
Chapter 13
Estimating the Location Vector for
Spherically Symmetric Distributions

Jian-Lun Xu

Abstract When a p × 1 random vector X has a spherically symmetric distribution
with the location vector θ ,Brandwein and Strawderman [7] proved that estimators of
the formX + ag(X) dominate theX under quadratic loss if the following conditions
hold: (i) ||g||2/2 ≤ −h ≤ −� ◦ g, where −h is superharmonic, (ii) E[−R2h(V)] is
nondecreasing in R, where V has a uniform distribution in the sphere centered at θ
with a radius R = ||X − θ ||, and (iii) 0 < a ≤ 1/[pE(R−2)]. In this paperwe not only
use a weaker condition than their (ii) to show the dominance of X + ag(X) over the
X, but also obtain a new bound E(R)/[pE(R−1)] for a, which is always better than
bounds obtained by Brandwein and Strawderman [7] and Xu and Izmirlian [24]. The
generalization to concave loss function is also considered. In addition, estimators of
the location vector are investigated when the observation contains a residual vector
and the scale is unknown.

13.1 Introduction

It iswell-known that the normal distribution and its related statistical inference such as
estimation of its mean are crucial in application. Ever since Stein [19] discovered the
inadmissibility of the best invariant estimator of the p-dimensional (p ≥ 3) normal
mean under quadratic loss, there has been considerable interest in improving upon
the best invariant estimator of a location vector by relaxing the normality assumption,
studying more general estimators, or considering different loss functions.

Under the quadratic loss, James and Stein [15] presented a class of dominating
estimators,

(
1 − a/||X||2)X for 0 < a < 2(p − 2) ifX has a normal distribution with

the identity covariance matrix Ip. This result remains true if the distribution of X is
spherically symmetric about its locationvector and p ≥ 4as shownbyBrandwein [2],
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Brandwein and Strawderman [3, 4, 7], Fan and Fang [12–14], Maruyama [16], and
Brown and Zhao [9], Tosh and Dasgupta [21] and others; see the review articles by
Brandwein and Strawderman [5, 6]. When the dimension is at least three, Brown
[8] also proved that the best invariant estimator of a location vector is inadmissible
for a wide class of distributions and loss functions. When the components of X are
independent, identically and symmetrically (iis) distributed about their respective
means, Shinozaki [18] studied the dominance conditions of the James-Stein type
estimator

δa, b(X) =
(
1 − a

b + ||X||2
)
X, (13.1)

over X and obtained the bounds of a and b in (13.1) that depend on the second and
fourth moments of the component distributions. Xu [23] investigated the bounds of
a and b in (13.1) when X has a sign-invariant distribution.

For more general estimators and different loss functions, Miceli and Strawder-
man [17] restricted the distribution of X to the subclass of iis distributions called
independent component variance mixtures of normals and replaced a in (13.1) by
ar(X2

1, . . . , X
2
p),where r(X

2
1, . . . , X

2
p) is a function of X

2
1, . . . , X

2
p.Their loss func-

tion is nonquadratic. WhenX has a spherically symmetric distribution about its loca-
tion vector θ and loss function is a quadratic loss, a concave function of quadratic
loss, or the general quadratic loss, Brandwein and Strawderman [7] elegantly used
the divergence theorem to prove the dominance of the estimators

δa, g(X) = X + ag(X). (13.2)

overX under conditions (i) ||g||2/2 ≤ −h ≤ −� ◦ g,where−h is superharmonic, (ii)
E[−R2h(V)] is nondecreasing in R,whereV has a uniform distribution in the sphere
centered at θ with a radius R = ||X − θ ||, and (iii) 0 < a ≤ 1/[pE(R−2)]. Clearly,
the estimators δa, g(X) given by (13.2), together with conditions (i) and (iii) extend
the classical James-Stein estimator to a broader class of estimators, while their condi-
tion (ii) is a technical condition. Xu and Izmirlian [24] dropped their technical condi-
tion (ii) and obtained a bound 0 < a < [μ1/(p2μ−1)][1 − (p − 1)μ1/(pμ−1μ2)]−1

