
Chapter 16
Depth Importance in Precision Medicine
(DIPM): A Tree and Forest Based
Method

Victoria Chen and Heping Zhang

Abstract Wepropose the novel implementation of a depth variable importance score
in a classification tree method designed for the precision medicine setting. The goal
is to identify clinicallymeaningful subgroups to better inform personalized treatment
decisions. In the proposed Depth Importance in PrecisionMedicine (DIPM)method,
a random forest of trees is first constructed at each node. Then, a depth variable
importance score is used to select the best split variable. This score makes use of the
observation that more important variables tend to be selected closer to root nodes of
trees. In particular, we aim to outperform an existingmethod designed for the analysis
of high-dimensional data with continuous outcome variables. The existing method
uses an importance score based on weighted misclassification of out-of-bag samples
upon permutation. Overall, our method is favorable because of its comparable and
sometimes superior performance, simpler importance score, and broader pool of
candidate splits. We use simulations to demonstrate the accuracy of our method and
apply the method to a clinical dataset.

16.1 Introduction

Improving the field of medicine using personalized health data has become a pri-
mary focus for researchers. Instead of the traditional focus on average responses to
interventions, precision medicine recognizes the heterogeneity that exists between
individuals and aims to find the optimal treatment for each person [7, 13]. With
the increasing number of large datasets available for analysis, identifying which
features are important is a challenge. Ultimately, the development of more sophisti-
cated methodology to match the development of these kinds of data is important to
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help improve the health outcomes and quality of life experienced by each individual
patient.

The classification tree is an attractive method for precision medicine due to its
flexibility and relatively simple structure. Multiple candidate features may be con-
sidered simultaneously, and the final result is an easily interpretable tree. In general,
a classification tree is a method that divides the overall sample into smaller and
smaller subgroups using optimized subdivisions of the data. The subdivisions, or
splits, are based on a predetermined list of candidate split variables. Traditionally,
classification trees are used to identify homogenous subgroups of the sample and
classify each subject’s membership in a predetermined list of categories. In the con-
text of precision medicine, the method is modified to identify subgroups of patients
that perform especially well or especially poorly in a treatment group and determine
which treatment is best for each subject.

Currently, there are multiple existing tree-based methods designed for the pre-
cision medicine setting. Existing methods include: an extension of the RECursive
Partition and Amalgamation (RECPAM) algorithm [12], model-based partitioning
(MOB) [14, 19], interaction trees (IT) [15–17], the simultaneous threshold interaction
modelling algorithm (STIMA) [4], virtual twins (VT) [6], subgroup identification
based on differential effect search (SIDES) [9], an extension to SIDES known as
SIDEScreen [8], qualitative interaction trees (QUINT) [5], generalized, unbiased,
interaction detection and estimation (GUIDE) trees [10, 11], a relative-effectiveness
based method [18, 20], and an importance index based method [22].

Although multiple methods already exist, the type of outcome as well as other
features of the data determine which subset of methods the user may choose from.
For instance, the method developed by Zhang et al. [20] only applies to clinical data
with a binary outcome and two treatment groups. Meanwhile, IT, QUINT, STIMA,
and themethod developed by Zhu et al. [22] apply to data with a continuous outcome.
In addition, RECPAM, IT,MOB, SIDES, GUIDE, and the method developed by Zhu
et al. [22] have been extended to analyze survival data with right-censored survival
times. To date, only IT and GUIDE have an extension for data with longitudinal
outcomes. Furthermore, a problem across methods is weakened performance as the
number of candidate covariates increases. As noted in Tsai et al. [18], having more
candidate covariates decreases the “signal-to-noise ratio”which can lower the chance
of finding the most important variables. These concerns are especially problematic
given the increased availability of higher dimensional data.

