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Preface

Collection and analysis of data play an important role in many fields of science and
technology, such as computational biology, quantitative finance, information
engineering, machine learning, neuroscience, medicine, and social sciences.
Especially in the era of big data, researchers can easily collect data with huge size
and complexity. While, it also often occurs that the cost for collection of each item
of data is high, such as the data for missile intercept experiments. In this case, the
use of design of experiments will be very crucial. Design of experiments requires
researchers to collect data at some carefully designed points to enhance their sta-
tistical efficiency. Moreover, analysis of such collected multivariate data is equally
important. At the occasion of his 80th birthday, we present four review papers on
the contributions of Prof. Kai-Tai Fang to the fields of design of experiments,
multivariate analysis, data mining, and education. Moreover, this monograph also
includes twenty research articles in various fields of statistics such as experimental
design, multivariate data analysis, data mining, and biostatistics.

Professor Kai-Tai Fang was elected as Fellow of the Institute of Mathematical
Statistics in 1992 and Fellow of the American Statistical in 2001 as well as elective
member of International Statistical Institute in 1985. He is an international expert
on experimental design, multivariate analysis, and data mining. He is a distin-
guished scholar and prolific researcher. He has published 27 books including 6
monographs in English, and edited 11 lecture notes and proceedings on a wide
range of subjects, including multivariate analysis, design of experiments, and quasi
Monte Carlo methods, in addition to more than 330 referred papers. He is the
co-inventor of the uniform experimental design, which nowadays has been widely
used by engineers to expedite product developments. He has also developed novel
statistical methods for inference in generalized multivariate analysis.

Professor Fang has received 10 Chinese nationwide awards, including The State
Natural Science Award (second class) with Prof. Yuan Wang in 2008. He also
received the 2014 Distinguished Achievement Award by the International Chinese
Statistical Association (ICSA). In addition, Prof. Fang has actively participated in a
large array of consulting projects, including the designs of chemical and biological
experiments and standardization of Chinese garments. As a leading figure in Hong
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Kong and Mainland China, he has greatly popularized the use of statistics in
academic research and industry, enthusiastically participated in organizing various
professional meetings, and provided conscientious professional and editorial ser-
vices. He is a strong professional leader and a dedicated educator, who has fostered
many generations of fertile statisticians worldwide.

In this monograph, four review papers on Prof. Kai-Tai Fang’s contributions to
four different areas are presented. Min-Qian Liu, Dennis Kon-Jin Lin, and Yongdao
Zhou introduced Prof. Kai-Tai Fang’s contributions to design of experiments
especially the fields of uniform design. Jianxin Pan, Jiajuan Liang, and Guoliang
Tian reviewed Prof. Kai-Tai Fang’s contributions to multivariate statistics. Ping He,
Xiaoling Peng, and Qingsong Xu gave an overview of the contributions of Prof.
Fang to data mining. In addition, Gang Li and Xiaoling Peng presented an overview
of Prof. Kai-Tai Fang’s contributions to the education, promotion, and advancement
of statistics in China.

Besides the four review papers on Prof. Kai-Tai Fang’s numerous contributions,
we also collect twenty invited research articles on a wide range of topics that are
grouped into three parts. They are independent of each other. Each is dedicated to a
specific issue on multivariate analysis, design of experiments, biostatistics, and
other statistical issues. This book is targeted to a broad readership. We hope that
regardless of their background, readers will find some parts that are of their interests
and suit their needs.

The second part of the monograph includes seven articles on design of experi-
ments. It begins with the topic of low discrepancy design by Yiou Li, Lulu Kang,
and Fred J. Hickernell, followed by Peter Winker, Jianbin Chen, and Dennis
Kon-Jin Lin. Then Mei Zhang, Aijun Zhang, and Yongdao Zhou introduced the
tool of inverse Rosenblatt transformation for the construction of uniform designs on
arbitrary domains. Ming T. Tan and Hong-Bin Fang applied uniform experimental
design to drug combination studies. Hongyan Jiang and Rongxian Yue proposed a
modified robust design criterion for Poisson mixed effects models. Si Qiu, Minyu
Xie, Hong Qin, and Jianhui Ning enriched the theory of orthogonal array composite
design. Moreover, Yu Tang proposed certain construction methods of the uniform
design on manifold.

The third part of the monograph includes four articles on multivariate analysis. It
begins with an application of the theory of spherical distributions to multiple mean
comparisons by Jiajuan Liang, Man-Lai Tang, Jing Yang, and Xuejing Zhao, fol-
lowed by Jian-Lun Xu’s investigation on estimating the location vector for
spherically symmetric distributions. Milan Stehlík, Mirtha Pari Ruiz, Silvia
Stehlíková, and Ying Lu discussed equidistant designs, symmetries, and their
violations in multivariate models. Defei Zhang, Xiangzhao Cui, Chun Li, and
Jianxin Pan proposed a novel method to estimate the high-dimensional covariance
matrix with autoregressive moving average (ARMA) structure through quadratic
loss function.

The fourth part is about recent developments in data mining with three articles.
Victoria Chen and Heping Zhang proposed a novel implementation of a depth
variable importance score in a classification tree designed for precision medicine.
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Then, Elaheh Oftadeh and Jian Zhang investigated Bayesian mixture models with
weight-dependent component priors for Bayesian clustering. Moreover, Tianming
Zhu and Jin-Ting Zhang proposed the cosine similarity-based classifiers for func-
tional data.

The last part of the monograph includes two articles on statistical hypothesis test
and four articles on statistical modeling and analysis. It begins with projection test
for high-dimensional one sample mean problem by Wanjun Liu and Runze Li,
followed by goodness-of-fit tests for correlated bilateral data from multiple groups
investigated by Xiaobin Liu and Chang-Xing Ma. In the development of statistical
models, Chengcheng Hao, Feng Li, and Dietrich von Rosen introduced a bilinear
reduced rank model; Xiaoying Sun and Yuehua Wu proposed a new method for the
estimation of simultaneous multiple change points in generalized linear models;
Mingyao Ai, Yimin Huang, and Jun Yu considered two data-based algorithms for
proper priors in Bayesian model averaging; Moreover, Baobin Wang, Ting Hu, and
Hong Yin discussed the quantile regression with Gaussian kernels.

We are most grateful to the enthusiastic supports from colleagues and friends
who helped to make this volume possible. We owe many thanks to Yongdao Zhou
for his assistance in turning collective contributions and editing the draft of such a
wonderful monograph. Each article was reviewed critically by referees. We are
especially grateful to Mingyao Ai, Gang Li, Runze Li, Jiajuan Liang, Min-Qian
Liu, Chang-Xing Ma, Jianhui Ning, Xiaoling Peng, Yu Tang, Guoliang Tian,
Yuehua Wu, Jian-Lun Xu, Rongxian Yue, Aijun Zhang, Jian Zhang, Jin-Ting
Zhang, and Yongdao Zhou for their invaluable and conscientious refereeing ser-
vices. We give special thanks to Simo Puntanen of University of Tampere, Finland
and Eva Hiripi of Springer for advice and encouragement. Most importantly, as the
former students of Professor Kai-Tai Fang, we would like to wholeheartedly thank
him for bringing us into the world of statistics, sharing with us his scientific
creativity and fertile imagination, teaching us philosophy of sciences, and showing
us how to mentor and foster younger generations. Many of our achievements reflect
his scientific vision and dedication. We are very proud of him, as a teacher and a
friend. We wish him all the best for his future life.

Princeton, USA Jianqing Fan
Manchester, UK
January 2020

Jianxin Pan
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Chapter 1
Walking on the Road to the Statistical
Pyramid

–Prof. Kai-Tai Fang’s Contribution to Multivariate
Statistics

Jianxin Pan, Jiajuan Liang, and Guoliang Tian

Abstract This paper reviews Prof. Kai-Tai Fang’smajor contribution tomultivariate
statistics in three aspects: generalized multivariate statistics; general symmetric mul-
tivariate distributions; growth curve models and miscellaneous fields. Generalized
multivariate statistics is a large extension of traditional statistics with normal assump-
tion. It aims to generalize the traditional statistical methodologies like parametric
estimation, hypothesis testing, and modeling to a much wider family of multivari-
ate distributions, which is called elliptically contoured distributions (ECD). General
symmetric multivariate distributions form an even wider class of multivariate prob-
ability distributions that includes the ECD as its special case. Growth curve models
(GCM) includes statistical methods that allow for consideration of inter-individual
variability in intra-individual patterns of change over time. Outlier detection and
identification of influential observations are important topics in the area of the GCM.
Miscellaneous fields cover major contributions that Prof. Fang made in various areas
of multivariate statistics beyond the three aspects mentioned above.

1.1 Statistics in China Before 1980’s

Professor Pao-Lu Hsu (1910–1970) is generally considered as the founder of proba-
bility and statistics in China. It is known that Prof. Hsu was the first teacher to offer
courses in probability and statistics in the old “Southwest United University” in
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Kunming of China in 1940’s during the Sino-Japanese war inWorldWar II [9]. Prof.
Hsu finished his Ph.D. study in the University College of London of the United King-
dom in 1938 and pursued his research in the United States in the last few years of
1940’s. He returned to Peking University in 1947 and taught for more than 20 years
there. In late 1950’s, Kai-Tai Fang was one of Prof. Hsu’s students in a series of sem-
inar classes in probability and statistics [32]. Since then, Kai-Tai Fang developed
more and more interests in statistics and devoted his lifetime career to statistics. Dur-
ing the early development of probability and statistics in China between early 1960’s
and before 1980’s, probability and statistics were considered as a small unit in any
mathematics departments of universities in China. Because of the serious shortage
of teachers in probability and statistics, professors in this small unit mainly focused
on teaching before 1980’s. Prof. Kai-Tai Fang was one of the very few lecturers who
insisted on doing research in the old “closed society” before 1977 although research
topics are mainly focused on application of statistics in the industrial area, see, for
example [18, 34, 35, 58, 59, 99]. The year of 1977 was the most memorable year
in the history of the higher education in China since 1949 when the whole academia
was re-open after the 10-year “Cultural Revolution”. Since 1977, both theoretical
and applied research in all areas of science and technology was highly recognized
in academic institutions of China. Based on his non-stopping efforts in pursuing
probability and statistics research during the lost ten years, Prof. Fang became one
of the leading researchers in mathematical statistics and its applications in various
areas in China. While his research in both theoretical and applied statistics had been
continuing in 1970’s [19, 20, 36, 37, 100, 118], Prof. Fang also collaborated with
his colleagues in writing statistics textbooks to meet the urgent need of statistical
education in China in late 1970’s [37], (Fang et al. 1979).

The last three years (1977, 1978, 1979) of 1970’s is generally considered as a
period of academic revival of Chinese higher education after the ten-year “Cultural
Revolution” (1966–1976). Many scientists and researchers burst out a kind of never-
seen energy in pursuing new knowledge and accomplishments after being forced
out of their academic life for ten years. Prof. Fang belonged to the small group of
researchers who could focus most of their time on research and never stopped along
their research directions. The strong basis laid down fromProf. Pao-LuHsu’s seminar
classes helped Fang’s research throughout the early years in his statistical career. The
statistical foundation knowledge trained from Prof. Hsu’s classes and his never-give-
up ambition in pursuing high-quality statistical career turned out to equip Fang with
inexhaustible resources in his future years of being a highly productive statistician
and a well-known statistical educator. Sections1.2, 1.3 and 1.4 will introduce Prof.
Fang’s creative contributions to multivariate statistics in the last two decades of the
20th century.
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1.2 Multivariate Analysis and Generalized Multivariate
Statistics

After Prof. Pao-LuHsu opened the statistical door for youngChinese statisticians and
led them into the realm of classical statistics in late 1950’s, a number of Prof. Hsu’s
students grew up in late 1970’s. Among these students, Prof. Yao-Ting Zhang (1933–
2007) [31] and Prof. Kai-Tai Fang made significant contributions to inheritance of
Prof. Hsu’smajor idea inmultivariate statistical analysis and its application in various
areas. Both Profs. Zhang and Fang not only brought with their own prolific research
accomplishments but also trained a large number of graduate students and statistical
practitioners fromvarious institutions of Chinese higher education. Facing the almost
empty of statistical textbooks and readings in the higher education of China in late
1970’s and the early years of 1980’s, both Profs. Zhang and Fang, cooperating with
their colleagues, published a fewurgent-needed statistical textbooks tomeet the needs
of college students and postgraduate students in their beginning study in statistics,
for example [29, 38, 62, 63, 68, 70–72, 101, 123]. All of these early statistical
textbooks and readings greatly enriched the urgent needs for students in Chinese
higher education in the whole 1980’s. By training graduate students and organizing
statistical seminars and workshops in various directions, Prof. Fang took the leading
role in developing new research directions in multivariate statistics and statistical
education during the last twenty years of the 20th century. Profs. Fang and Zhang
helped open numerous Chinese young statisticians’ eyes in entering the realm of
modern multivariate statistics and its applications through their productive research
accomplishments and comprehensive statistical education. Profs. Zhang and Fang
are generally considered as the pioneers and initiators of multivariate statistics and
statistical education after Prof. Pao-Lu Hsu in the 20th century of China.

1.2.1 Development of the Theory of Elliptically Contoured
Distributions

With the rapid development of the statistical science and computer science in the last
two or three decades of the 20th century, classical statistics under the normal assump-
tion can no longer meet the needs of high-dimensional data analysis. Statisticians
in the world have long realized the phenomenon and reality of fat-tailed distributed
data. Normal-theory-based statistical methods become doubtable when applied to
this kind of data. Modern computer technology and algorithms make it possible
to analyze a large amount of high-dimensional data beyond the classical normal
assumption. Some early research on extending the normal-theory-based statistical
methods to the ones under a wider class of probability distributions, which is called
the elliptically contoured distributions (ECD for simplicity), includes [2–8, 11–15,
28, 33, 40, 55, 69, 71, 73–75, 112, 113, 122, 124].
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The stochastic representation method plays an important role in the development
of the theory on ECD. For example, the p-dimensional normal distribution Np(μ,Σ)

has a stochastic representation

x
d= μ + Ay, (1.1)

where AA′ = Σ , y has the standard normal distribution Np(o, i) (i stands for the

identity matrix), and “
d=” denotes that the two sides of the equality have the same

probability distribution. Equation (1.1) is called the stochastic representation of the
multivariate normal distribution. One can pay attention to the fact that for any con-

stant p × p orthogonal matrix Γ , it is always true Γ y
d= y for y ∼ Np(o, i). The

probability distribution of y is said to have rotational invariance or to have spherical
symmetry. The idea of spherical symmetry can be extended to the general case by
defining a family of random vectors satisfying spherical symmetry:

Sp(φ) = {x : Γ x
d= x for any constant p × p orthogonal matrix Γ }, (1.2)

where φ(·) stands for the characteristic function of a distribution.Sp(φ) is called the
family of spherically symmetric distributions or simply called spherical distributions.
It is obvious that Sp(φ) includes that the standard normal distribution Np(o, i) and
some commonly known multivariate distributions such as the multivariate Student
t-distribution with zero mean and identity covariance matrix. It is known that x ∈
Sp(φ) if and only if

x
d= Ru(p), (1.3)

where u(p) stands for the uniform distribution on the surface of the unit sphere in
Rp (the p-dimensional real space), that is , ‖u(p)‖ = 1 (‖ · ‖ stands for the usual
Euclidean norm), and R > 0 is a random variable that is independent of u(p). Equa-
tion (1.3) is called the stochastic representation for a spherical distribution. For any
nontrivial x ∈ Sp(φ) with P(x = o) = 0, it is always true that

x
d= ‖x‖ · x

‖x‖ , (1.4)

where ‖x‖ and x/‖x‖ are independent, and x/‖x‖ d= u(p).
Equation (1.1) is a linear transformation of the standard normal Np(o, i) and

gives a family of general multivariate normal distributions by choosing different
linear transformations. This idea can be applied to the distributions in Sp(φ) and
gives a bigger family of distributions:

ECDp(μ,Σ, φ) = {x; x
d= μ + Ay, y ∈ Sp(φ), μ ∈ Rp, AA′ = Σ}. (1.5)

ECDp(μ,Σ, φ) is called the family of elliptically contoured distributions or simply
called elliptical distributions. The Eq. (1.1) with y ∈ Sp(φ) is called the stochastic
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representation for an elliptical distribution. One can imagine that an elliptical distri-
bution would have similar properties to those of the normal distribution Np(μ,Σ).
For example, if x ∈ ECDp(μ,Σ, φ) possesses a probability density function f (x),
it must have the form

f (x) = cΣ− 1
2 g[(x − μ)′Σ−1(x − μ)], (1.6)

where g(·) > 0 is a scalar function and c > 0 is a normalizing constant. For example,
if x ∼ Np(μ,Σ), g(x) = exp(−x/2).

The method of stochastic representation used in Eqs. (1.1)–(1.5) plays an impor-
tant role in developing some theory on ECD. Some statistical inference on the mean
parameter μ and covariance matrix Σ in ECDp(μ,Σ, φ) was developed by Fang
and his collaborators. Their comprehensive outcomes are summarized in [4–6, 77].
Some goodness-of-fit methods for spherical symmetry (a subfamily of ECD) were
developed by Fang and his collaborators, for example [79, 88, 91, 92, 125, 127].
Some major approaches to testing spherical and elliptical symmetry were summa-
rized in [56] and updated by [30].

1.2.2 Application of the Theory of Spherical Matrix
Distributions

Prof. Fang’s contribution to the area of multivariate analysis and generalized mul-
tivariate statistics, including papers, monographs, and textbooks, has been cited by
many international researchers in developing new statistical methodologies for data
analysis. For example [80, 85–87], employed the major theory of spherical matrix
distributions in [77] to developed a class of exact multivariate tests for normal statis-
tical inference. These tests can be still effectively applicable under high dimension
with a small sample size, which may be smaller than the dimension of sample data.
The tests developed by Läuter and his associates provide exact solutions to multivari-
ate normal mean comparisons under high dimension with a small sample size. These
tests extend the traditional Hotelling’s T 2-test to the multiple mean comparisons as
in multivariate analysis of variance (so-calledMANOVA) and general linear tests for
regression coefficients in multivariate regression models. Their tests are still appli-
cable with fair power performance even in the case that the sample size is smaller
than the dimension of sample data, see [84].

An n × p random matrix X is said to have a left-spherical matrix distribution,
denote by X ∼ LSn×p(φ), if for any constant orthogonal matrix Γ (n × n)

Γ X
d= X . (1.7)
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It is known that X ∼ LSn×p(φ) if and only if X has the stochastic representation

X
d= UV, (1.8)

where U (n × p) is independent of V (p × p) and U ∼ U (n×p), which is uniformly
distributed on the Stielfel manifold

Q(n, p) = {Hn×p : H ′H = Ip}. (1.9)

If X = (x1, . . . , xn)′ (n × p) consists of i.i.d. observations from Np(0,Σ), then
X ∼ LSn×p(φ) and X has a stochastic representation (1.8). For any random matrix
D p×q (q ≤ p), which is a function of X in the quadratic form D = f (X ′X), it can
be proved that XD ∼ LSn×p(φ). So XD also has a stochastic representation similar

to (1.8), say, XD
d= U A and U ∼ U (n×q) that is independent of A (q × q). As

a result of this stochastic representation, any affine-invariant statistic T (·) satisfies
T (XD)

d= T (U), whose distribution is uniquely determined nomatter how to choose
the quadratic function D = f (X ′X). One can always choose q ≤ p as dimension
reduction for U ∼ U (n×q). For example, let q = min(n, p) − 1, this will make a
statistic T (XD) applicable for the case of high dimension with a small sample size,
even for p ≤ n. This is the main idea in constructing Läuter and his associates’
parametric tests.

By using the idea of spherical matrix distribution in [77, 85] and his associates’
(1998) approach to constructing multivariate parametric tests, Prof. Fang led his
graduate students and colleagues to develop a class of nonparametric goodness-of-
fit tests for multivariate normality for the case of high dimension with a small sample
size, including some graphical methods for detecting non-normality with confidence
regions, and a class of tests for spherical symmetry. The representative papers are:
[54, 57, 91–93]. Fang’s approach to constructing multivariate tests and graphical
methods for goodness-of-fit purpose was further developed by his graduate students
and associates, see, for example [1, 89, 90, 94–98]. These papers are all based on
the comprehensive study in [52, 77].

1.3 General Multivariate Symmetric and Related
Distributions

Beyond the ECD are some classes of general multivariate symmetric distributions.
A systematic summary of general multivariate continuous distributions can be dated
back to [81]. Prof. Fang’s research in constructing new classes of continuous multi-
variate symmetric distributions and their statistical inference started in 1980’s, see,
for example [33, 69].
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1.3.1 From Spherical Distributions to the l1-norm Symmetric
Distributions

A general continuous multivariate symmetric distribution is usually constructed by a
nonnegative randomcombinationof amultivariate uniformdistributionon the surface
of a unit generalized sphere. By changing the distance measure for defining the unit
generalized sphere, we can construct different families of continuous multivariate
symmetric distributions. By applying a linear transformation to the stochastic repre-
sentation of a general continuous multivariate symmetric distribution, one can obtain
an even more general continuous multivariate symmetric distribution. For example,
an elliptically contoured distribution (ECD) is obtained by applying a linear trans-
formation to the stochastic representation of a spherically symmetric distribution.
Fang and Fang [42] proposed a new family of multivariate exponential distributions.
Based on their result [43], constructed different families of multivariate distributions
related to the exponential distribution. We follow [43] notation to define the family
of distributions given by

Fn = {L(z) : z
d= Ru, R ≥ 0 is independent of u}, (1.10)

where u = (U1, . . . ,Un)
′ is uniformly distributed on the l1-norm unit sphere con-

strained to the positive quadrant

S 1
+ = {z = (z1, . . . , zn)

′ : zi ≥ 0 (i = 1, . . . , n), ‖z‖1 =
n∑

i=1

zi = 1}, (1.11)

where ‖z‖1 = ∑n
i=1 zi is called the l1-norm of z with nonnegative components. Fang

and Fang [43] proved that for any z = (Z1, . . . , Zn)
′ ∈ Fn , its survival function

P(Z1 > z1, . . . , Zn > zn) (1.12)

only depends on the l1-norm ‖z‖1 = ∑n
i=1 zi . As a result, a new family of distribu-

tions can be constructed:

Tn = {L(z) : z = (Z1, . . . , Zn)
′ ∈ Rn

+, P(Z1 > z1, . . . , Zn > zn) = h(‖z‖1)},
(1.13)

where Rn+ = {z = (z1, . . . , zn)′ : zi ≥ 0 (i =, . . . , n)}. Fang and Fang [43] proved
Tn contains a subfamily of symmetric multivariate distributions:

Dn,∞ = {L(z) : z
d= Rx, R ≥ 0 is independent of x = (X1, . . . , Xn)

consisting of i.i.d. Xi ∼ exp(λ)}, (1.14)
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where exp(λ) stands for the exponential distribution with parameter λ > 0. Dn,∞
is actually the family of mixtures of exponential distributions. Fang and Fang [43]
proved the interesting relationship between the three families of distributions:

Dn,∞ ⊂ Tn ⊂ Fn, (1.15)

which means that Fn is the largest family of distributions that contains Tn as its
subset and Tn contains Dn,∞ as its subset. Fang and Fang [43] obtained the general
formulation of the survival function of z = (Z1, . . . , Zn)

′ ∈ Fn:

P(Z1 > a1, . . . , Zn > an) =
∫ +∞

‖a‖1
(1 − ‖a‖1/r)n−1dG(r), (1.16)

where G(r) is the distribution function of R in the stochastic representation (1.10),
a = (a1, . . . , an)′ ∈ Rn+. If z = (Z1, . . . , Zn)

′ ∈ Fn has a density function, it must
have the form of f (‖z‖1) (z ∈ Rn+) that depends only on the l1-norm. Fang and Fang
[44] obtained the distributions of the order statistics from the family of multivariate
l1-norm symmetric distributions. Fang andFang [45] proposed the exponentialmatrix
distribution. Fang and Fang [46] studied statistical inference on the location and scale
parameters of the multivariate l1-norm symmetric distributions. Fang and Fan [39]
studied large sample properties for distributions with rotational symmetries. Fang
and Fang [16] obtained a characterization property of multivariate l1-norm symmet-
ric distributions. Fang and Xu [73] constructed a class of multivariate distributions
including the multivariate logistic. Fang et al. [52] summarizes most of the current
findings on symmetric multivariate and related distributions. The idea of defining
the general distribution family Fn in (1.10) was generalized to the l p-norm symmet-
ric distributions by [121], and was further generalized to the L p-norm symmetric
distributions by [117].

1.3.2 Other Related Multivariate Distributions

Fang and his collaborators’ research on the direction of multivariate symmetric and
related distributions continued throughout the 1990’s and after. For example Fang
and Fang [47] constructed a class of generalized Dirichlet distributions; Fang et al.
[49] constructed a family of bivariate distributions with non-elliptical contours; Fang
et al. [53] introduced the L1-norm symmetric distributions to the topic of L1-norm
statistical analysis. Kotz et al. [82] applied the method of vertical density represen-
tation to a class of multivariate symmetric distributions and proposed a new method
for generating random numbers from these distributions. Rosen et al. [115] proposed
an approach to extending the complex normal distribution. Zhu et al. [126] pro-
posed a new approach to testing symmetry of high-dimensional distributions. Fang
et al. [49] constructed a family of bivariate distributions with non-elliptical contours.
Fang et al. [76] proposed a new approach to generating multivariate distributions by
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using vertical density representation. Fang et al. [50] developed a copula method for
constructing meta-elliptical distributions with given marginals. Their copula method
has been cited by many international scholars in different areas, see for example,
scholar.google.com [50], “The meta-elliptical distributions with given marginals”
has been cited for 296 times. Among various methods for constructing multivariate
distributions, the copula method is one of the most cited methods for constructing a
multivariate distribution with given marginals, see, for example [83].

Fang et al. [50] idea for constructing the meta-type ECD is based on the well-
known property of ECD. If z = (Z1, . . . , Zn)

′ ∼ ECDn(0, R, g) with a density-
generating function g(·) as in (1.6) and correlation matrix R, the marginal p.d.f.
(probability density function) of each component Zi (i = 1, . . . , n) is given by

qg(z) = π(n−1)/2

Γ ((n − 1)/2)

∫ +∞

z2
(y − z2)(n−1)/2g(y)dy (1.17)

and a cumulative distribution function (c.d.f.) given by

Qg(z) = 1

2
+ π(n−1)/2

Γ ((n − 1)/2)

∫ z

0

∫ +∞

u2
(y − u2)(n−1)/2g(y)dydu. (1.18)

Let x = (X1, . . . , Xn)
′ be a random vector with each component Xi having a con-

tinuous p.d.f. fi (xi ) and a c.d.f. Fi (xi ). Let the random vector z = (Z1, . . . , Zn)
′ ∼

ECDn(0, R, g). Suppose that

Zi = Q−1
g (Fi (Xi )), i = 1, . . . , n, (1.19)

where Q−1
g (·) is the inverse of Qg(·) given by (1.18). Fang et al. [50] obtained the

p.d.f. of x = (X1, . . . , Xn)
′ given by

h(x1, . . . , xn) = φ
(
Q−1

g (F1(x1)), . . . , Q
−1
g (Fn(xn)

) n∏

i=1

fi (xi ), (1.20)

where φ is the n-variate density weighting function:

φ(z1, . . . , zn) = |R|− 1
2 g(z′R−1z)∏n
i=1 qg(zi )

. (1.21)

If x = (X1, . . . , Xn)
′ has a p.d.f. given by (1.20), X is said to have a meta-elliptical

distribution, denote by X ∼ MEn(0, R, g; F1, . . . , Fn). The family MEn(0, R, g;
F1, . . . , Fn) includes various multivariate distributions, such as ECDn(0, R, g), the
meta-Gaussian distributions and various asymmetric distributions by choosing suit-
able marginal c.d.f. Fi (xi ). Fang et al. [50] obtained some interesting meta-elliptical
distributions in the two-dimensional case. In general, MEn(0, R, g; F1, . . . , Fn) is
such a big family of distributions that the exact p.d.f. of any given member is diffi-
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cult to obtain. Today copula method has been comprehensively studied and has been
applied to various fields, see, for example [10, 17, 103].

Based on the theory of spherical distributions developed by [52, 95] proposed
a class of uniform tests for goodness of fit of the L p-norm symmetric multivariate
distributions. All of the research accomplishments from Fang and his collabora-
tors have greatly enriched the theory of general symmetric multivariate and related
distributions.

1.4 Directional Data Analysis, Occupancy Problem,
Growth Curve Model, and Miscellaneous Directions

Entering the open age of the economic reformofChina in late 1970’s and1980’s, Prof.
Fang’s research topics were eradicating onto various directions. For example, tomeet
the needs of applied statistics in industry of China, Prof. Fang carried out a series of
research projects in clustering analysis, occupancy problem, mathematical statistics
and standardization, quality control, and graph analysis of multivariate observations.
The research outcomes from these projects were summarized in papers: [19–25, 36,
60, 64].

1.4.1 Directional Data Analysis and Occupancy Problem

Directional data analysis is one of Prof. Fangs interests in late 1980’s. Directional
data occurs in many areas, namely the earth sciences, meteorology and medicine. It
was a hot international research area in 1970’s. A summary overview on directional
data analysis was given by [102]. Let x = (x1, . . . , xp)′ be a direction on the surface
of the unit sphere Sp = {x ∈ Rp : ‖x‖ = 1} (Rp stands for the usual p-dimensional
Euclidean space, ‖ · ‖ stands for the usual distance function). Some important topics
in directional data analysis include the correlation analysis of data on any two dif-
ferent directions x and y on Sp and regression problem like y given x. Fang led his
graduate students to this research area that was brand new to Chinese statisticians in
late 1980’s. The major research outcomes were published in their series of papers
[41, 52].

In addition to focusing his research on statistical theory and its applications, Prof.
Fang also carried out research on probability theory and its applications. For example,
occupancy in probability theory is about the problem of reasonably assigning a set of
balls into a group of cells. Although the occupancy problem originated from simple
probability theory, some practical problems on resource allocation can be reduced
to the solution to some kind of occupancy problems. For example, the number of
units in use in hotel rooms, apartment flats, or offices, or the number of persons
using an undivided space, etc., can be described as a kind of occupancy problems.
The optimal allocation of limited resources reduces to the solution to an occupancy
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problem. Prof. Fang’s research on the occupancy problem can be dated back to early
1980’s, see, for example [25–27, 61].

1.4.2 Growth Curve Model and Miscellaneous Directions

The growth curve model (GCM for simplicity) is another research field in which
Prof. Fang guided his graduate students in the middle of 1980’s. A general review
on GCM methodologies for data analysis was given by [114]. Among others, Prof.
Fang’s former Ph.D. student Jianxin Pan played the leading role in developing new
GCM methodologies for data analysis. Outlier detection, discovery of influential
observations, and covariance structure are important topics in the GCM theory. A
general formulation of GCM is [104] defined by

Y p×n = X p×mBm×r Zr×n + E p×n, (1.22)

where where X and Z are known design matrices of rank m < p and r < n,
respectively, and the regression coefficient matrix B is unknown. Furthermore,
the columns of the error matrix E are independent p-variate normal with a mean
vector 0 and a common unknown covariance matrix Σ > 0. The GCM formu-
lation defined by (1.22) can be written as a matrix-variate normal distribution
Y ∼ Np×n(XBZ,Σ ⊗ In) (“⊗” stands for the Kronecker product). The maximum
likelihood estimate (MLE) for the unknown coefficient matrix B and the unknown
covariance matrix Σ can be easily obtained from the expression of the matrix nor-
mal distribution of GCM. Pan and Fang [104] employed the mean-shift regression
model to develop an approach for multiple outlier detection. Pan and Fang [105]
studied the influence of a subset of observations on the growth regression fittings
by comparing empirical influence functions. Pan et al. [108] proposed the Bayesian
local influence approach to develop amethod for GCMmodel diagnostics with Rao’s
simple covariance structure. Pan et al. [109] studied the local influence assessment
in GCM with unstructured covariance under an abstract perturbation scheme. Pan et
al. [110] discussed the posterior distribution of the covariance matrix of GCM. Pan
and Fang [106] extended the results in [108] from Rao’s simple covariance structure
to unstructured covariance. Pan et al. [111] applied projection pursuit techniques to
multiple outlier detection in multivariate data analysis. A comprehensive study on
the current development of GCM was summarized in [107].

Prof. Fang’s research interest and accomplishments have been emanating from a
number of areas and applications during 1990’s. Besides his contributions to the areas
of generalized multivariate analysis, theory on symmetric multivariate and related
distributions, occupancy problems, directional data analysis, and growth curve mod-
eling, Prof. Fang’s miscellaneous and other significant contributions to statistics can
be found from Fang’s series of papers. Among the miscellaneous research direc-
tions, construction of effective algorithms for complex numerical computation in
statistics became one of Prof. Fang’s important research directions in 1990’s. For
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example [65, 66, 119], proposed the sequential algorithm for optimization problems
and solving nonlinear equations [67]; proposed the general applications of number-
theoretic methods in statistics [116]; proposed the neural computation on nonlinear
regression analysis problems [51]; proposed some global optimization algorithms in
statistics [120]; discussed the quasi-Monte Carlo approaches and their applications
in statistics and econometrics; and [78] proposed a two-stage algorithm associated
with number-theoretic methods for numerical evaluation of integrals. In addition to
the major research areas, these miscellaneous research directions, as well as their
related applications, have significantly enrich Prof. Fang’s field of research.

Entering the new millenium of 2000, Prof. Fang led his graduate students and
worked with his collaborators on the theory and applications of uniform design
and general experimental designs –the biggest research area that Prof. Fang and his
collaborators have been developing with the richest outcomes. One can refer to Prof.
Fang and his collaborators’ series of papers in 2000’s. It is no doubt that the new
millenium marks Prof. Kai-Tai Fang’s biggest step to the statistical pyramid. We
wish Prof. Fang would never stop marching to the peak of the statistical pyramid in
his lifetime as a statistician.
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Chapter 2
The Contribution to Experimental
Designs by Kai-Tai Fang

Min-Qian Liu, Dennis K. J. Lin, and Yongdao Zhou

Abstract Professor Kai-Tai Fang has awide research interest including applications
of number-theoretic methods in statistics, distribution theory, experimental design,
multivariate analysis and data mining. This paper only focuses on his contribution to
experimental design.He proposed themethod of visualization analysis for orthogonal
designs in 1970. Inspired by three big military projects in 1978, he cooperated with
Prof. Yuan Wang and proposed a new type of design of computer experiments,
uniform design by utilized the number-theoretic methods. The uniform design can
be also regarded as a kind of fractional factorial design, supersaturated design and
designof experimentswithmixture. In the past decades, the theory and applications of
uniform designs have been developed rapidly by Kai-Tai Fang and his collaborators.
In 2008, together with Professor Yuan Wang, Kai-Tai Fang received the 2008 State
Natural Science Award at the Second Level, the highest level award in this kind of
State award in that year. This paper focuses on the contribution of Kai-Tai Fang to
experimental designs such as uniform designs, orthogonal designs, supersaturated
designs and computer experiments.

2.1 Introduction

During the early 1970s, researches from Peking University and the Institute of Math-
ematics, Chinese Academy of Sciences, attempted to promote and apply orthogonal
design to the industrial sector. In 1972, Kai-Tai Fang had the opportunity to go to the
Tsingtao Beer Factory and other factories. He supervised their engineers to apply the
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orthogonal design to industrial experiments. During the consultancy process Kai-Tai
Fang found that the engineers had difficulty to understand statistical methods, espe-
cially in calculating the ANOVA table without the help of computers or calculators in
that time. Therefore, he realized the need for statisticians to simplify the complicated
statistical theory and methods, and proposed the method of “Visualization Analy-
sis” for analytical use on experimental data. Very soon this method was commonly
used in the Mainland. He also suggested to use the range instead of sum of squares
in ANOVA table, called as “the range analysis”, see Fang and Liu [25]. The range
analysis is simple to understand and easy to compute.

During the consultancy process Kai-Tai Fang met many case studies with mul-
tiple factors, large experimental domains and non-linear relationships between the
response and factors. Some experiments can not reach the goal for several years.
Faced with these complicated cases Kai-Tai Fang considered several issues: (1) the
number of levels should be more than 2 (3–5 for example); (2) Considering all the
possible factors in the first stage; (3) ranking importance of the factors and inter-
actions for choosing recommended level-combination. By these considerations he
helped the engineers to solve a number of complicated experiments. Kai-Tai Fang
with his colleague Mr Liu summarized their experience into a Notes for giving
lecture to engineers. Late, this Notes had been published in the journal, see Fang and
Liu [24].

The most difficult problems Kai-Tai Fang met in 1978 can not be solved using the
orthogonal designs. These problems gave a strong motivation for the establishment
of the theory and method of uniform designs.

In summary, Kai-Tai Fang has authored and co-authored 25monographs and text-
books, and published more than 300 papers, among which 5 monographs and more
than 100 papers are on the research field of experimental designs. The purpose of this
paper is to introduce Fang’s contribution to uniform designs, orthogonal designs and
supersaturated designs. The paper is organized as follows. Sections2.2–2.5 intro-
duce the contribution to uniform designs, orthogonal designs and supersaturated
designs by Kai-Tai Fang, respectively. Some material is chosen from the paper “A
Conversation with Kai-Tai Fang” by Loie et al. [50].

2.2 The Contribution to Uniform Designs

In 1978, Kai-Tai Fang took part in three major missile-related projects covering
land, sea and aerospace. In these projects the true model between the response and
factors can be numerical expressed by solving a system of differential equations. It
needed a long computation time by a computer. It turned out the idea of computer
experiments. Due to the Cultural Revolution there was no any information about
the design of computer experiments from outside of China. Kai-Tai Fang and Yuan
Wang considered to choose a certain number of experiments in the domain and find
an approximate model to replace the true one. For example, one project needs a
design with 6 factors some of which having at least 18 levels on a large experimental
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domain. Since the experiment was quite expensive and the speed of computer was
quite slow (one experiment in one day), they wanted a design with at most 50 runs.
Again, it was highly challenging. It needed a new method that could approximate a
complicated system by a simple method with required accuracy. The great challenge
was a motivating force to Kai-Tai Fang.

Kai-Tai Fang collaborated with Prof. Yuan Wang and borrowed the idea of
number-theoretic methods to put experimental points uniformly on the domain and
proposed the uniform design after a three-month hard working. Applying the uni-
form design to one of the three projects, 31 runs were arranged for the 6 factors
each having 31 levels, and a satisfactory result was achieved. This method made
that it was possible to calculate an accurate answer in 0.00001s with the required
accuracy. Eventually, the three projects were successful and won several nationwide
awards. Kai-Tai Fang and Prof. Wang published two papers for introducing the uni-
form design theory in Chinese and English [4, 60], respectively. The new type of
experimental designs was proposed since then. It was both time- and cost-saving and
provided a valuable alternative design in computer experiments as well as laboratory
experiments [17, 18, 23, 38]. During the 1970s, especially just after the Cultural
Revolution in China, many scholars in China were still adhering to the modeling of
the traditional experimental designs for data analysis, however, Kai-Tai Fang used
regression analysis for modelling. Although the uniform design approach was not
quite supported by few scholars in the experimental design, but it was greatly wel-
comed by the engineers. Several years later, the method of uniform designs has being
used extensively in the mainland. Not only was it used for military purposes, but also
it was adopted by and for civilians.

The idea of uniform design was from the overall mean regression model and the
number-theoretic methods (Quasi-Monte Carlo methods). However, the uniformity
is a geometric concept, not a statistical criterion. How to set up a solid theory is a very
difficult target. Kai-Tai Fang had a difficult time during 1990–1996 after he moved
to Hong Kong Baptist University. In fact, 90% of his academic pursuits has focused
on uniform design since 1993. The progress was slow at the beginning. After several
years, his collaboration with several scholars led to the discovery of a breakthrough.

In the following,we introduce the contribution to uniformdesigns byKai-Tai Fang
in the aspects of uniformity measures, construction methods of uniform designs and
the relationship among different types of designs. Recently, Fang et al. [26] published
a monograph that introduces the theory of the uniform design in details, and collects
recent development in this direction.

2.2.1 Uniformity Measures

Assume y = f (x) be the true model of a system on a domainX = Cs = [0, 1]s =
[0, 1] × · · · × [0, 1], where x = (x1, . . . , xs) are variables/factors and y is response.
Let P = {x1, . . . , xn} be a set of n design points on Cs . One important issue is to
estimate the overall mean of f (x), i.e., E(y) = ∫

Cs f (x)dx. A natural idea is to use
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the sample mean ofP , ȳ(P) = 1
n

∑n
i=1 yi to estimate E(y), where yi = f (xi ), i =

1, . . . , n. The difference between E(y) and the sample mean ȳ(P) has following
upper bound

|ȳ(P) − E(y)| ≤ V ( f )D∗(P), (2.1)

where V ( f ) is the total variation of the function f in the sense of Hardy and Krause
(see Hua and Wang [45]; Niederreiter [54]), and D∗(P) is the star discrepancy of
P proposed by Weyl [63], which does not depend on f . The inequality (2.1) is the
famous Koksma-Hlawka Inequality in quasi-Monte Carlo methods, and it is tight in
some cases. If V ( f ) is bounded in the experimental domain, then one may choose
P with n design points on Cs such that its star discrepancy D∗(P) is as small as
possible and we can minimize the upper bound of the difference in (2.1). Fang [4]
and Wang and Fang [60] called a design to be a uniform design if it has the smallest
star discrepancy in the design space.

However, the star discrepancy has some shortcomings. Kai-Tai pointed out that
it is not invariant under rotation of the coordinates, and is not easy to compute.
He discussed this problem with his colleague Prof. Fred J. Hickernell. Hickernell
[42, 43] used the tool of reproducing kernel Hilbert space, to generalize the defini-
tion of discrepancy and proposed different types of discrepancies. Among them the
wrap-around L2-discrepancy (WD) and centered L2-discrepancy (CD) are popularly
used. Fang et al. [17] gave the following requirements for a reasonable measure of
uniformity.

C1 It is invariant under permuting factors and/or runs.
C2 It is invariant under rotation of the coordinates.
C3 It can measure not only uniformity of P over Cs , but also the projection uni-

formity of P over Cu , where u is a non-empty subset of {1, . . . , s}.
C4 There is some reasonable geometric meaning.
C5 It is easy to compute.
C6 It satisfies the Koksma-Hlawka-like inequality.
C7 It is consistent with other criteria in experimental design.

It has been known that the star discrepancy satisfiesC1,C3,C4 andC6 and that both
the WD and CD satisfy the requirements C1−C7. Later, Zhou et al. [70] considered
the following two additional requirements for a uniformity measure.

C8 Sensitivity on a shift for one or more dimensions.
C9 Less curse of dimensionality.

Zhou et al. [70] also showed that CD does not satisfy the requirement C9 andWD
does not satisfy the requirementC8. Then, they proposed another type of discrepancy,
called mixture discrepancy (MD). The MD can satisfy C1−C9, which means that
the MD can overcome the shortcomings of WD and CD, and MD may be the more
reasonable measure of uniformity.

In many physical or practical situations, it prefers to have an experimental domain
with a finite number of levels. Then, it is requested to give some discrepancies for
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experimental domain with finite candidates directly. Hickernell and Liu [44] and
Fang et al. [20] proposed a discrepancy, called discrete discrepancy, which is also
defined by a special kernel. Qin and Fang [57] further discussed the property of
the discrete discrepancy and the construction methods of uniform designs. Besides,
Zhou et al. [71] proposed the Lee discrepancy for finite numbers of levels. The
discrete discrepancy is better for two-level designs and the Lee discrepancy can be
used for multi-level designs.

It is known that a measure of uniformity plays a key role in the theory of uniform
designs, Kai-Tai Fang, Fred J. Hickernell and their collaborators proposed different
types of discrepancies, which greatly develop the theory of uniform designs. Based
on those discrepancies, many relationships between uniform designs and other type
of designs were shown by Kai-Tai Fang and his collaborators.

Given a type of discrepancies, a tight lower bound is useful for the construction
of uniform designs, since it can be served as a benchmark during the searching
procedure. Kai-Tai Fang and his collaborators gave many lower bounds for different
types of discrepancies, see [28, 32, 35, 37].

2.2.2 Construction Methods of Uniform Designs

For the convenient use of uniform designs in practice, uniform design tables are very
useful. Kai-Tai Fang and his collaborators Mingyao Ai, Gennian Ge, Fred J. Hick-
ernell, Runze Li, Min-Qian Liu, Xuan Lu, Chang-Xing Ma, Jianhui Ning, Jianxin
Pan, Hong Qin, Yu Tang, Yuan Wang, Xiaoqun Wang, Peter Winker, Aijun Zhang,
Yongdao Zhou, etc., gave many construction methods, which include the following
three approaches: (i) Quasi-Monte Carlo methods [4, 16, 73]; (ii) Combinatorial
methods [9, 11–13, 13]; (iii) Numerical search [35, 64, 65, 68, 69].

The Quasi-Monte Carlo methods are popularly used to construct uniform designs,
since the first group of uniform designs were generated from the number-theoretic
methods. Among them, the good lattice point (glp) method and the glp method
with power generator are firstly used by Fang [4]. The main idea of glp method for
constructing an n-point s-factor design is to find a generator vector (h1, . . . , hs),
where hi is coprime with n and is h1, . . . , hs are different with each other. Then, the
i th run of a glp set is determined by di j = ih j (mod n), which means a glp set is
fully determined by the generator vector. One may find a best generator vector under
some uniformity criterion. Moreover, given the parameters including the number
of runs n and the number of factors s the uniformity of the design constructed by
the glp method may have some space to improve. For example, based on a glp set,
[73] showed that the linear level permutation technique can improve the space-filling
property under the uniformity criterion and maximin distance criterion.

From 2000, Kai-Tai Fang began the collaboration with Gennian Ge from Suzhou
University and Min-Qian Liu from Nankai University to link up combinatorial
designs and uniform designs. Combinatorial construction methods are powerful to
construct uniform designs under the discrete discrepancy, i.e., the resulting designs
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by those methods reach the minimum values of discrete discrepancy in many cases.
The main tool of the combinatorial methods is the equivalence between an asymmet-
rical uniform designs with constant number of coincidences between any two rows
and a uniformly resolvable design (URD). Therefore, given a URD, we can obtain
a uniform design without any computational search. There are some miscellaneous
known results on the existence of URDs, readers can refer to [11, 13] and the refer-
ences therein for these results. The combinatorial methods can construct symmetric
and asymmetric uniform designs, as well as supersaturated uniform designs. Some
proposed construction methods by Kai-Tai Fang and his collaborators employed the
following tools.

(A) Resolvable balanced incomplete block designs [9, 12, 13]
(B) Room squares [8]
(C) Resolvable packing designs [10, 27]
(D) Large sets of Kirkman triple systems [10]
(E) Super-simple resolvable t-designs [14]
(F) Resolvable group divisible designs [11]
(G) Latin squares [34]
(H) Resolvable partially pairwise balanced designs [36]

Here, (A)–(E) introduced the approaches for constructing symmetrical uniform
designs, and (F)–(H) for asymmetrical cases. Most of those construction methods
can obtain uniform designs under the discrete discrepancy.

The combinatorial methods only work for some special parameters n, s and
q1, . . . , qs . It is worth to give some construction methods of uniform designs for
any given parameters. Kai-Tai Fang invited Peter Winker from Germany, a doctoral
student then and a professor now, to cooperate for the numerical searching meth-
ods, which can satisfy such a requirement. Peter Winker is one of the experts on the
threshold-accepting (TA) method. Winker and Fang [64] applied the TA for calcula-
tion of the star discrepancy and Winker and Fang [65] applied the TA for numerical
searching uniform designs. This method uses the hard thresholds to accept the new
solution in the neighborhood of current solution rather than some probability to
accept the new solution in the simulation annealing method. Fang and Ma [29] and
Fang et al. [31] used the TA algorithm to find uniform design tables under the WD
and CD, respectively. Fang et al. [28] reexpressed the formulas of the WD and CD
as functions of column balance, and also as functions of Hamming distances of the
rows. And they also developed an efficient updating procedure for the local search
heuristic threshold accepting based on these formulations of the WD and CD. Later,
Fang et al. [35] proposed an efficient balance-pursuit heuristic algorithm to findmany
new uniform designs, especially with high levels. It was seen that the new algorithm
is more powerful than the existing traditional threshold accepting algorithm. Fang
et al. [32] also used the balance-pursuit heuristic algorithm to obtain many uni-
form designs. This algorithm uses some combinatorial properties of inner structures
required for a uniform design.Moreover, Fang et al. [15] constructed uniform designs
via an adjusted threshold accepting algorithm under the mixture discrepancy.
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Later, Zhou et al. [69] reformed the optimization method for searching uniform
designs into a zero-one quadratic integer program problem, and used some local
searching methods to obtain the solution of such a problem, as well as the corre-
sponding uniform design. Moreover, Fang et al. [23] found that many orthogonal
designs can be generated by TA under the CD. Their results imply the so called
“uniformly orthogonal design” by Fang and Ma [29], “Uniform fractional factorial
designs” by Tang et al. [59].

2.3 More About Uniform Designs

In this section, more aspects of uniform designs are shown. We will show the con-
tribution of Kai-Tai Fang on the topic of the connection between uniform designs
and other types of designs, uniform designs for experiments with mixture and the
application of uniform designs.

2.3.1 Connection Between Uniform Designs and Other Types
of Designs

The uniform design theory was first proposed from Quasi-Monte Carlo method, and
it is a deterministicmethod. It seems that the uniform design theory is totally different
with orthogonal designswhich havemuch statistical meaningfulness. Based onmany
research results of uniform designs, Kai-Tai Fang came up with the conjecture that
most orthogonal designs are uniform in a certain sense. If this conjecture is true, we
could link up orthogonal design with uniform design and obtain a vast development
potential for uniform designs.

Kai-Tai Fang collaborated with several scholars and led to the discovery of a
breakthrough. First, Kai-Tai Fang and PeterWinker found that such a conjecture was
true in many cases, i.e., many existing orthogonal designs are also uniform designs.
The result is based on the measure of uniformity proposed by Fang’s colleague,
Fred J. Hickernell. This discovery was of mutual benefit to both Hickernell and Fang.
For Hickernell, his proposed measure of uniformity was initially not appreciated by
many researchers in Quasi-Monte Carlo field but his measure became important in
theory of uniform designs. For Fang, the measure of uniformity helped to prove that
many existing orthogonal designs are uniform designs.

It still had one step to complete the proof of such a conjecture, i.e., we need a
mathematical proof. Then, Kai-Tai Fang invited Rahul Mukerjee, Professor of the
Indian Institute of Management in Calcutta, to HKBU for the collaboration in this
topic. Rahul is a worldwide expert in the filed of experimental design. After two
weeks, Rahul told Kai-Tai that the conjecture is not always true, even for a two-level
factorial case. However, he showed an excellent result that it exists some relation-
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ship between uniformity and orthogonality. Usually, the wordlength pattern and the
criterion “minimum aberration” are popularly used to measure the orthogonality of a
regular design, and the CD can be used to assess the uniformity of a design. Kai-Tai
and Rahul established an analytic relationship between the CD and wordlength pat-
tern for regular designs. This discovery was immediately published in a top statistical
journal, Biometrika, see Fang and Mukerjee [33]. It opened up an entirely new area
that linked up uniform design and factorial design, an area in which Kai-Tai Fang
collaborated with Chang-Xing Ma and others, and published more than 20 papers
during 1999–2004. For example, Ma et al. [53] showed that the equivalence between
the uniformity and orthogonality is only true in some special cases.

Tang et al. [59] gave the relationship between the CD and the generalized
wordlength pattern of a three-level fractional factorial design, and also showed that
minimum aberration designs have low discrepancies on average. Later, Zhou and
Xu [72] obtained the close relationship between any discrepancy defined by the tool
of reproduced kernel Hilbert space and the generalized wordlength pattern, which
can measure the orthogonality of a nonregular design.

Moreover, Zhang et al. [67] used the majorization framework to generalize and
unify classical criteria for comparisons of balanced lattice designs, which include
fractional factorial designs, supersaturated designs and uniform designs. Fang and
Ma [30] showed the relationship between uniformity, aberration and correlation in
regular fractions 3s−1. Furthermore, Ma et al. [52] used the CD to efficiently detect
the isomorphism of fractional factorial designs.

Furthermore, the blocking design is an important type of experimental designs.
Blocking experiments emphasize the balance among blocks, treatments or groups.
Such a balance is easy to intuitively understand, and has a simple formula in data
analysis. However, it needs to be proven in theory. Under the guide of Prof. Kai-
Tai Fang, Liu and Chan [46] used the discrete discrepancy to prove that balanced
incomplete blocking designs are the most uniform ones among all binary incomplete
block designs. Liu and Fang [47] considered a certain kind of resolvable incomplete
blocking designs, obtained a sufficient and necessary condition for such a blocking
design is the most uniform in the sense of a discrete discrepancy measure, proposed
a construction method for such designs via a kind of U-type designs, and set up
an important bridge between resolvable incomplete blocking designs and U-type
designs.

2.3.2 Uniform Designs for Experiments with Mixture

Usually, the experimental domain of uniform designs is a hypercube. Kai-Kai Fang
and Yuan Wang firstly considered uniform designs for experiments with mixture
[38, 61], i.e., the experimental domain becomes a simplex. Later, Fang and Yang
[39] discussed uniform designs of experiments with restricted mixtures.

For constructing uniform design of experiments with mixtures, the uniformity
criterion should be given first. There are two types of uniformity criteria, indirect
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and direct methods. One indirect method for measuring the uniformity of designs
with mixtures is to measure the uniformity of the corresponding design on the hyper-
cube Cs−1 by a special transformation, see the F-discrepancy in Fang and Wang
[38]. Ning et al. [56] proposed another uniformity criterion, DM2-discrepancy, for
direct measuring the uniformity of designs with mixtures. Ning et al. [55] gave some
construction method for the uniform designs with mixture on simplex.

2.3.3 Application of Uniform Designs

The achieved breakthrough in relation to uniform designs by Kai-Tai Fang and his
collaborators won an international recognition. For example, the Handbook of Statis-
tics (Volume 22) included the topic of uniform designs as a chapter, see Fang and
Lin [19]. The Encyclopedia of Statistics Science (Second Edition) had chosen the
aspect of uniform design as an entry, see Fang [5]. Both the Handbook of Engineer-
ing Statistics and the International Encyclopedia of Statistical Science by Springer
also invited Kai-Tai Fang to write a chapter on uniform design for engineers, see
Fang and Chan [7] and Fang [6], respectively. Moreover, Encyclopedia on Statistics
in Quality and Reliability also invited Kai-Tai Fang to introduce the topic of uni-
form experimental designs, see Fang and Hickernell [3]. Uniform designs also won
national acclaim. The Uniform Design Association of China (UDAC), as a branch
of the Chinese Mathematical Society, was founded in 1994. The UDAC organized
the national conferences, training courses, workshops and other activities to meet
the calls to promote the applications of uniform designs.

In application-wise, there were numerous successful applications of uniform
designs in China. With the keyword “uniform design”, you can find thousands of
published case studies from the academic database China national knowledge infras-
tructure (CNKI), which collects most of the important academic journals in China.
The application of uniform designs by Ford Motor Co. Ltd in USA is an exemplary
application of this method. In Ford, Dr. Agus Sudjianto introduced to Kai-Tai Fang
that the technique had become a critical enabler for them to execute “Design for
Six Sigma” to support the new product development, in particular, for the automo-
tive engine design. Moreover, it was told that computer experiments using uniform
designs have become the standard practices at FordMotor Co. Ltd to support the early
stage of the production design before the availability of the hardware. As a result,
Fang et al. [17] published a textbook/monograph entitled “Design and Modeling for
Computer Experiments”, in which many case studies were from the real cases in
Ford Motor Co. Ltd. In 2001 the 50th Gordon Research Conference: the Statistics
in Chemistry & Chemical Engineering invited the topic “Uniform design for sim-
ulation experiments” as one of the nine topics, and each topic was given 3.5h for
introduction and discussion. Kai-Tai Fang, Professors Dennis K. J. Lin and Yizhen
Liang (a chemist) formed a panel for this topic.

From the website of CNKI, there are 5660 papers used uniform designs to solve
their problems between the period 2000–2018, see Fig. 2.1. There are also more than
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Fig. 2.1 The number of
publications with the topic of
uniform designs in CNKI
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2000 citations of uniform designs from ISI Web of Science. Moreover, from the
Google Scholar, the number of the citations of Kai-Tai Fang’s publications is more
than 14,000 times, andmost of them are the citations of the papers about experimental
designs, especially the topics of uniform designs.

2.4 The Contribution to Orthogonal Designs

During the process of promoting the commonuse of orthogonal designs,Kai-Tai Fang
encountered quite a number of complicated multi-factor and non-linear issues. The
engineers were unable to identify a satisfactory combination values of the parameters
for a long time. An example was a porcelain insulator factory in Nanjing. The factory
had a team whose job is to assign the conduction of the experiments continually
for identifying a satisfactory combination values of the parameters. Although they
achieved much knowledge in their experiments, they still failed to get a suitable
combination of the values of the parameters to satisfy the requirement. At that time,
the factory received a large number of orders for glass insulators but was unable to
deliver the products. In view of the complexity of the issue, Kai-Tai Fang adhered to
the principle of “big net catching big fish”, and he conducted a 25-run experiment
and arranged the six 5-level factors by an orthogonal design.

Such a design is a saturated design, which can not estimate all the main effects of
the six factors, as well as none of the interaction effects can be estimated. However, in
those 25 runs, all the responses of a special level-combination fulfill all the require-
ments. That was a great news to the factory in-charge. Should one liken the outcome
to winning the US lottery or was it significant? In fact, using an orthogonal design
to conduct 25 experiments actually represented 15,625 experiments, thus greatly
increasing the probability of attaining an ideal technical/manufacturing condition.
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The power of fractional factorial designs is that the experimental points have a good
representation. Since then, Kai-Tai Fang used the same strategy to solve many of
the “lasting, major and difficult” problems of the factories. This success encouraged
Kai-Tai Fang to initiate the theory and method of uniform designs.

There are many criteria for assessing the property of orthogonal designs, such
as minimum aberration [41], which is based on the wordlength pattern and can
only be used for the comparison of regular designs. For extending such a criterion
for nonregular designs, Kai-Tai Fang and Chang-Xing Ma used the MacWilliams
identities to obtain the generalized wordlength pattern and the corresponding gen-
eralized minimum aberration criterion [51]. Independently, Xu and Wu [66] also
obtained the generalized wordlength pattern by ANOVA models. The obtained gen-
eralized wordlength patterns by the two different ways are equivalent to each other
for symmetrical nonregular designs. Additionally, the result in Xu and Wu [66] still
works for asymmetrical designs. Later, Fang et al. [40] gave an effective algorithm
for generation of factorial designs with generalized minimum aberration.

Moreover, Kai-Tai Fang cooperated with Lingyou Chan and Peter Winker to con-
sider the relationship between orthogonal designs and optimal designs. They verified
that each orthogonal array is an optimal design for a special polynomial regression
models, see Chan et al. [1]. Liu et al. [49] showed the connections among different
criteria for asymmetrical fractional factorial designs. Fang et al. [22] provided a the-
oretical justification for the optimal foldover plans for two-level designs, including
the regular 2s−p, nonregular, saturated and supersaturated designs.

2.5 The Contribution to Supersaturated Designs

A supersaturated design is essentially a fractional factorial design in which the num-
ber of potential effects is greater than the number of runs. A supersaturated design
can be firstly used to screen the important factors in an experiment. Cooperated with
Dennis K.J. Lin and Min-Qian Liu, Kai-Tai Fang gave a new criterion, E( fNOD)-
criterion, for comparing supersaturated designs from the viewpoint of orthogonality
and uniformity, see Fang et al. [20]. They also showed that the E( fNOD)-criterion
is the generalization of the popularly used E(s2) and aveχ2 criteria for two- and
three-level supersaturated designs, respectively. Moreover, Kai-Tai Fang also gave
other criteria for assessing supersaturated designs such as Ave(| f |), Ave( f 2) and
fmax , see Fang et al. [21].
Based on those criteria, Kai-Tai Fang and his collaborators gave many construc-

tion methods for multi-level andmixed-level supersaturated designs and investigated
the properties of the obtained designs. The constructionmethods include the fractions
of saturated orthogonal arrays (FSOA) method, the cyclic construction method, col-
lapsing a U-type uniform design to an orthogonal array, and the global optimization
algorithm, the threshold accepting algorithm, and the aforementioned combinato-
rial methods, see [2, 8, 10, 13, 14, 20, 21, 58]. Those results have high citations
according to the ISI web of science. Moreover, Liu and Fang [48] used a uniform
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mixed-level supersaturated design to study a case in computer experiments, and
explored the efficiency of supersaturated designs for screening important factors and
building the predictors.

2.6 Conclusion

Kai-Tai Fang’s contribution in the field of experimental designs includes the theoret-
ical development and practical application of orthogonal designs, uniform designs
and supersaturated designs. Moreover, he also has some contribution on other types
of designs. For example, he showed that the optimal representative point method via
quantizer is superior to using other methods (including orthogonal array) to design
outer array points in Taguchi’s product-array designs, see [62]. In a word, among
his contributions, the most important one of Kai-Tai Fang is that he first proposed
the uniform design with Yuan Wang. Uniform design becomes an important type of
experimental designs which has great theoretical significance and application value.
The uniform experimental design can be regarded as a fractional factorial design
with model uncertainty, a space-filling design for computer experiments, a robust
design against the model specification, a supersaturated design and can be applied
to experiments with mixtures. Moreover, in the era of big data, experimental designs
will also play an important role for the analysis of big data. Uniform designs also
have such a chance to be used for dealing with their problem. For example, one can
use uniform designs for the subsampling of big data.
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Chapter 3
From “Clothing Standard”
to “Chemometrics”

Review of Prof. Kai-Tai Fang’s Contributions
in Data Mining

Ping He, Xiaoling Peng, and Qingsong Xu

Abstract This paper reviews Prof. Kai-Tai Fang’s contributions in data mining.
Since the 1970s, Prof. Fang has been committed to applying statistical ideas and
methods to deal with large amounts of data in practical projects. By analyzing more
than 400,000 pieces of data, he found representative clothing indicators and estab-
lished the first adult clothing standard in China; through cleaning andmodeling steel-
making data from steel mills all over the country, he revised the national standard
for alloy structural steel; by studying various data in chemometrics, he introduced
many new advanced statistical methods to improve the identification and classifica-
tion of chemical components, established more effective models for the relationship
between quantitative structure and activity, and promoted the application of the tradi-
tional Chinese medicine (TCM) fingerprint in TCM quality control. Professor Fang
and his team’s research achievements in data mining have been highly appreciated by
relevant experts. This article is written to celebrate the 80th birthday of Prof. Kaitai
Fang.
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3.1 Introduction

With the rapid development of computer technology, data collection and storage
in various industries has greatly improved, and the amount of data has increased
dramatically. Various new statistical applications have emerged, showing their vital
role in the development of all fields. In this revolutionary data-driven evolution,
statistics, as the core foundation and technology of data science, has unprecedentedly
developed in recent years. Many new theories and methods of statistics have been
proposed to deal with new types of data that have broken through the scales and types
of classical data.

In China, as the economy developed, so did the mutual integration of various
disciplines and the rapid development of computer technology, which resulted in
the government, enterprises and society continuously expanding and promoting the
application of statistics. The technology of data mining receives increasing attention
and is widely used in various fields. All of these are inseparable from the efforts and
contributions of statisticians.

Professor Kai-Tai Fang has always been committed to research on data mining
and promoting the application of statistics in practical fields. He, in cooperation with
experts in other fields, undertookmanypractical projects, such as establishing the first
Chinese adult clothing standards by analyzing body size measurements, assessing
and optimizing the national standard for alloy structural steel through processing the
steel-making data from all state-owned steel mills, identifying the composition and
structure of the compounds via machine learning put into mass spectral databases,
and improving the efficiency of traditional Chinese medicine (TCM) quality control
by analyzing TCM fingerprints. As well as these accomplishments, Prof. Fang wrote
multiple books. He together with Prof. Yuan Wang published Number-Theoretic
Methods in Statistics [7]. The theories and methods introduced in the book belong to
the intersection of number theory, statistics, and computer science and widely used
in computer simulation experiment, agriculture, industry, medicine, and high-tech
innovation. Also, the book Introduction to Multivariate Statistical Analysis [9] by
Profs. Fang and Yaoting Zhang not only has been adopted as a textbook by many
universities, but also has been recommended as one of the main reference books for
those engaged in work related to statistics and data mining.

3.2 Establishment of the First Chinese Adult Clothing
Standard

In the early 1970s, as the Chinese population grew, making clothing needed to be
automated, controlled, and standardized for mass production to meet the growing
demand. However, at that time, China did not have a national-level clothing standard
to provide a reliable basis for the design specifications needed to produce garments.
For this reason, Chinas Ministry of Textiles, Ministry of Light Industry and State
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Administration of Standards launched a cooperative project to set the first national
adult clothing standard.

A clothing standard is a formulation of a series of specifications based on the shape
and size of the human body. To create a standard, peoples body types needed to be
divided into several categories where the most representative measurements were
calculated for each category. Then, clothes would be designed according to these
specified parameters to meet the needs of most people. A good clothing standard
could not contain too many specifications and also had to accommodate for a wide
range of shapes so that people with ordinary bodies could easily buy clothes that fit.
Crafting a clothing standard at the national level was an undertaking that required
many experts.

Originally, the project members undertaking this monumental task were com-
posed of senior tailors and relevant industry leaders from Beijing, Shanghai, Tian-
jin and other cities. They conducted surveys on the human body in more than ten
provinces across the country. Using stratified sampling, the members selected more
than 400,000 men and women for body measurements; men had twelve measure-
ments and women had fourteen. However, they did not know how to set the clothing
standard using the vast data, so they just made a preliminary analysis of the figures
and then drafted a standard mainly based on their experience. Due to the lack of
data-driven evidence and theoretical bases, this clothing standard was not adopted
by the State Administration of Standards.

Researchers realized that mathematical and statistical methods should be used
to analyze the data and thus provide a reliable basis for the creation of standards.
In 1974, Prof. Kaitai Fang was invited to join the standards-setting research team.
He found that principal component analysis (PCA), which was widely used in the
world to develop the clothing standard, was not suitable for the development of
the Chinese standard. The main reason was that the principle components in PCA
were too difficult for Chinese clothing workers to understand and master at the
time. Therefore, Prof. Fang developed a brand-new method to formulate easy-to-
implement Chinese clothing standards [3].

Professor Fang introduced a statistical idea to develop the clothing standard: if a
variable can well represent others, then given the variable, the conditional standard
deviation of these other variables should be small, and vice versa. Using this idea and
optimal design theory in multivariate analysis, He proposed a method to sequentially
found the variables with the smallest generalized conditional variance. In the article
[3], the data of adult womens clothing in Beijing were adopted as an example. The
results showed that height, chest circumference and waist circumference were the
most representative measurement sites among all the body measurements and could
be used for further body type classification. Then, the most representative values
were calculated in each category.

According to the classification of body type and the corresponding representa-
tive measurements, manufacturers could mass-produce garments in large batches.
The developed clothing standard ensured that most people could buy ready-to-wear
clothing and that only a small fraction of people with special body types would need
tailored clothing. On behalf of the project team, Prof. Fang reported the Beijing
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clothing standard formulated by his method to the three state offices (the Ministry of
Textiles, the Ministry of Light Industry and the State Administration of Standards)
where the standard received unanimous approval.

Later, numerous clothes were produced for most body types according to the
project’s results. The market feedback was excellent, and thus the method proposed
by Prof. Fang to calculate the Chinese adult clothing standard was a success. After
many years of development, the team calculated and formulated clothing standards
for each of China’s sub-regions. Their project “Series of Standards for Chinese Adult
Heads” won the 1980 Science and Technology Achievement 3rd Prize Award issued
by the Beijing Government; their project “Chinese Adult Clothing Standards” won
the 1982 Special Prize of Light Industry of the People’s Republic of China. On
December 10th, 1988, the national standard GB10000-88 for the Chinese adult body
size was officially released.

It is worth mentioning that, in 1982, Prof. Fang came up with a new method to
further improve the clothing standard and theoretically defined the concept of repre-
sentative points for statistical distributions. He also provided numerical algorithm of
computing representative points for univariate normal distribution [6]. However, it
was a pity that his theory was highly overlapping with that of Prof. Cox [2], a famous
British statistician. Professor Fangwasn’t discouraged and instead proposedNTLBG
algorithm [10] based on number theory and k-means algorithm in 1994, which can
obtain the representative points of elliptically contoured distributions. In 2014, he and
his students used representative points and random sampling significantly improved
the efficiency of the Monte Carlo method [16].

3.3 Revision of the National Standard for Alloy Structural
Steel

Alloy structural steel is made metallurgically by adding elements chromium, man-
ganese, nickel, molybdenum silicon and other elements to steel. During the manu-
facturing process, the contents of these elements must be controlled within a certain
scope to ensure that the five mechanical properties, including characteristics such as
strength and elasticity, of the produced steel to meet the requirements.

During the 1960s, there already was a national standard for the range that each
elements contents should fall into. This standard was used by more than 10 factories
all over the country to produce the same kind of alloy structure steel, however, the
results were inconsistent. While some steel mills produced a high proportion of
qualified alloy steel, other steel mills had low proportions of qualified alloy steel
even if the content of all elements, such as carbon, chromium, manganese, and etc.
were full compliance with the national standard: Qiqihar Steel Plant, for instance,
produced qualified steel only 38% of the time. Thus, many steel mills entertained
doubts about the national standard for the scope of contents of elements. This standard
was introduced from the Soviet Union. At that time, no one knew its principles, and
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the reasons for the inconsistent production qualified rate. Since refining a batch of
low quality alloy structural steel is expensive, the manufacturers not meeting the
national standard would suffer heavy economic losses. Therefore, it was important
and urgent to study whether the standard being used was reasonable or whether there
was room for improvement.

In 1973, Prof. Kai-Tai Fang and his colleagues took on a project from China’s
Ministry ofMetallurgy to review the national standard for the ranges of each element
present when forging alloy structural steel. The volume of data collected in this
project was enormous; it included relevant data from all state-owned steel mills. It
took the team, composed of professors and engineers, half a year to preprocess the
copious amounts of various data. For example, some steelmills used the proportion of
steel elements to estimate whether the alloy steel was qualified based on experience,
and if the estimate was disqualified, a different treatment would be carried out in the
steels quenching process to make it meet the standard. This special kind of treatment
make these data need to be eliminated when preprocessing.

After cleaning the data, Prof. Fang and his colleagues built regression models,
predicted the five mechanical properties of steel with its elements and did five-fold
integral calculation before getting the qualified rate. Finally they found that: the
national standard is scientific and reasonable; the combination ratio of elements in
steel will affect mechanical properties’ rates of meeting the standard, therefore, in the
steel making process, one should try to choose the combination which produces the
highest qualified rates; and it is correct of some steel mills’ experience that whether
the steel is qualified or not can be estimate by the element ratio [5].

From this project, Prof. Fang also came up with some new statistics theoretical
problems. He refined the metallurgical problem into a extremum problem based on
multi-dimensional normal probability density, and proved the necessary condition
for the existence of solutions to the extremum problem in 1979 [8]. Also in this
paper, he presented an effective algorithm for finding solutions to the extremum
problems. While solving these problems, Prof. Fang faced difficulties in calculating
the probability of a multidimensional normal distribution. He had to calculate mul-
tiple integrals without a computer’s aid since the technology at that time could not
meet the demands of these problems. Using a suggestion from Prof. Yuan Wang, a
famous mathematician, Prof. Fang employed the good lattice method (GLM) [4] and
efficiently calculated the multiple integrals. This method also laid the foundation for
Prof. Fang’s later invention: uniform experimental design.

Although data mining has become popular in the last three decades, Prof. Fang
pioneered similar work in the 1970s, when domestic computer technology was still
lagging. Through communicating extensively with experts in related field, he care-
fully preprocessed data, analyzed data, constructed model, tested model and finally
obtained convincing conclusions. He not only successfully completed the actual
project, but also refined the specific problems into general theory. The general prob-
lems were studied and discussed, and solutions that may arise in other practical work
were proposed for similar problems.

Speaking of the standard, Prof. Fang also devoted himself in the promotion of stan-
dard of statistics. The International Organization for Standardization (ISO) set the
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standard of ISO5725 to measure the testing precision of an instrument with repeata-
bility and reproducibility. In order to introduce this standard to China, the Standard
Administration of China established a specialized committee, in which Prof. Fang
was designated as the chair. He explained the statistical theory of the standard to
committee members in detail and spent more than two years completing the national
standard GB/T6379 [14]. This project was awarded the second prize of Standardiza-
tion Administration of China. This is a standard of statistics, which mainly includes
model of variance analysis of random effect, the elimination of abnormal data and
linear regression. Afterwards, Prof. Fang participated in international ISO5725 com-
mittee on behalf of China on many occasions.

3.4 Contributions to Chemometrics

Professor Kai-Tai Fang’s contribution to chemometrics began by collaborating with
Prof. Yizeng Liang, a celebrated analytical chemist from Central South University:
Prof. Liang received the Chemometrics Lifetime Achievement Award at the XVI
International Conference on Chemometrics in Analytical Chemistry. He has been
committed toworking on the application of statisticalmethods in analytical chemistry
and has a profound understanding of statistical theories andmethods. In 1995, during
Prof. Liang’s visit to the chemistry department of Hong Kong Baptist University
(HKBU), hemet Prof. Fang, whowas then a professor in themathematics department
of HKBU.

When he learned that Prof. Fang was working on the application of number-
theoretic methods in statistics, Prof. Liang was fascinated and studied Prof. Fang’s
book Number-Theoretic Methods in Statistics [7], which had just been published
by Profs. Fang and Yuan Wang. In 1996, Profs. Liang and Fang published an arti-
cle together in the academic journal Analyst [24] which proposed a robust mul-
tivariate calibration method based on the least median of squares (LMS) and the
number-theoretic methods in optimization (SNTO) algorithm. Compared with the
least squares method, the proposed method significantly reduces the computational
complexity when the analysis system has two or three components. In addition, the
method is more robust when there are more abnormal values.

The SNTO algorithmmentioned above is an optimization algorithm for multivari-
ate functions proposed by Profs. Fang and Wang. It uses number theory to evenly
distribute points in the search space, and gradually reduces the optimization search
space by sequential compression to find the global optimal solution of multivariate
functions [7]. In 1997, Profs. Fang and Liang further applied the SNTO algorithm to
the constrained background bilinear decomposition model for the quantitative anal-
ysis of analytical samples containing unexpected interference [35]. In this paper, the
SNTO algorithm was compared with another global optimization algorithm: vari-
able step size generalized simulated annealing (VSGSA). The results showed that
when the two methods achieve the same analytical accuracy, the SNTO algorithm is
simpler, clearer and easier to implement, making it a practical tool in chemometrics.
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In the same year, Prof. Liang advised his colleagues to adopt a sequential uniform
design (SUD)procedure for the separation of five dithiocarbamate (DTC) compounds
by capillary electrophoresis (CE). The CE technique was unable to separate these
five DTC compounds when changing one variable at a time, whereas they were
completely separated by using SUDmethod [23]. In addition, the SUDprocedurewas
introduced as a promising candidate for experimental design in nonlinearmultivariate
calibration with ANN [36].

Regarding Prof. Fang’s contribution to chemometrics, the application of uniform
experiment design in chemical experiments must be mentioned. In 1998, Prof. Liang
and his Ph.D. student Qingsong Xu were invited by Prof. Fang to visit the mathemat-
ics department of HKBU. They noticed that Atkinson, a well-known statistician in
optimal experimental design, recommended using D optimal design and T optimal
design to estimate the kinetic rate in reversible chemical reactions [1]. Thus, Profs.
Fang and Liang decided to compare the performance of orthogonal experimental
design (OD), D optimal design (DOD) and uniform experimental design (UD) in
reversible chemical reactions.

Their studies showed that for nonlinear reversible reaction kinetic models, DOD
usually performs best if the initial value is not far from the true parameter and the
random error is not large. It’s sensitivity to the choice of initial values is a drawback:
if the initial value is far from the true parameter, then the parameter estimate is likely
to fail. When compared with DOD, OD is less sensitive to the location of initial
parameters, but as the random error increases to a certain level, OD faces a similar
problem: if the initial value is far from the real parameter, the parameter estimation
is also likely to fail. When there is no prior information about the location of real
parameters and random noise intensity, UD always performs best among the three
designs. The results were summarized in the article [30].

In 2001, Profs. Fang, Liang and Dr. Qingsong Xu published an article “Uniform
design and its applications in chemistry and chemical engineering” [25]. The article
has had a significant impact in chemistry and chemical engineering: currently, the
SCI citation rate has reached 255. In the same year, Prof. Fang was invited by the
50th Gordon Research Conference titled “The Statistics in Chemistry and Chemi-
cal Engineering” to deliver a one hour lecture to introduce uniform design. Many
chemists and chemical engineers have shown interest in UD and hope to develop
an in-depth understanding of UD. Since then, Prof. Fang still receives letters from
chemists, requesting to construct uniform experimental tables for their research.

Professors Fang and Liang are largely celebrated today for their work together in
chemometrics. In 2016, Prof. Ruqin Yu, fellow of the Chinese Academy of Sciences
and the former President of Hunan University, invited Prof. Fang to write an article
for the special issue of the Journal of Chemometrics in China. In his letter to Dr.
Qingsong Xu, Prof. Yu said:
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I am thinking about a problem: throughout the history of chemometrics in China, there are
few Chinese original contributions, and most of them are applications of methods proposed
by others. You and Prof. Liang worked with Prof. Fang to develop the application of uni-
form experimental design in chemistry. Uniform experimental design is an entirely original
Chinese innovation. It must be stressed that, somehow in this special topic, Chinese scientists
still have original innovations in chemometrics. The value of uniform experimental design
itself is that it is an original innovation in mathematics.

In 2018, Prof. Fang and Dr. Xu published an article in the Journal of Chemomet-
rics reviewing the development of uniform design in chemometrics and its various
applications [32].

3.5 Research Group’s Further Contributions
to Chemometrics

After Profs. Kai-Tai Fang, Yizeng Liang, and Dr. Qingsong Xu published their 2001
article about uniform design in chemistry and chemical engineering, Profs. Fang
and Liang further strengthened their cooperation in data mining in chemometrics.
In 2002, they organized a series of research seminars where Prof. Fang’s five Ph.D.
students and Prof. Liang’s six Ph.D. students attended all of them together. They also
invited each other’s Ph.D. students to attend the other school for at least a month to
deepen their understanding of the other field, strengthen the discussion and exchange
ideas. Together, the two groups have done a series of work involving many aspects
of chemometrics.

The research group led by Profs. Fang and Liang worked on an important area in
traditional chemometrics: the topological structure representation of organic com-
pounds. In the article [20], various matrix representations, topological indices and
atomic properties of topological structures were summarized and the shortcomings
of topological indices were discussed. Then in the articles [21, 22], they combined
projection pursuit and number theory to mine the hidden structural feature informa-
tion in the space formed by multiple topological indices, which is associated with
some certain chemical properties.

Mass spectrometry is another important aspect of chemometrics and has always
been one of the essential methods for the identification and characterization of com-
pounds. With the development of mass spectrometry technology, databases contain-
ing mass spectra of a large number of compounds and their other chemical infor-
mation were established, such as NIST Library and Wiley Library. When the mass
spectrum of the compound to be identified already exists in the mass spectrometry
database, the computer retrieval method usually performs well. However, existing
mass spectrometry libraries contain only a small fraction of the number of com-
pounds: the Chemical Abstracts Service describes more than 200 million natural
compounds. Therefore, when the mass spectrum of the compound is not in the
existing mass spectrometry database, experts hope that some substructures of the
compound can be identified by studying the existing mass spectrometry library.
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The research group was also engaged in this research area. Their article [28] pro-
posed amethod for detecting the corresponding compound substructure by searching
the peak combination of the mass spectrum and then using that peak combination
for further compound identification and classification. They also proposed a method
which applied the combination of the sliced inverse regression (SIR) and a decision
tree to the mass spectrometry data for the identification of the substructure of the
compound, which is published in [17].

Professors Fang and Liang’s research group also studied quantitative structural
activity relationships (QSAR). QSAR research has always been an important branch
of chemometrics, which aims to establish a quantitative relationship between active
proprieties of compounds and their structural parameters through appropriate math-
ematical statistics methods. They adopted SCAD, a variable selection method with
the oracle property, in [26] and selected 12 out of 128 topological indexes to establish
the explainable connection betweenmolecular boiling point andmolecular structure.
The articles [15, 34] introduced theKrigingmodelwhich is derived fromgeostatistics
and the improved empirical Kriging model into the study of QSAR. Then they com-
bined SCAD with the Kriging model and established the empirical Kriging model
with selected important variables, as shown in the article [27]. This scheme has been
applied in QSAR research and obtained better results than prior research.

As well as applying traditional statistical methods to where they were needed,
the research group introduced the latest and most advanced statistical methods into
chemometrics. In the article [31], they employed a two-step multivariate adaptive
regression spline (TMARS) to show the relationship between the alkane retention
index and the molecular structure. Later, in the subsequent three articles [18, 19, 29],
they applied a boosting algorithm to improve the classification performance for the
different types of chemical data.

The last contribution to chemometrics mentioned in this paper is Profs. Fang,
Liang and the research group’sworkwithTraditionalChineseMedicine (TCM).They
promoted and studied the data mining of TCM. Using statistical analysis and pattern
recognition to indicate the authenticity of herb medicine and its main components
has been widely used in the field of quality control for Chinese herbal medicines.
A TCM fingerprint refers to the chromatogram or spectrogram that can be used
to identify the chemical characteristics of TCM which has been properly treated
by certain analytical means. In the paper [11], Prof. Fang employed a bootstrap
method to estimate the probability distribution of the correlation coefficients of TCM
fingerprints between the unknown test samples and the standardfingerprints under the
assumption that they belong to the same category, and thus provided the test’s critical
value for evaluatingwhether the fingerprint of an unknown test sample is qualified. In
addition, he assessed the phylogenetic relationships of Lycium samples via random
amplified polymorphic DNA (RAPD) and entropy theory in the paper [33].

In July 2010, Prof. Fang was invited to deliver a speech titled “A Challenge
Research Direction in Biostatistics-Chinese Medicine” at the First Joint Biostatistics
Symposium. The speech introduced the current status and challenges of research
on the fingerprints of traditional Chinese medicine. In order to better communicate
with international counterparts, some papers by the research group were selected
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for publication in a special issue of the Journal of Data Science for data mining
in chemometrics. In addition, Prof. Fang and his other collaborator Prof. Yu com-
piled two volumes titled Data Mining and Bioinformatics in the field of Chemistry
and Traditional Chinese Medicine [12, 13], which have been highly regarded by
international peers.

3.6 Summary

Professor Kai-Tai Fang has been engaged in the field of statistics for decades. He
not only has devoted himself to the research of statistical theory, but also has been
committed to promoting the development of statistical applications.

With a statistician’s astute insight, Prof. Fang saw data mining would be an impor-
tant research field of statistics and addressed the topic earlier than most statisticians.
He has put a lot of energy into actively learning new theories, developing new meth-
ods, and courageously putting them into practice. Through in-depth communication
with experts in other fields, he has studied and solved many practical problems.
Even in the 1970s when computer technology wasn’t developed in China, Prof.
Fangpersisted in overcomingvarious difficulties and successfully completed national
projects.

Professor Fang realized early that in the era of data, statisticians need to adapt
themselves to the development of the world, actively embrace data science and carry
out research on statistical theories and methods based on actual needs. This attitude
is demonstrated as various collaborative research by Prof. Fang’s research groups.
They made important contributions to the further application and development of
statistics in chemometrics.
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Chapter 4
A Review of Prof. Kai-Tai Fang’s
Contribution to the Education,
Promotion, and Advancement
of Statistics in China

Gang Li and Xiaoling Peng

Abstract As an eminent leader in the field of statistics, Prof. Kai-Tai Fang has
made impactful contributions to the application, promotion, education and advance-
ment of statistics in China. Under his leadership, his team had completed some of
the China’s hallmark industrial projects through novel applications of statistics and
developments of new statistical methodologies. He has authored/coauthored a series
of best-selling modern statistics textbooks, taught numerous workshops and short
courses, and mentored a large number of students. He has been active in promoting
scholastic exchanges and organizing national and international statistics conferences.
He has also served on the leadership ofmanynational and international statistics orga-
nizations and on the editorial boards of many major statistical journals. This article
provides a selective review of Prof. Fang’s contributions to the education, promotion,
and advancement of statistics in China.

4.1 Background

Since the early twentieth century, statistics has seen a flourishing development, and
the modern data-centric statistical data science has received extensive recognitions
with widespread applications in all industries. In past decades, more and more Chi-
nese statisticians started to show their talents in international statistical academia,
and gained unprecedented recognition and attention. As one of the most influen-
tial pioneers of statistics in China, Prof. Kai-Tai Fang has dedicated himself to
the education, promotion, and advancement of statistics in China during his entire
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academic career. In celebration of his 80th birthday, this paper reviews the impactful
contributions of Prof. Fang in three areas: application and popularization of statistics;
discipline construction of statistics and cultivation of statistical talents; and statistical
education in China.

4.2 Development and Popularization of Statistics Through
Applications

Professor Fang did his graduate study in statistics in the Institute of Mathematics at
the Chinese Academy of Sciences (IMCAS). Since graduation from IMCAS, Prof.
Fang and his peers have dedicatedly devoted themselves to the development and
popularization of statistics in China.

4.2.1 The Early Days of Statistical Popularization
and Education in China

In 1964, the Institute of Mathematics at Chinese Academy of Sciences organized
a team to conduct a collaborative research for Anshan steelworks (now known as
Ansteel), in which Prof. Fang participated as a graduate student. In order to estimate
the capacity of a stove of molten steel, a young engineer spent several months col-
lecting large amounts of data but struggled to make sense of the data. Professor Fang
thought that non-linear regression models might work here. However, although his
undergraduate major in Peking University was in probability and statistics, back then
the curriculum mostly focused on theory rather than application. For example, linear
regression analysis was covered by only a 2h lecture. After some research, Prof.
Fang found a needed non-linear regression model in Huazhang Zhou’s book entitled
Applied Mathematical Statistics of Industrial Technology, which was appropriate for
analysis of themolten steel data and led to a good estimation of the capacity ofmolten
steel. The success of this project drastically stimulated the desire of engineers and
technicians for statistical knowledge. To help them learn statistics, Prof. Fang wrote
an easy-to-understand handout named “Six Lectures on Mathematical Statistics”
tailored to their needs, which was later published via Anshan Metal Association.

In 1963, Beijing Vinylon Factory purchased a fully automated factory from Japan.
But the engineers and technicians in that factory were only told the process of pro-
duction, not the principles behind it. Therefore, during the cultural revolution, Prof.
Fang and his colleagues from IMCASwere invited to BeijingVinylon Factory to help
them understand the principles underlying the production process. Using orthogonal
designs, Profs. Fang andPingCheng,Chairmanof Probability andStatisticsResearch
Lab at IMCAS, helped the factory to “decipher”many rules of the production process
as detailed in [2]. The engineers and technicians were fancinated by the power of
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statistics, especially the power of experimental design and regression analysis, and
expressed great interesting in learning statistics. To help them learn the statistical
principles and applications, Prof. Fang wrote a lecture notes based on cases stud-
ies, instead of abstract theories. During the same time period, many peer institutes,
such as chemistry, biological physics and developmental biology, within the Chi-
nese Academy of Sciences, have also became aware of the importance of statistics in
their research and approached IMCAS for help to provide statistical training for their
researchers. In response to their requests for statistical education and training, Prof.
Fang and his colleagues held free statistical workshops inside the Chinese Academy
of Sciences, training more than 100 research fellows from various disciplines. In the
1970s, realizing the increasing demand for the application of statistics, Prof. Ping
Cheng suggested to combine and improve the previous lecture notes into a textbook
of common mathematical statistical methods [6], which was published via Science
Press in 1973. This book was issued more than 200,000 copies and sold out very
quickly. It was published again in 1974–1979 and became a bestseller. During that
historical period of China, a book can only be published in the name of the collective
and the author did not receive any royalty. The only reward to the author(s) was 300
free copies of the book from the publisher. Professor Fang generously donated these
books to readers who needed them.

