
Chapter 15
Estimation of Covariance Matrix
with ARMA Structure Through
Quadratic Loss Function

Defei Zhang, Xiangzhao Cui, Chun Li, and Jianxin Pan

Abstract In this paper we propose a novel method to estimate the high-dimensional
covariance matrix with an order-1 autoregressive moving average process, i.e.
ARMA(1,1), through quadratic loss function. The ARMA(1,1) structure is a com-
monly used covariance structures in time series andmultivariate analysis but involves
unknown parameters including the variance and two correlation coefficients. We
propose to use the quadratic loss function to measure the discrepancy between a
given covariance matrix, such as the sample covariance matrix, and the underlying
covariance matrix with ARMA(1,1) structure, so that the parameter estimates can be
obtained by minimizing the discrepancy. Simulation studies and real data analysis
show that the proposed method works well in estimating the covariance matrix with
ARMA(1,1) structure even if the dimension is very high.

Keywords ARMA(1,1) structure · Covariance matrix · Quadratic loss function

15.1 Introduction

Covariance matrix estimation is a fundamental problem in multivariate analysis and
time series. Especially, the estimation of high-dimensional covariancematrix is rather
challenging. In the literature, many research works were proposed to tackle the
problem, such as [1, 3, 8, 9] among many others. However, when the covariance
matrix has a certain of structures like order-1 autoregressive moving average, i.e.
ARMA(1,1) structure or others, the estimation and regularization were hardly [6].
Recently, Lin et al. [7] proposed a new method to estimate and regularize the high-
dimensional covariance matrix. Their idea is summarized as follows. Suppose A
is a given m × m covariance matrix, that is, it is symmetric non-negative definite.
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Let S be the set of all m × m positive definite covariance matrices with structure
s, for example, compound symmetry, uniform covariance structure or AR(1). A
discrepancy between the given covariance matrix A and the setS is defined by

D(A,S ) = min
B∈S

L(A,B),

where L(A,B) is ameasure of the discrepancy between the twom × mmatricesA and
B. Assume there is a given class of k candidate covariance structures {s1, s2, . . . , sk}.
Let Si be the set of all covariance matrices with structure si. Denote the set of m ×
m covariance matrices with the likely structures by Ω = ∪k

i=1Si. The discrepancy
between a given covariance matrix A and the set Ω is then defined by D(A,Ω) =
minB∈Ω L(A,B). The point is that, in this set Ω , the structure with which A has the
smallest discrepancy can be viewed as the most likely underlying structure behind A,
and the minimizer B with this particular structure is considered to be the regularized
covariance matrix of A. Obviously, the bigger the class of candidate structures the
better the approximationB to the underlying covariancematrix that is estimated byA.
The discrepancy considered by [7] is the so-called entropy loss function and the class
of the candidates of potential covariance structures they considered include order-1
moving average MA(1), compound symmetry, AR(1) and Toeplitz structures.

Motivated by this, in this paper we focus on the ARMA(1,1) covariance structure
because it includes the MA(1), compound symmetry and AR(1) as its special cases.
The ARMA(1,1) process is obtained by applying a recursive filter to the white noise,
which is given by the model

Xt = φ1Xt−1 + εt + θ1εt−1 (t = 1, . . . ,m),

where φ1 and θ1 both are parameters, and εt is a zero mean white noise process with
variance σ 2

1 . The covariance matrix of the ARMA(1,1) process (e.g., [2]) is given by

Σ(σ1, φ1, θ1) = (1 + θ2
1 + 2φ1θ1)σ

2
1

1 − φ2
1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 a aφ1 aφ2
1 · · · aφm−2

1
a 1 a aφ1 · · · aφm−3

1
aφ1 a 1 a · · · aφm−4

1

aφ2
1 aφ1 a 1 · · · aφm−5

1
...

...
...

... · · · ...

aφm−2
1 aφm−3

1 aφm−4
1 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(15.1)

where

a := a(φ1, θ1) = (1 + φ1θ1)(φ1 + θ1)

1 + θ2
1 + 2φ1θ1

.