One method of particular interest is the weighted classification tree developed by
Zhu et al. [22]. This method aims to achieve better performance in cases of high
dimensionality and is designed for data with a continuous outcome variable and two
treatment groups. A variable importance score based on weighted misclassification
is used to find the best split variable at each node. However, as no method uniformly
outperforms all other methods in this setting, there are several drawbacks. In partic-
ular, we find that the weighted method’s variable importance score misses important
signals in the presence of correlations between variables and that the method is
unnecessarily complex overall. Instead, we propose the usage of the depth variable
importance score developed by Chen et al. [3], and Zhang and Singer [21]. Adapting
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this measure for usage within a tree and within the precision medicine framework
is novel. Here, we make the case that the proposed Depth Importance in Precision
Medicine (DIPM) method is favorable to the aforementioned method because of
the proposed method’s comparable and sometimes superior performance, simpler
importance score, and broader pool of candidate splits. Developing an importance
score that is intuitive and convenient to compute that yields comparable or even bet-
ter results will set the stage for outright superior performance with more complex
data scenarios to be demonstrated in future work. The overall goal is to identify vari-
ables that are important in the context of precision medicine. Note that the proposed
method is an exploratory method as opposed to a confirmatory model. Thus, here
we focus on introducing our new importance score and demonstrate its advantage
by using datasets with continuous outcome variables for the easy comparison with
an existing method.

The remainder of this paper is structured as follows. First, details of the proposed
DIPM method and the weighted classification tree method are provided. Then, sim-
ulation scenarios assessing and comparing the methods are presented. Next, results
of an application to a real-world dataset are described. Lastly, the discussion section
includes closing remarks and directions for future work.

16.2 Methods

16.2.1 Overview

We begin with a brief overview of our method. The proposed DIPM method is
designed for the analysis of clinical datasets with a continuous outcome variable Y
and two treatment assignments A and B. Without loss of generality, higher values of
Y denote better health outcomes. Candidate split variables may be binary, ordinal,
or nominal. All of the learning data are said to be in the first or root node, and nodes
may be split into two child nodes. Borrowing the terminology used in Zhu et al. [22],
at each node in the tree, a random forest of “embedded” trees is grown to determine
the best variable to split the node. Once the best variable is identified, the best split of
the best variable is the split that maximizes the difference in response rates between
treatments A and B. Note that “the best variable” is “best” in a narrow sense as
defined below. In addition, a flowchart outlining the general steps of our method’s
algorithm is provided in Fig. 16.1.

16.2.2 Depth Variable Importance Score

The depth variable importance score is used to find the best split variable at a node. In
general, the score incorporates two pieces of information: the depth of a node within
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Fig. 16.1 OverviewofDIPMmethod classification tree algorithm.Aflowchart outlining the general
steps of the proposed method’s algorithm is depicted in the figure above

a tree and the magnitude of the relevant effect. Depth information is used because
more important variables tend to be selected closer to the root node. Meanwhile, the
strength of a split is also taken into account. This second component of the variable
importance score is a statistic. The statistic that is used depends on the context of the
analysis at hand.

Recall that at each node in the overall classification tree, a random forest is con-
structed to find the best split variable at the node. Once the forest is fit, for each tree
T in this forest, the following sum is calculated for each covariate j :

score(T, j) =
∑

t∈Tj

2−L(t)Gt . (16.1)

Tj is the set of nodes in tree T split by variable j . L(t) is the depth of node t . The
root node has depth 1, the left and right child nodes of the root node have depth 2,
etc. Gt captures the magnitude of the effect of splitting node t . Since the outcome
is continuous, Gt is set equal to the t2 statistic from testing the significance of β3 in
the model:

Y = β0 + β1 ∗ treat + β2 ∗ spli t + β3 ∗ treat ∗ spli t + ε. (16.2)

This model is fit using the pertinent within-node data. The test statistic t is squared
because the magnitude of the interaction is of interest, while there is no preference
in the effect’s direction. Note that this t2 statistic is identical to the statistic used at
each node split in the interaction tree method [16].
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Next, a “G replacement” feature is implemented that potentially alters the variable
importance scores score(T, j). For each tree T in the forest, the G at each split is
replaced with the highest G value of any of its descendant nodes if this maximum
exceeds the value at the current split. This replacement step is performed because a
variable that yields a split with a large effect of interest further down in the tree is
certainly important even if its importance is not captured right away. By “looking
ahead” at the G values of future splits, a variable’s importance is reinforced.

