
Chapter 24
Quantile Regression with Gaussian
Kernels

Baobin Wang, Ting Hu, and Hong Yin

Abstract This paper aims at the error analysis of stochastic gradient descent (SGD)
for quantile regression, which is associated with a sequence of varying ε-insensitive
pinball loss functions and flexible Gaussian kernels. Analyzing sparsity and learning
rates will be provided when the target function lies in some Sobolev spaces and a
noise condition is satisfied for the underlying probability measure. Our results show
that selecting the variance of the Gaussian kernel plays a crucial role in the learning
performance of quantile regression algorithms.
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24.1 Introduction

Quantile regression has been investigated in machine learning and statistics, see
[3, 4, 13–15] and references therein. Compared with the least squares regression,
quantile regression provides more information about the conditional distributions of
output variables such as stretching or compressing tails and multimodality [5, 6].
In the setting of learning problems, let X be a multivariate random variable with

B. Wang
School of Mathematics and Statistics, South-Central University for Nationalities,
Wuhan 430074, People’s Republic of China
e-mail: wbb@scuec.edu.cn

T. Hu
School of Mathematics and Statistics, Wuhan University,
Wuhan 430072, People’s Republic of China
e-mail: tinghu@whu.edu.cn

H. Yin (B)
School of Mathematics, Renmin University of China,
Beijing 100872, People’s Republic of China
e-mail: yinhong@ruc.edu.cn

© Springer Nature Switzerland AG 2020
J. Fan and J. Pan (eds.), Contemporary Experimental Design,
Multivariate Analysis and Data Mining,
https://doi.org/10.1007/978-3-030-46161-4_24

373

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46161-4_24&domain=pdf
mailto:wbb@scuec.edu.cn
mailto:tinghu@whu.edu.cn
mailto:yinhong@ruc.edu.cn
https://doi.org/10.1007/978-3-030-46161-4_24


374 B. Wang et al.

values in a compact subset of Rn and Y ⊂ R be a real valued response variable. The
purpose of quantile regression is to study the quantile regression functions from a
sample of T observations z = {(xi , yi )}Ti=1 drawn independently according to the
identical distribution ρ on Z = X × Y. With a quantile parameter 0 < τ < 1, a
quantile regression function fρ,τ : X → Y is defined by its value fρ,τ (x) to be a
τ -quantile of the conditional distribution ρ(·|x) of ρ at x ∈ X, that is, a value u ∈ Y
satisfying

ρ ({y ∈ Y, y ≤ u}|x) ≥ τ, and ρ ({y ∈ Y, y ≥ u}|x) ≥ 1 − τ.

Gaussian kernels are one of the most often used kernels in modern machine learning
methods such as support vector machines (SVMs) [12, 15]. The Gaussian kernel
with variance σ > 0 is the function on X × X defined by

Kσ (x, u) := exp

{
−|x − u|2

2σ 2

}
.

Let Hσ (X) be the RKHS [1] on X associated with the kernel Kσ and the inner
product 〈·, ·〉H σ (X). Its reproducing property takes the form

〈Kσ (x, ·), f (·)〉H σ (X) = f (x),∀ x ∈ X , f ∈ Hσ (X). (24.1)

Quantile regression has been studied by means of kernel-based regularization
schemes in a vast literature, see [7, 11, 15]. Its associated loss function is the pinball
loss φτ defined by

φτ (u) =
{

(1 − τ)u, if u ≥ 0,

−τu, if u < 0,

and the regularization scheme takes the form

fz,λ := arg min
f ∈H σ (X)

1

T

T∑
i=1

φτ (yi − f (xi )) + λ

2
‖ f ‖2H σ (X). (24.2)

In this paper, SGD method (or called online learning) is taken to solve the scheme
(24.2) for its low complexity and good practical performance. Inspired by the work
in [15, 19], we consider the below SGD algorithm for quantile regression associated
with a varying ε-insensitive pinball loss φε

τ (u) with an insensitive parameter ε ≥ 0,
given as

φε
τ (u) =

⎧⎪⎨
⎪⎩

(1 − τ)(u − ε), if u > ε,

−τ(u + ε), if u < −ε,

0, otherwise.
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Definition 24.1 The SGD algorithm for (24.2) is defined by f1 = 0 and

ft+1 = ft − ηt

{(
φεt

τ

)′
− ( ft (xt ) − yt )Kσ (xt , ·) + λ ft

}
(24.3)

where {ηt } > 0 is the positive stepsize sequence, λ = λ(T ) is the regularization
parameter, {εt } > 0 is the varying insensitive parameters and

(
φεt

τ

)′
− is the left (one-

side) derivative of φεt
τ .