From 1971 to 1975, Prof. Fang participated in many promotional events for the
orthogonal design. Along theway, he learned at first hand that the analysis of variance
method was not easily understood by the majority of engineers. In the age with no
computers and electronic calculators, it was difficult to calculate the ANOVA table.
To address these issues, Prof. Fang created “visual analysis of orthogonal design”,
which made it much easier for engineers to understand the principles of orthogonal
design and data analysis using charts [7]. It is worth noting that in 1976, Prof. Fang
was assigned by IMCAS to run a TV show to introduce and advertise the orthogonal
design to the general audience on the China Central Television (CCTV). CCTV
allocated 17min for Prof. Fang to present a lecture on orthogonal design, which was
aired during the prime time following the CCTV news. Because of Prof. Fang’s well
prepared and delivered lecture, the showwas a big success and attained desired effect
of promoting orthorgonal design in China.

4.2.2 Determination and Examination of National Standards

The formulation of national standards requires a solid theoretical foundation and
abundant experience in dealing with practical problems. In the 1970s, Prof. Fang
participated in three national projects related to national standards: the examination
of national standards for alloy structural steel, the establishment of Chinese adult
clothing standard, and the introduction of standard for precision of testing methods.

In 1973, Prof. Fang and his colleagueProf. ChuanyiWu from IMCAScollaborated
on a project from department of alloy structural steel to review national standards for
alloy structural steel. Professor Fang and his colleagues built regression models to
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predict five mechanical properties of steel with its chemical elements and used five-
fold integration to calculate the qualifying rate of steel. Finally, Prof. Fang and his
colleagues reached three conclusions: (1) the Chinese national standards for alloy
structural steel are scientifically sound; the combination of different elements in
steel will affect the qualifying rate of mechanical properties and has to be optimized;
(2) the previous empirical methods from Beijing Steel and Fushun steel mill are
indeed reasonable. This project started with a huge amount of data, went through
laborious data cleaning, modeling, and testing, and finally arrived at convincing
conclusions, which can be viewed as an early form of the data mining in the modern
age. This collaboration further led to several of Prof. Fang’s theoretical research
projects later on (see [9]).

Manufacture and research often involve a wide variety of instruments. The Inter-
national Organization for Standardization (ISO) set the standard of ISO5725 to mea-
sure the testing precision of an instrument in terms of its repeatability and repro-
ducibility. To translate this standard to China, the Standard Administration of China
(SAC) appointed a special committee with Prof. Fang being the chair. Professor
Fang explained to the committee members the statistical principles underlying the
ISO5725 and led the committee to complete theChinese national standardGB/T6379
after two years of hard work. This standard indeed relies heavily on statistical meth-
ods including analysis of variancewith random effect, the elimination of outliers, and
linear regression. Together with GB/T6379, the committee also published a mono-
graph [14] to explain the statistical theory and methods used for GB/T6379. This
project was later awarded the second prize from SAC. Recognizing his important
contribution and indispensible role in developing GB/T6379, Prof. Fang was later
asked to serve on the international ISO5725 committee as a China representative.

In the 1970s, the Ministry of Light Industry, the Ministry of Textile, and the Stan-
dard Administration of China, jointly set up a working team to establish China’s
first clothing standard. Measurements were taken from 400,000 people using strat-
ified random sampling. During the project implementation, Prof. Fang noticed that
the popular principal component analysis (PCA) method was not most suitable for
the Chinese data. As an alternative, he suggested to use the conditional distribution
combined with D-optimal design and successfully developed a new novel method for
establishing the Chinese clothing standards [18]. The developed standard adopted in
China and became effective in 1977. It was awarded a special prize by theMinistry of
China Light Industry. Afterwards, Prof. Fang also collaborated with the Institute of
Ancient Vertebrate and Institute of Ancient Human at Chinese Academy of Sciences
and developed the Chinese head type standard, which received the Beijing Science
and Technology Progress Award. In 1982, to improve the clothing standard for body
type, Prof. Fang introduced the concept of statistical distribution representative points
and derived a numerical algorithm to compute representative points for univariate
normal distribution. Unfortunately he later found out that his work was highly over-
lapping with that of Cox [1]. Not being discouraged, Prof. Fang further pursued this
idea and proposed the NTLBG algorithm [15] based on number theory and k-means
algorithm in 1994 to compute the representative points of multivariate symmetri-
cal distributions (elliptically contoured distributions). In 2014, Prof. Fang and his
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students used representative points and random sampling to significantly improve
the efficiency of the Monte Carlo method [16]. In 2015, Prof. Fang and his students
discovered a seemingly impossible property of arcsine distribution representative
points [17]. Their further research on this property led to a modified definition of
distributional representative points for further improvement of resampling efficiency
[26].

4.2.3 Number Theory Methods in Statistics

Another example of Prof. Fang’s many impactful contributions to the development
and application of statistics is his novel introduction and development of number the-
orymethods in statistics. The number theory, founded byKolmogorov, concerns how
to produce a point set uniformly distributed in a high-dimensional rectangle. This
methodwas largely used in high dimensional numerical integration. Famous Chinese
mathematicians Luogeng Hua and Yuan Wang have made important contributions
to this field. In 1978, Profs. Fang and Yuan Wang first applied the number theory
method in computer experiments to create uniform design, which broke ground for a
brand-new research area in experimental design. In 1988, Institute of Applied Math-
ematics at Chinese Academy of Sciences and Second Artillery Force (renamed as
People’s Liberation Army of China Rocket Force in 2015) began a series of collabo-
rations, which involved estimation of the probability of geometric flow patterns and
related optimization problems. Most of these problems have no analytical solutions.
If stochastic simulation is used, uniform grids need to be designed on geometric
flow patterns, which requires the expansion of number theory methods from hyper-
rectangle to different geometric manifolds. Motivated by these applications, Prof.
Wang and Fang submitted a grant proposal “the applications of number-theoretic
methods in statistics”, which was funded by The National Natural Science Founda-
tion of China and Hong Kong government. They successfully solved the problems
needed for national defense construction and won the second prize of progress in sci-
ence and technology from Chinese Academy of Sciences in 1989 and the first prize
of progress in science and technology from People’s Liberation Army of China in
1992. Their pioneer research has promoted thewide applications of number-theoretic
methods in statistics. For example, the SNTO algorithm to solve the optimization
calculation of multivariate non-linearity was developed for parameter estimate, max-
imum likelihood estimation, sequential test design, optimal design of experiment,
and so on in terms of non-linear regression. It is also used for the statistical infer-
ences of multivariate projection, including multivariate normality hypothesis testing,
multivariate ellipsoidal contour distribution testing, and multivariate maximum like-
lihood estimation, etc. These results are included in monographs [10] and statistical
encyclopedia [11].
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4.3 Contributions to Statistical Education

Professor Fang always values statistical education and statistical talent cultivation
and has devoted his entire career to statistical education in China.

4.3.1 Cultivating Outstanding Statistical Talents as a Pioneer
of Statistics in China

In 1983, Prof. Fang began to supervise graduate students after coming back from a
two-years academic visit of the US. At that point, the research section in probability
and statistics in the Institute of Applied Mathematics at the Chinese Academy of
Sciences recruited four master graduate students: Jianqing Fan, Hui Quan, Fanhui
Kong, and Hongqing Zhang. They all chose Prof. Fang to be their academic advisor.
Due to the shortage of academic advisors for graduate students in statistics in China,
many universities sent their graduate students to Prof. Fang to study statistics. As a
result, Prof. Fang’s students during that period were not only fromChinese Academy
of Sciences but also from other many universities in China. Among them, four were
from Nankai University, two from Yunnan University, one from Wuhan University,
one from Southeast University, two from National Bureau of Statistics of China, one
from Beijing Institute of Technology, one from Soochow University, and one (the
first author of this article) from Shandong College of Oceanography (now Ocean
University of China). In addition, three junior researchers from Institute of Applied
Mathematics, Biqi Fang, Ping Yan, and Xiaoming Chen, also joined Prof. Fang’s
research team.

Professor LuogengHua, a famousChinesemathematician, once said “high quality
seminars are essential to high quality research in a research institute”. To help his
students to get to the frontiers of statistics, Prof. Fang organized a journal club on
multivariate statistical analysis which meets several times a week. In addition to the
classical multivariate analysis theory, he chose some state of the art text books and
papers on generalized multivariate analysis for his students to study and discuss. At
the regular journal club meetings, students reported their own research results and
actively engaged in discussions, which helped them to gain thorough understanding
of the studied topics. To help his students, especially those from outside of Beijing,
Prof. Fang offered personal assistance to arrange their dormitories and study space,
and sometimes even subsidized their travel and lodging expenses out of his own
pocket.

Under Prof. Fang’s guidance, his students made quick progress in learning gener-
alized multivariate statistical analysis, a relatively new area of research at that time.
Thanks to the stimulating and highly collaborative research atmosphere, Prof. Fang’s
students from the journal club were highly productive. On average, each graduate
student published 2–8 papers at graduation. From 1983 to 1988, Prof. Fang and
his students from that cohort published more than 60 papers on generalized mul-
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tivariate statistical analysis, 40 of which were included in “Statistical Inference in
Elliptically Contoured and Related Distributions” [5], co-edited by Profs. Fang and
T.W. Anderson.

In the early 1980s, China began to open its door to the world. Eager to learn from
the world, studying abroad became a dream of many young students in those days,
including Prof. Fang’s students. Without any hesitation, Prof. Fang helped many of
his students to study abroad to pursue their dreams.Many of his former students have
become well known scholars in the international statistics community. Among them
is Prof. Jianqing Fan, a chair professor in the Department of Statistics and Finance
at Princeton University, who received the COPSS award, the highest honor for a
statistician, and became the first Chinese chief editor of “The Annals of Statistics”,
a top statistics journal. Interestingly, Prof. Fang’s another graduate student, Runze
Li, now a professor at Pennsylvania State University, was also appointed as a chief
editor of “The Annals of Statistics” in 2013.

Because of his extraordinary achievements, Prof. Fang was appointed as a Ph.D.
advisor by theDegreeCommittee of theChinaStateCouncil in 1985.The information
brochure for Ph.D. Advisors at Chinese Academy of Sciences published in 1989
has the following description of Prof. Fang: “Prof. Fang is one of the pioneers of
mathematical statistics in China”, and “he has made world-class achievements not
only in the theoretical development, but also applications of statistics.”

In 1992, Prof. Fang joined the Department of Mathematics at Hong Kong Baptist
College (nowHongKongBaptist University) as chair professor. At that time, China’s
educational circles knew very little about universities in HK, and very few students
from mainland went to Hong Kong to study or do research. Professor Fang made
tremendous efforts to initiate and strengthen scholastic exchange programs between
the mainland China and Hong Kong and encourage more mainland Chinese students
to study in Hong Kong. He set an example by recruiting many Ph.D. students from
mainland China including Jianxin Pan, Minyu Xie, Jiajuan Liang, Hongbin Fang,
Guoliang Tian, Hong Qin, Yu Tang, Ping He, Xiaoling Peng (one of the authors
of this paper), Hong Yin, Hongya Zhao, Xiaolin Yin, and a graduate student Aijun
Zhang. Many of these students became well established leaders in statistics. For
example, Jianxin Pan is now a chair professor at University of Manchester in the
United Kingdom and a Turing Fellow of The Alan Turing Institute of the United
Kingdom. During his three-year doctoral study in Hong Kong, he had published
six papers in international journals. In 2002, Profs. Pan and Fang collaboratively
published a monograph [23] in Springer. Besides, Prof. Fang also helped Prof. T.W.
Anderson advising a Ph.D. student in Stanford University and advised an M.Phil
student at the North Carolina University at Chapel Hill.

Professor Fang’s research has received grant support from theHongKong govern-
ment research fund many times. With these grant support, he invited many mainland
China scholars to Hong Kong for research collaborations and cultivated a num-
ber of excellent young scholars for China, including Xiaoqun Wang, Gennian Ge,
Chang-Xing Ma, and Min-Qian Liu among others.
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4.3.2 Creating Undergraduate Statistics Major for Liberal
Arts Education

In 2005, when Prof. Fang retired with honor from Hong Kong Baptist University,
many famous universities from foreign countries invited him to join them.At the same
time, Prof.ChingFaiNg, the president ofHongKongBaptistUniversity,wasworking
to set up a new liberal arts university in Zhuhai, named Beijing Normal University-
Hong Kong Baptist University United International College (UIC), which became
the first Chinese university jointly ran by Chinese and Hong Kong universities. In
UIC, students receive comprehensive education in humanity, arts, science, social
science with broad skills and focus on critical thinking and creativity cultivation.
Professor Ching Fai Ng invited Prof. Fang to join UIC to found an undergraduate
statistics major in UIC. Sharing a common goal, Prof. Fang decided to accept the
invitation and joined UIC to build an undergraduate statistics major from the ground
up.

Professor Fang worked tirelessly to forge a statistics major in UIC with a mod-
ern curriculum. With his broad experience in statistical research, application and
education, Prof. Fang envisioned that a student majoring in statistics should have a
sound mathematical foundation, be well trained in statistical thinking and methods,
and be skillful in programming and using software for data analysis and modeling.
With these principles in mind, he developed a statistics curriculum that is in line with
the modern international standards. The UIC statistics curriculum includes not only
core courses in mathematics, operations research, and statistics, but also courses in
computer programing, data analysis and modeling. Furthermore, most of the statis-
tical courses at UIC are designed to include group projects, which require students
to apply statistical methods to analyze real data, write code implementation, and
make an oral project presentation in English. The UIC statistics curriculum has well
prepared students for job placement and graduate studies after graduation. It has also
been well received among domestic and international experts.

Faculty recruitment was the most difficult in the first few years due to insufficient
school funding and a shortage of qualified fluent English speaking statisticians in
China. Many departments of statistics in China had to deal with the same issue at the
time and were unable to offer a comprehensive range of elected courses in statistics.
Utilizing his network, Prof. Fang successfully recruited four junior faculty to UIC.
He led by example and taught four elective courses each year himself. In addition, he
persuadedmany of his old friends including Prof. JianzhongZhang ofCityUniversity
of Hong Kong, Prof. Yung Liang Tong of Georgia Institute of Technology from the
United States, Prof. Philips Cheng of Academia Sinica from Taiwan, and Prof. Kai
Fun Yu of FDA from the United States to offer elected courses for UIC students. As
a result, students in the UIC statistics program benefited greatly from these courses
taught by high quality and knowledgable instructors. It isworth noting that in addition
to teaching, Prof. Fang had also served as Director of the Statistics Program at UIC
for six years and handled administrative affairs routinely.
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Besides teaching, Prof. Fang also placed great emphasis on cultivating student’s
research ability. He served as undergraduate thesis advisor for many senior students
every year. He used summer breaks to run student seminars and set a high standard
for their thesis. As a results, many of the UIC undergraduate students thesis were
published in international journals [13, 17, 19–22, 24].

Over 70% of the students who graduated from the UIC statistics program went on
for graduate study abroad, many in prestigious universities such as Columbia Univer-
sity, Johns Hopkins University, Purdue University, University of Pittsburgh, George-
town University, University of Oxford, University College London,
University of Manchester in the United Kingdom, Australian National University,
University of Melbourne, University of Hong Kong, Hong Kong University of Sci-
ence andTechnology, andUniversity of Tokyo. Professor Fang also helped to develop
joint master degree programs with Department of Biomedicine at Georgetown Uni-
versity, Department of Applied Statistics at Victoria University of Wellington, New
Zealand, and Hong Kong Baptist University.

In UIC, Prof. Fang also founded the Institute of Statistical and Computational
Intelligence (ISCI) and invited some famous scholars including academician Jiaan
Yan from Chinese Academy of Sciences, Prof. Jianqing Fan from Princeton Uni-
versity, Prof. Xiaoli Meng from Harvard University to give seminars. The Four-
Dimensional Statistical Lab at ISCI has established a high reputation for offering
comprehensive statistical consulting services within UIC and to industries and gov-
ernment agencies in the great Pearl River Delta area. His contributions to UIC were
not limited to establishing the statistical major. With his assistance, the Division
of Science and Technology at UIC successively established the Financial Mathe-
matics major and the Data Science major in 2011 and 2017, respectively. In 2018,
UIC statistical major has graduated over 400 students over a 10-year period. Their
graduates entered a variety of industries inlcuding finance, biomedicine, and internet
technology, and many of them became industry leaders. In the UIC statistics alumni
conference held in December 2017, more than 100 alumni, teachers and students
gathered at the UIC new campus to share their experiences and achievements at
work and study and pay tribute to Prof. Fang for introducing them to the fascinating
field of statistical data science and paving the way for their success.

4.3.3 Improving and Writing Statistical Textbooks

Influenced by the Soviet Union, the early statistical textbooks in China over-
emphasized onprobability theory over statistical thinking and focusedmore on theory
than application. Over the years of conducting collaborative research using statis-
tics, Prof. Fang has written many popular statistics textbooks, such as Introduction to
Multivariate Statistical Analysis [25],Practical Multivariate Statistical Analysis [3],
Statistical Distributions [12], andOrthogonal and Uniform Design [8]. These books
give a balanced account of statistical methods and their applications, with many real
data examples. Because of his authority in the field of statistics and his outstanding
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achievements in writing statistical textbooks, in 2009, China Higher Education Press
invited him to be the chief editor for a new series of statistics textbooks. In 2010, the
editorial board of modern statistics college textbooks was established and held its
first meeting in Fuzhou. Professor Fang emphasized that a statistics textbook should
modernize its contents, stress statistical thinking, and adapt to the characteristics
of modern statistical education and the new requirements of the fast evolving data
science era. It should be fun to study and easily accessible, with an emphasis on
the application of statistics, supported by statistical software. Since its inception,
this new textbook series has so far published 20 statistics textbooks. To enhance
the research of graduate students and scholars majoring in statistics, China Higher
Education Press decided to publish Lecture Notes in Probability, Statistics and Data
Science in 2017, and also invited Prof. Fang as a chief editor. The editorial committee
have already met twice and decided on the first collection of books to be published.
Finally, Prof. Fang also served as a chief editor for A Series of Modern AppliedMath-
ematical Methods in the 20th Century, supported by China Tianyuan Foundation and
published by Science Press (see AppendixA.2C).

4.4 Academic Services

In recognition of his extraordinary achievements in mathematical statistics
and its application, Prof. Fang has been invited to serve and lead many aca-
demic and professional organizations. Among others, he was Associate Director
of the Institute of Applied Mathematics at Chinese Academy of Sciences, Chair of
Department of Mathematics at Hong Kong Baptist University, Managing Director
and Secretary—General of Chinese Mathematical Society, Managing Director and
Secretary—General of the Chinese Society of Probability and Statistics, Director of
the Sixth Division of National Standardization Committee of Mathematical Statis-
tical Methods, Director of Multivariate Analysis Committee, Director of Uniform
DesignDivision of ChineseMathematical Society,ManagingDirector of HongKong
Mathematical Society, Councilor of International Chinese Statistical Association,
andManagingDirector of International Statistical Association (see AppendixA.2A).
He has provided dedicated services and made great contributions to management,
academic exchanges and services, and development of the statistics profession in
China.

Professor Fang also served on the editorial board ofmany international and domes-
tic academic journals including Journal of Multivariate Analysis, International Sta-
tistical Review, Statistical Sinica, Statistics & Probability Letters. He was the vice
chief editor of Journal of Applied Mathematics for many years (see AppendixA.2B
for details of Prof. Fang’s services in academic journals). He also reviews many
papers for a variety of academic journals every year.
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4.4.1 Reforms in the Institute of Applied Mathematics
at Chinese Academy

Professor Fang has long been a researcher in the Institutes of Mathematics and
Applied Mathematics (IMAS) at Chinese Academy of Sciences. In 1984, Chinese
AcademyofSciences appointed himas theAsscociateDirector of Institute ofApplied
Mathematics (IAM) at Chinese Academy of Sciences (equivalent to vice President
of a university). This was a big challenge to him. He was in charge of the research
projects and finance of the institute, and at the same time, served as the director of
the academic committee. During that period, there were only very limited allocated
research fund to support research and scholastic exchanges. To stimulate research, he
proposed to give project leaders more freedom in managing research funds so they
can have more opportunities in participatingin scholastic exchange activities. This
reform gave researchersmore incentive to bring inmore outside research projects and
greatly increased the institute’s research revenue to support more research activities.

To bring in new talents to research, Prof. Fang led IAM to recruit more graduate
students. Bydeveloping joint training programswith other universities, IMS recruited
and trained a large number of young scholars, and reached to a total of 120 graduate
students at one time. Dr. Fang efforts had fostered an active research environment that
encouraged critical thinking, hard work and collaborations and resulted in productive
research. During his visiting at Stanford University, Prof. Fang was inspired by their
technical reports series, which offered a fast way of disseminating new research
results, drastically accelerated further research, and protected the author’s copyright.
To introduce and help establishing a technical report series in his own institute,
Prof. Fang donated a Latex software and bought a laser printer from the US, and
reviewed every technical report to ensure its quality.

4.4.2 Organize Academic Conferences and Promote
Research Communications

Since the 1970s, Prof. Fang has helped organizing over 30 domestic and international
academic conferences (see AppendixA.1). He has spent tremendous amount of time
and energy to develop and promote statistics in China. Here we briefly describe
some selected conferences that Prof. Fang helped to organize during some special
historical periods with lasting impact.

As early as the end of the China’s “cultural revolution”, Prof. Fang and other
members of a multivariate analysis discussion group planned to organize a national
academic conference at Mount Huangshan for the coming of a new era in China’s
science development. Hosting a conference requires financial planning, fundrais-
ing, administrative approval, hotel arrangement, purchase of return train tickets, and
arrangement of local transportation, etc. These tasks may not seem difficult nowa-
days, but did require enormous amount of hard work and efforts at that time since
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Prof. Fang held no administrative positions and had no administrative assistant. With
the support of the IAM leadership and colleagues, Prof. overcame many difficulties
and successfully organized the first national conference on Multivariate Statisti-
cal Analysis in China. Moving away form the past tradition of emphasizing theory
over application, this conference stroke a balance between theory and application,
and made them complement each other. Presenters included not only theoretical
researchers from universities, but also those doing practical applications such as
National Meteorological Center of CMA in China. The conference was full of stim-
ulating discussions and concluded with unprecedented success. This conference also
established Prof. Fang as a domestic leader in the field of multivariate statistical anal-
ysis. During his presidency on the multivariate analysis committee, he has directly
involved in organizing six national academic conferences, which had lasting impacts
in promoting multivariate statistical analysis and its applications in China.

The US had been leading the world in the development of statistical science and
its applications. To help China learn from the US, Prof. Fang proposed to organize a
“Sino-American Statistical Conference”.His proposal received enthusiastic response
and support from Prof. George C. Tiao of University of Chicago, as well as from
the Institute of Applied Mathematics and Institute of System Science at Chinese
Academy of Sciences, and Chinese Probability and Statistics Association. Professor
Fang led his team and spent a lot of time and efforts to prepare for the conference
from fundraising, contacting American peers, session organizing and conference
logistics. The conference was successfully held In 1987, with over 230 participants
(60 from the US and more than 170 from mainland China). At the conference, Prof.
George C. Tiao brought up his idea of establishing an professional organization
to bring together all the Chinese statisticians around the world, which led to the
later establishment of the International Chinese Statistical Association (ICSA), the
four largest statistical associations in the world today. Professor Tiao asked Prof.
Fang to use his influence to promote ISCA in mainland China. Over the years, Prof.
Fang has made countless contributions to promote ICSA and statistics in China and
beyond. Notable examples include member recruitment, organizing the first ICSA
International Conference in Hong Kong in 1990, and serving on editorial board of
Statistical Sinica, the flagship journal of ISCA, and serving as an elected board
member of ISCA.

In 1992 and 1997, as conference chair, Prof. Fang successfully organized two
large International Multivariate Analysis Symposiums in Hong Kong. Many world-
class statisticians attended the conferences, including 3 members of the US National
Academy of Sciences, 22 fellows of the Institute of Mathematical Statistics (IMS)
and 15 fellows of the American Statistical Association (ASA). These two confer-
ences had made significant positive impacts on the Hong Kong statistics community.
To commend Prof. Fang’s outstanding contributions to statistics, an “International
Conference on Statistics in Honor of Prof. Kai-tai Fang’s 65th Birthday” was held
in Hong Kong Baptist University on his 65th birthday in 2005. This conference was
attended bymore than 150 statisticians frommore than 20 countries around theworld
such as China, the United States, the United Kingdom, Canada, among others. In
2014, ISCA awarded Prof. Fang the “2014 ICSAOutstanding Achievement Award”.
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Professor Fang is passionate about statistics and its application and has tirelessly
devoted all his life and energy to the statistics profession [4]. Now aged 80, Professor
shows no signs of slowing down.He is still active in doing research, advising graduate
students, continuing his efforts to develop and mature the statistical major in UIC,
and leading the way to improve and publish modern statistical textbooks in China.
Professor Fang has set an example of a truly examplary and devoted statistician for
the generations to come.
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Appendix A.1: Academic Conferences Organized by Prof.
Kai-Tai Fang

1 Sino-Japan conference on statistics, Member, Chinese organization committee,
1984, Beijing, China.

2 Sino-Japan symposium on statistics, Member of Chinese organization commit-
tee, 1986, Fukuoka, Japan.

3 Sino-US conference on statistics, Member of Chinese organization committee,
1987, Beijing, China.

4 Sino-Japan symposium on statistics, Member of Chinese organization commit-
tee, 1989, Tokyo, Japan.

5 Sino-Japan symposium on statistics, Member of Chinese organization commit-
tee, 1986, Okayama, Japan.

6 IMS conference, Organizer of Multivariate Analysis Under Non-normal Popu-
lation, Colorado, USA, 1988.

7 Asian congress of mathematicians, Deputy Head of the Chinese Delegation,
August 1998, Hong Kong, China.

8 The first conference on recent developments in statistics research, Hong Kong,
December 1990.

9 International symposium on multivariate analysis and its applications, Chair of
the organization committee, 1992, Hong Kong, China.

10 International workshop on Quasi-Monte Carlo methods and their applications,
organizer, 1995, Hong Kong, China.

11 1997 International Symposium on Contemporary Multivariate Analysis and Its
Applications, Chair, 1997, Hong Kong, China.

12 1999 Symposium on Theory of uniform Design and Its Applications, Chair,
1999, Hong Kong, China.

13 The 4th Monte Carlo and Quasi-Monte Carlo Conference in Scientific Comput-
ing), Chair, 2000, Hong Kong, China.

14 The 5th ICSA international conference, Member of the organizing committee,
2000, Hong Kong, China.
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15 The 5th International Conference onOptimization Techniques andApplications,
Member of the organizing committee, 2001, Hong Kong, China.

16 The 5th International Conference onMonte Carlo and Quasi-Monte CarloMeth-
ods in Scientific Computing, Member of the organizing committee, Nov. 2002,
Singapore.

17 International Conference on Applied Statistics, Actuarial Science and Financial
Mathematics, Member of the organizing committee, Dec. 2002, Hong Kong,
China.

18 2003 Symposium on The Uniform Experimental Design and its applications,
Chair, Dec. 2003, Shenzhen, China.

19 The6th ICSAInternationalConference,HonoraryAdvisor, Jul. 2003, Singapore.
20 International Conference on Chemometrics and Biometrics in Asia, Member of

the organizing committee, Oct. 2003. Shanghai, China.
21 The International Congress of Chinese Mathematicians (ICCM), Member of the

organizing committee, 2004, Hong Kong, China.
22 International Workshop on Applied Mathematics and Statistics, Chair, Dec.

2004, Hong Kong, China.
23 International Conference on the Future of Statistical Theory, Practice and Educa-

tion,Member of the International Advisory Board, Dec. 2004–Jan. 2005, Hyder-
abad, India.

24 2005 Symposium on The Uniform Experimental Design and Its Applications,
Member of the organizing committee, Aug. 2005, Jishou, China.

25 International Conference on Design of Experiments: Theory and Applications,
Member of the international advisory committee, May 2005, Memphis, the
United States.

26 The International Committee, International Conference: Statistics in the Techno-
logical Age, Member of the international advisory committee, Dec. 2005, Kuala
Lumpur, Malaysia.

27 The 29th European Meeting Of Statisticians, Member of the international advi-
sory committee, Jul. 2013, Budapest, Hungary.

28 The 24th International Workshop on Matrices and Statistics (IWMS), (Member
of Scientific Organizing Committee, May 2015 Haikou, China.

Appendix A.2: Prof. Kai-tai Fang’s Academic Services

A.2A Academic Organizations

1 Chinese Society of Probability and Statistics, Secretary-general, Oct. 1982–
Oct. 1984.

2 Chinese Society of Probability and Statistics, Executive Director, 1982–1990.
3 International Statistical Institute (ISI), Elected Member, 1985–2009.
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4 Chinese Mathematical Society, Executive Director, Vice Secretary-general,
1988–1992.

5 Chinese Organization for Standardization of Statistical Methods Applications,
Committee Member, Director of the Sixth Chapter Committee, 1983–1990.

6 Chinese Association of Multivariate Statistical Analysis, Director, 1980–1990.
7 Chinese Committee of Mathematical Geosciences, Committee Member, 1978–
1985.

8 International Association for Mathematical Geosciences, Director, 1981–1985.
9 Institute of Mathematical Statistics (IMS), Life Member, 1988–, Elected Mem-
ber, 1992–.

10 International Chinese Statistical Association (ISCA), Life Member, 1988–,
Director, 1990–1994.

11 Chinese Mathematical Society, President of Uniform Design, 1993–2003.
12 Chinese Mathematical Society, Honorary President of Uniform Design, 1993–.
13 Hong Long Institution of Science, Director, 1994–1998.
14 International Statistical Institute(ISI), Executive Director, 1995–1999.
15 Hong Kong Mathematical Society, Executive Director, 1994–1996.
16 Hong Kong Mathematical Society, Fellow, 1990–.
17 Southeast Asian Mathematical Society, Fellow, 1990–.
18 Hong Kong Statistical Society, Fellow, 1991–, Honorary Member, 2002–.
19 American Statistical Association (ASA), Fellow, 1993–, Elected Member,

2001–.
20 Institute of Mathematical Statistics (IMS), Member of the Academician Selec-

tion Committee, 2007–2009.
21 Statistics Research Association of Anhui Province, Honorary President, 2001–

2004.
22 Experimental Design Chapter of China Statistics Research Association, Hon-

orary President, 2010–.

A.2B Academic Journals

1 ActaMathematicae Applicatae Sinica, ViceDirector, 1985–1992, Editor, 1992–.
2 Chinese Journal of applied probability and statistics, Editor, 1985–1990.
3 Journal of Mathematical Research with Applications and Comments, Editor,
1986–.

4 Northeastern Mathematical Journal, Editor, 1985–.
5 Journal of Quantitative Economics, Editor, 1984–.
6 Mathematical Theory and Applied Probability, Editor, 1986–.
7 Statistics & Probability Letters, Editor, 1988–2005.
8 Statistica Sinica, 1993–1999, Editor, 2005–2012.
9 Journal of Multivariate Analysis, Editor, 2002–2007.

10 Statistics & Information Forum, Editor, 2009–.
11 International Statistical Review, Editor, 2009–2010.
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A.2C Editor-in-Chief Series

1 Modern Applied Mathematics Methodology Series, Science Press, 1990–2004.
2 Higher Education Modern Statistics Series, Higher Education Press, 2010–.
3 Lecture Notes in Lecture Notes in Probability, Statistics and Data Science? For
Higher Education Press, Beijing, 2017–2022.
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Part II
Design of Experiments



Chapter 5
Is a Transformed Low Discrepancy
Design Also Low Discrepancy?

Yiou Li, Lulu Kang, and Fred J. Hickernell

Abstract Experimental designs intended to match arbitrary target distributions are
typically constructed via a variable transformation of a uniform experimental design.
The inverse distribution function is one such transformation. The discrepancy is a
measure of how well the empirical distribution of any design matches its target
distribution. This chapter addresses the question of whether a variable transformation
of a low discrepancy uniform design yields a low discrepancy design for the desired
target distribution. The answer depends on the two kernel functions used to define the
respective discrepancies. If these kernels satisfy certain conditions, then the answer
is yes. However, these conditions may be undesirable for practical reasons. In such
a case, the transformation of a low discrepancy uniform design may yield a design
with a large discrepancy. We illustrate how this may occur. We also suggest some
remedies. One remedy is to ensure that the original uniform design has optimal
one-dimensional projections, but this remedy works best if the design is dense, or
in other words, the ratio of sample size divided by the dimension of the random
variable is relatively large. Another remedy is to use the transformed design as the
input to a coordinate-exchange algorithm that optimizes the desired discrepancy, and
this works for both dense or sparse designs. The effectiveness of these two remedies
is illustrated via simulation.
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5.1 Introduction

Professor Kai-Tai Fang and his collaborators have demonstrated the effectiveness
of low discrepancy points as space filling designs [4–6, 11]. They have promoted
discrepancy as a quality measure for statistical experimental designs to the statistics,
science, and engineering communities [7–10].

Low discrepancy uniform designs,U = {ui }Ni=1, are typically constructed so that
their empirical distributions, FU , approximate Funif, the uniform distribution on the
unit cube, (0, 1)d . The discrepancy measures the magnitude of Funif − FU . The
uniform design is a commonly used space filling design for computer experiments
[5] and can be constructed using JMP® [20].

When the target probability distribution for the design, F , defined over the exper-
imental domain Ω , is not the uniform distribution on the unit cube, then the desired
design, X , is typically constructed by transforming a low discrepancy uniform
design, i.e.,

X = {xi }Ni=1 = {Ψ (ui )}Ni=1 = Ψ (U ), Ψ : (0, 1)d → Ω. (5.1)

Note that F may differ from Funif because Ω �= (0, 1)d and/or F is non-uniform.
A natural transformation, Ψ (u) = (Ψ1(u1), . . . , Ψd(ud)

)
, when F has independent

marginals, is the inverse distribution transformation:

Ψ j (u j ) = F−1
j (u j ), j = 1, . . . , d, where F(x) = F1(x1) · · · Fd(xd). (5.2)

A number of transformation methods for different distributions can be found in [2]
and [11, Chap. 1].

This chapter addresses the question of whether the design X resulting from
transformation (5.1) of a low discrepancy design, U , is itself low discrepancy with
respect to the target distribution F . In other words,

does small Funif − FU imply small F − FX ? (Q)

We show that the answer may be yes or no, depending on how the question is
understood.Wediscuss both cases. For illustrative purposes,we consider the situation
where F is the standard multivariate normal distribution, Fnormal.

In the next section, we define the discrepancy and motivate it from three perspec-
tives. In Sect. 5.3 we give a simple condition under which the answer to (Q) is yes.
But, in Sect. 5.4 we show that under more practical assumptions the answer to (Q)
is no. An example illustrates what can go wrong. Section5.5 provides a coordinate
exchange algorithm that improves the discrepancy of a candidate design. Simula-
tion results illustrate the performance of this algorithm. We conclude with a brief
discussion.
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Table 5.1 Three interpretations of the discrepancy

Kernel Interpretation Discrepancy D(X , ν, K ) = D(X , �, K )

K (t, x) = 〈δt , δx〉M ‖ν − νX ‖M
f (x) = 〈K (·, x), f 〉H sup

f ∈H :‖ f ‖H ≤1

∣
∣∣
∣∣

∫

Ω

f (x) �(x) dx − 1

N

N∑

i=1

f (xi )

∣
∣∣
∣∣

K (t, x) = cov
(
f (t), f (x)

) √√
√√
√E

∣
∣∣
∣∣

∫

Ω

f (x) �(x) dx − 1

N

N∑

i=1

f (xi )

∣
∣∣
∣∣

2

5.2 The Discrepancy

Experimental design theory based on discrepancy assumes an experimental region,
Ω , and a target probability distribution, F : Ω → [0, 1], which is known a priori.We
assume that F has a probability density,�. It is convenient to alsoworkwithmeasures,
ν, defined on Ω . If ν is a probability measure, then the associated probability distri-
bution is given by F(x) = ν((−∞, x]). The Dirac measure, δx assigns unit measure
to the set {x} and zero measure to sets not containing x. A design, X = {xi }Ni=1,
is a finite set of points with empirical distribution FX = N−1∑N

i=1 1(−∞,xi ] and
empirical measure νX = N−1∑N

i=1 δxi .
Our notation for discrepancy takes the form of

D(FX , F, K ), D(X , F, K ), D(X , �, K ), D(X , ν, K ), D(νX , ν, K ), etc.,

all of which mean the same thing. The first argument always refers to the design, the
second argument always refers to the target, and the third argument is a symmetric,
positive definite kernel, which is explained below.We abuse the discrepancy notation
because sometimes it is convenient to refer to the design as a set, X , other times
by its empirical distribution, FX , and other times by its empirical measure, νX .
Likewise, sometimes it is convenient to refer the target as a probability measure, ν,
other times by its distribution function, F , and other times by its density function, �.

In the remainder of this sectionwe provide three interpretations of the discrepancy,
summarized in Table5.1. These results are presented in various places, including [14,
15]. One interpretation of discrepancy is the norm of ν − νX . The second and third
interpretations consider the problem of evaluating the mean of a random variable
Y = f (X), or equivalently a multidimensional integral

μ = E(Y ) = E[ f (X)] =
∫

Ω

f (x) �(x) dx, (5.3)

where X is a random vector with density �. The second interpretation of the discrep-
ancy is worst-case cubature error for integrands, f , in the unit ball of a Hilbert space.
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The third interpretation is the root mean squared cubature error for integrands, f ,
which are realizations of a stochastic processes.

5.2.1 Definition in Terms of a Norm on a Hilbert Space
of Measures

Let (M , 〈·, ·〉M ) be a Hilbert space of measures defined on the experimental region,
Ω . Assume that M includes all Dirac measures. Define the kernel function K :
Ω × Ω → R in terms of inner products of Dirac measures:

K (t, x) := 〈δt , δx〉M , ∀t, x ∈ Ω. (5.4)

The squared distance between two Dirac measures in M is then

‖δx − δt‖2M = K (t, t) − 2K (t, x) + K (x, x), ∀t, x ∈ Ω. (5.5)

It is straightforward to show that K is symmetric in its arguments and positive-
definite, namely:

K (x, t) = K (t, x) ∀t, x ∈ Ω, (5.6a)
N∑

i,k=1

ci ck K (xi , xk) > 0, ∀N ∈ N, c ∈ R
N \ {0}, X ⊂ Ω. (5.6b)

The inner product of arbitrary measures λ, ν ∈ M can be expressed in terms of a
double integral of the kernel, K :

〈λ, ν〉M =
∫

Ω×Ω

K (t, x) λ(dt)ν(dx). (5.7)

This can be established directly from (5.4) for M0, the vector space spanned
by all Dirac measures. Letting M be the closure of the pre-Hilbert space M0 then
yields (5.7).

The discrepancy of the design X with respect to the target probability measure
ν using the kernel K can be defined as the norm of the difference between the target
probability measure, ν, and the empirical probability measure forX :
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D2(X , ν, K ) := ‖ν − νX ‖2

=
∫

Ω×Ω

K (t, x) (ν − νX )(dt)(ν − νX )(dx)

=
∫

Ω×Ω

K (t, x) ν(dt)ν(dx) − 2

N

N∑

i=1

∫

Ω

K (t, xi ) ν(dt)

+ 1

N 2

N∑

i,k=1

K (xi , xk). (5.8a)

The formula for the discrepancy may be written equivalently in terms of the proba-
bility distribution, F , or the probability density, �, corresponding to the target prob-
ability measure, ν:

D2(X , F, K ) =
∫

Ω×Ω

K (t, x) dF(t)dF(x) − 2

N

N∑

i=1

∫

Ω

K (t, xi ) dF(t)

+ 1

N 2

N∑

i,k=1

K (xi , xk), (5.8b)

=
∫

Ω×Ω

K (t, x) �(t)�(x) dtdx − 2

N

N∑

i=1

∫

Ω

K (t, xi ) �(t) dt

+ 1

N 2

N∑

i,k=1

K (xi , xk). (5.8c)

Typically the computational cost of evaluating K (t, x) for any (t, x) ∈ Ω2 is
O(d), where t is a d-vector. Assuming that the integrals above can be evaluated at a
cost of O(d), the computational cost of evaluating D(X , ν, K ) is O(dN 2).

The formulas for the discrepancy in (5.8) depend inherently on the choice of the
kernel K . That choice is key to answering question (Q). An often used kernel is

K (t, x) =
d∏

j=1

[
1 + 1

2

(|t j | + |x j | − |x j − t j |
)]

. (5.9)

This kernel is plotted in Fig. 5.1 for d = 1. The distance between twoDirac measures
by (5.5) for this kernel in one dimension is

‖δx − δt‖M = √|x − t |.

The discrepancy for the uniform distribution on the unit cube defined in terms of
the above kernel is expressed as
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Fig. 5.1 The kernel defined in (5.9) for d = 1

D2(U , Funif, K ) =
∫

(0,1)d×(0,1)d
K (t, x) dtdx − 2

N

N∑

i=1

∫

(0,1)d
K (t, ui ) dt

+ 1

N 2

N∑

i,k=1

K (ui , uk)

=
(
4

3

)d

− 2

N

N∑

i=1

d∏

j=1

[

1 + ui j − u2i j
2

]

+ 1

N 2

N∑

i,k=1

d∏

j=1

[
1 + min(ui j , uik)

]
.

5.2.2 Definition in Terms of a Deterministic Cubature Error
Bound

Now let (H , 〈·, ·〉H ) be a reproducing kernel Hilbert space (RKHS) of functions [1],
f : Ω → R, which appear as the integrand in (5.3). By definition, the reproducing
kernel, K , is the unique function defined onΩ × Ω with the properties that K (·, x) ∈
H for any x ∈ Ω and f (x) = 〈K (·, x), f 〉H . This second property, implies that
K reproduces function values via the inner product. It can be verified that K is
symmetric in its arguments and positive definite as in (5.6).

The integralμ = ∫
Ω

f (x) �(x) dx, which was identified asE[ f (X)] in (5.3), can
be approximated by a sample mean:

μ̂ = 1

N

N∑

i=1

f (xi ). (5.10)
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The quality of this approximation to the integral, i.e., this cubature, depends in part on
how well the empirical distribution of the design, X = {xi }Ni=1, matches the target
distribution F associated with the density function �.

Define the cubature error as

err( f,X ) = μ − μ̂ =
∫

Ω

f (x) �(x)dx − 1

N

N∑

i=1

f (xi )

=
∫

Ω

f (x) d[F(x) − FX (x)]. (5.11)

Under modest assumptions on the reproducing kernel, err(·,X ) is a bounded, linear
functional. By the Riesz representation theorem, there exists a unique representer,
ξ ∈ H , such that

err( f,X ) = 〈ξ, f 〉H , ∀ f ∈ H .

The reproducing kernel allows us to write down an explicit formula for that repre-
senter, namely, ξ(x) = 〈K (·, x), ξ 〉H = 〈ξ, K (·, x)〉H = err(K (·, x),X ). By the
Cauchy-Schwarz inequality, there is a tight bound on the squared cubature error,
namely

|err( f,X )|2 = 〈ξ, f 〉2H ≤ ‖ξ‖2H ‖ f ‖2H . (5.12)

The first term on the right describes the contribution made by the quality of the
cubature rule, while the second term describes the contribution to the cubature error
made by the nature of the integrand.

The square norm of the representer of the error functional is

‖ξ‖2H = 〈ξ, ξ 〉H = err(ξ,X ) since ξ represents the error functional

= err(err(K (·, ··),X ),X ) since ξ(x) = err(K (·, x),X )

=
∫

Ω×Ω

K (t, x) d[F(t) − FX (t)]d[F(x) − FX (x)].

We can equate this formula for ‖ξ‖2H with the formula for D2(X , F, K ) in (5.8).
Thus, the tight, worst-case cubature error bound in (5.12) can be written in terms of
the discrepancy as

|err( f,X )| ≤ ‖ f ‖H D(X , F, K ).

This implies our second interpretation of the discrepancy in Table5.1.
We now identify the RKHS for the kernel K defined in (5.9). Let (a, b) be some

d dimensional box containing the origin in the interior or on the boundary. For any
u ⊆ {1, . . . , d}, define ∂u f (xu) := ∂ |u| f (xu, 0)/∂xu, the mixed first-order partial
derivative of f with respect to the x j for j ∈ u, while setting x j = 0 for all j /∈ u.
Here, xu = (x j ) j∈u, and |u| denotes the cardinality of u. By convention, ∂∅ f :=
f (0). The inner product for the reproducing kernel K defined in (5.9) is defined as
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〈 f, g〉H :=
∑

u⊆{1,...,d}

∫

(a,b)
∂u f (xu)∂ug(xu) dxu (5.13)

= f (0)g(0) +
∫ b1

a1

∂ {1} f (x1)∂ {1}g(x1) dx1

+
∫ b2

a2

∂ {2} f (x2)∂ {2}g(x2) dx2 + · · ·

+
∫ b2

a2

∫ b1

a1

∂ {1,2} f (x1, x2)∂ {1,2}g(x1, x2) dx1dx2 + · · ·

+
∫

(a,b)
∂ {1,...,d} f (x)∂ {1,...,d}g(x) dx.

To establish that the inner product defined above corresponds to the reproducing
kernel K defined in (5.9), we note that

∂uK ((xu, 0), t) =
∏

j∈u

1

2

[
sign(x j ) − sign(x j − t j )

]

=
∏

j∈u
sign(t j )1(min(0,t j ),max(0,t j ))(x j ).

Thus, K (·, t) possesses sufficient regularity to have finiteH -norm. Furthermore, K
exhibits the reproducing property for the above inner product because

〈K (·, t), f 〉H
=

∑

u⊆{1,...,d}

∫

(a,b)
∂uK ((xu, 0), t)∂u f (xu, 0) dxu

=
∑

u⊆{1,...,d}

∫

(a,b)

∏

j∈u
sign(t j )1(min(0,t j ),max(0,t j ))(x j )∂

u f (xu, 0) dxu

=
∑

u⊆{1,...,d}

∑

v⊆u

(−1)|u|−|v| f (tv, 0) = f (t).

5.2.3 Definition in Terms of the Root Mean Squared
Cubature Error

Assume Ω is a measurable subset in R
d and F is the target probability distribution

defined on Ω as defined earlier. Now, let f : Ω → R be a stochastic process with a
constant pointwise mean, i.e.,
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E f ∈A [ f (x)] = m, ∀x ∈ Ω,

where A is the sample space for this stochastic process. Now we interpret K as the
covariance kernel for the stocastic process:

K (t, x) := E f ∈A ([ f (t) − m][ f (x) − m]) = cov( f (t), f (x)), ∀t, x ∈ Ω.

It is straightforward to show that the kernel function is symmetric and positive defi-
nite.

Define the error functional err(·,X ) in the same way as in (5.11). Now, the mean
squared error is

E f ∈A [(err( f,X )]2 = E f ∈A

{∫

Ω

f (x) dF(x) − 1

N

N∑

i=1

f (xi )

}2

= E f ∈A

{∫

Ω

( f (x) − m) dF(x) − 1

N

N∑

i=1

( f (xi ) − m)

}2

=
∫

Ω2
E f ∈A [( f (t) − m)( f (x) − m)] dF(t)dF(x)

− 2

N

N∑

i=1

∫

Ω

E f ∈A [( f (x) − m)( f (xi ) − m)] dF(x)

+ 1

N 2

N∑

i,k=1

E f ∈A [( f (xi ) − m)( f (xk) − m)]

=
∫

Ω2
K (t, x) dF(t)dF(x) − 2

N

N∑

i=1

∫

Ω

K (x, xi ) dF(x)

+ 1

N 2

N∑

i,k=1

K (xi , xk).

Therefore, we can equate the discrepancy D(X , F, K ) defined in (5.8) as the root
mean squared error:

D(X , F, K ) =
√
E f ∈A [(err( f,X )]2 =

√√√
√
E

∣∣∣∣∣

∫

Ω

f (x)�(x)dx − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣

2

.
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5.3 When a Transformed Low Discrepancy Design
Also Has Low Discrepancy

Having motivated the definition of discrepancy in (5.8) from three perspectives,
we now turn our attention to question (Q), namely, does a transformation of low
discrepancy points with respect to the uniform distribution yield low discrepancy
points with respect to the new target distribution. In this section, we show a positive
result, yet recognize some qualifications.

Consider some symmetric, positive definite kernel, Kunif : (0, 1)d × (0, 1)d → R,
some uniform design U , some other domain, Ω , some other target distribution, F ,
and some transformation Ψ : (0, 1)d → Ω as defined in (5.1). Then the squared
discrepancy of the uniform design can be expressed according to (5.8) as follows:

D2(U , Funif, Kunif)

=
∫

(0,1)d×(0,1)d
Kunif(u, v) dudv − 2

N

N∑

i=1

∫

Ω

Kunif(u, ui ) du

+ 1

N 2

N∑

i,k=1

Kunif(ui , uk)

=
∫

Ω×Ω

Kunif(Ψ
−1(t),Ψ −1(x))

∣∣
∣∣
∂Ψ −1(t)

∂ t

∣∣
∣∣

∣∣
∣∣
∂Ψ −1(x)

∂x

∣∣
∣∣ dtdx

− 2

N

N∑

i=1

∫

Ω

Kunif(Ψ
−1(t),Ψ −1(xi ))

∣∣
∣∣
∂Ψ −1(t)

∂ t

∣∣
∣∣ dt

+ 1

N 2

N∑

i,k=1

Kunif(Ψ
−1(xi ),Ψ −1(xk))

= D2(X , F, K )

where the kernel K is defined as

K (t, x) = Kunif(Ψ
−1(t),Ψ −1(x)), (5.14a)

and provided that the density, �, corresponding to the target distribution, F , satisfies

�(x) =
∣∣∣∣
∂Ψ −1(x)

∂x

∣∣∣∣ . (5.14b)

The above argument is summarized in the following theorem.

Theorem 5.1 Suppose that the designX is constructed by transforming the design
U according to the transformation (5.1). Also suppose that conditions (5.14) are
satisfied. Then X has the same discrepancy with respect to the target distribution,
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F, defined by the kernel K as does the original designU with respect to the uniform
distribution and defined by the kernel Kunif. That is,

D(X , F, K ) = D(U , Funif, Kunif).

As a consequence, under conditions (5.14), question (Q) has a positive answer.

Condition (5.14b)may be easily satisfied. For example, it is automatically satisfied
by the inverse cumulative distribution transform (5.2). Condition (5.14a) is simply
a matter of definition of the kernel, K , but this definition has consequences. From
the perspective of Sect. 5.2.1, changing the kernel from Kunif to K means changing
the definition of the distance between two Dirac measures. From the perspective of
Sect. 5.2.2, changing the kernel from Kunif to K means changing the definition of the
Hilbert space of integrands, f , in (5.3). From the perspective of Sect. 5.2.3, changing
the kernel from Kunif to K means changing the definition of the covariance kernel
for the integrands, f , in (5.3).

To illustrate this point, consider a cousin of the kernel in (5.9), which places the
reference point at 0.5 = (0.5, . . . , 0.5), the center of the unit cube (0, 1)d :

Kunif(u, v) =
d∏

j=1

[
1 + 1

2

(∣∣u j − 1/2
∣∣+ ∣∣v j − 1/2

∣∣− ∣∣u j − v j

∣∣)
]

(5.15)

= K (u − 0.5, v − 0.5) for K defined in (5.9).

This kernel defines the centered L2-discrepancy [13]. Consider the standard multi-
variate normal distribution, Fnormal, and choose the inverse normal distribution,

Ψ (u) = (Φ−1(u1), . . . , Φ
−1(ud)), (5.16)

where Φ denotes the standard normal distribution function. Then condition (5.14b)
is automatically satisfied, and condition (5.14a) is satisfied by defining

K (t, x) = Kunif(Ψ
−1(t),Ψ −1(x))

=
d∏

j=1

[
1 + 1

2

(∣∣Φ(t j ) − 1/2
∣
∣+ ∣∣Φ(x j ) − 1/2

∣
∣

− ∣∣Φ(t j ) − Φ(x j )
∣
∣)] .

In one dimension, the distance between two Dirac measures defined using the ker-
nel Kunif above is ‖δx − δt‖M = √|x − t |, whereas the distance defined using the
kernel K above is ‖δx − δt‖M = √|Φ(x) − Φ(t)|. Under kernel K , the distance
between two Dirac measures is bounded, even though the domain of the distribution
is unbounded. Such an assumption may be unpalatable.
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5.4 Do Transformed Low Discrepancy Points Have Low
Discrepancy More Generally

The discussion above indicates that condition (5.14a) can be too restrictive. We
would like to compare the discrepancies of designs under kernels that do not satisfy
that restriction. In particular, we consider the centered L2-discrepancy for uniform
designs on (0, 1)d defined by the kernel in (5.15):

D2(U , Funif, Kunif)

=
(
13

12

)d

− 2

N

N∑

i=1

d∏

j=1

[
1 + 1

2

(
|ui j − 1/2| − |ui j − 1/2|2

)]

+ 1

N 2

N∑

i,k=1

d∏

j=1

[
1 + 1

2

(|ui j − 1/2| + |ukj − 1/2| − |ui j − ukj |
)]

,

where again, Funif denotes the uniform distribution on (0, 1)d , and U denotes a
design on (0, 1)d

Changing perspectives slightly, if F ′
unif denotes the uniform distribution on the

cube of volume one centered at the origin, (−0.5, 0.5)d , and the design U ′ is con-
structed by subtracting 0.5 from each point in the design U :

U ′ = {u − 0.5 : u ∈ U }, (5.17)

then
D(U ′, F ′

unif, K ) = D(U , Funif, Kunif),

where K is the kernel defined in (5.9).
Recall that the origin is a special point in the definition of the inner product for

the Hilbert space with K as its reproducing kernel in (5.13). Therefore, this K from
(5.9) is appropriate for defining the discrepancy for target distributions centered at
the origin, such as the standard normal distribution, Fnormal. Such a discrepancy is

D2(X , Fnormal, K ) =
(

1 +
√

2

π

)d

− 2

N

N∑

i=1

d∏

j=1

[
1 + 1√

2π
+ 1

2
|xi j | − xi j

(
Φ(xi j ) − 1

2

)
− φ(xi j )

]

+ 1

N 2

N∑

i,k=1

d∏

j=1

[
1 + 1

2

(|xi j | + |xk j | − |xi j − xk j |
)
]

. (5.18)
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Fig. 5.2 Normal
discrepancy versus uniform
discrepancy for transformed
designs
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Here, φ is the standard normal probability density function. The derivation of (5.18)
is given in the Appendix.

We numerically compare the discrepancy of a uniform design,U ′ given by (5.17)
and the discrepancy of a design constructed by the inverse normal transformation,
i.e.,X = Ψ (U ) forΨ in (5.16), where theU leading to bothU ′ andX is identical.
We do not expect the magnitudes of the discrepancies to be the same, but we ask

Does D(U ′
1 , F

′
unif, K ) ≤ D(U ′

2 , F
′
unif, K ) (Q′)

imply D(Ψ (U1), Fnormal, K ) ≤ D(Ψ (U2), Fnormal, K )?

Again, K is given by (5.9). So we are actually comparing discrepancies defined by
the same kernels, but not kernels that satisfy (5.14a).

Let d = 5 and N = 50. We generate B = 20 independent and identically
distributed (IID) uniform designs, U with N = 50 points on (0, 1)5 and then use
the inverse distribution transformation to obtain IID random N (0, I5) designs,X =
Ψ (U ). Figure5.2 plots the discrepancies for normal designs, D(Ψ (U ), Fnormal, K ),
against the discrepancies for the uniform designs, D(U , Funif, Kunif) = D(U ′,
F ′
unif, K ) for each of the B = 20 designs. Question (Q′) has a positive answer if and

only if the lines passing through any two points on this plot all have non-negative
slopes. However, that is not the case. Thus (Q′) has a negative answer.

We further investigate the relationship between the discrepancy of a uniform
design and the discrepancy of the same design after inverse normal transformation.
Varying the dimension d from 1 to 10, we calculate the sample correlation between
D(Ψ (U ), Fnormal, K ) and D(U , Funif, Kunif) = D(U ′, F ′

unif, K ) for B = 500 IID
designs of size N = 50. Figure5.3 displays the correlation as a function of d.
Although the correlation is positive, it degrades with increasing d.
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Fig. 5.3 Correlation
between the uniform and
normal discrepancies for
different dimensions
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Example 5.1 A simple cubature example illustrates that an inverse transformed
low discrepancy design,U , may yield a large D(Ψ (U ), Fnormal, K ) and also a large
cubature error. Consider the integration problem in (5.3) with

X ∼ N (0, Id), f (x) = x21 + · · · + x2d
1 + 10−8(x21 + · · · + x2d )

, Y = f (X), (5.19a)

μ = E(Y ) =
∫

Rd

x21 + · · · + x2d
1 + 10−8(x21 + · · · + x2d )

φ(x) dx, (5.19b)

where φ is the probability density function for the standard multivariate normal
distribution. The function f : Rd → R is constructed to asymptote to a constant as
[‖2‖]x tends to infinity to ensure that f lies inside the Hilbert space corresponding
to the kernel K defined in (5.9). Since the integrand in (5.19) is a function of [‖2‖]x,
μ can be written as a one dimensional integral. For d = 10, μ = 10 to at least 15
significant digits using quadrature.

We can also approximate the integral in (5.19) using a d = 10, N = 512 cubature
(5.10).We compare cubatures using two designs. The designX1 is the inverse normal
transformation of a scrambled Sobol’ sequence, U1, which has a low discrepancy
with respect to the uniform distribution on the d-dimensional unit cube. The design
U2 takes the point inU1 that is closet to 0 and moves it to

(
10−15, . . . , 10−15

)
, which

is very close to 0. As seen in Table5.2, the two uniform designs have quite similar,
small discrepancies. However, the transformed designs, X j = Ψ (U j ) for j = 1, 2,
have much different discrepancies with respect to the normal distribution. This is due
to the point in X2 that has large negative coordinates. Furthermore, the cubatures,
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Table 5.2 Comparison of Integral Estimate

U D(U , Funif, K ) D(Ψ (U ), Fnormal, K ) μ̂ Relative error

U1 0.0285 18.57 10.0182 0.0018

U2 0.0292 58.82 11.2238 0.1224

μ̂, based on these two designs have significantly different errors. The first design
has both a smaller discrepancy and a smaller cubature error than the second. This
could not have been inferred by looking at the discrepancies of the original uniform
designs.

5.5 Improvement by the Coordinate-Exchange Method

In this section, we propose an efficient algorithm that improves a design’s quality in
terms of the discrepancy for the target distribution. We start with a low discrepancy
uniform design, such as a Sobol’ sequence, and transform it into a design that approx-
imates the target distribution. Following the optimal design approach, we then apply
a coordinate-exchange algorithm to further improve the discrepancy of the design.

The coordinate-exchange algorithm was introduced in [18], and then applied
widely to construct various kinds of optimal designs [16, 19, 21]. The coordinate-
exchange algorithm is an iterative method. It finds the “worst” coordinate xi j of the
current design and replaces it to decrease loss function, in this case, the discrepancy.
The most appealing advantage of the coordinate-exchange algorithm is that at each
step one need only solve a univariate optimization problem.

First, we define the point deletion function, dp, as the change in square discrepancy
resulting from removing the a point from the design:

dp(i) = D2(X ) −
(
N − 1

N

)2

D2(X \{xi }). (5.20)

Here, the design X \{xi } is the N − 1 point design with the point {xi } removed.
We suppress the choice of target distribution and kernel in the above discrepancy
notation for simplicity. We then choose

i∗ = argmaxi=1,...,Ndp(i).
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The definition of i∗ means that removing xi∗ from the designX results in the smallest
discrepancy among all possible deletions. Thus, xi∗ is helping the least, which makes
it a prime candidate for modification.

Next, we define a coordinate deletion function, dc, as the change in the
square discrepancy resulting from removing a coordinate in our calculation of the
discrepancy:

dc( j) = D2(X ) − D2(X− j ). (5.21)

Here, the designX− j still has N points but nowonly d dimensions, the j th coordinate
having been removed. For this calculation to be feasible, the target distribution must
have independent marginals. Also, the kernel must be of product form. To simplify
the derivation, we assume a somewhat stronger condition, namely that the marginals
are identical and that each term in the product defining the kernel is the same for
every coordinate:

Ω = Ω̃ × · · · × Ω̃, K (t, x) =
d∏

j=1

[1 + K̃ (t j , x j )], K̃ : Ω̃ × Ω̃ → R.

(5.22)
We then choose

j∗ = argmax j=1,...,ddc( j).

For reasons analogous to those given above, the j th coordinate seems to be the best
candidate for change.

Let X ∗(x) denote the design that results from replacing xi∗ j∗ by x . We now
define Δ(x) as improvement in the squared discrepancy resulting from replacingX
byX ∗(x):

Δ(x) = D2(X ) − D2(X ∗(x)). (5.23)

We can reduce the discrepancy byfind an x such thatΔ(x) is positive. The coordinate-
exchange algorithm outlined in Algorithm 1 improves the design by maximizing
Δ(x) for one chosen coordinate in one iteration. The algorithm terminates when
it exhausts the maximum allowed number of iterations or the optimal improvement
Δ(x∗) is so small that it becomes negligible (Δ(x∗) ≤ TOL). Algorithm 1 is a greedy
algorithm, and thus it can stop at a local optimal design. We recommend multiple
runs of the algorithm with different initial designs to obtain a design with the lowest
discrepancy possible. Alternatively, users can include stochasticity in the choice of
the coordinate that is to be exchanged, similarly to [16].

For kernels of product form, (5.22), and target distributions with independent and
identical marginals, the formula for the squared discrepancy in (5.8) becomes
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Algorithm 1 Coordinate Exchange Algorithm.
Input: An initial design X on the domain Ω , a target distribution, F , a kernel, K of the form

(5.22), a small value TOL to determine the convergence of the algorithm, and the maximum
allowed number of iterations, Mmax.

Output: Low discrepancy design X .
1: for m = 1, 2, . . . , Mmax do
2: Compute the point deletion function dp(1), . . . , dp(N ). Choose the i∗-th point which has the

largest point deletion value, i.e. i∗ = argmaxidp(i).
3: Compute the coordinate deletion function dc(1), . . . , dc(d) and choose the j∗-th coordinate

which has the largest coordinate deletion value, i.e., j∗ = argmax jdc( j).
4: Replace the coordinate xi∗ j∗ by x∗ which is defined by the univariate optimization problem

x∗ = argmaxx∈Ω̃Δ(x).

5: if Δ(x∗) > TOL then
6: Replace xi∗ j∗ with x∗ in the design X , i.e., let X (x∗) replace the old X .
7: else
8: Terminate the loop.
9: end if
10: end for
11: Return the design, X , and the discrepancy, D(X , F, K ).

D2(X , ρ, K ) = (1 + c)d − 2

N

N∑

i=1

H(xi ) + 1

N 2

N∑

i,k=1

K (xi , xk),

where

h(x) =
∫

Ω̃

K̃ (t, x) �̃(t) dt, (5.24a)

c =
∫

Ω̃×Ω̃

K̃ (tk, xk) �̃(t )̃�(x) dtdx =
∫

Ω̃

h(x) �̃(x) dx, (5.24b)

H(x) =
d∏

j=1

[1 + h(x j )]. (5.24c)

An evaluation of h(x) and K̃ (t, x) each requireO(1) operations, while an evaluation
of H(x) and K (t, x) each requireO(d) operations. The computation of D(X , ρ, K )

requires O(dN 2) operations because of the double sum. For a standard multivariate
normal target distribution and the kernel defined in (5.9), we have
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c =
√

2

π
,

h(x) = 1√
2π

+ 1

2
|x | − x[Φ(x) − 1/2] − φ(x),

K̃ (t, x) = 1

2
(|t | + |x | − |x − t |).

The point deletion function defined in (5.20) then can be expressed as

dp(i) = (2N − 1)(1 + c)d

N 2
− 2

N

[
1

N

N∑

k=1

H(xk) +
(
1 − 1

N

)
H(xi )

]

+ 1

N 2

[
2

N∑

k=1

K (xi , x j ) − K (xi , xi )
]
.

The computational cost for dp(1), . . . , dp(N ) is then O(dN 2), which is the same
order as the cost of the discrepancy of a single design.

The coordinate deletion function defined in (5.21) can be be expressed as

dc( j) = (c − 1)cd−1 − 2

N

N∑

i=1

h(xi j )H(xi )
1 + h(xi j )

+ 1

N 2

N∑

i,k=1

K̃ (xi j , xk j )K (xi , x j )

1 + K̃ (xi j , xk j )
.

The computational cost for dc(1), . . . , dp(d) is alsoO(dN 2), which is the same order
as the cost of the discrepancy of a single design.

Finally, the function Δ defined in (5.23) is given by

Δ(x) = −2
[
h(xi∗ j∗) − h(x)

]
H(xi∗)

N [1 + h(xi∗ j∗)]

+ 1

N 2

⎛

⎜
⎝2

N∑

i=1
i �=i∗

[K̃ (xi∗ j∗ , xi j∗) − K̃ (x, xi j∗)]K (xi∗ , xi )

1 + K̃ (xi∗ j∗ , xi j∗)

+[K̃ (xi∗ j∗ , xi∗ j∗) − K̃ (x, x)]K (xi∗ , xi∗)

1 + K̃ (xi∗ j∗ , xi∗ j∗)

)

If we drop the terms that are independent of x , then we can maximize the function

Δ′(x) = Ah(x) − 1

N

N∑

i=1
i �=i∗

Bi K̃ (x, xi j∗) − CK̃ (x, x)
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where

A = 2H(xi∗)
1 + h(xi∗ j∗)

, Bi = 2K (xi∗ , xi )

1 + K̃ (xi∗ j∗ , xi j∗)
, C = K (xi∗ , xi∗)

N [1 + K̃ (xi∗ j∗ , xi∗ j∗)]
.

Note that A, B1, . . . , BN ,C only need to be computed once for each iteration of the
coordinate exchange algorithm.

Note that the coordinate-exchange algorithm we have developed is a greedy and
deterministic algorithm. The coordinate that we choose to make exchange is the one
has the largest point and coordinate deletion function values, and we always make
the exchange for new coordinate as long as the new optimal coordinate improves the
objective function. It is true that such deterministic and greedy algorithm is likely
to return a design of whose discrepancy attains a local minimum. To overcome this,
we can either run the algorithm with multiple random initial designs, or we can
combine the coordinate-exchange with stochastic optimization algorithms, such as
simulated annealing (SA) [17] or threshold accepting (TA) [12]. For example, we can
add a random selection scheme when choosing a coordinate to exchange, and when
making the exchange of the coordinates, we can incorporate a random decision to
accept the exchange or not. The random decision can follow the SA or TA method.
Tuning parameters must be carefully chosen to make the SA or TAmethod effective.
Interested readers can refer to [22] to see how TA can be applied to the minimization
of discrepancy.

5.6 Simulation

To demonstrate the performance of the d-dimensional standard normal design
proposed in Sect. 5.5, we compare three families of designs: (1) RAND: inverse
transformed IID uniform random numbers; (2) SOBOL: inverse transformed
Sobol’ set; (3) E-SOBOL: inverse transformed scrambled Sobol’ set where
the one dimensional projections of the Sobol’ set have been adjusted to be
{1/(2N ), 3/(2N ), . . . , (2N − 1)/(2N )}; and (4) CE: improved E-SOBOLviaAlgo-
rithm 1. We have tried different combinations of dimension, d, and sample size, N .
For each (d, N ) and each algorithm we generate 500 designs and compute their
discrepancies (5.18).

Figure5.4 contains the boxplots of normal discrepancies corresponding to the
four generators with d = 2 and N = 32. It shows that SOBOL, E-SOBOL, and CE
all outperform RAND by a large margin. To better present the comparison between
the better generators, in Fig. 5.5 we generally exclude RAND.

We also report the average execution times for the four generators in Table5.3. All
codes were run on a MacBook Pro with 2.4 GHz Intel Core i5 processor. The maxi-
mum number of iterations allowed is Mmax = 200. Algorithm 1 converges within 20
iterations in all simulation examples.

We summarize the results of our simulation as follows.
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Fig. 5.4 Performance
comparison of designs
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Table 5.3 Execution Time of Generators (in seconds)

d 2 3 4 6 8 10

N 32 64 64 128 256 512

RAND 3.22E−5 5.21E−5 5.27E−5 9.92E−5 2.48E−4 5.32E−4

SOBOL 8.60E−4 0.10E−2 0.11E−2 0.16E−2 0.21E−2 0.28E−2

E-SOBOL 8.71E−4 0.11E−2 0.12E−2 0.16E−2 0.23E−2 0.32E−2

CE 1.34E−2 2.73E−2 6.12E−2 0.24 1.04 3.84

1. Overall, CE produces the smallest discrepancy.
2. When the design is relatively dense, i.e., N/d is large, E-SOBOL and CE have

similar performance.
3. When the design is more sparse, i.e., N/d is smaller, SOBOL and E-SOBOL

have similar performance, but CE is superior to both of them in terms of the
discrepancy. Not only in terms of the mean but also in terms of the range for the
500 designs generated.

4. CE requires the longest computational time to construct a design, but this is
moderate. When the cost of obtaining function values is substantial, then the cost
of constructing the design may be insignificant.

5.7 Discussion

This chapter summarizes the three interpretations of the discrepancy. We show that
for kernels and variable transformations satisfying conditions (5.14), variable trans-
formations of low discrepancy uniform designs yield low discrepancy designs with
respect to the target distribution. However, for more practical choices of kernels, this
correspondence may not hold. The coordinate-exchange algorithm can improve the



5 Is a Transformed Low Discrepancy Design Also Low Discrepancy? 89

SOBOL E-SOBOL CE

1.3095

1.31

1.3105

1.311

1.3115

1.312

1.3125

(a) d = 2,N = 32

SOBOL E-SOBOL CE
1.985

1.9855

1.986

1.9865

(b) d = 3,N = 64

SOBOL E-SOBOL CE

2.857

2.858

2.859

2.86

(c) d = 4,N = 64

SOBOL E-SOBOL CE

5.507

5.508

5.509

5.51

5.511

(d) d = 6,N = 128

SOBOL E-SOBOL CE

10.197

10.198

10.199

10.2

10.201

(e) d = 8,N = 256

RAND SOBOL E-SOBOL CE

18.576

18.578

18.58

18.582

18.584

18.586

18.588

(f) d = 10,N = 512

Fig. 5.5 Performance comparison of designs

discrepancies of candidate designs that may be constructed by variable transforma-
tions.

While discrepancies can be defined for arbitrary kernels, we believe that the
choice of kernel can be important, especially for small sample sizes. If the distribu-
tion has a symmetry, e.g. �(T (x)) = �(x) for some probability preserving bijection
T : Ω → Ω , then we would like our discrepancy to remain unchanged under such
a bijection, i.e., D(T (X ), �, K ) = D(X , �, K ). This can typically be ensured by
choosing kernels satisfying K (T (t), T (x)) = K (t, x). The kernel Kunif defined in
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(5.15) satisfies this assumption for the standard uniform distribution and the trans-
formation T (x) = 1 − x. The kernel K defined in (5.9) satisfies this assumption for
the standard normal distribution and the transformation T (x) = −x.

For target distributions with independent marginals and kernels of product form
as in (5.22), coordinate weights [3] Sect. 4 are used to determine which projections
of the design, denoted by u ⊆ {1, . . . , d}, are more important. The product form of
the kernel given in (5.22) can be generalized as

Kγ (t, x) =
d∏

j=1

[
1 + γ j K̃ (t j , x j )

]
.

Here, the positive coordinate weights are γ = (γ1, . . . , γd). The squared discrepancy
corresponding to this kernel may then be written as

D2(X , F, Kγ ) =
∑

u⊆{1,...,d}
u �=∅

γuD
2
u(X , ρ, K ), γu =

∏

j∈u
γ j

D2
u(Xu, Fu, K ) = c|u| − 2

N

N∑

i=1

∏

j∈u
h(xi j ) + 1

N 2

N∑

i,k=1

∏

j∈u
K̃ (xi j , xk j ),

where c and h are defined in (5.24). Here, Xu denotes the projection of the design
into the coordinates contained in u, and Fu =∏ j∈u Fj is the u-marginal distribution.
Each discrepancy piece, Du(Xu, Fu, K ), measures how well the projected design
Xu matches Fu.

The values of the coordinate weights can be chosen to reflect the user’s belief
as to the importance of the design matching the target for various coordinate pro-
jections. A large value of γ j relative to the other γ j ′ places more importance on the
Du(Xu, Fu, K )with j ∈ u. Thus, γ j is an indication of the importance of coordinate
j in the definition of D(X , F, Kγ ).

If γ is one choice of coordinate weights and γ ′ = Cγ is another choice of coordi-
nate weights where C > 1, then γ ′

u = C |u|γu. Thus, D(X , F, Kγ ′) emphasizes the
projections corresponding to the u with large |u|, i.e., the higher order effects. Like-
wise, D(X , F, Kγ ′) places relatively more emphasis lower order effects. Again, the
choice of coordinate weights reflects the user’s belief as to the relative importance
of the design matching the target distribution for lower order effects or higher order
effects.

Appendix

We derive the formula in (5.18) for the discrepancy with respect to the standard
normal distribution, Φ, using the kernel defined in (5.9). We first consider the case
d = 1. We integrate the kernel once:
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∫ ∞
−∞

K (t, x) dΦ(t)

=
∫ ∞
−∞

(
1 + 1

2
|x | + 1

2
|t | − 1

2
|x − t |

)
φ(t) dt

=1 + 1√
2π

+ 1

2
|x | − 1

2

[∫ x

−∞
(x − t)φ(t) dt +

∫ ∞
x

(t − x)φ(t) dt

]

=1 + 1√
2π

+ 1

2
|x | − x[Φ(x) − 1/2] − φ(x).

Then we integrate once more:

∫ ∞
−∞

∫ ∞
−∞

K (t, x) dΦ(t)dΦ(x)

=
∫ ∞
−∞

(
1 + 1√

2π
+ 1

2
|x | − x[Φ(x) − 1/2] − φ(x)

)
φ(x) dx

= 1 +
√

2

π
+
∫ ∞
−∞

{−xΦ(x)φ(x) + [φ(x)]2} dx

= 1 +
√

2

π
− 1√

4π
+
∫ ∞
−∞

1

2π
e−x2dx = 1 +

√
2

π
.

Generalizing this to the d-dimensional case yields

∫

Rd×Rd
K (x, t) dΦ(x)dΦ(t) =

(

1 +
√

2

π

)d
,

∫

Rd
K (x, xn) dΦ(x) =

d∏

j=1

[
1 + 1√

2π
+ 1

2
|x j | − x j [Φ(x j ) − 1/2] − φ(x j )

]
.

Thus, the discrepancy for the normal distribution is

D2(X , Φ, K )

=
(

1 +
√

2

π

)d

− 2

N

∑

x∈P

d∏

j=1

[
1 + 1√

2π
+ 1

2
|x j | − x j [Φ1(x j ) − 1/2] − φ(x j )

]

+ 1

N 2

∑

x,t∈P

d∏

j=1

[
1 + 1

2
|x j | + 1

2
|t j | − 1

2
|x j − t j |

]
.
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Chapter 6
The Construction of Optimal Design
for Order-of-Addition Experiment via
Threshold Accepting

Peter Winker, Jianbin Chen, and Dennis K. J. Lin

Abstract The objective of the order-of-addition (OofA) experiment is to find the
optimal addition order by comparing all responses with different orders. Assum-
ing that the OofA experiment involves m(≥ 2) components, there are m! differ-
ent orders of adding sequence. When m is large, it is infeasible to compare all
m! possible solutions (for example, 10! ≈ 3.6 millions). Two potential construc-
tion methods are systematic combinatorial construction and computer algorithmic
search. Computer search methods presented in the literature for constructing opti-
mal fractional designs of OofA experiments appear rather simplistic. In this paper,
based on the pairwise-order (PWO) model and the tapered PWO model, the thresh-
old accepting algorithm is applied to construct the optimal design (D-efficiency
for the present application) with subsets of size n among all possible size m!. In
practical, the designs obtained by threshold accepting algorithm for 4 ≤ m ≤ 30
with n = m(m − 1)/2 + 1,m(m − 1) + 1, 3m(m − 1)/2 + 1 respectively are pro-
vided for practical uses. This is apparently themost complete list of order-of-addition
(OofA) designs via computer search for 4 ≤ m ≤ 30 in the literature. Their efficien-
cies are illustrated by a scheduling problem.
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6.1 Introduction

The order-of-addition (OofA) experiment has been popularly usedwhen the response
of interest is affected by the addition sequence of materials or components. Consider-
ing the addition ofm different materials or components into the system, the different
responses depend on different adding orders. Each permutation of {1, . . . ,m} is a
possible adding order, hence there are m! different orders of adding sequences into
the system which yield different responses. The OofA experiments are prevalent in
many scientific and industrial areas, such as chemistry-related areas, bio-chemistry,
food science, nutritional science, and pharmaceutical science.

The purpose of OofA experiment is to find the optimal addition order by compar-
ing all possible responses with different orders. However, it is often infeasible to test
all them! possible orders when m is large (for example, 10! is about 3.6 millions). In
practice, a number of randomly selected orders are tested, but the empirical experi-
ence indicates that randomly selected orders may not be most informative. Hence the
design problem arises to choose a subset of orders for comparison. A good design
for the OofA experiments will help experimenters to identify the important order
effects, and to find out the optimal addition order with substantially fewer exper-
imental runs. Such an important problem has received a great deal of attention in
the past decades. For example [18] considered the design with pair-wise ordering
(PWO) effects. Based on the PWO model [19] proposed a number of design criteria
and found some OofA designs which have the same correlation structures as the
full OofA designs, for small number of components (m). Peng et al. [17] considered
different types of optimality criteria and discussed the properties of some fractional
designs. Zhao et al. [25] considered the minimal-point OofA designs. Yang et al. [24]
has obtained a number of OofA designs called component orthogonal arrays (COAs)
that are optimal under their component-position model. [13] reviewed the latest work
on the design and model of OofA experiments, and introduced some new thoughts.
[1] proposed another type OofA design named pair-wise ordering distance (PWOD)
arrays that can be used in any models in the literature. Chen et al. [2] introduced
a statistical method to speculate solutions of NP-hard problem involving orders by
making use of design for OofA experiment.

This papermakes use of the threshold accepting algorithm to find the best subset of
size nwhich implies searching for the optimal value of the objective function among
all m!. This threshold accepting?algorithm provides high quality approximations to
the global optimum. Therefore, designs obtained by our algorithm, involving only
a fraction of all m! possible permutations of components, are powerful for fitting
models in terms of the D-efficiency and are efficient for predicting the optimal order.
An illustrative example is provided to show the advantages of the obtained designs.

The remaining part of this article is organized as follows. Section6.2 introduces
the PWOmodel, the tapered PWOmodel and some optimality criteria. The threshold
accepting algorithm is proposed in Sect. 6.3. The optimal fractional OofA designs
obtained by the threshold algorithm are provided in Sect. 6.4, and a scheduling exam-
ple is discussed in Sect. 6.5. Section6.6 gives some concluding remarks.
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6.2 Preliminary

6.2.1 PWO Model

The order-of-addition (OofA) experiment involvesm(≥ 2) components, and there are
m! different orders of adding sequences into the system to yield different responses.
For any pair of components i and j, if the impact of component i preceding j is
different from the impact of component j preceding i, such a difference is called the
effect of pair (i, j). To express the order effect [18] proposed “pseudo factor”. [19]
called it pair-wise ordering (PWO) factor. The PWO factor is defined as

Ii,j =
{

+1 if i precedes j,

−1 if j precedes i.
(6.1)

This indicates whether the component i precedes the component j or not, where
i and j are the components. There are q = (m

2

)
PWO factors, corresponding to all

pairs of component orders. These factors are arranged according to the lexico-
graphic ordering of the components’ indices. For illustration, when m = 4 and a
possible order π = 2143 is given, we have I12(π) = −1, I13(π) = +1, I14(π) =
+1, I23(π) = +1, I24(π) = +1 and I34(π) = −1. Assuming βij is the effect to
response caused by Iij, the PWO model is the first-order model by summing the
effects of all Iij’s, namely:

y = β0 +
∑
i<j

βijIij + ε, (6.2)

where y is the response of interest, ε is a random error assumed to be independent
and to have a normal distribution N (0, σ 2), and p = q + 1 parameters {β0, β12, β13,

. . . , β(m−1)m} should be estimated.
In practice, it is not affordable to test all the m! orders when m is large. Let

π = (π1, . . . , πm) be a permutation of {1, . . . ,m} which specifies the order. Denote
� as the subset of size n from all of m! possible orders. Based on the best subset �,
the expected PWO model can be written as

E(y|π) = β0 +
∑
i<j

βijIij(π), π ∈ �. (6.3)

The PWOmodel has two merits. Firstly, it is easy to interpret: the effect of βij shows
the difference between the impacts of all the possible orders in which i precedes j and
the impacts of all the orders in which j precedes i. Secondly, the PWO model is an
economic model which requires a small number of runs (p = q + 1) compared with
the total number of candidate runs (m!). In order to fit PWO model (6.3) for using
the smallest runs [25] proposed a special type of design with only q + 1 runs (out of
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m! runs), which is called a minimal-point OofA design, as long as its D-efficiency is
nonzero.

6.2.2 Tapered PWO Model

Although the PWO model is an economical model, the PWO effect has some
weaknesses, for example, the PWO effect I12 in the sequences “1 → 2 → . . .”,
“1 → . . . → 2”, “. . . → 1 → 2 . . .” and “. . . → 1 → . . . → 2 . . .” is assumed to
be the same (I12 = +1). Obviously, these sequences have different sense between
the component 1 and the component 2. It is possible to assume that the impact of
any such pairwise order changes with an increase in the distance between the com-
ponents in the pair in practice. So another model of interest is “tapered PWOmodel”
as considered as in [17].

For any components i, j(i �= j) and π = (π1, . . . , πm) ∈ �, let h(ij, π) be the
distance between i and j in π , i.e., h(ij, π) = |k − l| if πk = i and πl = j, so that
h(ij, π) ∈ {1, . . . ,m − 1}. Denote

zij =
{

ch(ij,π) if i precedes j in π

−ch(ij,π) if j precedes i in π
(6.4)

as the “tapered PWO factor”, where ch = 1/h or ch = ch−1 with known
c (0 < c < 1) forh ∈ {1, . . . ,m − 1}. Then, the taperedPWOmodel canbe expressed
as

y = β0 +
∑
i<j

βijzij + ε, (6.5)

where y is the response of interest, ε is a random error assumed to be independent
and to have a normal distribution N (0, σ 2), and β0 and βij are the unknown parame-
ters. For any π = (π1, . . . , πm) ∈ �, the corresponding tapered PWO model can be
represented as

E(y|π) = β0 +
∑
i<j

βijzij(π), π ∈ �. (6.6)

The taperedPWOmodel is a generalized PWOmodel, if one chooses ch = 1 for all
h, then the tapering PWO factor (6.4) and the tapered PWOmodel (6.5) respectively
become the PWO factor (6.1) and the usual PWO model (6.2) of [18] and [19].

Under the PWOmodel or the tapered model, this paper makes use of the threshold
accepting algorithm to construct the optimal design, for all subsets of size n (≥ q + 1)
among all possiblem! order. For simplicity, three particular run sizes ofOofA designs
are of interest, even though the proposed algorithm is capable for any n. Recall that
q = (m

2

)
.
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(a) Minimal-point design: n = q + 1,
(b) Double type design: n = 2 ∗ q + 1,
(c) Triplicate type design: n = 3 ∗ q + 1.

6.2.3 Some Optimality Criteria

There are many criteria for constructing optimal designs in literature. Let X denotes
the model matrix with respect to the pre-specified model, p is the number of columns
of X and n be the run size of X , then, the D-value of a design D is defined by

De(D) = 1
n |X TX | 1

p , which is proportional to the generalized variance of the param-
eter estimators β̂ to be minimized. That is, the volume of the confidence ellipsoid
for β̂ is minimized by maximizing the determinant det(X TX ). A-optimal designs
are those designs which minimize the average variance of the estimators β̂ and thus
the criterion trace((X TX )−1). The E-criterion focus on the minimum eigenvalue of
X TX . We will select all possible choices of designs, by considering which one(s)
attain the optimum in terms of these criteria. There are more other optimal design
criteria (see, for example [16]).

In this paper, we mainly focus on the D-efficiency under the pre-specified model
(PWOmodel or tapered PWOmodel) for simplicity. Likewise, theA−,E−efficiency
canbedefined.The largerD-efficiency the better, an optimal designhas aD-efficiency
of 1. Throughout this paper, let Dfull denote the D-efficiency of the full design.
For all other designs, the relative D-efficiency Dr = De/Dfull is used here. For the
tapered PWO model, let q = (m

2

) = m(m − 1)/2 and p = q + 1 [17] proposed the
D-efficiency of the design D is

Dr(D) = De(D)[{b0 + (m − 2)b1}m−1(b0 − 2b1)(m−1)(m−2)/2
]1/p , (6.7)

where

b0 = 2{(m − 1)c21 + � + c2m−1}/{m(m − 1)},

b1 = 2Σh{m − h(1) − h(2)}ch(1){2ch(1)+h(2) − ch(2)}/{m(m − 1)(m − 2)},

and Σh denotes the sum over positive integers h(1), h(2) such that h(1) + h(2) ≤
m − 1. For the PWO model, ch = 1 for all h, b0 = 1 and b1 = 1/3, then the
D-efficiency of the design D (6.7) reduces to

Dr(D) = De(D)/

[
(m + 1)m−1

3q

]1/p

. (6.8)

Our goal here is to maximize the objective functions given in (6.7) and (6.8),
making use of the threshold accepting algorithm as described below.
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6.3 The Threshold Accepting Algorithm

The problemof finding goodOofAdesignsmight be interpreted as a complex discrete
optimization problem. For a given number of m components, the full design matrix
comprises m! rows. For a given objective function, selecting the best subset of size
n implies searching for the largest value of the objective function among all subsets
of size n of a set of size m!, i.e. in a discrete set of size

S =
(
m!
n

)
.

It is obvious, that a full enumeration of this set is beyond available computational
ressources except for very modest values of m and n.

In related problems of finding optimalU -type designs, the use of stochastic local
search heuristics turned out to provide high quality results, which for some instances
with theoretical lower bounds could be shown to be globally optimal [8]. Therefore, it
appears appropriate to follow a similar strategy for the problem of finding goodOofA
designs. Specifically, we use an implementation of the threshold accepting heuristic
[3], which is a simplified version of simulated annealing by using a deterministic
acceptance criterion for each local move. It also belongs to the class of local search
methods sequentially moving through the search space by making small changes
to a given design. When comparing a new design with the current one, it allows
downhill moves, i.e. accepts solutions which are (slightly) worse than the previous
one, in order to escape local maxima. By decreasing the threshold, up to which a
worsening of the objective function is allowed in a search step, to zero over the run
time of the algorithm, the algorithm provides high quality approximations to the
global optimum.

A survey on different heuristic approaches which could be used for the present
problem instance can be found in [23], and a detailed description of the thresh-
old accepting algorithm with several applications including some in experimental
design is provided by [20]. Previous applications in the context of experimental
design include the calculation of lower bounds for the star-discrepancy [21], and the
generation of low discrepancy U -type designs for the star-discrepancy [22], several
modifications of the L2-discrepancy [5], for CL2 [4, 7], and for CL2 and WL2 [6, 9].
Furthermore, further details on low-discrepancy designs can be found in [10, 12, 14]

The pseudo code for the threshold accepting implementation used for the OofA
design problem is exhibited in Algorithm 1. Thereby, D stands for the D-criterion to
be maximized. The algorithm remains unchanged if instead of D another objective
function has to be maximized. For an objective function to be minimized, the algo-
rithm can be applied on minus this objective function. In the results section, we will
report the values of the D-criterion relative to the theoretical maximum for the full
PWO design, i.e. the relative D-efficiency Dr .