For simplicity, the covariance matrix in (15.1) can be written as
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B(σ, c, ρ) = σ 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 c cρ cρ2 · · · cρm−2

c 1 c cρ · · · cρm−3

cρ c 1 c · · · cρm−4

cρ2 cρ c 1 · · · cρm−5

...
...

...
... · · · ...

cρm−2 cρm−3 cρm−4 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (15.2)

where

σ 2 = (1 + θ2
1 + 2φ1θ1)σ

2
1

1 − φ2
1

, c = (1 + φ1θ1)(φ1 + θ1)

1 + θ2
1 + 2φ1θ1

and ρ = φ1

It is clear that there are three special cases for the ARMA covariance matrix (15.2).
When ρ = 0, the structure (15.2) becomes the MA(1) covariance matrix, namely

B(c, σ ) = σ 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 c 0 · · · 0
c 1 c

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 c
0 · · · 0 c 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m×m

, (15.3)

where σ 2 > 0 and −1/ cos(π/(m + 1)) < c < 1/ cos(π/(m + 1)). When ρ = 1, it
reduces to the compound symmetry structure as

B(c, σ ) = σ 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 c c · · · c
c 1 c

. . .
...

c
. . .

. . .
. . . c

...
. . .

. . . 1 c
c · · · c c 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m×m

,

where σ 2 > 0 and−1/(p − 1) < c < 1 ensure the positive definiteness of the covari-
ancematrix.When ρ = c, the structure (15.2) becomes the AR(1) covariance matrix,
that is

B(c, σ ) = σ 2

⎡
⎢⎢⎢⎢⎢⎣

1 c c2 · · · cm−1

c 1 c · · · cm−2

c2 c 1 · · · cm−3

...
. . .

. . .
. . .

...

cm−1 cm−2 · · · c 1

⎤
⎥⎥⎥⎥⎥⎦

m×m

, (15.4)

where σ 2 > 0 and −1 < c < 1.
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On the other hand, we choose the quadratic loss function rather than the entropy
loss function to measure the discrepancy between two matrices. The quadratic
loss function was considered by many authors including [3, 9] when estimating
covariance matrix. Comparing the entropy loss function, the quadratic loss func-
tion avoids the direct calculation of eigenvalues for a likely large covariance matrix
with ARMA(1,1) structure. The problem here is that for a given high-dimensional
covariance matrix A we aim to find the matrix B with ARMA(1,1) structure such
that the discrepancy between A and B is minimized in the domain of the parame-
ters (σ 2, c, ρ). The resulting matrix B is considered to be an approximation to the
unknown underlying covariance matrix behind A in terms of structure. The rest of
this paper is organized as follows. In Sect. 15.2, we discuss the estimation process
under the quadratic loss function and obtain the analytical estimation results. Sim-
ulation studies and real data analysis are considered in Sect. 15.3. Conclusions and
remarks are provided in Sect. 15.4.

15.2 Estimation Process

We rewrite the covariance matrix of the ARMA(1,1) model as follows,

B(c, ρ, σ ) = σ 2

(
I + c

m−1∑
i=1

ρ i−1Ti

)
, (15.5)

where Ti (1 ≤ i ≤ m − 1) is a symmetric matrix with the ith superdiagonal and
subdiagonal elements equal to 1 and zeros elsewhere.

As explained in Sect. 15.1, we propose to use the following quadratic loss function

L(Σ,B) = tr
(
Σ−1B − Im

)2
(15.6)

to measure the discrepancy between the matrices Σ and B [4, 10]. Our aim is to find
the matrix B∗ such that

L(Σ,B∗) = min
{σ,c,ρ}∈R+×[−1,1]2

L(Σ,B)

for the underlying population covariance matrix Σ , where L(Σ,B) is the function in
(15.6). In general, Σ is unknown but can be estimated by an available matrix A such
as the sample covariance matrix. Hence, in practice we actually calculate L(A,B) by
replacing Σ with A.

