
Chapter 18
Cosine Similarity-Based Classifiers
for Functional Data

Tianming Zhu and Jin-Ting Zhang

Abstract In many situations, functional observations in a class are also similar in
shape. A variety of functional dissimilarity measures have been widely used in many
pattern recognition applications. However, they do not take the shape similarity of
functional data into account. Cosine similarity is a measure that assesses how related
are two patterns by looking at the angle instead ofmagnitude. Thus, we generalize the
concept of cosine similarity between two random vectors to the functional setting.
Some of the main characteristics of the functional cosine similarity are shown. Based
on it, we define a new semi-distance for functional data, namely, functional cosine
distance. Combining it with the centroid and k-nearest neighbors (kNN) classifiers,
we propose two cosine similarity-based classifiers. Some theoretical properties of
the cosine similarity-based centroid classifier are also studied. The performance of
the cosine similarity-based classifiers is compared with some existing centroid and
kNN classifiers based on other dissimilarity measures. It turns out that the proposed
classifiers for functional data perform well in our simulation study and a real-life
data example.

18.1 Introduction

Functional data consists of functions. In recent decades, it is prevalent in many fields
such as economics, biology, finance, and meteorology (for an overview, see [14]).
The goals of the functional data analysis (FDA) are essentially the same as those of
any other branch of statistics [13]. References [5, 13] provided broad overviews of
the techniques of FDA. In this paper, we are interested in supervised classification
for functional data.
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Supervised classification is one of the oldest statistical problems in experimental
science. We have a training sample and a test sample whose class memberships are
known. The aim of classification is to create a method for assigning a new com-
ing observation to one of the predefined classes based on the training sample. Its
classification accuracy can be assessed via the misclassification error rate (MER)
of the test sample. Many supervised classification methods for functional data have
been developed in recent years. A number of studies have extended the traditional
classification methods for multivariate data to the context of functional data. For
instance, [1] proposed to filter the training samples of functional observations using
the Fourier basis so that the classical kNN classifier can be applied to the result-
ing Fourier coefficients. [15] extended the methodology based on support vector
machine for functional data. In addition, a centroid method for classifying func-
tional observations has been adopted by [3]. They used the project of each functional
observation onto a given direction instead of the functional observation itself so that
a functional data classification problem becomes a one-dimensional classification
problem. Further, [11] extended linear discriminant analysis to functional data. Ref-
erences [8–10, 17] proposed classifiers based on functional principal components
while [4] developed functional classifiers based on shape descriptors.

The concepts of similarity and distance are fundamentally important in almost
every scientific field. Similarity and distance measures are also an essential require-
ment in almost all pattern recognition applications including classification, cluster-
ing, outlier detection, regression and so on. There exist a large number of similarity
measures in the literature and the performance of any pattern recognition technique
largely depends on the choice of the similarity measures. In the recent literature on
functional data, some authors have proposed semi-distances well adapted for sample
functions such as the semi-distances based on functional principal components [5]
and the functional Mahalanobis semi-distance [7]. However, most of the similarity
measures are used in multivariate data and have not been extended to the functional
framework. Our first contribution is to extend the cosine similarity to functional
settings and define a new semi-distance for functional data.

The cosine similarity measure can be defined between two functional observa-
tions. If these two functional observations are similar in shape, this functional cosine
similarity measure will be close to 1; if they are not similar or even opposite in shape,
the associated cosine similarity measure will be small or even be negative. There-
fore, it can be used to classify functional data. Our second contribution is that by
combining the new functional semi-distance with the centroid and kNN classifiers,
we propose the cosine similarity-based classifiers for functional data.

The rest of this work is organized as follows. We review a number of dissimilar-
ity measures for functional data in Sect. 18.2. Section18.3 introduces the concept of
functional cosine similarity (FCS) and shows its main characteristics. Based on FCS,
we define functional cosine distance (FCD). Section18.4 develops the FCD-based
centroid and kNN classifiers for functional data. In particular, the asymptotic MER
of the FCD-based centroid classifier for functional data is derived. A simulation
study for comparing the proposed cosine similarity-based centroid and kNN classi-
fiers against other existing centroid and kNN classifiers is presented in Sect. 18.5.
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Applications of the proposed cosine similarity-based centroid and kNN classifiers to
a real-life data example is given in Sect. 18.6. Some concluding remarks are given in
Sect. 18.7. The proofs of the main theoretical results are given in the Appendix.

18.2 Functional Dissimilarity Measures

In this section,we review some dissimilaritymeasures for functional data. In practice,
functional data are obtained via observing some measure over time, and we assume
the sample of functional observations was generated from a stochastic process.

