(U , Funif, Kunif)

=
(
13

12

)d

− 2

N

N∑

i=1

d∏

j=1

[
1 + 1

2

(
|ui j − 1/2| − |ui j − 1/2|2

)]

+ 1

N 2

N∑

i,k=1

d∏

j=1

[
1 + 1

2

(|ui j − 1/2| + |ukj − 1/2| − |ui j − ukj |
)]

,

where again, Funif denotes the uniform distribution on (0, 1)d , and U denotes a
design on (0, 1)d

Changing perspectives slightly, if F ′
unif denotes the uniform distribution on the

cube of volume one centered at the origin, (−0.5, 0.5)d , and the design U ′ is con-
structed by subtracting 0.5 from each point in the design U :

U ′ = {u − 0.5 : u ∈ U }, (5.17)

then
D(U ′, F ′

unif, K ) = D(U , Funif, Kunif),

where K is the kernel defined in (5.9).
Recall that the origin is a special point in the definition of the inner product for

the Hilbert space with K as its reproducing kernel in (5.13). Therefore, this K from
(5.9) is appropriate for defining the discrepancy for target distributions centered at
the origin, such as the standard normal distribution, Fnormal. Such a discrepancy is

D2(X , Fnormal, K ) =
(

1 +
√

2

π

)d

− 2

N

N∑

i=1

d∏

j=1

[
1 + 1√

2π
+ 1

2
|xi j | − xi j

(
Φ(xi j ) − 1

2

)
− φ(xi j )

]

+ 1

N 2

N∑

i,k=1

d∏

j=1

[
1 + 1

2

(|xi j | + |xk j | − |xi j − xk j |
)
]

. (5.18)
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Fig. 5.2 Normal
discrepancy versus uniform
discrepancy for transformed
designs
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Here, φ is the standard normal probability density function. The derivation of (5.18)
is given in the Appendix.

We numerically compare the discrepancy of a uniform design,U ′ given by (5.17)
and the discrepancy of a design constructed by the inverse normal transformation,
i.e.,X = Ψ (U ) forΨ in (5.16), where theU leading to bothU ′ andX is identical.
We do not expect the magnitudes of the discrepancies to be the same, but we ask

Does D(U ′
1 , F

′
unif, K ) ≤ D(U ′

2 , F
′
unif, K ) (Q′)

imply D(Ψ (U1), Fnormal, K ) ≤ D(Ψ (U2), Fnormal, K )?

Again, K is given by (5.9). So we are actually comparing discrepancies defined by
the same kernels, but not kernels that satisfy (5.14a).

Let d = 5 and N = 50. We generate B = 20 independent and identically
distributed (IID) uniform designs, U with N = 50 points on (0, 1)5 and then use
the inverse distribution transformation to obtain IID random N (0, I5) designs,X =
Ψ (U ). Figure5.2 plots the discrepancies for normal designs, D(Ψ (U ), Fnormal, K ),
against the discrepancies for the uniform designs, D(U , Funif, Kunif) = D(U ′,
F ′
unif, K ) for each of the B = 20 designs. Question (Q′) has a positive answer if and

only if the lines passing through any two points on this plot all have non-negative
slopes. However, that is not the case. Thus (Q′) has a negative answer.

We further investigate the relationship between the discrepancy of a uniform
design and the discrepancy of the same design after inverse normal transformation.
Varying the dimension d from 1 to 10, we calculate the sample correlation between
D(Ψ (U ), Fnormal, K ) and D(U , Funif, Kunif) = D(U ′, F ′

unif, K ) for B = 500 IID
designs of size N = 50. Figure5.3 displays the correlation as a function of d.
Although the correlation is positive, it degrades with increasing d.
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Fig. 5.3 Correlation
between the uniform and
normal discrepancies for
different dimensions
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Example 5.1 A simple cubature example illustrates that an inverse transformed
low discrepancy design,U , may yield a large D(Ψ (U ), Fnormal, K ) and also a large
cubature error. Consider the integration problem in (5.3) with

X ∼ N (0, Id), f (x) = x21 + · · · + x2d
1 + 10−8(x21 + · · · + x2d )

, Y = f (X), (5.19a)

μ = E(Y ) =
∫

Rd

x21 + · · · + x2d
1 + 10−8(x21 + · · · + x2d )

φ(x) dx, (5.19b)

where φ is the probability density function for the standard multivariate normal
distribution. The function f : Rd → R is constructed to asymptote to a constant as
[‖2‖]x tends to infinity to ensure that f lies inside the Hilbert space corresponding
to the kernel K defined in (5.9). Since the integrand in (5.19) is a function of [‖2‖]x,
μ can be written as a one dimensional integral. For d = 10, μ = 10 to at least 15
significant digits using quadrature.

