
Chapter 23
Data-Based Priors for Bayesian Model
Averaging

M. Ai, Y. Huang, and J. Yu

Abstract The uncertainty of models is now becoming one of the most important
issues in the process of dealing with practical applications. In order to improve
reliability and accuracy of inference, one usually adopts the model averaging method
instead of selecting a single final model through a model selection procedure. Under
the Bayesian framework, two upper bounds of the risk are derived and the posteriors
are obtained by minimizing the bounds with a fixed prior. Then we propose two data-
based algorithms to get proper priors for Bayesian model averaging in this paper.
Simulations show that by using these priors, smaller mean squared prediction errors
can be gotten both in synthetic data and real data studies, especially for the data of
poor quality.

23.1 Introduction

It is common in practice that the observed data can be described by different models.
A standard procedure to make inference is to choose a best model according to some
criteria, such as model predictive ability, model fitting ability or many different infor-
mation criteria like AIC and BIC. After selection, all the inferences and conclusions
are made based on the assumption that the selected model is correct.

However, the drawbacks of this approach exist obviously. The selection of one
particular model may lead to riskier decisions since it ignores the model uncertainty.
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In other words, if we choose a wrong model, the consequence will be disastrous.
Moral-Benito already pointed out the concern in [8], “From a pure empirical view-
point, model uncertainty represents a concern because estimates may well depend on
the particular model considered.” Therefore, combining multiple models to reduce
the model uncertainty is very desirable.

As an alternative strategy, model averaging enables researchers to draw conclu-
sions based on the whole universe of candidate models. In particular, researchers
estimate all the candidate models and then compute a weighted average of all the
estimates for the coefficient on X . There are two different approaches to model aver-
aging in the literature including Frequentist Model Averaging (FMA) and Bayesian
Model Averaging (BMA).

Frequentist approaches focus on improving prediction and use weighted mean of
estimates from different models while Bayesian approaches focus on the probability
that a model is true and consider priors and posteriors for different models. Ref. [4]
suggested to use Bayesian inference to reduce the model uncertainty and pointed out
the importance of the fragility of regression analysis to arbitrary decisions about the
choice of control variables. Bayesian Model Averaging considers model uncertainty
through the posterior distribution. The model posteriors are obtained by Bayes’ theo-
rem, and therefore allowing for combined estimation and prediction. Compared with
the FMA approaches, there are a huge literature on the use of BMA in statistics.

Influenced by [4], most works were concentrated only on the linear models.
Ref. [10] extended to generalized linear models by providing a straightforward
approximation. For more details, refer to some landmark reviews such as [2, 8,
15] on BMA. Moreover, Refs. [6, 19] gave good estimators of the risk in linear
mixed-effects models. For getting the posterior distribution of the weights, Ref. [17]
gave a method called SOIL which can well separate the variables in the true model
from the rest under some assumptions. However, they used a default prior for the
procedure.

TheBayesian approaches have the advantage of using arbitrary domain knowledge
through a proper prior. However, they can’t guarantee the upper bound of the decision
risk without assuming the truth of the prior. The Probably Approximately Correct
(PAC) framework, first formulated by [7], was proposed to deal with this problem.
It has been widely developed in recent years. Refs. [5, 11] gave tighter bounds in
some specific cases. Ref. [1] provided an extended PAC-Bayes bound for learning
the proper priors. But, they used the same data for learning the prior and the posterior
simultaneously. This issue will make the ability of generalization worse.

There have been many recent developments in model averaging. Refs.
[14, 18] presented two criteria, Mallows criterion and jackknife criterion, to deter-
mine the weights of model averaging. Their meanings are not as directly as mini-
mizing the upper bound of the risk. They didn’t build the relation between the risk
and the criteria theoretically. Refs. [6, 19] gave good estimators of the risk in a
certain type of models while our work doesn’t specify the model type. For getting
the posterior distribution of the weights, Ref. [17] gave a method without choosing a
proper prior. Ref. [1] provided an extended PAC-Bayes bound for learning the proper
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priors. Nevertheless, it involved reusing of the data which increased the probability
of overfitting.

In this paper, we propose a specific risk bound under our settings and two data-
based methods for adjusting the priors in PAC-Bayes framework. And, two practical
algorithms are given accordingly. Themain contributions of this work are the follow-
ing. First, sequential batch sampling method is proposed to deal with the situation
that there isn’t historical data while the data can be sampled with the rules made
by researchers. Second, when the historical data existed, we use similar old tasks to
extract the mutual knowledge with the current task for adjusting the priors. Third,
two theoretical risk bounds are provided for these two situations respectively. Fourth,
empirical demonstration shows that the proposed meta-methods have excellent per-
formances in the numerical studies.