for a, where μi = E(Ri ) for i = −1, 1, 2. As stated by Xu and Izmirlian [24],
their bound of a is sometimes worse than the bound obtained by Brandwein and
Strawderman [7]. A question of theoretical interest is raised: Is this possible that
bounds of a obtained by Brandwein and Strawderman [7] and Xu and Izmirlian
[24] can be improved under a weaker condition than Brandwein and Strawderman’s
[7] technical condition (ii)? In this paper we provide an affirmative answer to this
question. Specifically, we use the fact that the average of −h over the sphere is
nonincreasing in the radius to show dominance of δa, g(X) over X and obtain a
new bound 0 < a ≤ μ1/(pμ−1) for a, which is always better than 1/(pμ−2) and
[μ1/(p2μ−1)][1 − (p − 1)μ1/(pμ−1μ2)]−1.

The paper is organized as follows: In Sect. 13.2 we present the main result that
states the dominance conditions of the estimators δa, g(X)with respect to the quadratic
loss. To illustrate the construction of the function h and the performance of the new



13 Estimating the Location Vector for Spherically Symmetric Distributions 203

bound, three examples are also studied in Sect. 13.2. In Sect. 13.3 we extend the main
result in Sect. 13.2 to other loss functions that are nondecreasing concave functions
of quadratic loss. The estimators of the location vector when the scale is unknown
and the observation (XT ,YT )T contains a residual vector Y are also considered in
Sect. 13.3. Section13.4 is devoted to some concluding remarks, while the last section
consists of proofs of results in Sects. 13.2 and 13.3.

13.2 Main Results

Let δ = (δ1, . . . , δp)
T be an estimator of θ and let R(δ, θ) = E[L(δ, θ)] be the risk

of δ, where the loss function L(δ, θ) is defined by

L(δ, θ) = ||δ − θ ||2 =
p∑

i=1

(δi − θi )
2. (13.3)

That is, the loss function L(δ, θ)weconsider in this section is quadratic. Furthermore,
we employ the following notation introduced by Xu and Izmirlian [24]:

m(t) = −EU[h(tU + θ)],
M∗(t) = M(t) − M(0) =

∫ t

0
m(z)dz

(13.4)

for t ≥ 0, where −h is a nonnegative and superharmonic function and the random
vectorU has a uniform distribution on the surface of the unit sphere. Note thatm(t) is
a nonincreasing function of t and M∗(t) is a nonnegative and nondecreasing concave
function of t (see Du Plessis [[11], p. 54]).

Theorem 13.1 Suppose that X ∼ SSp(θ , Ip) (spherically symmetric about mean
vector θ) and δa, g(X) is defined by (13.2). Then under quadratic loss (13.3), δa, g(X)

has a smaller risk than δ0, g(X) = X if
(i) ||g||2/2 ≤ −h ≤ −� ◦ g, where −h is superharmonic,
(ii) r

∫ 1
0 m(r z)pz p−1dz ≥ c

∫ 1
0 M∗(r z)pz p−2dz when r >

√
ap, where m and

M∗ are defined by (13.4) and 1 ≤ c ≤ p − 1 is a constant, and
(iii) 0 < a ≤ μ1/(pμ−1),whereμ−i = E(R−i ) for i = −1, 1 and R = ||X − θ ||.

Remark 13.1 The condition (ii) of Theorem 13.1 is slightly weaker than the condi-
tion (ii) of Brandwein and Strawderman [7]. To see this, we use integration by parts
to obtain that

r
∫ 1

0
m(r z)pz p−1dz = p

(
M∗(r) −

∫ 1

0
M∗(r z)(p − 1)z p−2dz

)
.
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Thus, the condition (ii) above is equivalent to N (r) ≥ 0 when r >
√
ap,where N (r)

is defined by

N (r) = M∗(r) − (p − 1 − c)
∫ 1

0
M∗(r z)z p−2dz.

Taking the derivative of N (r) gives that

N ′(r) = m(r) − (p − 1 − c)
∫ 1

0
m(r z)z p−1dz. (13.5)

Since the condition (ii) of Brandwein and Strawderman [7] is equivalent to

∫ 1

0
m(r z)z p−1dz ≤ 1

p − 2
m(r), r > 0. (13.6)

Applying (13.6) to (13.5) will yield that

N ′(r) ≥ m(r) − p − 1 − c

p − 2
m(r) = c − 1

p − 2
m(r) ≥ 0

because c ≥ 1. This shows that N (r) is a nondecreasing function of r. Using the fact
that lim

r→0+
N (r) = 0, we can conclude that N (r) ≥ 0 when r > 0.

