
Chapter 11
Uniform Design on Manifold

Yu Tang

Abstract Uniform design aims to scatter points as evenly as possible on certain
domain. Although in real applications, the experimental domain is often quite arbi-
trary, the discrepancies frequently used to measure the uniformity of experimental
designs are often defined on the unit cube. In this paper, we will introduce a unified
framework to measure the uniformity of an experimental design on manifold. We
will give some examples to illustrate the construction of uniform designs on some
specific manifolds and provide a stochastic algorithm to construct uniform designs
on the unit semi-spherical surface and on the unit spherical surface. Numerical results
show that the algorithm performs well.

11.1 Background

Uniform design has been applied to various fields since it was proposed in Fang
[4], Wang and Fang [22]. As its name implies, the basic idea of a uniform design
is to seek design points scattered uniformly on certain domain. So in general, the
combinatorial structure of a uniform design (or a low-discrepancy design) is quite
arbitrary, which is different from that of an orthogonal array. To evaluate uniformity
of a design, one must need a criterion, named discrepancy in uniform design theory.
In fact, the concept of discrepancy came from number theory (quasi-Monte Carlo)
method. As indicated in Fang and Wang [7], Fang et al. [6], many discrepancies
including star discrepancy, L p-discrepancy, and modified discrepancies proposed in
Hickernell [10, 11] have their clear geometrical meanings. Uniform designs based
on various discrepancies have been investigated extensively in existing literatures.
Many properties and construction methods related to uniform design can be found
in Fang et al. [5, 6]. To make it easier, most discrepancies are defined on the unit
cubeCs = [0, 1)s , but in some real problems, the experimental domain may be quite
complicated. For example, Chuang and Hung [1] proposed the centered composite
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discrepancy for a general domain, and Lin et al. [14] used it to construct uniform
designs on the flexible region

Rm = {(x1, . . . , xs) ∈ [−1, 1]s∣∣|x1|m + |x2|m + · · · + |xs |m ≤ 1},

which was considered in Draper and Guttman [2]. The centered composite discrep-
ancy can be regarded as a generalization of the centered L2-discrepancy. Although
it has no close form for an arbitrary domain, it can still be numerically calculated
using efficient algorithms, just showed in Lin et al. [14]. Liu and Liu [15] considered
uniform designs for mixture experiments with complex constraints, which could also
be regarded as uniform designs on irregular domain. However, in some scenarios,
the experimental domain will be even special. For example, in aerospace and mili-
tary fields, people often want to scatter points on certain manifolds [3, 9]. To solve
such problems, we need to further generalize the definition of discrepancy. Fang and
Wang [7] suggests using inverse transformation to construct uniform design for some
symmetrical domain including the unit spherical surface. For simplicity, throughout
the paper, we only consider the three-dimensional case. Denote the unit spherical
surface

U 3 = {(z1, z2, z3) : z21 + z22 + z23 = 1}.

LetP = {x (k) = (xk1, xk2), k = 1, . . . , n} be a set of n points uniformly distributed
on C 2 = [0, 1)2. Consider a transformation from C 2 to U 3 defined as

⎧

⎪⎨

⎪⎩

zk1 = 1 − 2xk1,

zk2 = 2
√
xk1(1 − xk1) cos(2πxk2),

zk3 = 2
√
xk1(1 − xk1) sin(2πxk2),

where k = 1, 2, . . . , n. Although it can be proved that the resultant point set
{z(k) = (zk1, . . . , zks), k = 1, . . . , n} is uniformly scattered on the unit spherical sur-
faceU s , the actual result of the inverse transformation method does not seem effec-
tive, especially when the number of points is small. As Fang and Wang [7] pointed
out, the indirect method using inverse transformation may not measure the unifor-
mity of designs accurately. Figure11.1 will illustrate it. The left part (a) in Fig. 11.1
indicates 20 points on the unit spherical surface obtained using the inverse trans-
formation, while the right part (b) shows the 20 vertices of a regular dodecahedron,
whose circumscribed sphere is the unit spherical surface. Intuitively, the latter seems
more uniform compared with the former. It is well-known that there are only five
different types of regular polyhedrons. Thus when the number of points is other than
four, six, eight, twelve and twenty, we need consider other construction methods.
Moreover, we will also show that even when a regular polyhedron exists, it will
not always be the best one given some specific criterion. The paper is organized
as follows. We will first define a general discrepancy based on geodesic distance
for uniform design on manifold in Sect. 11.2. In Sects. 11.3 and 11.4, we consider
uniform designs on the unit semi-spherical surface and the unit spherical surface,
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(a). Transferred from C 2 (b). Regular dodecahedron

Fig. 11.1 Two methods to construct uniform designs on U 3

respectively.We also propose an algorithm to construct uniform designs for these two
cases. Numerical examples will show that the algorithm is quite effective. Finally,
we will give some conclusion and discussion in the last section.