The reminder of this paper is organized as follows. In Sect. 23.2, a standard risk
bound and a practical sequential batch samplingmethod are established for obtaining
a better prior in no previous data situation. Section23.3 proposes the method to deal
with historical similar data for the same purpose. Illustrative simulations given in
Sect. 23.4 show that our algorithms will lead to more effective prediction and support
our theoretical results. For real-world dataset, we apply the proposed methods to two
real datasets and confirm the higher prediction accuracy of minimizing risk bound
method. Section23.5 concludes this paper with some discussions. Some proofs of
theorems are delegated to the supplementary materials.

23.2 Sequential Adjustment of Priors

In a traditional supervised learning task, the learner needs to find an optimal model
(or hypothesis) to fit the data, and then uses the learned model to make predictions.
In the Bayesian approach, various models are allowed to fit the data. In particular,
the learner needs to learn an optimal model distribution over the candidate models,
and then uses the learned model distribution to make predictions.

More specifically, in a supervised learning task,we are given a set S = {(xi , yi )}n
i=1

of i.i.d. samples drawn from an unknown distribution D overX × Y , i.e., (xi , yi ) ∼
D. The goal is to find a model h in the candidate model set H , a set of functions
mapping features (feature vector) to responses, that minimizes the expected loss
function E(x,y)∼D L(h, x, y), where L is a bounded loss function. Without loss of
generality, we assume L is bounded by [0, 1]. In the Bayesian framework, a dis-
tribution Q over H is the purpose instead of searching a specific optimal model
h ∈ H . Therefore, the goal turns to finding the optimal model distribution Q, which
minimizes Eh∼QE(x,y)∼D L(h, x, y). Then one could use the weighted average of
the models over H to make predictions, namely, ŷ = Eh∼Qh(x). More generally,
we further assume that the candidate model set H consists of K classes of models
M1,M2, . . . ,MK with H = ⋃K

k=1 Mk . Each model class Mk is associated with
a probability wk , and for each model class Mk , there is a distribution Qk over Mk .
For example, a model classMk could be a group of models obtained from the Lasso
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method, and the hyper-parameter λ in Lasso follows a distribution Qk . Another com-
mon example is that Mk is a group of neural networks with a certain architecture,
and the weights of neural networks follow a joint distribution Qk . In this way, the
total distribution overH can be written as ξ = (w, Q1, . . . , QK ), where w consists
of w1, . . . , wK with ||w||1 = 1. The goal of the learning task is to find an optimal dis-
tribution ξ which minimizes the expected risk R(ξ, D) := Eh∼ξE(x,y)∼D L(h, x, y),
and then the prediction is made by ŷ = Eh∼ξ h(x) = ∑K

k=1[wk · Eh∼Qk h(x)].
Since sample distribution D is unknown, the expected risk R(ξ, D) cannot be

computed directly. Therefore, it is usually be approximated by the empirical risk
̂R(ξ, S) := Eh∼ξ

∑

(xi ,yi )∈S L(h, xi , yi )/|S| in practice, and ξ is learned by minimiz-
ing the empirical risk ̂R(ξ, S). When the sample size is large enough, it would be
a good approximation. However, in many situations, we don’t have so much data,
which may lead to large difference between them. Thus, using the empirical risk
̂R(ξ, S) to approximate the expected risk R(ξ, D) is not appropriate any longer.

We first study the difference between the empirical risk ̂R(ξ, S) and the expected
risk R(ξ, D). Based on the literature [7], we can obtain an upper bound of their
difference which is stated as the following theorem.