We can also approximate the integral in (5.19) using a d = 10, N = 512 cubature
(5.10).We compare cubatures using two designs. The designX1 is the inverse normal
transformation of a scrambled Sobol’ sequence, U1, which has a low discrepancy
with respect to the uniform distribution on the d-dimensional unit cube. The design
U2 takes the point inU1 that is closet to 0 and moves it to

(
10−15, . . . , 10−15

)
, which

is very close to 0. As seen in Table5.2, the two uniform designs have quite similar,
small discrepancies. However, the transformed designs, X j = Ψ (U j ) for j = 1, 2,
have much different discrepancies with respect to the normal distribution. This is due
to the point in X2 that has large negative coordinates. Furthermore, the cubatures,
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Table 5.2 Comparison of Integral Estimate

U D(U , Funif, K ) D(Ψ (U ), Fnormal, K ) μ̂ Relative error

U1 0.0285 18.57 10.0182 0.0018

U2 0.0292 58.82 11.2238 0.1224

μ̂, based on these two designs have significantly different errors. The first design
has both a smaller discrepancy and a smaller cubature error than the second. This
could not have been inferred by looking at the discrepancies of the original uniform
designs.

5.5 Improvement by the Coordinate-Exchange Method

In this section, we propose an efficient algorithm that improves a design’s quality in
terms of the discrepancy for the target distribution. We start with a low discrepancy
uniform design, such as a Sobol’ sequence, and transform it into a design that approx-
imates the target distribution. Following the optimal design approach, we then apply
a coordinate-exchange algorithm to further improve the discrepancy of the design.

The coordinate-exchange algorithm was introduced in [18], and then applied
widely to construct various kinds of optimal designs [16, 19, 21]. The coordinate-
exchange algorithm is an iterative method. It finds the “worst” coordinate xi j of the
current design and replaces it to decrease loss function, in this case, the discrepancy.
The most appealing advantage of the coordinate-exchange algorithm is that at each
step one need only solve a univariate optimization problem.

First, we define the point deletion function, dp, as the change in square discrepancy
resulting from removing the a point from the design:

dp(i) = D2(X ) −
(
N − 1

N

)2

D2(X \{xi }). (5.20)

Here, the design X \{xi } is the N − 1 point design with the point {xi } removed.
We suppress the choice of target distribution and kernel in the above discrepancy
notation for simplicity. We then choose

i∗ = argmaxi=1,...,Ndp(i).
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The definition of i∗ means that removing xi∗ from the designX results in the smallest
discrepancy among all possible deletions. Thus, xi∗ is helping the least, which makes
it a prime candidate for modification.

Next, we define a coordinate deletion function, dc, as the change in the
square discrepancy resulting from removing a coordinate in our calculation of the
discrepancy:

dc( j) = D2(X ) − D2(X− j ). (5.21)

Here, the designX− j still has N points but nowonly d dimensions, the j th coordinate
having been removed. For this calculation to be feasible, the target distribution must
have independent marginals. Also, the kernel must be of product form. To simplify
the derivation, we assume a somewhat stronger condition, namely that the marginals
are identical and that each term in the product defining the kernel is the same for
every coordinate:

Ω = Ω̃ × · · · × Ω̃, K (t, x) =
d∏

j=1

[1 + K̃ (t j , x j )], K̃ : Ω̃ × Ω̃ → R.

(5.22)
We then choose

j∗ = argmax j=1,...,ddc( j).

For reasons analogous to those given above, the j th coordinate seems to be the best
candidate for change.

Let X ∗(x) denote the design that results from replacing xi∗ j∗ by x . We now
define Δ(x) as improvement in the squared discrepancy resulting from replacingX
byX ∗(x):

Δ(x) = D2(X ) − D2(X ∗(x)). (5.23)

We can reduce the discrepancy byfind an x such thatΔ(x) is positive. The coordinate-
exchange algorithm outlined in Algorithm 1 improves the design by maximizing
Δ(x) for one chosen coordinate in one iteration. The algorithm terminates when
it exhausts the maximum allowed number of iterations or the optimal improvement
Δ(x∗) is so small that it becomes negligible (Δ(x∗) ≤ TOL). Algorithm 1 is a greedy
algorithm, and thus it can stop at a local optimal design. We recommend multiple
runs of the algorithm with different initial designs to obtain a design with the lowest
discrepancy possible. Alternatively, users can include stochasticity in the choice of
the coordinate that is to be exchanged, similarly to [16].