The threshold accepting algorithm conducts a local search strategy on the set of
all OofA designs with m components and n runs denoted by O(m, n). The initial
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Algorithm 1 Pseudo-code for Threshold Accepting
1: Initialize nR, nSr and the sequence of thresholds τr , r = 1, 2, . . . , nR
2: Generate starting design O0 ∈ O(m, n)
3: for r = 1 to nR do
4: for i = 1 to nSr do
5: Generate O1 ∈ N (O0) (neighbor of O0)
6: if D(O1) > D(O0) − τr then
7: O0 = O1

8: end if
9: end for
10: end for

designO0 is selected randomly (2:). It should be noted that selecting a “good” initial
design, which might correspond to a local maximum of the objective function does
not improve the performance of the algorithm. Instead, using the best out of some
repeated runs of the algorithm for different randomly selected initial designs might
result in an improved performance and higher robustness as compared to a single
run with a corresponding larger number of iterations.

Starting from the initial design, a local search step is repeated a substantial num-
ber of times. In each search step, a new candidate design O1 is selected randomly
within a neighborhood of the current design N (O0) ⊂ O(m, n) (5:). The value of
the objective function for the new candidate solution is calculated D(O1). If it turns
out to be larger than the one of the current designO0, it will be accepted and becomes
the current design (7:). However, the new design will also be accepted if it is worse
than the current one, though only up to a certain threshold defined by the current
value of the threshold sequence (τr) (6:). This “threshold accepting” behavior of the
algorithm avoids getting stuck in suboptimal local maxima of the objective function.
Nevertheless, as the sequence of threshold values decreases to zero during the course
of the algorithm, towards the end of a run, only improvements will be accepted. The
current implementation uses an elitist approach, i.e., the best design obtained during
the runtime of the algorithm is reported. For a properly tuned implementation of the
algorithm, this should be equal to or at least quite close to the last design accepted
by the algorithm.

While the overall layout of the algorithm is simple, and it proofed to be robust to
minor modifications of neighbourhood structure and parameter settings, the actual
performance still depends on some problem specific tuning. The threemost important
aspects are the choice of local neighbourhoods, the specification of the threshold
sequence, and, for obvious reasons, the total number of iterations the local search step
is repeated within the algorithm.With regard to the definition of neighbourhoods, we
follow the experience from earlier applcations of threshold accepting in experimental
design. Starting with a design O0, a small number of rows (2 in our implementation)
are randomly selected. These rows are exchanged with a row differing only in the
ordering of few elements close to each other. In principle, this definition of local
neighbourhood also allows for a fast updating of the some objective functions as
described in [6] for the first time.However, for the current implementation this feature
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is not implemented yet. Nevertheless, given the tremendous growth in computational
resources available, it is feasible to conduct repeated runs (10) for each problem
instance with up to 10000000 iterations. In the results section, we report the best
result obtained over all these runs. The corresponding designs are provided in the
appendix.

The sequence of threshold values τr , r = 1, . . . , nR is generated according to a
data driven procedure first described in [20]. The rational of the approach is the
observations that when performing local search over a discrete and finite search
space such as O(m, n), also local changes of the objective function can take on only
a finite number of different values. For the threshold accepting steps, all values of
τr falling between two actual occurring differences will result in the same decision.
Therefore, the threshold sequence is obtained by an empirical approximation to the
underlying distribution of local changes of the objective function. To this end, first,
a large number of OofA designs are randomly generated. For each of these designs
a random neighbor is obtained employing the definition of local neighborhoods
introduced before. The absolute value of the difference of the objective function
between the two designs is calculated. The values are sorted in decreasing order
and—given that too large thresholds imply an almost random search process—a
lower quantile of these sequence is used as the actual sequence of threshold values.
For the current application, the 60% of lower values (including zeros if the neighbor
selected happens to be identical to the original design) is used.

6.4 Main Results

The best designs obtained by the threshold accepting algorithm are presented in
Tables6.1 and 6.2 (for m ≤ 30). Both tables report the number of components m,
the number of runs n, the D-efficiency as compared to the full PWO or full tapered
PWO design, and the relation of n to the number of runs of the full designs. The cor-
responding designs are provided online (www.jlug.de/optimaloofadesigns). Given
that there does not exist a closed form expression for the D-criterion of tapered
PWO designs, we report D-efficiency for tapered PWO designs only up to m = 10.
For larger values of m, the straightforward calculation of the D-criterion fails due to
memory constraints. Therefore, Table6.2 provides only results for the PWO designs,
although using the algorithm also tapered PWO designs can be obtained form > 10.
A further constraint is imposed due to the numerical precision when calculating the
values of the objective function. Using standard double precision only values of m
up to about 30 are feasible, but the algorithm could be adjusted to work with higher
precision.

www.jlug.de/optimaloofadesigns
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Table 6.1 D-efficiency of tapering OofA designs obtained by threshold accepting

Components (m) Runs (n) TA optimized design Share of runs
(n/m!)

D-efficiency
PWO

D-efficiency
Tapered PWO

4 7 0.89613 0.84433 0.2917

4 13 0.98571 0.98585 0.5417

4 19 0.98122 0.98097 0.7917

5 11 0.90267 0.91904 0.0917

5 21 0.97278 0.97848 0.1750

5 31 0.98733 0.98974 0.2583

6 16 0.88107 0.84169 0.0222

6 31 0.97039 0.96663 0.0431

6 46 0.98854 0.98629 0.0649

7 22 0.81196 0.77259 4.3651 × 10−3

7 43 0.96517 0.95798 8.5317 × 10−3

7 64 0.98285 0.98217 12.6984 × 10−3

8 29 0.75717 0.73876 0.7192 × 10−3

8 57 0.95166 0.94345 1.4137 × 10−3

8 85 0.97750 0.97429 2.1081 × 10−3

9 37 0.72626 0.69174 0.1020 × 10−3

9 73 0.93923 0.93100 0.2012 × 10−3

9 109 0.97339 0.96662 0.3004 × 10−3

10 46 0.68087 0.65436 0.0127 × 10−3

10 91 0.92463 0.91838 0.0251 × 10−3

10 136 0.96336 0.95770 0.0375 × 10−3

Note: For eachm, theD-efficiency of the obtained design for three experimental runs n are displayed:
(a) the minimal point n = q + 1; (b) double type n = 2q + 1; (c) triplicate type n = 3q + 1; where
q = (m

2

)

The results indicate thatwith a rather small number of runs, highly efficient designs
can be obtained. For Case (a), the minimal-point design n = q + 1; all designs reach
at least 80% of the efficiency of the full design, though with only a small fraction
of runs, especially for large m, n/m! becomes almost zero—a substantial saving.
For example, for m = 20 and n = 191, we have n/m! = 0.0785 × 10−15. Hence, if
the practitioner attempts to save resource and time, the minimal-point design is a
good choice. For Case (b), the double type design n = 2q + 1; all designs reach at
least 95% of the efficiency of the full design, while the corresponding n/m! is also
almost zero. For example, form = 20 and n = 381,we have n/m! = 0.1566 × 10−15.
We recommend the experimenter who seeks designs with high D-efficiency to use
the double designs when the resource and time allow. For Case (c), the triplicate
type design n = 3q + 1; the optimal designs attain at least 97% of the efficiency of
the full design, while the run size n/m! is near zero. For example, for m = 20 and
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Table 6.2 D-efficiency of OofA designs obtained by threshold accepting for m > 10

Components (m) Runs (n) TA optimized design
D-efficiency (PWO)

Share of runs (n/m!)

11 56 0.80170 1.4029 × 10−6

11 111 0.95969 2.7808 × 10−6

11 166 0.98228 14.1586 × 10−6

12 67 0.78958 0.1399 × 10−6

12 133 0.95646 0.2777 × 10−6

12 199 0.98081 0.4154 × 10−6

13 79 0.77952 0.0127 × 10−6

13 157 0.95238 0.0252 × 10−6

13 235 0.97934 0.0377 × 10−6

14 92 0.76463 1.0553 × 10−9

14 183 0.94925 2.0991 × 10−9

14 274 0.97744 3.1430 × 10−9

15 106 0.75398 0.0811 × 10−9

15 211 0.94704 0.1614 × 10−9

15 316 0.97637 10.2417 × 10−9

16 121 0.74091 0.0058 × 10−9

16 241 0.94420 0.0115 × 10−9

16 361 0.97389 0.0173 × 10−9

17 137 0.73361 0.3852 × 10−12

17 273 0.94096 0.7675 × 10−12

17 409 0.97229 1.1499 × 10−12

18 154 0.72681 0.0241 × 10−12

18 307 0.93764 0.0480 × 10−12

18 460 0.97088 0.0718 × 10−12

19 172 0.71426 1.4139 × 10−15

19 343 0.93483 2.8197 × 10−15

19 514 0.96900 14.2254 × 10−15

20 191 0.70542 0.0785 × 10−15

20 381 0.93160 0.1566 × 10−15

20 571 0.96728 0.2347 × 10−15

25 301 0.65850 1.9405 × 10−23

25 601 0.91783 3.8746 × 10−23

25 901 0.95955 5.8087 × 10−23

30∗ 871 0.90459 3.2837 × 10−30

30 1306 0.95064 4.9236 × 10−30

Note 1: For each m, the D-efficiency of the obtained design for three experimental runs n are
displayed: (a) the minimal point n = q + 1; (b) double type n = 2q + 1; (c) triplicate type n =
3q + 1; where q = (m

2

)
.

Note 2: Using standard double precision only values of m up to about 30 are feasible (for m = 30
it depends on n), but the algorithm could be adjusted to work with higher precision
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n = 571, we have n/m! = 0.2347 × 10−15. The triplicate designs are recommended
due to a high D-efficiency, if there are no restrictions on the experimental conditions.
In general, all the obtained three experimental designs with a small number of runs
(n = q + 1, 2q + 1, 3q + 1) achieve a high level ofD-efficiencywhen the underlying
model is the PWO or the tapered PWO model.

6.5 Example: Scheduling Problem

The purpose of the scheduling problem is to schedule the resources and tasks to
be optimized with regard to one or more objectives. A popular class of scheduling
problem is the “job scheduling” problem, which seeks an optimal order of these
jobs. Consider m jobs requiring processing in a certain machine environment, the
scheduler hopes to sequence these jobs under given constraints. Let pi (i = 1, . . . ,m)

represents the processing time of job i on a machine, ωi being pre-specified weights,
which reflects the importance of job i relative to the other jobs in the system. A
schedule π = (π1, . . . , πm) is a permutation of {1, . . . ,m} which specifies the order
in which to process jobs. The completion time of the operation of job j is denoted
as Cj(π) = ∑j

i=1 pi, and the total cost function (total weighted completion time) is
denoted by W = ∑m

k=1 Wk = ∑m
k=1 ωkC2

k , where Wk denotes the cost function of
job k. The objective is to find a optimal job-order such that the total cost function W
is minimized.

For illustration, a simple example of job scheduling for a single machine model
withm = 3 is discussed. Suppose the processing times are 5, 3 and 2 h for the 1st job,
2nd job and 3rd job, respectively, and the weights (cost coefficients) of these jobs are
6, 8, 7, respectively. Consider the job-order 1 → 2 → 3, the completion time for job
1 is C1 = p1 = 5hr, the completion time for job 2 is C2 = p1 + p2 = 5 + 3 = 8hr,
the completion time for job 3 is C3 = p1 + p2 + p3 = 5 + 3 + 2 = 10hr. Thus the
job-order 1 → 2 → 3 has a total cost function: W = 6 × 52 + 8 × 82 + 7 × 102 =
1362.

The purpose of the job scheduling problem is to find the optimal sequence from
all possible solutions to minimize the total penalty. This is the same as the goal
of the OofA problem. Hence we can consider the job scheduling problem as an
OofA experiments problem. The PWOmodel can be used as the approximate model
to deal with the job scheduling problem. If we have the prior information of the
cost function, we can compute the costs of all possible job orders and compare all
possible different orders to learn the dependence of the response on the order. For
the illustrative example, since there is only m! = 3! = 6 potential orders, one can
evaluate all possible order to find the optimal order. However, withm components to
add, an exhaustive search of all permutations requiresm! runs of experiments, which
is usually not affordable. So the design problem arises to choose a subset of orders
for comparison.
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Next, we discuss a case that 10 jobs are to be sequenced on a single machine with
quadratic penalty function of its completion time. The pre-specified weights and pro-
cessing times of these jobs are randomly generated from χ2

1 , such
as p = (0.1451700, 0.7428453, 7.1142859, 1.8774267, 7.1185982, 1.1431286,
10.5172882, 2.1484186, 2.4950454, 2.8989094), ω = (2.2094712, 7.1116628,
0.4190265, 6.7777317, 1.2965368, 1.5379331, 0.7221195, 1.7368003, 0.5205548,
0.3908880).With 10 components, it is infeasible to conduct all possible orders (tests)
10! ≈ 3.6 million. This is especially true for physical experiments and some expen-
sive computer experiments. To fit the PWOmodel for using the smallest runs to save
costs, we use the minimal-point OofA design n = (10

2

) + 1 = 46 runs obtained from
our algorithm in this paper. Under the quadratic penalty function, the 46 runs design
and the corresponding total cost are shown in Table6.3. Upon using the least squares
approach, the parameters β̂ij in PWOmodel (6.2) are estimated. Ultimately, an OofA
experiment is to find the optimal addition order. According to the method proposed
by [2], the active variables are very critical for selecting the optimal orders. Con-
sidering all of degree of freedom for the minimal-point design are used to estimate
the parameters in PWO model, there is no remaining degree of freedom to estimate
the standard deviation. The Lenth ([11]) method is used here to identify the active
variables, we take the pseudo standard error (PSE) to estimate the standard devia-
tion. Upon calculating the Lenth statistics: tPSE,i = β̂ij/PSE, the active variables are
tabulated in Table6.4.

The favorable pattern “i precedes j” indicates an edge from i to j. From the
favorable patterns of all active variables, one can always generate the corresponding
directed graph by sequentially considering the significant parameters according to
the absolute values of the active variables’ estimated effects. In other words, we first
consider the directed edge determined by the most significant parameter (the largest
effect), then consider the directed edge from the second significant parameter (the
second largest effect), and so on. In this procedure, we omit the active variables that
are contrary to the current generated directed graph. Take the sequence ‘1628’ as
example, we sequently consider the active variables β̂2,8 (966.425), β̂2,6 (775.033),
β̂1,6 (700.148), β̂1,8 (624.832). In this way, we omit the active variable β̂1,8, because
it is contrary to the generated sequence ‘1628’.

From the favorable patterns exhibited in Table6.4, the directed graph of 10 jobs
results in Fig. 6.1. According to the Fig. 6.1, the first five components of an optimal
sequence are ‘16284’, and the remaining optimal possible job orders can be obtained
by permutating the last components ‘3, 5, 9, 10, 7’, hence the possible numbers of
order is 5!/2 = 120. One of possible optimal orders is 1 −→ 6 −→ 2 −→ 8 −→
4 −→ 5 −→ 9 −→ 10 −→ 7 −→ 3, and the cost function is 1958.716.

We randomly select 100 runs from 10! and compute the costs of these 100 runs.
As a comparison, we randomly select 54 (we already run 46 experiments to collect
the data, for fairness, 100 − 46 = 54 possible runs are selected) possible orders from
our possible 120 orders, the results are showed in Fig. 6.2a. It can be seen that the
costs of our method are smaller than the costs of randomly selected. This highlights
the merit of our approach.
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Table 6.3 The job-orders and total costs for a 10 job scheduling problem
Run Order Cost (W )

1 4 5 10 2 3 8 9 6 7 1 7463.671

2 8 3 4 10 6 5 9 2 7 1 10754.214

3 3 1 8 10 6 2 9 5 7 4 12674.186

4 9 6 4 10 8 7 3 5 2 1 14862.981

5 8 2 10 6 4 7 9 1 3 5 4318.170

6 9 2 7 3 6 5 10 1 8 4 15859.299

7 3 9 1 7 8 5 4 10 2 6 20486.508

8 1 5 6 2 9 3 10 4 7 8 8041.683

9 6 10 2 4 3 9 1 8 7 5 4193.411

10 10 6 7 2 1 8 5 4 3 9 9654.549

11 8 9 7 5 1 10 3 4 2 6 21368.549

12 10 8 2 6 4 3 5 7 1 9 5686.498

13 10 2 1 7 8 5 9 3 6 4 12976.774

14 7 4 9 1 3 10 6 5 8 2 16184.010

15 5 6 8 2 1 4 10 9 3 7 4205.401

16 9 3 7 8 6 4 2 1 5 10 14663.133

17 7 1 6 4 2 8 3 5 10 9 6363.397

18 8 5 9 2 10 1 3 6 7 4 12750.318

19 8 6 4 9 3 10 1 2 7 5 5912.879

20 3 8 2 7 1 4 5 6 9 10 9265.334

21 10 4 1 3 2 6 9 7 5 8 6175.202

22 4 2 8 1 7 3 9 10 5 6 4791.054

23 4 6 7 8 2 9 5 3 10 1 7447.334

24 10 3 7 6 1 9 5 4 2 8 21755.562

25 5 2 9 8 4 3 1 6 10 7 5465.729

26 3 6 8 1 10 7 4 5 2 9 15743.304

27 3 5 8 9 4 10 1 7 6 2 17428.615

28 10 9 2 7 4 6 3 8 5 1 9745.608

29 7 10 5 8 3 9 1 2 6 4 23354.098

30 1 6 3 5 4 2 7 10 9 8 8598.878

31 10 3 7 4 1 8 9 5 6 2 19101.778

32 4 6 1 3 10 8 9 5 7 2 11780.016

33 3 9 4 1 2 5 10 6 8 7 5984.161

34 6 1 5 7 8 9 10 3 2 4 19423.341

35 1 3 10 7 2 4 9 5 8 6 13212.515

36 1 3 7 2 6 8 4 9 10 5 10300.234

37 8 2 9 3 7 4 10 6 1 5 9889.003

38 4 9 6 8 10 7 1 2 5 3 6620.735

39 7 10 2 8 3 1 6 4 9 5 11364.447

40 10 5 7 8 6 4 3 2 9 1 18716.247

41 9 5 6 3 8 7 10 4 2 1 22834.160

42 8 6 7 4 5 10 1 2 3 9 10426.000

43 1 4 8 6 9 7 2 10 3 5 5203.967

44 7 8 9 1 4 6 10 2 3 5 9175.293

45 9 3 8 5 6 7 10 1 2 4 22223.030

46 10 8 1 9 4 7 6 5 3 2 12630.479
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Table 6.4 The active variables for 10 jobs scheduling

Active variables Estimator of the
effects

Signs of the effects Favorable patterns

I1,2 −442.110 − 1 precedes 2

I1,6 −700.148 − 1 precedes 6

I1,8 624.832 + 8 precedes 1

I1,10 −492.119 − 1 precedes 10

I2,3 −1110.545 − 2 precedes 3

I2,4 −431.188 − 2 precedes 4

I2,5 −1314.436 − 2 precedes 5

I2,6 775.033 + 6 precedes 2

I2,7 −1349.35 − 2 precedes 7

I2,8 −966.425 − 2 precedes 8

I2,10 −858.088 − 2 precedes 10

I3,4 631.513 + 4 precedes 3

I3,6 476.540 + 6 precedes 3

I3,10 452.552 + 10 precedes 3

I4,5 −1343.049 − 4 precedes 5

I4,7 −562.938 − 4 precedes 7

I4,8 785.005 + 8 precedes 4

I4,9 −714.446 − 4 precedes 9

I4,10 −1039.873 − 4 precedes 10

I6,7 −674.048 − 6 precedes 7

I7,10 641.382 + 10 precedes 7

Fig. 6.1 Directed Graph
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(a) 100 from 10! and 120 possible orders (b) different sample sizes

Fig. 6.2 Boxplots of different sample sizes

As a comparison benchmark, a sample of n = 100 orders was randomly chosen
(from all possible 10! orders) and their corresponding costs were evaluated. Among
these 100 costs, the minimal cost was recorded. We repeat this process for 50 times.
These 50 minimal costs were displayed as the first boxplot in Fig. 6.2b. Similarly, the
same process is applied to n = 200, 500, 1000, 2000 and 5000 respectively. Their
boxplots for minimal costs are also displayed in Fig. 6.2b. As expected, the larger n,
the smallerminimal cost is found (withmore consistency aswell).As compared to our
finding, we randomly chose 54 orders (out of the obtained result of 120 orders). Their
corresponding costs were evaluated and the minimal cost is recorded. We also repeat
this process for 50 times and the results is displayed as the last boxplot in Fig. 6.2b.
It is clear that the performance of the proposed method with 100 (= 46 + 54) runs is
as good as the random sample with 5000 runs. This more or less confirms the validity
of the proposed method.

6.6 Conclusion

Order-of-addition (OofA) experiments have increasingly received a great deal of
attention in scientific and industrial applications. This paper uses threshold accepting
algorithm to provide a class of minimal-point designs with n = q + 1 runs, a class
of double type design with n = 2q + 1 runs and a class of triplicate type design with
n = 3q + 1 runs under the PWO model and tapered PWO model, respectively. The
D-efficiency of these designs are shown in Tables6.1 and 6.2. As a matter of fact,
the threshold accepting algorithm can be used to construct the optimal design among
any size n under any other models, such as, the triplet-order model [15] and the
component-position model [24].



108 P. Winker et al.

It is shown that a threshold accepting implementation can be used to generate
highly efficient designs for OofA experiments. Here, the analysis was restricted to
consider PWO designs. However, the framework is general enough to allow the
construction of efficient designs taking into account higher orders. For improving
the performance of the algorithm for larger values of m and n, the implementation
has to be modified both with regard to the generation of random OofA designs and
their mapping to the corresponding Z-matrices and with regard to the updating of
the objective function for small modifications of a design in a neighbourhood. These
improvements of the algorithm will allow tackling also larger problem instances and
higher orders regarding the sequence of additions.
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Chapter 7
Construction of Uniform Designs
on Arbitrary Domains by Inverse
Rosenblatt Transformation

Mei Zhang, Aijun Zhang, and Yongdao Zhou

Abstract The uniform design proposed by Fang [6] and Wang and Fang [17] has
become an important class of designs for both traditional industrial experiments and
modern computer experiments. There exist established theory and methods for con-
structing uniform designs on hypercube domains, while the uniform design construc-
tion on arbitrary domains remains a challenging problem. In this paper, we propose
a deterministic construction method through inverse Rosenblatt transformation, as a
general approach to convert the uniformly designed points from the unit hypercubes
to arbitrary domains. To evaluate the constructed designs, we employ the central
composite discrepancy as a uniformity measure suitable for irregular domains. The
proposed method is demonstrated with a class of flexible regions, constrained and
manifold domains, and the geographical domain with very irregular boundary. The
new construction results are shown competitive to traditional stochastic representa-
tion and acceptance-rejection methods.

7.1 Introduction

The uniform design of experiments has generated a great amount of research papers
and impact cases ever since it was first proposed by Fang [6] and Wang and Fang
[17]. It has been successfully used for both traditional industrial experiments and
modern computer experiments; see the monographs [7, 9].
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To construct uniform designs on the unit hypercube Cs = [0, 1]s , there exist both
theoretical approaches and numerical optimization methods; see the latest book of
Fang et al. [8] for a complete treatment. Among these methods, the classical good
lattice point (GLP) method based on number theory is simple yet effective, and it
is also widely used in quasi-Monte Carlo sampling [14]. For the GLP method with
respect to the classical star-discrepancy criterion, Fang and Wang [9] (Appendix A)
provides a catalogue of generating vectors up to 18 dimensions. For two-dimensional
uniform designs in particular, it is well-known that the GLPs generated through
Fibonacci numbers enjoy the low star-discrepancy properties. However, it is not
clear whether such Fibonacci designs also enjoy the low centered-�2 discrepancy
(CD2) properties.

It is of our interest to construct the uniform designs on arbitrary experimental
domains, including regular and irregular regions. For regular regions such as ball,
sphere and simplex, Fang andWang [9] suggested the inverse transformation method
through establishing a non-trivial analytic stochastic representation (SR) for the ran-
dom vector uniformly distributed on each regular region, and then generating the
uniform designs by inversely mapping from the unit hypercubes. For mixture exper-
iments with single-factor constraints, Fang and Yang [10] proposed a conditional
distribution method that also takes a non-trivial SR form. This method is further
applied by Tian et al. [16] for generating uniform designs on tetragon and convex
polyhedrons. For an irregular region X ⊂ R

s that does not have the explicit SR
form, one usually resorts to the acceptance-rejection (AR) method that first gener-
ates uniform designs on a superset hypercube C ⊇ X , then retains only the design
points within the region of interest. Such AR method was suggested by Borkowski
and Piepel [2] for mixture experiments with complex multi-factor constraints. How-
ever, the AR method is less efficient especially when X is much smaller than C ,
and the resulting design inX sometimes has poor uniformity.

The construction of uniform designs on arbitrary domains remains a challenging
problem. Numerically, one may use the stochastic optimization methods to directly
search for the design points according to a certain uniformity criterion. Chuang and
Hung [5] proposed a central composite discrepancy (CCD) to measure uniformity
with regard to an arbitrary domainX , then used a switching algorithm to search for
the best design over a set of pre-specified points. Also based on the CCD criterion,
Lin et al. [13] applied the threshold accepting algorithm to optimize the U -type
designs on flexible regions, and Chen et al. [3] developed the discrete particle swarm
optimization algorithm with GPU acceleration. Other space-filling criteria can also
be used to directly measure the uniformity on irregular regions, e.g. the maximin
distance used by Chen et al. [4].

In this paper, we study a deterministic method based on the inverse Rosenblatt
transformation (IRT) for constructing uniform designs on arbitrary domains. It can
be viewed as a special kind of inverse method, as is remarked by Fang and Wang [9,
p. 54]. To distinguish the IRT from the existing inverse method based on the spe-
cific analytical SR, we call the latter as the SR method in this paper. Unlike the SR
methods reviewed above, the IRT method does not necessarily require the analytical
forms of conditional distribution functions, which can be easily approximated for a
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uniform experimental domain with irregular boundary. The IRT method includes the
conditional distributionmethod by Fang and Yang [10] as a special case for restricted
mixtures. We demonstrate how the proposed method can be used to construct uni-
form designs on a class of flexible regions, constrained and manifold domains, and
the irregular domains such as geographical maps. Among the uniformity criteria,
we employ the aforementioned CCD to evaluate the constructed designs on general
domains. For regular regions, the construction results by the IRT method are com-
pared with both SR and AR methods; while for irregular regions, they are compared
with the AR method.

The rest of this paper is organized as follows. In Sect. 7.2 we propose the IRT
method based on the marginal and conditional distributions subject to permutation,
and illustrate it through a synthetic example. Section7.3 presents the construction
results on a variety of regular and irregular domains. Some concluding remarks are
given in Sect. 7.4. In the Appendix, we provide a brief review of the GLP method for
constructing uniform designs on hypercube domains, which are used by the proposed
IRTmethod.We show that the leave-one-out Fibonacci designs achieve theminimum
centered �2-discrepancy for the mixed GLP method.

7.2 Inverse Rosenblatt Transformation Method

TheRosenblatt transformation [15] is a generalmapping ofmultivariate randomvari-
ables with a continuous distribution to the uniform distribution on unit hypercubes. It
can be used as a tool for construction ofmultivariate distributions and goodness-of-fit
testing; see e.g. Justel et al. [12] and Arnold et al. [1].

Let X ∈ X ⊆ R
s be a random vector with joint density

f (x1, . . . , xs) = f1(x1) f2|1(x2|x1) · · · fs|1,...,s−1(xs |x1, . . . , xs−1). (7.1)

Denote F1 as the marginal cumulative distribution function (CDF) of the first com-
ponent X1, and by F2|1, . . . , Fs|1,...,s−1 the consecutive conditional CDFs. Then, the
Rosenblatt transformation (RT) is defined by

{
U1 = F1(X1),

Uj = Fj |1,..., j−1(X j |X1, . . . , X j−1), j = 2, . . . , s.
(7.2)

It is clear that (a) U1, . . . ,Us are independent Uniform[0, 1] random variables,
(b) (X1, . . . , Xs) → (U1, . . . ,Us) is one-to-one from X to Cs , and (c) the Jaco-
bian of RT corresponds to the joint density function f . Note that RT is not
permutation-invariant and there exist s! kinds of different forms according to re-
ordering (X1, . . . , Xs). For each permutation (i1, . . . , is), denote T(i1,...,is ) as the RT
from the permutated (Xi1 , . . . , Xis ) to (U1, . . . ,Us).

Given the uniform distribution on Cs , the inverse T−1
(i1,...,is )

maps
u = (U1, . . . ,Us) back to x = (Xi1 , . . . , Xis ) ∈ X . More specifically, for a given
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observation (u1, . . . , us) ∈ Cs , the inverse Rosenblatt transformation (IRT) can be
expressed by

{
xi1 = Qi1(u1),
xi j = Qi j |i1,...,i j−1(u j |Xi1 = xi1 , . . . , Xi j−1 = xi j−1), j = 2, . . . , s

(7.3)

based on the quantile functions (i.e. inverse CDFs). To illustrate how the IRT works,
we consider the following example with two disjoint rectangular regions, where the
uniform distribution is assumed on each sub-region.

Example 7.1 (Two-rectangle Domain) Consider the uniform distribution on the
domain X with two disjoint rectangles, as shown in Fig. 7.1. It is clear the
marginal and conditional CDFs for either permutation (x1, x2) or (x2, x1) are of
the piecewise linear forms, as depicted in Fig. 7.2. Suppose we are given a point
u = (0.2, 0.75) ∈ C2, then it is straightforward to apply the IRT in (7.3), we can

Fig. 7.1 Experimental domain X formed with two disjoint rectangles with the vertices
((0, 0), (2, 0), (2, 4), (0, 4)) and ((3, 0), (5, 0), (5, 1), (0, 1)), respectively. The two points at
(0.5, 3) and (4, 0.5) are converted from (0.2, 0.75) ∈ C2 through T−1

(1,2) and T−1
(2,1), respectively

Fig. 7.2 Themarginal and conditional CDFs used for obtaining the IRT points on the two-rectangle
domain in Fig. 7.1. The point (0.2, 0.75) ∈ C2 is taken as an example for performing the IRT



7 Construction of Uniform Designs on Arbitrary Domains … 115

obtain the corresponding points in X through both T−1
(1,2) and T−1

(2,1), as shown in
Fig. 7.1.

Algorithm 3 Inverse Rosenblatt Transformation Method
Input: An arbitrary domainX with closed boundary, and an n-run uniform design {ui }ni=1 on C

s .
1: Choose a permutation (i1, . . . , is) of (1, . . . , s), then find the corresponding T(i1,...,is ) based on

uniform distribution within in the given boundary.
2: Use IRT to convert {ui }ni=1 to the domain X :

xi = T−1
(i1,...,is )

(ui ), i = 1, . . . , n.

3: Evaluate the CCD criterion (7.4) for the resulted X = {xi }ni=1.
4: Repeat Steps 1–3 for all s! permutations. Output the best design X∗ with the lowest CCD score.

The two-rectangle domain examplemotivates us to develop a practical IRTmethod
for constructing uniform designs on arbitrary experimental domains, as presented in
Algorithm 3. For any domain with uniform distribution and closed boundary, in the
first step,we canfind itsRT’s T(i1,...,is ) subject to a different permutation. Themarginal
and conditional CDFs can be either derived analytically by (multiple) integration, or
obtained through hyperrectangle approximation. In the latter situation, each CDF is
approximated by a non-decreasing piecewise linear function.

In the second step, we can apply (7.3) to each point of a given n-run uniform
design onCs , so as to generate the corresponding points onX . Aswe have reviewed,
there are a rich collection of existing methods for constructing uniform designs on
unit hypercubes. See the Appendix about the GLP method together with the elegant
Fibonacci designs on unit squares.

Each uniform design on Cs leads to at maximum s! different designs since there
are s! versions of IRT T−1

(i1,...,is )
subject to different permutations. To determine the

best design on X , we employ the aforementioned CCD criterion as a measure of
uniformity on arbitrary domains. According to Chuang and Hung [5], for any interior
point z in X , it can be treated as the Cartesian center to cut X into 2s quadrants,
then the �2 form of CCD is defined by

CCD(X) =
{

1

V (X )

∫
X

1

2s

2s∑
k=1

∣∣∣∣N (Xk(z), X)

n
− V (Xk(z))

V (X )

∣∣∣∣
2

dz

}1/2

, (7.4)

where N (Xk(z), X) denotes the number of design points in Xk(z), and V (X )

and V (Xk(z)) denote the volumes of X and Xk(z), respectively. In practice, the
integration overX can be approximated byMonteCarlo average over a large number
of equal-spaced grid points (say, 100 grid points along each coordinate).

Note that in Algorithm 3, when the domain X is symmetric in two or more
coordinates, some permutations can be relaxed and we only need consider all per-
mutations for asymmetric coordinates. For the symmetric flexible regions in R

2
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Fig. 7.3 Construction results of 20-run uniform designs on the two-rectangle domain in Fig. 7.1.
Left panel: ARmethod; Center panel: IRTmethodwith permutation (1, 2); Right panel: IRTmethod
with permutation (2, 1)

to be discussed in next section, there is no need to consider permutations, so
the evaluation of CCD criterion can be also skipped. Take the cylinder domain
X = {(x1, x2, x3) : x21 + x22 ≤ r2, a ≤ x3 ≤ b} ⊂ R

3 as another example. We only
need consider three permutations (1, 2, 3), (1, 3, 2) and (3, 1, 2).

Let us test the proposed IRT algorithm to construct the uniform design on the two-
rectangle domain in Example 7.1. Using the LOO-Fibonacci designwith n = 20 runs
(see Fig. 7.8), we obtain the IRT construction results shown in Fig. 7.3. It turns out
the permutation (x1, x2) leads to smaller CCD score than the permutation (x2, x1).
In contrast, the AR method is also tested with 39-run uniform design on the outer
rectangle with vertices ((0, 0), (5, 0), (5, 4), (0, 5)). The accepted 20-run sub-design
within the domain of interest has a relatively worse CCD score.

7.3 Construction Results

In this section, we present the construction results by the IRTmethod for four kinds of
experimental domains inR2. Numerical comparisons of effectiveness are conducted
between the proposed method and the existing SR and AR methods.

7.3.1 Flexible Regions

The flexible regions on R
2 controlled by a shape parameter m > 0 are defined by

X (m)
F = {

(x1, x2) ∈ [0, 1]2 : |2x1 − 1|m + |2x2 − 1|m ≤ 1
}
. (7.5)

Figure7.4 shows the boundaries of such flexible regions with m = ∞, 2, 1 and 0.5,
respectively. The circled points within each flexible region represent the constructed
88-run uniform designs by the proposed IRT method derived below.
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Fig. 7.4 Uniform designs with n = 88 runs on flexible regions with varying shape parameters. For
m = ∞, the design is obtained by the GLP method (LOO-Fibonacci design) on the unit square (see
Fig. 7.8). The design points in them = ∞ case are then converted by the IRT method to the flexible
regions for m = 2, 1 and 0.5

The flexible regions are symmetric in (x1, x2), so there is no need to consider
permutations. For the randomvector X = (X1, X2) ∼ Uniform(X (m)

F ), themarginal
CDF F1(x) of the first component X1 is

F1(x) =
∫ x

0

∫ 0.5+(1−|2x1−1|m )1/m/2

0.5−(1−|2x1−1|m )1/m/2

1

V (X (m)
F )

dx2dx1

where V (X (m)
F ) = ∫ 1

0 (1 − |2x1 − 1|m)1/mdx1. Note that
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∫ x

0
(1 − |2x1 − 1|m)1/mdx1

=
{
x, m = ∞;
B( 1

m , 1
m +1)

2m

[
1 + sign(x − 0.5)I|2x−1|m

(
1
m , 1

m + 1
)]

, 0 < m < ∞,

where B(a, b) and Ic(a, b) (with a, b > 0, c ∈ [0, 1]) are the values of Beta function
and Incomplete Beta ratio with the following forms

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt, Ic(a, b) = Bc(a, b)

B(a, b)
=

∫ c
0 ta−1(1 − t)b−1dt∫ 1
0 ta−1(1 − t)b−1dt

.

Therefore, the marginal CDF is given by

F1(x) =
{
x, m = ∞;
1
2 + sign(x−0.5)

2 · I|2x−1|m
(
1
m , 1

m + 1
)
, 0 < m < ∞.

(7.6)

and its inverse is given by

F−1
1 (u) =

{
u, m = ∞;
1
2 + sign(u−0.5)

2

(
I−1
|2u−1|

(
1
m , 1

m + 1
))1/m

, 0 < m < ∞.

Moreover, the conditional CDF F2|1(x |x1) of the second component given the
value of the first component being x1 is given by

F2|1(x |x1) =
{
x, m = ∞;
x−(0.5−(1−|2x1−1|m )1/m/2)

(1−|2x1−1|m )1/m
, 0 < m < ∞ (7.7)

and its inverse is given by

F−1
2|1 (u|x1) =

{
u, m = ∞;
0.5 + (u − 0.5)(1 − |2x1 − 1|m)1/m, 0 < m < ∞.

Thus we obtain the analytical IRT T−1
(1,2) for [0, 1]2 → X (m)

F as follows:

T−1
(1,2)((u1, u2)) = (

F−1
1 (u1), F−1

2|1
(
u2|F−1

1 (u1)
))

. (7.8)

The effectiveness of the IRT method can be compared with traditional AR and
SR methods. We use the CCD criterion to evaluate the uniform designs for n =
10, 20, . . . , 100 runs based on different construction methods. For the AR method,
for each target n, we search the uniform designs on C2 with sizes n + 1, n + 2, . . .
in order to find such a design with exactly n runs falling into X (m)

F . Note that such
AR method has the chance to find no appropriate design with the target number of
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runs. For the SR method, form = 2, the method by Fang andWang [9] is employed;
for m = 1, the method by Tian et al. [16] is employed; for m = 0.5, there exists no
SR method in the literature. All the needed uniform designs in C2 are generated by
the mixed GLP method (see Appendix). The numerical results for flexible regions
withm = 2, 1, 0.5 are listed in Table7.1. It can be found that IRT shows competitive
performances in most cases.

Table 7.1 CCD scores for uniform designs constructed on the flexible regions with m = 2, 1, 0.5

m n AR SR IRT

2 10 – 0.054329 0.048877

20 0.027465 0.030055 0.025930

30 0.020286 0.024471 0.020323

40 0.014839 0.021816 0.017132

50 0.013721 0.018935 0.013708

60 0.012722 0.015926 0.013522

70 0.012529 0.013691 0.012670

80 0.011813 0.013876 0.011595

90 – 0.013461 0.011708

100 0.012388 0.012752 0.011157

1 10 0.041046 0.047865 0.044335

20 0.033795 0.045915 0.026233

30 – 0.018906 0.021509

40 0.018492 0.016612 0.018882

50 0.012644 0.025909 0.015558

60 0.015144 0.014044 0.015588

70 0.015771 0.013879 0.014514

80 0.015241 0.013489 0.014223

90 0.017004 0.021852 0.013704

100 0.012856 0.014312 0.013199

0.5 10 0.048221 – 0.048607

20 0.035220 – 0.032163

30 0.034672 – 0.027973

40 0.028218 – 0.028656

50 0.033651 – 0.023997

60 0.025663 – 0.025844

70 0.029249 – 0.025079

80 0.024936 – 0.025046

90 0.024674 – 0.024543

100 0.020609 – 0.025098
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7.3.2 Constrained Domain

Tian et al. [16] studied a tetragon shape of constrained domain for drug combination
experiment, as defined by

XT = {
(x1, x2) ∈ R

2
+ : 20 < 101.91 − 31.17x1 − 9.56x2 < 80

}
. (7.9)

They constructed a 19-run uniform design on this domain by the SR method, as
shown in the left panel of Fig. 7.5. In this section, we apply the proposed IRTmethod
for constructing a competitive uniform design on this specific constrained domain
with the same number of runs.

First we can convert the domain XT to the following symmetric domain

XT̃ = {
(x̃1, x̃2) ∈ R

2
+ : 21.91 < x̃1 + x̃2 < 81.91

}
,

where x̃1 = 31.17x1 and x̃2 = 9.56x2. Write c1 ≡ 21.91 and c2 ≡ 81.91, then it is
easy to get the marginal CDF:

F1(x̃1) =
{

2x̃1
c1 + c2

, if 0 ≤ x̃1 ≤ c1;
1 − (c2 − x̃1)2

c22 − c21
, if c1 < x̃1 ≤ c2.

(7.10)

For eachfixed x̃1, the conditionalCDF F2|1(x̃2|x̃1) is given by the uniformdistribution
with the range [c1 − x̃1, c2 − x̃1] if x̃1 ∈ [0, c1] and the range [0, c2 − x̃1] if x̃1 ∈
[c1, c2].

Using the IRT method based on a 19-run uniform design on C2, we first obtain
the transformed design onXT̃ , then convert the design points back toXT as plotted
in the right panel of Fig. 7.5. This new design is more uniform than Tian et al. [16]’s
result according to the CCD criterion.

7.3.3 Manifold Domain

Other than the flexible regions discussed in the previous section, we consider another
special manifold domain defined by the ring constraint:

XR =
{
(x1, x2) ∈ R

2 : 1
4

≤ x21 + x22 ≤ 1

}
. (7.11)

To get the marginal and conditional CDFs, instead of striving to derive the analytical
forms, we adopt the following approximation method:

(1) Partition the x1-coordinate from [−1, 1] into N = 1000 equal-spaced intervals,
each interval with mid-point zk = (2k − 1)/N − 1 for k = 1, . . . , N .
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Fig. 7.5 Uniform designswith 19 runs on a constrained domain (with x2 shifted 1.04 units upward).
Left panel: SR method by Tian et al. [16]; Right panel: IRT method

Fig. 7.6 Uniform designs with 20 runs on the ring domain. Left panel: AR method; Center panel:
SR method by Zhang [19]; Right panel: IRT method

(2) Obtain the approximate marginal CDF for x1 based on the midpoints:

F̂1(zk) =
√
1 − z2k −

√
1/4 − z2k · I (|zk | ≤ 1

2 )

∑N
k=1

(√
1 − z2k −

√
1/4 − z2k · I (|zk | ≤ 1

2 )

) , k = 1, . . . , N .

(7.12)
(3) When x1 takes discretized zk-values, obtain the conditional CDF for x2|x1 by

the uniform distribution with the range

[
−

√
1 − z2k ,

√
1 − z2k

]
if |zk | ≥ 1/2 or

the range

[
−

√
1 − z2k ,−

√
1/4 − z2k

]
∪

[√
1/4 − z2k ,

√
1 − z2k

]
if |zk | ≤ 1/2.

Figure7.6 (right panel) shows the IRT constructed 20-run uniform design on the
ring domain. In contrast, on the left panel is the result by the AR method based on
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Table 7.2 CCD scores for uniform designs constructed on the ring-shaped domain

n AR SR IRT

10 0.051980 0.048791 0.047818

20 0.028322 0.031075 0.027798

30 0.016596 0.021944 0.017866

40 0.013043 0.017600 0.015126

50 0.013418 0.015682 0.014486

60 0.011472 0.012808 0.011033

70 0.009177 0.011868 0.010474

80 0.011507 0.011086 0.009580

90 0.009958 0.009751 0.009025

100 0.012203 0.009791 0.007863

28-run uniform design on the unit cube. On the center panel is the result by the SR
method through xi1 = √

ui1 sin(2πui2), xi2 = √
ui1 cos(2πui2); see Zhang [19]. It

is found that in this case the IRT outperforms AR and SRmethods. Moreover, we run
through n = 10, 20, . . . , 100 to compare the three methods, with numerical results
presented in Table7.2. We can see that the IRT method always outperforms the SR
method, and sometimes have better performance than the AR method.

7.3.4 Geographical Domain

Lastly, we consider the geographical domain that is usually rather irregular. In this
section we consider the Land Map of China as the experimental domain Xmap. The
entire domain consists of several closed subregions. It is difficult to determine the
exact form of Rosenblatt transformation, so we use the approximated CDFs.

To approximate the marginal and conditional CDFs on the map domain, we find
a rectangle to completely cover Xmap and establish a cartesian coordinate system.
The rectangle has the resolution of 1297 × 1083 pixels, and the contour of Xmap

contains N = 675328 pixels in total. The marginal CDF of x1 is approximated by

F̂1(x1) = 1

N

N∑
i=1

I (xi1 ≤ x1), x1 = z1, . . . , z1297. (7.13)

For x1 = z1, . . . , z1297, the conditional CDF of x2|x1 is approximated by

F̂2|1(x2|x1 = zk) = 1

|�k |
∑
j∈�k

I (x j2 ≤ x2), (7.14)
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Fig. 7.7 Uniform designs with 143 runs on China map domain. Left panel: IRT method with
permutation (1, 2); Right panel: IRT method with permutation (2, 1). The vertical and horizontal
gray lines represent the partitions of the map for approximating the conditional CDFs

where �k denotes the subset of pixels { j : x j1 = zk}. Similarly for permutation
(x2, x1), we can obtain F̂2(x2) and F̂1|2(x1|x2).

Suppose we are given a 143-run LOO-Fibonacci design (see Fig. 7.8). We may
use the IRT method with respect to permutations (x1, x2) and (x2, x1) to construct
the corresponding uniform designs onXmap. The construction results are visualized
in Fig. 7.7, with the permutation (x2, x1) leading to a slightly lower CCD score. In
each permutation, there are two points to represent the Hainan and Taiwan islands
on the map, respectively.

7.4 Conclusion

The construction of uniform designs on irregular regions has been a relatively chal-
lenging task as compared with the case on regular regions. Inspired by the stochas-
tic representation method in Fang and Wang [9], we propose to construct uniform
designs on arbitrary domains by the inverse Rosenblatt transformation (IRT) based
on marginal and conditional distributions. We have demonstrated how to use this
method in multiple kinds of experimental domains in two-dimensional space, and
the construction results are rather competitive and promising.

There are several interesting problems that are worth further study. First, the IRT
method is proposed for not only two-dimensional space, but also higher dimensional
space. In the latter case it is however computationally demanding. It is important to
develop a highly efficient algorithm for approximating the marginal and conditional
distribution functions. Second, there exist othermanifold domains than the ring shape
and flexible regions, e.g. the sphere and donut kinds of surfaces in high-dimensional
space. It is interesting to extend the IRT method to these manifold cases. Third, in
this study we find that the central composite discrepancy is an imperfect measure
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of uniformity on arbitrary domains. For example, it lacks the property of invariance
under rotation. It is among our research plans to develop a better kind of discrepancy
measure for space-filling designs on arbitrary domains with general distributional
assumption.
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Appendix: Good Lattice Point Method

The uniform designs constructed on the unit hypercubes by the GLPmethod are also
known as the NT-nets [9], which uses the classical star-discrepancy for evaluating the
uniformity of the candidate designs. In Algorithm 4 we write the GLP method using
the centered-�2 discrepancy (CD2), a more popular criterion proposed by Hickernell
[11]. Meanwhile, it is easy to check that the GLP designs (7.15) always include a
point xn = (1 − 1/2n, . . . , 1 − 1/2n) ∈ Cs . The leave-one-out (LOO) GLPmethod
is to remove such a dummy point, then scale the remaining points by n/(n − 1) in
all coordinates. Thus, in order to construct an n-run uniform design, we can use a
mixed GLP method by selecting the lower-CD2 design between the GLP (with input
n) and LOO-GLP (with input n + 1) outputs.

It is well-known that for s = 2 and n = Fk (Fibonacci numbers 5, 8, 13, 21, …),
the lattice designs generated by h1 = 1 and h2 = Fk−1 enjoy the remarkable low star-
discrepancy property [18]. It is of our interest to investigate whether such Fibonacci
designs may also attain low discrepancy with respect to the CD2 criterion. As a
key difference, the star-discrepancy is anchored at the origin of the unit hypercube,
while the CD2 is anchored at the center. It turns out the Fibonacci designs are sub-
optimal under CD2. Nevertheless, we find that the LOO-Fibonacci designs with
n = Fk − 1 (Fk ≤ 1597) runs remarkably minimize the CD2 criterion among all the
generating vectors for the mixed GLPmethod. See Fig. 7.8 about the LOO-Fibonacci
designs with 20, 88 and 143 runs. See Table7.3 for the numerical results based on

Fig. 7.8 Scatter plots of LOO-Fibonacci designs for n = 20, 88 and 143 runs
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Algorithm 4 Good Lattice Point Method
Input: The number of factors s, and the number of runs n.
1: Form a generating vector (h1, h2, . . . , hs) by choosing distinct positive integers that are less

than and relatively prime to n.
2: Form the n-run lattice design X = [xi j ]n×s with entries

xi j =
{
2ih j − 1

2n

}
, i = 1, . . . , n, j = 1, . . . , s (7.15)

where {z} is the factorial part of z.
3: Evaluate the criterion of the centered-�2 discrepancy

CD2(X) =
{(

13

12

)s

− 2

n

n∑
i=1

s∏
j=1

(
1 + 1

2

∣∣∣xi j − 1

2

∣∣∣ − 1

2

∣∣∣xi j − 1

2

∣∣∣2
)

+ 1

n2

n∑
i,k=1

s∏
j=1

(
1 + 1

2

∣∣∣xi j − 1

2

∣∣∣ + 1

2

∣∣∣xk j − 1

2

∣∣∣ − 1

2
|xi j − xk j |

) }1/2

.(7.16)

4: Repeat Steps 1–3 for all distinct generating vectors. Output X∗ with the lowest CD2 value.

Table 7.3 LOO-Fibonacci designs with h1 = 1 and h2 = Fk−1 minimize the CD2 criterion for the
mixed GLP method, where h∗

2 represents the best found generating vectors per each method

n = Fk − 1 h2 = Fk−1 h∗
2 (LOO-GLP) min-CD2 h∗

2 (GLP) min-CD2

4 3 2, 3 1.275E–01 3 1.350E–01

7 5 3, 5 7.631E–02 3, 5 8.122E–02

12 8 5, 8 4.557E–02 5 5.058E–02

20 13 8, 13 2.843E–02 9 3.133E–02

33 21 13, 21 1.764E–02 14, 26 1.947E–02

54 34 21, 34 1.117E–02 35 1.288E–02

88 55 34, 55 7.010E–03 37 7.661E–03

143 89 55, 89 4.456E–03 63 4.823E–03

232 144 89, 144 2.806E–03 147 3.115E–03

376 233 144, 233 1.784E–03 165 1.916E–03

609 377 233, 377 1.123E–03 256 1.224E–03

986 610 377, 610 7.128E–04 579 7.600E–04

1596 987 610, 987 4.484E–04 617 4.859E–04

exhaustive search up to Fk = 1597. From Table7.3, it can be found that the LOO-
Fibonacci designswith n = Fk − 1 also include h1 = 1 and h2 = Fk−2 as the optimal
generating vector. This can be actually justified by the reflection-invariant property
of the CD2 criterion.
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Chapter 8
Drug Combination Studies, Uniform
Experimental Design and Extensions

Ming T. Tan and Hong-Bin Fang

Abstract Drug combination has been an important therapeutic development
approach for cancer, viral or microbial infections, and other diseases involving com-
plex biological networks. Synergistic drug combinations, which are more effective
than predicted from summing effects of individual drugs, often achieve improved
therapeutic index. Because drug-effect is dose-dependent, multiple doses of an indi-
vidual drug need to be evaluated, giving rapidly escalating number of combinations
and a challenging high dimensional statistical modeling problem. The lack of proper
design and analysis methods for multi-drug combination studies have resulted in
many missed therapeutic opportunities. It is known that, in the presence of model
uncertainties, uniform measures that scatter the design points (the dose levels) uni-
formly in the experiment domain is the best strategy to yield maximum information
on the dose response relation. This chapter will review some efficient experimental
designs for drug combination studies especially those related to uniform measures
and extensions using maximum entropy design.

8.1 Introduction

Drug combination has played an important role in developmental therapeutics for
cancer, viral or microbial infections, and other diseases involving complex biolog-
ical pathways since most mono-chemotherapy results in drug resistance and toxic-
ity with high dose levels. Synergistic drug combinations, which are more effective
than predicted from summing the effects of individual drugs, often achieve greater
efficacy at lower doses with less toxicity [21]. The joint action of two drugs is a
fundamental problem in drug discovery and has a long history in pharmacology and
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biostatistics [2, 20, 35]. Increasing the number of constituent agents in a combina-
tion has been another strategy for increasing the level or type of interaction produced
[3, 23, 42]. There has been growing interest in developing quantitative methods for
the fundamental problem of detecting drug synergy [6, 18, 30]. The past several
decades have seen significant progresses in developing proper design and analysis
methods formulti-drug combination studies,whichhaveprovided a rational approach
to increase the chance of identifying optimized combinations of two or more drugs
for further evaluations. The approach utilizes optimized designs and systems biology
(see, e.g., [4, 10–13, 37, 38]) as well as adaptive phase I clinical trial designs that
attempt to identify the best possible maximum tolerated doses through modeling the
joint dose-toxicity relationship (see, e.g., [43–46]).

Because dose effect is known to be variable among virtually genetically identical
animals (or even different aliquots) receiving precisely the same dose, the design
for drug combination study becomes very important. Finney [17] proposed that the
regression lines for themixtures should be equally spaced between those for the drugs
under the assumption of additive joint action. This design is modified by Tallarida
et al. [36] by fixing the mixture ratio for a selected dose effect level to reduce the
variance of estimated dose response. An optimal design is proposed by Abdelbasit
and Plackett [1] by fixing the total dose in a specific model and optimizing the
selection of the other parameter: the mixing proportions. Laska et al. [25] provided a
design and analysis for a combination studywith fixed individual doses. To assess the
joint action of two drugs at different ratios, the ray design has been proposed where
a ray corresponds to one fixed ratio [19, 33]. Based on parametric models, Meadows
et al. [28] and Casey et al. [5] proposed a ray design for multiple drug combination
studies. Often the ray design is repeated at multiple fixed ratios, however, it is not
clear how many and what rays ought to be chosen. Thus, the design may require a
large sample size but still be under-powered in detecting departures from additivity.
Assuming the dose-response curves of individual drugs can be characterized by Hill
models, Syracuse and Greco [34] proposed an equation to characterize interactions
of two drugs [20, 34]. Carter et al. [7] proposed the dose-response surface for the
assessment of combination drug synergy.

Since the model of the joint action is typically not well specified before experi-
ment, a space-filling-type design is preferred [8]. However, the constituent doses of
the combination are to be found instead of being given. Thus, a design that allows
dose selection would be desired. When two drugs are applied in combination to a
biological system, their joint effect can be either additive, synergistic, or antagonistic
as compared to what is to be expected from the biological activity of the single drugs.
Recognizing these unique features, we proposed a general statistical framework with
semiparametric models based on the shapes of the single drug dose-response curves;
proved mathematically that if the design points are chosen according to uniform
measures, even with moderate sample sizes, the dose response can be estimated ade-
quately; and obtained the asymptotic properties of the interaction index function [10,
40]. The design is derived by the uniformmeasures that maximize the power to detect
any overall possible departures of a given magnitude from additivity while minimiz-
ing the lack of fit of the model for joint action [37, 38]. It was a pleasant surprise that
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the number of combinations and replications generated by such design is moderate
and highly feasible [10, 12, 13]. However, the extension of the method to multi-
drug turns out to be a challenge (shown later in this article) because of the increased
complexity in the additive model and in obtaining uniform scattered points in high-
dimensional dose regions. We have proposed a novel method to screen the large
number of combinations and identify the functional structure of the dose response
relationship by using the dose response data of single drugs and pathway/network
knowledge and the corresponding designs based on maximum entropy.

We give an overall review of the experimental designs for drug combination stud-
ies in this chapter. Section8.2 introduces the general statistical model for the joint
action of drugs and proposes an F-statistic to test if additive action. The designs
for two- or three-drug combination studies are described in Sect. 8.3 according to
various individual dose-response curves and utilizing uniform measures. The design
procedure for high dimensionalmultidrug studies utilizing systems biology andmax-
imum entropy are introduced in Sect. 8.4. Conclusion and further research are given
in Sect. 8.5.

8.2 Statistical Modeling for Drug Combinations

Experimental approaches to characterizing combination therapy typically involve
determining dose-response curves for inhibitors individually and in combination.
When experimental dose-response datamatch the predictions of Loewe additivity, the
inhibitors are said to be additive (corresponding to the zero-interaction case); greater
than predicted potency indicates synergism (positive interaction); and lower potency
argues for antagonism (negative interaction). The Loewe additivity is embodied in
the isobologram method for characterizing departures from additivity. To describe
the joint action of two drugs A and B at a specific dose level, the additivity of Loewe
[27] is based on single drug dose-effect and is defined by the following isobole
equation

xA
XA

+ xB
XB

= τ (8.1)

where xA and xB are doses of the constituent drugs A and B of the combination
needed to yield a given level of effect, e.g., 50% inhibition (ED50), or 50% death in
experiment animals (LD50), where XA and XB are the doses needed for each drug
alone to yield the level of effect. The τ is called the interaction index of the drugs
A and B at the combination (xA, xB). When τ = 1, the drugs A and B is additive
(zero-interaction) at the combination (xA, xB); when τ < 1, they are synergistic,
namely, the combination (xA, xB) is more effective than expected from their single
drug dose-response curves, otherwise (τ > 1), they are antagonistic. According to
Loewe’s definition, the isoboles (isoeffect equation) of the k drugs A1, . . . , Ak at
combination x = (x1, x2, . . . , xk)T is defined as (see (1a) in Berenbaum [2]),
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x1
X1

+ x2
X2

+ · · · + xk
XK

= τ, (8.2)

where Xi is the dose of drug Ai (i = 1, . . . , k) alone that yields the same response as
the combination x = (x1, x2, . . . , xk)T . Denote the combination dose-effect
(response) by y = fcom(x1, . . . , xk) and dose-response relationships for individual
drugs

y = fi (Xi ), i = 1, . . . , k, (8.3)

where y is the dose-effect scaled to be a viability (proportion of cells surviving) or a
tumor volume (with some transformation) and fi (Xi ) is assumed to be an decreasing
function of Xi in the dose range of interest. Then,

fcom(x1, . . . , xk) = f1(X1) = · · · = fk(Xk). (8.4)

The potency of drug Ai relative to drug A1 is the ratio of isoeffective doses of A1

and Ai , ρi (Xi ) = X1/Xi where fi (Xi ) = f1(X1), that is,

ρi (Xi ) = f −1
1 ( fi (Xi )) /Xi , i = 1, . . . , k. (8.5)

From (8.2) and (8.4), we have that

fcom(x1, . . . , xk) = f1

(
x1 + X1

X2
x2 + · · · + X1

Xk
xk

)
+ [ f1(X1) − f1(τ X1)].

(8.6)
and the term [ f1(X1) − f1(τ X1)] = 0 if the joint action of A1, . . . , Ak is additive.
Then, the regression line for the combination with additive action of k drugs is

y = f1

(
x1 + X1

X2
x2 + · · · + X1

Xk
xk

)

= f1 (x1 + ρ2(X2)x2 + · · · + ρk(Xk)xk) ,

(8.7)

and ρi (Xi) is a function of (x1, . . . , xk) determined by (8.2)–(8.5). If the potency ρi

in (8.5) is not a constant, the additive model (8.7) has no closed forms.
Since we generally know little about the joint effect of the combinations before

experiments, we consider a general semiparametric model for the joint effect of the
k drugs in the experimental domain D0,

y = f1 (x1 + ρ2(X2)x2 + · · · + ρk(Xk)xk) + f (x1, . . . , xk) + ε (8.8)

where the function f is unspecified, ε is the error term due to variation in experiments
and is assumed to be normally distributed with mean 0 and variance σ 2. Then, testing
the additive action of the k compounds is equivalent to testing the hypothesis H0:
f = 0.
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Assume that the additive model (8.7) can be expressed in a generalized additive
structure and model (8.8) becomes

y = (≈)α1g1(z1) + · · · + αkgk(zk) + g(z1, . . . , zk) + ε, (8.9)

with anone-to-one invertible transformation: (x1, . . . , xk)T ∈ D0 �→ (z1, . . . , zk)T ∈
D by zi = φi (x1, . . . , xk) (i = 1, 2, . . . , k) such that the functions g1, . . . , gk are lin-
early independent, g(z1, . . . , zk) = f (x1, . . . , xk) and satisfies the following orthog-
onality condition:

∫
D
G(z1, . . . , zk)g(z1, . . . , zk)dz1 · · · dzk = 0, (8.10)

where G(z1, . . . , zk) = (g1(z1), . . . , gk(zk))T .
As shown in Wiens [41], the test statistic for H0: g = 0 can be derived using

the lack-of-fit test involving least square error estimates under the full model
(8.9) and the additive model (8.7). Assume that the m points in the experimen-
tal domain D are z(1), . . . , z(m), and there are ni experiments at the dose-level
z(i) = (z(i)

1 , . . . , z(i)
k )T ∈ D with corresponding responses yi j , j = 1, . . . , ni , i =

1, . . . ,m. Denote n = n1 + . . . + nm . Let y be the n × 1 vector with elements yi j
ordered lexicographically and 1k be the k × 1 vector of one. Let Z be the m × k
matrix with i th row (g1(z

(i)
1 ), . . . , gk(z

(i)
k )), where gi is given by (8.9). Denote V =

UZ(ZTUTU Z)?ZTUT , J = U (UTU )?UT and U = diag(1n1 , . . . , 1nm ). Then, if
hypothesis H0 is true (i.e, the joint action of the k drugs is additive), the statistic for
the test of lack of fit

F = yT (J − V )y/(m − k)

yT (I − J )y/(n − m)
(8.11)

has a central F-distribution with degrees of freedom m − k and n − m (see [41]).
When the alternative hypothesis H1 : g �= 0 holds, the statistic (8.11) has a noncentral
F-distribution with degrees of freedom m − k and n − m, and the noncentrality
parameter

δ = n

σ 2

⎡
⎣∫
D

g2(z)dξ(z) −
∫
D

GT (z)g(z)dξ(z)

⎛
⎝∫
D

G(z)GT (z)dξ(z)

⎞
⎠

−1∫
D

G(z)g(z)dξ(z)

⎤
⎦

(8.12)

where ξ is the design measure, which is a probability distribution function with
mass pi = ni/n at z(i), i = 1, . . . ,m. Furthermore, the noncentrality parameter δ is
maximized if the design measure ξ is uniform on D [38].
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8.3 Experimental Design Based on Uniform Measures

The uniform design measure ξ maximizes the minimum power of the F-test (8.11)
and minimizes the maximum bias in the estimation of σ 2 in (8.12). Suppose that
the experimental points are uniformly scattered on the domain D and the number
of runs (experiment units) at each point is the same. The sample sizes (number of
experimental units) to detect a given meaningful synergism or antagonism (η) can
be calculated at a given significance level (α) and a given power level (1 − β) based
on a noncentral F-distribution with degrees of freedom m − k and n − m and the
noncentral parameter δ = n

∫
D g2(z)dz/σ 2 = nη2Vol(D)/σ 2.

An important aspect is that when we plan experiments on drug combinations, we
already have single agent dose response data and these data need to be fully utilized
in the combination studies. Since the additivity effect in Eq. (8.7) is dependent on
the single drug dose response curves, it is critical to the uniform design method [14,
16] to be able to derive an approximation of the additive model in Eq. (8.9) and
to obtain uniform scattered points in the experimental domain. Different classes of
drugs may have different dose response curves. According to Berenbaum [2] the
single drug dose response for a given dose interval (for example, ED20 − ED80) can
be fitted by log-linear or linear curve. Then, experimental designs for combination
studies of three drugs can be divided into four classes (three classes for two-drug
combinations). In this section, we give experimental designs for the four classes.

8.3.1 Design for Log-Linear Dose-Responses

Let the single dose response curves of drugs A, B, and C be

y(XA) = αA + βA log(XA),

y(XB) = αB + βB log(XB),

y(XC ) = αC + βC log(XC),

(8.13)

respectively. Without loss of generality, we assume that βC ≤ βB ≤ βA. The poten-
cies ρ(XB) and ρ(XC) of B and C relative to A are

ρ(XB) = ρ0X
βB/βA−1
B , ρ(XC) = ρ1X

βC/βA−1
C ,

respectively, where ρ0 = exp[(αB − αA)/βA] and ρ1 = exp[(αC − αA)/βA].
When βC = βA, the potencies ρ(XB) and ρ(XC) are constant and equal to ρ0 and

ρ1, respectively. In this case, the additive model at combination dose (xA, xB, xC ) is

y(xA, xB, xC ) = αA + βA log(z1) + βA log[(1 − ρ0)z2 + ρ0]
+ βA log

[(
1 − ρ1

ρ0

)
(1 − z3) + ρ1

ρ0

]
,

(8.14)
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where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z1 = xA + xB + xC ,

z2 = xA
xA + xB + ρ1xC/ρ0

,

z3 = xC
xA + xB + xC

.

(8.15)

According to Sect. 8.2, the m experimental points {(z(i)
1 , z(i)

2 , z(i)
3 ), i = 1, . . . ,m}

which maximize the statistical power in detecting synergy should be uniformly scat-
tered in the experimental domainD = {(z1, z2, z3) : ZL < z1 < ZH , (z2, z3) ∈ V2},
where ZL and ZH are the lower and upper limits of the total dose according to drug
A, respectively, and the q-dimensional simplex Vq is defined as

Vq =
⎧⎨
⎩(w1, . . . ,wq) : wj > 0, j = 1, . . . , q;

q∑
j=1

wj < 1

⎫⎬
⎭ (8.16)

The m combinations {(x (i)
A , x (i)

B , x (i)
C ), i = 1, . . . ,m} can be obtained by the inverse

transformation of (8.15).
When βC < βA, the potency ρ(XC) depends on the dose-level XC . Then, the

additive model at combination dose (xA, xB, xC) is

y(xA, xB, xC ) = αA + βA log
[
xA + ρ

βA/βB
0 ρ

1−βA/βB
1 ψ

βC (βB−βA )

βB (βC−βA ) xB + ρ1ψxC
]

≈ αA + βA log(z1) + βA log[(1 − ρ0)z2 + ρ0]
+ βA log

[(
1 − ρ1

ρ0

)
(1 − z3) + ρ1

ρ0

]
,

(8.17)
where ψ is a function of (xA, xB, xC ) and can be obtained by solving the following
equation

ψ =
[
xA
ρ1

+
(

ρ0

ρ1

)βA/βB

ψ
βC (βB−βA )

βB (βC−βA ) xB + ψxC

]1−βA/βC

,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = xA +
(

ρ0

ρ1

)βA/βB−1

ψ
βC (βB−βA )

βB (βC−βA ) xB + ψxC ,

z2 = xA

xA +
(

ρ0

ρ1

)βA/βB−1
ψ

βC (βB−βA )

βB (βC−βA ) xB + ρ1

ρ0
ψxC

,

z3 = ψxC
z1

.

(8.18)
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Similarly, the m experimental points {(z(i)
1 , z(i)

2 , z(i)
3 ), i = 1, . . . ,m} which maxi-

mize the statistical power in detecting synergy should be uniformly scattered in the
experimental domain D = {(z1, z2, z3) : ZL < z1 < ZH , (z2, z3) ∈ V2}, and the m
combinations {(x (i)

A , x (i)
B , x (i)

C ), i = 1, . . . ,m} can be obtained by the inverse trans-
formation of (8.18) (see, [38]).

If we consider the combination experiments of only two drugs A and B, the
additive model at combination dose (xA, xB) is

y(xA, xB) = αA + βA log [xA + φ(xA, xB)xB]

≈ αA + βA log(z1) + βA log[(1 − ρ0)z2 + ρ0], (8.19)

where φ is a function of (xA, xB) and can be obtained by solving the following
equation

φ(xA, xB) = ρ0
(
φ−1(xA, xB)xA + xB

)(βB−βA)/βA
,

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z1 = xA + 1

2
xβB/βA

B

⎡
⎣1 +

(
1 + 4(βB − βA)xA

βAx
βB/βA

B ρ0

)1/2
⎤
⎦ ,

z2 = xA
z1

.

(8.20)

The m experimental points {(z(i)
1 , z(i)

2 ), i = 1, . . . ,m} which maximize the statis-
tical power in detecting synergy should be uniformly scattered in the experimen-
tal domain D = {(z1, z2) : ZL < z1 < ZH , 0 < z2 < 1}, and the m combinations
{(x (i)

A , x (i)
B ), i = 1, . . . ,m} can be obtained by the inverse transformation of (8.20)

(see [12, 37]).

8.3.2 Design for Linear Dose-Responses

Let the single dose response curves of drugs A, B, and C be

y(XA) = αA + βAXA

y(XB) = αB + βB XB = αA + βB

(
XB − αA − αB

βB

)

y(XC ) = αC + βC XC = αA + βC

(
XC − αA − αC

βC

)
,

(8.21)

respectively. Then, the additive model at combination dose (xA, xB, xC ) is
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y(xA, xB, xC ) = αA + βAxA + βB

(
xB − αA − αB

βB

)
+ βC

(
xC − αA − αC

βC

)
.

(8.22)

In the combination study of drugs A, B, and C , for detecting departures from addi-
tivity of three drugs, the dose ranges of interest for combination experiments are
usually considered to be a triangular prism in R3

D0 =
{
(xA, xB , xC ) : a < y(xA, xB , xC ) < b; xA > 0, xb >

αA − αB

βB
, xC >

αA − αC

βC

}
.

(8.23)

where a and b are chosen in collaboration with pharmacologists. For example, if the
doses from ED20 to ED80 based on the additive model are of interest, then a = 20%
and b = 80% [10]. An algorithm for generating uniformly scattered points in D0 is
proposed in Tian [39].

If we consider the combination experiments of only two drugs A and B, the m
experimental points {(x (i)

A , x (i)
B ), i = 1, . . . ,m}whichmaximize the statistical power

in detecting synergy should be uniformly scattered in a tetragon D0 = {(xA, xB) :
a < αA + βAxA + βB

(
xB − αA−αB

βB

)
< b; xA > 0, xb > αA−αB

βB

}
[13].

8.3.3 Design for Two Linear Dose-Responses and One
Log-Linear Dose-Response

Let the single dose response curves of drugs A, B, and C be

y(XA) = αA + βAXA

y(XB) = αB + βB XB

y(XC ) = αC + βC log(XC),

(8.24)

respectively. Then, the additive model at combination dose (xA, xB, xC ) is

y(xA, xB, xC ) = αA + βAz1 + βBz2 + z3 (8.25)

where
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z1 = xA,

z2 = xB − αA − αB

βB
,

z3 =
(

αC − αA

ζ(xA, xB, xC )
+ βC log ζ(xA, xB, xC )

ζ(xA, xB, xC)

)
xC .

(8.26)
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and ζ(xA, xB, xC ) can be obtained by solving the following equation

αC − αA

βA
+ βC

βA
log ζ = xA + βB

βA

(
xB − αA − αB

βB

)
+
(

αC − αA

βAζ
+ βC log ζ

βAζ

)
xC .

Similarly, the m experimental points {(z(i)
1 , z(i)

2 , z(i)
3 ), i = 1, . . . ,m} which maxi-

mize the statistical power in detecting synergy should be uniformly scattered in the
triangular prism D = {(z1, z2, z3) : a < αA + βAz1 + βBz2 + z3 < b, z1 > 0, z2 >

0, z3 > 0}, and the m combinations {(x (i)
A , x (i)

B , x (i)
C ), i = 1, . . . ,m} can be obtained

by the inverse transformation [10]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xA = z1,

xB = z2 + αA − αB

βB
,

xC = z3 exp[(αA + βAz1 + βBz2 + z3 − αC)/βC ]
βAz1 + βBz2 + z3

.

(8.27)

8.3.4 Design for One Linear Dose-Response and Two
Log-Linear Dose-Responses

Let the single dose response curves of drugs A, B, and C be

y(XA) = αA + βAXA

y(XB) = αB + βB log(XB)

y(XC ) = αC + βC log(XC),

(8.28)

respectively. Then, the additive model at combination dose (xA, xB, xC ) is

y(xA, xB, xC ) = αA + βAz1 + z2 + z3 (8.29)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = xA,

z2 = exp

(
αB − αC

βB

)(
αC − αA

ϕβC/βB (xA, xB, xC )
+ βC logϕ(xA, xB, xC )

ϕβC/βB (xA, xB, xC )

)
xB,

z3 =
(

αC − αA

βAϕ(xA, xB, xC )
+ βC logϕ(xA, xB, xC )

ϕ(xA, xB, xC )

)
xC .

(8.30)
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and ϕ(xA, xB, xC ) can be obtained by solving the following equation

αC − αA + βC logϕ = αA + βAxA + exp
(

αB−αC
βB

) (
αC−αA

ϕβC /βB
+ βC logϕ

ϕβC /βB

)
xB

+
(

αC−αA
βAϕ

+ βC logϕ

ϕ

)
xC .

Similarly, the m experimental points {(z(i)
1 , z(i)

2 , z(i)
3 ), i = 1, . . . ,m} which maxi-

mize the statistical power in detecting synergy should be uniformly scattered in the
triangular prism D = {(z1, z2, z3) : a < αA + βAz1 + z2 + z3 < b, z1 > 0, z2 > 0,
z3 > 0}, and them combinations {(x (i)

A , x (i)
B , x (i)

C ), i = 1, . . . ,m} can be obtained by
the inverse transformation [10]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xA = z1,

xB = z2 exp((αB − αC)/βB) exp[(αA + βAz1 + z2 + z3 − αC)/βC ]βC/βB

βAz1 + z2 + z3
,

xC = z3 exp[(αA + βAz1 + z2 + z3 − αC)/βC ]
βAz1 + z2 + z3

.

(8.31)
If we consider the combination experiments of only two drugs A and B with

linear and log-Linear single dose-responses, the additive model at combination dose
(xA, xB) is

y(xA, xB) = αA + βAz1 + βBz2, (8.32)

where ⎧⎪⎪⎨
⎪⎪⎩

z1 = xA,

z2 = βAϕ(xA, xB)

βB exp
(

βAϕ(xA,xB )−αB+αA

βB

) xB, (8.33)

and ϕ(xA, xB) can be obtained by solving the following equation

(xA − ϕ(xA, xB)) exp

(
βAϕ(xA, xB) − αB + αA

βB

)
+ xBϕ(xA, xB) = 0.

The m experimental points {(z(i)
1 , z(i)

2 ), i = 1, . . . ,m} which maximize the sta-
tistical power in detecting synergy should be uniformly scattered in a tetragon
D = {(z1, z2) : a < αA + βAz1 + βBz2 < b; z1 > 0, z2 > 0} and the m combina-
tions {(x (i)

A , x (i)
B ), i = 1, . . . ,m} can be obtained by the inverse transformation [13]

⎧⎨
⎩
xA = z1,

xB = βBz2 exp(αA + βAz1 + βBz2 − αB)/βB

βAz1 + βBz2
.

(8.34)
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8.4 Experimental Design for Multi-drug Combinations

In the past several decades, the identification of a variety of novel signal transduction
targets amenable to therapeutic intervention has revolutionized the approach to can-
cer therapy. These targets were identified based on improved understanding of the
molecular mechanisms of action of second messengers, other components of signal
transduction pathways and system biology. These advances have suggested many
potential agents and call for new quantitative approaches to explore the possibilities
of combination therapy [11, 18, 23, 42]. In principle, the methods in Sect. 8.2 could
be applied to multi-drug combination studies. However, the rapidly rising large num-
ber of combinations with multiple drugs is an inevitable bottleneck in the emerging
approach of drug combination discovery and evaluation. Because drug-effect is dose-
dependent, for example, with 8 drugs, each with 6 doses, the number of potential
combinations reaches 1,679,616 multiplied by number of replications, making test-
ing all of them prohibitive. Such complexity, further complicated by non-ignorable
variation in dose-effect, behooves a new statistical approach and innovative algo-
rithms for optimal drug combination selection, study design and analysis. Indeed
challenges presented by multi-drug combinations are exceptional.

The design ofmulti-drug combination experiment presents exceptional challenges
and a high dimensional statistical problem. Since the number of combinations grows
exponentially with numbers of drugs, it quickly precludes laboratory testing. To
determine the interaction among multi-drugs, the dose response surface provides a
comprehensive description on dose effects. For estimating the high-dimensional dose
response surface, experimental designs are required that provide selected concentra-
tions or dose-levels of combinations, which allow exploration of the dose effect
surface with high accuracy at reasonable sample sizes. Recently, we developed a
novel method to screen the large number of combinations and identify the functional
structure of the dose response relationship by using the dose response data of single
drugs and pathway/network knowledge [11]. That is, data from experiments of single
drugs and existing signaling network knowledge are utilized to develop a statistical
re-scaling model to describe the effects of drugs on network topology. The system
comprises a series of statistical models with biological considerations, such as Hill
equations, generic enzymatic rate equations, and a regression model, to represent the
cumulative effect of genes implicated in activation of the cell death machinery.

Consider a combination study of s drugs A1, A2, . . . , As inhibiting some cell line
or against some cancer tumor. Assume the dose response surface to be

y(x) = g(x1, · · · , xs), for x = (x1, · · · , xs)
T ∈ D (8.35)

where xi is the dose-level of drug Ai , y is the dose effect scaled to be a viability
(proportion of cells surviving) or a tumor volume (with some transformation), and
D is the dose region. Without loss of generality, we assume that D = Cs = [0, 1]s .
Using the functional ANOVA decomposition (see, [31]), the dose response y(x) has
the following unique decomposition,
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y(x1, . . . , xs) = g0 +
s∑

i=1

gi (xi ) +
∑

1≤i< j≤s

gi j (xi , x j ) + · · · + g1,2,...,s(x1, · · · , xs),

(8.36)
where g0 = ∫

Cs y(x)dx is the overall mean of y(x),
∫ 1
0 gi1,...,iu (xi1 , . . . , xiu )dxik = 0

for any 1 ≤ u ≤ s and 1 ≤ k ≤ u, and the orthogonality

∫
[0,1]s

gi1,...,iu (xi1 , . . . , xiu )g j1,..., jv (x j1 , . . . , x jv )dx1 · · · dxs = 0, (8.37)

if (i1, . . . , iu) �= ( j1, . . . , jv). The total and partial variances can be defined by

D =
∫
Cs

[y(x)]2dx − g0, and DI =
∫
Cs

[gI (xI )]2dx for I ⊂ {1, . . . , s}, (8.38)

respectively. Obviously, D = ∑
I⊂{1,...,s} DI . Denote the ratio RI = DI/D which

is called global sensitivity index [31, 32]. All RI are non-negative and their sum∑
I⊂{1,...,s} RI = 1. The variances D and DI ’s and, hence, the global sensitivity

indices can be approximated by the quasi Monte Carlo method [15].
The global sensitivity indices are often used to rank the importance of the gI (xI )’s

appearing on the right-hand side of Eq. (8.36). The larger the index RI is, the more
significant the effect of gI (xI ) in the dose response is. Thus, the functional structure
of y(x) can be studied by calculating the indices. Fang et al. [11] proposed a novel
procedure to identify themost significant gI (xI )’s by utilizing data from experiments
of single drugs and existing signaling network knowledge.

The simulation studies showed that most contributions of single drugs and drug-
interactions in the dose response yielding a total of global sensitivity indices over
85%, are consistent with those from the true dose response. Then, the dose-response
surface (8.35) can be reduced into

y(x) = z(x)T θ + f (x), for x = (x1, . . . , xs)
T ∈ D (8.39)

with ∫
D

f (x)dx = 0, and
∫
D
z(x) f (x)dx = 0, (8.40)

where z(x) = (1, z1(x), . . . , z p(x))T is the specific functional vector of the dominat-
ing terms (e.g., those terms with their total global sensitivity indices more than 80%)
and θ = (θ0, θ1, . . . , θp)

T is the corresponding vector of regression coefficients. f (x)
is an unknown function and its global sensitivity index should be less than 20%.

Since the purpose of a drug combination study is to discover the promising dose-
level combinations among the agents (e.g., identify the synergistic dose region), a
prediction-based design appears to be more desirable. Huang et al. [24] proposed a
maximum entropy design for the combination experiments based on (8.39). Entropy
is a measure of unpredictability of a random vector Z , i.e., the larger the value of
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entropy of Z , the more uniform the distribution of the random vector Z which in turn
implies that the more unpredictable Z is likely to be.

Let X = {x1, . . . , xk} be the candidate set of design points in the experimental
domainD , for example,X is typically chosen to be a set of lattice points or uniformly
measurement points over the experimental domain. The aim is to choose n points
(n) from X as the experimental points such that the prediction variability at un-
experimental points, conditionally on the experimental points, is minimized. Based
on Eq. (8.39), the dose response can be formulated as

Y j (xi ) = z(xi )T θ + f (xi ) + εi j , i = 1, . . . , n; j = 1, . . . , ni , (8.41)

where Y j (xi ) is the response value of the j th replication at the point xi , εi j ∼
N (0, σ 2

ε ) is the measurement error and ni is the number of replications at xi . The
unknown function f (x) is modeled as a Gaussian random function with zero-mean
and global covariance matrix Cov[( f (x1), . . . , f (xk))T ] = σ 2

fV
k
f . In other words,

FX = [ f (x1), . . . , f (xk)]T is regarded as a realization of f (x).
Without loss of generality, let e be a n-run experiment selected from X =

{x1, . . . , xL}, that is, e has n distinct support points selected from X . Denote Ye
are the vector of response values at e and Yē are the vector of response values at
ē = X − e where ē is the set of un-experimental points such that ē ∪ e = X and
e ∩ ē = ∅. Let pZ(·) be the probability density function of the random vector Z, the
entropy of Z is then defined by

Ent (Z) =
∫

pZ(z)logpZ(z)dz,

and the standard formula from information theory suggests that (cf., [26])

Ent (YX ) = Ent (Ye) + EYe{Ent (Yē|Ye)}, (8.42)

whereYX = (Ye,Yē) and the expectation iswith respect to themarginal distribution
ofYe. Obviously, it is desirable for a combination experiment tominimize the second
term on the right-hand side of Eq. (8.42) because this term represents the average
prediction variability of the unsampled vector given the experimental design. With
the assumptions of that θ ∼ Np+1(βθ , σ

2
θ Ip+1) and FX ∼ Nk(0, σ 2

fV
k
f ), YX is a

k-dimensional Gaussian vector and Ent (YX ) is a constant. Therefore, minimizing
the value of EYe{Ent (Yē|Ye)} is equivalent to maximizing the value of Ent (Ye).
The optimal design, denoted by e∗, obtained by solving the following optimization
problem

e∗ = arg max
e⊂X

Ent (Ye)

= arg max
e⊂X

det
[
(σ 2

θ /σ 2
f )ZeZT

e + Ve
f + (σ 2

ε /σ 2
f )We

] (8.43)
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where Ze = [z(xe1), . . . , z(xen)]T , We and Ve
f are the submatrices of W =

diag{n1, . . . , nk} and Vk
f respectively, determined by the experiment e. This is

referred to as the maximum entropy design in the literature [15, 29].
The maximum entropy design criterion (8.43) is relative to the variance ratios

σ 2
θ /σ 2

f , σ
2
ε /σ 2

f , and the correlation matrix of the random function Ve
f . As mentioned

in the functional ANOVA decomposition (8.39), the total global sensitivity indices
of the dominating terms is usually more than 80%, whereas the global sensitivity
index of f (x) is less than 20%. This suggests that the variance ratio σ 2

θ /σ 2
f ≈ (≥)4.

Themeasurement error variance σ 2
ε can be estimated by the pooled variance from the

single drug experimental data (Tan et al. [37, 38]; Fang et al. [10, 12]). The idea to
estimate Ve

f and σ 2
f is to use the single drug dose effect curves which are estimated

from the experimental data of single drugs. Let the covariance function between
f (xi ) and f (x j ) be defined by cov[ f (x), f (x j )] = σ 2

f R(xi , x j ), where xi and x j are
two design points and R(xi , x j ) is the correlation function. Themost commonly used
correlation function is the power exponential correlation [9, 29]. The corresponding
computational algorithm for design construction is given by Huang et al. [24].

However, themaximumentropy design is to choose the experimental points froma
large candidate set of points in the experimental domain such that the posterior infor-
mationon thedose-response ismaximized.Wehave to suffer fromheavy computation
if the candidate set of points is too large, otherwise we may have a suboptimal design
if the candidate set of points is not large enough. Another way is utilizing the combi-
nation of D- optimal and the designs. To determine the best combinations of a given
multi-drugs, based on the predicting dose response model (8.41) the s-dimensional
space Rs can be divided into two orthogonal subspaces Rs = H0 ⊕ H1, where
H0 is the space with the basis of z1(x), z2(x), . . . , z p(x) and H1 is the orthogonal
complementary of H0 since f (x) is assumed to be orthogonal with the functions
z1(x), z2(x), . . . , z p(x). Then, the experimental domain D is divided into two parts
D = D1 ⊕ D2, whereD1 ⊂ H0 andD2 ⊂ H1. Because the predicting dose response
model has two parts, one is a linear combination of z1(x), z2(x), . . . , z p(x) inD1 and
another is an unspecified function f (x) in D2, the D- or A-optimal design will be
used in D1 and the maximal power design [38] will be used in D2. According to the
global sensitivity indexes of the linear combination part and the unspecified function
f (x), the number of experimental points can be obtained based on the proportion of
their global sensitivity indexes in the two domains and the sensitivity analysis for the
variance ratio of the linear combination part and the unspecified function f (x). The
optimal design are obtained by maximizing the entropy of Ent (Ye) [15, 29]. The
simulation studies show that the proposed experimental design (dose-level selection
and sample size determination) is efficient for combination studies and statistical
procedures to fit the high-dimensional dose response surface.
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8.5 Discussion and Further Research

In drug combination studies, constituent doses selected so that they are uniformly
scattered in the experimental domain maximizes the minimum power of the F-
test for detecting departure from additivity. The power optimality is derived from
the properties of uniform measures and by minimizing the variability in modeling
the dose-effect while allocating the combinations reasonably to obtain best possible
estimate of the dose-response surface of the joint action. In fact, the uniformdesign for
generating experimental combinations (the doses of eachdrug) using the quasi-Monte
Carlo methods is an optimal fractional factorial design under a general majorization
framework with exponential kernels [47, 48]. Hickernell [22] showed using quasi-
Monte Carlo methods instead of the Monte Carlo method usually improves accuracy
of computing the integral of a function.More importantly, the number of experimental
units and replicates (sample size) in the proposed design is feasible for both in vitro
and in vivo experiments.

For multi-drug combination, we proposed statistical models to describe the drug
effects on the network using data from experiments with single drugs and the exist-
ing network information. Through these statistical models, we conducted computer
experiments (in silico) to derive a global sensitivity index of each term in the func-
tional ANOVA of dose response model by generating doses of the drugs with the
Quasi Monte-Carlo method. Then, we can predict the main effects that occur with
combinations of multiple drugs. It is highly beneficial in bringing forth a framework
for selecting drug interactions, and developing experimental designs and statistical
procedures to estimate the high dimensional dose-response surface.

Cancer cells perform their functions following proper responses to the extracel-
lular and intracellular inputs to their complex network of signaling pathways. Many
protein-coding genes in these pathways are controlled by regulatory proteins that
up-regulate or downregulate these genes depending on the inputs to the signaling
network. Though significant progress has been made in extracting networks using a
range of experimental data, signaling networks remain in large part at the level of
topology rather than details on the rate constants and nonlinear message passing that
occur within the networks. Models to distinguish between members of a population
of cells, for example, different cancer cells from different normal tissue types, require
differences in message passing parameters and/or expression levels of the genes in
the network. Clearly more sophisticated models to capture the network complexity
are needed to accelerate the pace of drug development and increase the chance for
success.
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Chapter 9
Modified Robust Design Criteria
for Poisson Mixed Models

Hongyan Jiang and Rongxian Yue

Abstract The maximin D-optimal design (MMD-optimal design) and hypercube
design (HCD-optimal design) are two robust designs which overcome the problem
of design dependence on the unknown parameters. This article considers the robust
designs for Poisson mixed models. Given the prior knowledge of the fixed effects
parameters, a modification of the two robust design criteria is proposed by applying
the number-theoretic methods. The simulated annealing algorithm is used to find the
optimal exact designs. The results show that the modified optimal designs perform
better in the relative D-efficiency and programming time.

9.1 Introduction

In the fields of optimal experimental design, the Fisher information matrix plays
an important role. For nonlinear models or generalized linear models, the Fisher
information matrix depends on the unknown values of the parameters, which means
that the optimal design will depend on the parameters. Researchers can fix the value
based on their knowledge, or just guess, then the design will be locally optimal.