11.2 General Discrepancy on Manifold

The concept of discrepancy arises in the Quasi-Monte Carlo method, which is used
to solve multivariate integration problem. In many cases, we want to obtain the
integration of certain function f (x) over a specific domain D . However, since the
function f (x) may be much complicated and we cannot get the exact value of the
integration

I ( f ) ≡
∫

D
f (x) dx,

we will sometimes use the approximation to evaluate I ( f ). A simple and easy way
of doing so is to choose a set of n-point, P , which is uniformly scattered on the
domain D , and calculate all the values of f (x) on these points, sum up them all and
divide by n, i.e.,

Q( f ; P) ≡ 1

n

∑

z∈P

f (z).

The approximation part Q( f ; P) is often called quadrature rule. Obviously, different
set of points P may result in different quadrature rule. So we need to define a
criterion to evaluate the uniformity of the point set P . As discussed in the previous
section, somemodified L2-discrepancies, including the centered L2-discrepancy and
the wrap-around L2-discrepancy, are often used in practice. However, most of them
are defined on the unit cube and cannot be directly used when the experimental
domain is a manifold. In Li [13], the author proposed the λ-discrepancy for uniform
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design on a general domain. In this paper, we will generalize the λ-discrepancy, in
order to let it be suitable for uniform design on manifold.

Definition 11.1 Let D be a domain and ∂D be its boundary. For any point z ∈ D ,
define

Bz =
∨

x∈∂D

dB(z, x), (11.1)

where dB(·, ·) is a well-defined distance function and the notation “
∨
” represents

an overall function (such as summation, integral, maximum or minimum), then Bz

is called the boundary deviation of z.

Definition 11.2 Let D be a domain, and Z = {z(1), z(2), . . . , z(n)} be an n-point
set, where each z(i) ∈ D . For any point z ∈ D , define

Pz =
∨

z(i)∈Z
dP(z, z(i)), (11.2)

where dP(·, ·) also represents a well-defined distance function and “
∨
” represents

an overall function (such as summation, integral, maximum or minimum), then Pz

is called the point deviation of z.

Definition 11.3 Let D be a domain, and Z = {z(1), z(2), . . . , z(n)} be an n-point
set, where each z(i) ∈ D . Define

Mλ(Z ) = C +
∨

z(i)∈Z
Bz(i) + λ

∨

z(i)∈Z
Pz(i) , (11.3)

whereC is a constant,λ is a positive parameter and “
∨
” represents an overall function

(such as summation, integral, maximum or minimum), then Mλ(Z ) is called the
λe-discrepancy of set Z .

Definition 11.4 LetD be a domain, andZ = {z(1), z(2), . . . , z(n)} be an n-point set,
where each z(i) ∈ D . IfMλ(Z ) can achieve the best value (minimum or maximum
with respect to the choices of the overall function “

∨
”) over D , then Z will be

called a unform design on D under the λ-discrepancy.

Remark 11.1 the two distance function dB(·, ·) and dP(·, ·) in the above definitions
can be different. Obviously, uniform designs under the λ-discrepancy may vary from
different choices of the two distance functions dB(·, ·) and dP(·, ·). However, for
uniform design on manifold, the natural selection of dB(·, ·) and dP(·, ·) is the
geodesic distance function. Throughout this paper, we will take both of these two
functions as the same geodesic distance function defined on the unit spherical surface.

Remark 11.2 different overall function “
∨
” can be chosen for different purpose.

Hickernell [10, 11] definedmanymodified discrepancies, i.e, overall functions, based
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on different types of kernels, i.e, distance functions, on the unit cube. However, these
discrepancies may not be suitable for uniform designs onmanifolds. Throughout this
paper, we will follow the idea of Johnson et al. [12], and use the maximin criterion
to define the overall function. That is to say, we will first define the overall boundary
deviation as the minimum distance over the domain boundary, and define the overall
point deviation as the minimum distance among all distinct (otherwise the overall
point deviation shall always be zero) pairwise points in the point setZ . Then we try
to maximize these two overall functions.

The λ-discrepancy in Definition 11.2 tries to balance the both the boundary effect
and the point effect simultaneously, and thus has clear geometrical meanings. For
clarity, we will divide into two cases to investigate uniform designs on spherical
surface and on semi-spherical surface, respectively.

11.3 Uniform Design on Semi-spherical Surface

In this section, we will use the λ-discrepancy defined in the previous section as the
measure of uniformity to consider uniformdesigns on the unit semi-spherical surface.
To make it clear, throughout this section, the unit semi-spherical surface considered
will always be assumed to be the above one, i.e, the point set of the domain is

U 3
+ = {(z1, z2, z3) : z3 ≥ 0 and z21 + z22 + z23 = 1}.

