
Chapter 17
Bayesian Mixture Models with
Weight-Dependent Component Priors

Elaheh Oftadeh and Jian Zhang

Abstract In the conventionalBayesianmixturemodels, independent priors are often
assigned to weights and component parameters. This may cause bias in estimation of
missing group memberships due to the domination of these priors for some compo-
nents when there is a big variation across component weights. To tackle this issue, we
propose weight-dependent priors for component parameters. To implement the pro-
posal, we develop a simple coordinate-wise updating algorithm for finding empirical
Bayesian estimator of allocation or labelling vector of observations. We conduct a
simulation study to show that the newmethod can outperform the existing approaches
in terms of adjusted Rand index. The proposed method is further demonstrated by a
real data analysis.

17.1 Introduction

Finite mixture models are a popular tool for modelling unobserved heterogeneity in
many applications including biology, medicine, economics and engineering among
many others (e.g., [3, 4]). Suppose that we sample y = (y1, · · · , yN ) from a popu-
lation with K groups, described by mixture distribution

p(yi |θ, η) =
K∑

k=1

ηk p(yi |θ k),

with unknown component parameters θ = (θ1, · · · , θK ) and unknown weights η =
(η1, ..., ηK ). Given the dataset y = (y1, · · · , yN ), we want to infer parameters (θ, η)
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aswell as unobserved component origins of these observations, labelled by allocation
(or labelling) vector S = (s1, ..., sN ). In Bayesian inference, we often adopt the
following hierarchical setting:

p(y|θ , η, S) =
K∏

k=1

∏

Si=k

p(yi |θ k), p(S|η) =
K∏

k=1

η
∑N

i=1 I (Si=k)
k ,

p(η) = Γ (Ke0)

Γ (e0)K

K∏

k=1

η
e0−1
k , e0 > 0, (θ , η)) ∼ p(θ)p(η),

where I (·) is an indicator function, p(y|θ , η, S)p(S|η) is the complete likelihood
and θ and η are of independent priors. The above setting is useful for fitting finite
mixture models to data, because they enable the uncertainty in the model parameters
to be directly quantified by the posterior distribution. However, it is difficult to make
an objective prior setting for the component parameters (such as the component
means and variances, in univariate Gaussian mixtures), when there is no subjective
information available on which a prior could be based. For example, when some
component weights are small, only a small proportion of observations are expected
to obtain from these components. In such a situation, the priors can easily dominate
the data for these components. Such a prior domination in the inference can cause
a bias. To reduce the bias, we need to set these priors compatible to the available
information from the data. Ideally, the priors are set to be close to non-informative.On
the other hand, standard non-informative priors such as the Jeffreys prior generally
cannot be used here, because placing independent improper priors on the component
parameters will cause the posterior to be improper as well [9]. This motivates us
to explore the advantage of the weight-dependent component priors. In this paper,
we propose a new weight-dependent prior specification for finite mixture models
in the form (θ , η) ∼ p(θ |η)p(η). We develop a coordinate-wise updating algorithm
for conducting Bayesian inference: First, given the data, derive a marginal posterior
distribution for allocation vector S and optimize it over the labelling space to obtain
an optimal allocation estimate Ŝ. Then, conditional on Ŝ, calculate the posterior
distribution of parameters (θ , η). We conduct a simulation study to show that the
new approach can outperform the existing methods in terms of adjusted Rand index.
The proposed method is further demonstrated by a real data analysis.

The remaining of the paper is organized as follows. The details of the proposed
methodology and algorithm are provided in Sect. 17.2. A comparison to the existing
methods are made through a simulation study in Sect. 17.3. A real data application
is presented in Sect. 17.4. The conclusion is made in Sect. 17.5.
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17.2 Methodology

In Bayesian inference, the main task is to calculate the posterior distribution of
unknown parameters by combining the prior information about the parameters of
interest with the data. Let ϑ = (θ , η). By augmenting the missing allocation vector
S into the finite mixture model and letting p(S|ϑ) = ∏K

k=1 η
Nk (S)
k with Nk(S) being

the size of group k, we can link the incomplete likelihood to the complete likelihood
as follows:

p(y|ϑ) =
∫

p(y|ϑ, S)p(S|ϑ)dS.