Lastly, the final variable importance scores are averaged across all M trees in the
forest f :

score( f, j) = 1

M

∑

T∈ f

score(T, j). (16.3)

The best split variable is the variable with the largest value of score( f, j).

16.2.3 Split Criteria

To identify the best split at a node t , the squared difference in response rates between
treatments A and B at node t is first assessed:

DI FF(t) = (ȲA,t − ȲB,t )
2. (16.4)

Then, among the list of candidate splits, only splits with child nodes with at least
nmin subjects are considered. Of the splits with a sufficient number of subjects, the
best split maximizes the weighted sum of the squared difference in response rates of
the child nodes:

DI FF(tL , tR) =
∑

s = {L ,R} ns(ȲA,ts − ȲB,ts )
2

nL + nR
. (16.5)

Node t is split onlywhen the best split yields two child nodeswith a greater difference
in treatment response rates than at the current node:

DI FF(tL , tR) > DI FF(t). (16.6)

Splitting stops when there are not enough subjects in any candidate node splits or
when no remaining DI FF(tL , tR) values exceed DI FF(t).

This split criterion was first proposed by Zhang for data with binary outcomes
[18, 20]. Since the proposed method uses continuous outcomes, the mean of Y is
used in place of Pr(Y = 1).
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16.2.4 Random Forest

A random forest is grown at each node in the overall tree and then used to select the
best split variable. Once this variable is identified, all possible splits of the variable
are considered, and the best split is found using the criteria described in Sect. 16.2.3.

The forest is constructed as follows. The forest contains a total of M embedded
trees, and the recommended value of M is 1000. Each embedded tree is grown using
a bootstrap sample. The bootstrap sample contains the same number of subjects as
the original sample size at the current node. Then, at each node in the embedded
trees, either: (1) all possible splits of all variables are considered, or (2) all possible
splits of a certain number, mtry, of randomly selected variables are considered. The
best split is again found using the criteria described in Sect. 16.2.3.

A recommended value of mtry for a dataset with p variables is f loor(
√
p).

This value is the default value of mtry used in the randomForest R package
implementing Breiman’s random forest method for classification. The aim is to use a
value that balances the strength of each tree by being large enough while minimizing
the correlation between trees by being small enough [2].

Also, note that the minimum number of subjects in nodes of the overall classi-
fication tree does not have to equal the minimum number of subjects in nodes of
the embedded trees. Put another way, nmin is the minimum node size of the overall
tree, while nmin2 is the minimum node size of trees in the random forest. nmin and
nmin2 do not have to be equivalent.

16.2.5 Best Predicted Treatment Class

The best predicted treatment class of a node is the treatment group that performs best
based on the subjects within the given node. In the proposed method, the means of
the response values Y are compared by treatment group. Recall that higher values
of Y denote greater benefit for patients. Therefore, if ȲA > ȲB within a node, then
treatment A is the best predicted treatment at that node. If ȲB > ȲA, then treatment
B is the best predicted treatment. If ȲA = ȲB , then neither treatment is best.

16.2.6 Splits by Variable Type

The list of possible splits for a candidate split variable depends on the variable’s type.
For a binary variable, the variable has only two possible values: 0 and 1. Therefore,
there is only one possible split: the left child node subsets the data with subjects
whose values equal 0, and the right child node contains the rest of the subjects whose
values equal 1.
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For an ordinal variable, each unique value is a candidate split point. For each
candidate split point s, the left child node considers the subjects with values less
than or equal to s, and the right child node contains the rest of the subjects with
values greater than s. Note that considering the largest unique value is redundant,
since every subject takes values less than or equal to the maximum, and no one has
values exceeding the maximum.

For a nominal variable, all combinations of all possible subsets of the categories are
considered as candidate splits. For example, consider a nominal variable with three
categories A, B, and C . One possible split is that the left child node subsets the data
with subjects in category A, and the right child node contains the remaining subjects
in categories B and C . The two other possible splits are A, B with complement C ,
and A,C with complement B. In general, for a nominal variable with k categories,
the total number of possible splits is 2k−1 − 1 [21].