So the boundary of the domain is a circle:

∂U 3
+ = {(z1, z2, z3) : z3 = 0 and z21 + z22 + z23 = 1}.

As stated in the previous section, here we use maximin criterion [12] to measure
the uniformity of the design. That is to say, the λ-discrepancy in (11.3) becomes the
following form:

Mλ(Z ) = C + min
z(i)∈Z

min
z( j)∈∂U 3+

dB (z(i), z( j)) + λ min
z(i)∈Z

min
z( j) �=z(i)

dP (z(i), z( j)). (11.4)

Here the distance functions dB(·, ·) and dP(·, ·) in (11.4) are both chosen to be the
geodesic distance on the unit spherical surface. It is well-known that the geodesics
on spherical surface are great circles.

Let z(1) = (x1, x2, x3) and z(2) = (y1, y2, y3) be two points on the unit spheri-
cal surface. Denote de(z(1), z(2)) = √

((x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2) as the
Euclidean distance between z(1) and z(2). Then the geodesic distance between z(1)

and z(2) is actually the length of arc ̂z(1)z(2) on the unit spherical surface, i.e,

dP(z(1), z(2)) = arccos
[

1 − 0.5 d2
e(z

(1), z(2))
]

.
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n= 6, λ = 0.1 n= 6, λ = 0.2 n= 6, λ = 0.3 n= 6, λ = 0.4

n= 10, λ = 0.1 n= 10, λ = 0.2 n= 10, λ = 0.3 n= 10, λ = 0.4

n= 14, λ = 0.1 n= 14, λ = 0.2 n= 14, λ = 0.3 n= 14, λ = 0.4

Fig. 11.2 Searching results for different number of points and λ’s

Moreover, for anyfixedpoint z(i) = (x1, x2, x3), its nearest pointwithin thebound-
ary ∂U 3+ will be z(i)

0 = (x ′
1, x

′
2, 0), where x

′
1 = x1√

x21+x22
and x ′

2 = x2√
x21+x22

, thus

min
z( j)∈∂U 3+

dB(z(i), z( j)) = dP(z(i), z(i)
0 ).

Now the objective function, i.e, the λ-discrepancyMλ(Z ) in (11.4), can be fully
determined if an n-point set is given. Sowe can use a standard optimization algorithm
to search for a design with less λ-discrepancy. The basic framework of the pseudo
code is presented in Algorithm 5.

For the sake of simplicity, here we implement the algorithm on restricted lattice
points. The candidates are equal distance grid points in the polar coordinate system.
The searching results of Algorithm 5 are shown in Fig. 11.2. It can easily be seen that
when the parameter λ becomes larger, the points tends to be scattered away from the
boundary. This seems reasonable as we add more penalty to the boundary deviation
when the points are near the boundary. Such a flexible solution can provide an
alternative way to control the experimental points according to specific requirements
in different real applications.
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Algorithm 5 Pseudo code for prototype local search heuristic.
1: Initialize λ and τ (number of iterations)
2: Generate a starting design Z c and let Z max := Z c

3: while number of iterations < τ do
4: Generate Z new ∈ N (Z c) (neighbor to current solution)
5: Compute ∇ = Mλ(Z

new) − Mλ(Z
c) and generate u (uniform random variable)

6: if (∇ > 0) or acceptance criterion(∇, u) met then Z c = Z new

7: if Z c > Z max then Z max := Z c

8: end while

11.4 Uniform Design on Spherical Surface

Now we will consider uniform designs on the unit spherical surface. Similar with
the case in the previous section, we also take the maximin criterion to define the
λ-discrepancy. Since the unit spherical surface has no boundary, the λ-discrepancy
of (11.3) will be equivalent with the following quantity:

Mλ(Z ) = min
z(i)∈Z

min
z( j) �=z(i)

dP(z(i), z( j)), (11.5)

where the distance function d p(·, ·) also represents the geodesic distance on the unit
spherical surface.

Spherical trigonometry theory [21] tells us that there are many existing properties
related to angles, sides and areas of spherical triangles andother configurations. These
properties can not only help calculate the λ-discrepancies during our searching for
uniform designs on the unit spherical surface numerically, but also provide upper
bounds. In fact, Tammes [20] firstly considered the problem of arranging n points
on a unit sphere which maximizes the minimum distance between any two distinct
points. It is not an easy task to determine the best arrangement of theTammes problem
for some sporadic numbers of points, let alone to provide a systematical solution.
For example, Musin and Tarasov [16, 17] provided final solutions to the Tammes
problem when the numbers of points are thirteen and fourteen, respectively. The
current paper does not study the Tammes problem theoretically and only aims to
give an algorithmic solution to it. To evaluate our searching results, here we present
some upper bounds of the λ-discrepancies.