Theorem 23.1 Let ξ 0 be a prior distribution over H that must be chosen before
observing the samples, and let δ ∈ (0, 1). Then with probability at least 1 − δ, the
following inequality holds for all posterior distributions ξ over H ,

R(ξ, D) ≤ ̂R(ξ, S) +
√

KL(w||w0) + ∑K
k=1 wkKL(Qk ||Q0

k) + ln n
δ

2(n − 1)
, (23.1)

where n is the cardinality of sample set S, and KL(·||·) denotes the Kullback-Leibler
(KL) divergence between two distributions.1

According to the above theorem, it is clear that onlywhen the sample sizen is large,
the difference R(ξ, D) − ̂R(ξ, S) can be guaranteed to be small. Thus, minimizing
̂R(ξ, S) may not lead to the minimizer of R(ξ, D), which matches our intuition.
To avoid the risk of the approximation, one can minimizes the upper bound of the
expected risk R(ξ, D) in stead of using the empirical risk ̂R(ξ, S) as an approxima-
tion. In particular, we denote the right hand side of Eq.(23.1) by R(ξ, ξ 0, S). Then
one can learn the model distribution ξ by minimizing R(ξ, ξ 0, S). Intuitively, such
choice of ξ for the learning task makes the worst case best.

Theorem 23.1 also indicates that the prior ξ 0 plays an important role. Since the
choice of ξ balances the tradeoff between the empirical risk ̂R(ξ, S) and the regu-
larization term, if the prior ξ 0 is far away from the true optimal model distribution
ξ ∗, the posterior ξ will also be bad. The best situation for optimizing the poste-
rior ξ is that the prior ξ 0 exactly equals to the true optimal model distribution ξ ∗.
Then, the regularization term disappears. In other words, if there is a good prior ξ 0

which is close to ξ ∗, the upper bound R(ξ, ξ 0, S) will be small. However, without

1KL(P||P0) is defined as Ex∼P ln P(x)

P0(x)
.
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any prior knowledge, one can only use data to help obtain a better prior. The naive
method is directly using the non-informative prior as ξ 0 for minimizing R(ξ, ξ 0, S)

to get the posterior ξ . In this paper, we propose a more carefully designed method
to get a better posterior than the naive method. In the following, we consider two
different scenarioes for learning the prior. First, the data can be collected adaptively.
The learner is allowed to do sampling in rounds and updates the prior distribution
after each sampling. In each round, the learner can sample the data according to the
prior distribution in the current round. Such iterative procedure updates the prior
step by step. Ultimately, compared with dealing the whole data at once, this pro-
cedure of adjusting prior leads to a smaller upper bound. Moreover, it also gives
an opportunity to choose some good sample sets for reducing the volatility of the
estimators which is measured by v(ξ, D) = ExEh(h(x) − Ehh(x))2. The function
v̂(ξ, B) = 1

|B|
∑

x∈B Eh(h(x) − Ehh(x))2 is defined to measure the volatility of the
posterior ξ at the sample set B. The complete algorithm for sequential batch sampling
is shown in Algorithm 6. Second, the data including the new task and other similar
old tasks which have been already collected. The sequential sampling method can
not be adopted in this scenario. Since the previous tasks are similar with the new
task, we could use these old data to learn the prior for the new task. The details will
be discussed in Sect. 23.3.

Algorithm 6 Sequential Batch Sampling Algorithm
1: Obtain a sample set B1 from the sample space X × Y by a initial space-filling design.
2: Get the posterior ξ1 based on the sample set B1 by minimizing the risk bound with non-

informative prior.
3: for i = 2 to b do
4: Search next sample set Bi (|Bi | = nb) with the large volatility under the current posterior

ξi−1, i.e., v̂(ξi−1, Bi ) > γi where γ is a given constant vector.
5: Get the posterior ξi based on the sample set Bi by minimizing the risk bound with the prior

ξi−1.
6: end for
7: The final posterior is ξb.

For Algorithm 6, the data is processed in b steps. First, a space-filling design
is used as initial experiment points to reduce the probability of overfitting caused
by the unbalanced sampling. Traditional space-filling design aims to fill the input
space with design points that are as “uniform” as possible in the input space. The
uniformity of space-filling design is illustrated in Fig. 23.1. For next steps, uncertain
points are needed to be explored. And, the uncertainty is measured by the volatility
v. Hence, the batch with large volatility will be chosen. Note that if we set a huge γ ,
we will just explore a small region of the input space.

The setting of γ refers to [20]. However, in practice, it is found that this parameter
γ does not matter much, since the results are similar with a wide range of γ . This
procedure helps to reduce the variance of the estimator which is proved in [20] by
sequential sampling. Furthermore, it also helps to adjust the prior in each step which
is called learning the prior. The proposition is stated as below.
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Fig. 23.1 The illustration
for uniform space-filling
design

(a) Nonuniform design (b) Uniform design

Proposition 23.1 For i = 1, 2, . . . , b, let Bi = S, ξ ∗ is the minimizer of the RHS of
Eq. (23.1) with non-informative prior ξ 0 and ξi are obtained by Algorithm 6, then
we have R(ξb, ξb−1, S) ≤ R(ξ ∗, ξ 0, S).