Let T be some compact set. Let x(t), t ∈ T be a stochastic process having
mean function η(t), t ∈ T and covariance function γ(s, t), s, t ∈ T . We write
x(t) ∼ SP(η, γ) for simplicity. Throughout this work, let T be a finite inter-
val, and we use ‖x‖p to denote the L p-norm of a function x(t), t ∈ T : ‖x‖p =
(∫

T |x(t)|pdt)1/p , for p = 1, 2, . . .. When p = 2, we may use ‖ · ‖ to denote the
L2-norm for simplicity. If ‖x‖p < ∞, we say x(t), t ∈ T is L p-integrable. In this
case, we write x ∈ L p(T ) where L p(T ) denotes the Hilbert space formed by
all the L p integrable functions over T . In particular, L 2(T ) denotes the Hilbert
space formed by all the squared integrable functions overT , which is an inner prod-
uct space. The associated inner-product for any two functions in L 2(T ) is defined
as< x, y >= ∫

T x(t)y(t)dt, x(t), y(t) ∈ L 2(T ). The above L p-norm and inner-
product definitions can be used to define various dissimilarity measures. Let x(t) and
y(t) be two functional observations defined over T , which are L p integrable. The
L p-distance between x(t) and y(t) is then defined as:

dp(x, y) = ‖x − y‖p,

for p = 1, 2, . . .. We often use L1, L2, and L∞-distances. It is well known that
d∞(x, y) = ‖x − y‖∞ = sup

t∈T
|x(t) − y(t)|.

The L p-distances can be implemented easily in supervised classification but they
do not take the correlation of a functional observation into account. To partially
address this issue, [7] proposed the so-called functional Mahalanobis semi-distance
so that the correlation structure of functional observations can be taken into account
partially. The functional Mahalanobis semi-distance is defined using a number of
the largest eigenvalues and the associated eigenfunctions. Note that when the covari-
ance function γ(s, t) has a finite trace, i.e., tr(γ) = ∫

T γ(t, t)dt < ∞, it has the
following singular value decomposition ([18], p. 3): γ(s, t) = ∑∞

r=1 λrφr (s)φr (t),
where λr , r = 1, 2, . . . are the decreasing-ordered eigenvalues of γ(s, t), and φr (t),
r = 1, 2, . . . are the associated orthonormal eigenfunctions.

Let y(t) ∼ SP(η, γ). By assuming γ(s, t) has a finite trace, we have the follow-
ing Karhunen-Loéve expansion: y(t) = ∑∞

r=1 ξrφr (t), where ξr =< y,φr >, r =
1, 2, . . . denote the associated principal component scores of y(t). Let x(t) be another
functional observation whose covariance function is also γ(s, t). Then we can also
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expand x(t) in terms of the eigenfunctions of γ(s, t) as x(t) = ∑∞
r=1 ζrφr (t), where

ζr =< x,φr >, r = 1, 2, . . . denote the associated principal component scores of
x(t). Then, the functional Mahalanobis (FM) semi-distance between x(t) and y(t)
is given by

dFM,q(x, y) =
(

q∑

r=1

λ−1
r (ζr − ξr )

2

)1/2

.

Based on the principal component scores of x(t) and y(t), [5] defined the so-called
functional principal components (FPC) based semi-distance which can be used as a
dissimilarity measurement:

dFPC,q(x, y) =
(

q∑

r=1

(ζr − ξr )
2

)1/2

.

Based on these dissimilarity measures, a number of classifiers are adopted for
functional data. However, all these dissimilarity measures do not take the shape
similarity of the functional data into account. Note that in many situations, functional
observations in one class are also similar in shape. To take this information into
account, in the next section, we introduce the cosine similaritymeasure for functional
data.

18.3 Functional Cosine Similarity

The main goal of this section is to generalize the cosine similarity measure between
two random vectors to the functional settings. The cosine similaritymeasure between
two n-dimensional vectors x and y is defined as: CS(x, y) = <x,y>

‖x‖‖y‖ , where ‖ · ‖ and
< ·, · > denote the usual Euclidean norm and the usual inner product in Rn . It is
seen that the cosine similarity measure is the ratio of the inner product between the
two vectors to the product of their Euclidean norms. The main characteristic of the
cosine similarity measure is that it measures the closeness or similarity between two
vectors using the cosine value of the angle between the two vectors, which takes
value between [−1, 1]. It is thus a judgment of orientation and not magnitude. If two
vectors have the same orientation, they have a cosine similarity measure of 1; if two
vectors are orthogonal, they have a cosine similaritymeasure of 0; if two vectors have
exactly opposite orientations, they have a cosine similarity measure of −1. When
two vectors are similar, this similarity measure will take larger values.