Theorem 11.1 Let Z be n points on the unit spherical surface U 3, and Mλ(Z )

be its λ-discrepancy as defined in (11.5). Then we have

Mλ(Z ) ≤ 4 arcsin(
√

1/n). (11.6)

Proof Denote r = Mλ(Z )/2. Since 0 ≤ Mλ(Z ) ≤ 2π , we have 0 ≤ r ≤ π . For
each point z ∈ Z on the unit spherical surface, define a set �z = {x ∈ U 3 :
d p(x, z) ≤ r}. Easy to see, all points of �z form a spherical crown. Thus the area
of �z is Az = 4π sin2(r/2). Sum up the area of all these spherical crowns, we
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Fig. 11.3 Triangulations of regular polyhedrons with four, six and twelve points

have nAz ≤ 4π , where 4π represents the total area of the unit spherical surface.
So n ≤ 1/ sin2(r/2), i.e, Mλ(Z ) = 2r ≤ 4 arcsin(

√
1/n). �

The proof of Theorem 11.1 is quite intuitive, however, the bound of (11.6) can be
further improved. As a matter of fact, many authors have provided upper bounds for
the Tammes problem using graph theory, convex optimization and other techniques.
Specifically, the following result was stated in Fejes-Tath [8].

Theorem 11.2 LetZ be n points on the unit spherical surface, andMλ(Z ) be its
λ-discrepancy as defined in (11.5). Then we have

Mλ(Z ) ≤ arccos[(cot2ω − 1)/2], (11.7)

where ω = n
n−2 · π

6 .

The proof of Theorem 11.2 is not straightforward. Here we only give some expla-
nation. The right hand side of (11.7) is the side length of an equilateral spherical
triangle of area 4π

(2n−4) , where 4π means the total area of the unit spherical sur-
face and 2n − 4 represents the number of triangular faces induced by the n points.
Theorem 11.2 says that when all the 2n − 4 triangular faces are equilateral spher-
ical triangles with the same side length, the λ-discrepancy will achieve the upper
bound (11.7). As it has been pointed out in many existing papers, when the number
of points are four, six and twelve, the λ-discrepancies of the regular polyhedrons
reach the upper bound (11.7). The triangulations of these regular polyhedrons are
illustrated in Fig. 11.3, respectively.

Implement similar pseudo code as that of Algorithm 5, we can obtain a series of
uniform designs on the unit spherical surface. Table11.1 shows the numerical results
for designs with different number of points. Notice that the values in the second and
the third columns of Table11.1 represent the λ-discrepancies of the resultant designs
obtained by the inverse transformation from C 2 and by implementing Algorithm 5,
respectively. Easy to see, the algorithmic approach should be recommended. In fact,
when the number of points are eight and twenty, the λ-discrepancies of the resultant
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Table 11.1 Searching results of uniform designs on the unit spherical surface

#points Transform Algorithm Bound (11.6) Bound (11.7) Polyhedron

4 1.633435 1.908769 2.094395 1.910633 1.910633

6 1.094689 1.566865 1.682137 1.570796 1.570796

8 0.822482 1.299689 1.445468 1.359080 1.230959

10 0.740723 1.146458 1.287002 1.214081 –

12 0.548902 1.092115 1.171371 1.107149 1.107149

14 0.525865 0.950100 1.082199 1.024176 –

16 0.461221 0.888048 1.010721 0.957398 –

18 0.358579 0.834576 0.951765 0.902163 –

20 0.434371 0.795415 0.902054 0.855491 0.7297277

designs are even better than those of polyhedrons. The fourth and the fifth columns
of Table11.1 list the upper bounds in (11.6) and (11.7), respectively. Compared with
the former, the latter shall be much better.

11.5 Conclusion and Discussion

In this paper, we introduce a general definition of discrepancy based on geodesic
distance tomeasure the uniformity of designs onmanifold.Weprovide an algorithmic
approach of a unified framework to search for low-discrepancy designs on the unit
semi-spherical surface as well as on the unit spherical surface. Numerical results
show the effectiveness of our proposed algorithm.

Some issues reported in this paper can be further investigated. For example, here
we use the maximin criterion to define the overall function for the λ-discrepancy
(11.3). However, using geodesic distance on specific manifold, criteria including
minimax, mean squared-error [18] and entropy [19] can also be defined as the objec-
tive functions. Moreover, during the implementation of the algorithm, we restrict the
candidates within equal distance grid points in the polar coordinate system. Such an
approach may reduce the calculation burden, it can also bring negative effect on the
λ-discrepancies of the designs.
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