Denote the complete data by (y,S) and the complete-data likelihood by

p(y, S|ϑ) = p(y|S,ϑ)p(S|ϑ) =
N∏

i=1

p(yi |ϑ, Si )p(Si |ϑ).

Note that p(yi |Si = k,ϑ) = p(yi |θ k) and P(Si = k|ϑ) = ηk . Therefore, the
complete-data likelihood function can be rewritten as

p(y, S|ϑ) =
N∏

i=1

K∏

k=1

(p(yi |θk)ηk)I (Si=k) =
⎛

⎝
K∏

k=1

η
Nk (S)
k

⎞

⎠
K∏

k=1

⎛

⎝
∏

i :Si=k

p(yi |θk)
⎞

⎠ .

(17.1)
We assign a Dirichlet prior to the weights with the concentration parameter e0 in the
form

p(η) = Γ (Ke0)

Γ (e0)K

K∏

k=1

η
e0−1
k .

By integrating outη in p(S|η)p(η|e0),we obtain themarginal prior on S andposterior
of η as follows

p(S) = Γ (Ke0)

Γ (e0)K

∫ K∏

k=1

η
Nk (S)+e0−1
k dηk, p(η|S) = p(S|η)p(η)

p(S)
.

Once we have an estimate of S, using the above formulas we are able to calculate the
posterior of η. So, in the following, we focus on Bayesian clustering, i.e., Bayesian
estimation of allocation vector S.

One of the pioneering works in Bayesian clustering was done by [1], where the
problem was formulated in a Bayesian decision theoretic framework with a loss
function R(S, Ŝ). This loss function measures the difference between the estimate Ŝ
and the true grouping S. Here, we take an empirical Bayesian method by optimizing
the marginal posterior of allocation vector of S, p(S|y). In the simulation study,
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we evaluate the accuracy of the clustering by calculating the similarity between the
estimated and the true labelling by the so-called adjusted Rand index [5, 7]. We
consider two different sets of hierarchical priors and derive the corresponding pos-
teriors. In the Bayesian inference for Gaussian mixtures, it is common to choose the
component parameter priors to be independent of weights. We derive the posteriors
for Bayesian mixture models with independent priors in Sect. 17.2.1.1 and for the
models with dependent priors in Sect. 17.2.1.2 below. Although from now on we
focus on univariate normal mixtures, the method can be extended to other mixtures
such as multivariate normal or non-normal mixtures. For simplicity, we assume that
K is known. Otherwise, we can take a Poisson distribution as a prior for K .

17.2.1 Mixture of Univariate Normals

Suppose that yi ∼ N (μk, σ
2
k ), i = 1, · · · , N , with θ k = (μk, σ

2
k ), k = 1, 2, ..., K .

For the univariate normal mixtures, we first derive the posterior distribution for mean
μk and variance σ 2

k , k = 1, ..., K , given the complete data (y, S). We then work out
the formulas for calculating and optimizing p(S|y).

17.2.1.1 Weight-Independent Component Priors

We start with a review of the conventional hierarchical model with weight-
independent priors on (μk, σ

2
k ) in [2, 3]:

yi ∼ N (μk, σ
2
k ), μk ∼ N (μk0, σ

2
k0), σ 2

k ∼ IG(a0, b0),

where IG(a0, b0) is an inverse Gamma density with hyperparameters (a0, b0).
The posterior probability of μk given the complete data (S, y) and σ 2

k can be
written as

p(μk |y,S, σ 2
k ) ∝ p(y|μk, σ

2
k ,S)p(μk)

∝ exp

{
−1

2

(
Nk(S)

σ 2
k

+ 1

σ 2
k0

)(
μk −

∑
yi

σ 2
k

+ μk0

σ 2
k0

)2
}

.

Thus the posterior distribution of μk is the following normal distribution

p(μk |y, S, σ 2
k ) ∼ N (bk(S), Bk(S)), Bk(S)−1 = σ−2

k0 + σ−2
k Nk(S)

bk(S) = Bk(S)
(
σ−2
k Nk(S)ȳk(S) + σ−2

k0 μk0
)
,
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where the sample mean and variance in the kth group are denoted by

ȳk(S) = 1

Nk(S)

∑

i :Si=k

yi , S2y,k = 1

Nk(S)

∑

i :Si=k

(yi − ȳk(S))2.