We now extend the above cosine similarity measure to for functional data. Let
x(t), t ∈ T and y(t), t ∈ T be any two functions in L 2(T ). Then the functional
cosine similarity (FCS) measure between x(t) and y(t) can be defined as follows:

FCS(x, y) = < x, y >

‖x‖‖y‖ ,
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where ‖ · ‖ and < ·, · > denote the usual L2-norm and the usual inner product
in L 2(T ) as defined before. It is seen that FCS(x, y) measures the similarity
or closeness between x(t) and y(t) using the cosine value of the angle between
the two functions x(t) and y(t) which was proposed by [13]. It has the follow-
ing properties: (1)−1 ≤ FCS(x, y) ≤ 1, normalization; (2) FCS(x, y) = FCS(y, x),
symmetry or commutativity; (3) x(t) = y(t) ⇒ FCS(x, y) = 1, reflexivity; and (4)
FCS(x, y) =< x̃, ỹ >= 1 − ‖x̃ − ỹ‖2/2 where x̃(t) = x(t)/‖x‖ denotes the nor-
malization version of x(t) and ỹ(t) is similarly defined.

Item (1) says that FCS(x, y) ranges from −1 (when x(t) is exactly oppo-
site to y(t)) to 1 (when x(t) and y(t) are proportional, that is, when x(t) =
ay(t)) and takes value 0 when x(t) and y(t) are orthogonal. It is due to the fact
that −‖x‖‖y‖ ≤< x, y >≤ ‖x‖‖y‖ by the well-known Cauchy-Schwarz inequal-
ity between two squared-integrable functions. Items (2) and (3) are obviously held.
Item (4) can be shown via some simple algebra. It says that the cosine similarity
measure between x(t) and y(t) is exactly 1 minus half of the squared L2-norm of
the difference between their normalization versions x̃(t) and ỹ(t). Note that x̃(t) is
also called the spatial sign function of x(t) [16], which can be interpreted as the
direction of x(t). Thus, the functional cosine similarity measure FCS(x, y) also can
be interpreted as the similarity measure between the directions of x(t) and y(t). If
x̃(t) = ỹ(t), that is, x(t) and y(t) have the same direction, the associated FCS(x, y)
takes value 1.

Note that FCS is not a distance or semi-distance since it is not nonnegative and its
value is not 0 when the two functions x(t) and y(t) are exactly the same. However,
this can be easily corrected. For this purpose, we define the following functional
cosine distance (FCD) between two functions x(t), t ∈ T and y(t), t ∈ T :

FCD(x, y) = [2 − 2FCS(x, y)]1/2 =
(
2 − 2

< x, y >

‖x‖‖y‖
)1/2

= ‖x̃ − ỹ‖. (18.1)

It is obvious that FCD(x, y) = 0 if x(t) and y(t) are exactly the same. Further,
we have (1) 0 ≤ FCD(x, y) ≤ 2; (2) FCD(x, y) = FCD(y, x), symmetry; and (3)
FCD(x, y) ≤ FCD(x, z) + FCD(y, z) for any three functions x(t), t ∈ T , y(t), t ∈
T and z(t), t ∈ T , triangle inequality.

Using the properties of FCS(x, y), it is easy to verify the first two properties of
FCD(x, y) above. Item (3) can be shown by the well-known Minkowski inequality.
Consequently, FCD is a functional semi-distance since FCD(x, y) = 0 cannot imply
x(t) = y(t), t ∈ T . Nevertheless, we can define some classifiers based on FCD for
functional data.
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18.4 Cosine Similarity-Based Classifiers for Functional
Data

Let G ≥ 2 be an integer. Suppose we have G training functional samples

xi1(t), xi2(t), . . . , xini (t)
i.i.d.∼ SP(ηi , γi ), i = 1, . . . ,G, (18.2)

where ηi (t)’s are the unknown group mean functions and γi (s, t)’s are the unknown
group covariance functions. Note that throughout this work, we assume that the
functional observations of the same group are i.i.d. and functional observations of
different groups are also independent. For a new coming functional observation x(t),
our aim is to determine the class membership of x(t) based on the above G training
samples.

In this section, our aim is to propose new nonparametric classifiers via combining
the centroid and kNN classifiers with FCD. The resulting classifiers are called the
FCD-based centroid and kNN classifiers, respectively.