It is also worth mentioning that we only require the condition (ii) to be true when
r >

√
ap. When r ≤ √

ap, there is no any assumption.

Remark 13.2 Let F denote the distribution function (df) of R = ||X − θ ||.
Then applying Lemma 13.1 in Sect. 13.5 with f1(r) = r, g1(r) = 1/r2, f2(r) =
g2(r) = 1 and dα = dF yields that

μ−1 = E

(
1

R

)
= E

(
R

1

R2

)
≤ E(R)E

(
1

R2

)
= μ1μ−2.

Using this fact, we can conclude that the new bound for a is better than that of
Brandwein and Strawderman [7] because

1

pμ−2
≤ μ1

pμ−1
.

Remark 13.3 The new bound for a is also better than that of Xu and Izmirlian
[24]. This can be seen from a direct comparison with the fact that μ1 ≤ μ−1μ2,

which follows from an application of Lemma 13.1 in Sect. 13.5 with f1(r) =
1/r, g1(r) = r2, f2(r) = g2(r) = 1 and dα = dF.

Remark 13.4 It needs to be mentioned that the requirement of dimensionality such
as p ≥ 4 usually arises in the condition (i) of Theorem 13.1.Meanwhile, although the
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function h used in Theorem13.1 hasmany choices, we usually take h(X) = � ◦ g(X)

when � ◦ g(X) is a subharmonic function.

Example 13.1 Consider the James-Stein [15] estimator which is given by

δa,0(X) =
(
1 − a

||X||2
)
X

and discussed by many authors including Brandwein and Strawderman [7] and Fan
and Fang [13]. Clearly, taking g(X) = −X/||X||2 in (13.2) will see that δa,0(X) is a
special case of estimators (13.2). Let

h(X) = � ◦ g(X) = − p − 2

||X||2 .

Then −h is superharmonic if p ≥ 4 because

−
p∑

i=1

∂2h

∂x2i
= − (p − 2)(p − 4)

||X||2 ≤ 0.

The condition (i) in Theorem 13.1 is clearly satisfied. Meanwhile, condition (ii)
in Theorem 13.1 is also true because Brandwein and Strawderman’s [7] technical
condition (ii) is true, see Lemma 2.2 of Fan and Fang [13].

To illustrate the performance of the new bound of a, we consider two exam-
ples below. We use anew to denote the new bound μ1/(pμ−1) of a. We denote by
abs = 1/(pμ−2), the bound of a in Brandwein and Strawderman’s [7] Theorem 2.1,
and axi = [μ1/(p2μ−1)][1 − (p − 1)μ1/(pμ−1μ2)]−1, the bound of a in Xu and
Izmirlian’s [24] Theorem 1.

Example 13.2 Let X have a normal distribution with mean θ and covariance
matrix Ip. Then R2 = ||X − θ ||2 has a χ2

p-distribution, which implies that μ−2 =
1/(p − 2), μ−1 = Γ ((p − 1)/2)/[√2Γ (p/2)], and μ1 = √

2Γ ((p + 1)/2)/
Γ (p/2). Table13.1 below provides the values of three bounds of a for different p.

One can see from Table13.1 that the new bound of a is the best, especially, it is
much better than other two bounds when the dimensionality is small.