This algorithm is a generalization for the pinball loss φτ with ε = 0 and the ε-
insensitive loss with τ = 1

2 (median). The initial form of quantile regression with a
fixed insensitive parameter ε > 0 was introduced by [11, 16], which aims at produc-
ing possible sparsity of support vectors for the median. Then this idea was developed
to τ -quantile regression with any 0 < τ < 1 and the ε-insensitive pinball loss φε

τ (u)

was proposed in [15, 17]. In the previous work [2, 17], the corresponding mathe-
matical analysis in the batch learning has been conducted when ε change with the
sample size T and ε = ε(T ) → 0 as the sample size T goes to infinity.

Here the insensitive parameters {εt } > 0 used in the algorithm (24.3) form a
decreasing sequence converging to zero when the learning step t increases. In the
work [15], Hu et al. derived the learning rate of (24.3) with flexible insensitive
parameters {εt } under the suitable choices of the parameters (λ, ηt ) for balancing the
approximation and sparsity. Their convergence rate is closely related to the strong
assumption on the approximation power of RKHS. Actually, for a Gaussian RKHS
Hσ with the fixed variance σ > 0, the approximation error decays logarithmically
with respect to the range ofHσ ,which has been proved in [8]. So, putting this decay
into their analysis leads that the learning rate for quantile regression is rather slow,
which is unaccepted in real applications. In simulations, the variance σ ofHσ usually
serves as a tuned parameter for a good learning performance in training processes and
can be chosen in a data-dependent way such as cross-validation. Since the variance
of a Gaussian kernel reflexes the specific structure of RKHS induced by the Gaussian
or other important features of learning problems such as the frequency of function
components, choosing the varianceσ ofHσ is related to themodel selection problem,
which adjusts the complexity or the capacity of learning problems according to the
learning time or sample size. The selecting rule of σ has been studied in various
learning settings [7, 12, 18], SVM, least squares, etc.

The goal of this paper is to study the convergence behavior of the algorithm (24.3)
with flexible Gaussians and investigate the effects of parameters in keeping sparsity
and nice learning power for quantile problems. Our results show that the online
quantile regression is feasible in the framework of the Gaussian RKHS, in which
the variance of Gaussian serves as a trade-off between the approximation ability and
sparsity of the algorithm. We present a selection rule for the variance σ = σ(T ) to
avoid over-fitting or under-fitting in the iteration process. The performance of the
iterates { ft } is usually measured by the convergence in terms of the excess general-
ization error. In this work, under the noise condition, we can obtain the convergence
result in Banach spaces, which implies that { ft } is closed to the target function fρ,τ

in a strong sense.
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24.2 Main Results and Effects of Parameters

For conceptual simplicity, we assume throughout this paper that the support of the
conditional distribution ρ(·|x) is [−1, 1] and our results below is applicable for the
support [−M, M] with any M > 0. Moreover, let the value of fρ,τ (x) be unique at
each x ∈ X . To demonstrate our main result in the general case, we first shall give
the following learning rate in the special case if the quantile regression function fρ,τ

lies in some smooth functional space. Its regularity is usually measured in terms of
Sobolev spaces. Recall the Sobolev space Hr (Rn) with index r > 0 consisting of

all functions in L2(Rn) with the semi-norm | f |Hr (Rn) = {(2π)−n
∫
Rn |ξ |2r | f̂ (ξ)|2} 12

finite where f̂ is the Fourier transform of f defined as f̂ (ξ) = ∫
Rn f (x)e−iξ ·xdx .

In the sequel, ρX denotes the marginal distribution of ρ on X and f̂ denotes the
projection operation on any measurable function f : X → R, given as

f̂ (x) =
⎧⎨
⎩
1, if f (x) ≥ 1,
f (x), if − 1 < f (x) < 1,
−1, if f (x) ≤ −1.

Theorem 24.1 Let X ⊂ R
n be a domain with Lipschitz boundary and ρX be the

uniform distribution on X. Assume that fρ,τ ∈ Hr (X) for some r > 0, ‖ fρ,τ‖∞ ≤ 1
and the conditional distributions {ρ(·|x), x ∈ X} have density functions given with
ζ > 0,

dρ(y|x)
dy

=
{

ζ+1
2 |y − fρ,τ (x)|ζ , if |y − fρ,τ (x)| ≤ 1;

0, otherwise.