18.4.1 FCD-Based Centroid Classifier

There aremanydifferent approacheswhich can design a nonparametric classifier. The
first one, also the simplest one, is based on the concept of similarity. Observations
that are similar should be assigned to the same class. Thus, once the similarity
measure is established, the new coming observation can be classified accordingly.
The choice of the similarity measure is crucial to the success of this approach. The
first representative of this approach is the nearest mean classifier, also called nearest
centroid classifier. Each class is represented by its mean of all the training patterns
in that class. A new observation will be assigned to the class whose mean is closest
to the new observation.

For functional data, the class center is the group mean function which can be
estimated using its usual group sample mean function. For the G training functional
samples (18.2), theG class centers can be estimated as x̄i (t) = n−1

i

∑ni
j=1 xi j (t), i =

1, . . . ,G. Then the FCDs between the new coming functional observation x(t) and
the above class centers x̄i (t), i = 1, . . . ,G can be expressed as FCD(x, x̄i ), i =
1, . . . ,G. The FCD-based centroid classifier for functional data then puts x(t) into
Class g where

g = argmin1≤i≤GFCD
2(x, x̄i ). (18.3)
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18.4.2 FCD-Based kNN Classifier

The classical kNN classifier was first proposed by [6]. Due to its simplicity and effi-
ciency, it is widely used to perform supervised classification in multivariate settings.
The classical kNN classifier consists of the following steps: given a training sample
with known class labels, classify a new observation into a class by examining its k
nearest neighbors and applying the majority vote rule.

For the G training functional samples (18.2), the FCDs between the coming func-
tional observation x(t) and all the training functional observations canbe computed as
FCD(x, xi j ), j = 1, . . . , ni ; i = 1, . . . ,G.Let k be somegiven integer. The xi j (t)’s
associated with the k smallest values of the above FCDs are the k nearest neighbors
of x(t) from the whole training functional sample. Let mi denote the number of the
nearest neighbors from Class i where i = 1, . . . ,G. Then

∑G
i=1 mi = k. Note that

some of mi ’s are equal to each other and some are equal to 0. The FCD-based kNN
classifier for functional data then puts x(t) into Class g where g = argmax1≤i≤Gmi .

18.4.3 Theoretical Properties of the FCD-Based Centroid
Classifier

In this subsection, we study the theoretical properties of the FCD-based centroid
classifier. That is, we shall derive its asymptotic misclassification error rate (MER)
and show some of its good properties. Recall that x(t) denotes the new coming
functional observation. As mentioned in the previous subsection, for the G training
functional samples (18.2), the FCD-based centroid classifier will put x(t) to Class
g determined by (18.3). For each class g = 1, . . . ,G, we have a classification vec-
tor function Tg(x) based on the G-class FCD-based centroid classifier which can
be expressed as Tg(x) = [Tg,1(x), . . . , Tg,g−1(x), Tg,g+1(x), . . . , Tg,G(x)]T , where
Tg,i (x) = FCD2(x, x̄i ) − FCD2(x, x̄g) for i = 1, . . . g − 1, g + 1, . . . ,G. Then the
G-class FCD-based centroid classifier for functional data assigns x(t) to class g if
Tg(x) > 0, where 0 denotes the zero vector.

Let πi denote the probability that x(t) from Class i for i = 1, . . . ,G. Assum-
ing that tr(γi ) < ∞, i = 1, 2, . . . ,G, we can show that as ni , i = 1, 2, . . . ,G tend
to infinity with ni/n → τi > 0 where n = n1 + n2 + · · · + nG , we have x̄i (t) →
ηi (t), i = 1, 2, . . . ,G uniformly over the compact set T so that the classification
vector functions Tg(x), g = 1, . . . ,G will tend to

T∗
g(x) = [T ∗

g,1(x), . . . , T
∗
g,g−1(x), T

∗
g,g+1(x), . . . , T

∗
g,G(x)]T , (18.4)

where T ∗
g,i (x) = FCD2(x, ηi ) − FCD2(x, ηg) for i = 1, . . . , g − 1, g + 1, . . . ,G.

For further discussion, let Ci denote Class i for i = 1, . . . ,G. The prior prob-
abilities of Class i can then be expressed as πi = Pr(x ∈ Ci ). For a G-class clas-
sification problem, a mistake is made when x ∈ Cg , by using the classifier, we
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assign it to Class i , i �= g. Therefore, the MER of the G-class FCD-based centroid

classifier can then be expressed asMER = ∑G
g=1 πg

(
1 − Pr{Tg(x) > 0|x ∈ Cg}

)
=

1 − ∑G
g=1 πg Pr{Tg(x) > 0|x ∈ Cg}. The asymptotic MER of the FCD-based cen-

troid classifier is presented in Theorem 18.1.