Similarly, for σ 2
k we have

σ 2
k |y, S, μk ∼ G −1(ck(S),Ck(S)), ck(S) = a0 + 1

2
Nk(S),

Ck(S) = b0 + 1

2

∑

i :Si=k

(yi − μk)
2.

If we are able to calculate themaximummarginal posterior estimator of the alloca-
tion vector, Ŝ = argmaxS p(S|y), thenwe can directly calculate posterior distribution
of (θ, η). To derive the marginal posterior distribution of allocations, we integrate
out (θ , η) from the model, i.e., consider the following integration

p(S|y) =
∫∫

p(y|η,S, θ)p(S|η)p(η)p(θ)dθdη

= 2Ka0NK/2
0

(
1

π

)N/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K

K∏

k=1

√
1

Nk(S) + N0

×
∏K

k=1 Γ (Nk(S) + e0)

Γ (Ke0 + N )

K∏

k=1

B−(a0+ Nk (S)

2 )

K∏

k=1

Γ (a0 + Nk(S)

2
),

where

S2y,k = 1

Nk(S)

∑

i :Si=k

(yi − ȳk(S))2

B = Nk(S)S2y,k(S) + 2b0 + Nk(S)N0

Nk(S) + N0
(ȳ(S) − μk0)

2.

Taking logarithm, we have

log(p(S|y)) ∝
K∑

k=1

logΓ (Nk(S) + e0)
K∑

k=1

logΓ (a0 + Nk(S)

2
)

−
K∑

k=1

1

2
log(Nk(S) + N0) −

K∑

k=1

(a0 + Nk(S)/2) logB. (17.2)
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17.2.1.2 Weight-Dependent Component Priors

Although we consider the same normal mixture model as in the previous section,
we allow certain dependency of the hierarchical priors on component weights as
follows:

μk |σ 2
k , ηk ∼ N (μk0,

σ 2
k0

N0ηk
), σ 2

k ∼ IG(a0, b0), k = 1, ..., K . η ∼ D(e0, · · · , e0),

where D(e0, · · · , e0) is a Dirichlet density with concentration parameter e0. Since
N0 is the total number of prior units we assign to the model, N0ηk is the number
of prior units we assign to μk . Unlike the weight-independent priors, the prior of
μk is adaptive to ηk in the sense that the amount of priors will be varying in ηk , in
particular, it will be nearly non-informative when ηk tends to zero. The posterior of
μk given (S, y), σ 2

k and ηk can then be written as

p(μk |y, S, σ 2
k , ηk) ∝ p(y|μk, σ

2
k ,S)p(μk |ηk)

∝
K∏

k=1

(
1

σ 2
k

)−Nk (S)/2 exp

⎧
⎨

⎩− 1

2σ 2
k

∑

i :Si=k

(yi − μk)
2

⎫
⎬

⎭

× (
1

σ 2
k0

ηk)
1/2 exp

{
− 1

2σ 2
k0ηk

(μk − μk0)
2

}

∝ exp

{
−1

2

(
Nk(S)

σ 2
k

+ 1

σ 2
k0ηk

)(
μk −

∑
yi

σ 2
k

+ μk0

σ 2
k0ηk

)2
}

.

Thus the posterior distribution of μk is the following normal distribution

p(μk |y, S, σ 2
k , ηk) ∼ N (bk(S), Bk(S)),

Bk(S)−1 = σ−2
k0 η−1

k + σ−2
k Nk(S)

bk(S) = Bk(S)
(
σ−2
k Nk(S)ȳk(S) + η−1

k σ−2
k0 μk0

)
,

where the sample mean and variance in the kth group are denoted by

ȳk(S) = 1

Nk(S)

∑

i :Si=k

yi , s2y,k = 1

Nk(S)

∑

i :Si=k

(yi − ȳk(S))2.

Similarly, for σ 2
k we have
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σ 2
k |y, S, μk ∼ G −1(ck(S),Ck(S)),

ck(S) = a0 + 1

2
Nk(S),

Ck(S) = b0 + 1

2

∑

i :Si=k

(yi − μk)
2.