Robust design criterion is a good choice to overcome the problem of dependence
of a design on the unknown parameters, such as the maximin criterion and Bayesian
criterion [4]. The Bayesian approach maximizes the expected Shannon information
considering the prior information about the parameters of the model, while the max-
imin approach optimises over a specific domain of parameter values by maximizing
theminimal value of ameasure of the informationmatrix, inwhich the parameters are
assumed to belong to a known domain, without any hypothesis on their underlying
distribution [2].
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Aside from classical robust design criteria, the product design criterion, first sug-
gested byAtkinson and Cox [1], maximized the product of the determinants of Fisher
information matrices of the models of interest, scaled to the number of parameters
in each model. McGree et al. [11] applied the product design criterion to optimise
the product of the normalised determinants of Fisher information over eight dif-
ferent mixed effects bio-impedance models, which was combined by the 2.5th and
97.5th percentiles of all four fixed effect parameters in the model. Foo and Duffull
[9] proposed a hypercube D-optimality (HCD) criterion and a hypercube maximin
D-optimality (HCMMD) criterion, by setting the domain ΘHC of the fixed effect
parameters as various combinations of the 2.5th and 97.5th percentiles from the
known prior distribution of them in nonlinear mixed models. The HCD method is a
particular case of the product design criterion, and the result shows that this method
performs better at some combination of the extrema values of the parameters.What’s
more, a 100-fold improvement in the speed of this method compared to the Bayesian
optimal design is particularly attractive.

However, the percentiles of the prior distribution do not scatter as ‘uniform’ as
possible, and the underlying assumption of the HCD and HCMMD is that the effi-
ciency of any locallyD-optimal design of the 97.5%percentiles ismore or as efficient
to design of the parameter values located within the 97.5% interval [9]. We want to
generate a set of the parameter values which are uniformly scattered in a given
multi-dimensional prior distribution. Number-theoretic methods (NTMs) are used
in experimental design by Fang and Wang [5]. The set of the representative points
(RPs) based on NTMs is uniformly scattered under the notation of discrepancy. The
aim of this paper is to provide a robust method of obtaining optimal designs based on
the RPs. In what follows, given the prior distribution of the fixed effect parameters, a
D-optimality criterion based on the set of RPs, denoted by RPD-optimality criterion,
and a maximin optimality criterion based on the set of RPs, denoted by RPMMD,
are proposed.

The rest of the paper is organized as follows. The Poisson mixed models are
introduced in Sect. 9.2. Section9.3 gives a brief review on the existing criteria, and
presents amodification of the robust criteria by using theNTMs. Section9.4 evaluates
the new robust criteria via an one-variable first-order and second-order Poissonmixed
models by comparing among several designs. Section9.5 is the conclusion of the
paper.

9.2 The Poisson Mixed Model

In this section, a Poissonmixedmodel is introduced, and the quasi-likelihoodmethod
[12, 13, 16] is applied to Poissonmixedmodel to obtain the quasi-informationmatrix.
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9.2.1 Poisson Mixed Models

Suppose there are N independent individuals taken part in an experiment, and the
responses yij at the experimental settings xij of an explanatory variable x for individual
i follows a Poisson distribution, conditioned on an r-dimensional random effects
vector bi [12, 13]. It is assumed that yij’s are related to the fixed and random effects
via a log link, that is log (λij) = f Tij β + zTij bi, and

p(yij |bi) =
λ
yij
ij

yij ! exp(−λij), yij = 0, 1, 2, · · · , i = 1, 2, ...,N , j = 1, 2, · · · ,mi, (9.1)

where p(yij|bi) denotes the conditional probability density function of yij given bi.
Moreover, given the individual random effects bi, the observations yij are assumed
to be conditionally independent. The p × 1 vector fij is the design vector of the
explanatory variable at the jth measurement for individual i, β is the corresponding
p × 1 vector of unknown fixed effect parameters, zij is the r × 1 (r ≤ p) design
vector for the random effects which is usually a subset of vector fij, and bi, i =
1, 2, . . . ,N is the corresponding r × 1 vector of unknown random effects which are
drawn independently from a multivariate normal distribution with mean zero and
covariance matrix G.

Let the vector yi = (yi1, · · · , yimi )
T be the count responses of individual i, and y =

(yT1 , yT2 , · · · , yTN )T be the response vector of the experiment for the
N individuals.

9.2.2 Fisher Information Matrix of the Model

Our interest lies in measuring the responses under a reasonable experimental design
to estimate the fixed effect parameter β as accurately as possible. For simplicity we
will assume throughout that the covariance matrix G of bi is known. Note that the
covariance matrix G need not be of full rank, which allows for some or most of the
parameters to be fixed across the individuals.

The likelihood function of β is

L(β) =
N∏

i=1

∫ mi∏

j=1

p(yij|bi)p(bi)dbi, (9.2)

where p(bi) is the probability density function of bi. The maximum likelihood esti-
mator of β cannot be written down in closed form due to the random effects in
model (9.1). As mentioned in [12–14, 16], quasi-likelihood method is employed to
construct the quasi-likelihood function QL(β; y). See [8, 10, 16] for details. The
quasi-information matrix for the experiment is
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M (β) = DTV−1(μ(β))D =
N∑

i=1

Mi(β), (9.3)

where μ(β) is the marginal mean of y, V (μ(β)) is the marginal covariance matrix
of y, D = ∂μ(β)/∂β, and Mi(β) is the quasi-information matrix of individual i.

According to the technique of variance correction in [14], we define a variance
correction term

c(zij, zij′) = exp(zTij Gzij′) − 1,

and let Ci = (c(zij, zij′)) be the mi × mi matrix of the correction terms. Then the
quasi-information matrix of individual i is given by

Mi(β) = FT
i A

T
i (Ai + AiCiAi)

−1AiFi = FT
i (A−1

i + Ci)
−1Fi, (9.4)

where Ai is a diagnose matrix with the individual mean vector E(Yi) on its diagonal.
Note that

Di = ∂μi(β)

∂β
= AiFi,

where FT
i = (fi1, · · · , fimi ) is the design matrix of individual i.

In what follows we mainly consider the one-variable first-order Poisson mixed
model

λij = exp(β0 + bi0 + (β1 + bi1)xj), (9.5)

and the one-variable second-order Poisson mixed model

λij = exp(β0 + bi0 + (β1 + bi1)xj + (β2 + bi2)x
2
j ). (9.6)

In these models the design vectors for the fixed effects and the random effects are
equal, i.e., fij = zij in model (9.1).

9.3 Robust Optimal Designs

9.3.1 Locally D-Optimal Designs

In most practical situations, exact design with a given total number of design points
is required. The objective of this paper is to determine an optimal m-exact design of
the following form

ξm =
{
x1 x2 · · · xs
n1 n2 · · · ns

}
,
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where xk , k = 1, 2, · · · , s, are the s different settings for each individual, and nk
denotes the corresponding repetition times of observations at xk , k = 1, 2, · · · , s, and∑s

k=1 nk = m. The individual design with fixedm is considered, which is reasonable
in practice. Each exact design can be considered as a design measure over the design
region, which can be written as a probability measure with supports xk ’s:

ξ =
{
x1 x2 · · · xs
p1 p2 · · · ps

}
, pk = nk

m
,

s∑

k=1

pk = 1.

A design ξ that makes the estimation of the unknown parameters in a model, β, as
effectively as possible, dominates over all other designs in the set of all design mea-
sures Ξ in the Löwner sense is called Löwner optimal. However, it is very difficult
to find the Löwner optimal design ξ , in general. A popular way is to specify an opti-
mality criterion, which is defined as a real-valued function of the information matrix
M (ξ ;β) of the model. The most commonly used function is logarithm of its deter-
minant log |M (ξ ;β)| and the corresponding optimality is known as D-optimality. A
design ξ is called a locally D-optimal in the Poisson mixed model (9.1) if for a given
nominal value of β, it maximizes log |M (ξ ;β)|, i.e.,

ξD = argmax
ξ

log |M(β)|. (9.7)

It is known that aD-optimal design ξD minimizes the content of the confidence region
of β and so minimizes the volume of the ellipsoid [2]. Note that the information
matrix M (ξ ;β) for a general model usually depends on the parameters β, and then
the design ξD is called locally D-optimal. In Sect. 9.4, the locally D-optimal designs
for the Poisson mixed models in (9.5) and (9.6) are calculated at the prior means of
β, respectively.

Niaparast and Schwabe [14] provides an equivalence theorem for checking
the optimality for a given candidate design for the Poisson mixed models. The
D-efficiency of an arbitrary design ξ compared to the D-optimal design ξD is defined
as [2]

Deff =
( |M (ξ ;β)|

|M (ξD;β)|
) 1

p

, (9.8)

where, p is the number of parameters for the fixed effects of the model.
A Bayesian D-optimal design, ξBD, helps to overcome the problem of design

dependence on the unknown parameters, is defined as follows:

ξBD = argmax
ξ

∫

β

log |M (ξ ;β)|η(β)dβ, (9.9)

where η(β) is a chosen prior distribution of β. The integration here will be calcu-
lated numerically by quasi-Monte Carlo (QMC) methods. It is known that the QMC
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methods for multi-dimensional numerical integration are much more efficient than
traditional Monte Carlo methods [5].

9.3.2 RPD-and RPMMD-Optimalities

Foo and Duffull [9] proposed a hypercube design criterion termed HCD-optimality,
which is a specific case of product optimality, where component models are formed
by the same structure model but with sets of parameter values taken at the 2.5th and
97.5th percentiles values of the prior distribution of β. A maximin design criterion
was also considered in [9] by setting the domain of parameters as ΘHC composed
of all the combinations of the 2.5th and 97.5th percentile values, which is called
HCMMD-optimality. The HCD-optimal design is defined by

ξHCD = argmax
ξ

∑

β∈ΘHC

log |M (ξ ;β)|, (9.10)

and the HCMMD-optimal design is defined by

ξHCMMD = argmax
ξ

min
β∈ΘHC

log |M (ξ ;β)|. (9.11)

The method in [9] is attractive for its short operating time and acceptable effective
at some nominal parameter values. The maximin optimal designs [4, 7, 17] are
particularly attractive since an appropriate range for the unknown parameters is only
required to specify. The major problem is that the maximin optimality criterion is
not differentiable and the equivalence theorem is elusive.

Note that the set of percentiles may not represent as much information of a Mul-
tivariate distribution as possible. We now consider the use of RPs of the prior dis-
tribution by NTMs. Fang and Wang [5] introduced two kinds of RPs based on the
F-discrepancy criterion and MSE criterion, respectively. Under the F-discrepancy
criterion, there exists a set of optimal RPs for a given continuous univariate dis-
tribution by directly using the inverse transformation method. For the multivariate
distributions with independent components, their RPs may also be obtained by using
the inverse transformation method. For the multivariate distributions with depen-
dence structures, Fang and Wang [5] proposed the NTSR algorithm to generate their
RPs, which can be implemented to obtain the RPs of the spherically symmetric dis-
tribution, multivariate l1-norm distribution, Liouville distribution, and so on. Zhou
and Wang [18] considered the RPs of Student’s tn distribution for minimizing the
MSE criterion. Very recently, Zhou and Fang [19] proposed a new criterion, termed
FM-criterion, to choose n RPs of a given distribution, which minimize the L2-norm
of the difference between the empirical distribution and the given distribution under
the constraint that the first n − 1 sample moments equal the population moments.
The empirical study in [19] shows that the RPs under the FM-criterion are better than
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other types of RPs. It is known that finding RPs under the MSE criterion is more
difficult, but more appropriate in the case of small sample size.

In what follows, by Θn-RP we denote a set of n RPs generated by the inverse
transformation method under F-discrepancy criterion from a prior distribution of β

with independent components. We define two robust design criteria to against the
uncertainty of the fixed effects in the mixed model (9.1) by using the RPs in Θn-RP ,
and compare them with the existing criteria in (9.10) and (9.11).

A design is called RPD-optimal if it maximizes

	RPD(ξ) =
∑

β∈Θn-RP
log |M (ξ ;β)|, (9.12)

and a design is called RPMMD-optimal if it maximizes

	RPMMD(ξ) = min
β∈Θn-RP

log |M (ξ ;β)|. (9.13)

9.4 Numerical Studies

In this section we present Numerical studies for the RPD-and RPMMD-optimal
designs for the first-order model in (9.5) with three different covariance structures of
the random effects, and the second-order model in (9.6) with a diagonal covariance
matrix of the random effects, respectively. The design region is taken as [c, 1] with
c = 0.01, 0.2, 0.4, respectively, as used in [15].

We assume that β has a continuous multivariate prior distribution H (β) with
independent components. i.e., H (β) = H (β1, · · · , βp) =∏p

i=1Hi(βi), where Hi(βi)

(i = 1, · · · , p) are the marginnal distribution functions of β. We use the NTMs
as demonstrated in [5] to find the set of RPs of the prior distribution. Letting
{ck = (ck1, · · · , ckp), k = 1, · · · , n} is a set of n points which are uniformly scat-
tered in the unit cube Cs = [0, 1]s, e.g., a good lattice points (glp) set, then the set
Θn-RP is obtained by using the inverse transformation method, i.e., Θn-RP = {βk =
(H−1

1 (ck1), · · · ,H−1
p (ckp)), k = 1, · · · , n}.

To find the optimal m-exact designs that maximize the criteria defined in last
section, we use the simulated annealing (SA) algorithm. In our computation for
m = 8, 12, 24, the initial temperature in the SA algorithm is taken as T0 = 106, and
the temperature reduction factor is 0.9. It is known that the SA algorithm allows
the search patterns to move away from a path of strict descent, migrates through a
sequence of local extremum in search of the global solution, and recognizes when
the global extremum has been located [3, 6, 9].

It must be noted that the Bayesian D-optimality criterion (9.9) requires a com-
plicated integration over the prior distribution. The computation of the Bayesian
optimal designs involves two steps: (i) computation of criterion for a given design,
and (ii) finding an optimal design bymaximization of the criterion value. To compute
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the criterion (9.9) for a given design, we use the NTMs which is more efficient than
Monte Carlo methods to obtain a good approximation of integration.

9.4.1 Designs for the First-Order Poisson Mixed Model

For the first-order Poisson mixed model given in (9.5), we consider the following
three kinds of covariance matrices G of random effects b = (b0, b1)T :

G1 =
(
0.5 0
0 0

)
, G2 =

(
0.5 0
0 0.5

)
, G3 =

(
0.5 0.25
0.25 0.5

)
.

9.4.1.1 The Case of Normal Prior Distributions

Assume that the prior distribution of β = (β0, β1)
T is a normal distribution with

mean β̄ = (β̄0, β̄1)
T = (1,−3)T and an identity covariance matrix I2.

In order to compare with the design criterion using percentile points inΘHC which
contains 4 values of β, we will use the set Θ3-RP of the RPs of the prior distribution
β ∼ N2(β̄, I2). According to Theorem 1.2 in Fang and Wang [5], the set Θ3-RP can
be obtained by taking an inverse transformation of the following glp set in C2,

{(1
6
,
3

6

)
,

(3
6
,
1

6

)
,

(5
6
,
5

6

)}
.

The two sets Θ3-RP and ΘHC chosen from the prior distribution N2(β̄, I2) of β are
shown in Table9.1.

The optimal m-exact designs (m = 8,16,24) under the five optimality criteria in
(9.9)–(9.13) for the first-order model (9.5) with random effects covariance matrix
Gi (i = 1, 2, 3) are calculated numerically, where the sets Θn-RP and ΘHC used in
these criteria are given in Table9.1. To save space, we only show the optimal 8-exact
designs for the covariance matrix G2 in Table9.2.

It is observed from this table that for a given value of c, the designs have two
support points except for the HCD-optimal designs on the cases c = 0.01, 0.2. The
left endpoint of each design region is the common support of these designs, but the
weights on it can be different.

In the following, taking for example, we make an efficiency comparison among
the optimal 8-exact designs in the case of c = 0.01. We compute the D-efficiencies
defined by (9.8) of the optimal 8-exact designs on the region [0.01, 1] obtained
under the criteria (9.9)–(9.13), respectively, with respect to each of the 100 locally
D-optimal designs where the 100 values of β are randomly sampled from its prior
distribution N2(β̄, I2). The results for each model with random effects covariance
matrix Gj (j = 1, 2, 3) are shown in Figs. 9.1–9.3. In each plot, column 1 stands for
the box plot of D-efficiency of the RPD-optimal design, column 2 for the box plot of
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Table 9.1 The sets Θ3-RP and ΘHC for the prior distribution β ∼ N2(β̄, I2)

Θ3-RP β0 β1 ΘHC β0 β1

β1
RP 0.0326 −3.0000 β1

HC 1 − 1.96 −3 − 1.96

β2
RP 1.0000 −3.9674 β2

HC 1 − 1.96 −3 + 1.96

β3
RP 1.9674 −2.0326 β3

HC 1 + 1.96 −3 − 1.96

β4
HC 1 + 1.96 −3 + 1.96

Table 9.2 The optimal 8-exact designs on [c, 1] for the first-order model (9.5) with random effects
covariance matrix G2 = 0.5 I2 based on the sets Θ3-RP and ΘHC in Table14.1

Criterion c = 0.01 c = 0.2 c = 0.4

Local D

(
0.01 0.7250

0.3125 0.6875

) (
0.2 0.8802

0.375 0.625

) (
0.4 1

0.375 0.625

)

HCD

(
0.01 0.5567 1

0.375 0.5 0.125

) (
0.2 0.7611 1

0.375 0.5 0.125

) (
0.4 0.9886

0.5 0.5

)

HCMMD

(
0.01 0.4688

0.375 0.5

) (
0.2 0.656

0.375 0.625

) (
0.4 0.8524

0.5 0.5

)

RPD

(
0.01 0.7075

0.375 0.625

) (
0.2 0.9081

0.375 0.625

) (
0.4 1

0.375 0.625

)

RPMMD

(
0.01 0.8199

0.375 0.625

) (
0.2 1

0.375 0.625

) (
0.4 1

0.375 0.625

)

Bayesian

(
0.01 0.7198

0.375 0.625

) (
0.2 0.9185

0.375 0.625

) (
0.4 1

0.5 0.5

)

D-efficiency of the HCD-optimal design, column 3 for the box plot of D-efficiency
of the Bayesian D-optimal design, column 4 for the box plot of D-efficiency of the
RPMMD-optimal design, and column 5 stands for the box plot of D-efficiency of
HCMMD-optimal design.

Figure9.1 shows the results for the first-order Poisson model with random inter-
cept. The median of the D-efficiency of the RPMMD-optimal design is the highest,
even better than Bayesian optimal design, and the performance of the HCMMD-
optimal design is the worst. Although the D-efficiency of the RPD-optimal design
is a little lower than that of the HCD-optimal design, its median is above 0.8, which
is acceptable in practice. Figures9.2–9.3 show the results for the first-order Poisson
model with both random intercept and random slope. These results show that the
difference of the five designs shrinks, and their performances are comparable. It is
noticed that theRPD-, RPMMD-andBayesianD-optimal designs performbetter than
the HCD-and HCMMD-optimal designs. In conclusion, the optimality criteria based
on the RPs is more efficient than that based on the hypercube method to overcome
the problem of dependence of designs on the unknown parameters of the model.

http://dx.doi.org/10.1007/978-3-030-46161-4_14
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Fig. 9.1 Box plots of the
D-efficiencies of the five
optimal 8-exact designs with
respect to the 100 locally
D-optimal 8-exact designs on
[0.01, 1] for the first-order
model (9.5) with random
effects covariance matrix G1
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Fig. 9.2 Box plots of the
D-efficiencies of the 8-exact
optimal 8-exact designs with
respect to the 100 locally
D-optimal 8-exact designs on
[0.01, 1] for the first-order
model (9.5) with random
effects covariance matrix G2
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Furthermore, we examine the affect of the number of RPs on the RPD- and
RPMMD-optimal exact designs on [0.01, 1] for the first-order model (9.5) with
random effects covariance matrix Gj (j = 1, 2, 3). The RPD-and RPMMD-optimal
8-exact designs are carried out under three sets Θn-RP (n = 3, 5, 8), and the D-
efficiencies of these designs are calculated with respect to the locally D-optimal
8-exact designs at each of 100 values of β which are randomly sampled from the
prior distributionN2(β̄, I2). For space reason, in Fig. 9.4 we only report a part of these
D-efficiencies of the RPD-and RPMMD-optimal designs for the first-order model
(9.5) with random effects covariance matrix G1. These results show that the number
of RPs has a slight impact on the RPD-and RPMMD-optimal designs.

9.4.1.2 The Case of Noncentral t Prior Distributions

We consider the case of non-normal prior distributions of the fixed effects. For illus-
tration purpose, we assume that β0 and β1 in the first-order model (9.5) are indepen-
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Fig. 9.3 Box plots of the
D-efficiencies of the five
optimal 8-exact designs with
respect to the 100 locally
D-optimal 8-exact designs on
[0.01, 1] for the first-order
model (9.5) with random
effects covariance matrix G3
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Fig. 9.4 Box plots of the
D-efficiencies of the
RPD-and RPMMD-optimal
8-exact designs under three
sets Θn-RP (n = 3, 5, 8) with
respect to the 100 locally
D-optimal 8-exact designs on
[0.01, 1] for the first-order
model (9.5) with random
effects covariance matrix G1
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dent and follow noncentral t distributions having means 1 and −3, respectively. Let
β0 ∼ t(q0, δ0) and β1 ∼ t(q1, δ1). By assuming the degrees of freedom q0 = 4 and
q1 = 3, the noncentrality parameters are then obtained by solving the equations

E(βi) = δiΓ (
qi−1
2 )

Γ (
qi
2 )

√
qi
2

, i = 0, 1,

which are δ0 = 0.7979 and δ1 = −2.1708, respectively. The set of RPs can also be
obtained by the NTMs. Our computation is carried out in Matlab, and the sets Θ3-RP
andΘHC ofβ with this prior distribution are given inTable9.3. The results inTable9.4
are the optimal 8-exact designs under the five optimality criteria in (9.10)–(9.13) for
the first-ordermodel (9.5) with random effects covariancematrixG2 = 0.5 I2 and the
noncetral t prior distribution of β, where the setsΘn-RP andΘHC used in these criteria
are as in Table9.3. Compared with the results in Table9.2, we observed that both
the RPD-and RPMMD-optimal designs on the region [c, 1] are very similar (except
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Table 9.3 The sets Θ3-RP and ΘHC of β = (β0, β1)
T whose components are independent and

follow prior distributions t(4, 0.7979) and t(3,−2.1708) respectively

ΘRP β0 β1 ΘHC β0 β1

β1
RP −0.1823 −2.3957 β1

HC −1.4604 −9.4003

β2
RP 0.8505 −4.4759 β2

HC −1.4604 −0.2209

β3
RP 2.1199 −1.1984 β3

HC 4.3557 −9.4003

β4
HC 4.3557 −0.2209

Table 9.4 The optimal 8-exact designs on [c, 1] for the first-order model (9.5) with random effects
covariance matrix G2 = 0.5 I2 and the noncentral t prior distribution of β, based on the sets Θ3-RP
and ΘHC in Table9.3

criterion c = 0.01 c = 0.2 c = 0.4

HCD

⎛

⎜⎝
0.01 0.2456 1

0.25 0.5 0.25

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4402 1

0.375 0.5 0.125

⎞

⎟⎠

⎛

⎜⎝
0.4 0.6527 1

0.375 0.5 0.125

⎞

⎟⎠

HCMMD

⎛

⎜⎝
0.01 0.24

0.375 0.625

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4209

0.5 0.5

⎞

⎟⎠

⎛

⎜⎝
0.4 0.6208

0.5 0.5

⎞

⎟⎠

RPD

⎛

⎜⎝
0.01 0.6979

0.375 0.625

⎞

⎟⎠

⎛

⎜⎝
0.2 0.8862

0.375 0.625

⎞

⎟⎠

⎛

⎜⎝
0.4 1

0.375 0.625

⎞

⎟⎠

RPMMD

⎛

⎜⎝
0.01 0.7204

0.375 0.625

⎞

⎟⎠

⎛

⎜⎝
0.2 0.7420

0.375 0.625

⎞

⎟⎠

⎛

⎜⎝
0.4 0.9498

0.375 0.625

⎞

⎟⎠

Bayesian

⎛

⎜⎝
0.01 0.7110 1

0.375 0.25 0.125

⎞

⎟⎠

⎛

⎜⎝
0.2 0.8658 1

0.5 0.25 0.25

⎞

⎟⎠

⎛

⎜⎝
0.4 0.9648 1

0.5 0.125 0.375

⎞

⎟⎠

RPMMD at c = 0.2), while others are much different, based on the two kinds of the
prior distribution of β.

9.4.2 Designs for the Second-Order Poisson Mixed Model

A similar discussion to the previous subsection is done to the second-order Poisson
mixed model in (9.6). For illustration, we assume that the covariance matrix of the
random effects b = (b0, b1, b2)T is G = 0.5 I3, and the prior distribution of the fixed
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effects β = (β0, β1, β2)
T is normal distribution with mean β̄ = (1,−3,−0.9)T and

covariance matrix I3. In this case, the percentile set ΘHC contains 8 points, and
for comparison we choose the set Θ7-RP having seven RPs of the prior distribution
β ∼ N3(β̄, I3), which is obtained by the inverse transformation method from the
following glp set,

{( 1

14
,
5

14
,
9

14

)
,
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14
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11

14
,
5

14

)
,

( 5

14
,
3

14
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14
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( 7
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14
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14
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14
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(11
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7

14
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3

14

)
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(13
14

,
13

14
,
13

14

)}
.

The two sets Θ7-RP and ΘHC are shown in Table9.5.
Table9.6 shows the six kinds of optimal 8-exact designs on the region [c, 1] with

c = 0.01, 0.2 for the second-order model (9.6) with the random effects covariance
matrix Cov(b) = 0.5 I3. These designs are obtained numerically under the six opti-
mality criteria given in (9.7), (9.9)–(9.13), where the setsΘ7-RP andΘHC in Table9.5
are used in (9.10)–(9.13) correspondingly.

As in the previous subsection, we are going to make a comparison among these
designs. We generate randomly 100 values of β from the prior distribution β ∼
N3(β̄, I3), and find out the locally D-optimal 8-exact designs on the region [0.01, 1]
at each of these values of β. Then we calculate the D-efficiencies of the RPD-, HCD-
, Bayesian D-, RPMMD-and HCMMD-optimal 8-exact designs relative to each of
these locally D-optimal designs. The box plots of these D-efficiencies are shown in
Fig. 9.5.

As shown in Fig. 9.5, the medians of D-efficiencies of the RPD-, HCD-, Bayesian
D-, RPMMD-optimal designs are all greater than 0.95, while the median of
D-efficiencies of the HCMMD-optimal design is 0.8. The performance of the
RPD-optimal design is slightly better than theHCD-andBayesianD-optimal designs.
And the performance of the RPMMD-optimal design is much better than the
HCMMD-optimal design.

Table 9.5 The sets Θ7-RP and ΘHC for the prior distribution β ∼ N3(β̄, I3)

Θ7-RP β0 β1 β2 ΘHC β0 β1 β2

β1
RP −0.4652 −3.3661 −0.5339 β1

HC 1 − 1.96 −3 − 1.96 −0.9 − 1.96

β2
RP 0.2084 −2.2084 −1.2661 β2

HC 1 − 1.96 −3 + 1.96 −0.9 − 1.96

β3
RP 0.6339 −3.7916 −2.3652 β3

HC 1 − 1.96 −3 − 1.96 −0.9 + 1.96

β4
RP 1.0000 −2.6339 −0.1084 β4

HC 1 − 1.96 −3 + 1.96 −0.9 + 1.96

β5
RP 1.3661 −4.4652 −0.9 β5

HC 1 + 1.96 −3 − 1.96 −0.9 − 1.96

β6
RP 1.7916 −3 −1.6916 β6

HC 1 + 1.96 −3 + 1.96 −0.9 − 1.96

β7
RP 2.4652 −1.5348 0.5652 β7

HC 1 + 1.96 −3 − 1.96 −0.9 + 1.96

β8
HC 1 + 1.96 −3 + 1.96 −0.9 + 1.96
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Table 9.6 The optimal 8-exact designs on [c, 1] for the second-order model (9.6) with the random
effects covariance matrix Cov(b) = 0.5 I3

criterion c = 0.01 c = 0.2

Local D

⎛

⎜⎝
0.01 0.3365 0.9665

0.25 0.375 0.375

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4923 1

0.25 0.375 0.375

⎞

⎟⎠

HCD

⎛

⎜⎝
0.01 0.2807 0.7627 1

0.25 0.375 0.25 0.125

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4582 0.8337 1

0.25 0.375 0.125 0.25

⎞

⎟⎠

RPD

⎛

⎜⎝
0.01 0.3186 0.8872 1

0.25 0.375 0.25 0.125

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4772 0.9316 1

0.25 0.375 0.125 0.25

⎞

⎟⎠

HCMMD

⎛

⎜⎝
0.01 0.2122 0.6354

0.25 0.375 0.375

⎞

⎟⎠

⎛

⎜⎝
0.2 0.3868 0.8163

0.25 0.375 0.375

⎞

⎟⎠

RPMMD

⎛

⎜⎝
0.01 0.3412 1

0.25 0.375 0.375

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4644 1

0.25 0.375 0.375

⎞

⎟⎠

Bayesian D

⎛

⎜⎝
0.01 0.3219 0.8124 0.9686

0.25 0.375 0.25 0.125

⎞

⎟⎠

⎛

⎜⎝
0.2 0.4766 0.9905

0.5 0.375 0.125

⎞

⎟⎠

Fig. 9.5 Box plots of the
D-efficiencies of the five
optimal 8-exact designs
relative to the 100 locally
D-optimal 8-exact designs on
[0.01, 1] for the second-order
model (9.6) with random
effects covariance matrix
Cov(b) = 0.5 I3
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Fig. 9.6 Box plots of the
D-efficiencies of the
RPD-and RPMMD-optimal
8-exact designs under three
sets Θ7-RP ,Θ11-RP , Θ13-RP
with respect to the 100
locally D-optimal 8-exact
designs on [0.01, 1] for the
second-order model (9.6)
with random effects
covariance matrix
Cov(b) = 0.5 I3
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We here examine the affect of the number of RPs used in the RPD- and
RPMMD-optimality criteria on the optimal designs for themodel (9.6). TheRPD-and
RPMMD-optimal 8-exact designs on [0.01, 1] under three setsΘn-RP (n = 7, 11, 13)
are calculated numerically, and the D-efficiencies of these designs are computed with
respect to the locally D-optimal 8-exact designs at each of the 100 values of β which
are randomly sampled from the prior distribution N3(β̄, I3). These results in Fig. 9.6
show that the number of RPs has a slight impact on the RPD-and RPMMD-optimal
designs.

9.5 Concluding Remarks

This paper concerns with optimal and robust design problems for Poisson mixed
models. Two optimality criteria, termed RPD-optimality and RPMMD-optimality,
for the Poisson mixed model are introduced by using the RPs of the prior distribution
of fixed effects. The purpose of these two criteria is to overcome the dependence
problemofD-optimality on the values of unknown parameters. By assuming the prior
distribution of fixed effects is a multivaraite normal distribution with independent
components, we obtain the RPs by using the transformation method. The numerical
results for the first-and second-order models show that the optimal designs based
on the RPs are more robust than those based on the hypercube method. Moreover,
the number of RPs has a slight impact on both RPD-and RPMMD-optimal designs.
Therefore, a small number of RPs used in the RPD-and RPMMD-optimality criteria
may yield a good robustness against parameter uncertainty. Hence, our results will
give more options to the experimenters.

In aspects of computation, the running times of constructing the RPD-and
RPMMD-optimal designs are much less than that of the HCD-andHCMMD-optimal
designs, respectively. The computation time of constructing the Bayesian D-optimal
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design is much longer than others due to the long time required in computation of
the Bayesian criterion for a given design.

Moreover, in our computation the prior distribution of the fixed effects is assumed
to have independent components, and then the RPs are obtained by using the inverse
transformation method. If the prior distributions of the fixed effects have corre-
lated components, the RPs can be generated by other methods proposed in, e.g.,
[5, 18, 19] and the references therein.
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Chapter 10
Study of Central Composite Design
and Orthogonal Array Composite Design

Si Qiu, Minyu Xie, Hong Qin, and Jianhui Ning

Abstract Response surface methodology (RSM) is an effective tool for explor-
ing the relationships between the response and the input factors. Central composite
design (CCD) and orthogonal array composite design (OACD) are useful second-
order designs in response surface methodology. In this work, we consider the effi-
ciencies of the two classes of composite designs for general case. Assuming the
second-order polynomial model, the D-efficiency of CCDs and OACDs are stud-
ied for general value of α in star points. Moreover, the determination of α is also
discussed from the perspective of space-filling criterion.

Keywords Central composite design · Orthogonal array composite design ·
Centered L2-discrepancy · D-efficiency
10.1 Introduction

Considering a process or system involves a response y that depends on factors x =
(x1, · · · , xk), and their relationship can be modeled by

y = f (x1, · · · , xk) + ε, (10.1)

where the function f is unknown and ε is the error term that represents the sources
of variability not captured by f . In order to estimate the f , many methods have been
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proposed, response surface methodology (RSM, [7]) is an appealing technique to
achieve the goal that involves experimentation, modeling, data analysis and opti-
mization. The main idea of RSM is to use a sequence of designed experiments to
obtain an optimal response. Typically, there are three stages in RSM: The first stage
is to detect the significant factors by modeling a first-order polynomial model with
a factorial experiment design or a fractional factorial design. The second stage is to
search the optimum region; Once the first two stages has been done successfully, then
a more complicated model is employed to approximate the f [7]. suggested using
a second-order polynomial model to do this due to its easy estimation and applica-
tion. A comprehensive account of response surface methodology can be referred to
[5, 14], and [18].

Given the quantitative factors denoted by x1, · · · , xk , a second-order polynomial
model is

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑

i=1<j≤k

βijxixj + ε, (10.2)

whereβ0, βi, βii, βij are the intercept, linear, quadratic andbilinear terms respectively,
and ε is the error term. Many second-order designs, which allow all parameters
in (10.2) to be estimated, have been proposed in the literature. The common way
that researchers address second-order model in the literature is to use the central
composite designs (CCDs) introduced by [7]. According to [25], for k factors, a
composite design consists of three parts: (i) n1 cube points (or corner points) with
all xi = 1 or -1; (ii) n2 star points (or additional points) with all xi = α or −α; (iii)
n0 center points with all xi = 0. The composite design has a total of n1 + n2 + n0
points and has three or five different levels. If α = 1, the composite design has three
different levels, otherwise, the design has five different levels. Central composite
designs use n2 = 2k axial points of the form (0, · · · , xi, · · · , 0) with xi = α or −α

for i = 1, · · · , k as the star points.
There are also other variations such as small composite designs (SCDs) proposed

by [8] and augmented-pair designs (APDs) proposed by [17].Motivated by an antivi-
ral drug experiment [24], introduced a new class of composite designs, called orthog-
onal array composite designs (OACDs), which use a three-level orthogonal array as
the star points. An orthogonal array of n runs, k columns, s levels, and strength t,
denoted by OA(n, sk , t), is an n × k matrix in which all st level combinations appear
equally often in every n × t submatrix. Detailed discussion of orthogonal array can
see [1, 11].

Reference [25] developed some general theoretical results for CCDs and OACDs,
and derived bounds of their efficiencies for estimating all and part of the parameters
in a second-order model for α = 1. In this paper, we generalized their theory to more
general value of α, and discuss how to choose a better α from the perspective of
space-filling view.

The rest of paper is organized as follows. In Sect. 10.2, we present some pre-
liminaries on the CCD, OACD and optimum criteria. In Sect. 10.3 , we show the
D-efficiency values and bounds of CCDs and OACDs respectively. In Sect. 10.4,
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the determination of the α is also discussed. Section10.5 is devoted to conclusion
remarks, and the proofs of the main conclusions are listed in the appendix.

10.2 Preliminaries

CCD and OACD

A CCD with k input factors consist of following three parts:

• n1 cube points with xi = 1 or −1 for i = 1, · · · , k;
• n2 axial points of the form (0, · · · , xi, · · · , 0)with xi = α or−α for i = 1, · · · , k;
• n0 center points with all xi = 0 for i = 1, · · · , k.

An OACD with k factors has three parts as follows:

• n1 cube points with xi = 1 or −1 for i = 1, · · · , k;
• a 3-level orthogonal array with n2 runs;
• n0 center points with all xi = 0 for i = 1, · · · , k.

D-efficiencies

Let d be the k-factor composite design, X = (1,Q,L,B) be the model matrix of the
second-order model (10.2), where 1 is a column of ones, Q,L and B are quadratic,
linear and bilinear terms, respectively. Let di be the part i of the design for i = 1, 2.
The total number of runs of d is N = n1 + n2 + n0. The D-efficiency of d is

D(d) = N−1|X TX |1/p, (10.3)

where p = (k + 1)(k + 2)/2 is the number of parameters in the second-order model
(10.2).

Sometimes the partial efficiency (Ds-efficiency) describes the precision for esti-
mating a subset s of the model parameters. Ds-efficiency can be defined as

Ds(d) = N−1|X T
s Xs − X T

s X(s)(X
T
(s)X(s))

−1X T
(s)Xs|1/t,

where s is a subset of factors, Xs and X(s) are the sub-matrices of X corresponding to
the parameters in s or not in s, respectively, and t is the number of parameters in s.
Since

|X TX | = |X T
(s)X(s)||X T

s Xs − X T
s X(s)(X

T
(s)X(s))

−1X T
(s)Xs|,
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then the Ds-efficiency can also be calculated by

Ds(d) = N−1

(
|X TX |

|X T
(s)X(s)|

)1/t

. (10.4)

For convenience, we denote DL, DB and DQ as the Ds-efficiency, when the subset s
is the linear, bilinear and quadratic terms, respectively.

10.3 D-efficiencies of CCDs and OACDs

In this section, we deduce some results of CCDs and OACDs based onD-efficiencies
with general α value. We consider a CCD with k factors and n0 center points. When
an OA(n1, 2k , 4) (or a full factorial for k < 4) is used for the two-level portion of
CCD, the linear, quadratic, and bilinear terms are orthogonal to each other, that
is, QTL = 0,QTB = 0,LTB = 0. The information matrix of the central composite
design is a block diagonal matrix

X ′X =

⎛

⎜⎜⎝

N (n1 + 2α2)1′
k 0 0

(n1 + 2α2)1k n1Jk + 2α4Ik 0 0
0 0 (n1 + 2α2)Ik 0
0 0 0 n1Iq

⎞

⎟⎟⎠ ,

where 1k is a column of k ones, Ik is k × k identity matrix, Jk is the k × k matrix of
ones. So it is easy to obtain that

|X ′X | = nq1(2α
4n1 + 4α6)k

[(
1 + kn1

2α4

)
n0 +

(
1 − k

α2

)2

n1

]
,

|X ′
(L)X(L)| = nq1(2α

4)k

[(
1 + kn1

2α4

)
n0 +

(
1 − k

α2

)2

n1

]
,

|X ′
(B)X(B)| = (2α4n1 + 4α6)k

[(
1 + kn1

2α4

)
n0 +

(
1 − k

α2

)2

n1

]
,

|X ′
(Q)X(Q)| = N (n1 + 2α2)knq1.

From these equations, we obtain the following Theorem 10.1.

Theorem 10.1 For a CCD with k factors and n0 center points, if the 2-level portion
is an OA(n1, 2k , 4), its D-, DL-, DB- and DQ- efficiency are, respectively,
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D(CCD) = 1

N

{
nq1(2α

4n1 + 4α6)k

[(
1 + kn1

2α4

)
n0 +

(
1 − k

α2

)2

n1

]}1/p

,

(10.5)

DL(CCD) = 1

N
(n1 + 2α2), (10.6)

DB(CCD) = n1
N

,

DQ(CCD) = 2α4

N
k+1
k

[(
1 + kn1

2α4

)
n0 +

(
1 − k

α2

)2

n1

]1/k

, (10.7)

where N = n1 + 2k + n0 is the total number of runs, p = (k + 1)(k + 2)/2 and
q = k(k − 1)/2 is the number of all parameters and bilinear terms parameters
respectively in the second-order model (10.2).

It can be seen from Theorem 10.1 that the α value affects the efficiencies of CCDs
except the DB-efficiency. Obviously, D-efficiency, DL-efficiency and DQ-efficiency
increase as α increases. From the perspective of D-efficiency, a larger α is more
favorable. In practice, D-efficiency is not the only criterion we care about. Some
other criteria are also important. Hence, the α value should be determined carefully.

Next we consider the efficiencies of OACDs. Because of the information matrix
and efficiencies for OACDs depend on the specific 3-level orthogonal array, we
cannot get general theoretical results for the D-efficiency and Ds-efficiencies. The
lower bounds of the efficiencies can be summarized in following Theorem 10.2 and
Theorem 10.3. For the DL-efficiency, we can obtain the upper bound.

Theorem 10.2 Let anOA(n1, 2k , 4) be the first part and anOA(n2, 3k) be the second
part of the OACD. Then the determinant of its information matrix and D-efficiency
have the following lower bounds, respectively,

|X TX | ≥ nq1

[
(4n2α2 + 6n1)α2n2

27

]k

· η,

D(OACD) ≥ LB(OACD) = N−1nq/p1

[
(4n2α2 + 6n1)α2n2

27

]k/p

· η1/p, (10.8)

where η = (1 + 2kα2)n0 + n2 + n1
(
1 + 2kα2 + 9kn0

2n2α2 + 9k
2α2 − 6k

)
, N = n1 +

n2 + n0, q = k(k − 1)/2, p = (k + 1)(k + 2)/2.

Theorem 10.3 Suppose that an OACD satisfies the conditions in Theorem 10.2. Its
DL-, DB-, DQ-efficiencies have the following lower bounds, respectively,

DL(OACD) ≥ 1

N

(
9n1

9n1 + 4n2α4

)q/k (
2

3
n2α

2 + n1

)
, (10.9)
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DB(OACD) ≥ n1
N

, (10.10)

DQ(OACD) ≥ 2n2α2

9N
k+1
k

(
9n1

9n1 + 4n2α4

)q/k

· η1/k , (10.11)

where the η, N and q are the same as in the Theorem 10.2. Furthermore, its DL-
efficiency has an upper bound

DL(OACD) ≤ 1

N

(
2

3
n2α

2 + n1

)
, (10.12)

the equality holds when the linear terms of second part of the design are orthogonal
to the bilinear terms of second part of the design.

Theorems 10.2 and 10.3 show that the lower bounds of D-efficiency,
DL-efficiency, DQ-efficiency and the upper bound of DL-efficiency increase as α

increases. By comparing the results of the three theorem, we know that an OACD
has larger D-efficiency than a CCD for the same α, especially when k is large. In
order to compare the two classes of composite designs intuitively, next we give an
example to compare the efficiency of the composite designs.

Example 10.4 We compare OACDs with CCDs consisting of the same 2-level por-
tion for k = 4, · · · , 12. We choose a full factorial design 2k for k = 4 or a regular
2k−m design with resolution at least V for k = 5, · · · , 11. For k = 12, we use an
OA(128, 215, 4) from [23] as the 2-level portion. For the 3-level OA, we choose the
first k columns of oa.9.4.3.2.txt, oa.18.7.3.2.txt, and oa.27.13.3.2.txt from Sloane’s
website http://neilsloane.com/oadir/.

Table10.1 shows the D-efficiencies of OACDs and CCDs as well as the lower
bound for α = 1 and α = 1.5, respectively, with n0 = 5 center points. For every
k ≥ 4, anOACDhas largerD-efficiency than aCCD for everyα. And the lower bound
of OACD is also larger than CCD’s D-efficiency when α = 1. When α = 1.5, the
lower bound of OACD is no longer larger than CCD’sD-efficiency for k = 4, · · · , 7,
but the D-efficiency of OACDs still larger than CCD’s. From Fig. 10.1 we can get
this result visually.

As we can see that orthogonal array plays an importance role in OACD. Actually
Different orthogonal array used in theOACDs, even the isomorphic orthogonal array,
may lead to different efficiency. It means if we permute the levels of the orthogonal
array, we may find a better OACD with higher D-efficiency. We use the following
example to illustrate it.

Example 10.5 We consider two OACDs d1 and d2 for k = 4 and α = 1, the only
different between them is the orthogonal array. The OA’s used in d1 and d2 are
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Table 10.1 D-efficiency of OACDs and CCDs

α = 1 α = 1.5

k d1 d2 D(OACD) LB(OACD) D(CCD) D(OACD) LB(OACD) D(CCD)

4 24 OA(9, 34) 0.42108 0.40179 0.39835 0.72977 0.53363 0.56000

5 25−1
V OA(18, 35) 0.44523 0.38248 0.37968 0.93602 0.51456 0.52616

6 25−1
V I OA(18, 36) 0.48160 0.43847 0.41672 0.86086 0.55279 0.55928

7 27−1
V II OA(18, 37) 0.50102 0.47804 0.44163 0.77859 0.57529 0.57837

8 28−2
V OA(27, 38) 0.52416 0.48455 0.44919 0.86378 0.58210 0.57862

9 29−2
V OA(27, 39) 0.54165 0.51972 0.46666 0.79590 0.60460 0.59011

10 210−3
V OA(27, 310) 0.55634 0.53500 0.47925 0.79343 0.61569 0.59763

11 211−4
V OA(27, 311) 0.56969 0.54881 0.48990 0.79161 0.62566 0.60319

12 OA(128, 212, 4) OA(27, 312) 0.58118 0.56132 0.49885 0.78745 0.63466 0.60717

n0 = 5 is used for all the designs

Fig. 10.1 Comparison of D-efficiency between OACDs and CCDs for α = 1 (left) and α = 1.5
(right) with n0 = 5

A1 =

⎛

⎜⎜⎝

−1 −1 −1 0 0 0 1 1 1
0 1 −1 0 1 −1 0 1 −1

−1 0 1 0 1 −1 1 −1 0
−1 1 0 0 −1 1 1 0 −1

⎞

⎟⎟⎠

T

and

A2 =

⎛

⎜⎜⎝

−1 −1 −1 0 0 0 1 1 1
−1 0 1 −1 0 1 −1 0 1
−1 0 1 0 1 −1 1 −1 0
−1 1 0 0 −1 1 1 0 −1

⎞

⎟⎟⎠

T

,

respectively. Actually, A1 and A2 are isomorphic, since A2 can be obtained by per-
muting the levels in the second column of A1. When n0 = 5, the D-efficiency of the
OACD d1 is 0.40179. This value happens to be the lower bound of OACD for k = 4
as shown in Table10.1. And D-efficiency of the OACD d2 is 0.42108. So permuting
levels may get an OACD with a higher efficiency.
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10.4 The Determination of the α Value

ForCCD [22], gives some suggestions on the determination of theα value. In general,
α should be chosen between 1 and

√
k, and rarely outside this range. For α = 1, the

star points are placed at the center of the faces of the cube, α = √
k makes the

star points and cube points lie on the same sphere. The efficiency of the parameter
estimates is increased by pushing the star points toward the extreme, however, for
large k, this choice should be taken with caution because the star points are too far
from the center point and no information is available for the response surface in the
intermediate range of the factors, especially along the axes. From Example 10.4, we
can find the effect of the α value on efficiency, the larger α is, the greater efficiency
is. In general, if it is desired to collect information closer to the faces of the cube, a
smaller α value should be chosen. If the estimation efficiency is concerned, the star
points should be pushed toward the extremes of the region, namely choosing a larger
α.

Reference [6] provides a criterion, called rotatability, for CCD to determine the
α value. Denote the predicted response at X = (x1, · · · , xk) by ŷ(X ). A design is
called rotatable if Var(̂y(X )) depends only on ‖X ‖ = (

x21 + · · · + x2k
)1/2

. If the cen-
tral composite design is rotatable, then α = 2(k−m)/4. Another criterion is orthogo-
nality. In central composite design, let b0, bi, bii, bij denote the least square estima-
tors of β0, βi, βii, βij respectively, all the covariances between estimated regression
coefficient except cov(bii, bij) are zero. But if the inverse of the information matrix
(X ′X )−1 is a diagonal matrix, then cov(bii, bij) also becomes zero. This property is
called orthogonality. The condition formaking a central composite design orthogonal

is by setting α =
(√

Nn1−n1
2

)1/2
, see [4] for more details.

In this paper,wewant to determine theα value fromanother view.Whatwe need to
pay attention to is that, above discussion is under the second-ordermodel assumption.
When the second-order polynomial model does not fit the true model very well, we
need to consider some more robust criterion, instead of the D-efficiency. As well
known, the uniform design is a widely used robust space-filling design method.
That is the reason that we propose to determine the α value from the perspective of
measure of uniformity. The uniform design is usually measured by discrepancy, such
as the centered L2-discrepancy, more detail introduction can refer to [9]. Here, we
only discussed the method under centered L2-discrepancy. Other discrepancies can
be similarly done. The centered L2-discrepancy can be defined as:

CD2(P) =
⎧
⎨

⎩

(
13

12

)k

− 2

N

N∑

i=1

k∏

j=1

(
1 + 1

2
|xij − 0.5| − 1

2
|xij − 0.5|2

)

+ 1

N 2

N∑

i=1

N∑

s=1

k∏

j=1

(
1 + 1

2
|xij − 0.5| + 1

2
|xsj − 0.5| − 1

2
|xij − xsj|

)⎫
⎬

⎭

1/2



10 Study of Central Composite Design and Orthogonal Array Composite Design 171

Fig. 10.2 L2-Centered discrepancy of OACDs (left) and CCDs (right) for k = 4

where P is the design and N is the runs of the design. Before calculating the
L2-centered discrepancy, we need to make a transformation to let points distributed
on [0, 1]k . Next we give a simple example to show our idea.

Example 10.6 Suppose that the response y dependson four input factors x1, x2, x3, x4.
x1 ∈ [11.20, 13.60], x2 ∈ [1.98, 3.04], x3 ∈ [0.75, 1.75], x4 ∈ [1.00, 3.00]. For the
sake of later calculation easier and eliminate the influence of variable dimension, we
convert xi to coded variables firstly. We transfer the lower bound of the actual level
into −2 and the upper bound into 2, then α can be arbitrary value from 1 to 2. We
calculate L2-centered discrepancy of OACDs and CCDs for different α.

Figure10.2 shows the tendency of L2-centered discrepancy changing with differ-
ent α. From the two figures, we can find that L2-centered discrepancy of two classes
composite designs decreases first and then increases. The α value really has influ-
ence on uniformity of the design. We can find that the OACD is the most uniformly
design for α = 1.4 and the CCD is the most uniformly design for α = 1.6. So we
can determine the α value by calculating the discrepancy and choosing a α that make
the discrepancy minimum.

10.5 Conclusion Remarks

We study the estimation efficiencies of CCDs and OACDs under a second-order
polynomial model for general α value. We find that OACD are more effective in
estimating the parameters than CCD especially the number of factors is large. The
OACD provide a good trade-off between estimation efficiency and run size economy,
so it can be used as an alternative to the popular CCD. We also suggest some criteria
to choose the α value. Different criteria will make different results. In practice, the
determination of the α value also depends on the objectives of each experiment
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and the geometric nature of and the practical constraints on the design region. We
proposed an idea to determine α value from the the perspective of space-filling, make
the design points distributed on the target area more uniformly, but we haven’t given
the theoretical results. We hope to address this issue in future work.

Acknowledgements This research was partially supported by a grant from the Natural Science
Foundation of China (No.11571133 and 11871237).

Appendix

Lemma 10.7 Let a �= 0, b �= 0,

(
c0 c1′

k
c1k aJk + bIk

)
= bk−1(bc0 + k(ac0 − c2)).

Lemma 10.8 Let E and F be two n × n nonnegative definite matrices with partions

E =
(
E1 0
0 E2

)
≥ 0, F =

(
F1 F3

F ′
3 F2

)
≥ 0,

where E1 and F1 are m × m matrices. Then

|E + F | ≥ |E2| · |E1 + F1|.

Proof of Theorem 10.2 Denote X0 = (1n0 , 0, 0, 0) and Xi = (1ni ,Qi,Li,Bi), where
Qi, Li, Bi respectively are the quadratic, linear and bilinear terms of di in the second-
order model, i = 1, 2.

X ′
1X1 =

⎛

⎜⎜⎝

n1 n11′
k 0 0

n11k n1Jk 0 0
0 0 n1Ik 0
0 0 0 n1Iq

⎞

⎟⎟⎠ =
⎛

⎝
n1Jk+1 0 0

0 n1Ik 0
0 0 n1Iq

⎞

⎠ ,

X ′
2X2 =

⎛

⎜⎜⎝

n2
2
3n2α

21′
k 0 0

2
3n2α

21k 4
9n2α

4Jk + 2
9n2α

4Ik 0 Q′
2B2

0 0 2
3n2α

2Ik L′
2B2

0 B′
2Q2 B′

2L2 B′
2B2

⎞

⎟⎟⎠ ,

let Y = X ′
2X2 + X ′

0X0, then
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Y =

⎛

⎜⎜⎝

n2 + n0
2
3n2α

21′
k 0 0

2
3n2α

21k 4
9n2α

4Jk + 2
9n2α

4Ik 0 Q′
2B2

0 0 2
3n2α

2Ik L′
2B2

0 B′
2Q2 B′

2L2 B′
2B2

⎞

⎟⎟⎠ ,

denote

B11 =
(
n2 + n0

2
3n2α

21′
k

2
3n2α

21k 4
9n2α

4Jk + 2
9n2α

4Ik

)
,B13 =

(
0

Q′
2B2

)
,

then

X ′X = X ′
1X1 + Y =

⎛

⎝
B11 + n1Jk+1 0 B13

0 ( 23n2α
2 + n1)Ik L′

2B2

B′
13 B′

2L2 n1Iq + B′
2B2

⎞

⎠ , (10.13)

from Lemma 10.8, we get

|X ′X | = |X ′
1X1 + Y | ≥ |n1Iq| ·

∣∣∣∣∣
B11 + n1Jk+1 0

0 ( 23 n2α
2 + n1)Ik

∣∣∣∣∣ = n
q
1

(
2

3
n2α

2 + n1

)k
|B11 + n1Jk+1|,

from Lemma 10.7, we have

|B11 + n1Jk+1| =
(
2

9
n2α

2
)k [

(1 + 2kα2)n0 + n2 + n1

(
1 + 2kα2 + 9kn0

2n2α2 + 9k

2α2 − 6k

)]
,

therefore

|X ′X | ≥ n
q
1

[
(4n2α

2 + 6n1)α
2n2

27

]k [
(1 + 2kα2)n0 + n2 + n1

(
1 + 2kα2 + 9kn0

2n2α2
+ 9k

2α2
− 6k

)]
, (10.14)

then we can obtain Theorem 10.2.

Proof of Theorem 10.3When s = L, fromEq. (10.13) and Fischer inequality, we have

|X ′
(L)X(L)| ≤ |B11 + n1Jk+1| · |n1Iq + B′

2B2|,

because all of the diagonal elements of B′
2B2 are 4

9n2α
4, we have

|n1Iq + B′
2B2| ≤

(
n1 + 4

9
n2α

4

)q

, (10.15)

so

|X ′
(L)X(L)| ≤ |B11 + n1Jk+1| ·

(
n1 + 4

9
n2α

4

)q

,
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then using Eq. (10.4) and (10.14), we obtain the lower bound ofDL-efficiency. More-
over, from Fischer inequality, we have

|X ′X | ≤ |X ′
(L)X(L)| · |X ′

LXL|,

so
|X ′X |

|X ′
(L)X(L)| ≤ |X ′

LXL| =
∣∣∣∣

(
2

3
n2α

2 + n1

)
Ik

∣∣∣∣ =
(
2

3
n2α

2 + n1

)k

,

then get the upper bound of DL-efficiency, if the linear terms of d2 are orthogonal to
the bilinear terms of d2, then

|X ′X |
|X ′

(L)X(L)| = |X ′
LXL|,

and the upper bound of DL-efficiency is achieved.
When s = B, from Eq. (10.13),

|X ′
(B)X(B)| =

∣∣∣∣
B11 + n1Jk+1 0

0 ( 23n2α
2 + n1)Ik

∣∣∣∣ = |B11 + n1Jk+1| ·
(
2

3
n2α

2 + n1

)k

,

then follows from Eqs. (10.4) and (10.14),we get the lower bound of DB-efficiency.
When s = Q, from Eq. (10.13) and Fischer inequality,

|X ′
(Q)X(Q)| =

∣∣∣∣∣∣

N 0 0
0 ( 23n2α

2 + n1)Ik L′
2B2

0 B′
2L2 n1Iq + B′

2B2

∣∣∣∣∣∣
≤ N

(
2

3
n2α

2 + n1

)k
|n1Iq + B′

2B2|

≤ N

(
2

3
n2α

2 + n1

)k (
n1 + 4

9
n2α

4
)q

,

then follows from Eq. (10.4), Theorem 10.2 and Eq. (10.15), we get the lower bound
of DQ-efficiency.
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Chapter 11
Uniform Design on Manifold

Yu Tang

Abstract Uniform design aims to scatter points as evenly as possible on certain
domain. Although in real applications, the experimental domain is often quite arbi-
trary, the discrepancies frequently used to measure the uniformity of experimental
designs are often defined on the unit cube. In this paper, we will introduce a unified
framework to measure the uniformity of an experimental design on manifold. We
will give some examples to illustrate the construction of uniform designs on some
specific manifolds and provide a stochastic algorithm to construct uniform designs
on the unit semi-spherical surface and on the unit spherical surface. Numerical results
show that the algorithm performs well.

11.1 Background

Uniform design has been applied to various fields since it was proposed in Fang
[4], Wang and Fang [22]. As its name implies, the basic idea of a uniform design
is to seek design points scattered uniformly on certain domain. So in general, the
combinatorial structure of a uniform design (or a low-discrepancy design) is quite
arbitrary, which is different from that of an orthogonal array. To evaluate uniformity
of a design, one must need a criterion, named discrepancy in uniform design theory.
In fact, the concept of discrepancy came from number theory (quasi-Monte Carlo)
method. As indicated in Fang and Wang [7], Fang et al. [6], many discrepancies
including star discrepancy, L p-discrepancy, and modified discrepancies proposed in
Hickernell [10, 11] have their clear geometrical meanings. Uniform designs based
on various discrepancies have been investigated extensively in existing literatures.
Many properties and construction methods related to uniform design can be found
in Fang et al. [5, 6]. To make it easier, most discrepancies are defined on the unit
cubeCs = [0, 1)s , but in some real problems, the experimental domain may be quite
complicated. For example, Chuang and Hung [1] proposed the centered composite
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discrepancy for a general domain, and Lin et al. [14] used it to construct uniform
designs on the flexible region

Rm = {(x1, . . . , xs) ∈ [−1, 1]s∣∣|x1|m + |x2|m + · · · + |xs |m ≤ 1},

which was considered in Draper and Guttman [2]. The centered composite discrep-
ancy can be regarded as a generalization of the centered L2-discrepancy. Although
it has no close form for an arbitrary domain, it can still be numerically calculated
using efficient algorithms, just showed in Lin et al. [14]. Liu and Liu [15] considered
uniform designs for mixture experiments with complex constraints, which could also
be regarded as uniform designs on irregular domain. However, in some scenarios,
the experimental domain will be even special. For example, in aerospace and mili-
tary fields, people often want to scatter points on certain manifolds [3, 9]. To solve
such problems, we need to further generalize the definition of discrepancy. Fang and
Wang [7] suggests using inverse transformation to construct uniform design for some
symmetrical domain including the unit spherical surface. For simplicity, throughout
the paper, we only consider the three-dimensional case. Denote the unit spherical
surface

U 3 = {(z1, z2, z3) : z21 + z22 + z23 = 1}.

LetP = {x (k) = (xk1, xk2), k = 1, . . . , n} be a set of n points uniformly distributed
on C 2 = [0, 1)2. Consider a transformation from C 2 to U 3 defined as

⎧

⎪⎨

⎪⎩

zk1 = 1 − 2xk1,

zk2 = 2
√
xk1(1 − xk1) cos(2πxk2),

zk3 = 2
√
xk1(1 − xk1) sin(2πxk2),

where k = 1, 2, . . . , n. Although it can be proved that the resultant point set
{z(k) = (zk1, . . . , zks), k = 1, . . . , n} is uniformly scattered on the unit spherical sur-
faceU s , the actual result of the inverse transformation method does not seem effec-
tive, especially when the number of points is small. As Fang and Wang [7] pointed
out, the indirect method using inverse transformation may not measure the unifor-
mity of designs accurately. Figure11.1 will illustrate it. The left part (a) in Fig. 11.1
indicates 20 points on the unit spherical surface obtained using the inverse trans-
formation, while the right part (b) shows the 20 vertices of a regular dodecahedron,
whose circumscribed sphere is the unit spherical surface. Intuitively, the latter seems
more uniform compared with the former. It is well-known that there are only five
different types of regular polyhedrons. Thus when the number of points is other than
four, six, eight, twelve and twenty, we need consider other construction methods.
Moreover, we will also show that even when a regular polyhedron exists, it will
not always be the best one given some specific criterion. The paper is organized
as follows. We will first define a general discrepancy based on geodesic distance
for uniform design on manifold in Sect. 11.2. In Sects. 11.3 and 11.4, we consider
uniform designs on the unit semi-spherical surface and the unit spherical surface,
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(a). Transferred from C 2 (b). Regular dodecahedron

Fig. 11.1 Two methods to construct uniform designs on U 3

respectively.We also propose an algorithm to construct uniform designs for these two
cases. Numerical examples will show that the algorithm is quite effective. Finally,
we will give some conclusion and discussion in the last section.

11.2 General Discrepancy on Manifold

The concept of discrepancy arises in the Quasi-Monte Carlo method, which is used
to solve multivariate integration problem. In many cases, we want to obtain the
integration of certain function f (x) over a specific domain D . However, since the
function f (x) may be much complicated and we cannot get the exact value of the
integration

I ( f ) ≡
∫

D
f (x) dx,

we will sometimes use the approximation to evaluate I ( f ). A simple and easy way
of doing so is to choose a set of n-point, P , which is uniformly scattered on the
domain D , and calculate all the values of f (x) on these points, sum up them all and
divide by n, i.e.,

Q( f ; P) ≡ 1

n

∑

z∈P

f (z).

The approximation part Q( f ; P) is often called quadrature rule. Obviously, different
set of points P may result in different quadrature rule. So we need to define a
criterion to evaluate the uniformity of the point set P . As discussed in the previous
section, somemodified L2-discrepancies, including the centered L2-discrepancy and
the wrap-around L2-discrepancy, are often used in practice. However, most of them
are defined on the unit cube and cannot be directly used when the experimental
domain is a manifold. In Li [13], the author proposed the λ-discrepancy for uniform
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design on a general domain. In this paper, we will generalize the λ-discrepancy, in
order to let it be suitable for uniform design on manifold.

Definition 11.1 Let D be a domain and ∂D be its boundary. For any point z ∈ D ,
define

Bz =
∨

x∈∂D

dB(z, x), (11.1)

where dB(·, ·) is a well-defined distance function and the notation “
∨
” represents

an overall function (such as summation, integral, maximum or minimum), then Bz

is called the boundary deviation of z.

Definition 11.2 Let D be a domain, and Z = {z(1), z(2), . . . , z(n)} be an n-point
set, where each z(i) ∈ D . For any point z ∈ D , define

Pz =
∨

z(i)∈Z
dP(z, z(i)), (11.2)

where dP(·, ·) also represents a well-defined distance function and “
∨
” represents

an overall function (such as summation, integral, maximum or minimum), then Pz

is called the point deviation of z.

Definition 11.3 Let D be a domain, and Z = {z(1), z(2), . . . , z(n)} be an n-point
set, where each z(i) ∈ D . Define

Mλ(Z ) = C +
∨

z(i)∈Z
Bz(i) + λ

∨

z(i)∈Z
Pz(i) , (11.3)

whereC is a constant,λ is a positive parameter and “
∨
” represents an overall function

(such as summation, integral, maximum or minimum), then Mλ(Z ) is called the
λe-discrepancy of set Z .

Definition 11.4 LetD be a domain, andZ = {z(1), z(2), . . . , z(n)} be an n-point set,
where each z(i) ∈ D . IfMλ(Z ) can achieve the best value (minimum or maximum
with respect to the choices of the overall function “

∨
”) over D , then Z will be

called a unform design on D under the λ-discrepancy.

Remark 11.1 the two distance function dB(·, ·) and dP(·, ·) in the above definitions
can be different. Obviously, uniform designs under the λ-discrepancy may vary from
different choices of the two distance functions dB(·, ·) and dP(·, ·). However, for
uniform design on manifold, the natural selection of dB(·, ·) and dP(·, ·) is the
geodesic distance function. Throughout this paper, we will take both of these two
functions as the same geodesic distance function defined on the unit spherical surface.

Remark 11.2 different overall function “
∨
” can be chosen for different purpose.

Hickernell [10, 11] definedmanymodified discrepancies, i.e, overall functions, based
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on different types of kernels, i.e, distance functions, on the unit cube. However, these
discrepancies may not be suitable for uniform designs onmanifolds. Throughout this
paper, we will follow the idea of Johnson et al. [12], and use the maximin criterion
to define the overall function. That is to say, we will first define the overall boundary
deviation as the minimum distance over the domain boundary, and define the overall
point deviation as the minimum distance among all distinct (otherwise the overall
point deviation shall always be zero) pairwise points in the point setZ . Then we try
to maximize these two overall functions.

The λ-discrepancy in Definition 11.2 tries to balance the both the boundary effect
and the point effect simultaneously, and thus has clear geometrical meanings. For
clarity, we will divide into two cases to investigate uniform designs on spherical
surface and on semi-spherical surface, respectively.

11.3 Uniform Design on Semi-spherical Surface

In this section, we will use the λ-discrepancy defined in the previous section as the
measure of uniformity to consider uniformdesigns on the unit semi-spherical surface.
To make it clear, throughout this section, the unit semi-spherical surface considered
will always be assumed to be the above one, i.e, the point set of the domain is

U 3
+ = {(z1, z2, z3) : z3 ≥ 0 and z21 + z22 + z23 = 1}.

So the boundary of the domain is a circle:

∂U 3
+ = {(z1, z2, z3) : z3 = 0 and z21 + z22 + z23 = 1}.

As stated in the previous section, here we use maximin criterion [12] to measure
the uniformity of the design. That is to say, the λ-discrepancy in (11.3) becomes the
following form:

Mλ(Z ) = C + min
z(i)∈Z

min
z( j)∈∂U 3+

dB (z(i), z( j)) + λ min
z(i)∈Z

min
z( j) �=z(i)

dP (z(i), z( j)). (11.4)

Here the distance functions dB(·, ·) and dP(·, ·) in (11.4) are both chosen to be the
geodesic distance on the unit spherical surface. It is well-known that the geodesics
on spherical surface are great circles.

Let z(1) = (x1, x2, x3) and z(2) = (y1, y2, y3) be two points on the unit spheri-
cal surface. Denote de(z(1), z(2)) = √

((x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2) as the
Euclidean distance between z(1) and z(2). Then the geodesic distance between z(1)

and z(2) is actually the length of arc ̂z(1)z(2) on the unit spherical surface, i.e,

dP(z(1), z(2)) = arccos
[

1 − 0.5 d2
e(z

(1), z(2))
]

.
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n= 6, λ = 0.1 n= 6, λ = 0.2 n= 6, λ = 0.3 n= 6, λ = 0.4

n= 10, λ = 0.1 n= 10, λ = 0.2 n= 10, λ = 0.3 n= 10, λ = 0.4

n= 14, λ = 0.1 n= 14, λ = 0.2 n= 14, λ = 0.3 n= 14, λ = 0.4

Fig. 11.2 Searching results for different number of points and λ’s

Moreover, for anyfixedpoint z(i) = (x1, x2, x3), its nearest pointwithin thebound-
ary ∂U 3+ will be z(i)

0 = (x ′
1, x

′
2, 0), where x

′
1 = x1√

x21+x22
and x ′

2 = x2√
x21+x22

, thus

min
z( j)∈∂U 3+

dB(z(i), z( j)) = dP(z(i), z(i)
0 ).

Now the objective function, i.e, the λ-discrepancyMλ(Z ) in (11.4), can be fully
determined if an n-point set is given. Sowe can use a standard optimization algorithm
to search for a design with less λ-discrepancy. The basic framework of the pseudo
code is presented in Algorithm 5.

For the sake of simplicity, here we implement the algorithm on restricted lattice
points. The candidates are equal distance grid points in the polar coordinate system.
The searching results of Algorithm 5 are shown in Fig. 11.2. It can easily be seen that
when the parameter λ becomes larger, the points tends to be scattered away from the
boundary. This seems reasonable as we add more penalty to the boundary deviation
when the points are near the boundary. Such a flexible solution can provide an
alternative way to control the experimental points according to specific requirements
in different real applications.
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Algorithm 5 Pseudo code for prototype local search heuristic.
1: Initialize λ and τ (number of iterations)
2: Generate a starting design Z c and let Z max := Z c

3: while number of iterations < τ do
4: Generate Z new ∈ N (Z c) (neighbor to current solution)
5: Compute ∇ = Mλ(Z

new) − Mλ(Z
c) and generate u (uniform random variable)

6: if (∇ > 0) or acceptance criterion(∇, u) met then Z c = Z new

7: if Z c > Z max then Z max := Z c

8: end while

11.4 Uniform Design on Spherical Surface

Now we will consider uniform designs on the unit spherical surface. Similar with
the case in the previous section, we also take the maximin criterion to define the
λ-discrepancy. Since the unit spherical surface has no boundary, the λ-discrepancy
of (11.3) will be equivalent with the following quantity:

Mλ(Z ) = min
z(i)∈Z

min
z( j) �=z(i)

dP(z(i), z( j)), (11.5)

where the distance function d p(·, ·) also represents the geodesic distance on the unit
spherical surface.

Spherical trigonometry theory [21] tells us that there are many existing properties
related to angles, sides and areas of spherical triangles andother configurations. These
properties can not only help calculate the λ-discrepancies during our searching for
uniform designs on the unit spherical surface numerically, but also provide upper
bounds. In fact, Tammes [20] firstly considered the problem of arranging n points
on a unit sphere which maximizes the minimum distance between any two distinct
points. It is not an easy task to determine the best arrangement of theTammes problem
for some sporadic numbers of points, let alone to provide a systematical solution.
For example, Musin and Tarasov [16, 17] provided final solutions to the Tammes
problem when the numbers of points are thirteen and fourteen, respectively. The
current paper does not study the Tammes problem theoretically and only aims to
give an algorithmic solution to it. To evaluate our searching results, here we present
some upper bounds of the λ-discrepancies.

Theorem 11.1 Let Z be n points on the unit spherical surface U 3, and Mλ(Z )

be its λ-discrepancy as defined in (11.5). Then we have

Mλ(Z ) ≤ 4 arcsin(
√

1/n). (11.6)

Proof Denote r = Mλ(Z )/2. Since 0 ≤ Mλ(Z ) ≤ 2π , we have 0 ≤ r ≤ π . For
each point z ∈ Z on the unit spherical surface, define a set �z = {x ∈ U 3 :
d p(x, z) ≤ r}. Easy to see, all points of �z form a spherical crown. Thus the area
of �z is Az = 4π sin2(r/2). Sum up the area of all these spherical crowns, we
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Fig. 11.3 Triangulations of regular polyhedrons with four, six and twelve points

have nAz ≤ 4π , where 4π represents the total area of the unit spherical surface.
So n ≤ 1/ sin2(r/2), i.e, Mλ(Z ) = 2r ≤ 4 arcsin(

√
1/n). �

The proof of Theorem 11.1 is quite intuitive, however, the bound of (11.6) can be
further improved. As a matter of fact, many authors have provided upper bounds for
the Tammes problem using graph theory, convex optimization and other techniques.
Specifically, the following result was stated in Fejes-Tath [8].

Theorem 11.2 LetZ be n points on the unit spherical surface, andMλ(Z ) be its
λ-discrepancy as defined in (11.5). Then we have

Mλ(Z ) ≤ arccos[(cot2ω − 1)/2], (11.7)

where ω = n
n−2 · π

6 .

The proof of Theorem 11.2 is not straightforward. Here we only give some expla-
nation. The right hand side of (11.7) is the side length of an equilateral spherical
triangle of area 4π

(2n−4) , where 4π means the total area of the unit spherical sur-
face and 2n − 4 represents the number of triangular faces induced by the n points.
Theorem 11.2 says that when all the 2n − 4 triangular faces are equilateral spher-
ical triangles with the same side length, the λ-discrepancy will achieve the upper
bound (11.7). As it has been pointed out in many existing papers, when the number
of points are four, six and twelve, the λ-discrepancies of the regular polyhedrons
reach the upper bound (11.7). The triangulations of these regular polyhedrons are
illustrated in Fig. 11.3, respectively.

Implement similar pseudo code as that of Algorithm 5, we can obtain a series of
uniform designs on the unit spherical surface. Table11.1 shows the numerical results
for designs with different number of points. Notice that the values in the second and
the third columns of Table11.1 represent the λ-discrepancies of the resultant designs
obtained by the inverse transformation from C 2 and by implementing Algorithm 5,
respectively. Easy to see, the algorithmic approach should be recommended. In fact,
when the number of points are eight and twenty, the λ-discrepancies of the resultant
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Table 11.1 Searching results of uniform designs on the unit spherical surface

#points Transform Algorithm Bound (11.6) Bound (11.7) Polyhedron

4 1.633435 1.908769 2.094395 1.910633 1.910633

6 1.094689 1.566865 1.682137 1.570796 1.570796

8 0.822482 1.299689 1.445468 1.359080 1.230959

10 0.740723 1.146458 1.287002 1.214081 –

12 0.548902 1.092115 1.171371 1.107149 1.107149

14 0.525865 0.950100 1.082199 1.024176 –

16 0.461221 0.888048 1.010721 0.957398 –

18 0.358579 0.834576 0.951765 0.902163 –

20 0.434371 0.795415 0.902054 0.855491 0.7297277

designs are even better than those of polyhedrons. The fourth and the fifth columns
of Table11.1 list the upper bounds in (11.6) and (11.7), respectively. Compared with
the former, the latter shall be much better.

11.5 Conclusion and Discussion

In this paper, we introduce a general definition of discrepancy based on geodesic
distance tomeasure the uniformity of designs onmanifold.Weprovide an algorithmic
approach of a unified framework to search for low-discrepancy designs on the unit
semi-spherical surface as well as on the unit spherical surface. Numerical results
show the effectiveness of our proposed algorithm.

Some issues reported in this paper can be further investigated. For example, here
we use the maximin criterion to define the overall function for the λ-discrepancy
(11.3). However, using geodesic distance on specific manifold, criteria including
minimax, mean squared-error [18] and entropy [19] can also be defined as the objec-
tive functions. Moreover, during the implementation of the algorithm, we restrict the
candidates within equal distance grid points in the polar coordinate system. Such an
approach may reduce the calculation burden, it can also bring negative effect on the
λ-discrepancies of the designs.
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Chapter 12
An Application of the Theory
of Spherical Distributions in Multiple
Mean Comparison

Jiajuan Liang, Man-Lai Tang, Jing Yang, and Xuejing Zhao

Abstract Multiple normalmean comparisonwithout the equal-variance assumption
is frequently encountered in medical and biological problems. Classical analysis of
variance (ANOVA) requires the assumption of equal variances across groups. When
variations across groups are found to be different, classical ANOVAmethod is essen-
tially inapplicable for multiple mean comparison. Although various approximation
methods have been proposed to solve the classical Behrens-Fisher problem, there
exists computational complexity in approximating the null distributions of the pro-
posed tests. In this paper we employ the theory of spherical distributions to construct
a class of exact F-tests and a simple generalized F-test for multiple mean compari-
son. The methods in this paper actually provide a simple exact solution and a simple
approximate solution to the classical Behrens-Fisher problem in the case of balanced
sample designs. A simpleMonte Carlo study shows that the recommended tests have
fairly good power performance. An analysis on a real medical dataset illustrates the
application of the new methods in medicine.
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12.1 Introduction

The theory of spherical distributions and spherical matrix distributions was com-
prehensively studied by Fang et al. [7], and Fang and Zhang [6]. Many applications
based on the theory of spherical distributions have been developed since 1990. Simply
speaking, the family of spherical distributions consists of those continuous multi-
variate distributions that possess the property of orthogonal rotation-invariance. The
stochastic representation method is usually employed to characterize the family of
spherical distributions. Let

Sp(φ) = {x : Γ x
d= x for any constant p × p orthogonal matrix Γ }, (12.1)

where φ(·) stands for the characteristic function of a distribution.Sp(φ) is called the
family of spherically symmetric distributions or simply called spherical distributions.
It is obvious thatSp(φ) includes that the standard normal distribution Np(0, I) and
some commonly known multivariate distributions such as the multivariate Student
t-distribution with zero mean and identity covariance matrix. It is known that x ∈
Sp(φ) if and only if

x d= RU (p), (12.2)

where U (p) stands for the uniform distribution on the surface of the unit sphere in
Rp (the p-dimensional real space), that is, ‖U (p)‖ = 1 (‖ · ‖ stands for the usual
Euclidean norm), and R > 0 is a random variable that is independent ofU (p). Equa-
tion (12.2) is called the stochastic representation for a spherical distribution. For any
x ∈ Sp(φ) with P(x = 0) = 0, it is always true that

x d= ‖x‖ · x
‖x‖ , (12.3)

where ‖x‖ and x/‖x‖ are independent, and x/‖x‖ d= U (p).
An n × p random matrix X is said to have a left-spherical matrix distribution,

denote by X ∼ LSn×p(φ), if for any constant orthogonal matrix Γ (n × n)

Γ X
d= X. (12.4)

It is known that X ∼ LSn×p(φ) if and only if X has the stochastic representation
[6]:

X
d= UV, (12.5)

whereU (n × p) is independent of V (p × p) andU ∼ U (n×p), which is uniformly
distributed on the Stielfel manifold

Q(n, p) = {Hn×p : H ′H = Ip}. (12.6)
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If X = (x1, . . . , xn)′ (n × p) consists of i.i.d. observations from Np(0,�), then
X ∼ LSn×p(φ) and X has a stochastic representation (12.5). For any random matrix
Dp×q (q ≤ p), which is a function of X in the quadratic form D = f (X ′X), it can be
proved that XD ∼ LSn×p(φ) [6]. So XD also has a stochastic representation similar

to (12.5), say, XD
d= U A andU ∼ U (n×q) that is independent of Aq×q . As a result

of this stochastic representation, any affine-invariant statistic T (XD)
d= T (U ),

whose distribution is uniquely determined no matter how to choose the quadratic
function D = f (X ′X).

Some successful applications of the theory of spherical distributions and spher-
ical matrix distributions have been developed by some international scholars. For
example, Läuter [15], Läuter et al. [16, 17], and Glimm and Läuter [11] employed
themajor theory of spherical matrix distributions in Fang and Zhang [6] to developed
a class of exact multivariate tests for normal statistical inference. These tests can be
still effectively applicable under high dimension with a small sample size, which
may be smaller than the dimension of sample data. The tests developed by Läuter
and his associates provide exact solutions to multivariate normal mean comparisons
under high dimension with a small sample size. These tests extend the traditional
Hotelling’s T 2-test to the multiple mean comparisons as in multivariate analysis of
variance (so-called MANOVA) and general linear tests for regression coefficients
in multivariate regression models. Their tests are still applicable with fair power
performance even in the case that the sample size is smaller than the dimension of
sample data, see Kropf et al. [13]. By using the theory of spherical distributions and
spherical matrix distributions in Fang et al. [7], and Fang and Zhang [6], Fang and
Liang and their collaborators developed a class of nonparametric tests for goodness-
of-fit purpose, see, for example, Fang et al. [8, 9], Liang and Fang [20], Liang et al.
[23–26]. Liang and Ng [21], Liang and Tang [22], Ai et al. [1], and Liang [18, 19].

The classical problem of multiple mean comparison came from comparing the
difference between experimental effects called treatment effects. It belongs to the
topic of analysis of variance (ANOVA). Among others, the classical two-sample t-
test may be the easiest one for comparing two normal means with the equal-variance
assumption. The problem of two-sample mean comparison with unequal means was
long noticed as early as Welch [28]. The problem has been continuing to be chal-
lenging in the case of multiple mean comparison with possible unequal variances.
Approximate solutions to the problem have been proposed, for example, the Turkey
test [27], the Kramer test [12], theWald test, the likelihood ratio test and the score test
[3], and the Kruskal-Wallis one-way ANOVA by ranks [14]. Some exact solutions
to the problem of multiple mean comparison with unequal variances were also pro-
posed. But the null distributions of the proposed tests do not have simple analytical
expressions for easy computation of the p-value. This makes them inconvenient for
various applications, see, for example, the procedures reviewed and compared by
Dudewicz et al. [5].

In this paper we propose a simple solution to the problem of multiple mean com-
parison without assuming equal variances by using the theory of spherical distribu-
tions in Fang et al. [7] and the spherical matrix distributions in Fang and Zhang [6].
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The case of a balanced sample design is assumed. The new approach consists of a
class of exact F-tests and a generalized F-test. Section12.2 presents the theoretical
details on the construction of the tests. Section12.3 gives a Monte Carlo study on
the performance of the tests and illustrates the application of the tests by using real
medical data. Some concluding remarks are summarized in the last section.

12.2 Construction of the Exact F-tests and the Generalized
F-test

Assume that there is a balanced sample design (with an equal sample size across the
normal populations) to obtain i.i.d. samples {xi = (xi1, . . . , xin)′ : n × 1,
i = 1, . . . , k} from the normal distribution N (μi , σ

2
i ) for each population i =

1, . . . , k (k ≥ 2). Here it is also assumed that samples from different populations
N (μi , σ

2
i ) and N (μ j , σ

2
j ) (i �= j) are independent. We want to test the hypothesis

of multiple mean comparison:

H0 : μ1 = . . . = μk,

H1 : at least two means differ.
(12.7)

Randomly selecting a population as population k, we construct the observation
matrix

X =

⎛
⎜⎜⎜⎝

x11 − xk1 x21 − xk1 . . . xk−1,1 − xk1
x12 − xk2 x22 − xk2 . . . xk−1,2 − xk2

...
...

...
...

x1n − xkn x2n − xkn . . . xk−1,n − xkn

⎞
⎟⎟⎟⎠ : n × (k − 1). (12.8)

Theorem 12.1 Let the observationmatrix X be given by (12.8). Define the following
eigenvalue-eigenvector problem:

(
1

n
X ′X

)
di = λdi , (12.9)

where di = (di1, . . . , di,k−1)
′ for i = 1, . . . , r with r = min(n, k − 1) − 1 being the

number of positive eigenvalues λ1 > . . . > λr > 0 in (12.9). Define

zi = (zi1, . . . , zin)
′ = Xdi , z̄i = 1

n

n∑
j=1

zi j , Fi = n(z̄i )
2
/ ⎡

⎣ 1

n − 1

n∑
j=1

(zi j − z̄i )
2

⎤
⎦

(12.10)

for i = 1, . . . , r . Under the null hypothesis (12.7), Fi has an exact F-distribution
F(1, n − 1) for i = 1, . . . , r = min(n, k − 1) − 1.
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Proof Denote by X = (x1, . . . , xn)′: n × (k − 1). Under the null hypothesis (12.7),
it is easy to verify that the vectors x1, . . . , xn are i.i.d. and have the normal distribution
Nk−1(0,�) with

� = diag(σ 2
1 + σ 2

k , . . . , σ 2
k−1 + σ 2

k ).

Then X has a matrix-normal distribution:

X ∼ Nn×(k−1)(0, In ⊗ �),

where “⊗” stands for the Kronecker product of matrices. It is also easy to verify

that X has a left-spherical matrix distribution [6] satisfying Γ X
d= X . Note that

the vector di in (12.9) is a function of X ′X , denote by di = fi (X ′X). By using the
stochastic representation (12.4), we obtain

(Γ X)di = (Γ X) fi [(Γ X)′(Γ X)] d= X fi (X
′X) = Xdi . (12.11)

This results in
Γ zi

d= zi (12.12)

for any given n × n constant orthogonal matrix Γ . Therefore, each zi in (12.10) has
a spherical distribution. The F-type statistic Fi in (12.10) is location-scale invariant.
According to Fang et al. [7],

Fi (zi )
d= Fi (z0) ∼ F(1, n − 1), i = 1, . . . , r = min(n, k − 1) − 1, (12.13)

under the null hypothesis (12.7), where z0 ∼ Nn(0, In) stands for the n-dimensional
standard normal. �

Each of the Fi -statistic given by (12.10) can be employed to test the hypothesis
(12.7). For any given i = 1, . . . , r = min(n, k − 1) − 1, reject the null hypothesis in
(12.7) at a given level 0 < α < 1 for a large value of Fi > F(1 − α; 1, n − 1), which
stands for the 100(1 − α)-percentile of the traditional F-distribution F(1, n − 1).
By using Theorem 3 in Liang and Tang [22], we can obtain the following corollary.

Corollary 12.1 Let zi and the Fi -statistics be given by (12.10) for i = 1, . . . , r =
min(n, k − 1) − 1. Define the GF-statistic by

GF(Z) = max
1≤i≤r

{Fi (zi )}, Z = (z1, . . . , zr )′ : r × n. (12.14)

Under the null hypothesis (12.7), GF has anapproximate (n is large) “generalized
F-distribution” with the cumulative distribution function (c.d.f.) given by

Fg(x) = P(GF(Z) < x) ≈ [F(x; 1, n − 1)]r , x > 0, (12.15)

where F(x; 1, n − 1) stands for the c.d.f of the F-distribution F(1, n − 1).
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From this corollary, we can propose a test for hypothesis (12.7): a large value of
GF(Z) indicates the null hypothesis is not true. The p-value of the GF-test can be
approximated by using (12.15). Nowwehave a class of exact F-test and a generalized
F-test for multiple mean comparison (12.7) without assuming equal variances:

F1(z1), . . . , Fr (zr ), GF(Z), (12.16)

where Fi (zi ) for i = 1, . . . , r = min(n, k − 1) − 1 are given by (12.10) andGF(Z)

by (12.14). The following section gives a Monte Carlo study on the empirical per-
formance of these tests.

12.3 A Monte Carlo Study and a Real Example

12.3.1 Empirical Power Performance

Experiment. We choose the following six designs. Designs 1–4 are for the cases of
n ≥ k and designs 5–6 for n ≤ k.

Design 1 : (n, k) = (10, 5), (σ 2
1 , . . . , σ 2

5 ) = (1, 52, 102, 202, 502),
mean difference = |μi+1 − μi | = 2.5c with c = 0, 1, 2, . . . , 12
for i = 1, 2, 3, 4;

Design 2 : (n, k) = (20, 5), (σ 2
1 , . . . , σ 2

5 ) = (1, 52, 102, 202, 502),
mean difference = |μi+1 − μi | = c = 0, 1, 2, . . . , 12
for i = 1, 2, 3, 4;

Design 3 : (n, k) = (10, 10), (σ 2
1 , . . . , σ 2

10) = (1, 102, . . . , 902),
mean difference = |μi+1 − μi | = c = 0, 1, 2, . . . , 15
for i = 1, 2, . . . , 9;

Design 4 : (n, k) = (20, 10), (σ 2
1 , . . . , σ 2

10) = (1, 102, . . . , 902),
mean difference = |μi+1 − μi | = c = 0, 1, 2, . . . , 15
for i = 1, 2, . . . , 9;

Design 5 : (n, k) = (10, 20), (σ 2
1 , . . . , σ 2

20) = (1, 102, 202, . . . , 1902),
mean difference = |μi+1 − μi | = c = 1.5 × (0, 1, 2, . . . , 15)
for i = 1, 2, . . . , 15;

Design 6 : (n, k) = (20, 20), (σ 2
1 , . . . , σ 2

20) = (1, 102, 202, . . . , 1902),
mean difference = |μi+1 − μi | = c = (0, 1, 2, . . . , 15)
for i = 1, 2, . . . , 15.