Theorem 18.1 Assume the G training functional samples (18.2) are independent
with tr(γi ) < ∞, i = 1, . . . ,G. In addition, as n → ∞, we have ni/n → τi > 0.
Then as n → ∞, we have the following asymptotic MER of the FCD-based centroid
classifier:

MER → MER∗ = 1 −
G∑

g=1

πg FRg (Σ
−1/2
g μg), (18.5)

where for g = 1, . . . ,G, μg = [μg,1, . . . ,μg,g−1,μg,g+1, . . . ,μg,G]T , and
Σ g = (σ2

gi ,gl ) : (G − 1) × (G − 1), with μg,i = ‖ηg‖FCD2(ηi , ηg), i = 1, . . . ,
g − 1, g + 1, . . . ,G, and σ2

gi ,gl = 4
∫
T

∫
T [η̃i (s) − η̃g(s)]γg(s, t)[η̃l(t) − η̃g(t)]

dsdt, i, l ∈ {1, . . . , g − 1, g + 1, . . . ,G}. In addition, FRg (·), g = 1, . . . ,G
denotes the cumulative distribution functions of some random variable Rg which
has zero mean vector 0 and identity covariance matrix I.

Remark 18.2 The expression (18.5) indicates that the asymptotic MER may not
tend to 0 even when the group sample sizes tend to infinity. Note that whenMER is 0,
there is a perfect classification. However, whether we can have a perfect classification
is determined by the data information. If the data are not separable, we cannot have
a perfect classification even when the sizes of training samples diverge.

When G = 2, the G-class FCD-based centroid classifier reduces to a two-class
one. In this case, the results in Theorem 18.1 can be simplified. In addition, we can
give an upper error bound of the associated MER. We now denote π1 = π and π2 =
1 − π. The classification function of the two-class FCD-based centroid classifier can
then be simply expressed as

T (x) = FCD2(x, x̄2) − FCD2(x, x̄1). (18.6)

As ni , i = 1, 2 tend to infinity with n1/n → τ > 0, T (x) will tend to

T ∗(x) = FCD2(x, η2) − FCD2(x, η1). (18.7)

Therefore, the MER of the two-class FCD-based centroid classifier T (x) can then be
expressed as MER = π Pr{T (x) ≤ 0|x ∈ C1} + (1 − π)Pr{T (x) > 0|x ∈ C2}. By
Theorem 18.1, we present the asymptotic MER of the two-class FCD-based centroid
classifier and its upper bound in Theorem 18.3 below.

Theorem 18.3 Assume the (G = 2) training functional samples (18.2) are inde-
pendent with tr(γi ) < ∞, i = 1, 2. In addition, as n → ∞, we have n1/n → τ > 0.
Then as n → ∞, when we use the FCD-based centroid classifier, we have
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MER → MER∗ = πFR1(−μ1/σ1) + (1 − π)[1 − FR2(μ2/σ2)], (18.8)

where μi = ‖ηi‖FCD2(η1, η2), and σ2
i = 4

∫
T

∫
T [η̃1(s) − η̃2(s)]γi (s, t)[η̃1(t) −

η̃2(t)]dsdt, i = 1, 2. FRi (·) is the cumulative distribution function of some random
variable Ri which has mean 0 and variance 1. Further, the upper bound of the
asymptotical MER (18.8) is given by the following expression

MER∗ ≤ πFR1

(

−‖η1‖FCD(η1, η2)

2
√

λ1,max

)

+ (1 − π)

[

1 − FR2

(
‖η2‖FCD(η1, η2)

2
√

λ2,max

)]

,

(18.9)
where λi,max denote the largest eigenvalue of γi (s, t) for i = 1, 2. In particular, when
the functional data are Gaussian, FR1(·) and FR2(·) should also be replaced with
Φ(·), the cumulative distribution function of the standard normal distribution.

Remark 18.4 The asymptotic MER (18.8) will become smaller if the group mean
functions η1(t) and η2(t) become less similar from each other, that is, FCD(η1, η2)
becomes larger. This is reasonable. If the group mean functions are not similar, it is
easy to classify the new coming observation correctly. In addition, the upper bound
of the asymptotic MER (18.9) indicates the smaller the value of λi,max, i = 1, 2 are,
the smaller the value ofMER∗. This is also reasonable since when λi,max, i = 1, 2 are
small, the data are less noisy. Thus, it is easier to classify the new coming functional
observation x(t) correctly.