For kernels of product form, (5.22), and target distributions with independent and
identical marginals, the formula for the squared discrepancy in (5.8) becomes
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Algorithm 1 Coordinate Exchange Algorithm.
Input: An initial design X on the domain Ω , a target distribution, F , a kernel, K of the form

(5.22), a small value TOL to determine the convergence of the algorithm, and the maximum
allowed number of iterations, Mmax.

Output: Low discrepancy design X .
1: for m = 1, 2, . . . , Mmax do
2: Compute the point deletion function dp(1), . . . , dp(N ). Choose the i∗-th point which has the

largest point deletion value, i.e. i∗ = argmaxidp(i).
3: Compute the coordinate deletion function dc(1), . . . , dc(d) and choose the j∗-th coordinate

which has the largest coordinate deletion value, i.e., j∗ = argmax jdc( j).
4: Replace the coordinate xi∗ j∗ by x∗ which is defined by the univariate optimization problem

x∗ = argmaxx∈Ω̃Δ(x).

5: if Δ(x∗) > TOL then
6: Replace xi∗ j∗ with x∗ in the design X , i.e., let X (x∗) replace the old X .
7: else
8: Terminate the loop.
9: end if
10: end for
11: Return the design, X , and the discrepancy, D(X , F, K ).

D2(X , ρ, K ) = (1 + c)d − 2

N

N∑

i=1

H(xi ) + 1

N 2

N∑

i,k=1

K (xi , xk),

where

h(x) =
∫

Ω̃

K̃ (t, x) �̃(t) dt, (5.24a)

c =
∫

Ω̃×Ω̃

K̃ (tk, xk) �̃(t )̃�(x) dtdx =
∫

Ω̃

h(x) �̃(x) dx, (5.24b)

H(x) =
d∏

j=1

[1 + h(x j )]. (5.24c)

An evaluation of h(x) and K̃ (t, x) each requireO(1) operations, while an evaluation
of H(x) and K (t, x) each requireO(d) operations. The computation of D(X , ρ, K )

requires O(dN 2) operations because of the double sum. For a standard multivariate
normal target distribution and the kernel defined in (5.9), we have
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c =
√

2

π
,

h(x) = 1√
2π

+ 1

2
|x | − x[Φ(x) − 1/2] − φ(x),

K̃ (t, x) = 1

2
(|t | + |x | − |x − t |).

The point deletion function defined in (5.20) then can be expressed as

dp(i) = (2N − 1)(1 + c)d

N 2
− 2

N

[
1

N

N∑

k=1

H(xk) +
(
1 − 1

N

)
H(xi )

]

+ 1

N 2

[
2

N∑

k=1

K (xi , x j ) − K (xi , xi )
]
.

The computational cost for dp(1), . . . , dp(N ) is then O(dN 2), which is the same
order as the cost of the discrepancy of a single design.

The coordinate deletion function defined in (5.21) can be be expressed as

dc( j) = (c − 1)cd−1 − 2

N

N∑

i=1

h(xi j )H(xi )
1 + h(xi j )

+ 1

N 2

N∑

i,k=1

K̃ (xi j , xk j )K (xi , x j )

1 + K̃ (xi j , xk j )
.

The computational cost for dc(1), . . . , dp(d) is alsoO(dN 2), which is the same order
as the cost of the discrepancy of a single design.

Finally, the function Δ defined in (5.23) is given by

Δ(x) = −2
[
h(xi∗ j∗) − h(x)

]
H(xi∗)

N [1 + h(xi∗ j∗)]

+ 1

N 2

⎛

⎜
⎝2

N∑

i=1
i �=i∗

[K̃ (xi∗ j∗ , xi j∗) − K̃ (x, xi j∗)]K (xi∗ , xi )

1 + K̃ (xi∗ j∗ , xi j∗)

+[K̃ (xi∗ j∗ , xi∗ j∗) − K̃ (x, x)]K (xi∗ , xi∗)

1 + K̃ (xi∗ j∗ , xi∗ j∗)

)

If we drop the terms that are independent of x , then we can maximize the function

Δ′(x) = Ah(x) − 1

N

N∑

i=1
i �=i∗

Bi K̃ (x, xi j∗) − CK̃ (x, x)
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where

A = 2H(xi∗)
1 + h(xi∗ j∗)

, Bi = 2K (xi∗ , xi )

1 + K̃ (xi∗ j∗ , xi j∗)
, C = K (xi∗ , xi∗)

N [1 + K̃ (xi∗ j∗ , xi∗ j∗)]
.