Table 13.1 Bounds of a

p 4 5 6 7 8 9 10 15 20 30 40 50 75 100

anew 0.750 0.800 0.833 0.857 0.875 0.889 0.900 0.933 0.950 0.967 0.975 0.980 0.987 0.990

abs 0.500 0.600 0.667 0.714 0.750 0.778 0.800 0.867 0.900 0.933 0.950 0.960 0.973 0.980

axi 0.429 0.444 0.455 0.462 0.467 0.471 0.474 0.483 0.487 0.492 0.494 0.495 0.497 0.497
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Table 13.2 Bounds of a

p 4 5 6 7 8 9 10 15 20 30 40 50 75 100

anew 0.150 0.133 0.119 0.107 0.097 0.089 0.082 0.058 0.045 0.031 0.024 0.019 0.013 0.010

abs 0.125 0.120 0.111 0.102 0.094 0.086 0.080 0.058 0.045 0.031 0.024 0.019 0.013 0.010

axi 0.115 0.105 0.096 0.088 0.081 0.075 0.070 0.052 0.041 0.029 0.023 0.019 0.013 0.010

Example 13.3 Let X have a uniform distribution in the unit sphere centered at θ .

Then R = ||X − θ || has a probability density function (pdf) pr p−1, 0 ≤ r ≤ 1 and
μi = p/(p + i), i = −2,−1, 1, 2. Thus, abs = (p − 2)/p2, axi = (p − 1)/(p2 +
3p − 2), and anew = (p − 1)/[p(p + 1)]. Table13.2 below provides the values of
three bounds of a for different p.

One can see from Table13.2 that the new bound of a is the best. Meanwhile, all
three bounds will approach to zero when the dimensionality increases.

13.3 Extensions to Other Loss Functions and the Unknown
Scale Case

Similar to Xu and Izmirlian [24], we consider two extensions in this section. The
first one is to show that Theorem 13.1 in Sect. 13.2 can be generalized to a larger
class of loss functions, while the second one is to estimate the location vector with
an unknown scale parameter.

The loss function used in the first extension is

L(δ, θ) = W
(||δ − θ ||2) , (13.7)

where W is a nonnegative and nondecreasing concave function. The loss function
(13.7) has been studied for the spherically symmetric distributions by many inves-
tigators including Bock [1], Brandwein and Strawderman [4, 6, 7], Fan and Fang
[12–14], Xu [23], and Xu and Izmirlian [24].

Theorem 13.2 Let F be the df of R = ||X − θ || satisfying

0 <

∫ ∞

0
W ′ (r2

)
dF(r) < ∞,

where W ′ is the derivative of W. Suppose thatX is spherically symmetric about θ and
δa, g(X) is defined by (13.2). Then under loss function (13.7), δa, g(X) has a smaller
risk than X if the conditions (i) and (ii) of Theorem 13.1 hold and
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(iii) 0 < a < ν1/(pν−1), where νi = EG(Ri ) for i = −1, 1 and G is a weighted
df of F with the weight function W ′ (r2

)
defined by

G(t) =
(∫ ∞

0
W ′ (r2

)
dF(r)

)−1 ∫ t

0
W ′ (r2

)
dF(r), t ≥ 0.

Now we investigate the problem of estimating the location vector θ =
(θ1, . . . , θp)

T when the observation (XT ,YT )T contains an m × 1 residual vec-
tor Y such that XT∗ = (1/σ)(XT ,YT ) follows a spherically symmetric distribution
SSp+m(θ∗, σ 2 Ip+m), where θT

∗ = (θT , 0Tm), 0m is an m × 1 vector in which all ele-
ments are zero, and σ is an unknown scale. The improved estimators we consider is
given by

δ∗
a, g(X∗) = X + aYTYg(X). (13.8)

Theorem 13.3 Suppose that X is a p × 1 random vector and Y is an m × 1 ran-
dom vector such that X∗ = (1/σ) (XT ,YT )T ∼ SSp+m(θ∗, σ 2 Ip+m). Let δ∗

a, g(X∗)
be defined by (13.8). Then under the scaled quadratic loss function

L(δ, θ) = ||δ − θ ||2/σ 2,

δ∗
a, g(X∗) dominates X if conditions (i) and (ii) of Theorem 13.1 hold and

(iii) 0 < a < (p − 1)/[p(m + 2)].
The bound of a in Theorem 13.3 doesn’t depend on the distribution ofX∗.Cellier,

Fourdrinier and Robert [10] first observed this type of robustness phenomenon for
the James-Stein estimator.