Remark 18.5 If the data are Gaussian, the expression (18.9) indicates that for Gaus-
sian functional data, we always haveMER∗ < 1/2 as long as FCD(η1, η2) > 0. That
is, the worse case of this two-class FCD-based centroid classifier is better than of the
random guessing.

18.5 A Simulation Study

To demonstrate the good performance of the proposed cosine similarity-based clas-
sifiers for functional data, we conduct a simulation study in this section. The results
of the simulation study allow us to compare the proposed FCD-based centroid and
kNN classifiers against some existing centroid and kNN classifiers based on other
dissimilarity measures. The centroid and kNN classifiers are defined similarly to
the FCD-based centroid and kNN classifiers for functional data as in Sects. 18.4.1
and 18.4.2 except replacing the FCDwith one of the dissimilarity measures reviewed
in Sect. 18.2. These dissimilaritymeasures include the L p-distances for p = 1, 2, and
∞, the functional Mahalanobis (FM) semi-distance assuming a common covariance
function, and the functional principal components (FPC) semi-distance assuming a
common covariance function, as defined in Sect. 18.2. The resulting centroid or kNN
classifiers are labeled with L1, L2, L∞, FPC, and FM respectively.
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We consider generating functional data for a two-class classification problem
under four different scenarios. In the first scenario, two functional samples are gen-
erated from two Gaussian processes defined over I = [0, 1], with different group
mean functions η1(t) = 25t1.1(1 − t) and η2(t) = 25t (1 − t)1.1 but their covariance
functions γ1(s, t) and γ2(s, t) are the same, denoted as γ(s, t) whose eigenfunctions
are given by φr (t) = √

2 sin(rπt), r = 1, 2, . . . and the associated eigenvalues are
given by λr = 1/(rπ)2, for r = 1, 2, . . .. The generated functions are evaluated at
1000 equidistant time points over I = [0, 1]. In the second scenario, the functions
are generated in a similar way except that the two covariance functions γ1(s, t) and
γ2(s, t) are not the same although their eigenfunctions are the same as those defined in
thefirst scenario but their eigenvalues are given byλ1r = 1/(rπ)2 andλ2r = 2/(rπ)2,
for r = 1, 2, . . . respectively. In the third and fourth scenarios, the functions are gen-
erated in a similar way as in the first and second scenarios respectively except the
two Gaussian processes are replaced with two standardized exponential processes
with rate 1 with the same group mean functions and the group covariance functions.

Under each scenario, two functional samples of equal sizes 100 are generated.
The training sample is formed via selecting 50 functions from each sample so that
the whole training sample consists of 100 functional observations. The remaining
functional observations from the two functional samples form the test sample. The
training sample is used to determine the tuning parameters. In particular, we use
the 10-fold cross-validation approach. For a kNN classifier, the possible number of
nearest neighbors k ranges from 1 to 25. In order to avoid ties, we also set k to be odd
numbers only. Similarly, the number of principal components q used in the centroid
or kNN classifiers ranges from 1 to q0 where q0 may be chosen such that the sum
of the first q0 eigenvalues of the pooled sample covariance function γ̂(s, t) is about
95% of the total variation given by tr(γ̂). Note that the accuracy of a centroid or
kNN classifier is measured by its MER which is estimated using the test sample. We
repeat the process 1000 times so that we have 1000 MERs. The boxplots of the 1000
MERs of the test samples under the four scenarios are shown in Fig. 18.1.

In view of this figure, it is seen that under the fourth scenario, FCD-based centroid
classifier outperforms other centroid classifiers and the FCD-based kNN classifier
outperforms other kNN classifiers as well. In the third scenario, the best performance
is attended by the proposed FCD-based centroid classifier. Therefore, Gaussianity is
not necessarily an advantage for the FCD-based classifiers and they perform well for
non-Gaussian data. In practice, it is usually very difficult to check the Gaussianity,
hence our proposed classifiersmayworkwell in real problems. In addition, in the first
and second scenarios, our FCD-based classifiers perform the second best and FM-
based classifiers performbest.However, the FMsemi-distance is a rather complicated
dissimilarity measure and consumes time in programing and computing.
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Fig. 18.1 MERs achieved by various centroid and kNN classifiers under all four scenarios