Now let x0 = σ 2 and xi = σ 2cρ i−1, i = 1 : m − 1. The matrix B in (15.5) can be
rewritten as

B(x) =
m−1∑
i=0

xiTi,
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where x = [x0, x1, . . . , xm−1]T ∈ R
m, T0 = I and Ti’s (1 ≤ i ≤ m − 1) are already

defined in (15.5). We define the set Ω ⊂ R
m by

Ω :=
{
x ∈ R

m : B(x) =
m−1∑
i=0

xiTi is positive definite

}
(15.7)

and the function f (x) : Rm �→ R,

f (x) := L(Σ,B(x)) = tr(Σ−1B(x) − Im)2.

SinceΩ is isomorphic to the set of all positive definite matrices, the problem now
reduces to minimize the function f (B) over the positive definite matrices B within
the set Ω in (15.7).

Since f (B) := L(Σ,B) is a strictly convex function of B and B(x) = ∑m−1
i=0 xiTi

is an affine map of x, by the fact that a composition with an affine mapping preserves
convexity, then function f (x) := f (B(x)) is then strictly convex in x. On the other
hand, since ∇xiB = Ti, by applying the chain rule [4, 10] we obtain the gradient of
f as

∇xi f = 2tr(Ti(Σ
−1B − Im)Σ−1), i = 0 : m − 1,

and the Hessian H = [hij] ∈ R
m×m of f where

hij = ∇2
xixj f = 2tr(TiΣ

−1TjΣ
−1), i, j = 0 : m − 1.

Therefore, this is a convex optimization problem so that the function f has a
unique minimizer.

The loss function can be now expressed as

f (σ, c, ρ)

= tr
(
Σ−1B − Im

)2

= σ 4tr

(
Σ−1 + c

m−1∑
i=1

ρ i−1Σ−1Ti

)2

− 2σ 2tr

(
Σ−1 + c

m−1∑
i=1

ρ i−1Σ−1Ti

)
+ m,

where

tr

(
Σ−1 + c

m−1∑
i=1

ρ i−1Σ−1Ti

)2

= c
m−1∑
i=1

ρ i−1tr(Σ−2Ti + Σ−1TiΣ
−1) + c2

m−1∑
i=1

ρ2(i−1)tr
(
(Σ−1Ti)

2
)

+ tr(Σ−2) + c2
m−1∑

i,j=1,i 
=j

ρ i+j−2tr
(
Σ−1TiΣ

−1Tj + Σ−1TjΣ
−1Ti

)
.
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Therefore, we have

f (σ, c, ρ)

= σ 4tr(Σ−2) + cσ 4
m−1∑
i=1

ρi−1tr(Σ−2Ti + Σ−1TiΣ
−1) + σ 4c2

m−1∑
i=1

ρ2(i−1)tr
(
(Σ−1Ti)

2
)

+ σ 4c2
m−1∑

i,j=1,i 
=j

ρi+j−2tr
(
Σ−1TiΣ

−1Tj + Σ−1TjΣ
−1Ti

)

− 2σ 2tr(Σ−1) − 2σ 2c
m−1∑
i=1

ρi−1tr(Σ−1Ti) + m

= σ 4tr(Σ−2) + cσ 4
m−1∑
i=1

ρi−1t(1)i + σ 4c2
m−1∑
i=1

ρ2i−2t(2)i

+ σ 4c2
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij − 2σ 2tr(Σ−1) − 2σ 2c
m−1∑
i=1

ρi−1t(4)i + m

where t(1)i := tr(Σ−2Ti + Σ−1TiΣ−1), t(2)i := tr((Σ−1Ti)2), t(3)ij := tr
(
Σ−1Ti

Σ−1Tj + Σ−1TjΣ−1Ti
)
, t(4)i := tr(Σ−1Ti).

Note that the first order partial derivative for f (σ, c, ρ) is

∇f (σ, c, ρ) :=

⎡
⎢⎢⎣

∂f
∂σ

∂f
∂c
∂f
∂ρ

⎤
⎥⎥⎦ ,

where

∂f

∂σ
:= 4σ 3tr(Σ−2) + 4cσ 3

m−1∑
i=1

ρi−1t(1)i + 4σ 3c2
m−1∑
i=1

ρ2i−2t(2)i

+ 4σ 3c2
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij − 4σ tr(Σ−1) − 4σc
m−1∑
i=1