(12.17)

The following Four statistics as given by (12.10) and (12.14) are chosen:

F1, Fr1 , Fr2 , GF, (12.18)
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where r1 = [r/3] and r2 = [r/2] with r = min(n, k − 1) − 1 in the sample design
(12.17), here the notation [x] stands for the nearest integer not exceeding x > 0.
That is, F1 is the statistic constructed from the eigenvector associated with the largest
eigenvalue in (12.9); Fr1 is the statistic constructed from the eigenvector associated
with the r1th largest eigenvalue in (12.9); Fr2 is the statistic constructed from the
eigenvector associated with the r2th largest eigenvalue in (12.9). The power per-
formance at level 0.05 of these four tests is displayed in Figs. 12.1 and 12.2. The
immediate observation is:

(1) the four tests can control their nominal levels very well;
(2) the generalized F-test GF performs the best in most cases;
(3) the F1-test performs the best among all exact F-tests;
(4) Fr1 and Fr2 have increasing power at beginning but have decreasing power when

the mean difference becomes bigger. This indicates that only the F1-test has
comparable power performance with that of the GF-test.
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Fig. 12.1 Illustration of power performance of the exact F1-tests and the generalized F-test: the
direction d1 is associated with largest eigenvalue; d2 is associated with the r1 = [r/3]th largest
eigenvalue; d3 is associated with the r2 = [r/2]th largest eigenvalue (cases of n ≥ k)
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Fig. 12.2 Illustration of power performance of the exact F1-tests and the generalized F-test: the
direction d1 is associated with largest eigenvalue; d2 is associated with the r1 = [r/3]th largest
eigenvalue; d3 is associated with the r2 = [r/2]th largest eigenvalue (cases of n ≤ k)

Based on the Monte Carlo simulation results, we recommend the F1-test and
the GF-test for hypothesis (12.7) for general multiple mean comparison without
equal-variance assumption.

12.3.2 An Illustrative Application

A research project was carried out by Tianjin Medical University, China [10]. Rats
were collected for experiment by different treatments to see the treatment effects.
There are four different treatments. Each treatment consists of 46 levels with sample
size n = 6. In the experiment on 6 rats, the ratio of organ wet weight to body weight
(organ coefficient) was observed. The purpose is to evaluate organ development
during the treatment. Details on the experiment and medical analysis can be found
in Gao et al. [10]. In one-way ANOVA, we can consider each factor level as a group
or population. In the experiment on 6 male rats with 46 levels, we consider if the
ratio of organ wet weight to body weight has changed during the treatment. Let

μi = the average ratio of organ wet weight to body weight at level i (12.19)

for i = 1, . . . , 46. Then we need to test the hypothesis

H0 : μ1 = . . . = μ46,

H1 : at least two means differ.
(12.20)
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Note that the balanced sample size n = 6 with k = 46 groups or populations.
We could apply both the traditional one-way ANOVA F-test F(k − 1, N − k) =
F(45, 230), the F1 ∼ F(1, n − 1)-test, and the GF-test to hypothesis (12.20). The
one-way ANOVA F-test gives a p-value ≈ 0, the F1 ∼ F(1, n − 1)-test gives a p-
value = 4.31 × 10−5, the GF-test gives a p-value = 2.16 × 10−4, and the Turkey-
Kramer pairwise approximate t-tests give results of all significantly different means
in the pairwise comparisons. The Bartlett test [2] and the Brown-Forsythe test [4]
are employed to test the homogeneity of variances of the 46 levels (groups) of the
treatment factor. It turns out that the Bartlett test has a p-value = 7.1702 × 10−175

and theBrown-Forsythe test has a p-value= 1.3229 × 10−104, indicating very strong
variance homoscedasticity. This implies that the traditional F-test from one-way
ANOVA is essentially inapplicable.

12.4 Concluding Remarks

The exact F-tests and the generalized F-test in this paper are applicable for multiple
mean comparisons without assuming homogeneity of variances across the popula-
tions. They provide an exact solution to the problem of multiple mean comparison
with simple F-tests under a balanced sample design. Existing methods in the liter-
ature are facing computational complexity in computing the critical values or the
p-values of the test statistics. The Monte Carlo study in Sect. 12.3 shows not all of
the exact F-tests have desirable power performance. But F1-test constructed from
the eigenvector associated with the largest eigenvalue and the generalized F-testGF
have fairly good power performance. They are recommended for general compar-
ison of multiple means. Theorem12.1 in Sect. 12.2 implies that the exact F-tests
and the generalized F-test heavily depend on the normal assumption on the raw
data. Although the robustness of the exact F-tests against a possible departure from
the normal assumption is generally unknown, the proof of Theorem12.1 shows that
it only requires the observation matrix X defined by (12.8) to have a left-spherical
matrix distribution. Therefore, the exact F-tests and the generalized F-test are robust
in the distribution family of left-spherical matrix distributions, which includes the
normal assumption as a special case. The methods in this paper actually provide a
simple exact solution and a simple approximate solution to the classical Behrens-
Fisher problem in the case of balanced sample designs. The exact F-tests and the
generalized F-test with a balanced sample design in this paper can be generalized
to the case of unbalanced sample designs. Our research is in progress and much
stronger results on exact solutions to the general Behrens-Fisher problem will be
obtained soon.
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Chapter 13
Estimating the Location Vector for
Spherically Symmetric Distributions

Jian-Lun Xu

Abstract When a p × 1 random vector X has a spherically symmetric distribution
with the location vector θ ,Brandwein and Strawderman [7] proved that estimators of
the formX + ag(X) dominate theX under quadratic loss if the following conditions
hold: (i) ||g||2/2 ≤ −h ≤ −� ◦ g, where −h is superharmonic, (ii) E[−R2h(V)] is
nondecreasing in R, where V has a uniform distribution in the sphere centered at θ
with a radius R = ||X − θ ||, and (iii) 0 < a ≤ 1/[pE(R−2)]. In this paperwe not only
use a weaker condition than their (ii) to show the dominance of X + ag(X) over the
X, but also obtain a new bound E(R)/[pE(R−1)] for a, which is always better than
bounds obtained by Brandwein and Strawderman [7] and Xu and Izmirlian [24]. The
generalization to concave loss function is also considered. In addition, estimators of
the location vector are investigated when the observation contains a residual vector
and the scale is unknown.

13.1 Introduction

It iswell-known that the normal distribution and its related statistical inference such as
estimation of its mean are crucial in application. Ever since Stein [19] discovered the
inadmissibility of the best invariant estimator of the p-dimensional (p ≥ 3) normal
mean under quadratic loss, there has been considerable interest in improving upon
the best invariant estimator of a location vector by relaxing the normality assumption,
studying more general estimators, or considering different loss functions.

Under the quadratic loss, James and Stein [15] presented a class of dominating
estimators,

(
1 − a/||X||2)X for 0 < a < 2(p − 2) ifX has a normal distribution with

the identity covariance matrix Ip. This result remains true if the distribution of X is
spherically symmetric about its locationvector and p ≥ 4as shownbyBrandwein [2],
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Brandwein and Strawderman [3, 4, 7], Fan and Fang [12–14], Maruyama [16], and
Brown and Zhao [9], Tosh and Dasgupta [21] and others; see the review articles by
Brandwein and Strawderman [5, 6]. When the dimension is at least three, Brown
[8] also proved that the best invariant estimator of a location vector is inadmissible
for a wide class of distributions and loss functions. When the components of X are
independent, identically and symmetrically (iis) distributed about their respective
means, Shinozaki [18] studied the dominance conditions of the James-Stein type
estimator

δa, b(X) =
(
1 − a

b + ||X||2
)
X, (13.1)

over X and obtained the bounds of a and b in (13.1) that depend on the second and
fourth moments of the component distributions. Xu [23] investigated the bounds of
a and b in (13.1) when X has a sign-invariant distribution.

For more general estimators and different loss functions, Miceli and Strawder-
man [17] restricted the distribution of X to the subclass of iis distributions called
independent component variance mixtures of normals and replaced a in (13.1) by
ar(X2

1, . . . , X
2
p),where r(X

2
1, . . . , X

2
p) is a function of X

2
1, . . . , X

2
p.Their loss func-

tion is nonquadratic. WhenX has a spherically symmetric distribution about its loca-
tion vector θ and loss function is a quadratic loss, a concave function of quadratic
loss, or the general quadratic loss, Brandwein and Strawderman [7] elegantly used
the divergence theorem to prove the dominance of the estimators

δa, g(X) = X + ag(X). (13.2)

overX under conditions (i) ||g||2/2 ≤ −h ≤ −� ◦ g,where−h is superharmonic, (ii)
E[−R2h(V)] is nondecreasing in R,whereV has a uniform distribution in the sphere
centered at θ with a radius R = ||X − θ ||, and (iii) 0 < a ≤ 1/[pE(R−2)]. Clearly,
the estimators δa, g(X) given by (13.2), together with conditions (i) and (iii) extend
the classical James-Stein estimator to a broader class of estimators, while their condi-
tion (ii) is a technical condition. Xu and Izmirlian [24] dropped their technical condi-
tion (ii) and obtained a bound 0 < a < [μ1/(p2μ−1)][1 − (p − 1)μ1/(pμ−1μ2)]−1

for a, where μi = E(Ri ) for i = −1, 1, 2. As stated by Xu and Izmirlian [24],
their bound of a is sometimes worse than the bound obtained by Brandwein and
Strawderman [7]. A question of theoretical interest is raised: Is this possible that
bounds of a obtained by Brandwein and Strawderman [7] and Xu and Izmirlian
[24] can be improved under a weaker condition than Brandwein and Strawderman’s
[7] technical condition (ii)? In this paper we provide an affirmative answer to this
question. Specifically, we use the fact that the average of −h over the sphere is
nonincreasing in the radius to show dominance of δa, g(X) over X and obtain a
new bound 0 < a ≤ μ1/(pμ−1) for a, which is always better than 1/(pμ−2) and
[μ1/(p2μ−1)][1 − (p − 1)μ1/(pμ−1μ2)]−1.

The paper is organized as follows: In Sect. 13.2 we present the main result that
states the dominance conditions of the estimators δa, g(X)with respect to the quadratic
loss. To illustrate the construction of the function h and the performance of the new
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bound, three examples are also studied in Sect. 13.2. In Sect. 13.3 we extend the main
result in Sect. 13.2 to other loss functions that are nondecreasing concave functions
of quadratic loss. The estimators of the location vector when the scale is unknown
and the observation (XT ,YT )T contains a residual vector Y are also considered in
Sect. 13.3. Section13.4 is devoted to some concluding remarks, while the last section
consists of proofs of results in Sects. 13.2 and 13.3.

13.2 Main Results

Let δ = (δ1, . . . , δp)
T be an estimator of θ and let R(δ, θ) = E[L(δ, θ)] be the risk

of δ, where the loss function L(δ, θ) is defined by

L(δ, θ) = ||δ − θ ||2 =
p∑

i=1

(δi − θi )
2. (13.3)

That is, the loss function L(δ, θ)weconsider in this section is quadratic. Furthermore,
we employ the following notation introduced by Xu and Izmirlian [24]:

m(t) = −EU[h(tU + θ)],
M∗(t) = M(t) − M(0) =

∫ t

0
m(z)dz

(13.4)

for t ≥ 0, where −h is a nonnegative and superharmonic function and the random
vectorU has a uniform distribution on the surface of the unit sphere. Note thatm(t) is
a nonincreasing function of t and M∗(t) is a nonnegative and nondecreasing concave
function of t (see Du Plessis [[11], p. 54]).

Theorem 13.1 Suppose that X ∼ SSp(θ , Ip) (spherically symmetric about mean
vector θ) and δa, g(X) is defined by (13.2). Then under quadratic loss (13.3), δa, g(X)

has a smaller risk than δ0, g(X) = X if
(i) ||g||2/2 ≤ −h ≤ −� ◦ g, where −h is superharmonic,
(ii) r

∫ 1
0 m(r z)pz p−1dz ≥ c

∫ 1
0 M∗(r z)pz p−2dz when r >

√
ap, where m and

M∗ are defined by (13.4) and 1 ≤ c ≤ p − 1 is a constant, and
(iii) 0 < a ≤ μ1/(pμ−1),whereμ−i = E(R−i ) for i = −1, 1 and R = ||X − θ ||.

Remark 13.1 The condition (ii) of Theorem 13.1 is slightly weaker than the condi-
tion (ii) of Brandwein and Strawderman [7]. To see this, we use integration by parts
to obtain that

r
∫ 1

0
m(r z)pz p−1dz = p

(
M∗(r) −

∫ 1

0
M∗(r z)(p − 1)z p−2dz

)
.
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Thus, the condition (ii) above is equivalent to N (r) ≥ 0 when r >
√
ap,where N (r)

is defined by

N (r) = M∗(r) − (p − 1 − c)
∫ 1

0
M∗(r z)z p−2dz.

Taking the derivative of N (r) gives that

N ′(r) = m(r) − (p − 1 − c)
∫ 1

0
m(r z)z p−1dz. (13.5)

Since the condition (ii) of Brandwein and Strawderman [7] is equivalent to

∫ 1

0
m(r z)z p−1dz ≤ 1

p − 2
m(r), r > 0. (13.6)

Applying (13.6) to (13.5) will yield that

N ′(r) ≥ m(r) − p − 1 − c

p − 2
m(r) = c − 1

p − 2
m(r) ≥ 0

because c ≥ 1. This shows that N (r) is a nondecreasing function of r. Using the fact
that lim

r→0+
N (r) = 0, we can conclude that N (r) ≥ 0 when r > 0.

It is also worth mentioning that we only require the condition (ii) to be true when
r >

√
ap. When r ≤ √

ap, there is no any assumption.

Remark 13.2 Let F denote the distribution function (df) of R = ||X − θ ||.
Then applying Lemma 13.1 in Sect. 13.5 with f1(r) = r, g1(r) = 1/r2, f2(r) =
g2(r) = 1 and dα = dF yields that

μ−1 = E

(
1

R

)
= E

(
R

1

R2

)
≤ E(R)E

(
1

R2

)
= μ1μ−2.

Using this fact, we can conclude that the new bound for a is better than that of
Brandwein and Strawderman [7] because

1

pμ−2
≤ μ1

pμ−1
.

Remark 13.3 The new bound for a is also better than that of Xu and Izmirlian
[24]. This can be seen from a direct comparison with the fact that μ1 ≤ μ−1μ2,

which follows from an application of Lemma 13.1 in Sect. 13.5 with f1(r) =
1/r, g1(r) = r2, f2(r) = g2(r) = 1 and dα = dF.

Remark 13.4 It needs to be mentioned that the requirement of dimensionality such
as p ≥ 4 usually arises in the condition (i) of Theorem 13.1.Meanwhile, although the
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function h used in Theorem13.1 hasmany choices, we usually take h(X) = � ◦ g(X)

when � ◦ g(X) is a subharmonic function.

Example 13.1 Consider the James-Stein [15] estimator which is given by

δa,0(X) =
(
1 − a

||X||2
)
X

and discussed by many authors including Brandwein and Strawderman [7] and Fan
and Fang [13]. Clearly, taking g(X) = −X/||X||2 in (13.2) will see that δa,0(X) is a
special case of estimators (13.2). Let

h(X) = � ◦ g(X) = − p − 2

||X||2 .

Then −h is superharmonic if p ≥ 4 because

−
p∑

i=1

∂2h

∂x2i
= − (p − 2)(p − 4)

||X||2 ≤ 0.

The condition (i) in Theorem 13.1 is clearly satisfied. Meanwhile, condition (ii)
in Theorem 13.1 is also true because Brandwein and Strawderman’s [7] technical
condition (ii) is true, see Lemma 2.2 of Fan and Fang [13].

To illustrate the performance of the new bound of a, we consider two exam-
ples below. We use anew to denote the new bound μ1/(pμ−1) of a. We denote by
abs = 1/(pμ−2), the bound of a in Brandwein and Strawderman’s [7] Theorem 2.1,
and axi = [μ1/(p2μ−1)][1 − (p − 1)μ1/(pμ−1μ2)]−1, the bound of a in Xu and
Izmirlian’s [24] Theorem 1.

Example 13.2 Let X have a normal distribution with mean θ and covariance
matrix Ip. Then R2 = ||X − θ ||2 has a χ2

p-distribution, which implies that μ−2 =
1/(p − 2), μ−1 = Γ ((p − 1)/2)/[√2Γ (p/2)], and μ1 = √

2Γ ((p + 1)/2)/
Γ (p/2). Table13.1 below provides the values of three bounds of a for different p.

One can see from Table13.1 that the new bound of a is the best, especially, it is
much better than other two bounds when the dimensionality is small.

Table 13.1 Bounds of a

p 4 5 6 7 8 9 10 15 20 30 40 50 75 100

anew 0.750 0.800 0.833 0.857 0.875 0.889 0.900 0.933 0.950 0.967 0.975 0.980 0.987 0.990

abs 0.500 0.600 0.667 0.714 0.750 0.778 0.800 0.867 0.900 0.933 0.950 0.960 0.973 0.980

axi 0.429 0.444 0.455 0.462 0.467 0.471 0.474 0.483 0.487 0.492 0.494 0.495 0.497 0.497
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Table 13.2 Bounds of a

p 4 5 6 7 8 9 10 15 20 30 40 50 75 100

anew 0.150 0.133 0.119 0.107 0.097 0.089 0.082 0.058 0.045 0.031 0.024 0.019 0.013 0.010

abs 0.125 0.120 0.111 0.102 0.094 0.086 0.080 0.058 0.045 0.031 0.024 0.019 0.013 0.010

axi 0.115 0.105 0.096 0.088 0.081 0.075 0.070 0.052 0.041 0.029 0.023 0.019 0.013 0.010

Example 13.3 Let X have a uniform distribution in the unit sphere centered at θ .

Then R = ||X − θ || has a probability density function (pdf) pr p−1, 0 ≤ r ≤ 1 and
μi = p/(p + i), i = −2,−1, 1, 2. Thus, abs = (p − 2)/p2, axi = (p − 1)/(p2 +
3p − 2), and anew = (p − 1)/[p(p + 1)]. Table13.2 below provides the values of
three bounds of a for different p.

One can see from Table13.2 that the new bound of a is the best. Meanwhile, all
three bounds will approach to zero when the dimensionality increases.

13.3 Extensions to Other Loss Functions and the Unknown
Scale Case

Similar to Xu and Izmirlian [24], we consider two extensions in this section. The
first one is to show that Theorem 13.1 in Sect. 13.2 can be generalized to a larger
class of loss functions, while the second one is to estimate the location vector with
an unknown scale parameter.

The loss function used in the first extension is

L(δ, θ) = W
(||δ − θ ||2) , (13.7)

where W is a nonnegative and nondecreasing concave function. The loss function
(13.7) has been studied for the spherically symmetric distributions by many inves-
tigators including Bock [1], Brandwein and Strawderman [4, 6, 7], Fan and Fang
[12–14], Xu [23], and Xu and Izmirlian [24].

Theorem 13.2 Let F be the df of R = ||X − θ || satisfying

0 <

∫ ∞

0
W ′ (r2

)
dF(r) < ∞,

where W ′ is the derivative of W. Suppose thatX is spherically symmetric about θ and
δa, g(X) is defined by (13.2). Then under loss function (13.7), δa, g(X) has a smaller
risk than X if the conditions (i) and (ii) of Theorem 13.1 hold and
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(iii) 0 < a < ν1/(pν−1), where νi = EG(Ri ) for i = −1, 1 and G is a weighted
df of F with the weight function W ′ (r2

)
defined by

G(t) =
(∫ ∞

0
W ′ (r2

)
dF(r)

)−1 ∫ t

0
W ′ (r2

)
dF(r), t ≥ 0.

Now we investigate the problem of estimating the location vector θ =
(θ1, . . . , θp)

T when the observation (XT ,YT )T contains an m × 1 residual vec-
tor Y such that XT∗ = (1/σ)(XT ,YT ) follows a spherically symmetric distribution
SSp+m(θ∗, σ 2 Ip+m), where θT

∗ = (θT , 0Tm), 0m is an m × 1 vector in which all ele-
ments are zero, and σ is an unknown scale. The improved estimators we consider is
given by

δ∗
a, g(X∗) = X + aYTYg(X). (13.8)

Theorem 13.3 Suppose that X is a p × 1 random vector and Y is an m × 1 ran-
dom vector such that X∗ = (1/σ) (XT ,YT )T ∼ SSp+m(θ∗, σ 2 Ip+m). Let δ∗

a, g(X∗)
be defined by (13.8). Then under the scaled quadratic loss function

L(δ, θ) = ||δ − θ ||2/σ 2,

δ∗
a, g(X∗) dominates X if conditions (i) and (ii) of Theorem 13.1 hold and

(iii) 0 < a < (p − 1)/[p(m + 2)].
The bound of a in Theorem 13.3 doesn’t depend on the distribution ofX∗.Cellier,

Fourdrinier and Robert [10] first observed this type of robustness phenomenon for
the James-Stein estimator.

13.4 Discussion

If−h is superharmonic, Brandwein and Strawderman [7] used the fact that its average
over the ball (“volume”) is greater than its average over the sphere (“surface area”)
to show the dominance of the estimators of the form δa, g(X) over the estimatorX. In
this paper we use the fact that the average of −h over the sphere is a nonincreasing
function of the radius of the sphere. The new approach allows us not only to weaken
their technical condition (ii), but also to obtain a better bound for a. The new bound
of a is also better than those of Brandwein and Strawderman [7] andXu and Izmirlian
[24]. In addition, we consider two extensions. The first is to extend the quadratic loss
(13.3) to the loss function (13.7), while the second is to study the estimators of the
location vector when the observation (XT ,YT )T contains a residual vectorY and the
scale is unknown.While the bounds of a given by the theorems in Sects. 13.2 and 13.3
are better than those ofBrandwein andStraderman [7] andXu and Izmirlian [24], they
are not necessarily optimal and should be considered a guide post. Clearly, one may
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be able to obtain better bounds than those given here if the distribution of R is known.
Stein [20], for example, used integration by parts to obtain 0 < a ≤ 1(= μ2/p) under
normality. Thus, it would be interesting to see if our new bound 0 < a ≤ μ1/(pμ−1)

can be further improved to 0 < a ≤ μ2/p for X ∼ SSp(θ , Ip). As a final point, it
would be interesting, but perhaps very difficult, to study the dominance conditions
of the estimator δa, g(X) = X + ag(X) over X for other distributions. As mentioned
by Xu and Izmirlian [24], results of estimator (13.1) obtained by Shinozaki [18] for
the class of distributions with independently and identically distributed components
and by Xu [23] for the sign-invariant distribution are very limited.

13.5 Proofs

In this section we use fc, s(z) to denote the pdf of the Beta distribution Beta(c, s)
given by

fc, s(z) = Γ (c + s)

Γ (c)Γ (s)
zc−1(1 − z)s−1, 0 < z < 1,

where c > 0 and s > 0 are parameters. To shorten the proofs of results in Sects. 13.2
and13.3,weneed the following lemmas inwhich thefirst one is taken fromWijsman’s
[22] Theorem 2.

Lemma 13.1 Let α be a measure on the real line R and let f j , g j ( j = 1, 2) be
Borel-measurable functions: R → R such that f2 ≥ 0, g2 ≥ 0, and

∫ | fi g j |dα <

∞ (i, j = 1, 2). If f1/ f2 and g1/g2 are monotonic in the same direction, then

∫
f1g1dα

∫
f2g2dα ≥

∫
f1g2dα

∫
f2g1dα, (13.9)

whereas if f1/ f2 and g1/g2 are monotonic in the opposite directions, then inequal-
ity in (13.9) is reversed. The equality in (13.9) holds if and only if f2 = 0 or
g2 = 0 or f1/ f2 = constant or g1/g2 = constant almost everywhere with respect
to the measure ρ defined by dρ = (| f1| + | f2|)(|g1| + |g2|)dα.

Lemma 13.2 Let the function M∗ be defined by (13.4). Then

∫ 1

0
M∗(r z) fc−1,1(z)dz ≤ M∗(r) ≤

∫ 1

0
M∗(r z)czc−2dz,

for any r > 0, where c > 1 is a constant.

Proof Since M∗ is a nondecreasing concave function with M∗(0) = 0 and the
expected value ofBeta(c − 1, 1) distribution is (c − 1)/c, using the Jensen’s inequal-
ity will yield that
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∫ 1

0
M∗(r z) fc−1,1(z)dz ≤ M∗

(
r
c − 1

c

)
≤ M∗(r).

Furthermore, the concavity of M∗ implies that M∗(r z) ≥ zM∗(r) for z ∈ [0, 1] and
r > 0. Thus,

∫ 1

0
M∗(r z)czc−2dz ≥

∫ 1

0
M∗(r)czc−1dz = M∗(r)

∫ 1

0
czc−1dz = M∗(r).

Lemma 13.3 For z ∈ [0, 1], let

�(z) = β(r)

p
f p,1(z) + 1 − β(r)

p
,

where β(r) = r2/a is considered a parameter. Then �(z) is a pdf on [0, 1] when
β(r) ≤ p. Furthermore, when β(r) ≤ p, we have

m(r) − β(r)
∫ 1

0
m(r z)z p−1dz ≤

(
1 − β(r)

p

)
M∗(r)
r

for r > 0, where m and M∗ are defined by (13.4).

Proof When β(r) ≤ p, �(z) is a pdf on [0, 1] because it is a convex combination
of pdfs f p,1(z) and f1,1(z) = 1 on [0, 1]. Furthermore, since m is a nonincreasing
function, we have

m(r) ≤
∫ 1

0
m(r z)�(z)dz,

which leads to

m(r) − β(r)
∫ 1

0
m(r z)z p−1dz ≤

∫ 1

0
m(r z)�(z)dz − β(r)

p

∫ 1

0
m(r z) f p,1(z)dz

=
∫ 1

0
m(r z)

(
�(z) − β(r)

p
f p,1(z)

)
dz

=
(
1 − β(r)

p

) ∫ 1

0
m(r z)dz

=
(
1 − β(r)

p

)
M∗(r)
r

.

Lemma 13.4 When β(r) = r2/a > p, we have

m(r) − β(r)
∫ 1

0
m(r z)z p−1dz ≤

(
1 − β(r)

p

)
c

r

∫ 1

0
M∗(r z)pz p−2dz

for r > 0, where m and M∗ are defined by (13.4) and c ∈ [1, p − 1] is a constant.
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Proof Since m is a nonincreasing function, we have

m(r) ≤
∫ 1

0
m(r z) f p,1(z)dz,

which leads to

m(r) − β(r)
∫ 1

0
m(r z)z p−1dz ≤

(
1 − β(r)

p

)∫ 1

0
m(r z) f p,1(z)dz

≤
(
1 − β(r)

p

)
c

r

∫ 1

0
M∗(r z)pz p−2dz.

(13.10)

Here the last inequality in (13.10) follows from the condition (ii) of Theorem 13.1
and β(r) > p.

Remark 13.5 Lemmas 13.3 and 13.4 can be combined below:

m(r) − β(r)
∫ 1

0
m(r z)z p−1dz ≤ N1(r)N2(r), (13.11)

where β(r) = r2/a and

N1(r) =
(
1 − β(r)

p

)
1

r
,

N2(r) = I [β(r) ≤ p]M∗(r) + cI [β(r) > p]
∫ 1

0
M∗(r z)pz p−2dz.

(13.12)

Here I [A] denotes the indicator function of the event A.

Lemma 13.5 For r > 0, let N1(r) and N2(r) be defined by (13.12). Then N1(r) is
strictly decreasing in r and N2(r) is nondecreasing in r. Furthermore, ER[N1(R)

N2(R)] ≤ 0 if a ≤ μ1/(pμ−1).

Proof Since N1(r) = 1/r − r/(ap), it is a strictly decreasing function of r. Simi-
larly, since both M∗(r) and

∫ 1
0 M∗(r z)pz p−2dz are nondecreasing in r and M∗(r) ≤

∫ 1
0 M∗(r z)pz p−2dz from Lemma 13.2, we can conclude that N2(r) is a nonde-
creasing function of r. Furthermore, applying Lemma 13.1 with f1(r) = N1(r),
g1(r) = N2(r), f2(r) = g2(r) = 1, and a probability measure dα = dF will yield
that

ER[N1(R)N2(R)] ≤ ER[N1(R)]ER[N2(R)] =
(

μ−1 − μ1

ap

)
E[N2(R)] ≤ 0

if a ≤ μ1/(pμ−1) because N2(r) ≥ 0 for r > 0.



13 Estimating the Location Vector for Spherically Symmetric Distributions 211

Proof of Theorem 13.1. When X ∼ SSp(θ , Ip), we have X − θ = Z d= RU, where

R and U are independent, R
d= ||Z||, and U has a uniform distribution on the surface

of the unit sphere. Using the argument of Xu and Izmirlian [24] with a verbatim
copy of their (12), we obtain that the difference between the risks of two estimators
δa, g(X) and X is given by

D1 = R
(
δa, g(X), θ

) − R
(
X, θ

)

= a2E
[||g(Z + θ)||2] + 2aE

[
ZT g(Z + θ)

]

= a2E
[||g(Z + θ)||2] + 2ap−1E

[
R2� ◦ g(RV + θ)

]

≤ 2a2E [−h(RU + θ)] + 2ap−1E
[
R2h(RV + θ)

]

= 2a2ER
[
EU

(−h(RU + θ)
∣∣R

) + (ap)−1R2EV
(
h(RV + θ)

∣∣R
)]

= 2a2ER
[
m(R) − (ap)−1R2EV

(
h(RV + θ)

∣∣R
)]

= 2a2ER

[
m(R) − β(R)

∫ 1

0
m(Rv)vp−1dv

]

≤ 2a2ER [N1(R)N2(R)]

≤ 0

(13.13)

if a ≤ μ1/(pμ−1). Here the first inequality in (13.13) is based on the condition (i);
the fifth equality in (13.13) is from the definition of function m; the last equality

in (13.13) follows from the definition of m and the fact that V d= VU, where the
random variable V ∼ Beta(p, 1) and U having a uniform distribution on the surface
of the unit sphere are independent; the second-to-last inequality in (13.13) is based
on Lemmas 13.3 and 13.4 or (13.11); the last inequality in (13.13) follows from
Lemma 13.5. This completes the proof.

Proof of Theorem 13.2. Using the same approach as in Brandwein and Strawderman
[4, 6] or Xu and Izmirlian [24], we obtain that the difference between the risks of
two estimators δa, g(X) and X is given by

D2 = R
(
δa, g(X), θ

) − R(X, θ)

= E
[
W

(
R2 + Δa(X)

)] − E
[
W

(
R2

)]
,

(13.14)

where
Δa(X) = ||δa, g(X) − θ ||2 − ||X − θ ||2.

Since W is a nondecreasing concave function,

W
(
R2 + Δa(X)

)
< W

(
R2

) + W ′ (R2
)
Δa(X).
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Then we can conclude from (13.14) that

D2 ≤ EX
[
W ′ (R2

)
Δa(X)

]

≤ ER
{
W ′ (R2

)
EU[Δa(RU + θ)|R]}

≤ 2a2ER
[
W ′(R2)N1(R)N2(R)

]

= 2a2ER∗ [N1(R∗)N2(R∗)] ER
[
W ′ (R2

)]
,

where the df G of the random variable R∗ is defined by

G(t) =
(∫ ∞

0
W ′ (r2

)
dF(r)

)−1 ∫ t

0
W ′ (r2

)
dF(r), t ≥ 0,

which is a weighted df of F with the weight function W ′ (r2
)
. The result follows

immediately from the assumption that 0 < ER
[
W ′ (R2

)]
< ∞ and the proof of

Theorem 13.1 except for a change from the df F to the df G.

Proof of Theorem 13.3. Like Brandwein and Strawderman [7] and Xu and Izmirlian
[24], the difference D3 between the risks of two estimators δ∗

a, g(X∗) and X is equal
to

D3 = R
(
δ∗
a, g(X∗), θ

) − R (X, θ)

= 1

σ 2
E

[
a2(YTY)2||g(Z + θ)||2 + 2aYTYZT g(Z + θ)

]

= 1

σ 2
E

(
a2D31 + 2aD32

)
,

(13.15)

where Z = X − θ
d= RU, and

D31 = E
[
(YTY)2||g(Z + θ)||2∣∣ ||Z|| = R, ||Y|| = S

]
,

D32 = E
[
YTYZT g(Z + θ)

∣∣ ||Z|| = R, ||Y|| = S
]
.

Using the divergence theorem and condition (i), we obtain that

D32 = E
[
YTYZT g(Z + θ)

∣∣||Z|| = R, ||Y|| = S
]

= S2REU
[
UT g(RU + θ)

∣
∣||Z|| = R, ||Y|| = S

]

= S2R2

p
EV

(
� ◦ g(RV + θ)

∣
∣||Z|| = R, ||Y|| = S

)

≤ − S2R2

p

∫ 1

0
m(Rz) f p,1(z)dz,

(13.16)
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where m is defined by (13.4). Similarly, using the condition (i) will yield that

D31 = E
[
(YTY)2||g(Z + θ)||2∣∣||Z|| = R, ||Y|| = S

]

≤ −2S4E
[
h(Z + θ)

∣∣||Z|| = R, ||Y|| = S
]

= −2S4E
[
h(RU + θ)

∣∣||Z|| = R, ||Y|| = S
]

= 2S4m(R).

(13.17)

Combining (13.16), (13.17) with (13.15) and using the same argument as the proof
of theorem 13.1 will obtain the following inequality

D3 ≤ 2a

σ 2
E

(
aS4m(R) − S2R2

p

∫ 1

0
m(Rz) f p,1(z) dz

)

= 2a

σ 2
E

[
(
aS4

)
(
m(R) − R2

aS2

∫ 1

0
m(Rz)z p−1dz

)]

≤ 2a

σ 2
E

[(
aS4

) (
1 − R2

apS2

)
1

R
N2(R)

]
,

(13.18)

where the first inequality in (13.18) is based on (13.16) and (13.17), the last inequal-
ity of (13.18) follows from (13.11) after replacing a by aS2, and N2(R) is defined
by (13.12). Let T 2 = R2 + S2. Then T 2 and B = R2/T 2 ∼ Beta(p/2,m/2) are
independent. Let C(c, s) = Γ (c + s)/[Γ (c)Γ (s)] for c > 0, s > 0 and let C∗ =
C(p/2,m/2)/C(p/2, (m + 2)/2). Write λ = a + 1/p. Then we can see from
(13.18) that

σ 2

2a
D3 ≤ E

[
aS4

(
1 − R2

apS2

)
1

R
N2(R)

]

= E

[

(1 − B) (a − λB) T 4

(

N1
(
T B1/2

) + N
(
T B1/2

)

T B1/2

)]

= C∗E

[

(a − λB) T 4

(

N1
(
T B1/2

) + N
(
T B1/2

)

T B1/2

)]

= C∗E
[
(a − λB) T 4N1

(
T B1/2)]

+ C∗E
[(
aB−1/2 − λB1/2

)
T 3N (T B1/2)

]

≤ C∗
(
a − λ

p

p + m + 2

)
E

[
T 4N1

(
T B1/2

)]

+ C∗
(
a

C(p/2, (m + 2)/2)

C((p − 1)/2, (m + 2)/2)
− λ

C(p/2, (m + 2)/2)

C((p + 1)/2, (m + 2)/2)

)

× E
[
T 3N

(
T B1/2

)]

≤ 0
(13.19)
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if
a − λ

p

p + m + 2
≤ 0,

a
C (p/2, (m + 2)/2)

C ((p − 1)/2, (m + 2)/2)
− λ

C (p/2, (m + 2)/2)

C ((p + 1)/2, (m + 2)/2)
≤ 0.

(13.20)

Here the second-to-last inequality of (13.19) follows fromapplications ofLemma13.1
with the measure dα = f p/2,(m+2)/2(b)db on [0, 1] and f1(b) = a − λb, g1(b) = T 4

N1(Tb1/2), f2(b) = g2(b) = 1, and f1(b) = ab−1/2 − λb1/2, g1(b) = T 3N (Tb1/2),
f2(b) = g2(b) = 1, respectively. Simple algebra shows that the first inequality
in (13.20) is equivalent to 0 < a ≤ 1/(m + 2), while the second inequality in
(13.20) is equivalent to 0 < a ≤ (p − 1)/[p(m + 2)].Therefore, D3 ≤ 0 if 0 < a ≤
(p − 1)/[p(m + 2)].

References

1. Bock, M.E.: Minimax estimators that shift towards a hypersphere for location vectors of spher-
ically symmetric distributions. J. Multivariate Anal. 17, 127–147 (1985)

2. Brandwein, A.C.: Minimax estimation of mean of spherically symmetric distributions under
general quadratic loss. J. Multivariate Anal. 9, 579–588 (1979)

3. Brandwein, A.C., Strawderman, W.E.: Minimax estimation of location parameters for spheri-
cally symmetric unimodal distributions under quadratic loss. Ann. Statist. 6, 377–416 (1978)

4. Brandwein, A.C., Strawderman, W.E.: Minimax estimation of location parameters for spheri-
cally symmetric distributions with concave loss. Ann. Statist. 8, 279–284 (1980)

5. Brandwein, A.C., Strawderman, W.E.: Stein estimation, The spherically symmetric case.
Statist. Sci. 5, 356–369 (1990)

6. Brandwein, A.C., Strawderman,W.E.: Stein estimation for spherically symmetric distributions:
recent developments. Statist. Sci. 27, 11–23 (2012)

7. Brandwein, A.C., Strawderman, W.E.: Generalizations of James-Stein estimators under spher-
ical symmetry. Ann. Statist. 19, 1639–1650 (1991)

8. Brown, L.D.: On the admissibility of invariant estimators of one or more location parameters.
Ann. Math. Statist. 37, 1087–1136 (1966)

9. Brown, L.D., Zhao, L.H.: A geometrical explanation of Stein shrinkage. Statist. Sci. 27, 24–30
(2012)

10. Cellier, D., Fourdrinier, D., Robert, C.: Robust shrinkage estimators of the location parameter
for elliptically symmetric distributions. J. Multivariate Anal. 29, 39–52 (1988)

11. Du Plessis, N.: An Introduction to Potential Theory. Hafner, Darien, CT (1970)
12. Fan, J., Fang, K.-T.: Inadmissibility of sample mean and sample regression coefficients for

elliptically contoured distributions. In: Fang, K.-T., Anderson, T.W. (eds.) Statistical Inference
in Elliptically Contoured and Related Distributions, pp. 275–290. Allerton Press Inc., New
York (1990)

13. Fan, J., Fang, K.-T.: Inadmissibility of the usual estimator for the location parameters of spher-
ically symmetric distributions. In: Fang, K.-T., Anderson, T.W. (eds.) Statistical Inference in
Elliptically Contoured and Related Distributions, pp. 291–297. Allerton Press Inc., New York
(1990)

14. Fan, J., Fang, K.-T.: Shrinkage estimators and ridge regression estimators for elliptically con-
toured distributions. In: Fang, K.-T., Anderson, T.W. (eds.) Statistical Inference in Elliptically
Contoured and Related Distributions, pp. 313–326. Allerton Press Inc., New York (1990)



13 Estimating the Location Vector for Spherically Symmetric Distributions 215

15. James, W., Stein, C.: Estimation with quadratic loss. Proc. Fourth Berkeley Sympos. Math.
Statist. Prob. 1, 361–379 (1961)

16. Maruyama, Y.: Admissible minimax estimators of a mean vector of scale mixtures of multi-
variate normal distributions. J. Multivariate Anal. 84, 274–283 (2003)

17. Miceli, R.J., Strawderman, W.E.: Minimax estimation for certain independent component dis-
tributions under weighted squared error loss. Comm. Statist. Theory Methods 15, 2191–2200
(1986)

18. Shinozaki, N.: Simultaneous estimation of location parameters under quadratic loss. Ann.
Statist. 12, 322–335 (1984)

19. Stein, C.: Inadmissibility of the usual estimator for the mean vector of a multivariate normal
distribution. Proc. Third Berkeley Sympos. Math. Statist. Prob. 1, 197–206 (1956)

20. Stein, C.: Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9, 1135–
1151 (1981)

21. Tosh, C., Dasgupta, S.: Maximum likelihood estimation for mixtures of spherical Gaussians is
NP-hard. J. Mach. Learn. Res. 18, 1–11 (2018)

22. Wijsman, R.A.: A useful inequality on ratios of integrals, with application to maximum like-
lihood estimation. J. Amer. Statist. Assoc. 80, 472–475 (1985)

23. Xu, J.-L.: Simultaneous estimation of location parameters for sign-invariant distributions. Ann.
Statist. 25, 2259–2272 (1997)

24. Xu, J.-L., Izmirlian, G.: Estimation of location parameters for spherically symmetric distribu-
tions. J. Multivariate Anal. 97, 514–525 (2006)



Chapter 14
On Equidistant Designs, Symmetries
and Their Violations in Multivariate
Models

Milan Stehlík, Mirtha Pari Ruiz, Silvia Stehlíková, and Ying Lu

Abstract In this Festschrift to Prof. Kai-Tai Fang 80 birthday we emphasize impor-
tance and potential of his results in statistics and general sciences. In particular we
concentrate on equidistant designs, symmetric and asymmetric models. We discuss
equidistant designs from perspective of optimal designs of experiments with corre-
lated errors. We address symmetry and asymmetry of statistical multivariate models
and its recent developments. Several applications are given.

14.1 Introduction

With this contribution we congratulate to Prof. Kai-Tai Fang on occasion of his
80th birthday. We appreciate results of Kai-Tai Fang which inspired several research
developments and generation of young statisticians. Uniform distribution plays also

M. Stehlík
Institute of Statistics, University of Valparaíso, Valparaíso Chile and Department of Applied
Statistics and Linz Institute of Technology, Johannes Kepler University Linz, Linz, Austria

Department of Statistics and Actuarial Science, The University of Iowa, Iowa City, Iowa, USA
e-mail: milan.stehlik@uv.cl; milan.stehlik@jku.at

M. Pari Ruiz
Departamento de Matemáticas, Universidad de Tarapacá (UTA), Arica, Chile

Universidad de Playa Ancha, Valparaíso, Chile

Institute of Statistics, University of Valparaíso, Valparaíso, Chile
e-mail: mirtha.pari@postgrado.uv.cl; mpari@academicos.uta.cl

S. Stehlíková
Department of Applied Statistics and Linz Institute of Technology, Johannes Kepler University
Linz, Linz, Austria
e-mail: silvia.stehlikova@gmail.com

Y. Lu (B)
Department of Biomedical Data Science, Stanford University, California, USA
e-mail: ylu1@stanford.edu

© Springer Nature Switzerland AG 2020
J. Fan and J. Pan (eds.), Contemporary Experimental Design,
Multivariate Analysis and Data Mining,
https://doi.org/10.1007/978-3-030-46161-4_14

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46161-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-46161-4_14


218 M. Stehlík et al.

principal role in empirical distribution of probability quasi-distances, like we illus-
trate for NicanMopohua text, see Sect. 14.3.2.We also provide a brief review ofwork
related to uniform optimal designs, see Sect. 14.2 and the model related asymmetric
multivariate distributions, a natural extension of symmetric distribution models.

14.2 On Uniform Optimal Designs

Fang [8] defined uniform designs as a very useful and potential technique for optimal
designing for engineering. In 2007wehave provenD-optimality of equidistant design
for trend parameter of Ornstein Uhlenbeck (OU) Process, see [17].

That justifies the importance of uniform engineering designs also for models with
correlated errors, especially for exponentially decaying covariances with respect to
distance of design points. A statistical model we consider is the so called random
field, given by

Y (x) = η(x, β) + εγ (x) (14.1)

with design points (coordinates of monitoring sites) ξn = {x1, . . . , xn} taken from a
compact design spaceX = Xn, X = [a, b],−∞ < a < b < ∞. The parameters β

are unknown and the variance-covariance structure of the errors depends on param-
eters γ . When distribution of errors is known, we can employ the maximum like-
lihood estimators (MLEs). For the full parameter set {β, γ } the information matrix
then exhibits the block diagonal form

E

⎧
⎨

⎩

− ∂2lnL(β,θ)

∂β∂βT − ∂2lnL(β,γ )

∂β∂γ T

− ∂2lnL(β,γ )

∂γ ∂βT − ∂2lnL(β,γ )

∂γ ∂γ T

⎫
⎬

⎭
=

(
Mβ(ξ) 0

0 Mγ (ξ)

)

.

The theoretical justification forD-optimality in correlated errorswas given by [23]
and specific issues have been presented in [22]. Pázman [23] also demonstrated that
the inverse of the Fisher information matrix may well serve as an approximation of
the covariance matrix of MLEs in special cases. Since 2008 we have been addressing
a very innovative field in modeling of spatiotemporal random fields with semicon-
tinuous covariance functions. This is a novel and groundbreaking approach which
relates to open problems of N.A. Kolmogoroff, some preliminary results have been
outlined in [29], where more general framework for equidistant designs arrives natu-
rally by the topological relaxation of distances between individual design points. This
fact is not visible from standard optimal design perspective. In [33] we have derived
theoretical basis for this approach jointly with groundbreaking results for continuity
of covariance and its applications to finances. Uniform designs plays an important
role also by D-optimality and optimal prediction for Ornstein-Uhlenbeck sheets, see
[2, 4]. Within Chilean project FONDECYT Regular No. 1151441 we obtained opti-
mal designs for mass balance measurements on Chilean mountain glaciers Olivares
Alfa and Beta (see [34]). This has clarified old glaciological problem that for small
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homogeneous glaciers a moderate number of properly allocated stakes for measure-
ment of mass balance is sufficient and the variance of mass balance estimator can
growwith additional number of stakes. In [3] we received non standard design strate-
gies for Kolmogorov’s model of Chandler wobble small deviation in the Earth’s axis
of rotation.We are currently working on extension of these results for spatiotemporal
random fields with semicontinuous covariance functions, which is fairly nontrivial
task with plenty of important applications to chemometrics, ecological modelling
and finances.

Uniform designs play also fundamental role for prediction of random fields. As
a classical criterion we can consider Empirical Kriging (EK) prediction error. Here
we have to minimize the so-called kriging variance Var [Ŷ (x |ξ)] = E[(Ŷ (x |ξ) −
Y (x))2] (Mean Squared Prediction Error—MSPE), where Ŷ (x |ξ) denotes the best
linear unbiased predictor of Y (x) based on the design points in ξ . The EK-optimal
design minimizes the criterion function

ψ(ξ) = max
x∈X

̂Var [Ŷ (x |ξ)]. (14.2)

However, this criterion is difficult to compute. The results for optimality of equidis-
tance designs also for OU sheets have been derived in [2].

14.3 On Symmetric Multivariate Distributions and Beyond

Fang et al. [9, 10] provided basis for study of elliptically symmetric distributions.
For geometric measure representation see [25, 26]. Such developments can be gen-
eralized by a class of star shaped distributions and their representations, see e.g. [31].
The p-generalized elliptically contoured distributions for p = 1 have been derived in
[14] for probability mass concentrated on Rn+. Such forms of construction motivate
the problem of probabilistic quasi-distances which can be both symmetric and asym-
metric. Moreover, copulas of elliptically contoured distributions are of interest, see
[11], which can be generalized to general geometric and topological constructions
of aggregation functions (see e.g. [12, 32]). In the following two subsections we will
illustrate importance of proper understanding of symmetry, since in some important
instances symmetry need to be replaced by asymmetry. Two illustrative subsections
follow, namely Pseudoexponential models for dose finding studies and Asymmetric
distance measures of linguistic sequences.

14.3.1 Pseudoexponential Models for Dose Finding Studies

The approach by [6] can lead to bivariate cases of pseudoexponential models (see
[12, 13]), where we condition on dose exposure levels, in time to one tumor setup
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and delayed toxicities. We can justify the join survival type of model

P(T > t, D > d) = exp(−θ1t − θ2d − θ2Aφ(t)d), φ(0) = 0. (14.3)

Term θ2d in Eq. (14.3) is linear, however, nonlinear dependence on d is possible as
the distribution of exposure. The formulation for [6] is P(T > t |d), where d is the
constant dose. So the joint distribution should be

∫
P(T > t |d)dF(d). Thus, the D

is the distribution of population toxic exposure. If D is exponentially distributed,
we have Eq. (14.3). Otherwise, we may have more general formulation, where T
is time to tumor, D is the dose exposure of toxins, A > 0 is parameter and φ(t) is
the cumulative remaining toxins in the body up to time t . Following the notation by
[6], suppose that individual is first exposed to toxic material amount d at age a and
continue to time t . Then in a special case of [6] for every t we can define failure rate
λ(t, d) for tumor in additive form of the mortality intensity function

λ(t, d) = −θ1t − θ2d − θ2
δ

ν
(1 − exp(−νt)))d. (14.4)

This function is a special case of (14.3), with A being the ratio of absobring coef-
ficient to discharge coefficient and the rational for the given function φ(t) lies in
the remaining toxins

∫ t
0 dδ exp(−ν(t − s))ds. Notice that Eq. (14.4) without θ2d is

the conditional cumulative hazard function for time to tumor. The independence of
the absorbing coefficient δ and the discharging coefficient ν of time used by [6]
is in many instances pretty over-realistic and more general version of cumulative
remaining dose is captured by pseudoexponential model (14.3).

14.3.2 Asymmetric Cultural Distance Measures on Linguistic
Sequences

If we aim to analyze the changes of at least two different samples of historical linguis-
tic corpuses, we need to develop a feasible statistical model which detects spelling
variations. As well we need to define measures of variation of given words/sets of
words, in order to define measurable statistics of cultural flow and changes. This
provides background for a social-linguistic study through designing an appropriate
statistical method that detects linguistic variants by the frequency of letters, words
and the presence of key words. Such analysis plays crucial role in conservation of the
important cultural heritage of e.g. under-represented cultural groups. We consider
two samples of historical corpusNicanMopohua and detect the frequency of selected
words in order to aggregate information in probabilistic quasi-distance between both
texts. Nican Mopohua is orally transmitted in language Náhuatl spoken currently
by a minority group in Mexico. Corpus was written by Antonio Valeriano (1556)
and we compare two samples of corpus by [18, 27]. The Nican Mopohua, historical
Nahuatl text, allows us to study and analyze the variations of the Nahuatl language.

Such aggregation of linguistic information in quasi-distance is far from being
trivial and it links to topological aggregation introduced in [32]. Here we speak



14 On Equidistant Designs, Symmetries and Their Violations in Multivariate Models 221

about quasi distance, since mathematical distance, formalized by concept of metrics
is symmetric. However, we have empirically observed asymmetries between both
corpuses. Therefore we decided to use Kullback–Leibler (KL) divergences, which
can be symmetric and asymmetric, dependently on the underlying distribution. If we
compare KL divergences for Náhuatl word “xochitl” (flowers) from one corpus to
another, we receive different divergences, namely 0.618 and 0.272. That empirically
underlines the fact that we are not in symmetrized world of distances, but asymmet-
ric divergences. This asymmetry supports the fact, that language will naturally relate
much more to the topology (see [28, 32]) than to some metric, since language con-
structs go hand-in-hand with cognition. Náhuatl uses mereological and topological
notions of connection, part, interior, and complement which are central to spatial
reasoning and to the semantics of natural language expressions concerning locations
and relative positions. Thus the exploration of the phonetic differences by symmetric
distances is not satisfactory for reconstruction of the ancestral language, e.g. [24]
can over-symmetrize the differences between spoken Romance languages.

We work with divergences between probabilities of co-occurrence of linguistic
objects that are an important tool in statistics for studies of natural language pro-
cesses, see [5, 19]. Reference [15] analyzes the aboriginal words, estimating the
relative percentage of words. In addition, it considers that the change of the language
is through the own evolution of the country. The comparison of the probability dis-
tribution of each letter or word of the corpus is made using the KL divergence, with
a limited number of comparison terms for the corpus. In general Φ-divergences to
the best knowledge of the authors introduced independently by [1, 7]) are used as
asymmetric distances between two probability distributions and KL divergence is
a special case for φ(t) = t log(t). Reference [30] recalls relationship between Φ-
divergences and statistical information in the sense of DeGroot, which was shown
in [20]. The definition of φ-divergence follows.

Definition The φ-divergence between the probability distributions P an Q is defined
by

Dφ(P, Q) =
∫

χ

Q(x)φ

(
P(x)

Q(x)

)

dμ(x),

where the function φ : (0,∞) → [0,∞) is assumed to be continuous, decreasing on
(0, 1) and increasing on (1,∞), with φ(1) = 0. The value φ(0) ∈ (0,∞] is defined
by the continuous extension.

Especially because of good robustness properties [16] and direct relation to infor-
mation theory, we consider KL divergence as the best choice for omnibus asymmetric
distance between two linguistic probability distributions in our problem. Reference
[19] studies the measures of distributional similarity by usage of the weighted aver-
age of the distance and thus its uses a weighted version of the KL-divergence. The
probabilities of co-occurrence, based on the frequencies of the co-occurrences them-
selves plays themost important role. It indicates that the similarity between linguistic
objects is determined by the similarity of their corresponding vector characteristics,
where these characteristics are e.g. numerical frequencies of co-occurrences.Weused
the following quasidistances listed in Table14.1 in order to measure various aspects
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Table 14.1 Similarity functions for probability distributions

KL divergence D(p ‖ q) = ∑
x p(x)(logp(x) − logq(x))

Jensen-Shannon J S(p, q) = 1
2 [D(p ‖ avg(p, q)) + D(q ‖ avg(p, q))]

Skew divergence Sα(p, q) = D(q ‖ αp + (1 − α)q)

Euclidean euc(p, q) = (
∑

x (p(x) − q(x))2)
1
2

Cosine cos(p, q) = ∑
x p(x)q(x)/

√∑
x p(x)2

∑
x q(x)2

L1 L1(p, q) = ∑
x |p(x) − q(x)|

Confusion con f (p, q, P(y′)) = P(y′)
∑

x p(x)q(x)/P(x)

of differences between two complex linguistic corpuses. In general, evaluation of
different quasidistances allows us to see various aspects of differences between cor-
puses. Reference [19] indicates that the skew divergence is the one that achieves the
best performance and that it is closest to a KL-divergence. Also [19] analyzes many
functions of similarity such as KL, Jensen-Shannon (see [21]) and Skew divergences,
Euclidean, cosine and L1 (or Manhattan) distances, and also probability confusion,
which estimates the substitutability of two given words, based on conditional and
marginal probabilities. Table14.1 displays several similarity functions for probability
distributions used in text comparisons.

All the functions of Table14.1 were used to analyze the data of the historical
corpus. We fixed the value α = 0.7 for the skew divergence. Parameter α controls
the degree to which the function approximates D(Q||P). The highest value yielded
the best performance and very small values resulted in the worst error rates. Also
in the function Confusion probability we consider the value of the similarity of
words as P(y′)/P(x) = 0.5 in order to fix the word comparisons. Reference [16]
examine the two measures of discrepancy, that is, distances and divergences, where
the intersection of them is the L1 distance. These estimates are found directly and
without separate estimates of each probability distribution through the Bregman
scores method and semi-parametric statistical models. In addition, they find that
the L1 distance of the difference in densities is more robust than the density ratio.
The difference in densities p − q is used to calculate the distance Ls between two
probability densities

ds(p, q) =
(∫

|p(x) − q(x)|sdx
) 1

s

where s ≥ 1.

The Numerical Example

The frequency of letters and key words in 9 paragraphs of Sect. 118-126 of corpus..
were analyzed. These paragraphs were selected because they counted the largest
number of key words and represented the paragraphs of greatest cultural message.
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Table 14.2 Corpus I (Lazo-1649) versus Corpus II (Rojas-1978)

Letter Frequency in
Corpus I (%)

Frequency in
Corpus II
(%)

pletter log
(

pletter
qletter

)
qletter log

(
qletter
pletter

)

a 9.64 10.99 –0.00550442 0.006277879

b 0.10 0.10 7.75194E–06 –7.61113E–06

c 10.13 9.85 0.001231125 –0.001197139

d 0.10 0.10 7.75194E–06 –7.61113E–06

e 3.99 4.21 –0.000906534 0.000955195

g 0.10 0.10 7.75194E–06 –7.61113E–06

h 4.87 4.59 0.001250731 –0.001178891

i 16.75 16.63 0.000492459 –0.000489136

j 0.10 0.10 –1.12663E-05 1.15704E-05

l 6.43 6.21 0.000937741 –0.000906757

m 5.06 4.97 0.000403101 –0.000395779

n 9.93 9.75 0.000790698 –0.000776335

o 8.37 8.41 –0.000169402 0.000170193

p 2.04 2.01 0.000162791 –0.000159834

q 2.04 1.91 0.000596068 –0.000557372

t 7.40 7.36 0.000169028 –0.000168142

u 6.52 6.21 0.001378014 –0.001312595

x 1.95 1.91 0.000155039 –0.000152223

y 1.85 1.91 –0.000264837 0.000273712

z 2.53 2.58 –0.000213397 0.000217579

Total D(P||Q) = 0.0005202 D(Q||P) = 0.0005891

Also, the Nahuatl alphabet was set with 20 letters that were the following: a, b, c,
d, e, g, h, i, j, l, m, n, o, p, q, t, u, x, y, z. This was obtained by deducting and
spelling the historical corpus and calculating the frequency of each of the letters for
the nine paragraphs mentioned above. The translations of the key words were carried
out with the GDN digital dictionary (Gran Nahuatl dictionary) with the http://www.
gdn.unam.mx/termino/search. Kullback–Leibler divergence measure was calculated
to demonstrate the asymmetry between the two probability functions. The purpose
of this example is to illustrate how asymmetry naturally arises in linguistic stud-
ies. Table14.2 displays the results for numerical experiment, where pletter denotes
empirical frequency of occurrence of the given letter, e.g. letter “a”.
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Chapter 15
Estimation of Covariance Matrix
with ARMA Structure Through
Quadratic Loss Function

Defei Zhang, Xiangzhao Cui, Chun Li, and Jianxin Pan

Abstract In this paper we propose a novel method to estimate the high-dimensional
covariance matrix with an order-1 autoregressive moving average process, i.e.
ARMA(1,1), through quadratic loss function. The ARMA(1,1) structure is a com-
monly used covariance structures in time series andmultivariate analysis but involves
unknown parameters including the variance and two correlation coefficients. We
propose to use the quadratic loss function to measure the discrepancy between a
given covariance matrix, such as the sample covariance matrix, and the underlying
covariance matrix with ARMA(1,1) structure, so that the parameter estimates can be
obtained by minimizing the discrepancy. Simulation studies and real data analysis
show that the proposed method works well in estimating the covariance matrix with
ARMA(1,1) structure even if the dimension is very high.

Keywords ARMA(1,1) structure · Covariance matrix · Quadratic loss function

15.1 Introduction

Covariance matrix estimation is a fundamental problem in multivariate analysis and
time series. Especially, the estimation of high-dimensional covariancematrix is rather
challenging. In the literature, many research works were proposed to tackle the
problem, such as [1, 3, 8, 9] among many others. However, when the covariance
matrix has a certain of structures like order-1 autoregressive moving average, i.e.
ARMA(1,1) structure or others, the estimation and regularization were hardly [6].
Recently, Lin et al. [7] proposed a new method to estimate and regularize the high-
dimensional covariance matrix. Their idea is summarized as follows. Suppose A
is a given m × m covariance matrix, that is, it is symmetric non-negative definite.
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Let S be the set of all m × m positive definite covariance matrices with structure
s, for example, compound symmetry, uniform covariance structure or AR(1). A
discrepancy between the given covariance matrix A and the setS is defined by

D(A,S ) = min
B∈S

L(A,B),

where L(A,B) is ameasure of the discrepancy between the twom × mmatricesA and
B. Assume there is a given class of k candidate covariance structures {s1, s2, . . . , sk}.
Let Si be the set of all covariance matrices with structure si. Denote the set of m ×
m covariance matrices with the likely structures by Ω = ∪k

i=1Si. The discrepancy
between a given covariance matrix A and the set Ω is then defined by D(A,Ω) =
minB∈Ω L(A,B). The point is that, in this set Ω , the structure with which A has the
smallest discrepancy can be viewed as the most likely underlying structure behind A,
and the minimizer B with this particular structure is considered to be the regularized
covariance matrix of A. Obviously, the bigger the class of candidate structures the
better the approximationB to the underlying covariancematrix that is estimated byA.
The discrepancy considered by [7] is the so-called entropy loss function and the class
of the candidates of potential covariance structures they considered include order-1
moving average MA(1), compound symmetry, AR(1) and Toeplitz structures.

Motivated by this, in this paper we focus on the ARMA(1,1) covariance structure
because it includes the MA(1), compound symmetry and AR(1) as its special cases.
The ARMA(1,1) process is obtained by applying a recursive filter to the white noise,
which is given by the model

Xt = φ1Xt−1 + εt + θ1εt−1 (t = 1, . . . ,m),

where φ1 and θ1 both are parameters, and εt is a zero mean white noise process with
variance σ 2

1 . The covariance matrix of the ARMA(1,1) process (e.g., [2]) is given by

Σ(σ1, φ1, θ1) = (1 + θ2
1 + 2φ1θ1)σ

2
1

1 − φ2
1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 a aφ1 aφ2
1 · · · aφm−2

1
a 1 a aφ1 · · · aφm−3

1
aφ1 a 1 a · · · aφm−4

1

aφ2
1 aφ1 a 1 · · · aφm−5

1
...

...
...

... · · · ...

aφm−2
1 aφm−3

1 aφm−4
1 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(15.1)

where

a := a(φ1, θ1) = (1 + φ1θ1)(φ1 + θ1)

1 + θ2
1 + 2φ1θ1

.

For simplicity, the covariance matrix in (15.1) can be written as
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B(σ, c, ρ) = σ 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 c cρ cρ2 · · · cρm−2

c 1 c cρ · · · cρm−3

cρ c 1 c · · · cρm−4

cρ2 cρ c 1 · · · cρm−5

...
...

...
... · · · ...

cρm−2 cρm−3 cρm−4 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (15.2)

where

σ 2 = (1 + θ2
1 + 2φ1θ1)σ

2
1

1 − φ2
1

, c = (1 + φ1θ1)(φ1 + θ1)

1 + θ2
1 + 2φ1θ1

and ρ = φ1

It is clear that there are three special cases for the ARMA covariance matrix (15.2).
When ρ = 0, the structure (15.2) becomes the MA(1) covariance matrix, namely

B(c, σ ) = σ 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 c 0 · · · 0
c 1 c

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 c
0 · · · 0 c 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m×m

, (15.3)

where σ 2 > 0 and −1/ cos(π/(m + 1)) < c < 1/ cos(π/(m + 1)). When ρ = 1, it
reduces to the compound symmetry structure as

B(c, σ ) = σ 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 c c · · · c
c 1 c

. . .
...

c
. . .

. . .
. . . c

...
. . .

. . . 1 c
c · · · c c 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m×m

,

where σ 2 > 0 and−1/(p − 1) < c < 1 ensure the positive definiteness of the covari-
ancematrix.When ρ = c, the structure (15.2) becomes the AR(1) covariance matrix,
that is

B(c, σ ) = σ 2

⎡
⎢⎢⎢⎢⎢⎣

1 c c2 · · · cm−1

c 1 c · · · cm−2

c2 c 1 · · · cm−3

...
. . .

. . .
. . .

...

cm−1 cm−2 · · · c 1

⎤
⎥⎥⎥⎥⎥⎦

m×m

, (15.4)

where σ 2 > 0 and −1 < c < 1.



230 D. Zhang et al.

On the other hand, we choose the quadratic loss function rather than the entropy
loss function to measure the discrepancy between two matrices. The quadratic
loss function was considered by many authors including [3, 9] when estimating
covariance matrix. Comparing the entropy loss function, the quadratic loss func-
tion avoids the direct calculation of eigenvalues for a likely large covariance matrix
with ARMA(1,1) structure. The problem here is that for a given high-dimensional
covariance matrix A we aim to find the matrix B with ARMA(1,1) structure such
that the discrepancy between A and B is minimized in the domain of the parame-
ters (σ 2, c, ρ). The resulting matrix B is considered to be an approximation to the
unknown underlying covariance matrix behind A in terms of structure. The rest of
this paper is organized as follows. In Sect. 15.2, we discuss the estimation process
under the quadratic loss function and obtain the analytical estimation results. Sim-
ulation studies and real data analysis are considered in Sect. 15.3. Conclusions and
remarks are provided in Sect. 15.4.

15.2 Estimation Process

We rewrite the covariance matrix of the ARMA(1,1) model as follows,

B(c, ρ, σ ) = σ 2

(
I + c

m−1∑
i=1

ρ i−1Ti

)
, (15.5)

where Ti (1 ≤ i ≤ m − 1) is a symmetric matrix with the ith superdiagonal and
subdiagonal elements equal to 1 and zeros elsewhere.

As explained in Sect. 15.1, we propose to use the following quadratic loss function

L(Σ,B) = tr
(
Σ−1B − Im

)2
(15.6)

to measure the discrepancy between the matrices Σ and B [4, 10]. Our aim is to find
the matrix B∗ such that

L(Σ,B∗) = min
{σ,c,ρ}∈R+×[−1,1]2

L(Σ,B)

for the underlying population covariance matrix Σ , where L(Σ,B) is the function in
(15.6). In general, Σ is unknown but can be estimated by an available matrix A such
as the sample covariance matrix. Hence, in practice we actually calculate L(A,B) by
replacing Σ with A.

Now let x0 = σ 2 and xi = σ 2cρ i−1, i = 1 : m − 1. The matrix B in (15.5) can be
rewritten as

B(x) =
m−1∑
i=0

xiTi,
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where x = [x0, x1, . . . , xm−1]T ∈ R
m, T0 = I and Ti’s (1 ≤ i ≤ m − 1) are already

defined in (15.5). We define the set Ω ⊂ R
m by

Ω :=
{
x ∈ R

m : B(x) =
m−1∑
i=0

xiTi is positive definite

}
(15.7)

and the function f (x) : Rm �→ R,

f (x) := L(Σ,B(x)) = tr(Σ−1B(x) − Im)2.

SinceΩ is isomorphic to the set of all positive definite matrices, the problem now
reduces to minimize the function f (B) over the positive definite matrices B within
the set Ω in (15.7).

Since f (B) := L(Σ,B) is a strictly convex function of B and B(x) = ∑m−1
i=0 xiTi

is an affine map of x, by the fact that a composition with an affine mapping preserves
convexity, then function f (x) := f (B(x)) is then strictly convex in x. On the other
hand, since ∇xiB = Ti, by applying the chain rule [4, 10] we obtain the gradient of
f as

∇xi f = 2tr(Ti(Σ
−1B − Im)Σ−1), i = 0 : m − 1,

and the Hessian H = [hij] ∈ R
m×m of f where

hij = ∇2
xixj f = 2tr(TiΣ

−1TjΣ
−1), i, j = 0 : m − 1.

Therefore, this is a convex optimization problem so that the function f has a
unique minimizer.

The loss function can be now expressed as

f (σ, c, ρ)

= tr
(
Σ−1B − Im

)2

= σ 4tr

(
Σ−1 + c

m−1∑
i=1

ρ i−1Σ−1Ti

)2

− 2σ 2tr

(
Σ−1 + c

m−1∑
i=1

ρ i−1Σ−1Ti

)
+ m,

where

tr

(
Σ−1 + c

m−1∑
i=1

ρ i−1Σ−1Ti

)2

= c
m−1∑
i=1

ρ i−1tr(Σ−2Ti + Σ−1TiΣ
−1) + c2

m−1∑
i=1

ρ2(i−1)tr
(
(Σ−1Ti)

2
)

+ tr(Σ−2) + c2
m−1∑

i,j=1,i 
=j

ρ i+j−2tr
(
Σ−1TiΣ

−1Tj + Σ−1TjΣ
−1Ti

)
.
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Therefore, we have

f (σ, c, ρ)

= σ 4tr(Σ−2) + cσ 4
m−1∑
i=1

ρi−1tr(Σ−2Ti + Σ−1TiΣ
−1) + σ 4c2

m−1∑
i=1

ρ2(i−1)tr
(
(Σ−1Ti)

2
)

+ σ 4c2
m−1∑

i,j=1,i 
=j

ρi+j−2tr
(
Σ−1TiΣ

−1Tj + Σ−1TjΣ
−1Ti

)

− 2σ 2tr(Σ−1) − 2σ 2c
m−1∑
i=1

ρi−1tr(Σ−1Ti) + m

= σ 4tr(Σ−2) + cσ 4
m−1∑
i=1

ρi−1t(1)i + σ 4c2
m−1∑
i=1

ρ2i−2t(2)i

+ σ 4c2
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij − 2σ 2tr(Σ−1) − 2σ 2c
m−1∑
i=1

ρi−1t(4)i + m

where t(1)i := tr(Σ−2Ti + Σ−1TiΣ−1), t(2)i := tr((Σ−1Ti)2), t(3)ij := tr
(
Σ−1Ti

Σ−1Tj + Σ−1TjΣ−1Ti
)
, t(4)i := tr(Σ−1Ti).

Note that the first order partial derivative for f (σ, c, ρ) is

∇f (σ, c, ρ) :=

⎡
⎢⎢⎣

∂f
∂σ

∂f
∂c
∂f
∂ρ

⎤
⎥⎥⎦ ,

where

∂f

∂σ
:= 4σ 3tr(Σ−2) + 4cσ 3

m−1∑
i=1

ρi−1t(1)i + 4σ 3c2
m−1∑
i=1

ρ2i−2t(2)i

+ 4σ 3c2
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij − 4σ tr(Σ−1) − 4σc
m−1∑
i=1

ρi−1t(4)i ,

∂f

∂c
:= σ 4

m−1∑
i=1

ρi−1t(1)i + 2σ 4c
m−1∑
i=1

ρ2i−2t(2)i + 2σ 4c
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij − 2σ 2
m−1∑
i=1

ρi−1t(4)i ,

∂f

∂ρ
:= cσ 4

m−1∑
i=1

(i − 1)ρi−2t(1)i + σ 4c2
m−1∑
i=1

(2i − 2)ρ2i−3t(2)i

+ σ 4c2
m−1∑

i,j=1,i 
=j

(i + j − 2)ρi+j−3t(3)ij − 2σ 2c
m−1∑
i=1

(i − 1)ρi−2t(4)i .

Let ∇f (σ, c, ρ) = 0. We then have the estimating equations for (σ 2, c, ρ) as
follows,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2tr(Σ−2) + cσ 2
m−1∑
i=1

ρi−1t(1)i + σ 2c2
m−1∑
i=1

ρ2i−2t(2)i + σ 2c2
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij

= tr(Σ−1) + c
m−1∑
i=1

ρi−1t(4)i ,

σ 2
m−1∑
i=1

ρi−1t(1)i + 2σ 2c
m−1∑
i=1

ρ2i−2t(2)i = −2σ 2c
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij + 2
m−1∑
i=1

ρi−1t(4)i ,

σ 2
m−1∑
i=1

(i − 1)ρi−2t(1)i + σ 2c
m−1∑
i=1

(2i − 2)ρ2i−3t(2)i + σ 2c
m−1∑

i,j=1,i 
=j

(i + j − 2)ρi+j−3t(3)ij

= 2
m−1∑
i=1

(i − 1)ρi−2t(4)i .

The Hessian matrix are given by

∇2f :=

⎡
⎢⎢⎢⎣

∂2f
∂ρ2

∂2f
∂ρ∂c

∂2f
∂ρ∂σ

∂2f
∂c∂ρ

∂2f
∂c2

∂2f
∂c∂σ

∂2f
∂σ∂ρ

∂2f
∂σ∂c

∂2f
∂σ 2

⎤
⎥⎥⎥⎦ ,

where

∂2f

∂ρ2 := cσ 4
m−1∑
i=2

(i − 1)(i − 2)ρi−3t(1)i + σ 4c2
m−1∑
i=1

(2i − 2)(2i − 3)ρ2i−4t(2)i

+ σ 4c2
m−1∑

i,j=1,i 
=j

(i + j − 2)(i + j − 3)ρi+j−4t(3)ij − 2σ 2c
m−1∑
i=2

(i − 1)(i − 2)ρi−3t(4)i ,

∂2f

∂ρ∂c
:= σ 4

m−1∑
i=1

(i − 1)ρi−2t(1)i + 2σ 4c
m−1∑
i=1

(2i − 2)ρ2i−3t(2)i

+ 2cσ 4
m−1∑

i,j=1,i 
=j

(i + j − 2)ρi+j−3t(3)ij − 2σ 2
m−1∑
i=1

(i − 1)ρi−2t(4)i .

∂2f

∂ρ∂σ
:= 4cσ 3

m−1∑
i=1

(i − 1)ρi−2t(1)i + 4σ 3c2
m−1∑
i=1

(2i − 2)ρ2i−3t(2)i

+ 4σ 3c2
m−1∑

i,j=1,i 
=j

(i + j − 2)ρi+j−3t(3)ij − 4σc
m−1∑
i=1

(i − 1)ρi−2t(4)i .

∂2f

∂c2
:= 2σ 4

m−1∑
i=1

ρ2i−2t(2)i + 2σ 4
m−1∑

i,j=1,i 
=j

ρi+j−2t(3)ij ,
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∂2f

∂c∂σ
:= 4σ 3

m−1∑
i=1

ρ i−1t(1)i + 8σ 3c
m−1∑
i=1

ρ2i−2t(2)i

+ 8σ 3c
m−1∑

i,j=1,i 
=j

ρ i+j−2t(3)ij − 4σ
m−1∑
i=1

ρ i−1t(4)i ,

∂2f

∂σ 2
:= 12σ 2tr(Σ−2) + 12cσ 2

m−1∑
i=1

ρ i−1t(1)i + 12σ 2c2
m−1∑
i=1

ρ2i−2t(2)i

+ 12σ 2c2
m−1∑

i,j=1,i 
=j

ρ i+j−2t(3)ij − 4tr(Σ−1) − 4c
m−1∑
i=1

ρ i−1t(4)i .

Our numerical results including simulation studies and real data analysis show that
the determinant |∇2f | > 0 and the theoretical justification is still under investigation.

Theorem 15.1 Given a positive definite covariance matrix Σ , there exists a unique
positive definite matrix B(σ, c, ρ) in the form (15.2) such that the quadratic loss
functionL(σ, c, ρ) := L(Σ,B(σ, c, ρ)) in (15.6) isminimized. Furthermore, themin-
imum must be attained at (σ, c, ρ) that satisfies

⎧⎪⎨
⎪⎩

σ 2tr(Σ−2) + cσ 2S1(ρ) + c2σ 2S2(ρ) + σ 2c2S3(ρ) = tr(Σ−1) + cS4(ρ),

σ 2S1(ρ) + 2cσ 2S2(ρ) + 2cσ 2S3(ρ) = 2S4(ρ),

σ 2S ′
1(ρ) + cσ 2S ′

2(ρ) + cσ 2S ′
3(ρ) = 2S ′

4(ρ),

where

S1(ρ) : =
m−1∑
i=1

ρ i−1t(1)i , S2(ρ) :=
m−1∑
i=1

ρ2i−2t(2)i ,

S3(ρ) : =
m−1∑

i,j=1,i 
=j

ρ i+j−2t(3)ij , S4(ρ) :=
m−1∑
i=1

ρ i−1t(4)i ,

and S ′
i (ρ)(i = 1, . . . , 4) is the derivative of Si(ρ) with respect to ρ, t(1)i :=

tr(Σ−2Ti + Σ−1TiΣ−1), t(2)i := tr((Σ−1Ti)2), t(3)ij := tr
(
Σ−1TiΣ−1Tj + Σ−1Tj

Σ−1Ti
)
, and t(4)i := tr(Σ−1Ti).

Corollary 15.1 Given a positive definite covariance matrixΣ , there exists a unique
tridiagonal positive definite matrix, i.e. MA(1), B(c, σ ) in the form (15.3) such that
the quadratic loss function L(c, σ ) := L(Σ,B(σ, c)) in (15.6) is minimized. Further-
more, the minimum must be attained at (σ, c) that satisfies
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2 = tr(Σ−1)tr(Σ−2T 2
1 ) − tr(Σ−2T1)tr(Σ−1T1)

tr(Σ−2)tr(Σ−2T 2
1 ) − (tr(Σ−2T1))2

,

c = tr(Σ−2)tr(Σ−1T1) − tr(Σ−1)tr(Σ−2T1)

tr(Σ−2T 2
1 )tr(Σ−1) − tr(Σ−2T1)tr(Σ−1T1)

.

Corollary 15.2 Given a positive definite covariance matrixΣ , there exists a unique
AR(1) positive definite matrix B(c, σ ) in the form (15.4) such that the quadratic loss
function L(c, σ ) := L(Σ,B(σ, c)) in (15.6) is minimized. Furthermore, the minimum
must be attained at (σ, c) that satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2 =

m−1∑
i=0

citr(Σ−1Ti)

m−1∑
i=0

c2i tr((Σ−1Ti)2) + 2
m−2∑
i=0

c2i+1tr(Σ−1TiΣ−1Ti+1)

,

m−1∑
i=0

ici−1tr(Σ−1Ti)

m−1∑
i=0

citr(Σ−1Ti)

=

m−1∑
i=0

ic2i−1tr((Σ−1Ti)
2) +

m−2∑
i=0

(2i + 1)c2i tr(Σ−1TiΣ
−1Ti+1)

m−1∑
i=0

c2i tr((Σ−1Ti)2) + 2
m−2∑
i=0

c2i+1tr(Σ−1TiΣ−1Ti+1)

.

Similar results for the compound symmetry structure can be obtained in the same
manner but the details are omitted here.

15.3 Numerical Experiments

15.3.1 Simulation Studies

Let m be the dimension of the covariance matrices. We first generate an m × n data
matrix R with columns randomly drawn from the multivariate normal distribution
N (μ,Σ) with a common mean vector μ = σ 2e with e = (1, ..., 1)′ ∈ R

m and a
common covariance matrix Σ . We then calculate the sample covariance matrix A
using the generated random samples R. We assume the true covariance matrixΣ is of
ARMA(1,1) structure with dimensionm and the parameters (σ 2, c, ρ). We assess the
performance of the estimationmethodbyvarying dimensionm and andvalues ofσ 2, c
andρ. The sample size is chosen asn = 1000.We summarize the experimental results
in Table15.1, which is the experiment with the covariance matrix size m = 100,
and Table15.2 for m = 200. We choose σ 2 ∈ {2, 4, 8}, c ∈ {0.2, 0.5, 0.75} and ρ ∈
{−0.75,−0.5,−0.2, 0, 0.2, 0.5, 0.75}, meaning that Σ may have MA(1), AR(1),
andARMA(1,1) structures, respectively. The notation and abbreviation for the results
reported in Tables15.1 and 15.2 are summarized as follows.

• Σ : the true covariance matrix.
• A: the sample covariance matrix.
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• B: the estimated covariance matrix with ARMA(1,1) structure, which minimizes
the quadratic loss function L(A,B).

• LΣ,A, LA,B and LΣ,B: the quadratic loss functions L(Σ,A), L(A,B) and L(Σ,B),
respectively.

In Tables15.1 and 15.2, we have the following observations.

(1) When the true covariance structure for Σ is of ARMA(1,1), the resulting matrix
B that has the same structure as Σ must satisfy LΣ,B < LΣ,A. It means that the
regularized estimator B is much better than the sample covariance matrix A in
terms of the quadratic loss function. This is because the sample covariancematrix
A contains many noises so that the true ARMA(1,1) structure is blurred if only A
is observed. It shows that regularization of the sample covariance matrix A into a
proper structure, here ARMA(1,1), is necessary not only for the convenient use
of the structure but also for the accuracy of the covariance matrix estimation.

(2) The observations above are the same for differing values ofm, σ 2, c andρ, imply-
ing that the findings are consistent and robust against the parameters (σ 2, c, ρ).

(3) Note that it is extremely important to observe the discrepancy LA,B because
in practice the true covariance Σ is unknown, and so LΣ,B and LΣ,A are not
possibly known either. The simulation studies presented here aim to assess the
performance of the approximation B to the underlying covariance matrix Σ by
borrowing information from the sample covariance matrix A. It is concluded that
the discrepancy LA,B can be used to identify the true covariance structure of Σ

satisfactorily.

Table 15.1 Simulation results with m = 100

σ 2 c ρ LΣ,A LA,B LΣ,B

2 0.2 −0.75 10.19 27.65 0.23

4 0.2 −0.75 10.22 31.48 0.31

8 0.2 −0.75 10.18 83.64 0.42

2 0.2 −0.5 10.27 34.05 0.96

2 0.5 −0.2 10.01 29.75 0.27

2 0.75 −0.2 9.7 25.03 0.55

2 0.2 0 10.31 26.03 0.25

4 0.5 0 10.01 29.37 0.61

8 0.75 0 10.19 69.48 0.72

2 0.2 0.2 10.19 29.11 0.06

4 0.5 0.5 9.71 29.03 0.93

8 0.75 0.75 10.01 79.43 0.96

2 0.2 −0.2 10.11 78.31 0.98

4 0.5 −0.5 10.03 33.94 0.36

8 0.75 −0.75 10.24 84.21 0.94
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Table 15.2 Simulation results with m = 200

σ 2 c ρ LΣ,A LA,B LΣ,B

2 0.2 −0.75 40.03 46.39 0.38

4 0.2 −0.75 40.56 69.75 0.51

8 0.2 −0.75 40.61 79.01 0.71

2 0.2 −0.5 39.84 72.02 0.31

2 0.5 −0.2 40.09 83.47 0.52

2 0.75 −0.2 39.84 73.57 0.61

2 0.2 0 40.09 84.29 0.54

4 0.5 0 40.69 94.29 0.63

8 0.75 0 40.47 106.44 0.85

2 0.2 0.2 40.02 161.18 0.62

4 0.5 0.5 39.86 83.29 0.72

8 0.75 0.75 39.92 187.27 0.89

2 0.2 −0.2 40.75 92.69 0.55

4 0.5 −0.5 39.36 142.44 0.62

8 0.75 −0.75 40.87 166.73 0.63

15.3.2 Real Data Analysis

15.3.2.1 Cattle Data Analysis

We analyze the Kenward’s (1987) [5] cattle data using the proposed approach. The
data set involves 60 cattle assigned randomly to two treatment groups 1 and 2, each
of which consists of 30 cattle, and received a certain treatment. The cattle in each
group were weighed 11 times over a nineteen-week period. The weighing times for
all cattle were the same, so that the cattle data is a balanced longitudinal data set. The
aim of Kenward’s study was to investigate treatment effects on intestinal parasites
of the cattle.

Our analysis was made for the cattle data in the same way as in Sect. 15.2 and the
results are reported in Table15.3.We also record, under the column named “Time” in
Table15.3, the time (in seconds) used to find the optimal matrix B for each structure
of the possible candidates MA(1), AR(1) and ARMA(1,1).

Table 15.3 Results of experiments for Kenward’s cattle data

MA(1) AR(1) ARMA(1,1)

LA,B Time LA,B Time LA,B Time

Group 1 9.91 2.91 9.46 2.86 9.33 2.82

Group 2 9.53 2.90 9.63 2.76 9.52 2.79
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Table 15.4 Results of experiments on Dental data

MA(1) AR(1) ARMA(1,1)

LA,B Time LA,B Time LA,B Time

Girl group 2.68 0.25 3.43 0.22 2.62 0.21

Boy group 3.01 0.18 3.15 0.18 2.3 0.19

Since the true covariance matrix Σ from the cattle data is unknown, the dis-
crepancies LΣ,A and LΣ,B are not available and then only the discrepancy LA,B is
computed and presented in Table15.3. From Table15.3, it is clear that the underly-
ing covariance structures are very likely to be ARMA(1,1) structure for both groups
when comparing to other possible candidate structuresMA(1) and AR(1), since their
discrepancy LA,B has smaller values than other twos.

One may argue that Group 1 is likely to have an AR(1) covariance structure as the
values of LA,B for AR(1) and ARMA(1,1) are very close. This should not be surprised
because the AR(1) is a special case of the ARMA(1,1) in the sense that c is identical
to ρ, see (15.4). This is the case for the Group 1 cattle data analysis due to the fact
that the estimates of c and ρ are very close. This conclusion agrees with the finding
in [11, 13, 15].

15.3.2.2 Dental Data Analysis

We also did an experiment with dental data (Potthoff and Roy 1964) [12]. Dental
measurements were made on 11 girls and 16 boys at ages 8, 10, 12 and 14years.
Each measurement is the distance, in millimeters, from the center of the pituitary to
the pterygomaxillary fissure. Similar to the cattle data analysis, the quadratic loss
function LA,B is computed for the dental data and presented in Table15.4.

FromTable15.4, it is clear that the underlying covariance structures are very likely
to be ARMA(1,1) for both boy and girl groups, as the discrepancy values of LA,B are
smaller than those for both MA(1) and AR(1) structures.

15.4 Conclusions

Motivated by the work of Lin et al. [7], we estimate the underlying covariance
structure by minimizing the quadratic loss function between a given covariance
matrix and the covariance matrix with ARMA(1,1) structure. Differing from their
method, the quadratic loss function is used to replace the entropy loss function where
the latter involves the calculation of eigenvalues for a likely large covariance matrix
with ARMA(1,1) structure, which is challenging especially for high-dimensional
case [14]. Our numerical results including simulation studies and real data analysis
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show that the proposedmethodworkswell in estimatinghigh-dimensional covariance
matrices with an underlying ARMA(1,1) structure and is robust against various
choices of the parameters involved in the ARMA(1,1) structure.
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Chapter 16
Depth Importance in Precision Medicine
(DIPM): A Tree and Forest Based
Method

Victoria Chen and Heping Zhang

Abstract Wepropose the novel implementation of a depth variable importance score
in a classification tree method designed for the precision medicine setting. The goal
is to identify clinicallymeaningful subgroups to better inform personalized treatment
decisions. In the proposed Depth Importance in PrecisionMedicine (DIPM)method,
a random forest of trees is first constructed at each node. Then, a depth variable
importance score is used to select the best split variable. This score makes use of the
observation that more important variables tend to be selected closer to root nodes of
trees. In particular, we aim to outperform an existingmethod designed for the analysis
of high-dimensional data with continuous outcome variables. The existing method
uses an importance score based on weighted misclassification of out-of-bag samples
upon permutation. Overall, our method is favorable because of its comparable and
sometimes superior performance, simpler importance score, and broader pool of
candidate splits. We use simulations to demonstrate the accuracy of our method and
apply the method to a clinical dataset.

16.1 Introduction

Improving the field of medicine using personalized health data has become a pri-
mary focus for researchers. Instead of the traditional focus on average responses to
interventions, precision medicine recognizes the heterogeneity that exists between
individuals and aims to find the optimal treatment for each person [7, 13]. With
the increasing number of large datasets available for analysis, identifying which
features are important is a challenge. Ultimately, the development of more sophisti-
cated methodology to match the development of these kinds of data is important to
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help improve the health outcomes and quality of life experienced by each individual
patient.

The classification tree is an attractive method for precision medicine due to its
flexibility and relatively simple structure. Multiple candidate features may be con-
sidered simultaneously, and the final result is an easily interpretable tree. In general,
a classification tree is a method that divides the overall sample into smaller and
smaller subgroups using optimized subdivisions of the data. The subdivisions, or
splits, are based on a predetermined list of candidate split variables. Traditionally,
classification trees are used to identify homogenous subgroups of the sample and
classify each subject’s membership in a predetermined list of categories. In the con-
text of precision medicine, the method is modified to identify subgroups of patients
that perform especially well or especially poorly in a treatment group and determine
which treatment is best for each subject.

Currently, there are multiple existing tree-based methods designed for the pre-
cision medicine setting. Existing methods include: an extension of the RECursive
Partition and Amalgamation (RECPAM) algorithm [12], model-based partitioning
(MOB) [14, 19], interaction trees (IT) [15–17], the simultaneous threshold interaction
modelling algorithm (STIMA) [4], virtual twins (VT) [6], subgroup identification
based on differential effect search (SIDES) [9], an extension to SIDES known as
SIDEScreen [8], qualitative interaction trees (QUINT) [5], generalized, unbiased,
interaction detection and estimation (GUIDE) trees [10, 11], a relative-effectiveness
based method [18, 20], and an importance index based method [22].

Although multiple methods already exist, the type of outcome as well as other
features of the data determine which subset of methods the user may choose from.
For instance, the method developed by Zhang et al. [20] only applies to clinical data
with a binary outcome and two treatment groups. Meanwhile, IT, QUINT, STIMA,
and themethod developed by Zhu et al. [22] apply to data with a continuous outcome.
In addition, RECPAM, IT,MOB, SIDES, GUIDE, and the method developed by Zhu
et al. [22] have been extended to analyze survival data with right-censored survival
times. To date, only IT and GUIDE have an extension for data with longitudinal
outcomes. Furthermore, a problem across methods is weakened performance as the
number of candidate covariates increases. As noted in Tsai et al. [18], having more
candidate covariates decreases the “signal-to-noise ratio”which can lower the chance
of finding the most important variables. These concerns are especially problematic
given the increased availability of higher dimensional data.