18.6 Application to Australian Rainfall Data

The Australian rainfall data set is available at https://rda.ucar.edu/datasets/ds482.1/.
It has been analyzed by [2, 12] respectively to illustrate their classification method-
ologies. The data set consists of daily rainfall measurements between January 1840
and December 1990, at each of 191 Australian weather stations. The daily rainfall
measurements of a station form a rainfall curve. We then have N = 191 rainfall
curves. Among the 191 weather stations, N1 = 43 of them are located at the north-
ern Australia and the remaining ones are located at the southern Australia. For each
station, for simplicity, we just consider the rainfall over a year, i.e., over t ∈ [1, 365].
As in [2], a rainfall curve for a station is obtained via taking the average of the rainfall
at each time point t ∈ [1, 365] over the years which the station had been operating.
The resulting raw rainfall curves are then smoothed using a B-spline basis of order
6. The order of B-spline basis is chosen by leave-one-out cross-validation so that the
raw rainfall curves can be well represented by the smoothed rainfall curves as shown
in Fig. 18.2. From this figure, we can see that some of the weather stations, although
geographically located in the north, have a rainfall pattern that is typical of the south.
Thus, it is not so easy to distinguish the northern rainfall curves from the southern
rainfall curves.

To apply the centroid and kNN classifiers for the Australian rainfall data, we
randomly split the 191 rainfall curves into a training sample of size n and a test
sample of size 191 − n and we take n = 50. The number of nearest neighbors is
bounded by the smaller sample size of the two classes and the maximum number
of eigenfunctions is limited to 20. This process is repeated 1000 times so that we
have 1000 MERs for each classifier. Figure18.3 presents the boxplots of the 1000
MERs of the various centroid and kNN classifiers. It is seen that the FCD-based

https://rda.ucar.edu/datasets/ds482.1/
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Fig. 18.2 Smoothed Australian rainfall curves for the northern weather stations (left panel) and
the southern weather stations (right panel)
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Fig. 18.3 MERs achieved by various centroid and kNN classifiers for the Australian rainfall data

kNN classifier performs best and it obtained mean MER of 0.079. Moreover, the
FCD-based centroid classifier outperforms other centroid classifiers which obtained
mean MER of 0.106. It is also seen that the kNN classifiers are generally better
than the centroid classifiers with the same dissimilarity measures. Using a similar
experiment, [3] obtained mean MERs of 0.103 by the centroid classifier which was
proposed by [3].
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18.7 Concluding Remarks

In this work, we extend the cosine similarity measure for functional data. Based on
the FCS, we introduce a new semi-distance for functional data named FCD. This
functional semi-distance is simple and can be implemented easily in supervised
classification. By combining with the centroid and kNN classifiers, we propose a
FCD-based centroid classifier and a FCD-based kNN classifier for functional data.
We also study the theoretical properties of the FCD-based centroid classifier. It turns
out the cosine similarity-based classifiers for functional data perform well in our
simulation study and a real-life data example. As mentioned previously, the range of
applications for the new similarity measure or the new functional semi-distance is
wide and includes clustering, hypothesis testing, and outlier detection, among others.
However, since the proposed FCD does not take the magnitude of the functional data
into account, it is expected that the proposed FCD-based classifiers will not perform
well for classifying functional data which are different only in their magnitudes. It
is then interesting and warranted to study how both the magnitude and shape of the
data can be taken into account in FCD-based classifiers so that their performance
can be further improved.

18.8 Appendix

Proof (Proof of Theorem 18.1). Under the given conditions, since tr(γi ) < ∞, i =
1, 2, . . . ,G, as n → ∞ with ni/n → τi > 0, we have

MER → MER∗ = 1 −
G∑

g=1

πg Pr{T∗
g(x) > 0|x ∈ Cg}, (18.10)

where T∗
g(x) is given in (18.4). Set S∗

g(x) = ‖x‖T∗
g(x), then we have

S∗
g(x) = [S∗

g,1(x), . . . , S
∗
g,g−1(x), S

∗
g,g+1, . . . , S

∗
g,G(x)]T ,

where S∗
g,i (x) = 2 < x, η̃g − η̃i >, i = 1, . . . , g − 1, g + 1, . . . ,G. Since ‖x‖ >

0, we have

MER∗ = 1 −
G∑

g=1

πg Pr{S∗
g(x) > 0|x ∈ Cg}. (18.11)

When x ∈ Cg , for i = 1, . . . , g − 1, g + 1, . . . ,G, we have

μg,i = E
{
S∗
g,i (x)|x ∈ Cg

} = 2 < ηg, η̃g − η̃i >= ‖ηg‖FCD2(ηi , ηg),

and for any i, l ∈ {1, . . . , g − 1, g + 1, . . . ,G},



290 T. Zhu and J.-T. Zhang

σ2
gi ,gl = Cov{S∗

g,i (x), S
∗
g,l(x)|x ∈ Cg}

= 4
∫

T

∫

T
[η̃i (s) − η̃g(s)]γg(s, t)[η̃l(t) − η̃g(t)]dsdt.