The above proposition can be understood straightforwardly. First, since we adjust
the prior through the data step by step, the final prior ξb−1 is better than the non-
informative prior. Consequently, it receives the smaller expected risk. Second, we
choose the sample sets sequentially with large volatility to do experiments in order
to reduce uncertainty. The property is also confirmed in Sect. 23.4.

23.3 Priors Based on Historical Data

As mentioned in Sect. 23.2, when the data of historical tasks and the new tasks have
already collected, sampling method can not be used any longer. Still, the learner
needs a good prior for the reliable inferences. In order to get a good prior, it is
helpful to extract the mutual knowledge from similar tasks. In particular, there are
m sample tasks T1, . . . , Tm i.i.d. generated from an unknown task distribution τ .
For each sample task Ti , a sample set Si with ni samples is generated from an
unknown distribution Di . Without ambiguity, we use notation ξ(ξ 0, S) to denote the
posterior under the prior ξ 0 after observing the sample set S. The quality of a prior
ξ 0 is measured by EDi ∼τESi ∼D

ni
i

R(ξ(ξ 0, Si ), Di ). Thus, the expected loss we want
to minimize is

R(ξ 0, τ ) = EDi ∼τESi ∼D
ni
i

R(ξ(ξ 0, Si ), Di ).

Similar to the single-task case, the above expected risk cannot be computed
directly, thus the following empirical risk is used to estimate it:

̂R(ξ 0, S1, . . . , Sm) = 1

m

m
∑

i=1

̂R(ξ(ξ 0, Strain
i ), Svalidation

i ),
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where each sample set Si is divided into a training set Strain
i and a validation set

Svalidation
i .
Consider the regression setting for task T . Suppose the true model is

yT = fT (xT ) + σT (xT ) · εT ,

where fT : Rd → R is the function to be learned, the error term εT is assumed to be
independent of X and has a known probability density q(t), t ∈ R with mean 0 and
a finite variance. The unknown function σT (xT ) controls the variance of the error at
X = xT . There are nT i.i.d. samples {(xT,i , yT,i )}nT

i=1 drawn from an unknown joint
distribution of (xT , yT ). Assume that there is a candidate model setH . Each of them
is a function mapping features (feature vector) to response, i.e., h ∈ H : Rd → R.
To take the information of the old tasks, which can reflect the importance of each
h ∈ H , the following Algorithm 7 is proposed.

Algorithm 7 Historical Data Related Algorithm
1: for i = 1 to m do
2: Using Ti to obtain ξi by minimizing the risk bound with non-informative prior.
3: end for
4: for i = 1 to m do

5: Randomly split the data Si into two parts S(1)

i,n
′
i

= (xi,α, yi,α)
n

′
i

α=1 for training and S(2)

i,n
′
i

=
(xi,α, yi,α)

ni

α=n
′
i +1

for validation.

6: for each j �= i do
7: Obtain estimates ̂f j,n

′
i
(x, S(1)

i,n
′
i

), σ̂ j,n
′
i
(x, S(1)

i,n
′
i

) with prior ξ j .

8: Evaluate predictions on S(2)

i,n
′
i

and compute

Ei
j =



ni

α=n
′
i +1

q

(

yα− ̂f
j,n

′
i
(xi,α)

σ̂
j,n

′
i
(xi,α)

)



ni

α=n
′
i +1

σ̂ j,n
′
i
(xi,α)

.

9: end for
10: end for
11: Repeat the random data segmentation more times and average the weights Ei

j after normaliza-

tion to get w(i)
j ( j �= i).

12: Average all the w(i)
j ( j �= i) from i = 1 to m to obtain the final weights w j .

13: The prior learned for a new task is ξ∗ = ∑m
i=1 wi ξi .

This algorithm is based on the cross-validation framework. First, using Ti to obtain
the candidate priors ξi by minimizing the risk bound with non-informative prior.
Cross-validation determines the importance of the priors. The j-th task is divided
into two parts randomly. The first part is used to learn the posterior with the prior
ξi . The second part is to evaluate the performance of the posterior by its likelihood
function. This evaluation is inspired by [9]. To simplify the determination of the
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weights, Ref. [9] proposed a frequentist approach to BMA. The Bayes’ theorem was
replaced by the Schwarz asymptotic approximation which could be viewed as using
maximized likelihood function as the weights of the candidate models. The σ̂ on the
denominator of Ei

j makes the weight larger if the model is accurate. This procedure
repeats many times for each pair (i, j). Their averages reveal the importance of the
priors. In the end, the ξ ∗ is obtained by weighted averaging them all. the property of
this algorithm can be guaranteed by the following theorem.