Take ηt = − n+3r
2n+5r , λ = T− n+r

2n+5r , σ = T− 1
2n+5r and εt = t−β with β ≥ 1

2 then

Ez1,··· ,zT
[
‖ f̂T+1 − fρ,τ‖L2

ρX

]
≤ C∗T− r

(2n+5r)(ζ+2) (24.4)

where C∗ is a constant independent of T , and will be given in the proof.

Remark 24.1 Notice that the larger the index r is, the faster the projected function
fT+1 in (24.3) converges to fρ,τ . In addition, the choice of parameters λ, σ, ηt is
closely related to r. Thus, the regularity of the quantile function fρ,τ is important
in the learning process. The index β of the insensitive parameter characterizes the
sparsity and the learning rate will not be affected if β ≥ 1

2 . As the index β increases,
the value of the insensitive parameter εt will decrease at each iteration t. So, it is
suitable to choose β = 1

2 in this case. Here the variance σ of the Gaussian kernel
Kσ changes with the learning time T . This is reasonable since a small σ will lead to
over-fitting and a large σ to under-fitting. In the above example, we are considering
the quantile regression problems on a domain of Rn, so the learning rate is poor
if the dimension n is large. However, in many situations, the input space X is a
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low-dimensional manifold embedded in the large-dimensional space Rn. In such a
situation, the learning rates may be greatly improved.

Now we are in a position of stating our main result in the general case. First, a
noise condition on the measure ρ is given, which was introduced in [13].

Definition 24.2 Let 0 < p ≤ ∞ and w > 0. We say that ρ has a τ -quantile of p-
average type w if there exist two functions b and a from X to R such that {baw}−1 ∈
L p

ρX and for any x ∈ X and q ∈ (0, a(x)], there hold

ρ({y : fρ,τ (x) < y < fρ,τ (x) + q}|x) ≥ b(x)qw

and
ρ({y : fρ,τ (x) − q < y < fρ,τ (x)}|x) ≥ b(x)qw. (24.5)

This assumption can be satisfied with many common conditional distributions such
as Guassian, students’ t distributions and uniform distributions. In the following, we
will give an example to illustrate it. More examples can be found in [2, 13].

Example 24.1 Let the conditional distributions {ρ(·|x)}x∈X be a family of Gaus-

sian distributions with a uniform variance σ̃ > 0, i.e. dρ(y|x)
dy = 1√

2πσ̃
exp
{
− (y−μx )

2

2σ̃ 2

}
where {μx }x∈X are expectations of the Gaussian distributions {ρ(·|x)}x∈X . It is direct
to calculate that fρ,τ (x) can take the value of μx at each x ∈ X. We also find that for
any q ∈ (0, σ̃ ], there holds

ρ({y : fρ,τ (x) < y < fρ,τ (x) + q}|x) = ρ({y : μx < y < μx + q}|x)

= 1√
2πσ̃

∫ μx+q

μx

exp

{
− (y − μx )

2

2σ̃ 2

}
dy = 1√

2πσ̃

∫ q

0
exp

{
− y2

2σ̃ 2

}
dy ≥ e− 1

2√
2πσ̃

q.

Similarly, we have that ρ({y : fρ,τ (x) − q < y < fρ,τ (x)}|x) ≥ e− 1
2√

2πσ̃
q. Thus, the

measure ρ has a ∞-average type 1.

In addition, we need a condition about the continuity of the conditional distribu-
tions {ρ(·|x)}x∈X .

Definition 24.3 Let s > 0. We say that the family of conditional distributions
{ρ(·|x)}x∈X is Lipschitz-s if there exists a constant Cρ such that

ρ({y : u ≤ y ≤ v}|x) ≤ Cρ |u − v|s, ∀u < v ∈ Y, x ∈ X. (24.6)

With these preliminaries in place, we present the following learning rates whose
proof will be provided in the next section.

Theorem 24.2 Suppose that for some r > 0, the quantile regression function fρ,τ

is the restriction of some f̃ρ,τ ∈ Hr (Rn)
⋂

L∞(Rn) over X, and the density function
dρX

dx lies in L2(X). Let the parameters ηt , εt , λ, σ be of the form
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ηt = t−
n+3r
2n+5r , εt = t−β, λ = T− n+r

2n+5r , σ = T− 1
2n+5r (24.7)

with β ≥ max
{

3(n+2r)
s(2n+5r) − 1, n+2r

s(2n+5r)

}
.