One method of particular interest is the weighted classification tree developed by
Zhu et al. [22]. This method aims to achieve better performance in cases of high
dimensionality and is designed for data with a continuous outcome variable and two
treatment groups. A variable importance score based on weighted misclassification
is used to find the best split variable at each node. However, as no method uniformly
outperforms all other methods in this setting, there are several drawbacks. In partic-
ular, we find that the weighted method’s variable importance score misses important
signals in the presence of correlations between variables and that the method is
unnecessarily complex overall. Instead, we propose the usage of the depth variable
importance score developed by Chen et al. [3], and Zhang and Singer [21]. Adapting
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this measure for usage within a tree and within the precision medicine framework
is novel. Here, we make the case that the proposed Depth Importance in Precision
Medicine (DIPM) method is favorable to the aforementioned method because of
the proposed method’s comparable and sometimes superior performance, simpler
importance score, and broader pool of candidate splits. Developing an importance
score that is intuitive and convenient to compute that yields comparable or even bet-
ter results will set the stage for outright superior performance with more complex
data scenarios to be demonstrated in future work. The overall goal is to identify vari-
ables that are important in the context of precision medicine. Note that the proposed
method is an exploratory method as opposed to a confirmatory model. Thus, here
we focus on introducing our new importance score and demonstrate its advantage
by using datasets with continuous outcome variables for the easy comparison with
an existing method.

The remainder of this paper is structured as follows. First, details of the proposed
DIPM method and the weighted classification tree method are provided. Then, sim-
ulation scenarios assessing and comparing the methods are presented. Next, results
of an application to a real-world dataset are described. Lastly, the discussion section
includes closing remarks and directions for future work.

16.2 Methods

16.2.1 Overview

We begin with a brief overview of our method. The proposed DIPM method is
designed for the analysis of clinical datasets with a continuous outcome variable Y
and two treatment assignments A and B. Without loss of generality, higher values of
Y denote better health outcomes. Candidate split variables may be binary, ordinal,
or nominal. All of the learning data are said to be in the first or root node, and nodes
may be split into two child nodes. Borrowing the terminology used in Zhu et al. [22],
at each node in the tree, a random forest of “embedded” trees is grown to determine
the best variable to split the node. Once the best variable is identified, the best split of
the best variable is the split that maximizes the difference in response rates between
treatments A and B. Note that “the best variable” is “best” in a narrow sense as
defined below. In addition, a flowchart outlining the general steps of our method’s
algorithm is provided in Fig. 16.1.

16.2.2 Depth Variable Importance Score

The depth variable importance score is used to find the best split variable at a node. In
general, the score incorporates two pieces of information: the depth of a node within
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Fig. 16.1 OverviewofDIPMmethod classification tree algorithm.Aflowchart outlining the general
steps of the proposed method’s algorithm is depicted in the figure above

a tree and the magnitude of the relevant effect. Depth information is used because
more important variables tend to be selected closer to the root node. Meanwhile, the
strength of a split is also taken into account. This second component of the variable
importance score is a statistic. The statistic that is used depends on the context of the
analysis at hand.

Recall that at each node in the overall classification tree, a random forest is con-
structed to find the best split variable at the node. Once the forest is fit, for each tree
T in this forest, the following sum is calculated for each covariate j :

score(T, j) =
∑

t∈Tj

2−L(t)Gt . (16.1)

Tj is the set of nodes in tree T split by variable j . L(t) is the depth of node t . The
root node has depth 1, the left and right child nodes of the root node have depth 2,
etc. Gt captures the magnitude of the effect of splitting node t . Since the outcome
is continuous, Gt is set equal to the t2 statistic from testing the significance of β3 in
the model:

Y = β0 + β1 ∗ treat + β2 ∗ spli t + β3 ∗ treat ∗ spli t + ε. (16.2)

This model is fit using the pertinent within-node data. The test statistic t is squared
because the magnitude of the interaction is of interest, while there is no preference
in the effect’s direction. Note that this t2 statistic is identical to the statistic used at
each node split in the interaction tree method [16].
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Next, a “G replacement” feature is implemented that potentially alters the variable
importance scores score(T, j). For each tree T in the forest, the G at each split is
replaced with the highest G value of any of its descendant nodes if this maximum
exceeds the value at the current split. This replacement step is performed because a
variable that yields a split with a large effect of interest further down in the tree is
certainly important even if its importance is not captured right away. By “looking
ahead” at the G values of future splits, a variable’s importance is reinforced.

Lastly, the final variable importance scores are averaged across all M trees in the
forest f :

score( f, j) = 1

M

∑

T∈ f

score(T, j). (16.3)

The best split variable is the variable with the largest value of score( f, j).

16.2.3 Split Criteria

To identify the best split at a node t , the squared difference in response rates between
treatments A and B at node t is first assessed:

DI FF(t) = (ȲA,t − ȲB,t )
2. (16.4)

Then, among the list of candidate splits, only splits with child nodes with at least
nmin subjects are considered. Of the splits with a sufficient number of subjects, the
best split maximizes the weighted sum of the squared difference in response rates of
the child nodes:

DI FF(tL , tR) =
∑

s = {L ,R} ns(ȲA,ts − ȲB,ts )
2

nL + nR
. (16.5)

Node t is split onlywhen the best split yields two child nodeswith a greater difference
in treatment response rates than at the current node:

DI FF(tL , tR) > DI FF(t). (16.6)

Splitting stops when there are not enough subjects in any candidate node splits or
when no remaining DI FF(tL , tR) values exceed DI FF(t).

This split criterion was first proposed by Zhang for data with binary outcomes
[18, 20]. Since the proposed method uses continuous outcomes, the mean of Y is
used in place of Pr(Y = 1).
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16.2.4 Random Forest

A random forest is grown at each node in the overall tree and then used to select the
best split variable. Once this variable is identified, all possible splits of the variable
are considered, and the best split is found using the criteria described in Sect. 16.2.3.

The forest is constructed as follows. The forest contains a total of M embedded
trees, and the recommended value of M is 1000. Each embedded tree is grown using
a bootstrap sample. The bootstrap sample contains the same number of subjects as
the original sample size at the current node. Then, at each node in the embedded
trees, either: (1) all possible splits of all variables are considered, or (2) all possible
splits of a certain number, mtry, of randomly selected variables are considered. The
best split is again found using the criteria described in Sect. 16.2.3.

A recommended value of mtry for a dataset with p variables is f loor(
√
p).

This value is the default value of mtry used in the randomForest R package
implementing Breiman’s random forest method for classification. The aim is to use a
value that balances the strength of each tree by being large enough while minimizing
the correlation between trees by being small enough [2].

Also, note that the minimum number of subjects in nodes of the overall classi-
fication tree does not have to equal the minimum number of subjects in nodes of
the embedded trees. Put another way, nmin is the minimum node size of the overall
tree, while nmin2 is the minimum node size of trees in the random forest. nmin and
nmin2 do not have to be equivalent.

16.2.5 Best Predicted Treatment Class

The best predicted treatment class of a node is the treatment group that performs best
based on the subjects within the given node. In the proposed method, the means of
the response values Y are compared by treatment group. Recall that higher values
of Y denote greater benefit for patients. Therefore, if ȲA > ȲB within a node, then
treatment A is the best predicted treatment at that node. If ȲB > ȲA, then treatment
B is the best predicted treatment. If ȲA = ȲB , then neither treatment is best.

16.2.6 Splits by Variable Type

The list of possible splits for a candidate split variable depends on the variable’s type.
For a binary variable, the variable has only two possible values: 0 and 1. Therefore,
there is only one possible split: the left child node subsets the data with subjects
whose values equal 0, and the right child node contains the rest of the subjects whose
values equal 1.
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For an ordinal variable, each unique value is a candidate split point. For each
candidate split point s, the left child node considers the subjects with values less
than or equal to s, and the right child node contains the rest of the subjects with
values greater than s. Note that considering the largest unique value is redundant,
since every subject takes values less than or equal to the maximum, and no one has
values exceeding the maximum.

For a nominal variable, all combinations of all possible subsets of the categories are
considered as candidate splits. For example, consider a nominal variable with three
categories A, B, and C . One possible split is that the left child node subsets the data
with subjects in category A, and the right child node contains the remaining subjects
in categories B and C . The two other possible splits are A, B with complement C ,
and A,C with complement B. In general, for a nominal variable with k categories,
the total number of possible splits is 2k−1 − 1 [21].

16.2.7 Comparison Method

The weighted classification tree method by Zhu et al. [22] also uses a forest of M
embedded trees to find the best split variable at each node. Again, once the best split
variable is found, the best split of all possible splits of that variable is used. However,
the forest used in the weighted classification tree method is a forest of extremely
randomized trees. These trees select one random split for each variable. The best of
these splits is used to split a node, and the split criteria is a weighted Gini impurity
score. In addition, each tree uses bootstrap samples that consist of randomly sampling
80% of the node data without replacement.

Before the overall classification tree is constructed, mean estimates for each sub-
ject are predicted using a random forest of regression trees. These estimates are used
to: (1) construct subject specific weights to be used when calculating the variable
importance scores, and (2) perform “treatment flipping”. One way to construct the
weights is to take the absolute value of the difference between outcome variable Y
and the estimated mean for each subject. Next, if a subject’s Y value is smaller than
the subject’s estimated mean, then that subject is placed in the other treatment group.
In other words, the treatment is “flipped”. Note that treatment flipping does not affect
the best predicted treatment at any terminal node of the tree and is done to solve the
problem of greater bias for splits near the boundary of a variable.

Once a forest f containing M trees is fit at a node, a weighted variable importance
score is calculated for each variable j to find the best split variable. This importance
score uses the out-of-bag (OOB) samples at a node to calculate the weighted ratio
of misclassified treatments when values are randomly permuted to the amount of
misclassification when values are left the same:

score∗
cla( f, j) = 1

M

M∑

m=1

∑
i∈Lm,o

wi I(Ai �= f̂m (x(− j)
i ,x̃ ( j)

i )
)

∑
i∈Lm,o

wi I(Ai �= f̂m (x(− j)
i ,x ( j)

i )
) − 1. (16.7)
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f̂m denotes the predicted best treatment classes of the mth tree in the forest. Lm,o

is the OOB data for the mth tree. For the OOB samples, wi is the i th subject’s
weight, Ai is the i th subject’s treatment assignment after treatment flipping, x(− j)

i is
the i th subject’s vector of data without variable j , x ( j)

i is the i th subject’s value of
variable j , and x̃ ( j)

i is an independent, randomly permuted copy of variable j . I is
the indicator function. The best split variable is the variable with the largest value of
score∗

cla( f, j).

16.2.8 Implementation

The proposed method is implemented using an R program. The R code calls a C pro-
gram to generate the final classification tree. The C backend is used to take advantage
of C’s higher computational speed in comparison to R. Meanwhile, the weighted
classification method developed by Zhu et al. [22] is implemented using their RLT
package on CRAN. All computations for the simulation studies and data analysis are
implemented in R.

16.3 Simulation Studies

16.3.1 Methods

In addition to theweighted classification tree and proposedDIPMmethods, two other
methods are compared in our simulation studies. These additional methods do not
use a random forest at each node. Instead, the additional methods are tree methods
that consider all possible splits of all candidate variables at each node. One of these
methods uses the weighted Gini impurity score to compare all splits, while the other
uses the “DIFF” score described in Sect. 16.2.3. These methods act as controls to
further study the effect of using a broader pool of candidate splits.

16.3.2 Scenarios

The following scenarios assess the proposed DIPM method and compare it to the
weighted classification tree method. The overall strategy is to design scenarios with
known, underlying signals and then measure how often each method accurately
detects these signals. This strategy allows us to compare the variable importance
scores of the weighted and proposed methods. Recall that the DIPM method is
an exploratory method as opposed to a confirmatory model, and the primary goal
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is to identify important variables in the context of precision medicine. Therefore,
measuring correct variable selection alone is sufficient.

In particular, the simulations are designed to assess how each method performs
with increasing amounts of correlation. Altogether, we expect each method to per-
form worse with greater amounts of correlation, while we are interested in assessing
how each method performs in comparison with the others. Note that in all sim-
ulations, treatment assignments are randomly generated from {A, B} with equal
probability. IA and IB denote the indicators for assignments to treatments A and B
respectively. Furthermore, the error term ε in each scenario is normally distributed,
i.e., ε ∼ N (0, 1).

Scenarios 1 through 4 assess method performance as the magnitude of correlation
between so-called Z variables and truly important variables increases. In scenarios
1 through 4, there are 250 X variables in the data that are all ordinal. In addition
to the X variables, 50 Z variables are part of the data. Each Z is highly correlated
with truly important variables as specified for each scenario below. The formulas
used to calculate the correlated Z variables include a random term εi that is normally
distributed, i.e., εi ∼ N (0, sd = σ). When generating the Z variables, decreasing
values of σ are used. As σ decreases, the correlation between the Z variables and
the important variables increases. For each value of σ , 1000 simulations are run for
sample sizes of 250 subjects. Overall, we expect method performance to decrease
as σ decreases, i.e., as the correlation level between each Z variable and a truly
important variable increases.When the correlation level is greater, the probability that
each method erroneously selects a correlated Z variable instead of a truly important
variable is greater as well.

Scenario 1: The first scenario consists of an underlying linear model containing
the treatment and one important continuous variable. The formula for the outcome
variable Y is:

Y = 10.2 − 0.3IB − 0.1X1 + 2.9IB X1 + ε.

The 250 X variables in the data are all independent and normally distributed,
i.e., N (0, 1). The 50 Z variables in the data are each highly correlated with
variable X1 and calculated as follows: Zi = 0.8X1 + 0.1X2 + 0.1X3 + εi , where
εi ∼ N (0, sd = σ).

Scenario 2: The second scenario consists of an underlyingmodelwith an exponential
term containing the treatment and two important continuous variables. The formula
for the outcome variable Y is:

Y = 10.2 + 0.1IB exp {(X2 − 0.3)2 + (X10 − 0.1)2} + ε.

The 250 X variables in the data are all independent and normally distributed, i.e.,
N (0, 1). The first 25 Z variables are highly correlated with variable X2 and cal-
culated as follows: Zi = 0.1 X1 + 0.8 X2 + 0.1X3 + εi , where εi ∼ N (0, sd = σ).
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The last 25 Z variables are highly correlated with X10 and calculated as follows:
Zi = 0.1X1 + 0.8X10 + 0.1X3 + εi , where εi ∼ N (0, sd = σ).

Scenario 3: The third scenario consists of an underlying tree model containing the
treatment and two important binary variables. The formula for the outcome variable
Y is:

Y = 10.2 + IA I{X2≤0∪X10≤1} + 2.6IB I{X2>0∪X10>1}
+0.3X30 + 0.6X20 − 0.5X11X13 + ε.

The first 230 X variables in the data are from the Discrete Uniform distribution, i.e.,
Discrete Uniform[0, 2]. These variables are meant to simulate SNP data that have
possible values of 0, 1, or 2. The next 10 X variables are Poisson distributed with
mean 1, i.e., Poisson(1). The final 10 X variables are Poisson distributedwithmean 2,
i.e., Poisson(2). The Poisson distributed variables aremeant to simulate ordinal count
data that could be collected in a clinical trial. In addition, the first 25 Z variables
are highly correlated with variable X2 and calculated as follows: Zi = X2 + εi ,
where εi ∼ N (0, sd = σ). The last 25 Z variables are highly correlated with X10 and
calculated as follows: Zi = X10 + εi , where εi ∼ N (0, sd = σ). All 50 Z variables
are rounded to the nearest integer. To continue simulating SNP data, values less than
0 are set to 0, and values exceeding 2 are set to 2.

Scenario 4: The fourth scenario consists of an underlying tree model containing the
treatment and three important binary variables. The formula for the outcome variable
Y is:

Y = I(X1≤0∩X2≤0)(14IA + 13IB)

+I(X1≤0∩X2>0)(12IA + 16IB)

+I(X1>0∩X3≤0)(13IA + 11IB)

+I(X1>0∩X3>0)(13IA + 14IB) + ε.

The first 230 X variables in the data are from the Discrete Uniform distribution,
i.e., Discrete Uniform[0, 2]. These variables are meant to simulate SNP data that
have possible values of 0, 1, or 2. The next 10 X variables are Poisson distributed
with mean 1, i.e., Poisson(1). The final 10 X variables are Poisson distributed with
mean 2, i.e., Poisson(2). The Poisson distributed variables are meant to simulate
ordinal count data that could be collected in a clinical trial. In addition, the 50 Z
variables in the data are each highly correlated with variable X1 and calculated as
follows: Zi = X1 + εi , where εi ∼ N (0, sd = σ). All 50 Z variables are rounded
to the nearest integer. To continue simulating SNP data, values less than 0 are set to
0, and values exceeding 2 are set to 2.

Scenarios 5 through 8 assess method performance as the number of variables
correlated with truly important variables increases. In scenarios 5 through 8, there
are 100 X variables in the data that are all ordinal and independent and normally
distributed, i.e., N (0, 1). In addition to the X variables, a varying number of Z vari-
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ables are part of the data. Each Z is highly correlated with truly important variables
and calculated as specified for each scenario below. For each varying number of Z
variables, 1000 simulations are run for sample sizes of 250 subjects. Overall, we
expect method performance to decrease as the number of Z variables in the data
increases. As the number of Z variables increases, the chance of selecting a corre-
lated Z variable instead of a truly important variable also increases.

Scenario 5: The fifth scenario consists of an underlying linear model containing
the treatment and one important continuous variable. The formula for the outcome
variable Y is:

Y = 10.2 − 0.3IB − 0.1X1 + 2.9IB X1 + ε.

Each Z variable in the data is highly correlated with X1 and calculated as follows:
Zi = 0.8X1 + 0.1X2 + 0.1X3 + εi , where εi ∼ N (0, sd = 0.5).

Scenario 6: The sixth scenario consists of an underlying model with an exponential
term containing the treatment and two important continuous variables. The formula
for the outcome variable Y is:

Y = 10.2 + 0.1IB exp {(X2 − 0.3)2 + (X10 − 0.1)2} + ε.

Each Z variable in the data is highly correlated with X2 and calculated as follows:
Zi = 0.1X1 + 0.8X2 + 0.1X3 + εi , where εi ∼ N (0, sd = 0.5).

Scenario 7: The seventh scenario consists of an underlying tree model containing the
treatment and two important binary variables. The formula for the outcome variable
Y is:

Y = 10.2 + IA I{X2≤0∪X10≤1} + 2.6IB I{X2>0∪X10>1}
+0.3X30 + 0.6X20 − 0.5X11X13 + ε.

Each Z variable in the data is highly correlated with X2 and calculated as follows:
Zi = 0.1X1 + 0.8X2 + 0.1X3 + εi , where εi ∼ N (0, sd = 0.5).

Scenario 8: The final scenario consists of an underlying tree model containing the
treatment and three important binary variables. The formula for the outcome variable
Y is:

Y = I(X1≤0∩X2≤0)(14IA + 13IB)

+I(X1≤0∩X2>0)(12IA + 16IB)

+I(X1>0∩X3≤0)(13IA + 11IB)

+I(X1>0∩X3>0)(13IA + 14IB) + ε.

Each Z variable in the data is highly correlated with X1 and calculated as follows:
Zi = 0.8X1 + 0.1X2 + 0.1X3 + εi , where εi ∼ N (0, sd = 0.5).
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16.3.3 Results

All simulation results are presented in Table16.1. As expected, across all of the
simulation scenarios, as the amount of correlation between the Z variables and truly
important variables increases, method performance decreases. Method performance
is assessed bymeasuring eachmethod’s ability to select the correct relevant variables
at early splits. In general, the forest based methods tend to outperform the control
methods in scenarios with non-tree models, i.e., scenarios 1 and 5 which contain a
linear term and scenarios 2 and 6 which contain an exponential term. Meanwhile,

Table 16.1 Results of simulation scenarios. Proportions of correct variable selection are displayed
for each method

Scenario S.D. Forest Tree

Weighted DIPM
mtry

DIPM no
mtry

Weighted DIFF

1. Linear 0.5 0.998 0.993 0.946 0.972 0.913

0.4 0.950 0.926 0.759 0.876 0.742

0.3 0.751 0.722 0.457 0.586 0.480

2. Exponential term 0.5 0.028 0.083 0.042 0.051 0.034

0.4 0.013 0.061 0.020 0.034 0.024

0.3 0.009 0.037 0.013 0.018 0.014

3. Tree of depth 2 0.5 0.618 0.412 0.293 0.595 0.438

0.4 0.307 0.236 0.062 0.311 0.207

0.3 0.020 0.058 0.001 0.033 0.014

4. Tree of depth 3 0.5 0.038 0.090 0.048 0.110 0.289

0.4 0.012 0.027 0.000 0.037 0.093

0.3 0.000 0.002 0.000 0.000 0.001

# of Z Vars.

5. Linear 0 1.000 0.999 1.000 1.000 1.000

10 1.000 0.995 0.995 0.996 0.979

100 0.980 0.978 0.886 0.956 0.872

6. Exponential term 0 0.297 0.599 0.661 0.463 0.329

10 0.138 0.335 0.352 0.215 0.154

100 0.067 0.191 0.243 0.066 0.073

7. Tree of depth 2 0 1.000 0.997 0.994 1.000 0.990

10 0.882 0.870 0.866 0.949 0.886

100 0.548 0.530 0.497 0.707 0.593

8. Tree of depth 3 0 0.221 0.270 0.245 0.194 0.168

10 0.032 0.072 0.168 0.192 0.164

100 0.002 0.007 0.044 0.180 0.141
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Fig. 16.2 Results of CCLE data application from Zhu et al. [22]. Boxplots comparing the two
treatments are in each node, and paired t-test p-values are beneath terminal nodes. For the first split
using tissue, S1 is the set of categories: autonomic ganglia, large intestine, pancreas, skin, biliary
tract, oesophagus, stomach, thyroid, and urinary tract

the control methods tend to outperform the forest based methods in scenarios with
underlying tree models, i.e., scenarios 3, 4, 7, and 8.

When comparing the DIPM method that selects mtry variables at each node in
embedded trees with the weighted classification tree method, the weighted method
slightly outperforms the DIPM method in scenarios 1, 5, and 7. However, in sce-
narios 2, 4, 6, and 8, the DIPM method outperforms the weighted method. Finally,
in scenario 3, the weighted method outperforms the DIPM method until σ = 0.3.
Based on these simulation scenarios, the DIPM method demonstrates comparable
and sometimes superior performance in comparison to the more complex weighted
method. Although the DIPM method does not consistently outperform the weighted
method, recall that our goal is to demonstrate how our intuitive and easy-to-compute
importance score can still yield generally comparable performance to the weighted
method. These initial developments will then set the stage for consistently better
performance in data of greater complexity in future work.
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Fig. 16.3 Results of CCLE data application using the DIPM method. Boxplots comparing the two
treatments are in each node, and paired t-test p-values are beneath terminal nodes. For the first split
using tissue, S2 is the set of categories: autonomic ganglia, large intestine, pancreas, and skin

16.4 Analysis of CCLE Data

The DIPM method is applied to a real-world dataset. The data used are a product
of the Cancer Cell Line Encyclopedia (CCLE) project by the Broad Institute and
the Novartis Institutes for Biomedical Research [1]. The data consist of genetic
information and pharmacologic outcomes for more than 1,100 human cancer cell
lines. The data are publicly available online (https://portals.broadinstitute.org/ccle/)
and are also used by Zhu et al. in their paper [22].

Drug activitymeasures ofmultiple drugs are recorded for each cell line. Following
the analysis by Zhu et al., two drugs, RAF265 and PD-0325901, are selected for the
present analysis. Although Zhu et al. pre-screen the gene expressions and use only
the top 500 genes, we use all available gene expressions. For the two selected drugs,
there are 447 cell lines, 18,988 gene expressions, and 3 clinical variables available
for analysis. The clinical variables are gender, tissue type, and histology. Since the
outcome variable is measured for each cell line for each of the two treatments, the
final dataset contains 894 observations and 18,991 candidate split variables. All in
all, the application of the proposed method to these data produce useful insights.
We can use the DIPM method to search for genetic and/or clinical subgroups with
varying drug activity levels across the two selected drugs. Moreover, the application
presents us with the opportunity to apply the proposed method to a dataset with a
large number of candidate split variables.

The constructed tree for the DIPMmethod is compared to the final tree presented
by Zhu et al. [22]. The two trees are depicted in Figs. 16.2 and 16.3. Since their

https://portals.broadinstitute.org/ccle/


16 Depth Importance in Precision Medicine … 257

final tree has a maximum depth of 4, we also present the results with a maximum
depth of 4. Terminal node pairs with different optimal treatments are pruned. This
simple pruning strategy removes redundant splits and is proposed in Tsai et al. [18].
Furthermore, paired t-test p-values comparing the mean drug activity levels of each
treatment are reported beneath the terminal nodes of the two trees. This is done to
help quantify how different the two drugs are with respect to drug activity levels
within each subgroup. Note that the paired t-test is used since the outcome variable
is recorded for both drugs for each cell line.

Both methods identify tissue type as the best split variable at the root node.
Though the first split variable is the same, the split values are slightly different.
The weighted method places tissue categories autonomic ganglia, large intestine,
pancreas, skin, biliary tract, oesophagus, stomach, thyroid, and urinary tract in the
child node that identifies PD-0325901 as the optimal treatment. Meanwhile, the
DIPM method places only autonomic ganglia, large intestine, pancreas, and skin in
the child node that identifies PD-0325901 as the optimal treatment. Despite these
differences, ultimately, the t-test p-values comparing the two treatments in these
nodes are both approximately equal, i.e., p-value = 2.2e-16.

Meanwhile, the subsequent splits of the DIPM method tree differ from those in
Zhu et al.’s final tree. The other splits in Zhu et al.’s final tree use the PLA2G4A
and COL5A2 genes. By contrast, the other splits in the proposed method’s tree use
KCNK2, DCLK2, PARP14, and OXTR. Although neither method clearly outper-
forms the other in this data application, overall, these results point to the robustness
of the effect of tissue type as a potentially useful subgroup indicator. The identi-
fied gene expression variables by both methods are also potentially useful subgroup
indicators that would have to be examined further for true biological relevance.

16.5 Discussion

In this article, we present the novel DIPM method. The DIPM method is an
exploratory method designed to search through existing clinical data for variables
that are important in the context of precision medicine. We demonstrate how the
proposed method performs well and, in particular, how it compares to the weighted
classification tree developed by Zhu et al. [22]. In our simulations, the depth variable
importance score demonstrates comparable and sometimes better performance than
the variable importance score of the weighted method. The DIPM method achieves
this level of performance as a simpler method overall. The DIPM method has no
subject specific weights, has no treatment flipping, and considers all possible splits
instead of one random split per variable at the nodes of embedded trees. Searching
through all splits strengthens the proposed method and better ensures that signals are
not missed by sheer chance as in the weighted method. Furthermore, calculating the
depth variable importance score is simpler than randomly permuting each variable
and counting the misclassifications of out-of-bag samples at each node. In short, the
proposed method is less complicated and easier to understand.
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Although the presently proposed DIPM method is restricted to the analysis of
datasets with continuous outcome variables, the flexibility of the depth variable
importance score makes the method readily extendable to other outcome variable
types. One useful extension of the DIPM method will be the application to censored
survival outcomes. To achieve this application, we will redefine the split criteria and
the G statistic in the depth variable importance score accordingly. Note that Zhu et
al. have already extended their weighted classification tree method to the analysis of
right-censored survival data. It would be interesting to discoverwhether ourmarkedly
simpler method can in fact outperform the weighted method for data with survival
endpoints. Also, it would be useful to extend the DIPMmethod to data with longitu-
dinal outcomes. As mentioned in the introduction, to date, only IT and GUIDE have
an extension for data with longitudinal outcomes. It would be interesting to create
and assess the performance of the DIPM method when adapted to longitudinal data
as well.

A topic of interest for future consideration is covariate selection bias. When
searching for the best split at a node, covariates with a greater number of possible
splits tend to be selected more often than covariates with fewer splits. The concern is
that this phenomenon occurs even when the covariate is not relevant. In this research
setting, only Loh et al. have directly addressed this bias by developing a two-step
approach [10, 11]. Though we are aware of this bias, we do not directly address
covariate selection bias with the proposed method. We aim to continue to consider
this issue while developing tree-based methodology moving forward.
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Chapter 17
Bayesian Mixture Models with
Weight-Dependent Component Priors

Elaheh Oftadeh and Jian Zhang

Abstract In the conventionalBayesianmixturemodels, independent priors are often
assigned to weights and component parameters. This may cause bias in estimation of
missing group memberships due to the domination of these priors for some compo-
nents when there is a big variation across component weights. To tackle this issue, we
propose weight-dependent priors for component parameters. To implement the pro-
posal, we develop a simple coordinate-wise updating algorithm for finding empirical
Bayesian estimator of allocation or labelling vector of observations. We conduct a
simulation study to show that the newmethod can outperform the existing approaches
in terms of adjusted Rand index. The proposed method is further demonstrated by a
real data analysis.

17.1 Introduction

Finite mixture models are a popular tool for modelling unobserved heterogeneity in
many applications including biology, medicine, economics and engineering among
many others (e.g., [3, 4]). Suppose that we sample y = (y1, · · · , yN ) from a popu-
lation with K groups, described by mixture distribution

p(yi |θ, η) =
K∑

k=1

ηk p(yi |θ k),

with unknown component parameters θ = (θ1, · · · , θK ) and unknown weights η =
(η1, ..., ηK ). Given the dataset y = (y1, · · · , yN ), we want to infer parameters (θ, η)
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aswell as unobserved component origins of these observations, labelled by allocation
(or labelling) vector S = (s1, ..., sN ). In Bayesian inference, we often adopt the
following hierarchical setting:

p(y|θ , η, S) =
K∏

k=1

∏

Si=k

p(yi |θ k), p(S|η) =
K∏

k=1

η
∑N

i=1 I (Si=k)
k ,

p(η) = Γ (Ke0)

Γ (e0)K

K∏

k=1

η
e0−1
k , e0 > 0, (θ , η)) ∼ p(θ)p(η),

where I (·) is an indicator function, p(y|θ , η, S)p(S|η) is the complete likelihood
and θ and η are of independent priors. The above setting is useful for fitting finite
mixture models to data, because they enable the uncertainty in the model parameters
to be directly quantified by the posterior distribution. However, it is difficult to make
an objective prior setting for the component parameters (such as the component
means and variances, in univariate Gaussian mixtures), when there is no subjective
information available on which a prior could be based. For example, when some
component weights are small, only a small proportion of observations are expected
to obtain from these components. In such a situation, the priors can easily dominate
the data for these components. Such a prior domination in the inference can cause
a bias. To reduce the bias, we need to set these priors compatible to the available
information from the data. Ideally, the priors are set to be close to non-informative.On
the other hand, standard non-informative priors such as the Jeffreys prior generally
cannot be used here, because placing independent improper priors on the component
parameters will cause the posterior to be improper as well [9]. This motivates us
to explore the advantage of the weight-dependent component priors. In this paper,
we propose a new weight-dependent prior specification for finite mixture models
in the form (θ , η) ∼ p(θ |η)p(η). We develop a coordinate-wise updating algorithm
for conducting Bayesian inference: First, given the data, derive a marginal posterior
distribution for allocation vector S and optimize it over the labelling space to obtain
an optimal allocation estimate Ŝ. Then, conditional on Ŝ, calculate the posterior
distribution of parameters (θ , η). We conduct a simulation study to show that the
new approach can outperform the existing methods in terms of adjusted Rand index.
The proposed method is further demonstrated by a real data analysis.

The remaining of the paper is organized as follows. The details of the proposed
methodology and algorithm are provided in Sect. 17.2. A comparison to the existing
methods are made through a simulation study in Sect. 17.3. A real data application
is presented in Sect. 17.4. The conclusion is made in Sect. 17.5.
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17.2 Methodology

In Bayesian inference, the main task is to calculate the posterior distribution of
unknown parameters by combining the prior information about the parameters of
interest with the data. Let ϑ = (θ , η). By augmenting the missing allocation vector
S into the finite mixture model and letting p(S|ϑ) = ∏K

k=1 η
Nk (S)
k with Nk(S) being

the size of group k, we can link the incomplete likelihood to the complete likelihood
as follows:

p(y|ϑ) =
∫

p(y|ϑ, S)p(S|ϑ)dS.

Denote the complete data by (y,S) and the complete-data likelihood by

p(y, S|ϑ) = p(y|S,ϑ)p(S|ϑ) =
N∏

i=1

p(yi |ϑ, Si )p(Si |ϑ).

Note that p(yi |Si = k,ϑ) = p(yi |θ k) and P(Si = k|ϑ) = ηk . Therefore, the
complete-data likelihood function can be rewritten as

p(y, S|ϑ) =
N∏

i=1

K∏

k=1

(p(yi |θk)ηk)I (Si=k) =
⎛

⎝
K∏

k=1

η
Nk (S)
k

⎞

⎠
K∏

k=1

⎛

⎝
∏

i :Si=k

p(yi |θk)
⎞

⎠ .

(17.1)
We assign a Dirichlet prior to the weights with the concentration parameter e0 in the
form

p(η) = Γ (Ke0)

Γ (e0)K

K∏

k=1

η
e0−1
k .

By integrating outη in p(S|η)p(η|e0),we obtain themarginal prior on S andposterior
of η as follows

p(S) = Γ (Ke0)

Γ (e0)K

∫ K∏

k=1

η
Nk (S)+e0−1
k dηk, p(η|S) = p(S|η)p(η)

p(S)
.

Once we have an estimate of S, using the above formulas we are able to calculate the
posterior of η. So, in the following, we focus on Bayesian clustering, i.e., Bayesian
estimation of allocation vector S.

One of the pioneering works in Bayesian clustering was done by [1], where the
problem was formulated in a Bayesian decision theoretic framework with a loss
function R(S, Ŝ). This loss function measures the difference between the estimate Ŝ
and the true grouping S. Here, we take an empirical Bayesian method by optimizing
the marginal posterior of allocation vector of S, p(S|y). In the simulation study,
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we evaluate the accuracy of the clustering by calculating the similarity between the
estimated and the true labelling by the so-called adjusted Rand index [5, 7]. We
consider two different sets of hierarchical priors and derive the corresponding pos-
teriors. In the Bayesian inference for Gaussian mixtures, it is common to choose the
component parameter priors to be independent of weights. We derive the posteriors
for Bayesian mixture models with independent priors in Sect. 17.2.1.1 and for the
models with dependent priors in Sect. 17.2.1.2 below. Although from now on we
focus on univariate normal mixtures, the method can be extended to other mixtures
such as multivariate normal or non-normal mixtures. For simplicity, we assume that
K is known. Otherwise, we can take a Poisson distribution as a prior for K .

17.2.1 Mixture of Univariate Normals

Suppose that yi ∼ N (μk, σ
2
k ), i = 1, · · · , N , with θ k = (μk, σ

2
k ), k = 1, 2, ..., K .

For the univariate normal mixtures, we first derive the posterior distribution for mean
μk and variance σ 2

k , k = 1, ..., K , given the complete data (y, S). We then work out
the formulas for calculating and optimizing p(S|y).

17.2.1.1 Weight-Independent Component Priors

We start with a review of the conventional hierarchical model with weight-
independent priors on (μk, σ

2
k ) in [2, 3]:

yi ∼ N (μk, σ
2
k ), μk ∼ N (μk0, σ

2
k0), σ 2

k ∼ IG(a0, b0),

where IG(a0, b0) is an inverse Gamma density with hyperparameters (a0, b0).
The posterior probability of μk given the complete data (S, y) and σ 2

k can be
written as

p(μk |y,S, σ 2
k ) ∝ p(y|μk, σ

2
k ,S)p(μk)

∝ exp

{
−1

2

(
Nk(S)

σ 2
k

+ 1

σ 2
k0

)(
μk −

∑
yi

σ 2
k

+ μk0

σ 2
k0

)2
}

.

Thus the posterior distribution of μk is the following normal distribution

p(μk |y, S, σ 2
k ) ∼ N (bk(S), Bk(S)), Bk(S)−1 = σ−2

k0 + σ−2
k Nk(S)

bk(S) = Bk(S)
(
σ−2
k Nk(S)ȳk(S) + σ−2

k0 μk0
)
,
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where the sample mean and variance in the kth group are denoted by

ȳk(S) = 1

Nk(S)

∑

i :Si=k

yi , S2y,k = 1

Nk(S)

∑

i :Si=k

(yi − ȳk(S))2.

Similarly, for σ 2
k we have

σ 2
k |y, S, μk ∼ G −1(ck(S),Ck(S)), ck(S) = a0 + 1

2
Nk(S),

Ck(S) = b0 + 1

2

∑

i :Si=k

(yi − μk)
2.

If we are able to calculate themaximummarginal posterior estimator of the alloca-
tion vector, Ŝ = argmaxS p(S|y), thenwe can directly calculate posterior distribution
of (θ, η). To derive the marginal posterior distribution of allocations, we integrate
out (θ , η) from the model, i.e., consider the following integration

p(S|y) =
∫∫

p(y|η,S, θ)p(S|η)p(η)p(θ)dθdη

= 2Ka0NK/2
0

(
1

π

)N/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K

K∏

k=1

√
1

Nk(S) + N0

×
∏K

k=1 Γ (Nk(S) + e0)

Γ (Ke0 + N )

K∏

k=1

B−(a0+ Nk (S)

2 )

K∏

k=1

Γ (a0 + Nk(S)

2
),

where

S2y,k = 1

Nk(S)

∑

i :Si=k

(yi − ȳk(S))2

B = Nk(S)S2y,k(S) + 2b0 + Nk(S)N0

Nk(S) + N0
(ȳ(S) − μk0)

2.

Taking logarithm, we have

log(p(S|y)) ∝
K∑

k=1

logΓ (Nk(S) + e0)
K∑

k=1

logΓ (a0 + Nk(S)

2
)

−
K∑

k=1

1

2
log(Nk(S) + N0) −

K∑

k=1

(a0 + Nk(S)/2) logB. (17.2)
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17.2.1.2 Weight-Dependent Component Priors

Although we consider the same normal mixture model as in the previous section,
we allow certain dependency of the hierarchical priors on component weights as
follows:

μk |σ 2
k , ηk ∼ N (μk0,

σ 2
k0

N0ηk
), σ 2

k ∼ IG(a0, b0), k = 1, ..., K . η ∼ D(e0, · · · , e0),

where D(e0, · · · , e0) is a Dirichlet density with concentration parameter e0. Since
N0 is the total number of prior units we assign to the model, N0ηk is the number
of prior units we assign to μk . Unlike the weight-independent priors, the prior of
μk is adaptive to ηk in the sense that the amount of priors will be varying in ηk , in
particular, it will be nearly non-informative when ηk tends to zero. The posterior of
μk given (S, y), σ 2

k and ηk can then be written as

p(μk |y, S, σ 2
k , ηk) ∝ p(y|μk, σ

2
k ,S)p(μk |ηk)

∝
K∏

k=1

(
1

σ 2
k

)−Nk (S)/2 exp

⎧
⎨

⎩− 1

2σ 2
k

∑

i :Si=k

(yi − μk)
2

⎫
⎬

⎭

× (
1

σ 2
k0

ηk)
1/2 exp

{
− 1

2σ 2
k0ηk

(μk − μk0)
2

}

∝ exp

{
−1

2

(
Nk(S)

σ 2
k

+ 1

σ 2
k0ηk

)(
μk −

∑
yi

σ 2
k

+ μk0

σ 2
k0ηk

)2
}

.

Thus the posterior distribution of μk is the following normal distribution

p(μk |y, S, σ 2
k , ηk) ∼ N (bk(S), Bk(S)),

Bk(S)−1 = σ−2
k0 η−1

k + σ−2
k Nk(S)

bk(S) = Bk(S)
(
σ−2
k Nk(S)ȳk(S) + η−1

k σ−2
k0 μk0

)
,

where the sample mean and variance in the kth group are denoted by

ȳk(S) = 1

Nk(S)

∑

i :Si=k

yi , s2y,k = 1

Nk(S)

∑

i :Si=k

(yi − ȳk(S))2.

Similarly, for σ 2
k we have
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σ 2
k |y, S, μk ∼ G −1(ck(S),Ck(S)),

ck(S) = a0 + 1

2
Nk(S),

Ck(S) = b0 + 1

2

∑

i :Si=k

(yi − μk)
2.

According to the above hierarchical prior setting, the joint distribution of the data
and the model parameters can be expressed as

p(y|S,ϑ)p(S|η)p(θ |η)p(η)

=
N∏

i=1

K∏

k=1

(
p(yi |μk, σ

2
k )ηk

)ISi=k

K∏

k=1

p(μk |σ 2
k , ηk)p(σ

2
k )p(ηk)

=
K∏

k=1

⎛

⎜⎝
∏

i :Si=k

1√
2πσ 2

exp

⎧
⎪⎨

⎪⎩
−

∑
i :Si=k

(yi − μk)
2

2σ 2
k

⎫
⎪⎬

⎪⎭

⎞

⎟⎠

⎛

⎝
K∏

k=1

η

N∑
i=1

ISi=k

k

⎞

⎠

×
K∏

k=1

(
N0ηk

2πσ 2
k

)1/2

exp

{
−N0ηk

2σ 2
k

(μk − μk0)
2

}

×
K∏

k=1

ba00
Γ (a0)

(σ 2
k )−a0−1 exp

{−b0/σ
2
k

} × Γ (
∑K

k=1 e0)∏K
k=1 Γ (e0)

K∏

k=1

η
e0−1
k .

Therefore,

p(y|S,ϑ)p(S|η)p(θ |η)p(η)

=
(

1

2π

)
K∑

k=1
Nk (S)

2
(
N0

2π

)K/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K

×
K∏

k=1

exp

⎧
⎪⎨

⎪⎩
−

∑
i :Si=k

(yi − μk)
2 + N0ηk(μk − μ0)

2 + 2b0

2σ 2
k

⎫
⎪⎬

⎪⎭

×
K∏

k=1

η
e0+Nk (S)−1/2
k

K∏

k=1

1

σ
2(a0+1)+Nk (S)+1
k

After doing some simple algebra we get
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p(y|S,ϑ)p(S|η)p(θ |η)p(η)

=
(

1

2π

)N/2 ( N0

2π

)K/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K

×
K∏

k=1

exp

⎧
⎪⎨

⎪⎩
−

(Nk(S) + N0ηk)
[
μk − Nk (S)ȳk (S)+N0ηkμk0

Nk (S)+N0ηk

]2

2σ 2
k

⎫
⎪⎬

⎪⎭

×
K∏

k=1

exp

{
−Nk(S)S2y,k(S) + 2b0 + Nk (S)N0ηk

Nk (S)+N0ηk
(ȳk(S) − μk0)

2

2σ 2
k

}

×
K∏

k=1

η
e0+Nk (S)−1/2
k

K∏

k=1

1

σ
2(a0+1)+Nk (S)+1
k

Now we are going to find the marginal posterior distribution of the allocation vector
p(S|y) by integrating out all parameters. We first integrate out μk from the above
expression and we get

K∏

k=1

∫
p(y,S|ϑ)p(S|η)p(θ)p(η)dμk

= NK/2
0

(
1

2π

)N/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K

K∏

k=1

√
1

Nk(S) + N0ηk

×
K∏

k=1

exp

{
−Nk(S)S2y,k(S) + 2b0 + Nk (S)N0ηk

Nk (S)+N0ηk
(ȳk(S) − μk0)

2

2σ 2
k

}

×
K∏

k=1

η
e0+Nk (S)−1/2
k

K∏

k=1

1

σ
2(a0+1)+Nk (S)+2
k

Finally integrating out σk and ηk , the posterior p(S|y) is obtained as

p(S|y) =
1∫

0

∫∫
p(y|η,S, θ)p(S|η)p(η)p(θ)dθdη

= NK/2
0

(
1

π

)N/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K
2Ka0

×
∏K

k=1 Γ (Nk(S) + e0 + 1/2)

Γ (N + Ke0 + K/2)

K∏

k=1

Γ (Nk(S)/2 + a0)

×
K∏

k=1

1∫

0

B(ηk)
−a0− Nk (S)

2

(Nk(S) + N0ηk)1/2
dηk, (17.3)
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where

B(ηk) = Nk(S)S2y,k(S) + 2b0 + Nk(S)N0ηk

Nk(S) + N0ηk
(ȳk(S) − μk0)

2.

As we can see for the case with dependent hierarchical priors there is no explicit
form for the posterior p(S|y). Due to this formulation, we faced some challenges
in calculating the integration in the expression (17.3). Calculating this integration is
not always possible in a usual way as a result of overflow or underflow, depending
on simulation settings. To address this issue we calculate this definite integral by
calculating Riemann sums over a partition of [0, 1].

Note that

1∫

0

f (ηk)dηk =
1∫

0

(Nk(S)S2y,k(S) + 2b0 + Nk (S)N0ηk
Nk (S)+N0ηk

(ȳk(S) − μk0)
2)−a0− Nk (S)

2

(Nk(S) + N0ηk)1/2
.

We rearrange the above integrand as follows:

f (ηk) = (Nk(S)S2y,k(S))−a0−Nk (S)/2D(ηk)
−a0−Nk (S)/2

Nk(S)1/2
(
1 + N0ηk

Nk (S)

)1/2 , (17.4)

where

D(ηk) = 1 + 1

Nk(S)S2y,k(S)

(
2b0 + Nk(S)N0ηk

Nk(S) + N0ηk
(ȳk(S) − μk0)

2

)
(17.5)

We partition [0, 1] into subintervals [x0, x1], [x1, x2], · · · , [xn−1, xn] with Δxi =
xi − xi−1 = 1/n and x∗

i = iΔxi . This leads to

1∫

0

f (ηk)dηk ≈ 1

n

n∑

i=1

fk(x
∗
i ).

Evenusing the above approximationdidnot completely solve the problemof overflow
and underflow and we still got some infinity values in numerical calculations. To
tackle this problemwe divide all summands by the largest element which is fk(x∗

n ) =
fk(1). Therefore we calculate

1∫

0

f (ηk)dηk ≈ fk(x∗
n )

n

n∑

i=1

fk(x∗
i )

fk(x∗
n )

, (17.6)

where according to the equation (17.4) we have
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fk(x∗
i )

fk(x∗
n )

= (1 + N0
Nk (S)

)1/2

(1 + N0x∗
i

Nk (S)
)1/2(

Dk (x∗
i )

Dk (1)
)a0+Nk (S)/2

.

Now according to the expression (17.5) we have

Dk(x∗
i )

Dk(1)
≈

Nk(S)S2y,k(S) + 2b0 + Nk (S)N0x∗
i

Nk (S)+N0x∗
i
(ȳk(S) − μk0)

2

Nk(S)S2y,k(S) + 2b0 + Nk (S)N0
Nk (S)+N0

(ȳk(S) − μk0)2

=
S2y,k(S) + 2b0

Nk (S)
+ N0x∗

i
Nk (S)+N0x∗

i
(ȳk(S) − μk0)

2

S2y,k(S) + 2b0
Nk (S)

+ N0
Nk (S)+N0

(ȳk(S) − μk0)2
.

In order to use the latter expression in computational programming and avoid any
possible underflow issue, we further rearrange the latter expression to get

Dk(x∗
i )

Dk(1)
= 1 −

(ȳk(S) − μk0)
2
(

N0
Nk (S)+N0

− N0x∗
i

Nk (S)+N0x∗
i

)

S2y,k(S) + 2b0
Nk (S)

+ N0
Nk (S)+N0

(ȳk(S) − μk0)2

= 1 −
N0

Nk (S)+N0

(
1 − (Nk (S)+N0)x∗

i
Nk (S)+N0x∗

i

)
(ȳk(S) − μk0)

2

S2y,k(S) + 2b0
Nk (S)

+ N0
Nk (S)+N0

(ȳk(S) − μk0)2
.

Now the integration in (17.6) can be approximated by the following summation

fk(x∗
n )

n

n∑

i=1

fk(x∗
i )

fk(x∗
n )

= 1

n

(Nk(S)S2y,k(S))−a0− Nk (S)

2 D(1)−a0−Nk (S)/2

Nk(S)1/2

×
n∑

i=1

1

(1 + N0x∗
i

Nk (S)
)1/2(

Dk (x∗
i )

Dk (1)
)a0+Nk (S)/2

Substituting the above expression in the allocation posterior results in

p(S|y) ≈ NK/2
0

(
1

π

)N/2 ( ba00
Γ (a0)

)K
Γ (Ke0)

Γ (e0)K
2Ka0

×
∏K

k=1 Γ (Nk(S) + e0 + 1/2)

Γ (N + Ke0 + K/2)

K∏

k=1

Γ (Nk(S)/2 + a0)

× 1

n

(Nk(S)S2y,k(S))−a0−Nk (S)/2D(1)−a0−Nk (S)/2

Nk(S)1/2

×
n∑

i=1

1

(1 + N0x∗
i

Nk (S)
)1/2(

Dk (x∗
i )

Dk (1)
)a0+Nk (S)/2
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Taking the logarithm, we have

log(p(S|y)) ≈ K/2 log(N0) − N/2 log(π) + Ka0 log(b0) − K logΓ (a0)

+ logΓ (Ke0) − K logΓ (e0) + Ka0 log(2) − Γ (N + Ke0 + K/2)

+
K∑

k=1

logΓ (Nk(S) + e0 + 1/2) +
K∑

k=1

logΓ (a0 + Nk(S)

2
)

−
K∑

k=1

(a0 + Nk(S)/2)
[
log(Nk(S)) + log(S2y,k) + log(D(1))

]

−
K∑

k=1

log(n) +
K∑

k=1

log
n∑

i=1

1

(1 + N0x∗
i

Nk (S)
)1/2(

Dk (x∗
i )

Dk (1)
)a0+Nk (S)/2

(17.7)

17.3 A Simulation Study

In this section, we conduct simulations to compare the classification accuracy of
Bayesian normal mixture model with that of normal mixture models. We implement
the Bayesian normal mixture model based on both independent priors and dependent
priors. In order to compare the performance of the Bayesian mixture model to the
frequentist model, we use theMclust software, where the optimal allocation estimate
is obtained by using the Expectation-Maximization algorithm.

17.3.1 Adjusted Rand Index

We reviewone of thewidely usedmethods called adjustedRand index for quantifying
the degree of the agreement between partitions derived from different methods. Sup-
pose we have n objects to classify and P1 = {C1, · · · ,Cr } is a partition that assigns
these objects into r classes and P2 = {C1, · · · ,Cs} assigns them into s classes. Each
pair of objects, either have the same class label or a different one. Since the number
of classified objects is n, we have the total number of n(n − 1)/2 pairs to compare.
Let a be the number of pairs that the two partitions agree by assigning the elements
to the same classes and b be the number of pairs that partitions agree by assigning
them to different classes. Considering all pairs, the proportion of agreement between
P1 and P2 is evaluated by the following Rand index (RI)

RI(P1, P2) = a + b

n(n − 1)/2
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Since the expectation of Rand index for two random partitions is not a constant, [5]
proposed a normalized Rand index which is defined by

ARI = Rand index − Expected value of Rand index

Maximum value of Rand index − Expected value of Rand index
.

When twopartitions completely agree, the adjustedRand index reaches themaximum
value 1. The higherARI value, the greater degree of agreement between twopartitions
is.

17.3.2 Simulated Data

We generated data from a normal mixture model with three components. We used
the same setting as used in one of the examples in [3] to generate the data. The
underlying weights (0.3, 0.2, 0.5). The underlying component means and variances
are (−3, 0, 2) and (1, 0.5, 0.8) respectively.

17.3.3 Results

Weutilized theBayesianmixturemodel under the followinghierarchical priorswhere
the component mean depends on the weight corresponding to that component

μk |σ 2
k , ηk ∼ N (μk0,

σ 2
k0

N0ηk
), σ 2

k ∼ IG(a0, b0), ηk ∼ D(e0, · · · , e0),

which results in the log-allocation posterior in equation (17.7). We also implemented
the Bayesian mixture model with hierarchical priors where the mean of each com-
ponent was independent of the weight as following

μk |σ 2
k ∼ N (μk0,

σ 2
k0

N0
), σ 2

k ∼ IG(a0, b0), ηk ∼ D(e0, · · · , e0).

The allocation posterior can be regarded as a function of hyperparameters
N0, a0, b0, e0, μk0. Following [8], we set μk0 to the median of the data. The hyper-
parameters are chosen as a0 = 2 and e0 = 1 and for the parameter b0 they consider
the prior b0 ∼ G(0.2, 10/R2) where R2 is the length of the interval of the variation
of the data. In order to choose N0, following [6], we set N0 = 2.6/(ymax − ymin).
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We found the optimal classification by maximizing the logarithm of the alloca-
tion posterior. The optimization was carried out by the following iterative algorithm:
We updated the coordinates of the allocation vector in one-by-one and calculated
the corresponding posterior. The algorithm started with an initial allocation vec-
tor S(0) = Scurrent by the result derived from MClust. For example, to update the
coordinate S1 corresponding to y1 while other coordinates were fixed, we gener-
ated a random number U from the uniform distribution U [0, 1]. If U < η1, assign
the observation y1 to the first component. If η1 ≤ U < η1 + η2, assign the obser-
vation to the second component. Otherwise, assign y1 to the third component. This
resulted in an updated allocation vector S(1) = Supdated. The number of elements in
each component changed. If Snew1 = S1 = k, then no moving occurred whereas, if
the observation moved to another component, say l, then the number of observations
in each component was updated as

Nk(S
new
1 , S−1) = Nk(S) − 1, Nl(S

new
1 , S−1) = Nl(S) + 1,

where S−1 = (S2, ..., SN ).Correspondingly, themean ȳk(S) and the variance Sy,k(S)

of each component were updated. Then the log-posterior p((Snew1 , S−1)|y) of the
updated allocation vector was calculated using the expression (17.7). The updated
allocation for the first observation was accepted if the updated posterior was greater
than the current posterior, i.e. p((Snew1 , S−1)|y) > p(S(0)|y). If the new allocation
was accepted, then this updated allocation was used as the current allocation in the
next iteration Scurrent = Supdated and the observation was moved to the component l.
Otherwise, the observation was kept in the current component k and the algorithm
moved to the next observation y2. These steps were repeated until all observations
i = 1 · · · , N were updated and until the posterior reaches a local maximum. Then
this optimal allocation vector was recorded and compared withMclust by computing
their adjusted Rand index.

We simulated 300datasets froma three componentmixture of normals.Weapplied
the above algorithm to find the optimal grouping for each of these data. We applied
both the weight-dependent (17.7) and weight-independent (17.2) prior approaches.

Results displayed in Fig. 17.1 show that the Bayesian clustering outperformed the
Mclust particularly when the component priors were weight-dependent. The results
illustrated that imposing dependency of component priors on weights can reduce
the bias of clustering due to the effect of weight heterogeneity. Note that if we used
a more refined optimization algorithm such as evolutionary Markov chain Monte
Carlo algorithms rather than a simple coordinate-wise updating optimization, then
the result would be further improved. See [10, 11].
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Fig. 17.1 Boxplots of adjustedRand index values corresponding to the classifications performed by
applying Bayesian mixture model with weight-dependent priors (BMD), Bayesian mixture model
with weight-independent priors (BMI) and the non-Bayesian mixture of normals (Mclust), where
N0 = 2.6/(ymax − ymin) and b0 ∼ G(0.2, 10/R2) where R2 is the length of the interval of the
variation of the data. Other hyperparameters and sample size are chosen as follows: (a) N = 50,
a0 = 2, e0 = 1, (b) N = 100, a0 = 2, e0 = 1, (c) N = 100, a0 = 5, e0 = 1, (d) N = 100, a0 = 5,
e0 = 2

17.4 Application to a Real Dataset

We applied to the so-called ’acidity data’, which concerns an acidity index measured
in a sample of 155 lakes in north-central Wisconsin and was previously analysed
using a Bayesian mixture of Gaussian distributions on the log-scale by [8]. These
authors calculated the posterior for K (the number of components) favours 3 ∼ 5
components. Here, letting K = 3, we applied the BMD, BMI and Mclust to the
dataset respectively. The three clustering results presented in Fig. 17.2 reveal that
BMD performed better in dealing with outliers in the dataset: Unlike BMD, both
Cluster 2 derived from BMI or Mclust contained 3 outliers which should belong to
Cluster 1.
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Fig. 17.2 From left to right, the panel presented the clusters derived from BMD, BMI and Mclust.
We used the same approach to set hyperparameters as in our simulation study

17.5 Conclusion

In this paper, we have developed a novel prior scheme for Bayesian mixture models.
Unlike the classical prior specification, we allow the component priors to depend
on their weights (i.e., mixing proportions). This help us tackle the effect of vary-
ing weights on estimation of hidden group memberships of the observations. We
have conducted a simulation study to compare the proposed method to the existing
approaches. The simulation results have shown that the new method can performed
better than its competitors in terms of adjusted Rand index. A real data application
has suggested that the proposal method is more robust to outliers than the existing
methods.
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Chapter 18
Cosine Similarity-Based Classifiers
for Functional Data

Tianming Zhu and Jin-Ting Zhang

Abstract In many situations, functional observations in a class are also similar in
shape. A variety of functional dissimilarity measures have been widely used in many
pattern recognition applications. However, they do not take the shape similarity of
functional data into account. Cosine similarity is a measure that assesses how related
are two patterns by looking at the angle instead ofmagnitude. Thus, we generalize the
concept of cosine similarity between two random vectors to the functional setting.
Some of the main characteristics of the functional cosine similarity are shown. Based
on it, we define a new semi-distance for functional data, namely, functional cosine
distance. Combining it with the centroid and k-nearest neighbors (kNN) classifiers,
we propose two cosine similarity-based classifiers. Some theoretical properties of
the cosine similarity-based centroid classifier are also studied. The performance of
the cosine similarity-based classifiers is compared with some existing centroid and
kNN classifiers based on other dissimilarity measures. It turns out that the proposed
classifiers for functional data perform well in our simulation study and a real-life
data example.

18.1 Introduction

Functional data consists of functions. In recent decades, it is prevalent in many fields
such as economics, biology, finance, and meteorology (for an overview, see [14]).
The goals of the functional data analysis (FDA) are essentially the same as those of
any other branch of statistics [13]. References [5, 13] provided broad overviews of
the techniques of FDA. In this paper, we are interested in supervised classification
for functional data.
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Supervised classification is one of the oldest statistical problems in experimental
science. We have a training sample and a test sample whose class memberships are
known. The aim of classification is to create a method for assigning a new com-
ing observation to one of the predefined classes based on the training sample. Its
classification accuracy can be assessed via the misclassification error rate (MER)
of the test sample. Many supervised classification methods for functional data have
been developed in recent years. A number of studies have extended the traditional
classification methods for multivariate data to the context of functional data. For
instance, [1] proposed to filter the training samples of functional observations using
the Fourier basis so that the classical kNN classifier can be applied to the result-
ing Fourier coefficients. [15] extended the methodology based on support vector
machine for functional data. In addition, a centroid method for classifying func-
tional observations has been adopted by [3]. They used the project of each functional
observation onto a given direction instead of the functional observation itself so that
a functional data classification problem becomes a one-dimensional classification
problem. Further, [11] extended linear discriminant analysis to functional data. Ref-
erences [8–10, 17] proposed classifiers based on functional principal components
while [4] developed functional classifiers based on shape descriptors.

The concepts of similarity and distance are fundamentally important in almost
every scientific field. Similarity and distance measures are also an essential require-
ment in almost all pattern recognition applications including classification, cluster-
ing, outlier detection, regression and so on. There exist a large number of similarity
measures in the literature and the performance of any pattern recognition technique
largely depends on the choice of the similarity measures. In the recent literature on
functional data, some authors have proposed semi-distances well adapted for sample
functions such as the semi-distances based on functional principal components [5]
and the functional Mahalanobis semi-distance [7]. However, most of the similarity
measures are used in multivariate data and have not been extended to the functional
framework. Our first contribution is to extend the cosine similarity to functional
settings and define a new semi-distance for functional data.

The cosine similarity measure can be defined between two functional observa-
tions. If these two functional observations are similar in shape, this functional cosine
similarity measure will be close to 1; if they are not similar or even opposite in shape,
the associated cosine similarity measure will be small or even be negative. There-
fore, it can be used to classify functional data. Our second contribution is that by
combining the new functional semi-distance with the centroid and kNN classifiers,
we propose the cosine similarity-based classifiers for functional data.

The rest of this work is organized as follows. We review a number of dissimilar-
ity measures for functional data in Sect. 18.2. Section18.3 introduces the concept of
functional cosine similarity (FCS) and shows its main characteristics. Based on FCS,
we define functional cosine distance (FCD). Section18.4 develops the FCD-based
centroid and kNN classifiers for functional data. In particular, the asymptotic MER
of the FCD-based centroid classifier for functional data is derived. A simulation
study for comparing the proposed cosine similarity-based centroid and kNN classi-
fiers against other existing centroid and kNN classifiers is presented in Sect. 18.5.
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Applications of the proposed cosine similarity-based centroid and kNN classifiers to
a real-life data example is given in Sect. 18.6. Some concluding remarks are given in
Sect. 18.7. The proofs of the main theoretical results are given in the Appendix.

18.2 Functional Dissimilarity Measures

In this section,we review some dissimilaritymeasures for functional data. In practice,
functional data are obtained via observing some measure over time, and we assume
the sample of functional observations was generated from a stochastic process.

Let T be some compact set. Let x(t), t ∈ T be a stochastic process having
mean function η(t), t ∈ T and covariance function γ(s, t), s, t ∈ T . We write
x(t) ∼ SP(η, γ) for simplicity. Throughout this work, let T be a finite inter-
val, and we use ‖x‖p to denote the L p-norm of a function x(t), t ∈ T : ‖x‖p =
(∫

T |x(t)|pdt)1/p , for p = 1, 2, . . .. When p = 2, we may use ‖ · ‖ to denote the
L2-norm for simplicity. If ‖x‖p < ∞, we say x(t), t ∈ T is L p-integrable. In this
case, we write x ∈ L p(T ) where L p(T ) denotes the Hilbert space formed by
all the L p integrable functions over T . In particular, L 2(T ) denotes the Hilbert
space formed by all the squared integrable functions overT , which is an inner prod-
uct space. The associated inner-product for any two functions in L 2(T ) is defined
as< x, y >= ∫

T x(t)y(t)dt, x(t), y(t) ∈ L 2(T ). The above L p-norm and inner-
product definitions can be used to define various dissimilarity measures. Let x(t) and
y(t) be two functional observations defined over T , which are L p integrable. The
L p-distance between x(t) and y(t) is then defined as:

dp(x, y) = ‖x − y‖p,

for p = 1, 2, . . .. We often use L1, L2, and L∞-distances. It is well known that
d∞(x, y) = ‖x − y‖∞ = sup

t∈T
|x(t) − y(t)|.

The L p-distances can be implemented easily in supervised classification but they
do not take the correlation of a functional observation into account. To partially
address this issue, [7] proposed the so-called functional Mahalanobis semi-distance
so that the correlation structure of functional observations can be taken into account
partially. The functional Mahalanobis semi-distance is defined using a number of
the largest eigenvalues and the associated eigenfunctions. Note that when the covari-
ance function γ(s, t) has a finite trace, i.e., tr(γ) = ∫

T γ(t, t)dt < ∞, it has the
following singular value decomposition ([18], p. 3): γ(s, t) = ∑∞

r=1 λrφr (s)φr (t),
where λr , r = 1, 2, . . . are the decreasing-ordered eigenvalues of γ(s, t), and φr (t),
r = 1, 2, . . . are the associated orthonormal eigenfunctions.

Let y(t) ∼ SP(η, γ). By assuming γ(s, t) has a finite trace, we have the follow-
ing Karhunen-Loéve expansion: y(t) = ∑∞

r=1 ξrφr (t), where ξr =< y,φr >, r =
1, 2, . . . denote the associated principal component scores of y(t). Let x(t) be another
functional observation whose covariance function is also γ(s, t). Then we can also
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expand x(t) in terms of the eigenfunctions of γ(s, t) as x(t) = ∑∞
r=1 ζrφr (t), where

ζr =< x,φr >, r = 1, 2, . . . denote the associated principal component scores of
x(t). Then, the functional Mahalanobis (FM) semi-distance between x(t) and y(t)
is given by

dFM,q(x, y) =
(

q∑

r=1

λ−1
r (ζr − ξr )

2

)1/2

.

Based on the principal component scores of x(t) and y(t), [5] defined the so-called
functional principal components (FPC) based semi-distance which can be used as a
dissimilarity measurement:

dFPC,q(x, y) =
(

q∑

r=1

(ζr − ξr )
2

)1/2

.

Based on these dissimilarity measures, a number of classifiers are adopted for
functional data. However, all these dissimilarity measures do not take the shape
similarity of the functional data into account. Note that in many situations, functional
observations in one class are also similar in shape. To take this information into
account, in the next section, we introduce the cosine similaritymeasure for functional
data.

18.3 Functional Cosine Similarity

The main goal of this section is to generalize the cosine similarity measure between
two random vectors to the functional settings. The cosine similaritymeasure between
two n-dimensional vectors x and y is defined as: CS(x, y) = <x,y>

‖x‖‖y‖ , where ‖ · ‖ and
< ·, · > denote the usual Euclidean norm and the usual inner product in Rn . It is
seen that the cosine similarity measure is the ratio of the inner product between the
two vectors to the product of their Euclidean norms. The main characteristic of the
cosine similarity measure is that it measures the closeness or similarity between two
vectors using the cosine value of the angle between the two vectors, which takes
value between [−1, 1]. It is thus a judgment of orientation and not magnitude. If two
vectors have the same orientation, they have a cosine similarity measure of 1; if two
vectors are orthogonal, they have a cosine similaritymeasure of 0; if two vectors have
exactly opposite orientations, they have a cosine similarity measure of −1. When
two vectors are similar, this similarity measure will take larger values.

We now extend the above cosine similarity measure to for functional data. Let
x(t), t ∈ T and y(t), t ∈ T be any two functions in L 2(T ). Then the functional
cosine similarity (FCS) measure between x(t) and y(t) can be defined as follows:

FCS(x, y) = < x, y >

‖x‖‖y‖ ,
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where ‖ · ‖ and < ·, · > denote the usual L2-norm and the usual inner product
in L 2(T ) as defined before. It is seen that FCS(x, y) measures the similarity
or closeness between x(t) and y(t) using the cosine value of the angle between
the two functions x(t) and y(t) which was proposed by [13]. It has the follow-
ing properties: (1)−1 ≤ FCS(x, y) ≤ 1, normalization; (2) FCS(x, y) = FCS(y, x),
symmetry or commutativity; (3) x(t) = y(t) ⇒ FCS(x, y) = 1, reflexivity; and (4)
FCS(x, y) =< x̃, ỹ >= 1 − ‖x̃ − ỹ‖2/2 where x̃(t) = x(t)/‖x‖ denotes the nor-
malization version of x(t) and ỹ(t) is similarly defined.

Item (1) says that FCS(x, y) ranges from −1 (when x(t) is exactly oppo-
site to y(t)) to 1 (when x(t) and y(t) are proportional, that is, when x(t) =
ay(t)) and takes value 0 when x(t) and y(t) are orthogonal. It is due to the fact
that −‖x‖‖y‖ ≤< x, y >≤ ‖x‖‖y‖ by the well-known Cauchy-Schwarz inequal-
ity between two squared-integrable functions. Items (2) and (3) are obviously held.
Item (4) can be shown via some simple algebra. It says that the cosine similarity
measure between x(t) and y(t) is exactly 1 minus half of the squared L2-norm of
the difference between their normalization versions x̃(t) and ỹ(t). Note that x̃(t) is
also called the spatial sign function of x(t) [16], which can be interpreted as the
direction of x(t). Thus, the functional cosine similarity measure FCS(x, y) also can
be interpreted as the similarity measure between the directions of x(t) and y(t). If
x̃(t) = ỹ(t), that is, x(t) and y(t) have the same direction, the associated FCS(x, y)
takes value 1.

Note that FCS is not a distance or semi-distance since it is not nonnegative and its
value is not 0 when the two functions x(t) and y(t) are exactly the same. However,
this can be easily corrected. For this purpose, we define the following functional
cosine distance (FCD) between two functions x(t), t ∈ T and y(t), t ∈ T :

FCD(x, y) = [2 − 2FCS(x, y)]1/2 =
(
2 − 2

< x, y >

‖x‖‖y‖
)1/2

= ‖x̃ − ỹ‖. (18.1)

It is obvious that FCD(x, y) = 0 if x(t) and y(t) are exactly the same. Further,
we have (1) 0 ≤ FCD(x, y) ≤ 2; (2) FCD(x, y) = FCD(y, x), symmetry; and (3)
FCD(x, y) ≤ FCD(x, z) + FCD(y, z) for any three functions x(t), t ∈ T , y(t), t ∈
T and z(t), t ∈ T , triangle inequality.

Using the properties of FCS(x, y), it is easy to verify the first two properties of
FCD(x, y) above. Item (3) can be shown by the well-known Minkowski inequality.
Consequently, FCD is a functional semi-distance since FCD(x, y) = 0 cannot imply
x(t) = y(t), t ∈ T . Nevertheless, we can define some classifiers based on FCD for
functional data.
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18.4 Cosine Similarity-Based Classifiers for Functional
Data

Let G ≥ 2 be an integer. Suppose we have G training functional samples

xi1(t), xi2(t), . . . , xini (t)
i.i.d.∼ SP(ηi , γi ), i = 1, . . . ,G, (18.2)

where ηi (t)’s are the unknown group mean functions and γi (s, t)’s are the unknown
group covariance functions. Note that throughout this work, we assume that the
functional observations of the same group are i.i.d. and functional observations of
different groups are also independent. For a new coming functional observation x(t),
our aim is to determine the class membership of x(t) based on the above G training
samples.

In this section, our aim is to propose new nonparametric classifiers via combining
the centroid and kNN classifiers with FCD. The resulting classifiers are called the
FCD-based centroid and kNN classifiers, respectively.

18.4.1 FCD-Based Centroid Classifier

There aremanydifferent approacheswhich can design a nonparametric classifier. The
first one, also the simplest one, is based on the concept of similarity. Observations
that are similar should be assigned to the same class. Thus, once the similarity
measure is established, the new coming observation can be classified accordingly.
The choice of the similarity measure is crucial to the success of this approach. The
first representative of this approach is the nearest mean classifier, also called nearest
centroid classifier. Each class is represented by its mean of all the training patterns
in that class. A new observation will be assigned to the class whose mean is closest
to the new observation.

For functional data, the class center is the group mean function which can be
estimated using its usual group sample mean function. For the G training functional
samples (18.2), theG class centers can be estimated as x̄i (t) = n−1

i

∑ni
j=1 xi j (t), i =

1, . . . ,G. Then the FCDs between the new coming functional observation x(t) and
the above class centers x̄i (t), i = 1, . . . ,G can be expressed as FCD(x, x̄i ), i =
1, . . . ,G. The FCD-based centroid classifier for functional data then puts x(t) into
Class g where

g = argmin1≤i≤GFCD
2(x, x̄i ). (18.3)
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18.4.2 FCD-Based kNN Classifier

The classical kNN classifier was first proposed by [6]. Due to its simplicity and effi-
ciency, it is widely used to perform supervised classification in multivariate settings.
The classical kNN classifier consists of the following steps: given a training sample
with known class labels, classify a new observation into a class by examining its k
nearest neighbors and applying the majority vote rule.

For the G training functional samples (18.2), the FCDs between the coming func-
tional observation x(t) and all the training functional observations canbe computed as
FCD(x, xi j ), j = 1, . . . , ni ; i = 1, . . . ,G.Let k be somegiven integer. The xi j (t)’s
associated with the k smallest values of the above FCDs are the k nearest neighbors
of x(t) from the whole training functional sample. Let mi denote the number of the
nearest neighbors from Class i where i = 1, . . . ,G. Then

∑G
i=1 mi = k. Note that

some of mi ’s are equal to each other and some are equal to 0. The FCD-based kNN
classifier for functional data then puts x(t) into Class g where g = argmax1≤i≤Gmi .

18.4.3 Theoretical Properties of the FCD-Based Centroid
Classifier

In this subsection, we study the theoretical properties of the FCD-based centroid
classifier. That is, we shall derive its asymptotic misclassification error rate (MER)
and show some of its good properties. Recall that x(t) denotes the new coming
functional observation. As mentioned in the previous subsection, for the G training
functional samples (18.2), the FCD-based centroid classifier will put x(t) to Class
g determined by (18.3). For each class g = 1, . . . ,G, we have a classification vec-
tor function Tg(x) based on the G-class FCD-based centroid classifier which can
be expressed as Tg(x) = [Tg,1(x), . . . , Tg,g−1(x), Tg,g+1(x), . . . , Tg,G(x)]T , where
Tg,i (x) = FCD2(x, x̄i ) − FCD2(x, x̄g) for i = 1, . . . g − 1, g + 1, . . . ,G. Then the
G-class FCD-based centroid classifier for functional data assigns x(t) to class g if
Tg(x) > 0, where 0 denotes the zero vector.

Let πi denote the probability that x(t) from Class i for i = 1, . . . ,G. Assum-
ing that tr(γi ) < ∞, i = 1, 2, . . . ,G, we can show that as ni , i = 1, 2, . . . ,G tend
to infinity with ni/n → τi > 0 where n = n1 + n2 + · · · + nG , we have x̄i (t) →
ηi (t), i = 1, 2, . . . ,G uniformly over the compact set T so that the classification
vector functions Tg(x), g = 1, . . . ,G will tend to

T∗
g(x) = [T ∗

g,1(x), . . . , T
∗
g,g−1(x), T

∗
g,g+1(x), . . . , T

∗
g,G(x)]T , (18.4)

where T ∗
g,i (x) = FCD2(x, ηi ) − FCD2(x, ηg) for i = 1, . . . , g − 1, g + 1, . . . ,G.

For further discussion, let Ci denote Class i for i = 1, . . . ,G. The prior prob-
abilities of Class i can then be expressed as πi = Pr(x ∈ Ci ). For a G-class clas-
sification problem, a mistake is made when x ∈ Cg , by using the classifier, we
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assign it to Class i , i �= g. Therefore, the MER of the G-class FCD-based centroid

classifier can then be expressed asMER = ∑G
g=1 πg

(
1 − Pr{Tg(x) > 0|x ∈ Cg}

)
=

1 − ∑G
g=1 πg Pr{Tg(x) > 0|x ∈ Cg}. The asymptotic MER of the FCD-based cen-

troid classifier is presented in Theorem 18.1.

Theorem 18.1 Assume the G training functional samples (18.2) are independent
with tr(γi ) < ∞, i = 1, . . . ,G. In addition, as n → ∞, we have ni/n → τi > 0.
Then as n → ∞, we have the following asymptotic MER of the FCD-based centroid
classifier:

MER → MER∗ = 1 −
G∑

g=1

πg FRg (Σ
−1/2
g μg), (18.5)

where for g = 1, . . . ,G, μg = [μg,1, . . . ,μg,g−1,μg,g+1, . . . ,μg,G]T , and
Σ g = (σ2

gi ,gl ) : (G − 1) × (G − 1), with μg,i = ‖ηg‖FCD2(ηi , ηg), i = 1, . . . ,
g − 1, g + 1, . . . ,G, and σ2

gi ,gl = 4
∫
T

∫
T [η̃i (s) − η̃g(s)]γg(s, t)[η̃l(t) − η̃g(t)]

dsdt, i, l ∈ {1, . . . , g − 1, g + 1, . . . ,G}. In addition, FRg (·), g = 1, . . . ,G
denotes the cumulative distribution functions of some random variable Rg which
has zero mean vector 0 and identity covariance matrix I.

Remark 18.2 The expression (18.5) indicates that the asymptotic MER may not
tend to 0 even when the group sample sizes tend to infinity. Note that whenMER is 0,
there is a perfect classification. However, whether we can have a perfect classification
is determined by the data information. If the data are not separable, we cannot have
a perfect classification even when the sizes of training samples diverge.

When G = 2, the G-class FCD-based centroid classifier reduces to a two-class
one. In this case, the results in Theorem 18.1 can be simplified. In addition, we can
give an upper error bound of the associated MER. We now denote π1 = π and π2 =
1 − π. The classification function of the two-class FCD-based centroid classifier can
then be simply expressed as

T (x) = FCD2(x, x̄2) − FCD2(x, x̄1). (18.6)

As ni , i = 1, 2 tend to infinity with n1/n → τ > 0, T (x) will tend to

T ∗(x) = FCD2(x, η2) − FCD2(x, η1). (18.7)

Therefore, the MER of the two-class FCD-based centroid classifier T (x) can then be
expressed as MER = π Pr{T (x) ≤ 0|x ∈ C1} + (1 − π)Pr{T (x) > 0|x ∈ C2}. By
Theorem 18.1, we present the asymptotic MER of the two-class FCD-based centroid
classifier and its upper bound in Theorem 18.3 below.

Theorem 18.3 Assume the (G = 2) training functional samples (18.2) are inde-
pendent with tr(γi ) < ∞, i = 1, 2. In addition, as n → ∞, we have n1/n → τ > 0.
Then as n → ∞, when we use the FCD-based centroid classifier, we have
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MER → MER∗ = πFR1(−μ1/σ1) + (1 − π)[1 − FR2(μ2/σ2)], (18.8)

where μi = ‖ηi‖FCD2(η1, η2), and σ2
i = 4

∫
T

∫
T [η̃1(s) − η̃2(s)]γi (s, t)[η̃1(t) −

η̃2(t)]dsdt, i = 1, 2. FRi (·) is the cumulative distribution function of some random
variable Ri which has mean 0 and variance 1. Further, the upper bound of the
asymptotical MER (18.8) is given by the following expression

MER∗ ≤ πFR1

(

−‖η1‖FCD(η1, η2)

2
√

λ1,max

)

+ (1 − π)

[

1 − FR2

(
‖η2‖FCD(η1, η2)

2
√

λ2,max

)]

,

(18.9)
where λi,max denote the largest eigenvalue of γi (s, t) for i = 1, 2. In particular, when
the functional data are Gaussian, FR1(·) and FR2(·) should also be replaced with
Φ(·), the cumulative distribution function of the standard normal distribution.

Remark 18.4 The asymptotic MER (18.8) will become smaller if the group mean
functions η1(t) and η2(t) become less similar from each other, that is, FCD(η1, η2)
becomes larger. This is reasonable. If the group mean functions are not similar, it is
easy to classify the new coming observation correctly. In addition, the upper bound
of the asymptotic MER (18.9) indicates the smaller the value of λi,max, i = 1, 2 are,
the smaller the value ofMER∗. This is also reasonable since when λi,max, i = 1, 2 are
small, the data are less noisy. Thus, it is easier to classify the new coming functional
observation x(t) correctly.

Remark 18.5 If the data are Gaussian, the expression (18.9) indicates that for Gaus-
sian functional data, we always haveMER∗ < 1/2 as long as FCD(η1, η2) > 0. That
is, the worse case of this two-class FCD-based centroid classifier is better than of the
random guessing.

18.5 A Simulation Study

To demonstrate the good performance of the proposed cosine similarity-based clas-
sifiers for functional data, we conduct a simulation study in this section. The results
of the simulation study allow us to compare the proposed FCD-based centroid and
kNN classifiers against some existing centroid and kNN classifiers based on other
dissimilarity measures. The centroid and kNN classifiers are defined similarly to
the FCD-based centroid and kNN classifiers for functional data as in Sects. 18.4.1
and 18.4.2 except replacing the FCDwith one of the dissimilarity measures reviewed
in Sect. 18.2. These dissimilaritymeasures include the L p-distances for p = 1, 2, and
∞, the functional Mahalanobis (FM) semi-distance assuming a common covariance
function, and the functional principal components (FPC) semi-distance assuming a
common covariance function, as defined in Sect. 18.2. The resulting centroid or kNN
classifiers are labeled with L1, L2, L∞, FPC, and FM respectively.
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We consider generating functional data for a two-class classification problem
under four different scenarios. In the first scenario, two functional samples are gen-
erated from two Gaussian processes defined over I = [0, 1], with different group
mean functions η1(t) = 25t1.1(1 − t) and η2(t) = 25t (1 − t)1.1 but their covariance
functions γ1(s, t) and γ2(s, t) are the same, denoted as γ(s, t) whose eigenfunctions
are given by φr (t) = √

2 sin(rπt), r = 1, 2, . . . and the associated eigenvalues are
given by λr = 1/(rπ)2, for r = 1, 2, . . .. The generated functions are evaluated at
1000 equidistant time points over I = [0, 1]. In the second scenario, the functions
are generated in a similar way except that the two covariance functions γ1(s, t) and
γ2(s, t) are not the same although their eigenfunctions are the same as those defined in
thefirst scenario but their eigenvalues are given byλ1r = 1/(rπ)2 andλ2r = 2/(rπ)2,
for r = 1, 2, . . . respectively. In the third and fourth scenarios, the functions are gen-
erated in a similar way as in the first and second scenarios respectively except the
two Gaussian processes are replaced with two standardized exponential processes
with rate 1 with the same group mean functions and the group covariance functions.

Under each scenario, two functional samples of equal sizes 100 are generated.
The training sample is formed via selecting 50 functions from each sample so that
the whole training sample consists of 100 functional observations. The remaining
functional observations from the two functional samples form the test sample. The
training sample is used to determine the tuning parameters. In particular, we use
the 10-fold cross-validation approach. For a kNN classifier, the possible number of
nearest neighbors k ranges from 1 to 25. In order to avoid ties, we also set k to be odd
numbers only. Similarly, the number of principal components q used in the centroid
or kNN classifiers ranges from 1 to q0 where q0 may be chosen such that the sum
of the first q0 eigenvalues of the pooled sample covariance function γ̂(s, t) is about
95% of the total variation given by tr(γ̂). Note that the accuracy of a centroid or
kNN classifier is measured by its MER which is estimated using the test sample. We
repeat the process 1000 times so that we have 1000 MERs. The boxplots of the 1000
MERs of the test samples under the four scenarios are shown in Fig. 18.1.

In view of this figure, it is seen that under the fourth scenario, FCD-based centroid
classifier outperforms other centroid classifiers and the FCD-based kNN classifier
outperforms other kNN classifiers as well. In the third scenario, the best performance
is attended by the proposed FCD-based centroid classifier. Therefore, Gaussianity is
not necessarily an advantage for the FCD-based classifiers and they perform well for
non-Gaussian data. In practice, it is usually very difficult to check the Gaussianity,
hence our proposed classifiersmayworkwell in real problems. In addition, in the first
and second scenarios, our FCD-based classifiers perform the second best and FM-
based classifiers performbest.However, the FMsemi-distance is a rather complicated
dissimilarity measure and consumes time in programing and computing.
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Fig. 18.1 MERs achieved by various centroid and kNN classifiers under all four scenarios

18.6 Application to Australian Rainfall Data

The Australian rainfall data set is available at https://rda.ucar.edu/datasets/ds482.1/.
It has been analyzed by [2, 12] respectively to illustrate their classification method-
ologies. The data set consists of daily rainfall measurements between January 1840
and December 1990, at each of 191 Australian weather stations. The daily rainfall
measurements of a station form a rainfall curve. We then have N = 191 rainfall
curves. Among the 191 weather stations, N1 = 43 of them are located at the north-
ern Australia and the remaining ones are located at the southern Australia. For each
station, for simplicity, we just consider the rainfall over a year, i.e., over t ∈ [1, 365].
As in [2], a rainfall curve for a station is obtained via taking the average of the rainfall
at each time point t ∈ [1, 365] over the years which the station had been operating.
The resulting raw rainfall curves are then smoothed using a B-spline basis of order
6. The order of B-spline basis is chosen by leave-one-out cross-validation so that the
raw rainfall curves can be well represented by the smoothed rainfall curves as shown
in Fig. 18.2. From this figure, we can see that some of the weather stations, although
geographically located in the north, have a rainfall pattern that is typical of the south.
Thus, it is not so easy to distinguish the northern rainfall curves from the southern
rainfall curves.

To apply the centroid and kNN classifiers for the Australian rainfall data, we
randomly split the 191 rainfall curves into a training sample of size n and a test
sample of size 191 − n and we take n = 50. The number of nearest neighbors is
bounded by the smaller sample size of the two classes and the maximum number
of eigenfunctions is limited to 20. This process is repeated 1000 times so that we
have 1000 MERs for each classifier. Figure18.3 presents the boxplots of the 1000
MERs of the various centroid and kNN classifiers. It is seen that the FCD-based

https://rda.ucar.edu/datasets/ds482.1/
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Fig. 18.2 Smoothed Australian rainfall curves for the northern weather stations (left panel) and
the southern weather stations (right panel)
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Fig. 18.3 MERs achieved by various centroid and kNN classifiers for the Australian rainfall data

kNN classifier performs best and it obtained mean MER of 0.079. Moreover, the
FCD-based centroid classifier outperforms other centroid classifiers which obtained
mean MER of 0.106. It is also seen that the kNN classifiers are generally better
than the centroid classifiers with the same dissimilarity measures. Using a similar
experiment, [3] obtained mean MERs of 0.103 by the centroid classifier which was
proposed by [3].
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18.7 Concluding Remarks

In this work, we extend the cosine similarity measure for functional data. Based on
the FCS, we introduce a new semi-distance for functional data named FCD. This
functional semi-distance is simple and can be implemented easily in supervised
classification. By combining with the centroid and kNN classifiers, we propose a
FCD-based centroid classifier and a FCD-based kNN classifier for functional data.
We also study the theoretical properties of the FCD-based centroid classifier. It turns
out the cosine similarity-based classifiers for functional data perform well in our
simulation study and a real-life data example. As mentioned previously, the range of
applications for the new similarity measure or the new functional semi-distance is
wide and includes clustering, hypothesis testing, and outlier detection, among others.
However, since the proposed FCD does not take the magnitude of the functional data
into account, it is expected that the proposed FCD-based classifiers will not perform
well for classifying functional data which are different only in their magnitudes. It
is then interesting and warranted to study how both the magnitude and shape of the
data can be taken into account in FCD-based classifiers so that their performance
can be further improved.

18.8 Appendix

Proof (Proof of Theorem 18.1). Under the given conditions, since tr(γi ) < ∞, i =
1, 2, . . . ,G, as n → ∞ with ni/n → τi > 0, we have

MER → MER∗ = 1 −
G∑

g=1

πg Pr{T∗
g(x) > 0|x ∈ Cg}, (18.10)

where T∗
g(x) is given in (18.4). Set S∗

g(x) = ‖x‖T∗
g(x), then we have

S∗
g(x) = [S∗

g,1(x), . . . , S
∗
g,g−1(x), S

∗
g,g+1, . . . , S

∗
g,G(x)]T ,

where S∗
g,i (x) = 2 < x, η̃g − η̃i >, i = 1, . . . , g − 1, g + 1, . . . ,G. Since ‖x‖ >

0, we have

MER∗ = 1 −
G∑

g=1

πg Pr{S∗
g(x) > 0|x ∈ Cg}. (18.11)

When x ∈ Cg , for i = 1, . . . , g − 1, g + 1, . . . ,G, we have

μg,i = E
{
S∗
g,i (x)|x ∈ Cg

} = 2 < ηg, η̃g − η̃i >= ‖ηg‖FCD2(ηi , ηg),

and for any i, l ∈ {1, . . . , g − 1, g + 1, . . . ,G},
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σ2
gi ,gl = Cov{S∗

g,i (x), S
∗
g,l(x)|x ∈ Cg}

= 4
∫

T

∫

T
[η̃i (s) − η̃g(s)]γg(s, t)[η̃l(t) − η̃g(t)]dsdt.

Therefore, we have

μg = E{S∗
g(x)|x ∈ Cg} = [μg,1, . . . ,μg,g−1,μg,g+1, . . . ,μg,G]T ,

Σ g = Cov{S∗
g(x)|x ∈ Cg} = (σ2

gi ,gl ) : (G − 1) × (G − 1).