ρi−1t(4)i ,

∂f

∂c
:= σ 4

m−1∑
i=1

ρi−1t(1)i + 2σ 4c
m−1∑
i=1

ρ2i−2t(2)i + 2σ 4c
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij − 2σ 2
m−1∑
i=1

ρi−1t(4)i ,

∂f

∂ρ
:= cσ 4

m−1∑
i=1

(i − 1)ρi−2t(1)i + σ 4c2
m−1∑
i=1

(2i − 2)ρ2i−3t(2)i

+ σ 4c2
m−1∑

i,j=1,i 
=j

(i + j − 2)ρi+j−3t(3)ij − 2σ 2c
m−1∑
i=1

(i − 1)ρi−2t(4)i .

Let ∇f (σ, c, ρ) = 0. We then have the estimating equations for (σ 2, c, ρ) as
follows,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2tr(Σ−2) + cσ 2
m−1∑
i=1

ρi−1t(1)i + σ 2c2
m−1∑
i=1

ρ2i−2t(2)i + σ 2c2
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij

= tr(Σ−1) + c
m−1∑
i=1

ρi−1t(4)i ,

σ 2
m−1∑
i=1

ρi−1t(1)i + 2σ 2c
m−1∑
i=1

ρ2i−2t(2)i = −2σ 2c
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij + 2
m−1∑
i=1

ρi−1t(4)i ,

σ 2
m−1∑
i=1

(i − 1)ρi−2t(1)i + σ 2c
m−1∑
i=1

(2i − 2)ρ2i−3t(2)i + σ 2c
m−1∑

i,j=1,i 
=j

(i + j − 2)ρi+j−3t(3)ij

= 2
m−1∑
i=1

(i − 1)ρi−2t(4)i .

The Hessian matrix are given by

∇2f :=

⎡
⎢⎢⎢⎣

∂2f
∂ρ2

∂2f
∂ρ∂c

∂2f
∂ρ∂σ

∂2f
∂c∂ρ

∂2f
∂c2

∂2f
∂c∂σ

∂2f
∂σ∂ρ

∂2f
∂σ∂c

∂2f
∂σ 2

⎤
⎥⎥⎥⎦ ,

where

∂2f

∂ρ2 := cσ 4
m−1∑
i=2

(i − 1)(i − 2)ρi−3t(1)i + σ 4c2
m−1∑
i=1

(2i − 2)(2i − 3)ρ2i−4t(2)i

+ σ 4c2
m−1∑

i,j=1,i 
=j

(i + j − 2)(i + j − 3)ρi+j−4t(3)ij − 2σ 2c
m−1∑
i=2

(i − 1)(i − 2)ρi−3t(4)i ,

∂2f

∂ρ∂c
:= σ 4

m−1∑
i=1

(i − 1)ρi−2t(1)i + 2σ 4c
m−1∑
i=1

(2i − 2)ρ2i−3t(2)i

+ 2cσ 4
m−1∑

i,j=1,i 
=j

(i + j − 2)ρi+j−3t(3)ij − 2σ 2
m−1∑
i=1

(i − 1)ρi−2t(4)i .

∂2f

∂ρ∂σ
:= 4cσ 3

m−1∑
i=1

(i − 1)ρi−2t(1)i + 4σ 3c2
m−1∑
i=1

(2i − 2)ρ2i−3t(2)i

+ 4σ 3c2
m−1∑

i,j=1,i 
=j

(i + j − 2)ρi+j−3t(3)ij − 4σc
m−1∑
i=1

(i − 1)ρi−2t(4)i .

∂2f

∂c2
:= 2σ 4

m−1∑
i=1

ρ2i−2t(2)i + 2σ 4
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij ,
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∂2f

∂c∂σ
:= 4σ 3

m−1∑
i=1

ρ i−1t(1)i + 8σ 3c
m−1∑
i=1

ρ2i−2t(2)i

+ 8σ 3c
m−1∑

i,j=1,i 
=j

ρ i+j−2t(3)ij − 4σ
m−1∑
i=1

ρ i−1t(4)i ,

∂2f

∂σ 2
:= 12σ 2tr(Σ−2) + 12cσ 2

m−1∑
i=1

ρ i−1t(1)i + 12σ 2c2
m−1∑
i=1

ρ2i−2t(2)i

+ 12σ 2c2
m−1∑

i,j=1,i 
=j

ρ i+j−2t(3)ij − 4tr(Σ−1) − 4c
m−1∑
i=1

ρ i−1t(4)i .