13.4 Discussion

If−h is superharmonic, Brandwein and Strawderman [7] used the fact that its average
over the ball (“volume”) is greater than its average over the sphere (“surface area”)
to show the dominance of the estimators of the form δa, g(X) over the estimatorX. In
this paper we use the fact that the average of −h over the sphere is a nonincreasing
function of the radius of the sphere. The new approach allows us not only to weaken
their technical condition (ii), but also to obtain a better bound for a. The new bound
of a is also better than those of Brandwein and Strawderman [7] andXu and Izmirlian
[24]. In addition, we consider two extensions. The first is to extend the quadratic loss
(13.3) to the loss function (13.7), while the second is to study the estimators of the
location vector when the observation (XT ,YT )T contains a residual vectorY and the
scale is unknown.While the bounds of a given by the theorems in Sects. 13.2 and 13.3
are better than those ofBrandwein andStraderman [7] andXu and Izmirlian [24], they
are not necessarily optimal and should be considered a guide post. Clearly, one may
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be able to obtain better bounds than those given here if the distribution of R is known.
Stein [20], for example, used integration by parts to obtain 0 < a ≤ 1(= μ2/p) under
normality. Thus, it would be interesting to see if our new bound 0 < a ≤ μ1/(pμ−1)

can be further improved to 0 < a ≤ μ2/p for X ∼ SSp(θ , Ip). As a final point, it
would be interesting, but perhaps very difficult, to study the dominance conditions
of the estimator δa, g(X) = X + ag(X) over X for other distributions. As mentioned
by Xu and Izmirlian [24], results of estimator (13.1) obtained by Shinozaki [18] for
the class of distributions with independently and identically distributed components
and by Xu [23] for the sign-invariant distribution are very limited.

13.5 Proofs

In this section we use fc, s(z) to denote the pdf of the Beta distribution Beta(c, s)
given by

fc, s(z) = Γ (c + s)

Γ (c)Γ (s)
zc−1(1 − z)s−1, 0 < z < 1,

where c > 0 and s > 0 are parameters. To shorten the proofs of results in Sects. 13.2
and13.3,weneed the following lemmas inwhich thefirst one is taken fromWijsman’s
[22] Theorem 2.

Lemma 13.1 Let α be a measure on the real line R and let f j , g j ( j = 1, 2) be
Borel-measurable functions: R → R such that f2 ≥ 0, g2 ≥ 0, and

∫ | fi g j |dα <

∞ (i, j = 1, 2). If f1/ f2 and g1/g2 are monotonic in the same direction, then

∫
f1g1dα

∫
f2g2dα ≥

∫
f1g2dα

∫
f2g1dα, (13.9)

whereas if f1/ f2 and g1/g2 are monotonic in the opposite directions, then inequal-
ity in (13.9) is reversed. The equality in (13.9) holds if and only if f2 = 0 or
g2 = 0 or f1/ f2 = constant or g1/g2 = constant almost everywhere with respect
to the measure ρ defined by dρ = (| f1| + | f2|)(|g1| + |g2|)dα.

Lemma 13.2 Let the function M∗ be defined by (13.4). Then

∫ 1

0
M∗(r z) fc−1,1(z)dz ≤ M∗(r) ≤

∫ 1

0
M∗(r z)czc−2dz,

for any r > 0, where c > 1 is a constant.

Proof Since M∗ is a nondecreasing concave function with M∗(0) = 0 and the
expected value ofBeta(c − 1, 1) distribution is (c − 1)/c, using the Jensen’s inequal-
ity will yield that
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∫ 1

0
M∗(r z) fc−1,1(z)dz ≤ M∗

(
r
c − 1

c

)
≤ M∗(r).

Furthermore, the concavity of M∗ implies that M∗(r z) ≥ zM∗(r) for z ∈ [0, 1] and
r > 0. Thus,

∫ 1

0
M∗(r z)czc−2dz ≥

∫ 1

0
M∗(r)czc−1dz = M∗(r)

∫ 1

0
czc−1dz = M∗(r).