Note that A, B1, . . . , BN ,C only need to be computed once for each iteration of the
coordinate exchange algorithm.

Note that the coordinate-exchange algorithm we have developed is a greedy and
deterministic algorithm. The coordinate that we choose to make exchange is the one
has the largest point and coordinate deletion function values, and we always make
the exchange for new coordinate as long as the new optimal coordinate improves the
objective function. It is true that such deterministic and greedy algorithm is likely
to return a design of whose discrepancy attains a local minimum. To overcome this,
we can either run the algorithm with multiple random initial designs, or we can
combine the coordinate-exchange with stochastic optimization algorithms, such as
simulated annealing (SA) [17] or threshold accepting (TA) [12]. For example, we can
add a random selection scheme when choosing a coordinate to exchange, and when
making the exchange of the coordinates, we can incorporate a random decision to
accept the exchange or not. The random decision can follow the SA or TA method.
Tuning parameters must be carefully chosen to make the SA or TAmethod effective.
Interested readers can refer to [22] to see how TA can be applied to the minimization
of discrepancy.

5.6 Simulation

To demonstrate the performance of the d-dimensional standard normal design
proposed in Sect. 5.5, we compare three families of designs: (1) RAND: inverse
transformed IID uniform random numbers; (2) SOBOL: inverse transformed
Sobol’ set; (3) E-SOBOL: inverse transformed scrambled Sobol’ set where
the one dimensional projections of the Sobol’ set have been adjusted to be
{1/(2N ), 3/(2N ), . . . , (2N − 1)/(2N )}; and (4) CE: improved E-SOBOLviaAlgo-
rithm 1. We have tried different combinations of dimension, d, and sample size, N .
For each (d, N ) and each algorithm we generate 500 designs and compute their
discrepancies (5.18).

Figure5.4 contains the boxplots of normal discrepancies corresponding to the
four generators with d = 2 and N = 32. It shows that SOBOL, E-SOBOL, and CE
all outperform RAND by a large margin. To better present the comparison between
the better generators, in Fig. 5.5 we generally exclude RAND.

We also report the average execution times for the four generators in Table5.3. All
codes were run on a MacBook Pro with 2.4 GHz Intel Core i5 processor. The maxi-
mum number of iterations allowed is Mmax = 200. Algorithm 1 converges within 20
iterations in all simulation examples.

We summarize the results of our simulation as follows.
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Fig. 5.4 Performance
comparison of designs
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Table 5.3 Execution Time of Generators (in seconds)

d 2 3 4 6 8 10

N 32 64 64 128 256 512

RAND 3.22E−5 5.21E−5 5.27E−5 9.92E−5 2.48E−4 5.32E−4

SOBOL 8.60E−4 0.10E−2 0.11E−2 0.16E−2 0.21E−2 0.28E−2

E-SOBOL 8.71E−4 0.11E−2 0.12E−2 0.16E−2 0.23E−2 0.32E−2

CE 1.34E−2 2.73E−2 6.12E−2 0.24 1.04 3.84

1. Overall, CE produces the smallest discrepancy.
2. When the design is relatively dense, i.e., N/d is large, E-SOBOL and CE have

similar performance.
3. When the design is more sparse, i.e., N/d is smaller, SOBOL and E-SOBOL

have similar performance, but CE is superior to both of them in terms of the
discrepancy. Not only in terms of the mean but also in terms of the range for the
500 designs generated.

4. CE requires the longest computational time to construct a design, but this is
moderate. When the cost of obtaining function values is substantial, then the cost
of constructing the design may be insignificant.

5.7 Discussion

This chapter summarizes the three interpretations of the discrepancy. We show that
for kernels and variable transformations satisfying conditions (5.14), variable trans-
formations of low discrepancy uniform designs yield low discrepancy designs with
respect to the target distribution. However, for more practical choices of kernels, this
correspondence may not hold. The coordinate-exchange algorithm can improve the
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Fig. 5.5 Performance comparison of designs

discrepancies of candidate designs that may be constructed by variable transforma-
tions.

While discrepancies can be defined for arbitrary kernels, we believe that the
choice of kernel can be important, especially for small sample sizes. If the distribu-
tion has a symmetry, e.g. �(T (x)) = �(x) for some probability preserving bijection
T : Ω → Ω , then we would like our discrepancy to remain unchanged under such
a bijection, i.e., D(T (X ), �, K ) = D(X , �, K ). This can typically be ensured by
choosing kernels satisfying K (T (t), T (x)) = K (t, x). The kernel Kunif defined in
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(5.15) satisfies this assumption for the standard uniform distribution and the trans-
formation T (x) = 1 − x. The kernel K defined in (5.9) satisfies this assumption for
the standard normal distribution and the transformation T (x) = −x.