According to the above hierarchical prior setting, the joint distribution of the data
and the model parameters can be expressed as

p(y|S,ϑ)p(S|η)p(θ |η)p(η)

=
N∏

i=1

K∏

k=1

(
p(yi |μk, σ

2
k )ηk

)ISi=k

K∏

k=1

p(μk |σ 2
k , ηk)p(σ

2
k )p(ηk)

=
K∏

k=1

⎛

⎜⎝
∏

i :Si=k

1√
2πσ 2

exp

⎧
⎪⎨

⎪⎩
−

∑
i :Si=k

(yi − μk)
2

2σ 2
k

⎫
⎪⎬

⎪⎭

⎞

⎟⎠

⎛

⎝
K∏

k=1

η

N∑
i=1

ISi=k

k

⎞

⎠

×
K∏

k=1

(
N0ηk

2πσ 2
k

)1/2

exp

{
−N0ηk

2σ 2
k

(μk − μk0)
2

}

×
K∏

k=1

ba00
Γ (a0)

(σ 2
k )−a0−1 exp

{−b0/σ
2
k

} × Γ (
∑K

k=1 e0)∏K
k=1 Γ (e0)

K∏

k=1

η
e0−1
k .

Therefore,

p(y|S,ϑ)p(S|η)p(θ |η)p(η)

=
(

1

2π

)
K∑

k=1
Nk (S)

2
(
N0

2π

)K/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K

×
K∏

k=1

exp

⎧
⎪⎨

⎪⎩
−

∑
i :Si=k

(yi − μk)
2 + N0ηk(μk − μ0)

2 + 2b0

2σ 2
k

⎫
⎪⎬

⎪⎭

×
K∏

k=1

η
e0+Nk (S)−1/2
k

K∏

k=1

1

σ
2(a0+1)+Nk (S)+1
k

After doing some simple algebra we get
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p(y|S,ϑ)p(S|η)p(θ |η)p(η)

=
(

1

2π

)N/2 ( N0

2π

)K/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K

×
K∏

k=1

exp

⎧
⎪⎨

⎪⎩
−

(Nk(S) + N0ηk)
[
μk − Nk (S)ȳk (S)+N0ηkμk0

Nk (S)+N0ηk

]2

2σ 2
k

⎫
⎪⎬

⎪⎭

×
K∏

k=1

exp

{
−Nk(S)S2y,k(S) + 2b0 + Nk (S)N0ηk

Nk (S)+N0ηk
(ȳk(S) − μk0)

2

2σ 2
k

}

×
K∏

k=1

η
e0+Nk (S)−1/2
k

K∏

k=1

1

σ
2(a0+1)+Nk (S)+1
k

Now we are going to find the marginal posterior distribution of the allocation vector
p(S|y) by integrating out all parameters. We first integrate out μk from the above
expression and we get

K∏

k=1

∫
p(y,S|ϑ)p(S|η)p(θ)p(η)dμk

= NK/2
0

(
1

2π

)N/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K

K∏

k=1

√
1

Nk(S) + N0ηk

×
K∏

k=1

exp

{
−Nk(S)S2y,k(S) + 2b0 + Nk (S)N0ηk

Nk (S)+N0ηk
(ȳk(S) − μk0)

2

2σ 2
k

}

×
K∏

k=1

η
e0+Nk (S)−1/2
k

K∏

k=1

1

σ
2(a0+1)+Nk (S)+2
k

Finally integrating out σk and ηk , the posterior p(S|y) is obtained as

p(S|y) =
1∫

0

∫∫
p(y|η,S, θ)p(S|η)p(η)p(θ)dθdη

= NK/2
0

(
1

π

)N/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K
2Ka0

×
∏K

k=1 Γ (Nk(S) + e0 + 1/2)

Γ (N + Ke0 + K/2)

K∏

k=1

Γ (Nk(S)/2 + a0)

×
K∏

k=1

1∫

0

B(ηk)
−a0− Nk (S)

2

(Nk(S) + N0ηk)1/2
dηk, (17.3)
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where

B(ηk) = Nk(S)S2y,k(S) + 2b0 + Nk(S)N0ηk

Nk(S) + N0ηk
(ȳk(S) − μk0)

2.

As we can see for the case with dependent hierarchical priors there is no explicit
form for the posterior p(S|y). Due to this formulation, we faced some challenges
in calculating the integration in the expression (17.3). Calculating this integration is
not always possible in a usual way as a result of overflow or underflow, depending
on simulation settings. To address this issue we calculate this definite integral by
calculating Riemann sums over a partition of [0, 1].