16.2.7 Comparison Method

The weighted classification tree method by Zhu et al. [22] also uses a forest of M
embedded trees to find the best split variable at each node. Again, once the best split
variable is found, the best split of all possible splits of that variable is used. However,
the forest used in the weighted classification tree method is a forest of extremely
randomized trees. These trees select one random split for each variable. The best of
these splits is used to split a node, and the split criteria is a weighted Gini impurity
score. In addition, each tree uses bootstrap samples that consist of randomly sampling
80% of the node data without replacement.

Before the overall classification tree is constructed, mean estimates for each sub-
ject are predicted using a random forest of regression trees. These estimates are used
to: (1) construct subject specific weights to be used when calculating the variable
importance scores, and (2) perform “treatment flipping”. One way to construct the
weights is to take the absolute value of the difference between outcome variable Y
and the estimated mean for each subject. Next, if a subject’s Y value is smaller than
the subject’s estimated mean, then that subject is placed in the other treatment group.
In other words, the treatment is “flipped”. Note that treatment flipping does not affect
the best predicted treatment at any terminal node of the tree and is done to solve the
problem of greater bias for splits near the boundary of a variable.

Once a forest f containing M trees is fit at a node, a weighted variable importance
score is calculated for each variable j to find the best split variable. This importance
score uses the out-of-bag (OOB) samples at a node to calculate the weighted ratio
of misclassified treatments when values are randomly permuted to the amount of
misclassification when values are left the same:

score∗
cla( f, j) = 1

M

M∑

m=1

∑
i∈Lm,o

wi I(Ai �= f̂m (x(− j)
i ,x̃ ( j)

i )
)

∑
i∈Lm,o

wi I(Ai �= f̂m (x(− j)
i ,x ( j)

i )
) − 1. (16.7)
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f̂m denotes the predicted best treatment classes of the mth tree in the forest. Lm,o

is the OOB data for the mth tree. For the OOB samples, wi is the i th subject’s
weight, Ai is the i th subject’s treatment assignment after treatment flipping, x(− j)

i is
the i th subject’s vector of data without variable j , x ( j)

i is the i th subject’s value of
variable j , and x̃ ( j)

i is an independent, randomly permuted copy of variable j . I is
the indicator function. The best split variable is the variable with the largest value of
score∗

cla( f, j).

16.2.8 Implementation

The proposed method is implemented using an R program. The R code calls a C pro-
gram to generate the final classification tree. The C backend is used to take advantage
of C’s higher computational speed in comparison to R. Meanwhile, the weighted
classification method developed by Zhu et al. [22] is implemented using their RLT
package on CRAN. All computations for the simulation studies and data analysis are
implemented in R.

16.3 Simulation Studies

16.3.1 Methods

In addition to theweighted classification tree and proposedDIPMmethods, two other
methods are compared in our simulation studies. These additional methods do not
use a random forest at each node. Instead, the additional methods are tree methods
that consider all possible splits of all candidate variables at each node. One of these
methods uses the weighted Gini impurity score to compare all splits, while the other
uses the “DIFF” score described in Sect. 16.2.3. These methods act as controls to
further study the effect of using a broader pool of candidate splits.

16.3.2 Scenarios

The following scenarios assess the proposed DIPM method and compare it to the
weighted classification tree method. The overall strategy is to design scenarios with
known, underlying signals and then measure how often each method accurately
detects these signals. This strategy allows us to compare the variable importance
scores of the weighted and proposed methods. Recall that the DIPM method is
an exploratory method as opposed to a confirmatory model, and the primary goal
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is to identify important variables in the context of precision medicine. Therefore,
measuring correct variable selection alone is sufficient.

In particular, the simulations are designed to assess how each method performs
with increasing amounts of correlation. Altogether, we expect each method to per-
form worse with greater amounts of correlation, while we are interested in assessing
how each method performs in comparison with the others. Note that in all sim-
ulations, treatment assignments are randomly generated from {A, B} with equal
probability. IA and IB denote the indicators for assignments to treatments A and B
respectively. Furthermore, the error term ε in each scenario is normally distributed,
i.e., ε ∼ N (0, 1).