Lemma 13.3 For z ∈ [0, 1], let

�(z) = β(r)

p
f p,1(z) + 1 − β(r)

p
,

where β(r) = r2/a is considered a parameter. Then �(z) is a pdf on [0, 1] when
β(r) ≤ p. Furthermore, when β(r) ≤ p, we have

m(r) − β(r)
∫ 1

0
m(r z)z p−1dz ≤

(
1 − β(r)

p

)
M∗(r)
r

for r > 0, where m and M∗ are defined by (13.4).

Proof When β(r) ≤ p, �(z) is a pdf on [0, 1] because it is a convex combination
of pdfs f p,1(z) and f1,1(z) = 1 on [0, 1]. Furthermore, since m is a nonincreasing
function, we have

m(r) ≤
∫ 1

0
m(r z)�(z)dz,

which leads to

m(r) − β(r)
∫ 1

0
m(r z)z p−1dz ≤

∫ 1

0
m(r z)�(z)dz − β(r)

p

∫ 1

0
m(r z) f p,1(z)dz

=
∫ 1

0
m(r z)

(
�(z) − β(r)

p
f p,1(z)

)
dz

=
(
1 − β(r)

p

) ∫ 1

0
m(r z)dz

=
(
1 − β(r)

p

)
M∗(r)
r

.

Lemma 13.4 When β(r) = r2/a > p, we have

m(r) − β(r)
∫ 1

0
m(r z)z p−1dz ≤

(
1 − β(r)

p

)
c

r

∫ 1

0
M∗(r z)pz p−2dz

for r > 0, where m and M∗ are defined by (13.4) and c ∈ [1, p − 1] is a constant.
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Proof Since m is a nonincreasing function, we have

m(r) ≤
∫ 1

0
m(r z) f p,1(z)dz,

which leads to

m(r) − β(r)
∫ 1

0
m(r z)z p−1dz ≤

(
1 − β(r)

p

)∫ 1

0
m(r z) f p,1(z)dz

≤
(
1 − β(r)

p

)
c

r

∫ 1

0
M∗(r z)pz p−2dz.

(13.10)

Here the last inequality in (13.10) follows from the condition (ii) of Theorem 13.1
and β(r) > p.

Remark 13.5 Lemmas 13.3 and 13.4 can be combined below:

m(r) − β(r)
∫ 1

0
m(r z)z p−1dz ≤ N1(r)N2(r), (13.11)

where β(r) = r2/a and

N1(r) =
(
1 − β(r)

p

)
1

r
,

N2(r) = I [β(r) ≤ p]M∗(r) + cI [β(r) > p]
∫ 1

0
M∗(r z)pz p−2dz.

(13.12)

Here I [A] denotes the indicator function of the event A.

Lemma 13.5 For r > 0, let N1(r) and N2(r) be defined by (13.12). Then N1(r) is
strictly decreasing in r and N2(r) is nondecreasing in r. Furthermore, ER[N1(R)

N2(R)] ≤ 0 if a ≤ μ1/(pμ−1).

Proof Since N1(r) = 1/r − r/(ap), it is a strictly decreasing function of r. Simi-
larly, since both M∗(r) and

∫ 1
0 M∗(r z)pz p−2dz are nondecreasing in r and M∗(r) ≤

∫ 1
0 M∗(r z)pz p−2dz from Lemma 13.2, we can conclude that N2(r) is a nonde-
creasing function of r. Furthermore, applying Lemma 13.1 with f1(r) = N1(r),
g1(r) = N2(r), f2(r) = g2(r) = 1, and a probability measure dα = dF will yield
that

ER[N1(R)N2(R)] ≤ ER[N1(R)]ER[N2(R)] =
(

μ−1 − μ1

ap

)
E[N2(R)] ≤ 0

if a ≤ μ1/(pμ−1) because N2(r) ≥ 0 for r > 0.
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Proof of Theorem 13.1. When X ∼ SSp(θ , Ip), we have X − θ = Z d= RU, where