Note that

1∫

0

f (ηk)dηk =
1∫

0

(Nk(S)S2y,k(S) + 2b0 + Nk (S)N0ηk
Nk (S)+N0ηk

(ȳk(S) − μk0)
2)−a0− Nk (S)

2

(Nk(S) + N0ηk)1/2
.

We rearrange the above integrand as follows:

f (ηk) = (Nk(S)S2y,k(S))−a0−Nk (S)/2D(ηk)
−a0−Nk (S)/2

Nk(S)1/2
(
1 + N0ηk

Nk (S)

)1/2 , (17.4)

where

D(ηk) = 1 + 1

Nk(S)S2y,k(S)

(
2b0 + Nk(S)N0ηk

Nk(S) + N0ηk
(ȳk(S) − μk0)

2

)
(17.5)

We partition [0, 1] into subintervals [x0, x1], [x1, x2], · · · , [xn−1, xn] with Δxi =
xi − xi−1 = 1/n and x∗

i = iΔxi . This leads to

1∫

0

f (ηk)dηk ≈ 1

n

n∑

i=1

fk(x
∗
i ).

Evenusing the above approximationdidnot completely solve the problemof overflow
and underflow and we still got some infinity values in numerical calculations. To
tackle this problemwe divide all summands by the largest element which is fk(x∗

n ) =
fk(1). Therefore we calculate

1∫

0

f (ηk)dηk ≈ fk(x∗
n )

n

n∑

i=1

fk(x∗
i )

fk(x∗
n )

, (17.6)

where according to the equation (17.4) we have
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fk(x∗
i )

fk(x∗
n )

= (1 + N0
Nk (S)

)1/2

(1 + N0x∗
i

Nk (S)
)1/2(

Dk (x∗
i )

Dk (1)
)a0+Nk (S)/2

.

Now according to the expression (17.5) we have

Dk(x∗
i )

Dk(1)
≈

Nk(S)S2y,k(S) + 2b0 + Nk (S)N0x∗
i

Nk (S)+N0x∗
i
(ȳk(S) − μk0)

2

Nk(S)S2y,k(S) + 2b0 + Nk (S)N0
Nk (S)+N0

(ȳk(S) − μk0)2

=
S2y,k(S) + 2b0

Nk (S)
+ N0x∗

i
Nk (S)+N0x∗

i
(ȳk(S) − μk0)

2

S2y,k(S) + 2b0
Nk (S)

+ N0
Nk (S)+N0

(ȳk(S) − μk0)2
.

In order to use the latter expression in computational programming and avoid any
possible underflow issue, we further rearrange the latter expression to get

Dk(x∗
i )

Dk(1)
= 1 −

(ȳk(S) − μk0)
2
(

N0
Nk (S)+N0

− N0x∗
i

Nk (S)+N0x∗
i

)

S2y,k(S) + 2b0
Nk (S)

+ N0
Nk (S)+N0

(ȳk(S) − μk0)2

= 1 −
N0

Nk (S)+N0

(
1 − (Nk (S)+N0)x∗

i
Nk (S)+N0x∗

i

)
(ȳk(S) − μk0)

2

S2y,k(S) + 2b0
Nk (S)

+ N0
Nk (S)+N0

(ȳk(S) − μk0)2
.

Now the integration in (17.6) can be approximated by the following summation

fk(x∗
n )

n

n∑

i=1

fk(x∗
i )

fk(x∗
n )

= 1

n

(Nk(S)S2y,k(S))−a0− Nk (S)

2 D(1)−a0−Nk (S)/2

Nk(S)1/2

×
n∑

i=1

1

(1 + N0x∗
i

Nk (S)
)1/2(

Dk (x∗
i )

Dk (1)
)a0+Nk (S)/2

Substituting the above expression in the allocation posterior results in

p(S|y) ≈ NK/2
0

(
1

π

)N/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K
2Ka0

×
∏K

k=1 Γ (Nk(S) + e0 + 1/2)

Γ (N + Ke0 + K/2)

K∏

k=1

Γ (Nk(S)/2 + a0)