The following regularization conditions are assumed for the results. First, q is
assumed to be a known distribution with 0 and variance 1.

(C1) The functions f and σ are uniformly bounded, i.e., supx | f (x)| ≤ A < ∞ and
0 < cm ≤ σ(x) ≤ cM < ∞ for constants A, cm and cM .

(C2) The error distribution q satisfies that for each 0 < s0 < 1 and cT > 0, there
exists a constant B such that

∫

q(x) ln
q(x)

1
s q( x−t

s )
μ(dx) ≤ B((1 − s)2 + t2)

for all s0 ≤ s ≤ s−1
0 and −cT ≤ t ≤ cT .

(C3) The risks of the estimators for approximating f and σ 2 decrease as the sample
size increases.

For the condition (C1), note that, whenwe deal with k-way classification tasks, the
responses belong to {1, 2, . . . , k}which is bounded obviously. Moreover, if the input
space is a finite region which often happens in real datasets, most common functions
are bounded uniformly. The constants A, cm, cM are involved in the derivation of the
risk bounds, but they canbeunknown inpracticewhenwe implement theAlgorithm7.
The condition (C2) is satisfied by Gaussian, t (with degrees of freedom larger than
two), double-exponential, and so on. The condition (C3) usually holds for a good
estimating procedure, like consistent estimators. A model has consistency if the
expected risk tends to zero when experimental size tends to infinity. Note that the
conditions are satisfied in most situations.

Theorem 23.2 Assume (C1)–(C3) are satisfied andσTi is known. Then, the combined
posterior ξ ∗ as given above satisfies

R(ξ ∗, τ ) ≤ inf
j

(

C1
∑

i �= j (ni − n
′
i )

+ C2
∑

i �= j (ni − n
′
i )

∑

i �= j

(ni − n
′
i )

[

̂R(ξ ∗
j , S(2)

i,n
′
i

)

+
√

KL(w j
∗||w j ) + ∑K

k=1 w j,kKL(Q∗
j,k ||Q j,k) + ln ni

δ

2(ni − 1)

]

⎞

⎠

with probability at least 1 − δ, where the constant C1, C2 depend on the regulariza-
tion conditions, π is the initial prior which should be non-informative prior and ξ ∗

j

is the minimizer of Eq. (23.1) with ξ 0 = ξ j and S = S(1)
i,n

′
i

.
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For simplify, we assume that the condition that σTi is known in Theorem 23.2. In
fact it is not a necessary condition, a more general case and corresponding proof can
be found in Appendix.

In this general proof, it can be seen that variance estimation is also important for
the Algorithm 7. Even if a procedure estimates fT very well, a bad estimator of σT

can substantially reduce its weight in the final estimator. Under the condition (C3),
the risks of a good procedure for estimating fT and σT usually decrease as the sample
size increases. The influence of the number of testing points n′

i is quite clear. Smaller
n′

i decreases the first penalty term but increases the main terms that involve the risks
of each j . Moreover, Theorem 23.2 reveals the vital property that if one alternative
model is consistent, the combined model will also have the consistency.

23.4 Simulations

In this section, some examples are shown to illustrate the procedure of
Algorithms 6 and 7 and confirm Proposition 23.1. The method of minimizing the
upper bound in Theorem 23.1 with non-informative prior is denoted by RBM (Risk
Bound Method). Also, the SOIL method in [17] is under the comparison. The opti-
mization for RHS of Eq. (23.1) in our algorithms is dealt by gradient descendmethod.
R package “SOIL” is used to obtain the results of the SOIL method. First, we begin
with linear models.

23.4.1 Synthetic Data Analysis

Example 23.1 The simulation data {(xi , yi )}n
i=1 is generated for the RBM from

the linear model yi = 1 + xi
T β + σεi , where εi ∼ N (0, 1), σ ∈ {1, 5} and xi ∼

Nd(0, ). For each element i j of , i j = ρ|i− j | (i �= j) or 1 (i = j) with ρ ∈
{0, 0.9}. The sequential batch sampling has b steps, and each step uses n/b samples
followed Algorithm 6.