Therefore, we have

μg = E{S∗
g(x)|x ∈ Cg} = [μg,1, . . . ,μg,g−1,μg,g+1, . . . ,μg,G]T ,

Σ g = Cov{S∗
g(x)|x ∈ Cg} = (σ2

gi ,gl ) : (G − 1) × (G − 1).

We can then write Pr{S∗
g(x) > 0|x ∈ Cg} = Pr{Rg < Σ−1/2

g μg|x ∈ Cg}, where

Rg = Σ−1/2
g (−S∗

g(x) + μg),

which is a random variable with mean vector 0 and covariance matrix I. Therefore,

MER∗ = 1 −
G∑

g=1

πg FRg (Σ
−1/2
g μg), (18.12)

as desired where FRg (·), g = 1, . . . ,G denote the cumulative distribution functions
of Rg, g = 1, . . . ,G. �

Proof (Proof of Theorem 18.3) Under Theorem 18.1, whenG = 2, the classification
function of the two-class FCD-based centroid classifier can be simply expressed as
(18.6). As ni , i = 1, 2 tend to infinity with n1/n → τ > 0, T (x) will tend to (18.7).
Thus, the corresponding S∗(x) = 2 < x, η̃1 − η̃2 > is a one-dimensional random
variable.

When x ∈ C1, we have

μ1 = E
{
S∗(x)|x ∈ C1

} = 2 < η1, η̃1 − η̃2 >= ‖η1‖FCD2(η1, η2),

σ2
1 = Var

{
S∗(x)|x ∈ C1

} = 4
∫

T

∫

T
[η̃1(s) − η̃2(s)]γ1(s, t)[η̃1(t) − η̃2(t)]dsdt.

We can then write Pr{S∗(x) ≤ 0|x ∈ C1} = Pr(R1 ≤ −μ1/σ1) where

R1 = (S∗(x) − μ1)/σ1,

which is a random variable with mean 0 and variance 1. Similarly, we can show that
Pr{S∗(x) > 0|x ∈ C2} = Pr(R2 > μ2/σ2) where

R2 = (S∗(x) + μ2)/σ2,

which is a random variable with mean 0 and variance 1, and
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μ2 = −E
{
S∗(x)|x ∈ C2

}

= −2 < η2, η̃1 − η̃2 >= ‖η2‖FCD2(η1, η2),

σ2
2 = Var

{
S∗(x)|x ∈ C2

}

= 4
∫

T

∫

T
[η̃1(s) − η̃2(s)]γ2(s, t)[η̃1(t) − η̃2(t)]dsdt.

Therefore

MER∗ = π Pr{S∗(x) ≤ 0|x ∈ C1} + (1 − π)Pr{S∗(x) > 0|x ∈ C2}
= π Pr(R1 ≤ −μ1/σ1) + (1 − π)Pr(R2 > μ2/σ2)

= πFR1(−μ1/σ1) + (1 − π)
[
1 − FR2(μ2/σ2)

]
, (18.13)

as desired where FRi (·), i = 1, 2 denote the cumulative distribution functions of
Ri , i = 1, 2.

Let λi,max denote the largest eigenvalue of γi (s, t) for i = 1, 2. Then we have

σ2
i = 4

∫

T

∫

T
[η̃1(s) − η̃2(s)]γi (s, t)[η̃1(t) − η̃2(t)]dsdt

≤ 4λi,max‖η̃1 − η̃2‖2 = 4λi,maxFCD
2(η1, η2), i = 1, 2.

It follows that

μi/σi ≥ ‖ηi‖FCD2(η1, η2)√
4λi,maxFCD2(η1, η2)

= ‖ηi‖FCD(η1, η2)

2
√

λi,max
, i = 1, 2.

Therefore, by (18.13), we have

MER∗ ≤ πFR1

(

−‖η1‖FCD(η1, η2)

2
√

λi,max

)

+ (1 − π)

[

1 − FR2

(
‖η2‖FCD(η1, η2)

2
√

λi,max

)]

. (18.14)

When the functional data are Gaussian, we have Ri ∼ N (0, 1), i = 1, 2. Therefore,
we should replace FRi (·), i = 1, 2 in the expressions (18.13) and (18.14) with Φ(·),
the cumulative distribution of the standard normal distribution. �
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