For target distributions with independent marginals and kernels of product form
as in (5.22), coordinate weights [3] Sect. 4 are used to determine which projections
of the design, denoted by u ⊆ {1, . . . , d}, are more important. The product form of
the kernel given in (5.22) can be generalized as

Kγ (t, x) =
d∏

j=1

[
1 + γ j K̃ (t j , x j )

]
.

Here, the positive coordinate weights are γ = (γ1, . . . , γd). The squared discrepancy
corresponding to this kernel may then be written as

D2(X , F, Kγ ) =
∑

u⊆{1,...,d}
u �=∅

γuD
2
u(X , ρ, K ), γu =

∏

j∈u
γ j

D2
u(Xu, Fu, K ) = c|u| − 2

N

N∑

i=1

∏

j∈u
h(xi j ) + 1

N 2

N∑

i,k=1

∏

j∈u
K̃ (xi j , xk j ),

where c and h are defined in (5.24). Here, Xu denotes the projection of the design
into the coordinates contained in u, and Fu =∏ j∈u Fj is the u-marginal distribution.
Each discrepancy piece, Du(Xu, Fu, K ), measures how well the projected design
Xu matches Fu.

The values of the coordinate weights can be chosen to reflect the user’s belief
as to the importance of the design matching the target for various coordinate pro-
jections. A large value of γ j relative to the other γ j ′ places more importance on the
Du(Xu, Fu, K )with j ∈ u. Thus, γ j is an indication of the importance of coordinate
j in the definition of D(X , F, Kγ ).

If γ is one choice of coordinate weights and γ ′ = Cγ is another choice of coordi-
nate weights where C > 1, then γ ′

u = C |u|γu. Thus, D(X , F, Kγ ′) emphasizes the
projections corresponding to the u with large |u|, i.e., the higher order effects. Like-
wise, D(X , F, Kγ ′) places relatively more emphasis lower order effects. Again, the
choice of coordinate weights reflects the user’s belief as to the relative importance
of the design matching the target distribution for lower order effects or higher order
effects.

Appendix

We derive the formula in (5.18) for the discrepancy with respect to the standard
normal distribution, Φ, using the kernel defined in (5.9). We first consider the case
d = 1. We integrate the kernel once:
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∫ ∞
−∞

K (t, x) dΦ(t)

=
∫ ∞
−∞

(
1 + 1

2
|x | + 1

2
|t | − 1

2
|x − t |

)
φ(t) dt

=1 + 1√
2π

+ 1

2
|x | − 1

2

[∫ x

−∞
(x − t)φ(t) dt +

∫ ∞
x

(t − x)φ(t) dt

]

=1 + 1√
2π

+ 1

2
|x | − x[Φ(x) − 1/2] − φ(x).

Then we integrate once more:

∫ ∞
−∞

∫ ∞
−∞

K (t, x) dΦ(t)dΦ(x)

=
∫ ∞
−∞

(
1 + 1√

2π
+ 1

2
|x | − x[Φ(x) − 1/2] − φ(x)

)
φ(x) dx

= 1 +
√

2

π
+
∫ ∞
−∞

{−xΦ(x)φ(x) + [φ(x)]2} dx

= 1 +
√

2

π
− 1√

4π
+
∫ ∞
−∞

1

2π
e−x2dx = 1 +

√
2

π
.

Generalizing this to the d-dimensional case yields

∫

Rd×Rd
K (x, t) dΦ(x)dΦ(t) =

(

1 +
√

2

π

)d
,

∫

Rd
K (x, xn) dΦ(x) =

d∏

j=1

[
1 + 1√

2π
+ 1

2
|x j | − x j [Φ(x j ) − 1/2] − φ(x j )

]
.

Thus, the discrepancy for the normal distribution is

D2(X , Φ, K )

=
(

1 +
√

2

π

)d

− 2

N

∑

x∈P

d∏

j=1

[
1 + 1√

2π
+ 1

2
|x j | − x j [Φ1(x j ) − 1/2] − φ(x j )

]

+ 1

N 2

∑

x,t∈P

d∏

j=1

[
1 + 1

2
|x j | + 1

2
|t j | − 1

2
|x j − t j |

]
.
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