All the specific settings for parameters are summarized in Table23.1, and the
confidence level δ in Theorem 23.1 is set to 0.01. The Mean Squared Prediction
Error(MSPE) Ex | f (x) − ̂f (x)|2 and volatility defined in Sect. 23.2 are compared.
They are obtained by sampling 1000 samples from the same distribution and comput-
ing their empiricalMSPE

∑

x | f (x) − ̂f (x)|2/103 and volatility. For eachmodel set-
tingwith a specific choice of the parameters (ρ, σ ), we repeat 100 times and compute
the average empirical value.The comparison amongRBM,SOILandSBS(Sequential
Batch Sampling) are shown in Table23.2.

The volatility of SOIL method is the smallest and very close to zero. This
phenomenon shows that SOIL is focused on a few models, even just one model
when the volatility equals to zero. Consequently, its MSPE is larger than other two
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Table 23.1 Simulation settings of Example 23.1

Model n d b β

1 50 8 5 (3, 1.5, 0, 0, 2, 0, 0, 0)T

2 150 50 5 (1, 2, 3, 2, 0.75, 0, . . . , 0)T

3 50 50 5 (1, 1/2, 1/3, 1/4, 1/5, 1/6, 0, . . . , 0)T

Table 23.2 Comparison among RBM, SOIL and SBS of Example 23.1

Model 1 (ρ, σ ) (0, 1) (0, 5) (0.9, 1) (0.9, 5)

MSPE RBM 2.03 48.23 3.71 53.83

SOIL 2.13 53.21 2.17 53.21

SBS 1.71 14.08 3.25 26.40

Volatility RBM 1.64 3.47 1.31 0.49

SOIL 0 0 0.002 0

SBS 1.61 7.41 1.03 0.42

Model 2

MSPE RBM 1.97 46.26 1.46 35.97

SOIL 2.01 50.23 1.96 49.78

SBS 1.93 38.69 1.38 12.92

Volatility RBM 1.60 2.72 3.38 7.48

SOIL 0 0 0.001 0.01

SBS 1.46 8.67 3.35 6.74

Model 3

MSPE RBM 1.67 42.06 1.24 38.51

SOIL 1.99 49.80 1.93 47.99

SBS 1.65 27.32 1.23 29.44

Volatility RBM 0.27 1.54 0.74 3.39

SOIL 0 0 0.02 0.36

SBS 0.29 0.47 0.77 4.06

methods. SBS as a modification of RBM has similar results with RBM when σ is
small. However, when σ is large, SBS performs much better than RBM. In this sit-
uation, the information of data is easily covered by big noises. Hence, a good prior
which can provide more information is vital for this procedure.

Next example considers the same comparison but in non-linear models. In last
example, the alternative models include the true model, but now the true non-linear
model is approximated by many linear models.

Example 23.2 The simulation data {(xi , yi )}50i=1 is generated for the RBM from the
non-linear models

1. yi = 1 + sin(xi,1) + cos(xi,2) + εi ,
2. yi = 1 + sin(xi,1 + xi,2) + εi ,
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Table 23.3 Comparison among RBM, SOIL and SBS of Example 23.2

Model 1 Model 2

MSPE RBM 1.26 1.54

SOIL 1.42 1.80

SBS 1.23 1.47

Volatility RBM 0.1 0.11

SOIL 0.07 0.02

SBS 0.11 0.14

where εi ∼ N (0, 1), and xi ∼ N8(0, I ). The sequential batch sampling has 5 steps,
and each step uses 10 samples followed Algorithm 6.

The results of Example 23.2 is listed in Table23.3. Mostly, it is similar with the
results of Example 23.1. The difference is that the volatility of SOIL becomes large
when the model is completely non-linear. Using linear models to fit non-linear model
obviously increases the model uncertainty, since none of the fitting models is correct.

The final example is under the situation that the data has been already collected.
Hence, we can’t use the SBSmethod to get the data. However, we have the extra data
of many old similar tasks. In particular, we have the data of Example 23.1. Now, the
new task is to fit a new model.

Example 23.3 The data of Example 23.1 with (ρ, σ ) = (0, 1) is given. The new
task data {(xi , yi )}20i=1 is generated from the linear model yi = 1 + xi

T β + σεi ,
where εi ∼ N (0, 1), σ ∈ {1, 2, 3, 4, 5}, β = {1,−1, 0, 0, 0.5, 0, . . . , 0} and
xi ∼ N10(0, I ).