Our numerical results including simulation studies and real data analysis show that
the determinant |∇2f | > 0 and the theoretical justification is still under investigation.

Theorem 15.1 Given a positive definite covariance matrix Σ , there exists a unique
positive definite matrix B(σ, c, ρ) in the form (15.2) such that the quadratic loss
functionL(σ, c, ρ) := L(Σ,B(σ, c, ρ)) in (15.6) isminimized. Furthermore, themin-
imum must be attained at (σ, c, ρ) that satisfies

⎧⎪⎨
⎪⎩

σ 2tr(Σ−2) + cσ 2S1(ρ) + c2σ 2S2(ρ) + σ 2c2S3(ρ) = tr(Σ−1) + cS4(ρ),

σ 2S1(ρ) + 2cσ 2S2(ρ) + 2cσ 2S3(ρ) = 2S4(ρ),

σ 2S ′
1(ρ) + cσ 2S ′

2(ρ) + cσ 2S ′
3(ρ) = 2S ′

4(ρ),

where

S1(ρ) : =
m−1∑
i=1

ρ i−1t(1)i , S2(ρ) :=
m−1∑
i=1

ρ2i−2t(2)i ,

S3(ρ) : =
m−1∑

i,j=1,i 
=j

ρ i+j−2t(3)ij , S4(ρ) :=
m−1∑
i=1

ρ i−1t(4)i ,

and S ′
i (ρ)(i = 1, . . . , 4) is the derivative of Si(ρ) with respect to ρ, t(1)i :=

tr(Σ−2Ti + Σ−1TiΣ−1), t(2)i := tr((Σ−1Ti)2), t(3)ij := tr
(
Σ−1TiΣ−1Tj + Σ−1Tj

Σ−1Ti
)
, and t(4)i := tr(Σ−1Ti).

Corollary 15.1 Given a positive definite covariance matrixΣ , there exists a unique
tridiagonal positive definite matrix, i.e. MA(1), B(c, σ ) in the form (15.3) such that
the quadratic loss function L(c, σ ) := L(Σ,B(σ, c)) in (15.6) is minimized. Further-
more, the minimum must be attained at (σ, c) that satisfies
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2 = tr(Σ−1)tr(Σ−2T 2
1 ) − tr(Σ−2T1)tr(Σ−1T1)

tr(Σ−2)tr(Σ−2T 2
1 ) − (tr(Σ−2T1))2

,

c = tr(Σ−2)tr(Σ−1T1) − tr(Σ−1)tr(Σ−2T1)

tr(Σ−2T 2
1 )tr(Σ−1) − tr(Σ−2T1)tr(Σ−1T1)

.

Corollary 15.2 Given a positive definite covariance matrixΣ , there exists a unique
AR(1) positive definite matrix B(c, σ ) in the form (15.4) such that the quadratic loss
function L(c, σ ) := L(Σ,B(σ, c)) in (15.6) is minimized. Furthermore, the minimum
must be attained at (σ, c) that satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2 =

m−1∑
i=0

citr(Σ−1Ti)

m−1∑
i=0

c2i tr((Σ−1Ti)2) + 2
m−2∑
i=0

c2i+1tr(Σ−1TiΣ−1Ti+1)

,

m−1∑
i=0

ici−1tr(Σ−1Ti)

m−1∑
i=0

citr(Σ−1Ti)

=

m−1∑
i=0

ic2i−1tr((Σ−1Ti)
2) +

m−2∑
i=0

(2i + 1)c2i tr(Σ−1TiΣ
−1Ti+1)

m−1∑
i=0

c2i tr((Σ−1Ti)2) + 2
m−2∑
i=0

c2i+1tr(Σ−1TiΣ−1Ti+1)

.

Similar results for the compound symmetry structure can be obtained in the same
manner but the details are omitted here.