Scenarios 1 through 4 assess method performance as the magnitude of correlation
between so-called Z variables and truly important variables increases. In scenarios
1 through 4, there are 250 X variables in the data that are all ordinal. In addition
to the X variables, 50 Z variables are part of the data. Each Z is highly correlated
with truly important variables as specified for each scenario below. The formulas
used to calculate the correlated Z variables include a random term εi that is normally
distributed, i.e., εi ∼ N (0, sd = σ). When generating the Z variables, decreasing
values of σ are used. As σ decreases, the correlation between the Z variables and
the important variables increases. For each value of σ , 1000 simulations are run for
sample sizes of 250 subjects. Overall, we expect method performance to decrease
as σ decreases, i.e., as the correlation level between each Z variable and a truly
important variable increases.When the correlation level is greater, the probability that
each method erroneously selects a correlated Z variable instead of a truly important
variable is greater as well.

Scenario 1: The first scenario consists of an underlying linear model containing
the treatment and one important continuous variable. The formula for the outcome
variable Y is:

Y = 10.2 − 0.3IB − 0.1X1 + 2.9IB X1 + ε.

The 250 X variables in the data are all independent and normally distributed,
i.e., N (0, 1). The 50 Z variables in the data are each highly correlated with
variable X1 and calculated as follows: Zi = 0.8X1 + 0.1X2 + 0.1X3 + εi , where
εi ∼ N (0, sd = σ).

Scenario 2: The second scenario consists of an underlyingmodelwith an exponential
term containing the treatment and two important continuous variables. The formula
for the outcome variable Y is:

Y = 10.2 + 0.1IB exp {(X2 − 0.3)2 + (X10 − 0.1)2} + ε.

The 250 X variables in the data are all independent and normally distributed, i.e.,
N (0, 1). The first 25 Z variables are highly correlated with variable X2 and cal-
culated as follows: Zi = 0.1 X1 + 0.8 X2 + 0.1X3 + εi , where εi ∼ N (0, sd = σ).
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The last 25 Z variables are highly correlated with X10 and calculated as follows:
Zi = 0.1X1 + 0.8X10 + 0.1X3 + εi , where εi ∼ N (0, sd = σ).

Scenario 3: The third scenario consists of an underlying tree model containing the
treatment and two important binary variables. The formula for the outcome variable
Y is:

Y = 10.2 + IA I{X2≤0∪X10≤1} + 2.6IB I{X2>0∪X10>1}
+0.3X30 + 0.6X20 − 0.5X11X13 + ε.

The first 230 X variables in the data are from the Discrete Uniform distribution, i.e.,
Discrete Uniform[0, 2]. These variables are meant to simulate SNP data that have
possible values of 0, 1, or 2. The next 10 X variables are Poisson distributed with
mean 1, i.e., Poisson(1). The final 10 X variables are Poisson distributedwithmean 2,
i.e., Poisson(2). The Poisson distributed variables aremeant to simulate ordinal count
data that could be collected in a clinical trial. In addition, the first 25 Z variables
are highly correlated with variable X2 and calculated as follows: Zi = X2 + εi ,
where εi ∼ N (0, sd = σ). The last 25 Z variables are highly correlated with X10 and
calculated as follows: Zi = X10 + εi , where εi ∼ N (0, sd = σ). All 50 Z variables
are rounded to the nearest integer. To continue simulating SNP data, values less than
0 are set to 0, and values exceeding 2 are set to 2.

Scenario 4: The fourth scenario consists of an underlying tree model containing the
treatment and three important binary variables. The formula for the outcome variable
Y is:

Y = I(X1≤0∩X2≤0)(14IA + 13IB)

+I(X1≤0∩X2>0)(12IA + 16IB)

+I(X1>0∩X3≤0)(13IA + 11IB)

+I(X1>0∩X3>0)(13IA + 14IB) + ε.

The first 230 X variables in the data are from the Discrete Uniform distribution,
i.e., Discrete Uniform[0, 2]. These variables are meant to simulate SNP data that
have possible values of 0, 1, or 2. The next 10 X variables are Poisson distributed
with mean 1, i.e., Poisson(1). The final 10 X variables are Poisson distributed with
mean 2, i.e., Poisson(2). The Poisson distributed variables are meant to simulate
ordinal count data that could be collected in a clinical trial. In addition, the 50 Z
variables in the data are each highly correlated with variable X1 and calculated as
follows: Zi = X1 + εi , where εi ∼ N (0, sd = σ). All 50 Z variables are rounded
to the nearest integer. To continue simulating SNP data, values less than 0 are set to
0, and values exceeding 2 are set to 2.