The method described in Algorithm 7 is denoted by HDR (Historical Data
Related). The results in Fig. 23.2 show the high consistency with the last two exam-
ples. When σ is small, the different priors lead to similar result since the current data
has key influence. However, when σ is large, the difference between RMB and HDR
is huge. The reason is that the current data has been polluted by the strong noise.
Hence, a good prior can provide the vital information about the model distribution.

23.4.2 Real Data Study

Here, we apply the proposed methods to two real datasets, BGS data and Bardet data,
which are also used in [17].

First, the BGS data is with small d and from the Berkeley Guidance Study (BGS)
by [13]. The dataset records 66 boys’ physical growthmeasures frombirth to eighteen
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Fig. 23.2 Comparisons
among the three methods in
Example 23.3
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years. Following [17], we consider the same regression model. The response is age
18 height and the factors include weights at ages two (WT2) and nine (WT9), heights
at ages two (HT2) and nine (HT9), age nine leg circumference (LG9) and age 18
strength (ST18).

Second, for large d, the Bardet data collects tissue samples from the eyes of 120
twelve-week-old male rats. For each tissue, the RNAs of 31, 042 selected probes are
measured by the normalized intensity valued. The gene intensity values are in log
scale. Gene TRIM32, which causes the Bardet-Biedl syndrome, is the response in
this study. The genes that are related to it are investigated. A screening method [3]
is applied to the original probes. This screened dataset with 200 probes for each of
120 tissues is also used in [17].

Both cases are data-given cases that we can’t use sequential batch sampling
method. For the different setting of d, we assign corresponding similar historical
data for two real datasets. The data of model 1 in Example 23.1 for the BGS data
with small d. The data of model 3 in Example 23.1 for the Bardet data with large d.

We randomly sample 10 rows from the data as the test set to calculate empirical
MSPE and volatility. The results are summarized in Table23.4. From Table23.4, we
can see that both RBM and HDR have smaller MSPE than SOIL. However, HDR
doesn’t performmuch better than RBM. This can be explained intuitively as follows.
In theory, the historical tasks and the current task are assumed that they come from the
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Table 23.4 Comparison among RBM, SOIL and HDR in real data

BGS Bardet

MSPE RBM 13.54 0.0054

SOIL 16.74 0.0065

HDR 13.06 0.0050

Volatility RBM 1.99 0.0013

SOIL 0.43 0.0013

HDR 1.84 0.0012

same task distribution. But in practice, how to measure the similarity between tasks
is still a problem. Hence, an unrelated historical dataset may provide less information
for the current prediction.

23.5 Concluding Remarks

This paper is based on the PAC-Bayes framework to study the model averaging
problem. More concretely, the work is about how to assign the proper distribution
on the candidate models. The work proposes specific upper bounds of the risks in
different situations and aims to minimize them. In other words, it makes the worst
situation best. For this purpose, two practical algorithms are provided to solve this
optimization under two realistic situations respectively. One is that no previous data
can be used, but the experimenters have the opportunity to design the sampling
method before the collection of the data. The other one is that much historical data is
given, the analysts should figure out a proper method to deal with these data. In the
first case, the prior is adjusted step by step. Compared with dealing the whole data at
once, this sequential method has the smaller upper bound of the risk. In the second
case, using historical similar tasks to extract the information about the prior which
is called meta-learning. The meta-learner is for the prior and the base-learner is for
the posterior. Both methods are confirmed to be effective in our simulation and real
data study.

However, some problems need to be investigated. First, in sequential batch sam-
pling procedure, the volatility is used as a criterion to sample the data. This choice
is based on our experience. There may exist other choices that have better results.
Second, when a lot of historical data is available, many similar old tasks may be con-
sidered to extract more information for learning the new task better. How to define
‘similar’ is still an open problem. In practice, the similarity isn’t measured by the
data. Instead, it is judged by experts, which is not expected.
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Appendix

First, we review the classical PAC-Bayes bound [7, 12] with general notations.