15.3 Numerical Experiments

15.3.1 Simulation Studies

Let m be the dimension of the covariance matrices. We first generate an m × n data
matrix R with columns randomly drawn from the multivariate normal distribution
N (μ,Σ) with a common mean vector μ = σ 2e with e = (1, ..., 1)′ ∈ R

m and a
common covariance matrix Σ . We then calculate the sample covariance matrix A
using the generated random samples R. We assume the true covariance matrixΣ is of
ARMA(1,1) structure with dimensionm and the parameters (σ 2, c, ρ). We assess the
performance of the estimationmethodbyvarying dimensionm and andvalues ofσ 2, c
andρ. The sample size is chosen asn = 1000.We summarize the experimental results
in Table15.1, which is the experiment with the covariance matrix size m = 100,
and Table15.2 for m = 200. We choose σ 2 ∈ {2, 4, 8}, c ∈ {0.2, 0.5, 0.75} and ρ ∈
{−0.75,−0.5,−0.2, 0, 0.2, 0.5, 0.75}, meaning that Σ may have MA(1), AR(1),
andARMA(1,1) structures, respectively. The notation and abbreviation for the results
reported in Tables15.1 and 15.2 are summarized as follows.

• Σ : the true covariance matrix.
• A: the sample covariance matrix.
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• B: the estimated covariance matrix with ARMA(1,1) structure, which minimizes
the quadratic loss function L(A,B).

• LΣ,A, LA,B and LΣ,B: the quadratic loss functions L(Σ,A), L(A,B) and L(Σ,B),
respectively.

In Tables15.1 and 15.2, we have the following observations.

(1) When the true covariance structure for Σ is of ARMA(1,1), the resulting matrix
B that has the same structure as Σ must satisfy LΣ,B < LΣ,A. It means that the
regularized estimator B is much better than the sample covariance matrix A in
terms of the quadratic loss function. This is because the sample covariancematrix
A contains many noises so that the true ARMA(1,1) structure is blurred if only A
is observed. It shows that regularization of the sample covariance matrix A into a
proper structure, here ARMA(1,1), is necessary not only for the convenient use
of the structure but also for the accuracy of the covariance matrix estimation.

(2) The observations above are the same for differing values ofm, σ 2, c andρ, imply-
ing that the findings are consistent and robust against the parameters (σ 2, c, ρ).

(3) Note that it is extremely important to observe the discrepancy LA,B because
in practice the true covariance Σ is unknown, and so LΣ,B and LΣ,A are not
possibly known either. The simulation studies presented here aim to assess the
performance of the approximation B to the underlying covariance matrix Σ by
borrowing information from the sample covariance matrix A. It is concluded that
the discrepancy LA,B can be used to identify the true covariance structure of Σ

satisfactorily.

Table 15.1 Simulation results with m = 100

σ 2 c ρ LΣ,A LA,B LΣ,B

2 0.2 −0.75 10.19 27.65 0.23

4 0.2 −0.75 10.22 31.48 0.31

8 0.2 −0.75 10.18 83.64 0.42

2 0.2 −0.5 10.27 34.05 0.96

2 0.5 −0.2 10.01 29.75 0.27

2 0.75 −0.2 9.7 25.03 0.55

2 0.2 0 10.31 26.03 0.25

4 0.5 0 10.01 29.37 0.61

8 0.75 0 10.19 69.48 0.72

2 0.2 0.2 10.19 29.11 0.06

4 0.5 0.5 9.71 29.03 0.93

8 0.75 0.75 10.01 79.43 0.96

2 0.2 −0.2 10.11 78.31 0.98

4 0.5 −0.5 10.03 33.94 0.36

8 0.75 −0.75 10.24 84.21 0.94
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Table 15.2 Simulation results with m = 200