Denote μ := p(w+1)
p+1 . If the measure ρ satisfies (24.5) and (24.6), then

Ez1,··· ,zT
[
‖ f̂T+1 − fρ,τ‖Lμ

ρX

]
≤ C∗T− r

(2n+5r)(w+1) . (24.8)

Here the constant C∗ is independent of T and will be given in the proof.

This theorem investigates the learning ability of the learned function f̂T+1 that
approximates the quantile regression function fρ,τ with suitable chosen parame-
ters including the variance parameter σ and the insensitive parameters {εt }. It shows
how to adapt the variance σ in the learning process while keeping the sparsity and the
learning power for the algorithm (24.3). It is also worth noticing that our leaning rate
is given in a weighted Lμ-space by the noise condition (24.5). Our rate still holds for
the generalization error (see Sect. 24.3) if the condition (24.5) is not imposed on ρ. At
the end of this section, we would like to remark that the quantile regression problem
considered here is fully nonparametric, so the parameters in (3) are usually unknown
in advance and tuned in training processes according to various quantile regression
problems. They can be chosen by a data-dependent way in training processes, e.g.
cross-validation.

24.3 Error Analysis and Proofs of Main Results

In learning theory, the performance of learning algorithms is often measured by the
generalization error. For the quantile regression, we define the generalization error
for f : X → R associated with the pinball loss φτ as

E ( f ) =
∫
Z

φτ ( f (x) − y)dρ

and the quantile regression function fρ,τ is a minimizer of E ( f ). Meanwhile, we
define the ε-insensitive generalization errorE ε( f ), given asE ε( f ) := ∫Z φε

τ ( f (x) −
y)dρ.Our error analysis is conducted based on an error decomposition for the excess
generalization errorE ( fT+1) − E ( fρ,τ ).To this end,we introduce the belowapprox-
imation error with respect to the approximation ability ofHσ (X). In the sequel, we
denote the norm ‖ · ‖H σ (X) by ‖ · ‖σ and Hσ (X) by Hσ for simplicity.

Definition 24.4 For any regularization parameter λ > 0, the approximation error
D(σ, λ) of the triple (Kσ , ρ, τ ) is defined by

D(σ, λ) = min
f ∈H σ

{
E ( f ) − E ( fρ,τ ) + λ

2
‖ f ‖2σ
}
.
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The regularization function is defined as

fλ = arg min
f ∈Hσ

{
E ( f ) − E ( fρ,τ ) + λ

2
‖ f ‖2σ
}

or fλ = arg min
f ∈Hσ

{
E ( f ) + λ

2
‖ f ‖2σ
}
.

(24.9)

Then its associated insensitive regularization function for any ε > 0 is

f ε
λ = arg min

f ∈H σ

{
E ε( f ) + λ

2
‖ f ‖2σ
}
. (24.10)

Now, the error decomposition for E ( fT+1) − E ( fρ,τ ) can be displayed as

E ( fT+1) − E ( fρ,τ ) = {E ( fT+1) − E ( fλ)
}+ {E ( fλ) − E ( fρ,τ )

} ≤ {E ( fT+1) − E ( fλ)
}+ D (σ, λ). (24.11)

Notice the Lipschitz continuity of φτ and the property of RKHS with
‖ f ‖∞ ≤ ‖ f ‖σ , ∀ f ∈ Hσ . It yields that |E ( fT+1) − E ( fλ)| ≤ ‖ fT+1 − fλ‖∞ ≤
‖ fT+1 − fλ‖σ . So, the first term on the right-hand side of (24.11) will be handled
in the sequel by means of the sample error ‖ fT+1 − fλ‖σ .

24.3.1 Approximation Error

For the second term D(σ, λ), it is associated with the approximation powers of the
RKHSs induced byGaussians with variance σ > 0.The following polynomial decay
of D(σ, λ) under some Sobolev smoothness conditions on the function fρ,τ can be
found in [18].

Lemma 24.1 Suppose that for some r > 0, the quantile regression function fρ,τ is
the restriction of some f̃ρ,τ ∈ Hr (Rn)

⋂
L∞(Rn) over X, and the density function

dρX

dx lies in L2(X). Then

D(σ, λ) ≤ C ′(σ r + λσ−n), ∀ 0 < σ < 1, λ > 0, (24.12)

where C ′ is a constant independent of σ, λ.