× 1

n

(Nk(S)S2y,k(S))−a0−Nk (S)/2D(1)−a0−Nk (S)/2

Nk(S)1/2

×
n∑

i=1

1

(1 + N0x∗
i

Nk (S)
)1/2(

Dk (x∗
i )

Dk (1)
)a0+Nk (S)/2
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Taking the logarithm, we have

log(p(S|y)) ≈ K/2 log(N0) − N/2 log(π) + Ka0 log(b0) − K logΓ (a0)

+ logΓ (Ke0) − K logΓ (e0) + Ka0 log(2) − Γ (N + Ke0 + K/2)

+
K∑

k=1

logΓ (Nk(S) + e0 + 1/2) +
K∑

k=1

logΓ (a0 + Nk(S)

2
)

−
K∑

k=1

(a0 + Nk(S)/2)
[
log(Nk(S)) + log(S2y,k) + log(D(1))

]

−
K∑

k=1

log(n) +
K∑

k=1

log
n∑

i=1

1

(1 + N0x∗
i

Nk (S)
)1/2(

Dk (x∗
i )

Dk (1)
)a0+Nk (S)/2

(17.7)

17.3 A Simulation Study

In this section, we conduct simulations to compare the classification accuracy of
Bayesian normal mixture model with that of normal mixture models. We implement
the Bayesian normal mixture model based on both independent priors and dependent
priors. In order to compare the performance of the Bayesian mixture model to the
frequentist model, we use theMclust software, where the optimal allocation estimate
is obtained by using the Expectation-Maximization algorithm.

17.3.1 Adjusted Rand Index

We reviewone of thewidely usedmethods called adjustedRand index for quantifying
the degree of the agreement between partitions derived from different methods. Sup-
pose we have n objects to classify and P1 = {C1, · · · ,Cr } is a partition that assigns
these objects into r classes and P2 = {C1, · · · ,Cs} assigns them into s classes. Each
pair of objects, either have the same class label or a different one. Since the number
of classified objects is n, we have the total number of n(n − 1)/2 pairs to compare.
Let a be the number of pairs that the two partitions agree by assigning the elements
to the same classes and b be the number of pairs that partitions agree by assigning
them to different classes. Considering all pairs, the proportion of agreement between
P1 and P2 is evaluated by the following Rand index (RI)

RI(P1, P2) = a + b

n(n − 1)/2
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Since the expectation of Rand index for two random partitions is not a constant, [5]
proposed a normalized Rand index which is defined by

ARI = Rand index − Expected value of Rand index

Maximum value of Rand index − Expected value of Rand index
.

When twopartitions completely agree, the adjustedRand index reaches themaximum
value 1. The higherARI value, the greater degree of agreement between twopartitions
is.

17.3.2 Simulated Data

We generated data from a normal mixture model with three components. We used
the same setting as used in one of the examples in [3] to generate the data. The
underlying weights (0.3, 0.2, 0.5). The underlying component means and variances
are (−3, 0, 2) and (1, 0.5, 0.8) respectively.

17.3.3 Results

Weutilized theBayesianmixturemodel under the followinghierarchical priorswhere
the component mean depends on the weight corresponding to that component

μk |σ 2
k , ηk ∼ N (μk0,

σ 2
k0

N0ηk
), σ 2

k ∼ IG(a0, b0), ηk ∼ D(e0, · · · , e0),

which results in the log-allocation posterior in equation (17.7). We also implemented
the Bayesian mixture model with hierarchical priors where the mean of each com-
ponent was independent of the weight as following

μk |σ 2
k ∼ N (μk0,

σ 2
k0

N0
), σ 2

k ∼ IG(a0, b0), ηk ∼ D(e0, · · · , e0).

The allocation posterior can be regarded as a function of hyperparameters
N0, a0, b0, e0, μk0. Following [8], we set μk0 to the median of the data. The hyper-
parameters are chosen as a0 = 2 and e0 = 1 and for the parameter b0 they consider
the prior b0 ∼ G(0.2, 10/R2) where R2 is the length of the interval of the variation
of the data. In order to choose N0, following [6], we set N0 = 2.6/(ymax − ymin).
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We found the optimal classification by maximizing the logarithm of the alloca-
tion posterior. The optimization was carried out by the following iterative algorithm:
We updated the coordinates of the allocation vector in one-by-one and calculated
the corresponding posterior. The algorithm started with an initial allocation vec-
tor S(0) = Scurrent by the result derived from MClust. For example, to update the
coordinate S1 corresponding to y1 while other coordinates were fixed, we gener-
ated a random number U from the uniform distribution U [0, 1]. If U < η1, assign
the observation y1 to the first component. If η1 ≤ U < η1 + η2, assign the obser-
vation to the second component. Otherwise, assign y1 to the third component. This
resulted in an updated allocation vector S(1) = Supdated. The number of elements in
each component changed. If Snew1 = S1 = k, then no moving occurred whereas, if
the observation moved to another component, say l, then the number of observations
in each component was updated as