σ 2 c ρ LΣ,A LA,B LΣ,B

2 0.2 −0.75 40.03 46.39 0.38

4 0.2 −0.75 40.56 69.75 0.51

8 0.2 −0.75 40.61 79.01 0.71

2 0.2 −0.5 39.84 72.02 0.31

2 0.5 −0.2 40.09 83.47 0.52

2 0.75 −0.2 39.84 73.57 0.61

2 0.2 0 40.09 84.29 0.54

4 0.5 0 40.69 94.29 0.63

8 0.75 0 40.47 106.44 0.85

2 0.2 0.2 40.02 161.18 0.62

4 0.5 0.5 39.86 83.29 0.72

8 0.75 0.75 39.92 187.27 0.89

2 0.2 −0.2 40.75 92.69 0.55

4 0.5 −0.5 39.36 142.44 0.62

8 0.75 −0.75 40.87 166.73 0.63

15.3.2 Real Data Analysis

15.3.2.1 Cattle Data Analysis

We analyze the Kenward’s (1987) [5] cattle data using the proposed approach. The
data set involves 60 cattle assigned randomly to two treatment groups 1 and 2, each
of which consists of 30 cattle, and received a certain treatment. The cattle in each
group were weighed 11 times over a nineteen-week period. The weighing times for
all cattle were the same, so that the cattle data is a balanced longitudinal data set. The
aim of Kenward’s study was to investigate treatment effects on intestinal parasites
of the cattle.

Our analysis was made for the cattle data in the same way as in Sect. 15.2 and the
results are reported in Table15.3.We also record, under the column named “Time” in
Table15.3, the time (in seconds) used to find the optimal matrix B for each structure
of the possible candidates MA(1), AR(1) and ARMA(1,1).

Table 15.3 Results of experiments for Kenward’s cattle data

MA(1) AR(1) ARMA(1,1)

LA,B Time LA,B Time LA,B Time

Group 1 9.91 2.91 9.46 2.86 9.33 2.82

Group 2 9.53 2.90 9.63 2.76 9.52 2.79
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Table 15.4 Results of experiments on Dental data

MA(1) AR(1) ARMA(1,1)

LA,B Time LA,B Time LA,B Time

Girl group 2.68 0.25 3.43 0.22 2.62 0.21

Boy group 3.01 0.18 3.15 0.18 2.3 0.19

Since the true covariance matrix Σ from the cattle data is unknown, the dis-
crepancies LΣ,A and LΣ,B are not available and then only the discrepancy LA,B is
computed and presented in Table15.3. From Table15.3, it is clear that the underly-
ing covariance structures are very likely to be ARMA(1,1) structure for both groups
when comparing to other possible candidate structuresMA(1) and AR(1), since their
discrepancy LA,B has smaller values than other twos.

One may argue that Group 1 is likely to have an AR(1) covariance structure as the
values of LA,B for AR(1) and ARMA(1,1) are very close. This should not be surprised
because the AR(1) is a special case of the ARMA(1,1) in the sense that c is identical
to ρ, see (15.4). This is the case for the Group 1 cattle data analysis due to the fact
that the estimates of c and ρ are very close. This conclusion agrees with the finding
in [11, 13, 15].

15.3.2.2 Dental Data Analysis

We also did an experiment with dental data (Potthoff and Roy 1964) [12]. Dental
measurements were made on 11 girls and 16 boys at ages 8, 10, 12 and 14years.
Each measurement is the distance, in millimeters, from the center of the pituitary to
the pterygomaxillary fissure. Similar to the cattle data analysis, the quadratic loss
function LA,B is computed for the dental data and presented in Table15.4.

FromTable15.4, it is clear that the underlying covariance structures are very likely
to be ARMA(1,1) for both boy and girl groups, as the discrepancy values of LA,B are
smaller than those for both MA(1) and AR(1) structures.

15.4 Conclusions

Motivated by the work of Lin et al. [7], we estimate the underlying covariance
structure by minimizing the quadratic loss function between a given covariance
matrix and the covariance matrix with ARMA(1,1) structure. Differing from their
method, the quadratic loss function is used to replace the entropy loss function where
the latter involves the calculation of eigenvalues for a likely large covariance matrix
with ARMA(1,1) structure, which is challenging especially for high-dimensional
case [14]. Our numerical results including simulation studies and real data analysis
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show that the proposedmethodworkswell in estimatinghigh-dimensional covariance
matrices with an underlying ARMA(1,1) structure and is robust against various
choices of the parameters involved in the ARMA(1,1) structure.
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