Scenarios 5 through 8 assess method performance as the number of variables
correlated with truly important variables increases. In scenarios 5 through 8, there
are 100 X variables in the data that are all ordinal and independent and normally
distributed, i.e., N (0, 1). In addition to the X variables, a varying number of Z vari-
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ables are part of the data. Each Z is highly correlated with truly important variables
and calculated as specified for each scenario below. For each varying number of Z
variables, 1000 simulations are run for sample sizes of 250 subjects. Overall, we
expect method performance to decrease as the number of Z variables in the data
increases. As the number of Z variables increases, the chance of selecting a corre-
lated Z variable instead of a truly important variable also increases.

Scenario 5: The fifth scenario consists of an underlying linear model containing
the treatment and one important continuous variable. The formula for the outcome
variable Y is:

Y = 10.2 − 0.3IB − 0.1X1 + 2.9IB X1 + ε.

Each Z variable in the data is highly correlated with X1 and calculated as follows:
Zi = 0.8X1 + 0.1X2 + 0.1X3 + εi , where εi ∼ N (0, sd = 0.5).

Scenario 6: The sixth scenario consists of an underlying model with an exponential
term containing the treatment and two important continuous variables. The formula
for the outcome variable Y is:

Y = 10.2 + 0.1IB exp {(X2 − 0.3)2 + (X10 − 0.1)2} + ε.

Each Z variable in the data is highly correlated with X2 and calculated as follows:
Zi = 0.1X1 + 0.8X2 + 0.1X3 + εi , where εi ∼ N (0, sd = 0.5).

Scenario 7: The seventh scenario consists of an underlying tree model containing the
treatment and two important binary variables. The formula for the outcome variable
Y is:

Y = 10.2 + IA I{X2≤0∪X10≤1} + 2.6IB I{X2>0∪X10>1}
+0.3X30 + 0.6X20 − 0.5X11X13 + ε.

Each Z variable in the data is highly correlated with X2 and calculated as follows:
Zi = 0.1X1 + 0.8X2 + 0.1X3 + εi , where εi ∼ N (0, sd = 0.5).

Scenario 8: The final scenario consists of an underlying tree model containing the
treatment and three important binary variables. The formula for the outcome variable
Y is:

Y = I(X1≤0∩X2≤0)(14IA + 13IB)

+I(X1≤0∩X2>0)(12IA + 16IB)

+I(X1>0∩X3≤0)(13IA + 11IB)

+I(X1>0∩X3>0)(13IA + 14IB) + ε.

Each Z variable in the data is highly correlated with X1 and calculated as follows:
Zi = 0.8X1 + 0.1X2 + 0.1X3 + εi , where εi ∼ N (0, sd = 0.5).
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16.3.3 Results

All simulation results are presented in Table16.1. As expected, across all of the
simulation scenarios, as the amount of correlation between the Z variables and truly
important variables increases, method performance decreases. Method performance
is assessed bymeasuring eachmethod’s ability to select the correct relevant variables
at early splits. In general, the forest based methods tend to outperform the control
methods in scenarios with non-tree models, i.e., scenarios 1 and 5 which contain a
linear term and scenarios 2 and 6 which contain an exponential term. Meanwhile,

Table 16.1 Results of simulation scenarios. Proportions of correct variable selection are displayed
for each method