24.3.2 Insensitive Analysis

According to the above error analysis, we need to estimate ‖ ft+1 − fλ‖σ by itera-
tion on t = 1, · · · , T . In the iteration procedure, the function ft+1 is generated by
updating ft according to the sample (xt , yt ). Here, the technical difficulty lies in the
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change of the insensitive parameters εt . This can be handled by the following lemma
in [15] for varying {εt }.
Lemma 24.2 Suppose that the family of conditional distributions {ρ(·|x)}x∈X is
Lipschitz-s satisfying (24.6). Then for any 0 ≤ u < v, we have

‖ f uλ − f vλ ‖σ ≤ Cλ−1|u − v|s . (24.13)

If the insensitive parameters εt = ε1t−β with ε1, β > 0, then

‖ f εt−1
λ − f εt

λ ‖σ ≤ Cλ−1t−(β+1)s, ∀t ≥ 2. (24.14)

Here C is a constant independent of λ and insensitive parameters.

24.3.3 One Step-Iteration

Denote ht := ‖ f εt−1
λ − f εt

λ ‖σ . We can get the one step iteration result as follows.
To obtain optimal error bounds, we shall use the flexibility caused by some free
parameters 0 < d < 2 and c1 > 0.

Lemma 24.3 Define { ft } by (24.3). Let some constants 0 < d < 2 and c1 > 0, then

Ezt

(‖ ft+1 − f εt
λ ‖2σ
) ≤ (1 + c1h

d
t − ληt

) ‖ ft − f εt−1
λ ‖2σ + h2−d

t /c1 + h2t + 4η2
t .

(24.15)

Proof First, we claim that ‖ ft‖σ ≤ 1
λ
,∀t ≥ 2. It can be easily derived from f1 = 0

and the following induction by (24.3) that

‖ ft+1‖σ ≤ (1 − ληt )‖ ft‖σ + ηt ≤ (1 − ληt )
1

λ
+ ηt = 1

λ
. (24.16)

Denote Bt := (φεt
τ

)′
− ( ft (xt ) − yt )Kσ (xt , ·) + λ ft . The online algorithm (24.3) can

be written as ft+1 = ft − ηt Bt . Then

‖ ft+1 − f εt
λ ‖2σ = ‖ ft − f εt

λ ‖2σ + η2
t ‖Bt‖2σ − 2ηt 〈 ft − f εt

λ , Bt 〉σ (24.17)

Applying the reproducing property (24.1) to part of the last term of (24.17), we have
that

〈 ft − f εt
λ ,
(
φ

εt
τ

)′
− ( ft (xt ) − yt )Kσ (xt , ·)〉σ = (φεt

τ

)′
− ( ft (xt ) − yt )

(
ft (xt ) − f εt

λ (xt )
)
.

The convexity of φεt
τ implies that
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(
φεt

τ

)′
− ( ft (xt ) − yt )

(
ft (xt ) − f εt

λ (xt )
) ≥ φεt

τ ( ft (xt ) − yt ) − φεt
τ ( f εt

λ (xt ) − yt ).

For the other part of the last term of (24.17), we have that

〈 ft − f εt
λ , ft 〉σ ≥ ‖ ft‖2σ − 1

2
‖ ft‖2σ − 1

2
‖ f εt

λ ‖2σ = 1

2
‖ ft‖2σ − 1

2
‖ f εt

λ ‖2σ .

Thus, the last term of (24.17) can be bounded as

〈 ft − f εt
λ , Bt 〉σ ≥

[
φεt

τ ( ft (xt ) − yt ) + λ

2
‖ ft‖2σ
]

−
[
φεt

τ ( f εt
λ (xt ) − yt )

λ

2
‖ f εt

λ ‖2σ
]

.

Since ft only depends on z1, · · · , zt−1, then

Ezt 〈 ft − f εt
λ , Bt 〉σ ≥

[
E ( ft ) + λ

2
‖ ft‖2σ
]

−
[
E ( f εt

λ ) + λ

2
‖ f εt

λ ‖2σ
]

This together with Theorem 2 in [19], implies that Ezt 〈 ft − f εt
λ , Bt 〉σ ≥ λ

2‖ ft −
f εt
λ ‖2σ . Putting it into (24.17), then

Ezt

(‖ ft+1 − f εt
λ ‖2σ
) ≤ (1 − ληt)‖ ft − f εt

λ ‖2σ + η2
t Ezt‖Bt‖2σ . (24.18)

Now we estimate ‖ ft − f εt
λ ‖σ . It is decomposed as

‖ ft − f εt
λ ‖σ = ‖ ft − f εt−1

λ + f εt−1
λ − f εt

λ ‖σ ≤ ‖ ft − f εt−1
λ ‖σ + ht .