We can then write Pr{S∗
g(x) > 0|x ∈ Cg} = Pr{Rg < Σ−1/2

g μg|x ∈ Cg}, where

Rg = Σ−1/2
g (−S∗

g(x) + μg),

which is a random variable with mean vector 0 and covariance matrix I. Therefore,

MER∗ = 1 −
G∑

g=1

πg FRg (Σ
−1/2
g μg), (18.12)

as desired where FRg (·), g = 1, . . . ,G denote the cumulative distribution functions
of Rg, g = 1, . . . ,G. �

Proof (Proof of Theorem 18.3) Under Theorem 18.1, whenG = 2, the classification
function of the two-class FCD-based centroid classifier can be simply expressed as
(18.6). As ni , i = 1, 2 tend to infinity with n1/n → τ > 0, T (x) will tend to (18.7).
Thus, the corresponding S∗(x) = 2 < x, η̃1 − η̃2 > is a one-dimensional random
variable.

When x ∈ C1, we have

μ1 = E
{
S∗(x)|x ∈ C1

} = 2 < η1, η̃1 − η̃2 >= ‖η1‖FCD2(η1, η2),

σ2
1 = Var

{
S∗(x)|x ∈ C1

} = 4
∫

T

∫

T
[η̃1(s) − η̃2(s)]γ1(s, t)[η̃1(t) − η̃2(t)]dsdt.

We can then write Pr{S∗(x) ≤ 0|x ∈ C1} = Pr(R1 ≤ −μ1/σ1) where

R1 = (S∗(x) − μ1)/σ1,

which is a random variable with mean 0 and variance 1. Similarly, we can show that
Pr{S∗(x) > 0|x ∈ C2} = Pr(R2 > μ2/σ2) where

R2 = (S∗(x) + μ2)/σ2,

which is a random variable with mean 0 and variance 1, and
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μ2 = −E
{
S∗(x)|x ∈ C2

}

= −2 < η2, η̃1 − η̃2 >= ‖η2‖FCD2(η1, η2),

σ2
2 = Var

{
S∗(x)|x ∈ C2

}

= 4
∫

T

∫

T
[η̃1(s) − η̃2(s)]γ2(s, t)[η̃1(t) − η̃2(t)]dsdt.

Therefore

MER∗ = π Pr{S∗(x) ≤ 0|x ∈ C1} + (1 − π)Pr{S∗(x) > 0|x ∈ C2}
= π Pr(R1 ≤ −μ1/σ1) + (1 − π)Pr(R2 > μ2/σ2)

= πFR1(−μ1/σ1) + (1 − π)
[
1 − FR2(μ2/σ2)

]
, (18.13)

as desired where FRi (·), i = 1, 2 denote the cumulative distribution functions of
Ri , i = 1, 2.

Let λi,max denote the largest eigenvalue of γi (s, t) for i = 1, 2. Then we have

σ2
i = 4

∫

T

∫

T
[η̃1(s) − η̃2(s)]γi (s, t)[η̃1(t) − η̃2(t)]dsdt

≤ 4λi,max‖η̃1 − η̃2‖2 = 4λi,maxFCD
2(η1, η2), i = 1, 2.

It follows that

μi/σi ≥ ‖ηi‖FCD2(η1, η2)√
4λi,maxFCD2(η1, η2)

= ‖ηi‖FCD(η1, η2)

2
√

λi,max
, i = 1, 2.

Therefore, by (18.13), we have

MER∗ ≤ πFR1

(

−‖η1‖FCD(η1, η2)

2
√

λi,max

)

+ (1 − π)

[

1 − FR2

(
‖η2‖FCD(η1, η2)

2
√

λi,max

)]

. (18.14)

When the functional data are Gaussian, we have Ri ∼ N (0, 1), i = 1, 2. Therefore,
we should replace FRi (·), i = 1, 2 in the expressions (18.13) and (18.14) with Φ(·),
the cumulative distribution of the standard normal distribution. �
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Chapter 19
Projection Test with Sparse Optimal
Direction for High-Dimensional One
Sample Mean Problem

Wanjun Liu and Runze Li

Abstract Testing whether the mean vector from some population is zero or not
is a fundamental problem in statistics. In the high-dimensional regime, where the
dimension of data p is greater than the sample size n, traditional methods such as
Hotelling’s T 2 test cannot be directly applied. One can project the high-dimensional
vector onto a space of low dimension and then traditional methods can be applied.
In this paper, we propose a projection test based on a new estimation of the optimal
projection direction Σ−1μ. Under the assumption that the optimal projection Σ−1μ

is sparse, we use a regularized quadratic programming with nonconvex penalty and
linear constraint to estimate it. Simulation studies and real data analysis are conducted
to examine the finite sample performance of different tests in terms of type I error
and power.

19.1 Introduction

One-sample mean vector test or two-sample test on the equality of two means is
a fundamental problem in high-dimensional data analysis. These tests are com-
monly encountered in genome-wide association studies. For instance, [6] performed
a hypothesis testing to identify sets of genes which are significant with respect to
certain treatments in a genetics research. Reference [21] applied various tests to the
bipolar disorder dataset from a genome-wide association study collected by [7] in
which one would like to test whether there is any association between a disease and a
large number of genetic variants. In these applications, the dimension of the data p is
often much larger than the sample size n. Traditional methods such as Hotelling’s T 2

test [13] either cannot be directly applied or have low power against the alternative.
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Suppose that a random sample x1, . . . , xn from a p-dimensional population x
with finite mean E(x) = μ and positive definite covariance matrix cov(x) = Σ . Of
interest is to test the following hypothesis

H0 : μ = μ0 versus H1 : μ �= μ0, (19.1)

for some known vector μ0. This problem is typically referred to as the one-sample
hypothesis testing problem in multivariate analysis and has been extensively studied
when p < n and p is fixed. Without loss of generality, we assume μ0 = 0 and the
one-sample problem (19.1) becomes

H0 : μ = 0 versus H1 : μ �= 0. (19.2)

In most cases, the test statistic constructed for one-sample problem can be easily
extended to two-sample problem and the theories hold as well. For this reason, we
only focus on the one-sample problem (19.2) and assume μ0 = 0. Let x̄ and S be the
sample mean vector and the sample covariance matrix respectively,

x̄ = 1

n

n∑

i=1

xi , S = 1

n − 1

n∑

i=1

(xi − x̄)(xi − x̄)�. (19.3)

The Hotelling’s T 2 statistic [13] for problem (19.2) is T 2 = nx̄�S−1 x̄ . If x1, . . . , xn
are normally distributed, under H0, then we have (n − p)/{(n − 1)p}T 2 follows
Fp,n−p, the F distribution with degrees of freedom p and n − p. The Hotelling’s
T 2 requires that the sample covariance matrix S is invertible and cannot be directly
used in high-dimensional setting where p > n. Despite the singularity of S, it has
been observed that the power of the Hotelling’s T 2 test can be adversely affected
even when p < n, if S is nearly singular; see [1, 17].

Several one-sample tests for high-dimensional data have been proposed recently.
These tests can be roughly classified into three types. The first type is the sum-of-
squares-type test which is based on the sum-of-squares of the sample mean and can
be regarded as modified versions of Hotelling’s T 2 test. These tests simply replace
S by some invertible matrix such as identity matrix I or diagonal matrix, leading to
a sum-of-squares test statistic. Bai and Saranadasa [1] proposed the following test
statistic for one-sample problem, in which S is substituted by identity matrix I ,

TBS = x̄� x̄ − trS/n.

The test statistic TBS can be regarded as unscaled distance x̄� x̄ with offset trS/n.
Bai and Saranadasa [1] established its asymptotic normal null distribution when
p/n → c for some c > 0. Chen and Qin [6] further studied an equivalent form of
TBS:

TCQ = 1

n(n − 1)

n∑

i �= j

x�
i x j .
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under a different set of assumptions on population. Neither TBS nor TCQ is invariant
under different scales. To get rid of the unit effect, [19] replaced S with diagonal
matrix D, where D = diag(S) is a diagonal matrix with diagonal elements from the
sample covariance matrix S. The test statistic in [19] is defined as

TSD = nx̄�D−1 x̄ − (n − 1)p/(n − 3),

which is also asymptotically normally distributed under null hypothesis.
The second type is the maximum-type test. Cai et al. [4] introduced a test that is

based on a linear transformation of the data by the precision matrix � = Σ−1 which
incorporates the correlations among the variables. Given that the precision matrix
� = (ωi j )p×p is known, the test statistic is defined as

TCLX = n max
1≤ j≤p

(�x̄)2j/ω j j . (19.4)

If � is known to be sparse, then the CLIME estimator [3] can be used to estimate �

directly. Otherwise, � can be estimated by the inverse of the adaptive thresholding
estimator of Σ [2]. Under H0, the test statistic TCLX converges to the type I extreme
value distribution. Chen et al. [5] proposed a test that removes components that are
estimated to be zero via thresholding. The motivation is that zero components are
expected to contribute little to the squared sample mean and those smaller than a
given threshold can be ignored. The test statistic with index s is defined as

TCLZ (s) =
p∑

j=1

{
nx̄2j
σ j j

− 1

}
I

{
nx̄2j
σ j j

> λp(s)

}
,

where the threshold level is set to be λp(s) = 2s log p for some s ∈ (0, 1). Since the
optimal choice of the threshold is unknown, [5] further proposed using s that results
in the largest value of TCLZ (s) as the final test statistic,

TCLZ = max
s∈(0,1−η)

{TCLZ (s) − μ̂CLZ ,0(s)}/σ̂CLZ ,0(s),

for some η ∈ (0, 1), where μ̂CLZ ,0(s) and σ̂CLZ ,0(s) are estimates of the mean and
standard deviation of TCLZ (s) under H0. The asymptotic null distribution of TCLZ is
the Gumbel distribution.

The third type is the projection test. The idea is to project the high-dimensional
vector x onto a space of low dimension and then traditional methods such as
Hotelling’s T 2 can be applied. Lauter [14] proposed the following procedure for the
one-sample normal mean problem based on left-spherical distribution theory [11,
12]. Consider the linear score z = (z1, . . . , zn)� = Xd, where d is a p × 1 weight
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vector depending on X only through X�X and d �= 0 with probability 1. Then one
can perform the one-sample t-test using z1, . . . , zn . Lauter [14] also proposed dif-
ferent ways to obtain the weight vector d. For example, d can take the form of
d = (diag(X�X))−1/2, or be the eigenvector corresponding to the largest eigenvalue
λmax for the following eigenvalue problem (X�X)d = diag(X�X)dλmax. Lopes et
al. [16] proposed a test based on random projection. Let Pk be a p × k random
matrix whose entries are randomly drawn from the N (0, 1) distribution. Define
yi = P�

k xi , i = 1, . . . , n. The random projection test TRP in [16] is defined as

TRP = n ȳ�S−1
y ȳ = nx̄�Pk(P

�
k SPk)

−1P�
k x̄,

where ȳ and Sy are the sample mean and sample covariance matrix of y1, . . . , yn .
As a result, this random projection test is the Hotelling’s T 2 test with y1, . . . , yn and
is an exact test if xi ’s are normally distributed. Lopes et al. [16] also proposed a test
that utilizes multiple projection to improve the power of random projection test. The
idea is generating the projection matrix Pk multiple times and using their average as
the final projection matrix.

These types of tests are powerful only against certain alternatives. For example,
if the true mean μ is dense in the sense that there is a large proportion of small to
moderate nonzero components, then sum-of-squares-type test is more powerful. In
contrast, if the true mean μ is sparse in the sense that there are only few nonzero
componentswith largemagnitude inμ, then themaximum-type test ismore powerful.
In practice, since the true alternative hypothesis is unknown, it is unclear how to
choose a powerful test. Furthermore, there are denser and intermediate situations in
which neither type of test is powerful [21].

Li et al. [15] studied the projection test and derived the optimal projection direction
which leads to the best power under alternative hypothesis. However, the estimation
of the optimal projection direction has not been systematically studied yet. This paper
aims to fill this gap by studying how to construct a sparse optimal projection test to
achieve better power. We propose an estimation procedure of the sparse optimal pro-
jection direction by regularized quadratic programming with nonconvex penalty and
linear constraint. We further examine the finite sample performance of the proposed
procedure and illustrate it by an empirical analysis of a real data set.

The rest of this paper is organized as follows. In Sect. 19.2, we propose a new pro-
jection test with the optimal projection being estimated by the regularized quadratic
programming. In Sect. 19.3, simulation studies are conducted to examine the finite
sample performance of different tests in terms of type I error and power. In Sect. 19.4,
we apply various tests to a real data example, which shows that the proposed projec-
tion test is more powerful than existing tests.
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19.2 Projection Test with Sparse Optimal Direction

Li et al. [15] proposed an exact projection test using the optimal projection direction.
They showed that the optimal choice of k in Pk is 1 and the optimal projection is
Σ−1μ in the sense that the power is maximized. Let θ = Σ−1μ and yi = θ�xi , i =
1, . . . , n. The projection Hotelling’s T 2 test is

T 2
θ = nx̄�θ(θ�Sθ)−1θ� x̄,

which follows the F1,n−1 distribution under H0 and normality assumption. It is equiv-
alent to the one-sample t-test based on y1, . . . , yn . In order to control the type I error,
[15] also proposed a data-splitting strategy to estimate the optimal projection direc-
tion and obtained an exact t-test. The entire sample is randomly partitioned into two
separate sets S1 = {x1, . . . , xn1} and S2 = {xn1+1, . . . , xn}. Set S1 is used to esti-
mate the projection direction θ and setS2 is used to construct the test statistic T 2

θ . To
estimate θ , a ridge-type estimator is constructed θ̂ = (S1 + λD1)

−1 x̄1, where x̄1 and
S1 are the sample mean and the sample covariance matrix computed from S1 and
D1 = diag(S1), the diagonal matrix of S1. Therefore, the estimator θ̂ is independent
of set S2. Then the data points from S2 are projected onto a 1-dimensional space
by left-multiplying θ̂ . The one-sample t-test is performed based on the new data
points θ̂�xn1+1, . . . , θ̂

�xn . In order to have high power, [15] recommended to use
n1 = �κn� with κ ∈ [0.4, 0.6] and λ = n−1/2

1 in practice based on their empirical
study. If κ is small, only a small portion of sample is used to estimate the optimal
projection and the estimator is not accurate. If κ is large, only a small portion of
sample is used to perform the test. As a result, a too small or too large κ leads to
significant loss in the power of the test. The advantage of the data-splitting procedure
is that we can obtain an exact t-test, meanwhile we may lose power since the sample
inS1 is discarded when performing the test.

We propose a new estimation of the optimal projection under the assumption that
the optimal projection Σ−1μ is sparse. The assumption that the optimal projection
direction is sparse is relatively mild and can be satisfied in different scenarios. For
example, if Σ has the autocorrelation structure and μ is sparse and then the optimal
projectionΣ−1μ is sparse. Another example is that ifΣ has the compound symmetry
structure and μ is sparse and then Σ−1μ is approximately sparse in the sense that
the first few entries in Σ−1μ dominate the rest entries. Note that it is the direction
rather than the magnitude of the projectionΣ−1μ that matters. In other words,Σ−1μ

and aΣ−1μ have exactly the same performance for the one-sample problem (19.2),
where a is some positive number. We observe that β∗ = Σ−1μ/μ�Σ−1μ, which is
proportional to the optimal projection, is the solution to the following problem

min
β

1

2
β�Σβ subject to μ�β = 1.
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Based on the above observation, we propose the following estimation based on a
regularized quadratic programming with nonconvex penalty and linear constraint,

min
β

1

2
β�S1β +

p∑

j=1

pλ(|β j |)

subject to x̄�
1 β = 1,

(19.5)

where x̄1 and S1 are computed from set S1, β = (β1, . . . , βp)
� ∈ R

p and pλ(·) is
taken to be the smoothly clipped absolute deviation (SCAD) penalty [9]. Its first
derivative is defined to be

p′
λ(|t |) = λ

{
I (|t | ≤ λ) + (aλ − |t |)+

(a − 1)λ
I (|t | > λ)

}
,

where a = 3.7, I (·) is the indicator function and b+ stands for the positive part of
b. To solve the high-dimensional nonconvex optimization problem (19.5), we apply
the local linear approximation (LLA) algorithm proposed in [22]. The idea is to
approximate the nonconvex penalty by its first order expansion. Given the current
solution β(k), (19.5) can be approximated by

min
β

1

2
β�S1β +

p∑

j=1

p′
λ(|β(k)

j |)|β j |,

subject to x̄�
1 β = 1.

Let

Q(β|β(k), λ) = 1

2
β�S1β +

p∑

j=1

p′
λ(|β(k)

j |)|β j |.

Wang et al. [20] and Fan et al. [10] studied how to implement the LLA under high-
dimensional regression settings to obtain a sparse solution with oracle property. Here
we apply their strategy for the above problem. Startingwith initial value 0,wepropose
a two-step LLA estimator, which consists of the following two steps:

Step1 :β̂(1) = argmin
{β:x̄�

1 β=1}
Q(β|0, τλ) ;

Step2 :β̂ = argmin
{β:x̄�

1 β=1}
Q(β|β̂(1), λ).

The solution β̂ in step 2 is our final estimator. Typically, we choose τ to be some small
number such as τ = 1/ log n1 or τ = λ. Instead of using the ridge-type estimator
θ̂ = (S1 + λD1)

−1 x̄1,weuse our two-stepLLAestimator β̂ to carry out the projection
test with data splitting. It can be shown that the resulting LLA estimator is consistent
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under relatively mild conditions and thus the asymptotic power is valid for our new
test with the data-splitting procedure. We call this new test LLA projection test.

19.3 Simulation Studies

In this section, we conduct numerical studies to examine the finite sample perfor-
mance of different tests including the proposed LLA projection test for the one-
sample problem. The LLA projection test is the same as that in [15] except that we
use the LLA estimator as the projection direction. More specifically, we compare the
LLA projection test with the ones proposed by [1, 6, 8, 14, 15]. We denote them
by Li2015, D1958, BS1996, CQ2010 and L1996, respectively. We also compare the
new test with the tests proposed in [19]. The authors considered two versions of their
test, one with modification and one without modification, denoted by SD2008w and
SD2008wo, respectively. Lopes et al. [16] proposed a single random projection test,
labeled as LWJ2011.

We generate a random sample of size n from N (μ,Σ) with μ = c · (1�
s0 , 0

�
p−s0)

�
and s0 = 10. We set c = 0, 0.5 and 1 to examine the type I error rate and the power
of the tests. For ρ ∈ (0, 1), we consider the following three covariance structures:

(1) Compound symmetry with Σ1 = (1 − ρ)I + ρ11�;
(2) Autocorrelation with Σ2 = (ρ|i− j |)i, j ;
(3) Composite structure with Σ3 = 0.5Σ1 + 0.5Σ2.

We consider ρ = 0.25, 0.5, 0.75 and 0.95 to examine the influence of correlation on
the power of the test. We set sample size n = 40, 160 and dimension p = 400, 1600.
We split the data set by setting n1 = �nκ� with κ = 0.4, where �·� is the rounding
operator. To this end,we replace sample covariancematrix S1 by Sφ = S1 + φ I with a
small positive numberφ = √

log p/n1. Such a perturbation does not noticeably affect
the computational accuracy of the final solution and all the theoretical properties hold
aswellwhenφ ≤ √

log p/n1. All simulation results are based on 10,000 independent
replicates. These results are summarized in Tables19.1, 19.2 and 19.3.

Tables19.1, 19.2 and 19.3 clearly indicate that the LLA projection test and the
tests in [14–16] keep the type I error very well. This is not surprising since all these
tests are exact tests. All other tests do not keep the type I error rate well because their
critical values are determined from the asymptotic distributions. Next we compare
the power of the LLA projection test with other existing methods. It can be seen from
Tables19.1, 19.2 and 19.3, the power of the tests strongly relies on the covariance
structure as well as the values of ρ and c.

Table19.1 reports the results for the compound symmetry covariance structure
Σ1. We first compare the LLA projection test and the Li2015 test since these two
tests are of the same flavor but using different methods to estimate the projection
direction. When we have relatively large sample size n = 160, both of the tests have
high power and the LLA projection test slightly improves the performance of Li2015
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Table 19.1 Power comparison for N (μ,Σ1) (values in table are in percentage)
c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400

LLA 4.98 4.50 4.94 5.19 71.53 89.92 99.00 99.96 99.97 99.88 99.99 100.0

Li2015 5.16 4.47 4.88 4.90 50.22 70.74 94.04 100.0 98.61 99.53 100.0 100.0

D1958 6.77 6.22 5.71 5.49 12.63 8.13 6.98 6.46 80.44 22.71 13.06 10.23

BS1996 7.73 7.80 7.79 7.80 14.64 10.55 9.39 9.11 88.21 30.28 18.51 15.33

CQ2010 7.72 7.82 7.79 7.77 14.64 10.50 9.41 9.11 88.18 30.22 18.50 15.32

SD2008w 4.20 1.71 0.52 0.15 7.97 2.29 0.63 0.22 54.21 6.41 1.29 0.36

SD2008wo 8.48 8.21 7.87 7.71 16.34 11.15 9.53 8.96 90.25 32.69 18.93 15.06

L1996 5.18 5.18 5.17 5.15 5.66 5.21 5.17 5.11 6.25 5.59 5.31 5.22

LJW2011 5.01 4.99 4.86 5.03 13.80 20.65 40.58 98.34 54.05 74.46 95.94 100.0

n = 40, p = 1600

LLA 5.22 4.99 5.21 5.08 50.43 79.97 98.51 99.98 99.92 99.94 99.99 100.0

Li2015 5.01 4.71 5.06 4.94 14.62 23.71 54.68 98.14 71.49 81.98 95.74 100.0

D1958 6.93 6.19 5.73 5.48 7.81 6.71 5.96 5.73 12.45 8.12 6.96 6.45

BS1996 7.74 7.79 7.78 7.79 8.85 8.30 8.12 8.06 14.47 10.42 9.35 8.92

CQ2010 7.76 7.80 7.77 7.77 8.88 8.32 8.14 8.05 14.49 10.41 9.34 8.92

SD2008w 2.76 0.69 0.14 0.00 3.22 0.73 0.17 0.00 5.26 0.97 0.20 0.01

SD2008wo 8.37 8.12 7.86 7.71 9.67 8.70 8.24 7.94 15.79 11.14 9.52 8.78

L1996 5.15 5.15 5.15 5.15 5.30 5.22 5.19 5.18 5.50 5.29 5.23 5.18

LJW2011 4.65 5.08 4.99 4.95 6.77 7.68 11.52 52.16 14.49 20.55 42.17 98.29

n = 160, p = 400

LLA 4.77 5.10 4.96 4.83 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Li2015 4.97 4.89 4.80 4.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

D1958 5.74 5.26 4.89 4.77 87.20 19.91 12.09 9.73 100.0 100.0 99.95 89.50

BS1996 6.66 6.71 6.69 6.71 94.00 26.42 16.69 13.78 100.0 100.0 100.0 99.41

CQ2010 6.66 6.71 6.69 6.71 94.02 26.45 16.69 13.76 100.0 100.0 100.0 99.39

SD2008w 3.11 0.99 0.34 0.07 50.59 3.63 0.72 0.17 100.0 92.93 7.69 1.27

SD2008wo 6.87 6.83 6.71 6.65 94.39 26.76 16.83 13.72 100.0 100.0 100.0 99.36

L1996 4.76 4.74 4.74 4.73 5.98 5.23 4.95 4.87 7.08 5.88 5.32 5.11

LJW2011 4.81 5.15 4.99 4.84 98.07 99.92 100.0 100.0 100.0 100.0 100.0 100.0

n = 160, p = 1600

LLA 4.63 4.99 4.79 4.96 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Li2015 4.91 5.43 5.40 4.74 98.84 99.92 100.0 100.0 100.0 100.0 100.0 100.0

D1958 5.76 5.22 4.87 4.77 11.15 7.32 6.11 5.68 93.07 19.49 11.60 9.41

BS1996 6.71 6.69 6.69 6.69 13.09 9.46 8.37 8.11 97.90 26.09 16.49 13.60

CQ2010 6.71 6.69 6.70 6.70 13.10 9.47 8.37 8.11 97.91 26.11 16.48 13.61

SD2008w 2.10 0.40 0.05 0.02 3.82 0.53 0.05 0.02 29.18 1.19 0.15 0.03

SD2008wo 6.90 6.82 6.71 6.66 13.48 9.46 8.43 8.09 98.05 26.51 16.39 13.53

L1996 4.72 4.73 4.73 4.74 4.76 4.71 4.69 4.71 4.93 4.73 4.73 4.71

LJW2011 5.23 4.83 4.80 4.70 34.28 55.48 91.85 100.0 98.27 99.95 100.0 100.0
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Table 19.2 Power comparison for N (μ,Σ2) (values in table are in percentage)
c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400

LLA 5.18 5.19 5.26 4.78 61.15 50.17 36.46 27.19 100.0 99.99 99.67 97.72

Li2015 5.29 4.46 5.16 4.81 46.27 35.27 21.13 13.86 99.98 99.53 91.08 68.03

D1958 5.06 4.97 4.75 5.30 89.47 77.24 51.45 17.29 100.0 100.0 99.96 84.57

BS1996 5.57 5.57 5.46 6.86 90.19 78.40 53.88 20.81 100.0 100.0 99.99 88.16

CQ2010 5.59 5.57 5.44 6.85 90.16 78.39 53.83 20.81 100.0 100.0 99.99 88.15

SD2008w 3.75 3.68 3.30 2.72 84.86 70.93 44.71 9.94 100.0 100.0 99.85 68.93

SD2008wo 7.25 7.28 7.61 8.52 90.57 80.54 57.97 23.86 100.0 100.0 99.96 87.61

L1996 4.69 4.67 4.93 4.96 36.78 28.64 16.49 6.63 92.38 77.29 40.81 9.26

LJW2011 5.52 5.11 5.00 4.97 12.71 12.15 11.51 15.28 44.17 43.04 42.40 60.42

n = 40, p = 1600

LLA 5.25 5.19 5.09 5.12 38.03 30.96 22.88 16.49 100.0 99.94 98.81 91.04

Li2015 4.61 4.95 5.30 4.92 17.85 14.57 9.55 6.10 94.90 84.59 58.09 22.43

D1958 4.91 5.14 4.88 4.74 48.45 37.63 23.47 9.96 99.99 99.91 94.58 42.28

BS1996 5.05 5.46 5.36 5.49 49.13 38.40 24.63 11.40 99.99 99.91 94.96 45.81

CQ2010 5.08 5.48 5.29 5.50 49.26 38.35 24.60 11.44 99.99 99.91 94.94 45.74

SD2008w 1.77 1.91 2.04 1.81 30.97 22.82 12.73 3.66 99.92 99.03 86.28 23.53

SD2008wo 7.04 7.13 7.19 7.55 53.38 43.79 29.11 14.45 99.98 99.79 95.07 50.80

L1996 4.92 5.11 5.08 4.99 15.69 13.57 9.77 6.17 45.99 34.47 19.55 7.99

LJW2011 4.61 4.99 4.87 4.89 6.04 6.47 6.17 6.68 11.71 12.12 11.46 13.14

n = 160, p = 400

LLA 5.10 4.94 4.82 5.03 100.0 99.97 99.37 99.98 100.0 100.0 100.0 100.0

Li2015 5.33 4.68 5.03 5.16 99.99 99.43 89.97 96.04 100.0 100.0 100.0 100.0

D1958 4.61 4.97 5.12 5.34 100.0 100.0 100.0 85.83 100.0 100.0 100.0 100.0

BS1996 5.03 5.50 5.83 6.61 100.0 100.0 100.0 89.10 100.0 100.0 100.0 100.0

CQ2010 5.03 5.49 5.83 6.62 100.0 100.0 100.0 89.10 100.0 100.0 100.0 100.0

SD2008w 4.20 4.42 4.17 2.73 100.0 100.0 100.0 72.60 100.0 100.0 100.0 100.0

SD2008wo 5.41 5.78 6.19 6.93 100.0 100.0 100.0 88.85 100.0 100.0 100.0 100.0

L1996 4.87 4.71 4.70 5.00 89.99 71.70 34.04 7.34 100.0 100.0 71.60 10.28

LJW2011 4.65 4.95 4.75 5.27 89.44 85.36 80.43 98.54 100.0 100.0 100.0 100.0

n = 160, p = 1600

LLA 4.85 5.04 4.92 4.79 100.0 99.94 97.61 93.27 100.0 100.0 100.0 100.0

Li2015 5.24 4.83 4.97 5.01 97.18 88.69 61.66 35.37 100.0 100.0 100.0 99.60

D1958 4.73 4.72 4.99 5.11 99.99 99.89 95.03 42.55 100.0 100.0 100.0 100.0

BS1996 4.86 5.00 5.30 5.98 100.0 99.90 95.35 45.67 100.0 100.0 100.0 100.0

CQ2010 4.86 4.98 5.29 5.99 100.0 99.90 95.35 45.66 100.0 100.0 100.0 100.0

SD2008w 3.47 3.46 3.57 2.70 100.0 99.83 93.02 29.91 100.0 100.0 100.0 99.99

SD2008wo 5.40 5.48 5.65 6.33 100.0 99.87 95.47 46.65 100.0 100.0 100.0 100.0

L1996 5.27 5.08 4.84 4.78 42.34 31.61 16.88 6.42 97.49 83.24 39.61 9.04

LJW2011 4.86 4.67 4.56 5.45 25.35 24.48 23.41 37.24 92.06 90.94 90.47 98.77
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Table 19.3 Power comparison for N (μ,Σ3) (values in table are in percentage)
c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400

LLA 5.13 4.61 5.68 4.93 60.97 60.90 57.77 55.26 99.99 99.86 99.81 99.73

Li2015 5.08 4.76 4.76 4.73 43.34 42.40 35.76 28.98 98.94 98.15 97.05 94.31

D1958 6.82 6.68 6.38 6.02 26.75 12.64 9.38 8.05 99.93 78.81 38.79 21.82

BS1996 7.37 7.73 7.75 7.86 29.27 14.57 11.73 10.39 99.95 86.13 48.62 29.47

CQ2010 7.40 7.71 7.71 7.89 29.30 14.54 11.68 10.35 99.96 86.09 48.67 29.42

SD2008w 5.39 4.27 2.71 1.32 20.68 8.06 4.18 1.88 99.61 52.80 15.70 5.47

SD2008wo 8.15 8.36 8.34 8.27 33.33 15.93 12.72 10.85 99.96 88.48 52.41 32.24

L1996 5.07 5.17 5.13 5.19 6.12 5.57 5.33 5.22 8.10 6.30 5.80 5.57

LJW2011 4.86 5.20 4.95 5.06 12.83 14.60 15.63 26.31 48.15 53.40 60.76 86.04

n = 40, p = 1600

LLA 4.96 5.13 5.06 4.62 40.72 42.46 42.69 36.21 99.95 99.82 99.79 99.21

Li2015 4.60 5.13 5.16 5.05 12.67 13.26 11.95 8.45 70.81 69.11 66.18 46.23

D1958 7.17 6.90 6.48 6.19 9.58 7.78 7.18 6.81 27.30 12.45 9.31 8.28

BS1996 7.74 7.80 7.80 7.78 10.34 9.01 8.46 8.30 30.00 14.44 11.59 10.42

CQ2010 7.76 7.81 7.78 7.72 10.28 8.95 8.46 8.29 30.05 14.45 11.54 10.40

SD2008w 4.19 2.70 1.44 0.73 5.79 3.18 1.61 0.77 15.53 5.26 2.19 1.04

SD2008wo 8.48 8.43 8.32 8.19 11.70 9.76 9.05 8.82 34.82 15.94 12.59 11.17

L1996 5.10 5.14 5.19 5.20 5.39 5.27 5.21 5.21 5.71 5.44 5.30 5.31

LJW2011 5.00 4.84 4.79 5.23 6.68 6.81 7.05 8.80 13.07 14.15 16.65 23.86

n = 160, p = 400

LLA 5.35 5.05 4.75 5.42 100.0 99.99 100.0 100.0 100.0 100.0 100.0 100.0

Li2015 5.01 5.03 4.86 5.36 100.0 100.0 99.91 99.99 100.0 100.0 100.0 100.0

D1958 5.98 5.73 5.44 5.04 100.0 83.26 33.73 18.91 100.0 100.0 100.0 100.0

BS1996 6.45 6.67 6.73 6.72 100.0 90.99 43.97 25.76 100.0 100.0 100.0 100.0

CQ2010 6.47 6.67 6.72 6.72 100.0 91.00 43.98 25.74 100.0 100.0 100.0 100.0

SD2008w 4.92 3.04 1.81 0.82 99.99 48.74 10.03 2.98 100.0 100.0 99.99 78.09

SD2008wo 6.70 6.80 6.89 6.85 100.0 91.47 45.28 26.38 100.0 100.0 100.0 100.0

L1996 4.70 4.75 4.75 4.74 7.09 6.01 5.56 5.20 10.27 7.09 6.21 5.83

LJW2011 5.36 5.28 4.97 4.91 94.31 96.07 97.07 100.0 100.0 100.0 100.0 100.0

n = 160, p = 1600

LLA 4.99 4.85 5.10 4.63 100.00 100.0 99.99 99.96 100.0 100.0 100.0 100.0

Li2015 5.22 5.02 5.16 4.38 97.38 97.63 93.89 80.36 100.0 100.0 100.0 100.0

D1958 6.12 5.77 5.45 5.25 23.85 11.17 8.51 7.42 100.0 91.94 33.55 20.31

BS1996 6.66 6.68 6.70 6.77 26.24 13.24 10.44 9.46 100.0 97.40 44.83 27.33

CQ2010 6.67 6.68 6.70 6.77 26.26 13.22 10.41 9.44 100.0 97.42 44.81 27.32

SD2008w 4.13 2.06 0.84 0.39 15.66 3.70 1.26 0.58 100.0 29.28 4.52 1.28

SD2008wo 6.83 6.80 6.85 6.86 27.30 13.49 10.70 9.61 100.0 97.42 46.28 28.33

L1996 4.69 4.71 4.75 4.74 4.93 4.78 4.71 4.70 5.44 4.91 4.79 4.74

LJW2011 4.97 5.30 5.41 5.20 28.38 33.95 40.01 68.67 94.88 97.86 99.36 99.99
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test. When we have a relatively small sample size n = 40, LLA projection test can
dramatically improve the performance of Li2015 test especiallywhen the signal is not
strong (c = 0.5). A weaker correlation ρ results in a more significant improvement.
This is because a small correlation makes the optimal direction Σ−1μ closer to a
sparse direction. When c = 0.5, the power of both tests increases significantly as
ρ increases. As the value of c increases from 0.5 to 1, the power of the two tests
increases dramatically. As the dimension p increases, there is a downward trend for
the two tests. Even in themost challenging case (n, p, c) = (40, 1600, 0.5), our LLA
projection test has high power as well and is much powerful than Li2015 test. These
two tests outperform all other tests. Some of the tests, such as D1958, BS1996,
CQ2010 and SD2008w, tend to become less powerful when ρ increases. This is
because these methods ignore the correlation among the variables and therefore their
overall performance is not satisfactory.

Table19.2 reports the results for the autocorrelation covariance structure Σ2.
Under this setting, the LLA projection test improves the performance of Li2015 test
in all the combinations of c and ρ. In particular, the LLA projection test improves
the performance of Li2015 dramatically when the sample size is relatively small
and the correlation is large. For example, when (n, p, c, ρ) = (40, 1600, 1, 0.95),
the LLA test improves the power from 22.42% to 91.04%. The D1958, BS1996,
CQ2010 and SD2008wo have more satisfactory performance than LLA test when
(n, c) = (40, 0.5) and ρ is not 0.95. Notice that the D1958, BS1996, CQ2010 and
SD2008wo tests ignore the correlation among variables and replaceΣ−1 by diagonal
matrix. When Σ has the autocorrelation structure, its inverse is a 3-banded matrix –
only its diagonal and first off-diagonal elements are nonzero. As a result, replacing
Σ−1 by identity matrix does not lose much information. This explains why tests of
D1958, BS1996, CQ2010 and SD2008wo have more satisfactory performance when
Σ has autocorrelation structure and ρ is low. It is also observed that the power of
these four tests decreases significantly as the correlation increases and become less
powerful than the LLA test when ρ = 0.95. This is not surprising since all the four
tests ignore the correlations among the variables. In general, the proposed test is
preferred if Σ−1 is far away from identity matrix.

Table19.3 reports the results for Σ3. The LLA test is more powerful than Li2015
test in all the combinations of n, p, c, ρ and improves the power dramatically when
ρ is large. The LLA test outperforms all other tests. The patterns for D1958, BS1996,
CQ2010, SD2008w and SD2008wo are similar to the first scenario where Σ = Σ1.

We also investigate the finite sample performance of the LLA projection test
without the normality assumption. To this end, we generate random samples from
themultivariate t distributionwith degrees of freedom6.To examine the robustness of
the LLA test, we use the same critical values as those used in settings with normality
assumption. Simulation results for Σ2 are summarized in Table19.4, from which it
can be seen that the LLA test and Li2015 test can still retain the type I error rate
very well. This implies that these two projection tests are not very sensitive to the
normality assumption. All other alternative tests except for CQ2010 test fail to retain
the type I error. In terms of power, LLA projection test is more powerful than Li2015
test in all combinations of n, p, c, ρ. For this autocorrelation covariance (i.e., Σ2)



306 W. Liu and R. Li

case, the LLA test and the CQ2010 test have similar performance and these two tests
outperform all other tests. The overall patterns for Σ1 and Σ3 are similar to those in
Tables19.1 and 19.3. Results are not presented in this paper to save space.

19.4 Real Data Example

In this section, we apply the LLA projection test to a real dataset of high reso-
lution micro-computed tomography. This dataset contains the bone density of 58
mice’s skull of three different genotypes (“T0A0”, “T0A1”, and “T1A1”) measured
at different bone density levels in a genetic mutation study. For each mouse, bone
density is measured for 16 different areas of its skull. For each area, bone volume
is measured at density levels from 130 to 249. This dataset was collected at Cen-
ter for Quantitative X-Ray Imaging at the Pennsylvania State University. See [18]
for a detailed description of protocols. In this empirical analysis, we are interested
in comparing the bone density patterns of two different areas in mice’s skull. We
compare the performance of the proposed LLA projection test with several existing
methods. To emphasize the high-dimensionality nature of this dataset, we only use
half sample of the dataset. We select the mice of the genotype “T0A1” and there are
29 samples available in the dataset, i.e., sample size n = 29. The two areas of the
skull “Mandible” and “Nasal” are selected. We use all density levels from 130 to 249
for our analysis, hence dimension p = 120. We first take the difference of the bone
density of the two selected areas at the corresponding density level for each subject
since the two areas come from the same mouse. Then we normalize the bone density
in the sense that 1

n

∑n
i=1 x

2
i j = 1 for all 1 ≤ j ≤ 120.

We apply LLA projection test and several other existing methods to this dataset.
Due to the relatively small sample size (n = 29), we opt to use slightly more data
points to estimate the projection direction such that the estimator is reasonably well.
As a result, we set κ = 0.6. The p-values are reported in the first row in Table19.5.
The p-values of all methods are 0, implying that the bone volume is significantly
different. To see which test is more powerful, we also compute the p-values of these
tests when we decrease the signals. Let x̄ be the sample mean and ri = xi − x̄ is
the residual for the i th subject. Then a new observation zi = δ x̄ + ri is constructed
for the i th subject. By the construction, a smaller δ results in a weaker signal and
would make the test more challenging. Table19.5 reports the p-values of all these
tests for the new data zi with δ = 1, 0.8, . . . , 0.2. As expected, the p-values of all
tests increase as δ decreases. When δ = 0.8 or 0.6, all these tests perform well and
reject the null hypothesis at level 0.05. When δ = 0.4, the Lauter’s test fails to reject
the null hypothesis. When δ = 0.2, all the tests except for our method fail to reject
the null hypothesis, which suggests that our method would performwell even though
the signal is weak. Among those tests that fail to reject H0 when δ = 0.2, Li2015
projection test has the smallest p-value.
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Table 19.4 Power comparison for t6(μ,Σ2) (Values in table are in percentage)
c = 0 c = 0.5 c = 1

ρ 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

n = 40, p = 400

LLA 4.74 4.44 4.81 5.19 46.94 38.23 27.23 19.02 99.95 99.52 96.50 91.21

Li2015 4.77 5.00 4.53 5.52 36.00 26.34 16.44 11.40 99.27 95.97 79.71 55.13

D1958 0.05 0.17 0.80 3.27 10.04 11.00 11.39 8.56 92.77 91.15 83.76 48.47

BS1996 0.08 0.25 1.02 4.65 12.42 13.43 14.05 11.29 94.45 92.97 86.68 55.35

CQ2010 5.49 5.71 5.83 6.77 68.47 55.52 36.29 15.44 100.0 99.97 97.97 64.15

SD2008w 0.04 0.05 0.37 1.34 7.13 8.03 8.00 3.84 91.59 89.34 79.00 33.06

SD2008wo 0.16 0.48 1.57 5.99 20.35 20.70 19.99 14.67 97.78 96.67 91.34 61.40

L1996 0.46 0.76 1.66 4.00 1.53 2.31 3.49 4.98 5.90 6.81 7.87 6.73

LJW2011 3.85 4.40 4.34 4.12 10.16 10.22 10.12 13.08 37.12 36.14 35.35 51.57

n = 40, p = 1600

LLA 4.89 4.61 4.85 4.77 28.90 24.90 17.90 12.35 99.89 99.19 94.29 78.77

Li2015 5.24 4.58 5.08 5.37 13.82 11.03 8.69 5.40 83.00 69.65 44.60 17.05

D1958 0.00 0.00 0.02 1.13 0.00 0.00 0.22 2.09 7.62 7.79 9.38 9.44

BS1996 0.00 0.00 0.06 1.58 0.00 0.00 0.30 2.72 9.59 9.90 11.96 11.86

CQ2010 5.07 5.16 5.23 5.93 30.83 24.57 16.62 9.58 98.44 94.23 75.89 29.10

SD2008w 0.00 0.00 0.00 0.11 0.00 0.00 0.02 0.30 1.74 2.05 2.91 2.41

SD2008wo 0.00 0.00 0.13 2.51 0.00 0.05 0.57 4.55 18.33 18.81 19.84 17.45

L1996 0.05 0.12 0.40 2.08 0.10 0.18 0.52 2.30 0.21 0.40 0.80 2.87

LJW2011 4.26 4.24 4.22 4.18 5.60 5.31 5.49 6.01 10.32 9.83 9.97 11.53

n = 160, p = 400

LLA 4.68 4.94 4.29 4.69 100.00 99.58 94.11 99.66 100.0 100.0 99.98 100.0

Li2015 4.77 4.98 4.82 4.95 99.58 96.61 78.27 88.18 100.0 100.0 99.97 100.0

D1958 0.41 1.03 2.41 4.33 99.52 99.02 95.86 53.53 99.99 99.99 99.99 99.96

BS1996 0.52 1.30 2.97 5.57 99.61 99.27 96.64 59.70 99.99 100.0 99.99 99.98

CQ2010 5.32 5.68 5.75 6.38 99.99 99.92 98.91 62.70 100.0 100.0 100.0 100.0

SD2008w 0.31 0.81 1.70 2.14 99.59 99.00 94.47 37.44 99.99 100.0 99.99 99.93

SD2008wo 0.77 1.48 3.28 6.09 99.80 99.46 96.90 61.76 100.0 100.0 100.0 99.99

L1996 0.92 1.60 2.87 4.35 6.34 8.40 9.53 5.81 24.25 25.56 22.83 8.63

LJW2011 4.55 4.42 4.36 4.38 82.42 76.72 70.40 95.73 100.0 100.0 100.0 100.0

n = 160, p = 1600

LLA 5.19 5.08 5.35 4.85 99.95 98.95 89.73 79.71 100.0 100.0 100.0 100.0

Li2015 5.19 4.68 4.39 4.81 88.97 75.32 45.68 27.00 100.0 100.0 99.90 97.58

D1958 0.00 0.03 0.40 3.04 43.74 40.56 33.32 17.30 99.72 99.67 99.64 95.47

BS1996 0.00 0.07 0.47 3.80 47.26 43.91 36.50 19.82 99.78 99.74 99.75 96.40

CQ2010 4.98 4.93 5.16 6.08 98.83 95.34 75.76 27.93 100.0 100.0 100.0 98.82

SD2008w 0.00 0.00 0.16 1.22 33.20 30.69 24.45 9.06 99.59 99.57 99.37 88.00

SD2008wo 0.00 0.05 0.57 4.16 53.10 49.61 40.86 21.79 99.92 99.86 99.90 96.36

L1996 0.15 0.26 0.65 3.31 0.29 0.66 1.22 4.07 0.95 1.56 2.51 5.19

LJW2011 4.48 3.98 4.32 4.05 19.83 19.19 18.86 30.07 84.29 84.13 82.51 96.48
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Table 19.5 Bone density dataset: p-value of one-sample test

δ LLA Li2015 D1958 BS1996 CQ2010 SD2008w SD2008wo L1996 LJW2011

1 0 0 0 0 0 0 0 0 0

0.8 0 0 0 0 0 0 0 0 0

0.6 0 0 0 0 0 0 0 0.0005 0

0.4 0 4 × 10−5 0.0015 0 0 0.0088 0 0.6775 2 × 10−5

0.2 0.0390 0.0906 0.2145 0.2710 0.2714 0.4136 0.2999 0.8870 0.3073

Fig. 19.1 Histogram of
absolute values of paired
sample correlations among
bone densities at all different
bone density levels

We plot the histogram of absolute values of paired sample correlations among all
bone density levels in Fig. 19.1. It indicates that some bone density levels are highly
correlated. This may explain why our method is more powerful than Dempster test,
BS test and SD test since these methods do not take the dependence among variables
into account.
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Chapter 20
Goodness-of-fit Tests for Correlated
Bilateral Data from Multiple Groups

Xiaobin Liu and Chang-Xing Ma

Abstract Correlated bilateral data often arise in ophthalmological and otolaryngo-
logical studies, where responses of paired body parts of each subject are measured.
A number of statistical methods have been proposed to tackle this intra-class corre-
lation problem, and in practice it is important to choose the most suitable one which
fits the observed data well. Tang et al. (Stat Methods Med Res 21(4):331–345, 2012,
[16]) compared different goodness-of-fit statistics for correlated data including only
two groups. In this article, we investigate the general situation for g ≥ 2 groups. Our
simulation results show that the performance of the goodness-of-fit test methods, as
measured by the power and the type I error rate, is model depending. The observed
performance difference is more significant in scenario with small sample size and/or
highly dependent data structure. Examples from ophthalmologic studies are used to
illustrate the application of these goodness-of-fit test methods.

20.1 Introduction

In clinical studies, paired data arise naturally if investigators collect information from
paired body parts, say, legs, arms, eyes, etc. For example, the ophthalmologist records
results from both left and right eyes in a routine eye examination. The outcome can be
bilateral responses, unilateral response or no response. The conditional probability
of having a response at one eye given a response at the other is usually different from
the unconditional probability.

This intra-class correlation problem has attracted a lot of attentions and a number
of statisticalmodels have been proposed. Rosner [12] showed that treating each eye as
an independent random variable was invalid in the presence of intra-class correlation.
He proposed a constant R model that the conditional probability of having a response
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Table 20.1 Binary correlated data structure

Number of
responses

Group

1 2 3 . . . g Total

0 m01 m02 m03 . . . m0g m0+
1 m11 m12 m13 . . . m1g m1+
2 m21 m22 m23 . . . m2g m2+
Total m+1 m+2 m+3 . . . m+g m++

at one eye given a response at the other was R times the unconditional probability.
The constant R is a measure of dependence between two eyes of the same person.
Specifically, in an eye examination, patients are randomly assigned to g groups. Let
Zi jk = 1 if the kth eye of the j th person in the i th group had a response, i = 1, . . . , g,
j = 1, . . . , mi , k = 1, 2. If Pr(Zi jk = 1) = λi , Rosner’s model assumed Pr(Zi jk =
1|Zi j (3−k) = 1) = Rλi for the same constant R in each of the g groups. Dallal [2]
pointed out that Rosner’s model would give a poor fit if binary responses were almost
certain to happen with widely varying group-specific prevalence. He then offered a
model that assumed the conditional probability was a fixed constant that Pr(Zi jk =
1|Zi j (3−k) = 1) = γ . Dallal’smodel also had its own limitation. Donner [3] proposed
a constant ρ model where the common correlation coefficient in each of the g groups
was a fixed constant ρ, which is Corr(Zi jk, Zi j (3−k)) = ρ. In addition, independent
model and saturated model for this type of data are also available. Different methods
of data analysis under these models, such as testing the homogeneity of proportions
and constructing confidence intervals, have been proposed [1, 4–10, 13–15, 17].

With the aforementioned medels in hand, an important factor for consideration in
practice is to choose the most suitable one which fits well the observed data. Tang
et al. [16] compared different goodness-of-fit test methods for correlated binary
data including only two groups. However, the general situation where the correlated
bilateral data have g ≥ 2 groups has not been investigated, which is our focus in
this article. More specifically, we choose likelihood ratio statistic (G2), Pearson Chi-
square statistic (X2), adjusted PearsonChi-square statistic (X2

adj) and three bootstrap
processes as candidate methods, and examine their performance in testing goodness-
of-fit of each model for correlated binary data with multiple groups.

The rest part of the article is organized as follows. In Sect. 20.2, we present details
of the five models for correlated binary data with multiple groups, including the
formulas for computing log-likelihood of a specific dataset and maximum likelihood
estimates (MLE) of model parameters. Three statistics and three bootstrap processes
for testing goodness-of-fit of different models and their asymptotic distributions are
presented in Sect. 20.3. Simulation studies are conducted in Sect. 20.4 with respect to
type I error and power. Two examples are used to illustrate the different goodness-of-
fit test methods in Sect. 20.5. Section20.6 contains a brief summary and discussion.
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20.2 Models for Correlated Bilateral Data

Suppose there are mli subjects having l responses in the i th group, l = 0, 1, 2, i =
1, . . . , g. The data structure is shown in Table20.1. Hereafter we record a specific
table as a 1 × 3g vector

m = (m01, m11, m21, . . . , m0g, m1g, m2g).

20.2.1 Independence Model

This model assumes R = 1 or ρ = 0, such that the paired body parts are independent
with each other. The parameter space for this model is ΩI = {(λ1, . . . , λg) : 0 ≤
λi ≤ 1, i = 1, . . . , g} and the log-likelihood function for a specific dataset is

l0(λ1, . . . , λg;m) =
g∑

i=1

[(2m0i + m1i ) log(1 − λi ) + (m1i + 2m2i ) log λi ].

It can be calculated that the MLEs of λi ’s are

λ̂i = m1i + 2m2i

2m+i
.

The independent model is easy to use but often criticized for its limitation in
practice.

20.2.2 Rosner’s Model

The Rosner’s model uses a constant R to describe the correlation between the paired
body parts. The probability of getting a response at one part conditioning on having
a response at the other is R times the unconditional probability. The parameter space
ofRosner’smodel isΩR = {(λ1, . . . , λg) : 0 < R ≤ 1/a,if a ≤ 1/2; (2 − 1/a)/a
≤ R ≤ 1/a, if a > 1/2, where a = max{λi , i = 1, . . . , g}}. When R = 1, this
model reduces to independent model. It can be shown that the log-likelihood of a
specific dataset is

l1(λ1, . . . , λg, R;m) =
g∑

i=1

[m0i log(Rλ2
i − 2λi + 1)

+ m1i log(2λi (1 − Rλi )) + m2i log(Rλ2
i )].
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To get MLEs of the parameters, we differentiate the above function with respect
to λi ’s and R and set them equal to 0.

∂l

∂ R
= m0+λ2

i

Rλ2
i − 2λi + 1

− m1+λi

1 − Rλi
+ m2+

R
= 0

∂l

∂λi
= 2m0i (Rλi − 1)

Rλ2
i − 2λi + 1

− m1i R

1 − Rλi
+ 2m2i + m1i

λi
= 0, i = 1, . . . , g

As there is no close-form solution to these equations, we use the Fisher-Score
iterative method to get the MLEs by repeating the following steps derived from [8].

The equation sets (1) can be simplified as a 3rd order polynomial

λ3i − 4m0i + 5m1i + 6m2i

2Rm+i
λ2i + m0i + (1 + R)m1i + (2 + R)m2i

R2m+i
λi − m1i + 2m2i

2R2m+i
= 0.

The (t + 1)th update for λi is the real root of the 3rd order polynomial after
replacing R with R(t+1); and the (t + 1)th update for R can be calculated with the
following formula

R(t+1) = R(t) −
(

∂2l1
∂ R2

(
λ

(t)
1 , . . . , λ(t)

g ; R(t)
))−1

∂l1
∂ R

(
λ

(t)
1 , . . . , λ(t)

g ; R(t)
)
,

where

∂l1
∂ R

=
g∑

i=1

(
m2i

R
+ λ2

i m0i

Rλ2
i − 2λi + 1

+ λi m1i

Rλi − 1

)
,

∂2l1
∂ R2

= −m2+
R2

−
g∑

i=1

λ2
i m1i

(Rλi − 1)2
−

g∑

i=1

λ4
i m0i

(Rλ2
i − 2λi + 1)2

.

20.2.3 Equal Correlation Coefficients Model

This model arises when assuming the correlation coefficients of the paired body
parts in all g groups are equal. That is, Corr(Zi jk, Zi j (3−k)) = ρ for all j . The
parameter space is ΩE = {(λ1, . . . , λg, ρ) : 0 ≤ λi ≤ 1, 0 ≤ ρ ≤ 1, i = 1, . . . , g}.
The log-likelihood function for a specific dataset is

l2(λ1, . . . , λg, ρ;m) =
g∑

i=1

[m0i log((1 − λi )(ρλi − λi + 1))

+ m1i log(2λi (1 − ρ)(1 − λi )) + m2i log(λ
2
i + ρλi (1 − λi ))].
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Now we calculate MLEs of the parameters. By partial differentiating l2 with
respect to λ′

i s and ρ we have

∂l2
∂ρ

=
g∑

i=1

[
m0iλi

ρλi − λi + 1
− m1i

1 − ρ
+ m2i (1 − λi )

λi + ρ(1 − λi )

]

∂l2
∂λi

= m0i (2(1 − ρ)λi + ρ − 2)

(1 − λi )(ρλi − λi + 1)
+ m1i (1 − 2λi )

λi (1 − λi )
+ m2i (2λi + ρ − 2ρλi )

λ2
i + ρλi (1 − λi )

,

i = 1, . . . , g

Setting the above partial differentiations equal to zero, the MLEs of λ′
i s and ρ are

the solution to these equations. Similar to Rosner’s model, no explicit solution exists.
With Fisher-Score iteration,MLEs can be calculated by repeating the following steps
derived by [7] until convergence.
The equation sets (2) can be simplified as a 3rd order polynomial

2ρ(2 − ρ)m+iλ
3
i + [3ρ2m+i − ρ(5m0i + 6m1i + 7m2i ) + 2m0i + 3m1i + 4m2i ]λ2

i

+ [(4ρ − ρ2)m+i − 2ρm0i − m1i − 2m2i ]λi − ρ(m1i + m2i ) = 0.

The (t + 1)th update for λi can be obtained by directly solving the polynomial
and choosing the real root after replacing ρ with ρ(t+1); ρ can be updated by the
following iteration

ρ(t+1) = ρ(t) −
(

∂2l2
∂ρ2

(
λ

(t)
1 , . . . , λ(t)

g , ρ(t)
))−1

∂l

∂ρ

(
λ

(t)
1 , . . . , λ(t)

g , ρ(t)
)
,

where

∂l2
∂ρ

=
g∑

i=1

[
m1i

ρ − 1
− (λi − 1)m2i

ρ + λi − ρλi
+ λi m0i

ρλi − λi + 1

]
,

∂2l2
∂ρ2

= −
g∑

i=1

[
m1i

(ρ − 1)2
+ λ2

i m0i

(ρλi − λi + 1)2
+ (λi − 1)2m2i

(ρ + λi − ρλi )2

]
.

20.2.4 Dallal’s Model

Thismodel assumes that the conditional probability is a constant,which is, Pr(Zi jk =
1|Zi j (3−k) = 1) = γ . The parameter space is ΩD = {(λ1, . . . , λg, γ ) : 0 ≤ γ ≤ 1
if a ≤ 1/2; 2 − 1/a ≤ γ ≤ 1 if a > 1/2, where a = max{λi , i = 1,
. . . , g}}. The log-likelihood function for a specific dataset is
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l3(λ1, . . . , λg, γ ;m) =
g∑

i=1

[
m0i log((γ − 2)λi + 1)

+ m1i log(2(1 − γ )λi ) + m2i log(γ λi )
]
.

TheMLEs of parameters can be calculated by partial differentiating l3 with respect
to λ′

i s and γ and setting them equal to zero. Here

∂l3
∂λi

= m0i (γ − 2)

(γ − 2)λi + 1
+ m1i + m2i

λi
= 0, i = 1, . . . , g,

∂l

∂γ
=

g∑

i=1

[ m0iλi

(γ − 2)λi + 1
− m1i

1 − γ
+ m2i

γ
] = 0.

Solving these equations, we have

γ̂ = 2m2+
2m2+ + m1+

,

λ̂i = (m1i + m2i )(2m2+ + m1+)

2m+i (m2+ + m1+)
, i = 1, . . . , g.

20.2.5 Saturated Model

This is the model with full parameters, and is often used as a reference model in the
goodness-of-fit test. The parameter space is ΩS = {(p01, p11, . . . , p0g, p1g) : 0 ≤
pli ≤ 1, l = 0, 1, i = 1, . . . , g}. For a given configuration, the log-likelihood is

l(p01, p11, . . . , p0g, p1g;m) =
2∑

l=0

g∑

i=1

mli log(pli ),

where p2i = 1 − p0i − p1i for i = 1, . . . , g. MLEs of the parameters are directly
calculated by p̂li = mli

m+i
.

20.3 Methods for Goodness-of-Fit Test

Several statistics have been developed for goodness-of-fit test. Here we choose three
most frequently used ones: likelihood ratio (G2), Pearson chi-square (X2) and the
adjusted chi-square (X2

adj) statistics. Their formulas are given by
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G2 = 2
∑

(observed) log
observed

expected
= 2

2∑

l=0

g∑

i=1

mli log
mli

m̂li
,

X2 =
∑ (observed − expected)2

expected
=

2∑

l=0

g∑

i=1

(mli − m̂li )
2

m̂li
,

X2
adj =

∑ (|observed − expected| − 1/2)2

expected
=

2∑

l=0

g∑

i=1

(|mli − m̂li | − 1/2)2

m̂li
.

When the sample size is large enough, all of the three statistics asymptotically
follow chi-square distribution with the degree of freedom being the difference of the
number of parameters between the two models in the null and alternative hypothe-
ses. In our cases, the saturated model has 2g parameters; Independent model has g
parameters; Rosner’s model, equal correlation coefficients model and Dallal’s model
all have g + 1 parameters. So for the last three models of interest, the asymptotic
chi-square distribution has g − 1 degree of freedom. For the independent model, the
degree of freedom is g.

In addition, we introduce three bootstrap methods here. They differ from each
other in what statistic (value) is used for ordering the samples. The bootstrap proce-
dure can be summarized as

1. Randomly generate N samples based on the estimated parameters under the null
model;

2. Calculate the probability (or G2 or X2) of each sample under the null model. The
probability of a given table is calculated as

Pr(m|H0) =
g∏

i=1

m+i !
m0i !m1i !m2i ! p̃m0i

0i p̃m1i
1i p̃m2i

2i ,

where p̃li is the corresponding MLE of pli under the null model;
3. Count the number of probabilities (or G2 or X2) which are less (larger) than the

probability (or G2 or X2) of the current observed data. If the number is <5%N ,
then reject the null hypothesis.

We denote the three bootstrap procedures based on G2, X2 and probability as B1,
B2 and B3, respectively. In the next simulation section, we compare the performance
of the three test statistics and three bootstrap methods with respect to empirical type
I error and power.
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20.4 Simulation Study

In this section, we examine the performance of the six proposed methods for testing
goodness-of-fit with Rosner’s, equal correlation coefficients and Dallal’s model. The
independent model is nested under these three model by setting R = 1 or ρ = 0, and
the saturated model is used as a reference model.

We first investigate the empirical type I error. We considered scenarios when
g = 2, 4, 8 and m+1 = · · · = m+g = m = 25, 50, 100, and chose different sets of
parameters under each m, g combination. Under each of these configurations, we
generated 10,000 random samples based on the null model. For bootstrap methods,
2000 bootstrap sampleswere generated for each of the 10,000 samples. Our empirical
type I error was computed by number of rejection/10,000.

Tables20.2, 20.3, and 20.4 report the empirical type I error under all scenarios
based on Rosner’s, equal correlation coefficients and Dallal’s model, respectively.
For Rosner’s model, we let R = 1.2, 1.5, and 1.8; for equal correlation coefficients
model, let ρ = 0.5, 0.7, and 0.9; for Dallal’s model, let γ = 0.3, 0.5, and 0.7. In
these three tables, different λ setups are used to be more careful about its influence
on the results. These setups are

Case I: λ = (0.3, 0.5);
Case II: λ = (0.5, 0.5);
Case III: λ = (0.1, 0.2, 0.3, 0.4);
Case IV: λ = (0.2, 0.2, 0.4, 0.4);
Case V: λ = (0.1, 0.2, 0.3, 0.4, 0.1, 0.2, 0.3, 0.4);
Case VI: λ = (0.2, 0.2, 0.4, 0.4, 0.2, 0.2, 0.4, 0.4).

From the three tables, the results of g = 2 show similar pattern as those in [16].
Combining them with results of g = 4 and g = 8, it shows that for all the three
models, the adjusted Pearson χ2 is over conservative with very small empirical type
I error. Therefore, its usage is not recommended here. G2 works very well for all
the three models. X2 produces good empirical type I error for Rosner’s model. For
the other two models, its empirical type I error is greater than 0.05 when the sample
size is relatively small, and it gets better as the sample size increases. For the three
bootstrap methods, their empirical type I errors are nearly as good as G2. However,
theywork poorerwhen R is large inRosner’smodel andρ is large in equal correlation
model with small sample size. Generally B1 and B2 have smaller empirical type I
error than B3. Their performance also improve as the sample size gets larger.

Then we considered power under different parameter configurations. The results
are shown in Table20.5. The parameter setups are
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Case I : λ = (0.2, 0.2), R = (1.2, 1.5) (or ρ = (0.5, 0.7) or γ = (0.5, 0.7));
Case II: λ = (0.2, 0.4), R = (1.2, 1.5) (or ρ = (0.5, 0.7) or γ = (0.5, 0.7));
Case III: λ = (0.1, 0.2, 0.3, 0.4), R = (1.2, 1.2, 1.5, 1.5) (or ρ = (0.5, 0.5, 0.7, 0.7) or γ =
(0.5, 0.5, 0.7, 0.7));
Case IV: λ = (0.2, 0.2, 0.4, 0.4), R = (1.2, 1.2, 1.5, 1.5) (or ρ = (0.5, 0.5, 0.7, 0.7) or γ =
(0.5, 0.5, 0.7, 0.7));
Case V: λ = (0.1, 0.2, 0.3, 0.4, 0.1, 0.2, 0.3, 0.4), R = (1.2, 1.2, 1.2, 1.2, 1.5, 1.5, 1.5, 1.5) (or
ρ = (0.5, 0.5, 0.5, 0.5, 0.7, 0.7, 0.7, 0.7) or γ = (0.5, 0.5, 0.5, 0.5, 0.7, 0.7, 0.7, 0.7));
CaseVI:λ = (0.2, 0.2, 0.4, 0.4, 0.2, 0.2, 0.4, 0.4), R = (1.2, 1.2, 1.2, 1.2, 1.5, 1.5, 1.5, 1.5) (or
ρ = (0.5, 0.5, 0.5, 0.5, 0.7, 0.7, 0.7, 0.7) or γ = (0.5, 0.5, 0.5, 0.5, 0.7, 0.7, 0.7, 0.7)).

We found that for all the three models, X2 has the highest power among the six
methods. Power of B3 is also high especially when g is large. However, the difference
among the six methods is not significant.

20.5 Real World Examples

We present two real examples to examine the performance of the six methods. The
first one was 218 outpatients aged from 20 to 29 with retinitis pigmentosa (RP).
They were seen at Massachusetts Eye and Ear Infirmary from 1970 to 1979 [12].
These outpatientswere assigned into four groups based on genetic types of autosomal
dominant RP (DOM), recessive RP (AR), sex-linked RP (SL) and isolate RP (ISO).
Snellen visual acuity (VA) was recorded for each person. If VA was 20/50 or worse,
the eye was considered affected while an eye was normal if VA was 20/40 or better.
The number of effected eyes for persons in each genetic type group is shown in
Table20.6. We use all the four models to fit the data. P-values for the six methods
are calculated as well as AICs. The results are shown in Table20.7.

From Table20.7, we can find that p-values of all six methods for Rosner’s model,
equal correlation coefficientsmodel andDallal’smodel are larger than0.05.However,
p-values for equal correlation coefficients model are much larger than the other
models. This indicates that equal correlation coefficients model fits our data the best.
Also, equal correlation coefficients model has the smallest AIC, which also makes
it the best model to fit our data.

The second example was from a study of extend and causes of blindness and
visual impairment (VI) in the Varamin district of Iran [11]. Visual acuity (VA) of
2819 personswere examined. The prevalence of VI, defined asVA≥ 6/60 and< 6/18
in the better eye with available correction, were shown in Table20.8 among different
age groups. We fit all the four models and calculate the p-values of the six methods
as those in the first example. As shown in Table20.9, equal correlation coefficient
model has the smallest AIC, and all p-values are larger than 0.05. Therefore, similar
to the first example, equal correlation coefficients model fits our data the best.
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Table 20.2 The empirical type I error for Rosner’s model

m g Case R X2 G2 X2
ad j B1 B2 B3

25 2 I 1.2 0.065 0.051 0.015 0.062 0.060 0.063

1.5 0.061 0.054 0.019 0.058 0.059 0.068

1.8 0.052 0.049 0.021 0.065 0.067 0.070

II 1.2 0.053 0.053 0.017 0.049 0.048 0.058

1.5 0.046 0.042 0.014 0.050 0.048 0.057

1.8 0.050 0.047 0.013 0.0845 0.0845 0.0805

4 III 1.2 0.047 0.051 0.049 0.051 0.047 0.050

1.5 0.049 0.046 0.041 0.043 0.039 0.043

1.8 0.046 0.042 0.041 0.036 0.038 0.041

IV 1.2 0.057 0.044 0.008 0.042 0.037 0.046

1.5 0.055 0.040 0.008 0.056 0.046 0.062

1.8 0.059 0.043 0.008 0.053 0.045 0.059

8 V 1.2 0.048 0.050 0.064 0.039 0.031 0.040

1.5 0.047 0.043 0.062 0.039 0.037 0.043

1.8 0.053 0.047 0.061 0.030 0.027 0.045

VI 1.2 0.068 0.048 0.003 0.055 0.051 0.069

1.5 0.066 0.047 0.005 0.048 0.046 0.059

1.8 0.058 0.042 0.006 0.042 0.038 0.058

50 2 I 1.2 0.055 0.051 0.025 0.052 0.053 0.058

1.5 0.053 0.052 0.025 0.044 0.045 0.048

1.8 0.053 0.053 0.026 0.088 0.089 0.091

II 1.2 0.047 0.046 0.024 0.044 0.045 0.048

1.5 0.046 0.045 0.021 0.045 0.045 0.048

1.8 0.051 0.050 0.023 0.062 0.062 0.063

4 III 1.2 0.044 0.043 0.010 0.045 0.041 0.039

1.5 0.054 0.047 0.012 0.047 0.049 0.051

1.8 0.054 0.045 0.013 0.050 0.045 0.048

IV 1.2 0.064 0.044 0.011 0.047 0.043 0.044

1.5 0.065 0.049 0.014 0.061 0.061 0.062

1.8 0.053 0.045 0.014 0.048 0.049 0.059

8 V 1.2 0.055 0.048 0.008 0.054 0.048 0.058

1.5 0.058 0.048 0.008 0.047 0.044 0.052

1.8 0.053 0.046 0.007 0.053 0.050 0.060

VI 1.2 0.067 0.047 0.007 0.055 0.051 0.060

1.5 0.067 0.049 0.009 0.059 0.055 0.066

1.8 0.060 0.047 0.009 0.053 0.050 0.059

(continued)
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Table 20.2 (continued)

m g Case R X2 G2 X2
ad j B1 B2 B3

100 2 I 1.2 0.053 0.051 0.029 0.051 0.055 0.055

1.5 0.048 0.048 0.029 0.049 0.048 0.051

1.8 0.051 0.051 0.033 0.056 0.055 0.057

II 1.2 0.053 0.052 0.033 0.054 0.055 0.056

1.5 0.051 0.050 0.033 0.043 0.043 0.043

1.8 0.048 0.048 0.028 0.044 0.044 0.047

4 III 1.2 0.054 0.049 0.017 0.052 0.051 0.056

1.5 0.056 0.046 0.016 0.049 0.048 0.051

1.8 0.056 0.046 0.018 0.053 0.050 0.056

IV 1.2 0.060 0.051 0.020 0.051 0.051 0.052

1.5 0.058 0.052 0.023 0.049 0.051 0.052

1.8 0.052 0.049 0.021 0.041 0.043 0.048

8 V 1.2 0.059 0.045 0.010 0.052 0.048 0.052

1.5 0.060 0.049 0.012 0.053 0.052 0.056

1.8 0.055 0.044 0.011 0.050 0.052 0.058

VI 1.2 0.064 0.052 0.016 0.052 0.053 0.056

1.5 0.055 0.048 0.013 0.051 0.050 0.051

1.8 0.053 0.049 0.017 0.043 0.043 0.051

Table 20.3 The empirical type I error for equal correlation coefficients model
m g Case ρ X2 G2 X2

ad j B1 B2 B3

25 2 I 0.5 0.060 0.054 0.016 0.053 0.056 0.063

0.7 0.065 0.052 0.012 0.064 0.067 0.069

0.9 0.067 0.022 0.001 0.053 0.054 0.041

II 0.5 0.064 0.059 0.019 0.058 0.059 0.064

0.7 0.065 0.054 0.012 0.057 0.061 0.064

0.9 0.079 0.021 0.001 0.049 0.044 0.037

4 III 0.5 0.072 0.044 0.005 0.055 0.051 0.059

0.7 0.083 0.043 0.003 0.063 0.055 0.057

0.9 0.043 0.043 0.002 0.069 0.069 0.039

IV 0.5 0.068 0.047 0.009 0.055 0.055 0.065

0.7 0.079 0.045 0.007 0.055 0.057 0.059

0.9 0.045 0.039 0.002 0.064 0.064 0.035

8 V 0.5 0.079 0.039 0.001 0.033 0.037 0.037

0.7 0.091 0.038 0.002 0.052 0.040 0.052

0.9 0.046 0.046 0.004 0.053 0.047 0.021

VI 0.5 0.079 0.045 0.003 0.039 0.043 0.055

0.7 0.087 0.043 0.003 0.041 0.039 0.049

0.9 0.053 0.046 0.003 0.047 0.045 0.019

(continued)
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Table 20.3 (continued)

m g Case ρ X2 G2 X2
ad j B1 B2 B3

50 2 I 0.5 0.051 0.048 0.024 0.046 0.046 0.048

0.7 0.055 0.050 0.020 0.055 0.055 0.063

0.9 0.079 0.042 0.008 0.077 0.076 0.061

II 0.5 0.056 0.055 0.028 0.056 0.057 0.057

0.7 0.059 0.055 0.025 0.050 0.050 0.053

0.9 0.088 0.051 0.008 0.067 0.066 0.064

4 III 0.5 0.065 0.050 0.014 0.058 0.059 0.063

0.7 0.068 0.047 0.008 0.050 0.048 0.053

0.9 0.069 0.043 0.006 0.057 0.049 0.040

IV 0.5 0.059 0.052 0.016 0.051 0.054 0.057

0.7 0.061 0.049 0.014 0.048 0.051 0.054

0.9 0.070 0.042 0.004 0.053 0.047 0.039

8 V 0.5 0.061 0.044 0.006 0.041 0.040 0.047

0.7 0.067 0.045 0.006 0.050 0.055 0.059

0.9 0.075 0.048 0.003 0.054 0.054 0.038

VI 0.5 0.064 0.053 0.010 0.064 0.061 0.069

0.7 0.064 0.047 0.007 0.039 0.045 0.047

0.9 0.082 0.048 0.005 0.059 0.049 0.044

0.7 0.054 0.053 0.030 0.046 0.047 0.049

0.9 0.058 0.048 0.016 0.047 0.052 0.052

II 0.5 0.049 0.048 0.028 0.053 0.053 0.055

0.7 0.053 0.052 0.029 0.049 0.049 0.050

0.9 0.065 0.046 0.019 0.048 0.054 0.057

4 III 0.5 0.055 0.050 0.020 0.055 0.054 0.056

0.7 0.056 0.048 0.017 0.053 0.052 0.054

0.9 0.069 0.043 0.009 0.052 0.055 0.053

IV 0.5 0.055 0.050 0.021 0.049 0.047 0.050

0.7 0.056 0.052 0.022 0.057 0.056 0.058

0.9 0.067 0.039 0.010 0.051 0.042 0.045

8 V 0.5 0.058 0.049 0.014 0.044 0.048 0.050

0.7 0.056 0.047 0.011 0.043 0.044 0.045

0.9 0.077 0.048 0.007 0.050 0.049 0.048

VI 0.5 0.053 0.048 0.016 0.051 0.050 0.056

0.7 0.057 0.049 0.015 0.049 0.051 0.054

0.9 0.073 0.046 0.008 0.049 0.050 0.051
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Table 20.4 The empirical type I error for Dallal’s model

m g Case γ X2 G2 X2
ad j B1 B2 B3

25 2 I 0.3 0.076 0.050 0.029 0.069 0.067 0.068

0.5 0.061 0.052 0.021 0.041 0.043 0.050

0.7 0.065 0.060 0.019 0.047 0.049 0.056

II 0.3 0.064 0.046 0.045 0.055 0.057 0.056

0.5 0.056 0.053 0.026 0.050 0.051 0.057

0.7 0.058 0.055 0.023 0.053 0.054 0.059

4 III 0.3 0.068 0.050 0.006 0.062 0.051 0.051

0.5 0.076 0.045 0.006 0.056 0.052 0.057

0.7 0.079 0.045 0.004 0.060 0.063 0.065

IV 0.3 0.073 0.045 0.007 0.053 0.047 0.051

0.5 0.077 0.051 0.009 0.052 0.056 0.059

0.7 0.078 0.050 0.008 0.053 0.058 0.066

8 V 0.3 0.073 0.049 0.003 0.055 0.053 0.051

0.5 0.086 0.044 0.003 0.065 0.062 0.067

0.7 0.085 0.038 0.001 0.056 0.063 0.068

VI 0.3 0.082 0.048 0.005 0.052 0.051 0.055

0.5 0.079 0.045 0.002 0.053 0.048 0.062

0.7 0.085 0.049 0.004 0.059 0.059 0.075

50 2 I 0.3 0.056 0.049 0.022 0.046 0.049 0.052

0.5 0.054 0.052 0.025 0.051 0.052 0.054

0.7 0.053 0.051 0.026 0.052 0.052 0.058

II 0.3 0.052 0.047 0.025 0.046 0.047 0.051

0.5 0.051 0.049 0.027 0.049 0.049 0.051

0.7 0.049 0.048 0.025 0.044 0.044 0.045

4 III 0.3 0.069 0.050 0.011 0.059 0.055 0.063

0.5 0.063 0.047 0.013 0.050 0.047 0.050

0.7 0.068 0.049 0.012 0.055 0.052 0.056

IV 0.3 0.070 0.045 0.012 0.053 0.055 0.055

0.5 0.059 0.050 0.015 0.048 0.048 0.052

0.7 0.061 0.052 0.018 0.049 0.049 0.053

8 V 0.3 0.073 0.050 0.008 0.056 0.058 0.055

0.5 0.065 0.042 0.006 0.049 0.048 0.056

0.7 0.068 0.045 0.005 0.053 0.052 0.061

VI 0.3 0.073 0.050 0.007 0.049 0.047 0.051

0.5 0.058 0.044 0.007 0.054 0.053 0.059

0.7 0.063 0.048 0.009 0.055 0.055 0.064

(continued)
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Table 20.4 (continued)
m g Case γ X2 G2 X2

ad j B1 B2 B3

100 2 I 0.3 0.047 0.046 0.025 0.048 0.049 0.051

0.5 0.051 0.050 0.032 0.048 0.051 0.051

0.7 0.053 0.051 0.032 0.048 0.048 0.049

II 0.3 0.051 0.049 0.032 0.046 0.047 0.048

0.5 0.050 0.049 0.032 0.042 0.043 0.043

0.7 0.051 0.051 0.033 0.048 0.049 0.050

4 III 0.3 0.065 0.050 0.019 0.052 0.045 0.048

0.5 0.055 0.048 0.018 0.051 0.051 0.052

0.7 0.060 0.052 0.020 0.056 0.058 0.062

IV 0.3 0.055 0.049 0.020 0.051 0.055 0.050

0.5 0.051 0.047 0.022 0.042 0.040 0.042

0.7 0.056 0.052 0.025 0.051 0.051 0.053

8 V 0.3 0.063 0.049 0.013 0.042 0.043 0.045

0.5 0.061 0.049 0.015 0.055 0.055 0.059

0.7 0.061 0.051 0.014 0.065 0.065 0.071

VI 0.3 0.054 0.044 0.013 0.041 0.042 0.045

0.5 0.051 0.046 0.015 0.049 0.051 0.055

0.7 0.053 0.047 0.015 0.051 0.051 0.055

Table 20.5 Estimated power (in %) when group sizes are m = 150
g Case X2 G2 X2

ad j B1 B2 B3

Rosner’s model

2 I 9.7 9.4 5.4 8.9 8.9 9.0

II 13.4 12.4 8.4 11.8 11.3 10.6

4 III 11.3 7.7 3.5 10.8 8.7 8.6

IV 14.3 12.7 7.7 12.9 11.9 11.4

8 V 30.1 27.1 14.2 28.1 28.2 28.9

VI 40.1 39.3 26.2 39.0 39.8 40.5

Equal correlation coefficients model

2 I 40.6 40.3 32.0 39.5 39.6 40.0

II 48.4 48.2 40.1 49.4 50.0 49.6

4 III 53.3 52.5 40.2 51.4 52.0 52.1

IV 61.3 60.7 49.6 60.8 61.1 60.9

8 V 75.9 74.8 59.8 76.0 76.1 76.8

VI 83.6 82.7 70.9 82.8 82.8 83.3

Dallal’s model

2 I 47.7 47.3 38.3 46.0 46.3 46.7

II 59.6 59.2 51.6 59.6 59.2 59.8

4 III 64.8 63.4 52.1 63.7 63.6 64.0

IV 75.7 74.9 65.8 74.6 74.6 74.7

8 V 89.5 89.3 80.4 88.5 88.8 89.1

VI 94.7 94.5 89.4 93.9 94.3 94.5
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Table 20.6 Number of effected eyes for persons in each genetic type group

Number of
affected eyes

Genetic type

DOM AR SL ISO

0 15 7 3 67

1 6 5 2 24

2 7 9 14 57

Table 20.7 p-values of different methods and AIC for the four models

Model p-values

G2 X2 X2
adj B1 B2 B3 AIC

Independent 0 0 0 0.2845 0.0015 0.2645 413.8090

Rosner’s 0.0595 0.0798 0.2033 0.0764 0.0911 0.0575 80.2841

Equal correlation 0.7355 0.7205 0.9030 0.7509 0.7314 0.5978 67.9795

Dallal’s 0.2162 0.2424 0.4418 0.2170 0.2310 0.1935 74.3464

Table 20.8 Prevalence of VI by age groups in the sample population

Number
of affected
eyes

Age groups (yrs)

50–54 54–59 60–64 65–69 70–74 75–79 80+

0 885 478 372 198 135 63 28

1 39 30 48 33 44 21 23

2 21 23 31 17 40 30 32

Table 20.9 p-values of different methods and AIC for the four models in VI study

Model p-values

G2 X2 X2
adj B1 B2 B3 AIC

Independent 0 0 0 0 0 0 9060

Rosner’s 0 0 0 0 0 0 458.1489

Equal correlation 0.7525 0.7557 0.8797 0.7745 0.7750 0.7525 161.8042

Dallal’s 0.0287 0.0294 0.0662 0.0350 0.0340 0.0350 183.1064
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20.6 Conclusions

In the analysis of correlated bilateral data, an important factor for consideration is
to choose the most suitable statistical model which fits well the observed data. This
topic has not been systematically investigated for correlated binary data with g ≥ 2
groups. In this article, we describe five popular models for correlated paired data
with multiple groups, and provide the formulas for computing log-likelihood of a
specific dataset as well as MLE for model parameters. We then investigate different
methods for goodness-of-fit test of these models. Simulation study is performed to
calculate empirical type I error rates and power. G2 statistic keeps the empirical type
I errors for all the three models. Based on simulation, X2 performs well for Rosner’s
model, and the three bootstrap methods have problems of inflated type I error when
R and ρ are relatively large in Rosner’s and equal correlation coefficient models.
In general the performance difference between different goodness-of-fit statistics is
more significant when the sample size is small and/or the data are highly dependent.
Two real examples of ophthalmologic studies are used to illustrate the different
goodness-of-fit test methods.

So far our tests are all done based on asymptotic distribution of the statistics. The
exact methods for small samples are left as interesting future work.
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Chapter 21
A Bilinear Reduced Rank Model

Chengcheng Hao, Feng Li, and Dietrich von Rosen

Abstract This article considers a bilinear model that includes two different latent
effects. The first effect has a direct influence on the response variable, whereas the
second latent effect is assumed to first influence other latent variables, which in turn
affect the response variable. In this article, latent variables are modelled via rank
restrictions on unknown mean parameters and the models which are used are often
referred to as reduced rank regression models. This article presents a likelihood-
based approach that results in explicit estimators. In our model, the latent variables
act as covariates that we know exist, but their direct influence is unknown and will
therefore not be considered in detail. One example is if we observe hundreds of
weather variables, butwe cannot saywhich or how these variables affect plant growth.

21.1 Introduction

In the early age of statistics, variations in data were studied through applications of
linear models. Analysis of variance, regression analysis and analysis of covariance
were developed simultaneously and later were put under the same umbrella with
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matrix theory. In the beginning, only one response variable was considered but soon,
due to the knowledge of how to simultaneously handle sample variances and sample
covariances, multivariate analysis was developed including multivariate analysis of
variance (MANOVA), principal component analysis and canonical correlation anal-
ysis. An interesting article that reviews multivariate analysis up to the 1940s was
written by Rao [6]. Shortly after Rao’s article, Andersson [1] wrote a seminal paper
onmultivariate analysis inwhich, among othermethods, reduced rank problemswere
considered; i.e., the cases in which the matrix of regression parameters was not of
full rank, which is a case that obviously does not exist in univariate linear regression
models, where the rank always equals one.

Bilinear regression models were indirectly considered in the above-mentioned
article by Anderson [1], in which bilinear restrictions in a MANOVA model were
handled. However, the article by Potthoff and Roy [5] is usually considered the
first article on the analysis of bilinear models, which introduced the so called growth
curvemodel, but there had been several earlier contributions in the analysis of growth
curves, which were all bilinear. For references on bilinear regression models (growth
curve models/GMANOVA) see, for example, von Rosen [9]. Moreover, our bilinear
models are balanced multivariate models with a linearly structured mean in contrast
to a MANOVA model for which an arbitrary mean structure is assumed to hold.

This article mainly considers reduced rank analysis applied to the analysis of
growth curvemodels via knowledge about the analysis of extendedbilinear regression
models. The book by Reinsel and Velu [8] includes many references to reduced rank
regression analysis presents many examples in which the models are used. In von
Rosen and von Rosen [10], some of Reinsel and Velu’s [8] work on growth curves
with rank restrictions was extended.

Reduced rank models imaginarily can be connected to latent variables. For exam-
ple, if observing many weather variables, such as hourly temperature and precipi-
tation data collected over a month, the effect on plant growth will occur via some
unobserved latent processes. In this article, we will introduce the case in which
latent variables influence a response variable directly, but the latent variables also
influence other latent variables that then influence the response variable. In our exam-
ple, temperature and precipitation also influence many soil characteristics, and these
variables, through some unobserved latent processes, affect plant growth. Thus, tem-
perature and precipitation also form a basis for latent variables to act indirectly. Some
details connected to this example will be provided in Sect. 21.3. This way of thinking
has been implemented in statistical model building which is connected to graphical
models, but in this case, the focus is on modelling covariance matrices. Moreover, in
factor analysis (i.e. structural equation modelling), one models latent variables via
covariance structures.

Suppose that there is a parameter matrix Θ of size p × q and rank r ; i.e.,
r(Θ) = r . This supposition means that there exist linear combinations L′Θ = 0,
but where L: (p − r) × p is unknown. Solving L′Θ = 0 as a function of Θ implies
the factorization Θ = Θ1Θ2, Θ1 p × r and Θ2 r × q, where both matrices are of
rank equal to r . This implication follows from the fact that C (Θ1) = C (L)⊥, where
C (•) and C (•)⊥ denote the column space and its orthogonal complement, respec-



21 A Bilinear Reduced Rank Model 331

tively, andΘ2 is an arbitrary matrix that generats all solutions toL′Θ = 0. However,
since L is arbitrary, Θ1 is also arbitrary. Moreover, the rank restriction also implies
restrictions among the columns ofΘ ; i.e.,HΘ ′ = 0. Thus,Θ = Θ1Θ2, whereΘ2 is
of full rank, satisfyingC (Θ ′

2) = C (H′)⊥, and of course,Θ1 is unknown. Therefore,
with rank restrictions, we have difficulties interpreting Θ1 and Θ2 because we do
not know if we have row- or column-restrictions. It also follows that without further
conditions,Θ1 andΘ2 are not estimable; therefore, in this article, the focuswill be on
estimating Θ and not Θ1 and Θ2. We can conclude that by putting rank restrictions
on a matrix is not very informative. However, there exists another type of modelling
where one starts with Θ1 and Θ2 and multiplies these matrices together; and this
case, one usually has a clear interpretation of the matrices. This type of model has
been studies in so-called cointegration analysis in econometrics (see Johansen [3]).

In Sect. 21.2, the proposed model is described in detail. To the best of our knowl-
edge, this method for modelling the indirect effects of latent variables has not been
considered before. Moreover, the chapter provides one example in which the model
can be used. In Sect. 21.3, a likelihood-based approach to estimate the parameters is
proposed.

21.2 Model

Denote X : p × n as the random matrix corresponding to p repeated measurements
of n independent observations. The model that will be studied is given by

X = ABC1 + ΘC2 + Ψ ΘC3 + E, (21.1)

where A : p × q is a known within-individuals design matrix, the matrices
C1 : k × n,C2 : k1 × n andC3 : k1 × n are knownbetween-individuals designmatri-
ces with column spaces satisfying C (C′

3) ⊂ C (C′
2) ⊂ C (C′

1), and E : p × n is a
random error matrix following the matrix normal distribution Np,n(0,Σ, In), where
the covariance matrix Σ : p × p is an unknown positive definite matrix. Moreover,
the matrices B : q × k, Θ : p × k1 and Ψ : p × p are unknown mean parameters,
whereΘ andΨ have rank restrictions r(Θ) = r1 < min(p, k1) and r(Ψ ) = r2 < p.
Models with a product such as Ψ Θ in (21.1), with rank restrictions on both included
matrices, have, to the best of our knowledge, not been considered before. In this
model, the main purpose is to estimate B while adjusting for the latent effects that
are introduced in the model via rank restrictions.

The conditionC (C′
3) ⊂ C (C′

2) ⊂ C (C′
1) is a technical condition and ismotivated

by knowledge about extended bilinear regression models (see von Rosen [9]). In the
condition, strict subspace inequalities, which are pure estimability conditions since
Θ is included in two effect terms, are necessary. It will also be assumed that

C (A) ∩ C (Θ) = {0},
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which is a very natural condition and will, in principle, not put any restrictions on
the use of the model in (21.1).