Scenario S.D. Forest Tree

Weighted DIPM
mtry

DIPM no
mtry

Weighted DIFF

1. Linear 0.5 0.998 0.993 0.946 0.972 0.913

0.4 0.950 0.926 0.759 0.876 0.742

0.3 0.751 0.722 0.457 0.586 0.480

2. Exponential term 0.5 0.028 0.083 0.042 0.051 0.034

0.4 0.013 0.061 0.020 0.034 0.024

0.3 0.009 0.037 0.013 0.018 0.014

3. Tree of depth 2 0.5 0.618 0.412 0.293 0.595 0.438

0.4 0.307 0.236 0.062 0.311 0.207

0.3 0.020 0.058 0.001 0.033 0.014

4. Tree of depth 3 0.5 0.038 0.090 0.048 0.110 0.289

0.4 0.012 0.027 0.000 0.037 0.093

0.3 0.000 0.002 0.000 0.000 0.001

# of Z Vars.

5. Linear 0 1.000 0.999 1.000 1.000 1.000

10 1.000 0.995 0.995 0.996 0.979

100 0.980 0.978 0.886 0.956 0.872

6. Exponential term 0 0.297 0.599 0.661 0.463 0.329

10 0.138 0.335 0.352 0.215 0.154

100 0.067 0.191 0.243 0.066 0.073

7. Tree of depth 2 0 1.000 0.997 0.994 1.000 0.990

10 0.882 0.870 0.866 0.949 0.886

100 0.548 0.530 0.497 0.707 0.593

8. Tree of depth 3 0 0.221 0.270 0.245 0.194 0.168

10 0.032 0.072 0.168 0.192 0.164

100 0.002 0.007 0.044 0.180 0.141
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Fig. 16.2 Results of CCLE data application from Zhu et al. [22]. Boxplots comparing the two
treatments are in each node, and paired t-test p-values are beneath terminal nodes. For the first split
using tissue, S1 is the set of categories: autonomic ganglia, large intestine, pancreas, skin, biliary
tract, oesophagus, stomach, thyroid, and urinary tract

the control methods tend to outperform the forest based methods in scenarios with
underlying tree models, i.e., scenarios 3, 4, 7, and 8.

When comparing the DIPM method that selects mtry variables at each node in
embedded trees with the weighted classification tree method, the weighted method
slightly outperforms the DIPM method in scenarios 1, 5, and 7. However, in sce-
narios 2, 4, 6, and 8, the DIPM method outperforms the weighted method. Finally,
in scenario 3, the weighted method outperforms the DIPM method until σ = 0.3.
Based on these simulation scenarios, the DIPM method demonstrates comparable
and sometimes superior performance in comparison to the more complex weighted
method. Although the DIPM method does not consistently outperform the weighted
method, recall that our goal is to demonstrate how our intuitive and easy-to-compute
importance score can still yield generally comparable performance to the weighted
method. These initial developments will then set the stage for consistently better
performance in data of greater complexity in future work.
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Fig. 16.3 Results of CCLE data application using the DIPM method. Boxplots comparing the two
treatments are in each node, and paired t-test p-values are beneath terminal nodes. For the first split
using tissue, S2 is the set of categories: autonomic ganglia, large intestine, pancreas, and skin

16.4 Analysis of CCLE Data

The DIPM method is applied to a real-world dataset. The data used are a product
of the Cancer Cell Line Encyclopedia (CCLE) project by the Broad Institute and
the Novartis Institutes for Biomedical Research [1]. The data consist of genetic
information and pharmacologic outcomes for more than 1,100 human cancer cell
lines. The data are publicly available online (https://portals.broadinstitute.org/ccle/)
and are also used by Zhu et al. in their paper [22].

Drug activitymeasures ofmultiple drugs are recorded for each cell line. Following
the analysis by Zhu et al., two drugs, RAF265 and PD-0325901, are selected for the
present analysis. Although Zhu et al. pre-screen the gene expressions and use only
the top 500 genes, we use all available gene expressions. For the two selected drugs,
there are 447 cell lines, 18,988 gene expressions, and 3 clinical variables available
for analysis. The clinical variables are gender, tissue type, and histology. Since the
outcome variable is measured for each cell line for each of the two treatments, the
final dataset contains 894 observations and 18,991 candidate split variables. All in
all, the application of the proposed method to these data produce useful insights.
We can use the DIPM method to search for genetic and/or clinical subgroups with
varying drug activity levels across the two selected drugs. Moreover, the application
presents us with the opportunity to apply the proposed method to a dataset with a
large number of candidate split variables.