Applying the elementary inequality 2xy ≤ c1x2yd + y2−d/c1 with any 0 < d < 2
and c1 > 0, to x = ‖ ft − f εt−1

λ ‖σ and y = ht , then

‖ ft − f εt
λ ‖2σ ≤ ‖ ft − f εt−1

λ ‖2σ + 2‖ ft − f εt−1
λ ‖σ ht + h2t ≤ (1 + c1h

d
t )‖ ft − f εt−1

λ ‖2σ + h2−d
t /c1 + h2t .

Plugging it into (24.18) and noticing that (1 − ληt)(1 + c1hdt ) ≤ 1 + c1hdt − ληt ,
we get

Ezt

(
‖ ft+1 − f εt

λ ‖2σ
)

≤ (1 + c1h
d
t − ληt )‖ ft − f εt

λ ‖2σ + h2−d
t /c1 + h2t + η2t Ezt ‖Bt‖2σ .

We now only need to estimate ‖Bt‖2σ . Note that ‖ (φεt
τ

)′
− ‖∞ ≤ 1 and the bound

(24.16)holds for the learning sequence { ft }. Using the reproducing property
‖Kσ (xt , ·)‖2σ = 〈Kσ (xt , ·), Kσ (xt , ·)〉σ = Kσ (xt , xt ) = 1, then

‖Bt‖σ ≤
∥∥∥(φεt

τ

)′
− ( ft (xt ) − yt )Kσ (xt − ·)

∥∥∥
σ

+ λ‖ ft‖σ ≤ ‖ (φεt
τ

)′
− ‖∞ ‖Kσ (xt , ·)‖σ + +λ‖ ft‖σ ≤ 2.

Based on the above analysis, we can get the desired conclusion (24.15).
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24.3.4 Sample Error Estimate

We are in a position to present the estimate of the sample error ‖ fT+1 − fλ‖σ ,which
is the key analysis in our study. For simplicity, denote

∏T
j=T+1

(
1 − 1

2λη j
) := 1,∑T

j=T+1 λη j := 0 and f 0λ := fλ.

Lemma 24.4 Let the parameters ηt , εt , λ be of the form as ηt = η1t−α, εt = ε1t−β

and λ = T−(1−α−ε) for any 1 − 2α < ε < 1 − α, η1 > 0, ε1 > 0 satisfying

max {1 − βs − ε, 2 − (β + 1)s − 2ε} < α < min {2(β + 1)s, 1} . (24.19)

Then we have

Ez1,··· ,zT (‖ fT+1 − fλ‖σ ) ≤ C̃T−min{(β+1)s+α−2+2ε,α− 1
2 + ε

2 ,βs−1+α+ε}

+
√
2D(σ, λ)

λ
exp

{
− λη1

8(1 − α)
(T + 1)1−α

}
(24.20)

where C̃ is a constant independent of T, given in the proof.

Proof We split ‖ fT+1 − fλ‖σ into two parts as ‖ fT+1 − f εT
λ ‖σ and ‖ fλ − f εT

λ ‖σ .

For the first term ‖ fT+1 − f εT
λ ‖σ , we shall apply the conclusion in Lemma 24.3. By

(24.14), ht ≤ Cλ−1t−(β+1)s .We take d = α
(β+1)s and c1 = 1

2η1C
−dT−(d+1)(1−α−ε) for

any 1 − 2α < ε < 1 − α. The restriction (24.19) of parameters implies that c1hdt ≤
1
2ληt and 1 + c1hdt − ληt ≤ 1 − 1

2ληt . With (24.15), it yields that

Ezt

(‖ ft+1 − f εt
λ ‖2σ
) ≤
(
1 − 1

2
ληt

)
‖ ft − f εt−1

λ ‖2σ + 2h2−d
t /c1 + 4η2

t .

Applying the relation above iteratively for t = t0, · · · , T, we obtain that

Ez1,··· ,zT
(
‖ fT+1 − f

εT
λ ‖2σ
)

≤
(
1 − 1

2
ληT

) (
1 − ληT−1

)
Ez1,··· ,zT−1

(
‖ fT − f

εT−1
λ ‖2σ

)

+ 2h2−d
T /c1 + 4η2T +

(
1 − 1

2
ληT

)(
2h2−d

T−1/c1 + 4η2T−1

)

=
T∏

t=t0

(
1 − 1

2
ληt

)
Ez1,··· ,zt0−1

(
‖ ft0 − f

t0−1
λ ‖2σ

)
+

T∑
t=t0

(
2h2−d

t /c1 + 4η2t
) T∏

j=t+1

(
1 − 1

2
λη j

)
.