Nk(S
new
1 , S−1) = Nk(S) − 1, Nl(S

new
1 , S−1) = Nl(S) + 1,

where S−1 = (S2, ..., SN ).Correspondingly, themean ȳk(S) and the variance Sy,k(S)

of each component were updated. Then the log-posterior p((Snew1 , S−1)|y) of the
updated allocation vector was calculated using the expression (17.7). The updated
allocation for the first observation was accepted if the updated posterior was greater
than the current posterior, i.e. p((Snew1 , S−1)|y) > p(S(0)|y). If the new allocation
was accepted, then this updated allocation was used as the current allocation in the
next iteration Scurrent = Supdated and the observation was moved to the component l.
Otherwise, the observation was kept in the current component k and the algorithm
moved to the next observation y2. These steps were repeated until all observations
i = 1 · · · , N were updated and until the posterior reaches a local maximum. Then
this optimal allocation vector was recorded and compared withMclust by computing
their adjusted Rand index.

We simulated 300datasets froma three componentmixture of normals.Weapplied
the above algorithm to find the optimal grouping for each of these data. We applied
both the weight-dependent (17.7) and weight-independent (17.2) prior approaches.

Results displayed in Fig. 17.1 show that the Bayesian clustering outperformed the
Mclust particularly when the component priors were weight-dependent. The results
illustrated that imposing dependency of component priors on weights can reduce
the bias of clustering due to the effect of weight heterogeneity. Note that if we used
a more refined optimization algorithm such as evolutionary Markov chain Monte
Carlo algorithms rather than a simple coordinate-wise updating optimization, then
the result would be further improved. See [10, 11].
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Fig. 17.1 Boxplots of adjustedRand index values corresponding to the classifications performed by
applying Bayesian mixture model with weight-dependent priors (BMD), Bayesian mixture model
with weight-independent priors (BMI) and the non-Bayesian mixture of normals (Mclust), where
N0 = 2.6/(ymax − ymin) and b0 ∼ G(0.2, 10/R2) where R2 is the length of the interval of the
variation of the data. Other hyperparameters and sample size are chosen as follows: (a) N = 50,
a0 = 2, e0 = 1, (b) N = 100, a0 = 2, e0 = 1, (c) N = 100, a0 = 5, e0 = 1, (d) N = 100, a0 = 5,
e0 = 2

17.4 Application to a Real Dataset

We applied to the so-called ’acidity data’, which concerns an acidity index measured
in a sample of 155 lakes in north-central Wisconsin and was previously analysed
using a Bayesian mixture of Gaussian distributions on the log-scale by [8]. These
authors calculated the posterior for K (the number of components) favours 3 ∼ 5
components. Here, letting K = 3, we applied the BMD, BMI and Mclust to the
dataset respectively. The three clustering results presented in Fig. 17.2 reveal that
BMD performed better in dealing with outliers in the dataset: Unlike BMD, both
Cluster 2 derived from BMI or Mclust contained 3 outliers which should belong to
Cluster 1.
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Fig. 17.2 From left to right, the panel presented the clusters derived from BMD, BMI and Mclust.
We used the same approach to set hyperparameters as in our simulation study

17.5 Conclusion

In this paper, we have developed a novel prior scheme for Bayesian mixture models.
Unlike the classical prior specification, we allow the component priors to depend
on their weights (i.e., mixing proportions). This help us tackle the effect of vary-
ing weights on estimation of hidden group memberships of the observations. We
have conducted a simulation study to compare the proposed method to the existing
approaches. The simulation results have shown that the new method can performed
better than its competitors in terms of adjusted Rand index. A real data application
has suggested that the proposal method is more robust to outliers than the existing
methods.
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