R and U are independent, R
d= ||Z||, and U has a uniform distribution on the surface

of the unit sphere. Using the argument of Xu and Izmirlian [24] with a verbatim
copy of their (12), we obtain that the difference between the risks of two estimators
δa, g(X) and X is given by

D1 = R
(
δa, g(X), θ

) − R
(
X, θ

)

= a2E
[||g(Z + θ)||2] + 2aE

[
ZT g(Z + θ)

]

= a2E
[||g(Z + θ)||2] + 2ap−1E

[
R2� ◦ g(RV + θ)

]

≤ 2a2E [−h(RU + θ)] + 2ap−1E
[
R2h(RV + θ)

]

= 2a2ER
[
EU

(−h(RU + θ)
∣∣R

) + (ap)−1R2EV
(
h(RV + θ)

∣∣R
)]

= 2a2ER
[
m(R) − (ap)−1R2EV

(
h(RV + θ)

∣∣R
)]

= 2a2ER

[
m(R) − β(R)

∫ 1

0
m(Rv)vp−1dv

]

≤ 2a2ER [N1(R)N2(R)]

≤ 0

(13.13)

if a ≤ μ1/(pμ−1). Here the first inequality in (13.13) is based on the condition (i);
the fifth equality in (13.13) is from the definition of function m; the last equality

in (13.13) follows from the definition of m and the fact that V d= VU, where the
random variable V ∼ Beta(p, 1) and U having a uniform distribution on the surface
of the unit sphere are independent; the second-to-last inequality in (13.13) is based
on Lemmas 13.3 and 13.4 or (13.11); the last inequality in (13.13) follows from
Lemma 13.5. This completes the proof.

Proof of Theorem 13.2. Using the same approach as in Brandwein and Strawderman
[4, 6] or Xu and Izmirlian [24], we obtain that the difference between the risks of
two estimators δa, g(X) and X is given by

D2 = R
(
δa, g(X), θ

) − R(X, θ)

= E
[
W

(
R2 + Δa(X)

)] − E
[
W

(
R2

)]
,

(13.14)

where
Δa(X) = ||δa, g(X) − θ ||2 − ||X − θ ||2.

Since W is a nondecreasing concave function,

W
(
R2 + Δa(X)

)
< W

(
R2

) + W ′ (R2
)
Δa(X).
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Then we can conclude from (13.14) that

D2 ≤ EX
[
W ′ (R2

)
Δa(X)

]

≤ ER
{
W ′ (R2

)
EU[Δa(RU + θ)|R]}

≤ 2a2ER
[
W ′(R2)N1(R)N2(R)

]

= 2a2ER∗ [N1(R∗)N2(R∗)] ER
[
W ′ (R2

)]
,

where the df G of the random variable R∗ is defined by

G(t) =
(∫ ∞

0
W ′ (r2

)
dF(r)

)−1 ∫ t

0
W ′ (r2

)
dF(r), t ≥ 0,

which is a weighted df of F with the weight function W ′ (r2
)
. The result follows

immediately from the assumption that 0 < ER
[
W ′ (R2

)]
< ∞ and the proof of

Theorem 13.1 except for a change from the df F to the df G.

Proof of Theorem 13.3. Like Brandwein and Strawderman [7] and Xu and Izmirlian
[24], the difference D3 between the risks of two estimators δ∗

a, g(X∗) and X is equal
to

D3 = R
(
δ∗
a, g(X∗), θ

) − R (X, θ)

= 1

σ 2
E

[
a2(YTY)2||g(Z + θ)||2 + 2aYTYZT g(Z + θ)

]

= 1

σ 2
E

(
a2D31 + 2aD32

)
,

(13.15)

where Z = X − θ
d= RU, and

D31 = E
[
(YTY)2||g(Z + θ)||2∣∣ ||Z|| = R, ||Y|| = S

]
,

D32 = E
[
YTYZT g(Z + θ)

∣∣ ||Z|| = R, ||Y|| = S
]
.