Using the above inequality with t0 = 1 and noting that ‖ fλ‖2σ ≤ 2D(σ, λ)/λ, with
the elementary inequality 1 − x ≤ e−x for any x > 0, then we have
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Ez1,··· ,zT
(
‖ fT+1 − f

εT
λ

‖2σ
)

≤ exp

⎧⎨
⎩− λ

2

T∑
t=1

ηt

⎫⎬
⎭ ‖ fλ‖2σ +

T∑
t=1

(
2h2−d

t /c1 + 4η2t
)
exp

⎧⎨
⎩− λ

2

T∑
j=t+1

ηt

⎫⎬
⎭

≤ 2 exp

⎧⎨
⎩− λ

2

T∑
t=1

ηt

⎫⎬
⎭D (σ, λ)/λ +

T∑
t=1

(
2h2−d

t /c1 + 4η2t
)
exp

⎧⎨
⎩− λ

2

T∑
j=t+1

ηt

⎫⎬
⎭

= 2 exp

⎧⎨
⎩− λη1

2

T∑
t=1

t−α

⎫⎬
⎭D (σ, λ)/λ +

T∑
t=1

(
2C2−d

c1λ2−d
t−(2−d)(β+1)s + 4η21 t

−2α

)
exp

⎧⎨
⎩− λη1

2

T∑
j=t+1

t−α

⎫⎬
⎭

:= I1 + I2.

For I1, using the elementary inequality in Lemma 4 of [19], that for any 0 < α < 1,
there holds

∑T
t=1 t

−α ≥ (T+1)1−α−1
1−α

, we have

I1 ≤ 2D (σ, λ)

λ
exp

{
− λη1
2(1 − α)

(
(T + 1)1−α − 1

)}
≤ 2D (σ, λ)

λ
exp

{
− λη1
4(1 − α)

(T + 1)1−α

}
.

For I2, we apply the following elementary inequality valid for t ∈ N, 0 < q1 < 1
and c, q2 > 0 :
t−1∑
i=1

i−q2 exp

⎧⎨
⎩−c

t∑
j=i+1

j−q1

⎫⎬
⎭ ≤ 2q1+q2

c
tq1−q2 + t

2
exp

{
− c(1 − 2q1−1)

1 − q1
(t + 1)1−q1

}
.

(24.21)

It can be derived in the proof procedure of Lemma 2 (b) of [9]. Here we omit it for
simplicity.
Take q1 = α, q2 = (2 − d)(β + 1)s and c = λη1

2 . Then the first part of I2 is bounded
as

I21 :=
T∑
t=1

(
2C2−d

c1λ2−d
t−(2−d)(β+1)s

)
exp

⎧⎨
⎩− λη1

2

T∑
j=t+1

t−α

⎫⎬
⎭ ≤ 2C2−d

[
2(2−d)(β+1)s+α+1

η1c1λ3−d
T−(2−d)(β+1)s+α

+ T

2c1λ2−d
exp

{
− η1(1 − 2α−1)λ

2(1 − α)
(T + 1)1−α

}
+ T−(2−d)(β+1)s

c1λ2−d

]
.

Note thatλ = T−(1−α−ε) implies that there exists a constantCε independent of T such

that themiddle term T
2c1λ2−d exp

{
− η1(1−2α−1)λ

2(1−α)
(T + 1)1−α

}
≤ CεT−(2(β+1)s+2α−4+4ε).

Together with the choice of d, c1, we have that

I21 ≤ A1T
−(2(β+1)s+2α−4+4ε)

where A1 := 2C2−d
(
2(2−d)(β+1)s+α+2

η2
1

Cd + Cε + 2Cd

η1

)
.

For the second part of I2, by similarity, applying (24.21) with q1 = α, q2 = 2α
and c = λη1

2 , we have that
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I22 :=
T∑
t=1

4η2
1t

−2α exp

⎧⎨
⎩−λη1

2

T∑
j=t+1

t−α

⎫⎬
⎭ ≤ A2T

−2α+1−ε

where A2 := 4η2
1

(
23α+1

η1
+ Cε + 1

)
. Based on the above analysis, we see that

Ez1,··· ,zT
(‖ fT+1 − f εT

λ ‖2σ
)

≤2D(σ, λ)

λ
exp

{
− λη1

4(1 − α)
(T + 1)1−α

}
+ (A1 + A2)T

−min{2(β+1)s+2α−4+4ε,2α−1+ε}.