Lemma 23.1 LetX be a sample space andF be a function space overX . Define a
loss function g( f, X) : F × X → [0, 1], and S = {X1, . . . , Xn} be a sequence of n
independent identical distributed random samples. Let π be some prior distribution
over F . For any δ ∈ (0, 1], the following bound holds for all posterior distributions
ρ over F ,

PS

(

EXE f g( f, X) ≤ 1

n

n
∑

i=1

E f g( f, Xi ) +
√

KL(ρ||π) + ln n
δ

2(n − 1)

)

≥ 1 − δ. (23.2)

Proof of Theorem 23.1 We use Lemma 23.1 to bound the expected risk with the
following substitutions. The n samples are Xi � zi . The function f � h where h ∈
H . The loss function g( f, X) � L(h, z) ∈ [0, 1]. The prior π is defined by π � ξ 0,
in which we first sample k from {1, . . . , K } according to corresponding weights
{w1, . . . , wK } and then sample h from Qk . The posterior is defined similarly, ρ � ξ .

The KL-divergence term is

KL(ρ||π) = E f ln
ρ( f )

π( f )
= Ek∈{1,...,K }(Eh

Qk(h)

Q0
k(h)

|h ∈ Mk)

=
K

∑

k=1

wkEh∈M k ln
wk Qk(h)

w0,k Q0
k(h)

= KL(w||w0) +
K

∑

k=1

wkKL(Qk ||Q0
k).

(23.3)

Substituting the above into Eq. (23.2), it follows that

PS

(

EzEk∈{1,...,K }Eh∈M k L(h, z) ≤ 1

n

n
∑

i=1

Ek∈{1,...,K }Eh∈M k L(h, z)

+
√

KL(w||w0) + ∑K
k=1 wkKL((Qk ||Q0

k) + ln n
δ

2(n − 1)

)

≥ 1 − δ.

(23.4)

Using the notations in Sect. 23.2, we can rewrite the above as below,

PS

(

R(ξ, D) ≤ ̂R(ξ, S) +
√

√

√

√(KL(w||w0) +
K

∑

k=1

wkKL(Qk ||Q0
k ) + ln

n

δ
)/(2n − 2)

)

≥ 1 − δ.

(23.5)
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Proof of Proposition 23.1 First, we proof that for i = 2, . . . , b,

R(ξi , ξi−1, Bi ) ≤ R(ξi−1, ξi−2, Bi−1).

By definition of ξi ,

R(ξi , ξi−1, Bi ) ≤ R(ξi−1, ξi−1, Bi )

= ̂R(ξi−1, Bi ) +
√

ln
n

δ
/(2n − 2)

≤ R(ξi−1, ξi−2, Bi ) = R(ξi−1, ξi−2, Bi−1).

Following these inequalities,

R(ξb, ξb−1, S) = R(ξb, ξb−1, Bb) ≤ R(ξ1, ξ
0, B1) = R(ξ ∗, ξ 0, S).

This finishes the proof.

Proof of Theorem 23.2 According to Theorem 1 in [16], we have

R(ξ ∗, τ ) ≤ inf
j

(

C1
∑

i �= j (ni − n
′
i )

+ C2
∑

i �= j (ni − n
′
i )

∑

i �= j

ni
∑

α=n
′
i +1

[

E||σ 2
Ti

− σ̂ 2
j,α||2 + R(ξ ∗

j , Di )

])

,

(23.6)

where ξ ∗
j is the minimizer of Eq. (23.1) with ξ0 = ξ j and S = S(1)

i,α denoted by

ξ ∗
j (ξ j , S(1)

i,α ).

For any α ≥ n
′
i and an estimator satisfied the condition (C3), the inequalities

E||σ 2
Ti

− σ̂ 2
j,n

′
i

||2 ≥ E||σ 2
Ti

− σ̂ 2
j,α||2 and R(ξ ∗

j (ξ j , S(1)
i,n

′
i

), Di ) ≥ R(ξ ∗(ξ j , S(1)
i,α ), Di )

hold. Plugging into Eq. (23.6) for α = n
′
i + 1, . . . , ni , it follows that

R(ξ∗, τ ) ≤ inf
j

(

C1
∑

i �= j (ni − n
′
i )

+ C2
∑

i �= j (ni − n
′
i )

∑

i �= j

[

E||σ 2
Ti

− σ̂ 2
j,n

′
i
||2 + R(ξ∗

j , Di )

])

,

where ξ ∗
j is the minimizer of Eq. (23.1) with ξ 0 = ξ j and S = S(1)

i,n
′
i

.

Then, the result follows by the above inequality combined with Eq. (23.5). In
order to obtain the form in Theorem 23.2, one only needs to note that if σTi is known,
the term E||σ 2

Ti
− σ̂ 2

j,n
′
i

||2 vanishes.
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