Using the divergence theorem and condition (i), we obtain that

D32 = E
[
YTYZT g(Z + θ)

∣∣||Z|| = R, ||Y|| = S
]

= S2REU
[
UT g(RU + θ)

∣
∣||Z|| = R, ||Y|| = S

]

= S2R2

p
EV

(
� ◦ g(RV + θ)

∣
∣||Z|| = R, ||Y|| = S

)

≤ − S2R2

p

∫ 1

0
m(Rz) f p,1(z)dz,

(13.16)
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where m is defined by (13.4). Similarly, using the condition (i) will yield that

D31 = E
[
(YTY)2||g(Z + θ)||2∣∣||Z|| = R, ||Y|| = S

]

≤ −2S4E
[
h(Z + θ)

∣∣||Z|| = R, ||Y|| = S
]

= −2S4E
[
h(RU + θ)

∣∣||Z|| = R, ||Y|| = S
]

= 2S4m(R).

(13.17)

Combining (13.16), (13.17) with (13.15) and using the same argument as the proof
of theorem 13.1 will obtain the following inequality

D3 ≤ 2a

σ 2
E

(
aS4m(R) − S2R2

p

∫ 1

0
m(Rz) f p,1(z) dz

)

= 2a

σ 2
E

[
(
aS4

)
(
m(R) − R2

aS2

∫ 1

0
m(Rz)z p−1dz

)]

≤ 2a

σ 2
E

[(
aS4

) (
1 − R2

apS2

)
1

R
N2(R)

]
,

(13.18)

where the first inequality in (13.18) is based on (13.16) and (13.17), the last inequal-
ity of (13.18) follows from (13.11) after replacing a by aS2, and N2(R) is defined
by (13.12). Let T 2 = R2 + S2. Then T 2 and B = R2/T 2 ∼ Beta(p/2,m/2) are
independent. Let C(c, s) = Γ (c + s)/[Γ (c)Γ (s)] for c > 0, s > 0 and let C∗ =
C(p/2,m/2)/C(p/2, (m + 2)/2). Write λ = a + 1/p. Then we can see from
(13.18) that

σ 2

2a
D3 ≤ E

[
aS4

(
1 − R2

apS2

)
1

R
N2(R)

]

= E

[

(1 − B) (a − λB) T 4

(

N1
(
T B1/2

) + N
(
T B1/2

)

T B1/2

)]

= C∗E

[

(a − λB) T 4

(

N1
(
T B1/2

) + N
(
T B1/2

)

T B1/2

)]

= C∗E
[
(a − λB) T 4N1

(
T B1/2)]

+ C∗E
[(
aB−1/2 − λB1/2

)
T 3N (T B1/2)

]

≤ C∗
(
a − λ

p

p + m + 2

)
E

[
T 4N1

(
T B1/2

)]

+ C∗
(
a

C(p/2, (m + 2)/2)

C((p − 1)/2, (m + 2)/2)
− λ

C(p/2, (m + 2)/2)

C((p + 1)/2, (m + 2)/2)

)

× E
[
T 3N

(
T B1/2

)]

≤ 0
(13.19)
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if
a − λ

p

p + m + 2
≤ 0,

a
C (p/2, (m + 2)/2)

C ((p − 1)/2, (m + 2)/2)
− λ

C (p/2, (m + 2)/2)

C ((p + 1)/2, (m + 2)/2)
≤ 0.

(13.20)

Here the second-to-last inequality of (13.19) follows fromapplications ofLemma13.1
with the measure dα = f p/2,(m+2)/2(b)db on [0, 1] and f1(b) = a − λb, g1(b) = T 4

N1(Tb1/2), f2(b) = g2(b) = 1, and f1(b) = ab−1/2 − λb1/2, g1(b) = T 3N (Tb1/2),
f2(b) = g2(b) = 1, respectively. Simple algebra shows that the first inequality
in (13.20) is equivalent to 0 < a ≤ 1/(m + 2), while the second inequality in
(13.20) is equivalent to 0 < a ≤ (p − 1)/[p(m + 2)].Therefore, D3 ≤ 0 if 0 < a ≤
(p − 1)/[p(m + 2)].
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