For the term ‖ fλ − f εT
λ ‖σ , by (24.13), it can be bounded as ‖ fλ − f εT

λ ‖σ ≤ Cεs1T
−sβ

λ−1 = Cεs1T
−sβ+1−α−ε. Then we can get the conclusion (24.20) with C̃ =√

A1 + A2 + Cεs1.

24.3.5 Bounding the Total Error

In our analysis we shall make use of the following comparison theorem [2, 13].
Recall that μ := p(w+1)

p+1 .

Lemma 24.5 Suppose that the measure ρ has a p-average type w satisfying (24.5).
Then for any measurable function f : X → [−1, 1], we have

‖ f − fρ,τ‖Lμ
ρX

≤ Cμ

(
E ( f ) − E ( fρ,τ )

) 1
w+1 (24.22)

where the constant Cμ = 2(w + 1)
1

w+1 ‖(baw)−1‖
1

w+1

L p
ρX

.

Now we can present the proof of our error estimate for the convergence of online
algorithm (24.3) in a general form.

Proof of Theorem 24.2 Putting the explicit form (24.7) of ηt , εt , λ, σ into (24.20),
we know that there exists a constant C ′

ε independent of T or τ such that

√
2D(σ, λ)

λ
exp

{
− λη1

8(1 − α)
(T + 1)1−α

}
≤ C ′

εT
− r

2n+5r

and

min

{
(β + 1)s + α − 2 + 2ε, α − 1

2
+ ε

2
, βs − 1 + α + ε

}
= r

2n + 5r
.
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This yields that

Ez1,··· ,zT
[‖ fT+1 − fλ‖σ

] ≤ (C̃ + C ′
ε

)
T− r

2n+5r .

By (24.11), we know that

Ez1,··· ,zT
[
E ( fT+1) − E ( fρ,τ )

] ≤ Ez1,··· ,zt
[‖ fT+1 − fλ‖σ

]+ D (σ, λ) ≤
(
C̃ + C ′

ε + 2C ′) T− r
2n+5r .

Since the support of ρ(·|x) is [−1, 1], we have that φτ ( f̂ (x) − y) ≤ φτ ( f (x) − y)
for any measurable function f : X → R. It yields that E ( f̂T+1) ≤ E ( fT+1) and

Ez1,··· ,zT
[
E ( f̂T+1) − E ( fρ,τ )

] ≤ (C̃ + C ′
ε + 2C ′

)
T− r

2n+5r .

Using the relation (24.22), we can complete the proof of Theorem 24.2 with

C∗ =
(
C̃ + C ′

ε + 2C ′
) 1

w+1
Cμ.

Proof of Theorem 24.1 We shall prove Theorem 24.1 by Theorem 24.2. Since X
has a Lipschitz boundary, we know from [10] that there exists an extension function
f̃ρ,τ ∈ Hr (Rn) such that f̃ρ,τ |X = fρ,τ . Next, we check the noise condition (24.5).
Let the function a(x) = 1 and b(x) = 1

2 , we have that for any q ∈ [0, 1]

ρ({y : fρ,τ (x) ≤ y ≤ fρ,τ (x) + q}|x) =
∫ fρ,τ (x)+q

fρ,τ (x)

dρ(y|x)
dy

dy = 1

2
qζ+1.

By similarity, we have ρ({y : fρ,τ (x) − q ≤ y ≤ fρ,τ (x)}|x) = 1
2q

ζ+1. Therefore,
themeasure ρ has a τ -quantile of∞-average type ζ + 1.Meanwhile, we find that the
family of conditional distributions {ρ(·|x)}x∈X is Lipschitz-1 and (24.6) is satisfied
with Cρ = ζ+1

2 and s = 1 since the density function dρ(y|x)
dy is uniformly bounded by

ζ+1
2 . Thus, we can apply (24.8) to get that

Ez1,··· ,zT
[
‖ fT+1 − fρ,τ‖L2

ρX

]
≤ Ez1,··· ,zT

[
‖ fT+1 − fρ,τ‖Lζ+2

ρX

]
≤ C∗T− r

(2n+5r)(ζ+2) .

Then the proof is completed.
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