The constructed tree for the DIPMmethod is compared to the final tree presented
by Zhu et al. [22]. The two trees are depicted in Figs. 16.2 and 16.3. Since their

https://portals.broadinstitute.org/ccle/
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final tree has a maximum depth of 4, we also present the results with a maximum
depth of 4. Terminal node pairs with different optimal treatments are pruned. This
simple pruning strategy removes redundant splits and is proposed in Tsai et al. [18].
Furthermore, paired t-test p-values comparing the mean drug activity levels of each
treatment are reported beneath the terminal nodes of the two trees. This is done to
help quantify how different the two drugs are with respect to drug activity levels
within each subgroup. Note that the paired t-test is used since the outcome variable
is recorded for both drugs for each cell line.

Both methods identify tissue type as the best split variable at the root node.
Though the first split variable is the same, the split values are slightly different.
The weighted method places tissue categories autonomic ganglia, large intestine,
pancreas, skin, biliary tract, oesophagus, stomach, thyroid, and urinary tract in the
child node that identifies PD-0325901 as the optimal treatment. Meanwhile, the
DIPM method places only autonomic ganglia, large intestine, pancreas, and skin in
the child node that identifies PD-0325901 as the optimal treatment. Despite these
differences, ultimately, the t-test p-values comparing the two treatments in these
nodes are both approximately equal, i.e., p-value = 2.2e-16.

Meanwhile, the subsequent splits of the DIPM method tree differ from those in
Zhu et al.’s final tree. The other splits in Zhu et al.’s final tree use the PLA2G4A
and COL5A2 genes. By contrast, the other splits in the proposed method’s tree use
KCNK2, DCLK2, PARP14, and OXTR. Although neither method clearly outper-
forms the other in this data application, overall, these results point to the robustness
of the effect of tissue type as a potentially useful subgroup indicator. The identi-
fied gene expression variables by both methods are also potentially useful subgroup
indicators that would have to be examined further for true biological relevance.

16.5 Discussion

In this article, we present the novel DIPM method. The DIPM method is an
exploratory method designed to search through existing clinical data for variables
that are important in the context of precision medicine. We demonstrate how the
proposed method performs well and, in particular, how it compares to the weighted
classification tree developed by Zhu et al. [22]. In our simulations, the depth variable
importance score demonstrates comparable and sometimes better performance than
the variable importance score of the weighted method. The DIPM method achieves
this level of performance as a simpler method overall. The DIPM method has no
subject specific weights, has no treatment flipping, and considers all possible splits
instead of one random split per variable at the nodes of embedded trees. Searching
through all splits strengthens the proposed method and better ensures that signals are
not missed by sheer chance as in the weighted method. Furthermore, calculating the
depth variable importance score is simpler than randomly permuting each variable
and counting the misclassifications of out-of-bag samples at each node. In short, the
proposed method is less complicated and easier to understand.
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Although the presently proposed DIPM method is restricted to the analysis of
datasets with continuous outcome variables, the flexibility of the depth variable
importance score makes the method readily extendable to other outcome variable
types. One useful extension of the DIPM method will be the application to censored
survival outcomes. To achieve this application, we will redefine the split criteria and
the G statistic in the depth variable importance score accordingly. Note that Zhu et
al. have already extended their weighted classification tree method to the analysis of
right-censored survival data. It would be interesting to discoverwhether ourmarkedly
simpler method can in fact outperform the weighted method for data with survival
endpoints. Also, it would be useful to extend the DIPMmethod to data with longitu-
dinal outcomes. As mentioned in the introduction, to date, only IT and GUIDE have
an extension for data with longitudinal outcomes. It would be interesting to create
and assess the performance of the DIPM method when adapted to longitudinal data
as well.

A topic of interest for future consideration is covariate selection bias. When
searching for the best split at a node, covariates with a greater number of possible
splits tend to be selected more often than covariates with fewer splits. The concern is
that this phenomenon occurs even when the covariate is not relevant. In this research
setting, only Loh et al. have directly addressed this bias by developing a two-step
approach [10, 11]. Though we are aware of this bias, we do not directly address
covariate selection bias with the proposed method. We aim to continue to consider
this issue while developing tree-based methodology moving forward.
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