If the terms ΘC2 and Ψ ΘC3 are not included in (21.1), we would have the
traditional growth curve model (see Potthoff and Roy [5], von Rosen [9]), or if Θ

does not have rank restrictions, and the term Ψ ΘC3 is not included, then the model
is a GMANOVA+MANOVA model (see Chinchilli and Elsewick [2]). Moreover, in
(21.1), the term ΘC2 represents the direct latent effects, whereas the term Ψ ΘC3

mimics indirect latent effects or the interaction between two latent variables within
a nested regime. Throughout the article, it will be assumed that n is so large that the
parameters can be estimated.

We finally stress that the main purpose is to estimate the growth curves that are
adjusted for latent effects, and we do not discuss the latent effects directly because
it is difficult to interpret the estimators of the rank restricted parameter matrices.

21.2.1 Example

The purpose of this example is tomotivate themodel given by (21.1).We have chosen
to use plant growth and weather characteristics to illustrate the model, but currently,
when we have the ability to measure many complex systems, there are also many
other examples where the model can be applied, for example, within neurosciences
or when studying financial markets.

Plant Growth

Suppose that the aim of a study is to compare two treatments (blocks). The study
comprises 10 types of plants. Two types of plants have long roots and are not affected
by the characteristics of the upper layer of soil (e.g., chemical variables, soil textures,
organic materials); two types of plants are very robust against weather conditions
(different types of summary measures of temperature and precipitation) and soil
characteristics, whereas the remaining six types of plants are affected by bothweather
and soil variables. Let the study comprise n = 200 observations, and suppose that for
all 10 plant types, there are two blocks per plant type, all of which are of equal size.
A between-individuals design matrix C1 for specifying the “growth curve” ABC1

can have the following form:

C1 = I10 ⊗
(
1′
10 0
0 1′

10

)
,

where 110 is a vector of ones of size 10 and ⊗ denotes the Kronecker product of
two matrices. The within-individuals design matrix A in the model given in (21.1)
equals, if p = 10 and there is a linear growth (ti represents the i th time point),

A′ =
(
1 1 1 1 1 1 1 1 1 1
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

)
.
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Concerning the weather and soil variables, suppose that we have 10 weather
variables and 10 soil variables. We will specify C2 and C3 in the model presented
in (21.1). Let gi denote a vector of size 10 in which the 10 weather variables for
plant type i are stored, and let si be a vector in which the soil observations for plant
type i are stored. It will be supposed that weather and soil variables are constant for
each plant type, meaning that all plants from a specific plant type grow in places
with the same soil and weather characteristics. Therefore, for each plant type, we
have specific background matrices. To handle weather observations in the model, we
define Vi , i ∈ {1, . . . , 10}, such that

Vi =
{
1′
20 ⊗ gi , 10 × 20, if i ∈ {1, . . . , 8},
1′
20 ⊗ 0, 10 × 20, if i ∈ {9, 10}.

Then C2 in (21.1) is defined as

C2 = Block(V1, . . . ,V10), 100 × 200,

where Block denotes the block diagonal operator. It follows that C (C′
2) ⊂ C (C′

1).
To see this relationship, note that

V′
i =

(
110 0
0 110

)(
g′
i
g′
i

)
, i ∈ {1, . . . , 8}.

Strict inclusion between the subspaces holds because for i ∈ {9, 10}, Vi equals 0. It
can be noted that the model states that there are eight plant types that are directly
affected by weather conditions via the term ΘC2.

Concerning the soil variable, let

Mi =
{
1′
20 ⊗ si , 10 × 20, if i ∈ {1, . . . , 6},
1′
20 ⊗ 0, 10 × 20, if i ∈ {7, . . . , 10}.

Then, C3 in (21.1) is given by

C3 = Block(M1, . . . ,M10), 100 × 200.

Since, C (M′
i ) = C (V′

i ), i ∈ {1, . . . , 6}, it follows that C (C′
3) ⊂ C (C′

2).
Here, C3 is constructed so that only plant types on which there is an influence by

weather and soil characteristics are included. We can think of the latent processes of
weather variables as effecting the soil characteristics, which in turn have an influence
on plant growth via some new latent variables.
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21.3 Estimation

In this section, likelihood-inspired estimators are established. For notational conve-
nience, (Q)(Q)′ is written as (Q)()′, where Q can be any matrix expression. The
likelihood function for model (21.1) equals

L(B,Θ,Ψ ,Σ) = (2π)−
1
2 pne− 1

2 tr {Σ−1(X−ABC1−ΘC2−Ψ ΘC3)()
′}|Σ |− 1

2 n.

Using a well-known inequality (see Srivastava and Khatri [11], Theorem 1.10.4)

L(B,Θ,Ψ ,Σ) ≤ |n−1(X − ABC1 − ΘC2 − Ψ ΘC3)()
′|− 1

2 n(2π)−
1
2 pne− 1

2 pn,

(21.2)
with equality if and only if

nΣ = (X − ABC1 − ΘC2 − Ψ ΘC3)()
′.

Thus, Σ will be estimated if B, Θ and Ψ can be estimated.
Let S1 = X(I − PC′

1
)X′, PC′

1
= C′

1(C1C′
1)

−C1, and V1 = XPC′
1
− ABC1 −

ΘC2 − Ψ ΘC3, where for an arbitrary Q the notation (Q)− denotes any g-inverse
of Q satisfying the well-known relation QQ−Q = Q.

Moreover, in the subsequent calculations, the determinant relation |I + QR| =
|I + RQ| for arbitrary Q and R will be used many times. Minimizing the determi-
nant in (21.2) will be the main objective, and we start by performing a number of
calculations leading to the following chain of equalities:

|(X − ABC1 − ΘC2 − Ψ ΘC3)()
′|

= |S1 + (XPC′
1
− ABC1 − ΘC2 − Ψ ΘC3)()

′| = |S1||I + V′
1S

−1
1 V1|

= |S1||I + V′
1S

−1
1 A(A′S−1

1 A)−A′S−1
1 V1 + V′

1A
o(Ao′

S1Ao)−Ao′
V1|, (21.3)

where S−1 = S−1PA,S + PAo,S−1S−1, with PA,S =
A(A′S−1A)−A′S−1, and Ao is any matrix generating C (A)⊥ (see Kollo and von
Rosen [4], Theorem 1.2.25). Since Ao′

ABC1 = 0, it follows that

the r.h.s. of (21.3)

≥ |S1||I + (XPC′
1
− ΘC2 − Ψ ΘC3)

′Ao(Ao′
S1Ao)−(XPC′

1
− ΘC2 − Ψ ΘC3)|,

(21.4)

(r.h.s. is an abbreviation for “right-hand side”) with equality if and only if
A′S−1

1 V1 = 0; that is,

ABC1 = A(A′S−1
1 A)−A′S−1

1 (XPC′
1
− ΘC2 − Ψ ΘC3).
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Thus, B is estimated if Θ and Ψ can be estimated because as a function of Θ and
Ψ we have a consistent system of linear equations. The above block of calculations
will be repeated two times before the estimators are obtained.

Let us continue with (21.4). We need a few more definitions (compare with S1
and V1). Let

T1 = S1Ao(Ao′
S1Ao)−Ao′ = P′

Ao′ ,S−1
1
,

S2 = S1 + T1X(PC′
1
− PC′

2
)X′T′

1,

V2 = XPC2 − ΘC2 − Ψ ΘC3.

Then,

the r.h.s. of (21.4)

= |S1 + T1(XPC′
1
− ΘC2 − Ψ ΘC3)()

′T′
1|

= |S2 + T1V2V′
2T

′
1| = |S2||I + V′

2T
′
1S

−1
2 T1V2|

= |S2||I + V′
2T

′
1S

−1
2 PT1Θ1,S2T1V2 + V′

2T
′
1P(T1Θ1)o,S

−1
2
S−1
2 T1V2|, (21.5)

because of the rank restrictions r(Θ) = r1 and Θ = Θ1Θ2, for some Θ1 : p × r1,
Θ2 : r1 × k1 which both are of rank r1 and unknown. Moreover,

the r.h.s. of (21.5) ≥ |S2||I + V′
2T

′
1P(T1Θ1)o,S2S

−1
2 T1V2| (21.6)

with equality if and only if Θ ′
1T

′
1S

−1
2 T1V2 = 0, which in turn implies that

Θ1Θ2C2 = Θ1(Θ
′
1T

′
1S

−1
2 T1Θ1)

−1Θ ′
1T

′
1S

−1
2 (XPC′

2
− Ψ Θ1Θ2C3), (21.7)

where the inverse exists becauseΘ1 is of full column rank. If we can find an estimator
for Θ1 and consider Ψ ΘC3 to be known, we have a system of consistent linear
equations in Θ2.

We proceed with (21.6). Let

T2 = S2(T1Θ1)
o((T1Θ1)

o′
S2(T1Θ1)

o)−(T1Θ1)
o′ = P(T1Θ1)o,S

−1
2
,

S3 = S2 + T2T1X(PC′
2
− PC′

3
)X′T′

1T
′
2,

V3 = XPC′
3
− Ψ ΘC3.

Then,

the r.h.s. of (21.6) = |S2 + T2T1(XPC′
2

− Ψ ΘC3)()
′T′

1T
′
2|

= |S3 + T2T1(XPC′
3

− Ψ ΘC3)()
′T′

1T
′
2| = |S3 + T2T1V3V

′
3T

′
1T

′
2|

= |S3||I + V′
3T

′
1T

′
2S

−1
3 T2T1V3|. (21.8)
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The determinant |S3| is a function of Θ1 since T2 is a function of Θ1. Now, we
will minimize |S3| with respect to Θ1, which implies that we are not aiming to find
maximum likelihood estimates because Θ1 is also included in the other determinant
of (21.8). However, by focusing only on |S3|, it will be shown that explicit estimators
can be obtained. Let

PC′
2\C′

3
= PC′

2
− PC′

3
,

R1 = I + PC′
2\C′

3
X′H1H′

1XPC′
2\C′

3
,

where for some H1 : p × (p − r(A))

T′
1S

−1
2 T1 = H1H′

1.

It follows that

|S3| = |S2|I + PC′
2\C′

3
X′T′

1T
′
2S

−1
2 T2T1XPC′

2\C′
3

(21.9)

= |S2||R1 − PC′
2\C′

3
X′H1H′

1Θ1(Θ
′
1H1H′

1Θ1)
−1Θ ′

1H1H′
1XPC′

2\C′
3

= |S2||R1||I − F′
1H

′
1XPC′

2\C′
3
R−1

1 PC′
2\C′

3
X′H1F1|,

where

F1 = H′
1Θ1(Θ

′
1H1H′

1Θ1)
−1/2, F′

1F1 = Ir1 , F1 : (p − r(A)) × r1.

Let

U = I − H′
1XPC′

2\C′
3
R−1

1 PC′
2\C′

3
X′H1

which is positive definite since

U−1 = I + H′
1XPC′

2\C′
3
X′H1

is positive definite. Thus,

the r.h.s. of (21.9) = |S2||R1||F′
1UF1| ≥ |S2||R1|

r1∏
i=1

λp−r(A)−r1+i , (21.10)

where λ1 ≥ · · · ≥ λp−r(A) are the ordered eigen-values of U, which are all indepen-
dent of Θ1 since U is not a function of Θ1. The inequality follows from Rao [7],
Theorem 2.1 (Poincaré separation theorem). Let {vi } be the corresponding eigen-
vectors to {λp−r(A)−r1+i }. Then, the minimum in (21.10) is obtained if F1 is chosen
to equal

F̃F1 = (v1, . . . , vr1)
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and it remains to find a Θ1 such that

F̃F1 = H′
1Θ1(Θ

′
1H1H′

1Θ1)
−1/2.

Since F̃F′
1F̃F1 = Ir1 , one solution is given by

Θ̂1 = H1(H′
1H1)

−1F̃F1. (21.11)

We will later return to the estimation of Θ because according to (21.7), the esti-
mator of Θ will be a function of the estimator of Ψ , and therefore, Ψ = Ψ 1Ψ 2,
where Ψ 1 : p × r2, Ψ 2 : r2 × p has to be discussed. Let us start with (21.8) and

the r.h.s. of (21.8)

= |S3||I + V′
3T

′
1T

′
2S

−1
3 PT2T1Ψ 1,S3T2T1V3 + V′

3T
′
1T

′
2P(T2T1Ψ 1)o,S

−1
3
S−1
3 T2T1V3|

≥ |S3||I + V′
3T

′
1T

′
2P(T2T1Ψ 1)o,S

−1
3
S−1
3 T2T1V3|. (21.12)

Equality holds if and only if

Ψ ′
1T

′
1T

′
2S

−1
3 T2T1V3 = 0,

where S3 and T2 are functions ofΘ1 for which an estimate was presented in (21.11).
Hence,

Ψ 1Ψ 2ΘC3 = Ψ 1(Ψ
′
1T

′
1T

′
2S

−1
3 T2T1Ψ 1)

−1Ψ ′
1T

′
1T

′
2S

−1
3 XPC′

3
(21.13)

and Ψ 2 can be estimated as a function of Ψ 1 and Θ . Note that (21.13) implies that
Ψ ΘC3 is determined if Ψ 1 is replaced by an estimate since Θ1 in S3 and T2 has
been estimated. Moreover, the expression in (21.13) can be inserted into (21.7) and
given Θ̂1, we can write

Θ̂C2 = Θ̂1(Θ̂
′
1T

′
1S

−1
2 T1Θ̂1)

−1Θ̂
′
1T

′
1S

−1
2 (XPC′

2
− ̂Ψ ΘC3) (21.14)

= Θ̂1Θ̂
′
1T

′
1S

−1
2 (XPC′

2
− ̂Ψ ΘC3),

wherêΨ Θ indicates that (21.13) is used, assuming that Ψ 1 can be estimated. Thus,
from this expression,Θ2 can be estimated; however,Θ2 is not unique and not of any
greater interest.

The parameter matrix Ψ 1 remains to estimate, which is important because this
will give explicit estimators for Θ̂C2 and̂Ψ ΘC3. The estimation will be carried out
in the same way as when Θ1 was estimated. Let
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R2 = I + PC′
3
X′T′

1T
′
2S

−1
3 T2T2XPC′

3
,

T′
1T

′
2S

−1
3 T2T2 = H2H′

2, H2 : p × (p − r(A : Θ)),

F2 = H′
2Ψ 1(Ψ

′
1H2H′

2Ψ 1)
−1/2,

where R2 and H2 depend on only one unknown quantity, Θ1, which has been esti-
mated in (21.11). From (21.12), it follows that

the r.h.s. of (21.12) = |S3||R2||F′
2(I − H′

2XPC′
3
R−1

2 PC′
3
X′H2)F2|. (21.15)

Furthermore, define

U2 = I − H′
2XPC′

3
R−1

2 PC′
3
X′H2, (p − r(A : Θ)) × (p − r(A : Θ)),

withU−1
2 = I + H′

2XPC′
3
X′H2. Thus,U2 is positive definite. The assumptionC (A) ∩

C (Θ) = {0} used in (21.1) implies that p − r(A : Θ) = p − r(A) − r1. Then,

the r.h.s. of (21.15) = |S3||R2||F′
2U2F2| ≥ |S3||R2|

r2∏
i=1

λp−r(A)−r1−r2+i ,

where {λp−r(A)−r1−r2+i } are eigen-values of U2. Moreover, let

F̃F2 = (w1, . . . ,wr2)

be the matrix of eigen-vectors of U2 corresponding to {λp−r(A)−r1−r2+i }, i ∈
{1, . . . , r2}. Thus, an estimated Ψ 1 must satisfy

H′
2Ψ 1(Ψ

′
1H2H′

2Ψ 1)
−1/2 = F̃F2

Since F̃F′
2F̃F2 = I

Ψ̂ 1 = H2(H′
2H2)

−1F̃F2 (21.16)

is an estimator.
This result means that we have estimated both Θ̂C2 and ̂Ψ ΘC3, and therefore,

an explicit estimator of B can be presented, which was the main purpose of this
article. We do not present estimators of Θ2 and Ψ 2, since they are of no real interest,
although they can be obtained from (21.15) and (21.13), respectively.

Proposition 1 For the model presented in Sect.21.2 in (21.1), let Θ̂C2 and̂Ψ ΘC3

be given by (21.15) and (21.13), respectively, where for the last relation Ψ̂ 1, presented
in (21.16), has been inserted. The following estimators are proposed:

(i) Θ̂1 is given in (21.11);
(i i) Ψ̂ 1 is given in (21.16);
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(i i i) If r(A) = q and r(C1) = k then

B̂ = (A′S−1
1 A)−1A′S−1

1

×(XC′
1(C1C′

1)
−1 − Θ̂C2C′

1(C1C′
1)

−1 − ̂Ψ ΘC3C′
1(C1C′

1)
−1),

where S1 = X(I − PC′
1
)X′;

(iv) AB̂C1 = A(A′S−1
1 A)−A′S−1

1 (XC′
1(C1C′

1)
−C1 − Θ̂C2 − ̂Ψ ΘC3);

(v) nΣ̂ = (X − AB̂C1 − Θ̂C2 − ̂Ψ ΘC3)(X − AB̂C1 − Θ̂C2 − ̂Ψ ΘC3)
′.

21.4 Discussion

The model is overparameterized, which implies estimability problems (parame-
ter identiliability problems). In fact, estimability in complex statistical models has
become an important topic in the era of analysing large data-sets. Regularization
in loss functions is one tool that nowadays is often applied. A different approach
that constitutes the main idea of this work is to introduce rank restrictions on mean
parameters to model the effects of latent variables, which are thought to govern a
large set ofmeasurable variables.Moreover, we link the latent mean variables with an
extended Bilinear regression model, which yields a new class of models. An explicit
estimator of the latent variable effect is derived. In the future, based on this estimate,
the aim is to study statistical properties, including the interpretation, of estimators
and estimates and to study different types of model validation procedures.
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Chapter 22
Simultaneous Multiple Change Points
Estimation in Generalized Linear Models

Xiaoying Sun and Yuehua Wu

Abstract In this paper, the problem of multiple change points estimation is con-
sidered for generalized linear models, in which both the number of change-points
and their locations are unknown. The proposed method is to first partition the data
sequence into segments to construct a new design matrix, secondly convert the mul-
tiple change points estimation problem into a variable selection problem, and then
apply a regularized model selection technique and obtain the regression coefficient
estimation. The consistency of the estimator is established regardless if there is a
change point in which the number of coefficients can diverge as the sample size
goes to infinity. An algorithm is provided to estimate the multiple change points.
Simulation studies are conducted for the logistic and log-linear models. A real data
application is also presented.

22.1 Introduction

Change point analysis is the process of detecting distributional changes within time-
ordered observations [13]. Applications can be found in many research areas includ-
ing climate studies,medical and health sciences, financial econometrics and riskman-
agement. For instance, change point analysis is used to examine the North Atlantic
tropical cyclone record for statistical discontinuities (change points) [16], confirm
the effect of the seat belt legislation on the monthly deaths and serious injuries,
detect speech signals [3], and estimate changes in the 1982 Urakawa-Oki earthquake
records [10].

Page [14, 15]first introduced the undocumented changepoint problem.Since then,
change point problems have been intensively studied in the literature. The change
point problems often considered in the literature can roughly be categorized into two
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classes. One class is the change point detection in the distributions of a time-ordered
sequence of independent observations. Examples include a nonparametric approach
for detecting multiple change points in the distributions of a multivariate sequence
of independent observations [13]; construction of a nonparametric test statistic and
a nonparametric estimator respectively to detect and estimate a change point in the
distributions of an independent univariate sequence [8, 17]; use of a test statistic to
detect a single change point in a categorical data sequence [16]. The other class of
change point problems is to detect or estimate all the locations in a data sequence
such that before and after each of them the data sequence follows different models.
The single change point detection in the linear regression models can be found in
Csörgö and Horváth [2] among others. For linear regression models, a fast algorithm
was proposed in Jin et al. [11] to simultaneously estimate multiple change points in
linear regression models. For nonstationary time series models, Davis et al. [3] and
Jin et al. [10] studied the multiple structural break estimation and variable selection
problem. For cumulative logit models, Lu and Wang [12] developed a likelihood
ratio test for detecting a sudden change in parameters for a multinomial sequence.
For generalized linear models (GLMs), Antoch et al. [1] proposed a statistic to test
if there is a structural change. More examples can be found in literature. However,
the literature on the multiple change points estimation in the GLM is relatively thin.

In this paper, we focus on the problem of multiple change points estimation in
GLMs in which both number of change points and their locations are unknown. In
light of Jin et al. [10], we propose a simultaneous multiple change points estimation
method which first partitions the data sequence into several segments to construct
a new design matrix, secondly convert the multiple change points estimation prob-
lem into a variable selection problem, and then estimate the regression coefficients
by maximizing a penalized likelihood function. The consistency of the coefficient
estimator is established in which the number of coefficients can diverge as the sam-
ple size goes to infinity. The nonzero coefficient estimates provide the information
about which segments potentially contain a change point. An algorithm is provided
to estimate the change point in each possible segment. Note that in this algorithm,
the test statistic proposed in Antoch et al. [1] is used to test if there exists a change
point in each possible segment.

The rest of this article is organized as follows. In Sect. 22.2, we present a GLM
with multiple change points and describe our change point detection methodology,
whose theoretic justification is also provided. In Sect. 22.3, an algorithm is built
to implement the method given in Sect. 22.2. Simulation studies and a real data
application are presented in Sects. 22.4 and 22.5 respectively. The paper is concluded
in Sect. 22.6. The test proposed by Antoch et al. [1], and the proof of the theorem
are respectively given in the appendix.

Throughout this paper, AT denotes the transpose of a matrix A. vT , v j and ‖v‖
denote the transpose, j th component and the L2 norm of a vector v, respectively.
For v = (v1, v2, . . . , vp)

T being a p × 1 vector, A = (ai j ) = (a1, . . . , ap) being a
q × p matrix with ai j ’s as its elements and a j ’s as its column vectors, and B =
{i1, i2, . . . , ik}, 1 ≤ i1 ≤ . . . ≤ ik ≤ p, being an index set with its size denoted by
|B|, write v[B ] = (vi1 , . . . , vik )

T and A[B ] = (ai1 , . . . , aik ). Let IS(t) be the indicator
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function such that IS(t) = 1 if t ∈ S and IS(t) = 0 otherwise. Define a+ = a if a > 0
and a+ = 0 otherwise. Denote the inverse function of f (x) as f −1(x). Let f ′(x) and
f ′′(x) denote the first and second order derivatives of a univariate function, f (x),
with respect to the scalar x . If g is a univariate function of a vector v, let ∂g(v)/∂v

and ∂2g(v)/(∂v∂vT ) denote the first and second order derivatives with respect to the
vector v. Define �x� and �x	 respectively as the largest integer smaller than or equal
to x and the smallest integer larger than or equal to x .

22.2 Simultaneous Multiple Change Points Detection

22.2.1 The GLM with Multiple Change Points

Let (yn1, xn1), (yn2, xn2), · · · , (ynn, xnn) be a double-indexed series of random sam-
ples where ynt is a scalar response and xnt = (xnt1, xnt2, · · · , xntp)T is a vector of
covariates for all t = 1, 2, · · · , n. Suppose that for every n and given xnt , Ynt has a
distribution in the exponential family, taking the form

fnt (ynt |xnt ) = exp

{
yntθ(xnt ) − b(θ(xnt ))

a(φ)
+ c(ynt , φ)

}

for some specific function a(·), b(·) and c(·). Then the expectation and variance ofYnt
given xnt are respectively μnt = E(Ynt |xnt ) = b′(θ(xnt )) and σ 2

nt = Var(Ynt |xnt ) =
a(φ)b′′(θ(xnt )).

The GLM is formulated as

g(μnt ) =
p∑

j=1

β j xnt j = xTntβ

where β = (β1, β2, · · · , βp)
T is the vector of parameters, and g(·) is a proper link

function. In this paper,we consider the canonical link, i.e., g(μnt ) = (db/dθ)−1 (μnt ),
and hence θ(xnt ) = xTntβ.

Denote all the change points as {ln,1, ln,2, · · · , ln,s} satisfying that 0 = l0 < ln,1 <

ln,2 < · · · < ln,s < ln,s+1 = n, where s is the total number of change points. Consider
the following GLM with multiple change points formulated as

g(μnt ) = xTntβi , ln,i−1 < t ≤ ln,i , i = 1, 2, · · · , s + 1, t = 1, 2, · · · , n, (22.1)

where βi = (βi1, · · · , βi p)
T is the parameter vector associated with the i th segment

{ln,i−1, . . . , ln,i }. The objective is to estimate the total number of change points, s,
and their locations, ln,1, ln,2, · · · , ln,s .

The double subscripts in model (22.1) are to emphasize the dependence on the
sample size n. Throughout this paper τi ∈ (0, 1) is defined such that ln,i = �τi n� for
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i = 1, 2 · · · , s. Set τ0 = 0 and τs+1 = 1 for convenience. In the rest of this paper,
the subscript n is suppressed if there is no confusion.

22.2.2 The Method

In order to detect all the change points in model (22.1), the proposed method is to
convert the multiple change points detection problem into a model selection problem
by partitioning the data sequence and rewriting model (22.1) into model (22.2), and
then utilize the regularizedmodel selection techniques to estimate the total number of
change points, s and the change points li ’s simultaneously. The procedure is described
as following.

1. Partition the data sequence into qn segments,Q1 = {1, 2, · · · , n − (qn − 1)m} as
the first segmentwith length n − (qn − 1)m satisfying thatm ≤ n − (qn − 1)m ≤
d0m for somed0 ≥ 1 andQk = {n − (qn − k + 1)m + 1, · · · , n − (qn − k)m} as
the kth segment with length m for k = 2, 3, · · · , qn . Then there exist n1 < n2 <

· · · < ns such that li ∈ Qni for i = 1, 2, · · · , s.
2. Rewrite model (22.1) in order to incorporate the partition yields the following

model

g(μt ) = xTt [ β1 +
qn∑
k=2

δk I{n−(qn−k+1)m+1,..., n}(t) ] − vt , (22.2)

where

δk =
{

βi+1 − βi , fork = ni , i = 1, 2, . . . , s,
0, otherwise,

and

vt =
{
xTt δk, fork = ni , t ∈ {n − (qn − k + 1)m + 1, . . . , li },
0, otherwise,

t = 1, 2, · · · , n. For the sake of convenience, denote ςi = n − (qn −
ni + 1)m + 1.

3. Denote g(μ) = (g(μ1), g(μ2), . . . , g(μn))
T . Let A = ∪s

i=0Bi , where Bi =
{(ni − 1)p + 1, . . . , ni p}, i = 1, . . . , s,B0 = {1, . . . , p} and A c =
{1, . . . , pqn}\A . Put γ = (βT

1 , δT2 , · · · , δTqn )
T = (γ1, γ2, · · · , γpqn )

T , where
γ[A c] = 0. Now we write model (22.2) in the following matrix form

g = Zγ − Wγ. (22.3)

Here,
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Z = [z1, z2, · · · , zn]T = [z̃1, z̃2, · · · , z̃ pqn ]

=

⎛
⎜⎜⎝

Z (1) 0 0 · · · 0
Z (2) Z (2) 0 · · · 0

· · ·
Z (qn) Z (qn) Z (qn) Z (qn) Z (qn)

⎞
⎟⎟⎠

n×(pqn)

,

Z (1) = (x1, x2, · · · , xn−(qn−1)m)T of dimension (n − (qn − 1)m) × p, Z (2) =
(xn−(qn−1)m+1, xn−(qn−1)m+2, · · · , xn−(qn−2)m)T of dimension m × p, · · · ,
Z (qn) = (xn−m+1, xn−m+2, · · · , xn)T of dimensionm × p, zt , t = 1, 2, . . . , n
are row vectors of Z , z̃ j , j = 1, 2, · · · , pqn are column vectors of Z ,
and Wn×(pqn) = (w1, w2, . . . , wn)

T with wt = 0 for t /∈ {n − (qn − ni + 1)m +
1, . . . , li }, otherwise (wt )[B i ] = xt and (wt )[B c

i ] = 0, where t = 1, 2, . . . , n
and i = 1, 2, . . . , s.
Then the log-likelihood function for model (22.3) is

L (γ ) =
n∑

t=1

[
yt (zTt γ − wT

t γ ) − b(zTt γ − wT
t γ )

a(φ)
+ c(yt , φ)

]
.

4. Denote Q(γ ) = L1(γ ) − n
∑pqn

j=1 pλn (|γ j |), where L1(γ ) =∑n
t=1(

yt (zTt γ )−b(zTt γ )

a(φ)
+ c(yt , φ)), obtained by letting wt ≡ 0 in L (γ ), for t =

1, 2, . . . , n. We propose to estimate γ in model (22.3) by maximizing the
following penalized log-likelihood function

γ̂ = argmax
γ

Q(γ ) = argmax
γ

⎧⎨
⎩L1(γ ) − n

pqn∑
j=1

pλn ,d(|γ j |)
⎫⎬
⎭ , (22.4)

where λn > 0, d > 0, and the penalty function pλn ,d(θ) is symmetric about θ = 0
and satisfies the following assumptions: pλn ,d(0) = 0, p′

λn ,d
(θ) = 0 if θ > λnd

and p′
λn ,d

(0) = λn . Here are two penalty functions among others that meet these
assumptions. One is the SCAD penalty function defined in Fan and Li [4]
satisfying that pλn ,d(0) = 0 and p′

λn ,d
(θ) = λn{I(0,λn ](θ) + (dλn−θ)+

(d−1)λn
I(λn ,∞)(θ)}.

The other is the MCP penalty defined in Zhang [18] satisfying that pλn ,d(θ) =
(λnθ − θ2

2d )I(0,dλn ](θ) + 1
2dλ2

n I(dλn ,∞)(θ). In this paper, we use these two penalty
functions for illustration purpose. Other penalty functions may also be used to
derive the regression coefficient estimator γ̂n .

22.2.3 The Consistency of the Proposed Estimator

To study the asymptotic properties of γ̂n , we assume that there is an underlying true
model with true change points l∗n,i = �nτ ∗

i �, i = 1, 2, · · · , s and there exist true
values of γn: γ 0

n = (γ 0
n1, . . . , γ

0
n,pqn )

T with γ 0
n[A c

n ] = 0. Note that the dimension of γn
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goes to ∞ as n → ∞. To prove the consistency of the estimator γ̂n , we employ the
techniques developed in Fan and Peng [6] which showed the asymptotic properties of
the maximum nonconcave penalized likelihood estimator with a diverging number
of parameters. The following assumptions are made for the technical proof. The first
four assumptions are imposed on both likelihood and penalty terms. The last one is
put on the term involving w.

Assumption 22.1 lim infn→∞ lim infγ→0+ p′
λn

(γ )/λn > 0.

Assumption 22.2 λn → 0,
√
n/qnλn → ∞ as n → ∞.

Assumption 22.3 min j∈A {|γ 0
nj |/λn} → ∞ as n → ∞.

Assumption 22.4 For every n and i , {(Yt , xt ), li−1 < t ≤ li } are independent and
identically distributed with probability density fn,i (yli , xli , βi ), which has a common
support, and the model is identifiable. Furthermore, they satisfy the following three
regularity conditions.

(1) The first and second derivatives of the likelihood function satisfy the joint equa-
tions

Eβi

{
∂ log fn,i (yli , xli , βi )

∂βi j

}
= 0,

and
Eβi

{
∂ log fn,i (yli , xli , βi )

∂βi j

∂ log fn,i (yli , xli , βi )

∂βik

}
= −Eβi

{
∂2 log fn,i (yli , xli , βi )

∂βi j ∂βik

}
,

for j, k = 1, 2, . . . , p.
(2) The Fisher information matrix

I (βi ) = Eβi

[{
∂ log fn,i (yli , xli , βi )

∂βi

}{
∂ log fn,i (yli , xli , βi )

∂βi

}T
]

satisfies conditions 0 < C1 < emin{I (βi )} ≤ emax{I (βi )} < C2 < ∞ for all n
with emin{I (βi )} and emax{I (βi )} denoting the minimum and maximum eigen-
values of I (βi ) respectively. For j, k = 1, 2, . . . , p,

Eβi

{
∂ log fn,i (yli , xli , βi )

∂βi j

∂ log fn,i (yli , xli , βi )

∂βik

}2

< C3 < ∞
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and

Eβi

{
∂2 log fn,i (yli , xli , βi )

∂βi j∂βik

}2

< C4 < ∞.

(3) There is a large enough open subsetωi of
 ∈ Rp which contains the true param-
eter βi , such that for almost all (Yt , xt ), the density admits all third derivatives
∂ fn,i (yli , xli , βi )/∂βi j∂βik∂βil for all βi ∈ ωi . Furthermore, there are functions
Mnjkl such that ∣∣∣∣∂ log fn,i (yli , xli , βi )

∂βi j∂βik∂βil

∣∣∣∣ ≤ Mnjkl(yli , xli )

for all βi ∈ ωi , and
Eβi

{
M2

njkl(yli , xli )
}

< C5 < ∞

for all p, n, j, k, l.

These regularity conditions correspond to Assumptions (E)–(G) in Fan and Peng [6].

Assumption 22.5 Assume that min{τ ∗
i − τ ∗

i−1, i = 1, 2, · · · , s + 1} > ι > 0

where ι is a constant. Also assume that qn = O(n
1
6 ) and l∗n,i − ςi = O(

√
nqn)where

ςi = n − (qn − ni + 1)m + 1.
To this end, we state the theorem as follows and its proof is given in Appendix B.

Theorem 22.1 If Assumptions 1–5 hold, there exists a local maximizer γ̂n to Q(γn)

and ‖γ̂n − γ 0
n ‖ = Op(

√
qn/n), where γ̂n is the SCAD estimator. Furthermore, we

have limn→∞ P(γ̂n[A c
n ] = 0) = 1.

Let Â = { j : γ̂ j �= 0}. Then the total number of change points is estimated by
the size of the set {� j/p	, j ∈ Â } which is denoted as ŝ. Theorem 22.1 implies the
consistency of ŝ to s. It also provides the information that the k̂thi segment contains
a change for each k̂i ∈ {� j/p	, j ∈ Â }, j = 1, . . . , ŝ.

22.3 An Algorithm

As showed in the previous section, γ̂n provides the information aboutwhich segments
potentially contain a change point. Thus we are able to present an algorithm in this
section to find out if a possible segment contains a change point and to locate it if it
does exist. The algorithm consists of the following steps.

Step 1. First, we test if there exists a change point in the sequence by the test proposed
in Antoch et al. [1]. The details are given in Appendix A.
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• If there is no change point, set s̃ = 0 and go to Step 5.
• Otherwise, estimate the change point by the estimate in Appendix A and denote
it by l̂. Then set s̃ = 1.

Step 2. Compute the estimate γ̂ defined in (22.4) by the R Package SIS [5] or
cvplogistic [9].

Step 3. Let ŝ record the number of change point estimates, k̂ = {̂k1, k̂2, . . . , k̂̂s} be a
vector containing the change point estimates. Set ŝ = 0.

• If γ̂ j = 0 for all j > p, go to Step 5.
• Otherwise, set k̃ = {k̃1, k̃2, . . . , k̃s∗ } = {� j

p 	: for all j > p such that γ̂ j �= 0}with
k̃1 < k̃2 < . . . < k̃s∗ which records the segment number that possibly contains a
change point and s∗ is the total number of possible change points. Set l = 1 where
l is from 1 to s∗.

Step 4. Use the test proposed in Antoch et al. [1] to detect a change point in each
segment which possibly contains a change point. The details are given in Appendix
A. This step is to reduce the overestimation of the number of change points from
Step 3 and also can improve the accuracy of change point estimates.

• If l > s∗, go to Step 5.
• Otherwise, test H (l)

0 that there is no change point in g(μt ) = xTt β, t = n − (qn −
k̃l + 2)m + 1, . . . ,≤ n − (qn − k̃l)m, at the significance level, 5% by Antoch et
al. [1].

– If the test is not significant, set l = l + 1, and repeat Step 4.
– Otherwise, set ŝ = ŝ + 1, and k̂̂s+1 = k̃l . Then we obtain a change point k̂̂s in
this segment.

If k̃l+1 − k̃l = 1, set l = l + 1, and repeat Step 4.
Otherwise, set l = l + 2, and repeat Step 4.

Step 5.

• If s̃ = 0, there is no change point.
• If s̃ = 1,

– If ŝ ≤ 1, there exists one change point and the estimate of this change point, k̂
is given by the estimate, l̂ in Step 1.

– If ŝ > 1, the total number of change points is ŝ and the estimates of these change
points are {̂k1, k̂2, . . . , k̂̂s}.

In the next two sections, data examples are presented to show the performance of
the proposed methodology.
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22.4 Simulation Studies

The false alarm rate (Type I error) and the accuracy of the change point estimates
derived by the algorithm proposed in Sect. 22.3 are evaluated through Monte Carlo
simulations in this section. More specifically, we will calculate the empirical prob-
abilities that the proposed algorithm erroneously detects change points when they
actually do not exist. Moreover, we show how frequently the algorithm detects the
correct number of change points and how accurately it estimates the change points
when they do exist. Two specific generalized linear models, the logistic and the
log-linear models, are considered for demonstration purpose.

22.4.1 Two Specific Generalized Linear Models

For the binomial response, yt |xt ∼ Binomial(1, π(xt )). The density function is

f (yt |xt ) = π(xt )
yt (1 − π(xt ))

1−yt = exp

{
yt log

π(xt )

1 − π(xt )
+ log(1 − π(xt ))

}
.

Then θ(xt ) = log π(xt )
1−π(xt )

, b(θ(xt )) = log
(
1 + eθ(xt )

)
, μt = b′(θ(xt )) =

eθ(xt )

1+eθ(xt ) , and σ 2
t = b′′(θ(xt )) = eθ(xt )

(1+eθ(xt ))2
. It can be seen that the canonical link func-

tion is g(μt ) = log( μt

1−μt
).

For the Poisson response, yt |xt ∼ Poisson(λ(xt )). The density function is

f (yt |xt ) = λ(xt )yt e−λ(xt )

yt ! = exp{yt log λ(xt ) − λ(xt ) − log(yt !)}.

Then θ(xt ) = log λ(xt ),b(θ(xt )) = eθ(xt ),μt = b′(θ(xt )) = eθ(xt ), andσ 2 = b′′(θ(xt )) =
eθ(xt ). It can be seen that the canonical link function is g(μt) = log(μt ).

22.4.2 GLMs with No Change Point

To examine the false alarm rate of the proposed algorithm, we consider the following
fourmodels, two for the binomial response and the other two for thePoisson response:

B1 : log μt

1−μt
= −0.7; B2 : log μt

1−μt
= 12 − 3xt ;

P1 : log(μt ) = 2; P2 : log(μt ) = 2 − xt ,

where t = 1, . . . , n.
All of these four models contain no change point. We first generate xt from

the uniform distribution U(0, 9) for B2 and U(0, 1) for P2. For each model, we
generate 1, 000 independent observations with length n = 1, 000. The empirical
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probabilities that the proposed algorithm erroneously detects change points in the
generated sequences are 0.039 for B1, 0.084 for B2, 0.034 for P1, and 0.044 for
P2. This demonstrates that our algorithm has low false alarm rates for all these four
models.

22.4.3 GLMs with Multiple Change Points

The performance of the proposed methodology is also evaluated in this subsection
through Monte Carlo simulations for GLMs with multiple change points. We will
estimate how frequently themethodology detects the correct number of change points
and how accurately it estimates the change points when they do exist. We consider
the following four models. B3 − B4 are for the binomial response and P3 − P4 are
for the Poisson response.

• B3 : log μt

1−μt
= −0.73 + 0.14xt + (2.02 + 1.34xt )I{513,...,769}(t) − (2.15 +

1.57xt )I{770,...,1000}(t).
• B4 : log μt

1−μt
= 1.58 − 0.79xt − (2.04 − 0.90xt )I{1428,...,10000}(t) + (2.25 −

0.07xt )I{3085,...,10000}(t) − 2.86I{4503,...,10000}(t)
+(1.66 − 0.02xt )I{5913,...,10000}(t) − (0.59 + 0.79xt )I{7422,...,10000}(t) + (0.67 +
1.27xt )I{8804,...,10000}(t).

• P3 : log(μt ) = 0.31 − 0.11xt + 0.91I{513,...,769}(t) − (0.64 − 0.01xt )
I{770,...,1000}(t).

• P4 : log(μt ) = 1.58 − 0.79xt − (2.04 − 0.90xt )I{1428,...,10000}(t) + (0.95
− 0.18xt )I{3085,...,10000}(t) − (1.06 + 0.12xt )I{4503,...,10000}(t) + (0.95 + 0.41xt )
I{5913,...,10000}(t) − (0.88 + 0.39xt )I{7422,...,10000}(t) + (0.87 + 0.30xt )
I{8804,...,10000}(t).

Both B3 and P3 contain two change points located at t = 512, 769 respectively.
BothB4 and P4 contain 6 change points at t = 1427, 3084, 4502, 5912, 7421, 8803,
respectively. First, we generate xt from the uniform distribution U(0, 9) forB3 − B4
and U(0, 1) for P3 − P4, then we generate yt according to each model for t =
1, 2, . . . , n, with n = 1, 000 for B3 and P3 and n = 10, 000 for B4 and P4.

The accuracy of the change point estimates is calculated based on 1000 indepen-
dent simulations. Let N̂ (M)

i = {̂t (M)
1 , . . . , t̂ (M j)

ŝ } contain all change points estimated
by the proposed methodology in the i th simulation based on model M being B1,
B2, P1, or P2 for i = 1, 2, . . . , 1, 000. Denote ε̃M = {N̂ (M)

i : |N̂ (M)
i | = 1, i =

1, 2, . . . , 1, 000} for M being B1, B2, P1, or P2. Thus, |ε̃M| denotes the number of
simulations from model M out of 1,000 in which the number of change points has
been correctly detected. Let Acc(l, r) = |{̂ki : |̂ki − l| ≤ r, i = 1, . . . , 1000}| with
r = 10 or 15 denote the number of simulations out of 1,000 repetitions in which
the change point estimate k̂i falls into the interval of length 2r centered at the true
change point l, for i = 1, . . . , 1000. The simulation results are reported in Table22.1
for B3 − B4 and Table22.2 for P3 − P4. From both tables, it can be seen that our
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Table 22.1 Simulation results based on 1,000 simulations for B3 and B4

Model
M

|ε̃M|

SCAD MCP SCAD MCP SCAD MCP

B3 927 927 Acc(512, 10) 916 971 Acc(512, 15) 931 988

Acc(769, 10) 994 999 Acc(769, 15) 995 1000

B4 824 723 Acc(1427, 10) 914 915 Acc(1427, 15) 955 956

Acc(3084, 10) 882 884 Acc(3084, 15) 933 934

Acc(4502, 10) 986 988 Acc(4502, 15) 992 994

Acc(5913, 10) 856 850 Acc(5913, 15) 924 920

Acc(7422, 10) 993 993 Acc(7422, 15) 998 998

Acc(8804, 10) 957 972 Acc(8804, 15) 957 972

Table 22.2 Simulation results based on 1,000 simulations for P3 and P4

Model M |ε̃M| SCAD SCAD

P3 973 Acc(512, 10) 922 Acc(512, 15) 958

Acc(769, 10) 885 Acc(769, 15) 942

P4 873 Acc(1427, 10) 995 Acc(1427, 15) 998

Acc(3084, 10) 965 Acc(3084, 15) 986

Acc(4502, 10) 990 Acc(4502, 15) 998

Acc(5913, 10) 997 Acc(5913, 15) 1000

Acc(7422, 10) 982 Acc(7422, 15) 998

Acc(8804, 10) 986 Acc(8804, 15) 986

methodology has a high power in detecting the correct number of multiple change
points and a high accuracy in estimating them.

22.5 A Real Data Example

In this section, we apply our methodology on the bike sharing data set which con-
tains the hourly counts of rental bikes in years 2011 and 2012 at Washington, D.C.,
USA. There are three reasons to justify this application. Firstly, the hourly count of
rental bikes can be assumed to follow a Poisson distribution which describes such
phenomenons. Secondly, the data set has been used in Fanaee-T and Gama [7] for
event labeling which is a process of marking unusual data points as events. Their
results show that there are many events marked in the hourly counts of rental bikes,
which implies the existence of multiple change points in the mean hourly counts of
rental bikes. Lastly, there are other variables such as hourly temperature and hourly
humidity in the data set which may provide some justifications of the changes.
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Fig. 22.1 The time series plot of the hourly rental bike counts together with the change points
(upper panel) and the mean of hourly temperature and hourly humidity observations within each
time interval separated by the change points (lower panel)

The time series of hourly counts including 17,379 h is plotted in Fig. 22.1 (upper
panel). There are 16 change points in the series detected by our methodology which
are displayed by the vertical lines in Fig. 22.1 (upper panel). Hence the whole time
period is divided into 17 intervals by these 16 change points. Themeans of both hourly
temperature and hourly humidity observations within each time interval separated
by the change points are also plotted in Fig. 22.1 (lower panel). From this figure,
it can be seen that for most of the time intervals, the changes in the means of the
hourly counts for rental bikes conform with the changes in the means of the hourly
temperatures within each time interval. However, for only two time intervals, the
4th and 13th intervals, the count of rental bikes drops while the mean of hourly
temperatures increases. We suspect that, in these two time intervals, the increases
of the mean of hourly temperatures and the drops of the mean of hourly humidities
together would have caused the drops in the rental counts.

22.6 Discussion

To our best knowledge, this is the first paper of simultaneouslymultiple change points
detection in GLM. In this paper, the regularized model selection technique has been
used to solve the multiple change points estimation problem. The consistency of the
estimates has been established when the number of parameters is diverging as the
sample size goes to infinity.

Throughout the paper, we assume that the nuisance parameter φ is known. For
instance, we consider the Binomial response and the Poisson response in the simu-
lation studies. The nuisance parameters φ for these two distributions are equal to 1.
For other distributions in which φ is unknown, one has to estimate φ first and then
incorporate it into our methodology.
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Appendix A: A Single Change Point Detection
and Estimation in GLM

Consider the following model

g(μt ) =
{
xTt β, t = 1, 2, . . . , l,
xTt β∗, t = l + 1, l + 2, . . . , n.

Test H0 : l = n and H1 : l < n.
The test statistic proposed in Antoch et al. [1] is summarized as follows. The max-

imum likelihood estimator β̂ of β is defined as the solution of the following system of
equations:

∑n
t=1(yt − g−1(xTt β))xt j = 0, j = 1, 2, . . . , p. Then μ̂t = b′(xTt β̂) and

σ̂ 2 = a(φ)b′′(xTt β̂), whereφ is assumed to be known. Let Ŝ(l̃) = ∑l̃
t=1(yt − μ̂t )

T xt ,

F̂(l̃) = ∑l̃
t=1 σ̂ 2

t xt x
T
t , F̂(n) = ∑n

t=1 σ̂ 2
t xt x

T
t , and D̂(l̃) = F̂(l̃) − F̂(l̃)F̂(n)−1 F̂(l̃)T .

Assume that there exists k0 such that D̂(l̃) is positive definite for all k0 < l̃ < n − k0.
The test statistic proposed in Antoch et al. [1] is T = maxk0<l̃<n−k0

Ŝ(l̃)T D̂(l̃)−1 Ŝ(l̃).
They also showed that under H0, the limiting distribution of the test statistic is

P(T ≤ 2 log log n + (p + 1) log log log n + 2t − 2log�(
p + 1

2
)) → exp{−2e−t }.

The asymptotic critical value for the test statistic at a given significance level can be
obtained from this limiting distribution.

In the case that H0 is rejected, the estimate of l is given by

l̂ = argmaxk0<l̃<n−k0
Ŝ(l̃)T D̂(l̃)−1 Ŝ(l̃).

Appendix B: Proof of Theorem 22.1

Consider a ball ‖γn − γ 0
n ‖ ≤ M

√
qn/n for some finite M .

Q(γn) = L1(γn) − n
pqn∑
j=1

pλn (|γnj |)

=
n∑

t=1

(
ynt (zTntγn) − b(zTntγn)

a(φ)
+ c(ynt , φ)) − n

pqn∑
j=1

pλn (|γnj |)



354 X. Sun and Y. Wu

= L (γn) − n
pqn∑
j=1

pλn (|γnj |) +
s∑

i=1

ln,i∑
t=ςi

yt (wT
ntγn)

a(φ)

−
s∑

i=1

ln,i∑
t=ςi

b(zTntγn) − b(zTntγn − wT
ntγn)

a(φ)

where wnt = 0 for t /∈ {n − (qn − ni + 1)m + 1, . . . , ln,i }.
First, we consider ‖γn − γ 0

n ‖ = M
√
qn/n.

Q(γn) − Q(γ 0
n )

= (L (γn) − L (γ 0
n )) − n

∑
j∈An

(pλn (|γnj |) − pλn (|γ 0
nj |)) − n

∑
j∈A c

n

(pλn (|γnj |) − pλn (|γ 0
nj |))

+
s∑

i=1

ln,i∑
t=ςi

ynt (wT
nt (γn − γ 0

n ))

a(φ)
−

s∑
i=1

ln,i∑
t=ςi

b(zTntγn) − b(zTntγ
0
n )

a(φ)

+
s∑

i=1

ln,i∑
t=ςi

b(zTntγn − wT
ntγn) − b(zTntγ

0
n − wT

ntγ
0
n )

a(φ)
.

As pλn (0) = 0 and pλn (|γnj |) ≥ 0, we have

Q(γn) − Q(γ 0
n )

≤ [L (γn) − L (γ 0
n )] − n

∑
j∈A n

[p′
λn

(|γ 0
nj |)sign(γ 0

nj )(γnj − γ 0
nj )

+ p′′
λn

(|γ 0
nj |)(γnj − γ 0

nj )
2(1 + oP(1))]

+
s∑

i=1

ln,i∑
t=ςi

a(φ)−1[ynt (wT
nt (γn − γ 0

n )) − ∂b(zTntγ
∗
n )

∂γn
zTnt (γn − γ 0

n )

+ ∂b(zTntγ
∗
n − wT

ntγ
∗
n )

∂γn
(zTnt − wT

nt )(γn − γ 0
n )]

= A1 + A2 + A3,

where ‖γ ∗
n − γ 0

n ‖ ≤ M
√
qn/n.

By the Taylor expansion and Assumption 4, A1 = L (γn) − L (γ 0
n ) =

−M2Op(qn).ByAssumption 2, p′
λn

(|γ 0
nj |) = p′′

λn
(|γ 0

nj |) = 0, for j ∈ An and large n.
Then |A2| = op(

√
qn). By Assumption 5, |A3| = OP(

√
nqn)(M

√
qn/n) = Op(qn).

By choosing a sufficiently large M , the first term dominates other terms. Since A1 is
negative, for ε > 0, there exists a large constant M such that

P

{
sup

‖γn−γ 0
n ‖=M

√
qn/n

Q(γn) < Q(γ 0
n )

}
≥ 1 − ε.
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This implies that with probability at least 1 − ε there exists a local maximum in the
ball {γn : ‖γn − γ 0

n ‖ ≤ M
√
qn/n}. Hence, there exists a local maximizer such that

‖γ̂n − γ 0
n ‖ = OP(

√
qn/n).

Then we consider for j ∈ A c
n , by the standard Taylor expansion of the function

∂L (γn)/∂γnj at γ 0
n , we obtain

∂Q(γn)

∂γnj

= ∂L (γ 0
n )

∂γnj
+

pqn∑
j ′=1

(γnj ′ − γ 0
nj ′)

∂2L (γ 0
n )

∂γ 2
nj

(1 + OP(1)) − np′
λn

(|γnj |)sign(γnj )

+ OP(
√
nqn)

= OP(
√
nqn) + OP(

√
nqn) − np′

λn
(|γnj |)sign(γnj ) + OP(

√
nqn)

= nλn

[
OP

(√
qn/n

λn

)
− λ−1

n p′
λn

(|γnj |)sign(γnj )
]

by Assumption 1. Since
√
qn/n/λn → 0 by Assumption 22.1, this entails that the

sign of ∂Q(γn)/∂γnj is determined by the sign of γnj inside the neighborhood of γ 0
n

with radius M
√
qn/n by Assumption 3. That is, ∂Q(γn)/∂γnj > 0 for γnj < 0 and

∂Q(γn)/∂γnj < 0 for γnj > 0. Therefore, for any local maximizer γ̂n inside this ball,
γ̂nA c

n
= 0 with probability tending to one. This completes the proof.
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Chapter 23
Data-Based Priors for Bayesian Model
Averaging

M. Ai, Y. Huang, and J. Yu

Abstract The uncertainty of models is now becoming one of the most important
issues in the process of dealing with practical applications. In order to improve
reliability and accuracy of inference, one usually adopts the model averaging method
instead of selecting a single final model through a model selection procedure. Under
the Bayesian framework, two upper bounds of the risk are derived and the posteriors
are obtained by minimizing the bounds with a fixed prior. Then we propose two data-
based algorithms to get proper priors for Bayesian model averaging in this paper.
Simulations show that by using these priors, smaller mean squared prediction errors
can be gotten both in synthetic data and real data studies, especially for the data of
poor quality.

23.1 Introduction

It is common in practice that the observed data can be described by different models.
A standard procedure to make inference is to choose a best model according to some
criteria, such as model predictive ability, model fitting ability or many different infor-
mation criteria like AIC and BIC. After selection, all the inferences and conclusions
are made based on the assumption that the selected model is correct.

However, the drawbacks of this approach exist obviously. The selection of one
particular model may lead to riskier decisions since it ignores the model uncertainty.
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In other words, if we choose a wrong model, the consequence will be disastrous.
Moral-Benito already pointed out the concern in [8], “From a pure empirical view-
point, model uncertainty represents a concern because estimates may well depend on
the particular model considered.” Therefore, combining multiple models to reduce
the model uncertainty is very desirable.

As an alternative strategy, model averaging enables researchers to draw conclu-
sions based on the whole universe of candidate models. In particular, researchers
estimate all the candidate models and then compute a weighted average of all the
estimates for the coefficient on X . There are two different approaches to model aver-
aging in the literature including Frequentist Model Averaging (FMA) and Bayesian
Model Averaging (BMA).

Frequentist approaches focus on improving prediction and use weighted mean of
estimates from different models while Bayesian approaches focus on the probability
that a model is true and consider priors and posteriors for different models. Ref. [4]
suggested to use Bayesian inference to reduce the model uncertainty and pointed out
the importance of the fragility of regression analysis to arbitrary decisions about the
choice of control variables. Bayesian Model Averaging considers model uncertainty
through the posterior distribution. The model posteriors are obtained by Bayes’ theo-
rem, and therefore allowing for combined estimation and prediction. Compared with
the FMA approaches, there are a huge literature on the use of BMA in statistics.

Influenced by [4], most works were concentrated only on the linear models.
Ref. [10] extended to generalized linear models by providing a straightforward
approximation. For more details, refer to some landmark reviews such as [2, 8,
15] on BMA. Moreover, Refs. [6, 19] gave good estimators of the risk in linear
mixed-effects models. For getting the posterior distribution of the weights, Ref. [17]
gave a method called SOIL which can well separate the variables in the true model
from the rest under some assumptions. However, they used a default prior for the
procedure.

TheBayesian approaches have the advantage of using arbitrary domain knowledge
through a proper prior. However, they can’t guarantee the upper bound of the decision
risk without assuming the truth of the prior. The Probably Approximately Correct
(PAC) framework, first formulated by [7], was proposed to deal with this problem.
It has been widely developed in recent years. Refs. [5, 11] gave tighter bounds in
some specific cases. Ref. [1] provided an extended PAC-Bayes bound for learning
the proper priors. But, they used the same data for learning the prior and the posterior
simultaneously. This issue will make the ability of generalization worse.

There have been many recent developments in model averaging. Refs.
[14, 18] presented two criteria, Mallows criterion and jackknife criterion, to deter-
mine the weights of model averaging. Their meanings are not as directly as mini-
mizing the upper bound of the risk. They didn’t build the relation between the risk
and the criteria theoretically. Refs. [6, 19] gave good estimators of the risk in a
certain type of models while our work doesn’t specify the model type. For getting
the posterior distribution of the weights, Ref. [17] gave a method without choosing a
proper prior. Ref. [1] provided an extended PAC-Bayes bound for learning the proper
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priors. Nevertheless, it involved reusing of the data which increased the probability
of overfitting.

In this paper, we propose a specific risk bound under our settings and two data-
based methods for adjusting the priors in PAC-Bayes framework. And, two practical
algorithms are given accordingly. Themain contributions of this work are the follow-
ing. First, sequential batch sampling method is proposed to deal with the situation
that there isn’t historical data while the data can be sampled with the rules made
by researchers. Second, when the historical data existed, we use similar old tasks to
extract the mutual knowledge with the current task for adjusting the priors. Third,
two theoretical risk bounds are provided for these two situations respectively. Fourth,
empirical demonstration shows that the proposed meta-methods have excellent per-
formances in the numerical studies.

The reminder of this paper is organized as follows. In Sect. 23.2, a standard risk
bound and a practical sequential batch samplingmethod are established for obtaining
a better prior in no previous data situation. Section23.3 proposes the method to deal
with historical similar data for the same purpose. Illustrative simulations given in
Sect. 23.4 show that our algorithms will lead to more effective prediction and support
our theoretical results. For real-world dataset, we apply the proposed methods to two
real datasets and confirm the higher prediction accuracy of minimizing risk bound
method. Section23.5 concludes this paper with some discussions. Some proofs of
theorems are delegated to the supplementary materials.

23.2 Sequential Adjustment of Priors

In a traditional supervised learning task, the learner needs to find an optimal model
(or hypothesis) to fit the data, and then uses the learned model to make predictions.
In the Bayesian approach, various models are allowed to fit the data. In particular,
the learner needs to learn an optimal model distribution over the candidate models,
and then uses the learned model distribution to make predictions.

More specifically, in a supervised learning task,we are given a set S = {(xi , yi )}n
i=1

of i.i.d. samples drawn from an unknown distribution D overX × Y , i.e., (xi , yi ) ∼
D. The goal is to find a model h in the candidate model set H , a set of functions
mapping features (feature vector) to responses, that minimizes the expected loss
function E(x,y)∼D L(h, x, y), where L is a bounded loss function. Without loss of
generality, we assume L is bounded by [0, 1]. In the Bayesian framework, a dis-
tribution Q over H is the purpose instead of searching a specific optimal model
h ∈ H . Therefore, the goal turns to finding the optimal model distribution Q, which
minimizes Eh∼QE(x,y)∼D L(h, x, y). Then one could use the weighted average of
the models over H to make predictions, namely, ŷ = Eh∼Qh(x). More generally,
we further assume that the candidate model set H consists of K classes of models
M1,M2, . . . ,MK with H = ⋃K

k=1 Mk . Each model class Mk is associated with
a probability wk , and for each model class Mk , there is a distribution Qk over Mk .
For example, a model classMk could be a group of models obtained from the Lasso
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method, and the hyper-parameter λ in Lasso follows a distribution Qk . Another com-
mon example is that Mk is a group of neural networks with a certain architecture,
and the weights of neural networks follow a joint distribution Qk . In this way, the
total distribution overH can be written as ξ = (w, Q1, . . . , QK ), where w consists
of w1, . . . , wK with ||w||1 = 1. The goal of the learning task is to find an optimal dis-
tribution ξ which minimizes the expected risk R(ξ, D) := Eh∼ξE(x,y)∼D L(h, x, y),
and then the prediction is made by ŷ = Eh∼ξ h(x) = ∑K

k=1[wk · Eh∼Qk h(x)].
Since sample distribution D is unknown, the expected risk R(ξ, D) cannot be

computed directly. Therefore, it is usually be approximated by the empirical risk
̂R(ξ, S) := Eh∼ξ

∑

(xi ,yi )∈S L(h, xi , yi )/|S| in practice, and ξ is learned by minimiz-
ing the empirical risk ̂R(ξ, S). When the sample size is large enough, it would be
a good approximation. However, in many situations, we don’t have so much data,
which may lead to large difference between them. Thus, using the empirical risk
̂R(ξ, S) to approximate the expected risk R(ξ, D) is not appropriate any longer.

We first study the difference between the empirical risk ̂R(ξ, S) and the expected
risk R(ξ, D). Based on the literature [7], we can obtain an upper bound of their
difference which is stated as the following theorem.

Theorem 23.1 Let ξ 0 be a prior distribution over H that must be chosen before
observing the samples, and let δ ∈ (0, 1). Then with probability at least 1 − δ, the
following inequality holds for all posterior distributions ξ over H ,

R(ξ, D) ≤ ̂R(ξ, S) +
√

KL(w||w0) + ∑K
k=1 wkKL(Qk ||Q0

k) + ln n
δ

2(n − 1)
, (23.1)

where n is the cardinality of sample set S, and KL(·||·) denotes the Kullback-Leibler
(KL) divergence between two distributions.1

According to the above theorem, it is clear that onlywhen the sample sizen is large,
the difference R(ξ, D) − ̂R(ξ, S) can be guaranteed to be small. Thus, minimizing
̂R(ξ, S) may not lead to the minimizer of R(ξ, D), which matches our intuition.
To avoid the risk of the approximation, one can minimizes the upper bound of the
expected risk R(ξ, D) in stead of using the empirical risk ̂R(ξ, S) as an approxima-
tion. In particular, we denote the right hand side of Eq.(23.1) by R(ξ, ξ 0, S). Then
one can learn the model distribution ξ by minimizing R(ξ, ξ 0, S). Intuitively, such
choice of ξ for the learning task makes the worst case best.

Theorem 23.1 also indicates that the prior ξ 0 plays an important role. Since the
choice of ξ balances the tradeoff between the empirical risk ̂R(ξ, S) and the regu-
larization term, if the prior ξ 0 is far away from the true optimal model distribution
ξ ∗, the posterior ξ will also be bad. The best situation for optimizing the poste-
rior ξ is that the prior ξ 0 exactly equals to the true optimal model distribution ξ ∗.
Then, the regularization term disappears. In other words, if there is a good prior ξ 0

which is close to ξ ∗, the upper bound R(ξ, ξ 0, S) will be small. However, without

1KL(P||P0) is defined as Ex∼P ln P(x)

P0(x)
.
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any prior knowledge, one can only use data to help obtain a better prior. The naive
method is directly using the non-informative prior as ξ 0 for minimizing R(ξ, ξ 0, S)

to get the posterior ξ . In this paper, we propose a more carefully designed method
to get a better posterior than the naive method. In the following, we consider two
different scenarioes for learning the prior. First, the data can be collected adaptively.
The learner is allowed to do sampling in rounds and updates the prior distribution
after each sampling. In each round, the learner can sample the data according to the
prior distribution in the current round. Such iterative procedure updates the prior
step by step. Ultimately, compared with dealing the whole data at once, this pro-
cedure of adjusting prior leads to a smaller upper bound. Moreover, it also gives
an opportunity to choose some good sample sets for reducing the volatility of the
estimators which is measured by v(ξ, D) = ExEh(h(x) − Ehh(x))2. The function
v̂(ξ, B) = 1

|B|
∑

x∈B Eh(h(x) − Ehh(x))2 is defined to measure the volatility of the
posterior ξ at the sample set B. The complete algorithm for sequential batch sampling
is shown in Algorithm 6. Second, the data including the new task and other similar
old tasks which have been already collected. The sequential sampling method can
not be adopted in this scenario. Since the previous tasks are similar with the new
task, we could use these old data to learn the prior for the new task. The details will
be discussed in Sect. 23.3.

Algorithm 6 Sequential Batch Sampling Algorithm
1: Obtain a sample set B1 from the sample space X × Y by a initial space-filling design.
2: Get the posterior ξ1 based on the sample set B1 by minimizing the risk bound with non-

informative prior.
3: for i = 2 to b do
4: Search next sample set Bi (|Bi | = nb) with the large volatility under the current posterior

ξi−1, i.e., v̂(ξi−1, Bi ) > γi where γ is a given constant vector.
5: Get the posterior ξi based on the sample set Bi by minimizing the risk bound with the prior

ξi−1.
6: end for
7: The final posterior is ξb.

For Algorithm 6, the data is processed in b steps. First, a space-filling design
is used as initial experiment points to reduce the probability of overfitting caused
by the unbalanced sampling. Traditional space-filling design aims to fill the input
space with design points that are as “uniform” as possible in the input space. The
uniformity of space-filling design is illustrated in Fig. 23.1. For next steps, uncertain
points are needed to be explored. And, the uncertainty is measured by the volatility
v. Hence, the batch with large volatility will be chosen. Note that if we set a huge γ ,
we will just explore a small region of the input space.

The setting of γ refers to [20]. However, in practice, it is found that this parameter
γ does not matter much, since the results are similar with a wide range of γ . This
procedure helps to reduce the variance of the estimator which is proved in [20] by
sequential sampling. Furthermore, it also helps to adjust the prior in each step which
is called learning the prior. The proposition is stated as below.
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Fig. 23.1 The illustration
for uniform space-filling
design

(a) Nonuniform design (b) Uniform design

Proposition 23.1 For i = 1, 2, . . . , b, let Bi = S, ξ ∗ is the minimizer of the RHS of
Eq. (23.1) with non-informative prior ξ 0 and ξi are obtained by Algorithm 6, then
we have R(ξb, ξb−1, S) ≤ R(ξ ∗, ξ 0, S).

The above proposition can be understood straightforwardly. First, since we adjust
the prior through the data step by step, the final prior ξb−1 is better than the non-
informative prior. Consequently, it receives the smaller expected risk. Second, we
choose the sample sets sequentially with large volatility to do experiments in order
to reduce uncertainty. The property is also confirmed in Sect. 23.4.

23.3 Priors Based on Historical Data

As mentioned in Sect. 23.2, when the data of historical tasks and the new tasks have
already collected, sampling method can not be used any longer. Still, the learner
needs a good prior for the reliable inferences. In order to get a good prior, it is
helpful to extract the mutual knowledge from similar tasks. In particular, there are
m sample tasks T1, . . . , Tm i.i.d. generated from an unknown task distribution τ .
For each sample task Ti , a sample set Si with ni samples is generated from an
unknown distribution Di . Without ambiguity, we use notation ξ(ξ 0, S) to denote the
posterior under the prior ξ 0 after observing the sample set S. The quality of a prior
ξ 0 is measured by EDi ∼τESi ∼D

ni
i

R(ξ(ξ 0, Si ), Di ). Thus, the expected loss we want
to minimize is

R(ξ 0, τ ) = EDi ∼τESi ∼D
ni
i

R(ξ(ξ 0, Si ), Di ).

Similar to the single-task case, the above expected risk cannot be computed
directly, thus the following empirical risk is used to estimate it:

̂R(ξ 0, S1, . . . , Sm) = 1

m

m
∑

i=1

̂R(ξ(ξ 0, Strain
i ), Svalidation

i ),
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where each sample set Si is divided into a training set Strain
i and a validation set

Svalidation
i .
Consider the regression setting for task T . Suppose the true model is

yT = fT (xT ) + σT (xT ) · εT ,

where fT : Rd → R is the function to be learned, the error term εT is assumed to be
independent of X and has a known probability density q(t), t ∈ R with mean 0 and
a finite variance. The unknown function σT (xT ) controls the variance of the error at
X = xT . There are nT i.i.d. samples {(xT,i , yT,i )}nT

i=1 drawn from an unknown joint
distribution of (xT , yT ). Assume that there is a candidate model setH . Each of them
is a function mapping features (feature vector) to response, i.e., h ∈ H : Rd → R.
To take the information of the old tasks, which can reflect the importance of each
h ∈ H , the following Algorithm 7 is proposed.

Algorithm 7 Historical Data Related Algorithm
1: for i = 1 to m do
2: Using Ti to obtain ξi by minimizing the risk bound with non-informative prior.
3: end for
4: for i = 1 to m do

5: Randomly split the data Si into two parts S(1)

i,n
′
i

= (xi,α, yi,α)
n

′
i

α=1 for training and S(2)

i,n
′
i

=
(xi,α, yi,α)

ni

α=n
′
i +1

for validation.

6: for each j �= i do
7: Obtain estimates ̂f j,n

′
i
(x, S(1)

i,n
′
i

), σ̂ j,n
′
i
(x, S(1)

i,n
′
i

) with prior ξ j .

8: Evaluate predictions on S(2)

i,n
′
i

and compute

Ei
j =



ni

α=n
′
i +1

q

(

yα− ̂f
j,n

′
i
(xi,α)

σ̂
j,n

′
i
(xi,α)

)



ni

α=n
′
i +1

σ̂ j,n
′
i
(xi,α)

.

9: end for
10: end for
11: Repeat the random data segmentation more times and average the weights Ei

j after normaliza-

tion to get w(i)
j ( j �= i).

12: Average all the w(i)
j ( j �= i) from i = 1 to m to obtain the final weights w j .

13: The prior learned for a new task is ξ∗ = ∑m
i=1 wi ξi .

This algorithm is based on the cross-validation framework. First, using Ti to obtain
the candidate priors ξi by minimizing the risk bound with non-informative prior.
Cross-validation determines the importance of the priors. The j-th task is divided
into two parts randomly. The first part is used to learn the posterior with the prior
ξi . The second part is to evaluate the performance of the posterior by its likelihood
function. This evaluation is inspired by [9]. To simplify the determination of the
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weights, Ref. [9] proposed a frequentist approach to BMA. The Bayes’ theorem was
replaced by the Schwarz asymptotic approximation which could be viewed as using
maximized likelihood function as the weights of the candidate models. The σ̂ on the
denominator of Ei

j makes the weight larger if the model is accurate. This procedure
repeats many times for each pair (i, j). Their averages reveal the importance of the
priors. In the end, the ξ ∗ is obtained by weighted averaging them all. the property of
this algorithm can be guaranteed by the following theorem.

The following regularization conditions are assumed for the results. First, q is
assumed to be a known distribution with 0 and variance 1.

(C1) The functions f and σ are uniformly bounded, i.e., supx | f (x)| ≤ A < ∞ and
0 < cm ≤ σ(x) ≤ cM < ∞ for constants A, cm and cM .

(C2) The error distribution q satisfies that for each 0 < s0 < 1 and cT > 0, there
exists a constant B such that

∫

q(x) ln
q(x)

1
s q( x−t

s )
μ(dx) ≤ B((1 − s)2 + t2)

for all s0 ≤ s ≤ s−1
0 and −cT ≤ t ≤ cT .

(C3) The risks of the estimators for approximating f and σ 2 decrease as the sample
size increases.

For the condition (C1), note that, whenwe deal with k-way classification tasks, the
responses belong to {1, 2, . . . , k}which is bounded obviously. Moreover, if the input
space is a finite region which often happens in real datasets, most common functions
are bounded uniformly. The constants A, cm, cM are involved in the derivation of the
risk bounds, but they canbeunknown inpracticewhenwe implement theAlgorithm7.
The condition (C2) is satisfied by Gaussian, t (with degrees of freedom larger than
two), double-exponential, and so on. The condition (C3) usually holds for a good
estimating procedure, like consistent estimators. A model has consistency if the
expected risk tends to zero when experimental size tends to infinity. Note that the
conditions are satisfied in most situations.

Theorem 23.2 Assume (C1)–(C3) are satisfied andσTi is known. Then, the combined
posterior ξ ∗ as given above satisfies

R(ξ ∗, τ ) ≤ inf
j

(

C1
∑

i �= j (ni − n
′
i )

+ C2
∑

i �= j (ni − n
′
i )

∑

i �= j

(ni − n
′
i )

[

̂R(ξ ∗
j , S(2)

i,n
′
i

)

+
√

KL(w j
∗||w j ) + ∑K

k=1 w j,kKL(Q∗
j,k ||Q j,k) + ln ni

δ

2(ni − 1)

]

⎞

⎠

with probability at least 1 − δ, where the constant C1, C2 depend on the regulariza-
tion conditions, π is the initial prior which should be non-informative prior and ξ ∗

j

is the minimizer of Eq. (23.1) with ξ 0 = ξ j and S = S(1)
i,n

′
i

.
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For simplify, we assume that the condition that σTi is known in Theorem 23.2. In
fact it is not a necessary condition, a more general case and corresponding proof can
be found in Appendix.

In this general proof, it can be seen that variance estimation is also important for
the Algorithm 7. Even if a procedure estimates fT very well, a bad estimator of σT

can substantially reduce its weight in the final estimator. Under the condition (C3),
the risks of a good procedure for estimating fT and σT usually decrease as the sample
size increases. The influence of the number of testing points n′

i is quite clear. Smaller
n′

i decreases the first penalty term but increases the main terms that involve the risks
of each j . Moreover, Theorem 23.2 reveals the vital property that if one alternative
model is consistent, the combined model will also have the consistency.

23.4 Simulations

In this section, some examples are shown to illustrate the procedure of
Algorithms 6 and 7 and confirm Proposition 23.1. The method of minimizing the
upper bound in Theorem 23.1 with non-informative prior is denoted by RBM (Risk
Bound Method). Also, the SOIL method in [17] is under the comparison. The opti-
mization for RHS of Eq. (23.1) in our algorithms is dealt by gradient descendmethod.
R package “SOIL” is used to obtain the results of the SOIL method. First, we begin
with linear models.

23.4.1 Synthetic Data Analysis

Example 23.1 The simulation data {(xi , yi )}n
i=1 is generated for the RBM from

the linear model yi = 1 + xi
T β + σεi , where εi ∼ N (0, 1), σ ∈ {1, 5} and xi ∼

Nd(0, 
). For each element 
i j of 
, 
i j = ρ|i− j | (i �= j) or 1 (i = j) with ρ ∈
{0, 0.9}. The sequential batch sampling has b steps, and each step uses n/b samples
followed Algorithm 6.

All the specific settings for parameters are summarized in Table23.1, and the
confidence level δ in Theorem 23.1 is set to 0.01. The Mean Squared Prediction
Error(MSPE) Ex | f (x) − ̂f (x)|2 and volatility defined in Sect. 23.2 are compared.
They are obtained by sampling 1000 samples from the same distribution and comput-
ing their empiricalMSPE

∑

x | f (x) − ̂f (x)|2/103 and volatility. For eachmodel set-
tingwith a specific choice of the parameters (ρ, σ ), we repeat 100 times and compute
the average empirical value.The comparison amongRBM,SOILandSBS(Sequential
Batch Sampling) are shown in Table23.2.

The volatility of SOIL method is the smallest and very close to zero. This
phenomenon shows that SOIL is focused on a few models, even just one model
when the volatility equals to zero. Consequently, its MSPE is larger than other two
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Table 23.1 Simulation settings of Example 23.1

Model n d b β

1 50 8 5 (3, 1.5, 0, 0, 2, 0, 0, 0)T

2 150 50 5 (1, 2, 3, 2, 0.75, 0, . . . , 0)T

3 50 50 5 (1, 1/2, 1/3, 1/4, 1/5, 1/6, 0, . . . , 0)T

Table 23.2 Comparison among RBM, SOIL and SBS of Example 23.1

Model 1 (ρ, σ ) (0, 1) (0, 5) (0.9, 1) (0.9, 5)

MSPE RBM 2.03 48.23 3.71 53.83

SOIL 2.13 53.21 2.17 53.21

SBS 1.71 14.08 3.25 26.40

Volatility RBM 1.64 3.47 1.31 0.49

SOIL 0 0 0.002 0

SBS 1.61 7.41 1.03 0.42

Model 2

MSPE RBM 1.97 46.26 1.46 35.97

SOIL 2.01 50.23 1.96 49.78

SBS 1.93 38.69 1.38 12.92

Volatility RBM 1.60 2.72 3.38 7.48

SOIL 0 0 0.001 0.01

SBS 1.46 8.67 3.35 6.74

Model 3

MSPE RBM 1.67 42.06 1.24 38.51

SOIL 1.99 49.80 1.93 47.99

SBS 1.65 27.32 1.23 29.44

Volatility RBM 0.27 1.54 0.74 3.39

SOIL 0 0 0.02 0.36

SBS 0.29 0.47 0.77 4.06

methods. SBS as a modification of RBM has similar results with RBM when σ is
small. However, when σ is large, SBS performs much better than RBM. In this sit-
uation, the information of data is easily covered by big noises. Hence, a good prior
which can provide more information is vital for this procedure.

Next example considers the same comparison but in non-linear models. In last
example, the alternative models include the true model, but now the true non-linear
model is approximated by many linear models.

Example 23.2 The simulation data {(xi , yi )}50i=1 is generated for the RBM from the
non-linear models

1. yi = 1 + sin(xi,1) + cos(xi,2) + εi ,
2. yi = 1 + sin(xi,1 + xi,2) + εi ,
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Table 23.3 Comparison among RBM, SOIL and SBS of Example 23.2

Model 1 Model 2

MSPE RBM 1.26 1.54

SOIL 1.42 1.80

SBS 1.23 1.47

Volatility RBM 0.1 0.11

SOIL 0.07 0.02

SBS 0.11 0.14

where εi ∼ N (0, 1), and xi ∼ N8(0, I ). The sequential batch sampling has 5 steps,
and each step uses 10 samples followed Algorithm 6.

The results of Example 23.2 is listed in Table23.3. Mostly, it is similar with the
results of Example 23.1. The difference is that the volatility of SOIL becomes large
when the model is completely non-linear. Using linear models to fit non-linear model
obviously increases the model uncertainty, since none of the fitting models is correct.

The final example is under the situation that the data has been already collected.
Hence, we can’t use the SBSmethod to get the data. However, we have the extra data
of many old similar tasks. In particular, we have the data of Example 23.1. Now, the
new task is to fit a new model.

Example 23.3 The data of Example 23.1 with (ρ, σ ) = (0, 1) is given. The new
task data {(xi , yi )}20i=1 is generated from the linear model yi = 1 + xi

T β + σεi ,
where εi ∼ N (0, 1), σ ∈ {1, 2, 3, 4, 5}, β = {1,−1, 0, 0, 0.5, 0, . . . , 0} and
xi ∼ N10(0, I ).

The method described in Algorithm 7 is denoted by HDR (Historical Data
Related). The results in Fig. 23.2 show the high consistency with the last two exam-
ples. When σ is small, the different priors lead to similar result since the current data
has key influence. However, when σ is large, the difference between RMB and HDR
is huge. The reason is that the current data has been polluted by the strong noise.
Hence, a good prior can provide the vital information about the model distribution.

23.4.2 Real Data Study

Here, we apply the proposed methods to two real datasets, BGS data and Bardet data,
which are also used in [17].

First, the BGS data is with small d and from the Berkeley Guidance Study (BGS)
by [13]. The dataset records 66 boys’ physical growthmeasures frombirth to eighteen
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Fig. 23.2 Comparisons
among the three methods in
Example 23.3
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years. Following [17], we consider the same regression model. The response is age
18 height and the factors include weights at ages two (WT2) and nine (WT9), heights
at ages two (HT2) and nine (HT9), age nine leg circumference (LG9) and age 18
strength (ST18).

Second, for large d, the Bardet data collects tissue samples from the eyes of 120
twelve-week-old male rats. For each tissue, the RNAs of 31, 042 selected probes are
measured by the normalized intensity valued. The gene intensity values are in log
scale. Gene TRIM32, which causes the Bardet-Biedl syndrome, is the response in
this study. The genes that are related to it are investigated. A screening method [3]
is applied to the original probes. This screened dataset with 200 probes for each of
120 tissues is also used in [17].

Both cases are data-given cases that we can’t use sequential batch sampling
method. For the different setting of d, we assign corresponding similar historical
data for two real datasets. The data of model 1 in Example 23.1 for the BGS data
with small d. The data of model 3 in Example 23.1 for the Bardet data with large d.

We randomly sample 10 rows from the data as the test set to calculate empirical
MSPE and volatility. The results are summarized in Table23.4. From Table23.4, we
can see that both RBM and HDR have smaller MSPE than SOIL. However, HDR
doesn’t performmuch better than RBM. This can be explained intuitively as follows.
In theory, the historical tasks and the current task are assumed that they come from the
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Table 23.4 Comparison among RBM, SOIL and HDR in real data

BGS Bardet

MSPE RBM 13.54 0.0054

SOIL 16.74 0.0065

HDR 13.06 0.0050

Volatility RBM 1.99 0.0013

SOIL 0.43 0.0013

HDR 1.84 0.0012

same task distribution. But in practice, how to measure the similarity between tasks
is still a problem. Hence, an unrelated historical dataset may provide less information
for the current prediction.

23.5 Concluding Remarks

This paper is based on the PAC-Bayes framework to study the model averaging
problem. More concretely, the work is about how to assign the proper distribution
on the candidate models. The work proposes specific upper bounds of the risks in
different situations and aims to minimize them. In other words, it makes the worst
situation best. For this purpose, two practical algorithms are provided to solve this
optimization under two realistic situations respectively. One is that no previous data
can be used, but the experimenters have the opportunity to design the sampling
method before the collection of the data. The other one is that much historical data is
given, the analysts should figure out a proper method to deal with these data. In the
first case, the prior is adjusted step by step. Compared with dealing the whole data at
once, this sequential method has the smaller upper bound of the risk. In the second
case, using historical similar tasks to extract the information about the prior which
is called meta-learning. The meta-learner is for the prior and the base-learner is for
the posterior. Both methods are confirmed to be effective in our simulation and real
data study.

However, some problems need to be investigated. First, in sequential batch sam-
pling procedure, the volatility is used as a criterion to sample the data. This choice
is based on our experience. There may exist other choices that have better results.
Second, when a lot of historical data is available, many similar old tasks may be con-
sidered to extract more information for learning the new task better. How to define
‘similar’ is still an open problem. In practice, the similarity isn’t measured by the
data. Instead, it is judged by experts, which is not expected.

Acknowledgments The authors sincerely thank the editors and a referee for their valuable com-
ments, which further improve this paper. The work is supported by NSFC grant 11671019, LMEQF
and Beijing Institute of Technology Research Fund Program for Young Scholars.
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Appendix

First, we review the classical PAC-Bayes bound [7, 12] with general notations.

Lemma 23.1 LetX be a sample space andF be a function space overX . Define a
loss function g( f, X) : F × X → [0, 1], and S = {X1, . . . , Xn} be a sequence of n
independent identical distributed random samples. Let π be some prior distribution
over F . For any δ ∈ (0, 1], the following bound holds for all posterior distributions
ρ over F ,

PS

(

EXE f g( f, X) ≤ 1

n

n
∑

i=1

E f g( f, Xi ) +
√

KL(ρ||π) + ln n
δ

2(n − 1)

)

≥ 1 − δ. (23.2)

Proof of Theorem 23.1 We use Lemma 23.1 to bound the expected risk with the
following substitutions. The n samples are Xi � zi . The function f � h where h ∈
H . The loss function g( f, X) � L(h, z) ∈ [0, 1]. The prior π is defined by π � ξ 0,
in which we first sample k from {1, . . . , K } according to corresponding weights
{w1, . . . , wK } and then sample h from Qk . The posterior is defined similarly, ρ � ξ .

The KL-divergence term is

KL(ρ||π) = E f ln
ρ( f )

π( f )
= Ek∈{1,...,K }(Eh

Qk(h)

Q0
k(h)

|h ∈ Mk)

=
K

∑

k=1

wkEh∈M k ln
wk Qk(h)

w0,k Q0
k(h)

= KL(w||w0) +
K

∑

k=1

wkKL(Qk ||Q0
k).

(23.3)

Substituting the above into Eq. (23.2), it follows that

PS

(

EzEk∈{1,...,K }Eh∈M k L(h, z) ≤ 1

n

n
∑

i=1

Ek∈{1,...,K }Eh∈M k L(h, z)

+
√

KL(w||w0) + ∑K
k=1 wkKL((Qk ||Q0

k) + ln n
δ

2(n − 1)

)

≥ 1 − δ.

(23.4)

Using the notations in Sect. 23.2, we can rewrite the above as below,

PS

(

R(ξ, D) ≤ ̂R(ξ, S) +
√

√

√

√(KL(w||w0) +
K

∑

k=1

wkKL(Qk ||Q0
k ) + ln

n

δ
)/(2n − 2)

)

≥ 1 − δ.

(23.5)
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Proof of Proposition 23.1 First, we proof that for i = 2, . . . , b,

R(ξi , ξi−1, Bi ) ≤ R(ξi−1, ξi−2, Bi−1).

By definition of ξi ,

R(ξi , ξi−1, Bi ) ≤ R(ξi−1, ξi−1, Bi )

= ̂R(ξi−1, Bi ) +
√

ln
n

δ
/(2n − 2)

≤ R(ξi−1, ξi−2, Bi ) = R(ξi−1, ξi−2, Bi−1).

Following these inequalities,

R(ξb, ξb−1, S) = R(ξb, ξb−1, Bb) ≤ R(ξ1, ξ
0, B1) = R(ξ ∗, ξ 0, S).

This finishes the proof.

Proof of Theorem 23.2 According to Theorem 1 in [16], we have

R(ξ ∗, τ ) ≤ inf
j

(

C1
∑

i �= j (ni − n
′
i )

+ C2
∑

i �= j (ni − n
′
i )

∑

i �= j

ni
∑

α=n
′
i +1

[

E||σ 2
Ti

− σ̂ 2
j,α||2 + R(ξ ∗

j , Di )

])

,

(23.6)

where ξ ∗
j is the minimizer of Eq. (23.1) with ξ0 = ξ j and S = S(1)

i,α denoted by

ξ ∗
j (ξ j , S(1)

i,α ).

For any α ≥ n
′
i and an estimator satisfied the condition (C3), the inequalities

E||σ 2
Ti

− σ̂ 2
j,n

′
i

||2 ≥ E||σ 2
Ti

− σ̂ 2
j,α||2 and R(ξ ∗

j (ξ j , S(1)
i,n

′
i

), Di ) ≥ R(ξ ∗(ξ j , S(1)
i,α ), Di )

hold. Plugging into Eq. (23.6) for α = n
′
i + 1, . . . , ni , it follows that

R(ξ∗, τ ) ≤ inf
j

(

C1
∑

i �= j (ni − n
′
i )

+ C2
∑

i �= j (ni − n
′
i )

∑

i �= j

[

E||σ 2
Ti

− σ̂ 2
j,n

′
i
||2 + R(ξ∗

j , Di )

])

,

where ξ ∗
j is the minimizer of Eq. (23.1) with ξ 0 = ξ j and S = S(1)

i,n
′
i

.

Then, the result follows by the above inequality combined with Eq. (23.5). In
order to obtain the form in Theorem 23.2, one only needs to note that if σTi is known,
the term E||σ 2

Ti
− σ̂ 2

j,n
′
i

||2 vanishes.
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Chapter 24
Quantile Regression with Gaussian
Kernels

Baobin Wang, Ting Hu, and Hong Yin

Abstract This paper aims at the error analysis of stochastic gradient descent (SGD)
for quantile regression, which is associated with a sequence of varying ε-insensitive
pinball loss functions and flexible Gaussian kernels. Analyzing sparsity and learning
rates will be provided when the target function lies in some Sobolev spaces and a
noise condition is satisfied for the underlying probability measure. Our results show
that selecting the variance of the Gaussian kernel plays a crucial role in the learning
performance of quantile regression algorithms.

Keywords Quantile regresion · Gaussian kernels · Reproducing kernel Hilbert
spaces · Insensitive pinball loss · Learning rate

24.1 Introduction

Quantile regression has been investigated in machine learning and statistics, see
[3, 4, 13–15] and references therein. Compared with the least squares regression,
quantile regression provides more information about the conditional distributions of
output variables such as stretching or compressing tails and multimodality [5, 6].
In the setting of learning problems, let X be a multivariate random variable with
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values in a compact subset of Rn and Y ⊂ R be a real valued response variable. The
purpose of quantile regression is to study the quantile regression functions from a
sample of T observations z = {(xi , yi )}Ti=1 drawn independently according to the
identical distribution ρ on Z = X × Y. With a quantile parameter 0 < τ < 1, a
quantile regression function fρ,τ : X → Y is defined by its value fρ,τ (x) to be a
τ -quantile of the conditional distribution ρ(·|x) of ρ at x ∈ X, that is, a value u ∈ Y
satisfying

ρ ({y ∈ Y, y ≤ u}|x) ≥ τ, and ρ ({y ∈ Y, y ≥ u}|x) ≥ 1 − τ.

Gaussian kernels are one of the most often used kernels in modern machine learning
methods such as support vector machines (SVMs) [12, 15]. The Gaussian kernel
with variance σ > 0 is the function on X × X defined by

Kσ (x, u) := exp

{
−|x − u|2

2σ 2

}
.

Let Hσ (X) be the RKHS [1] on X associated with the kernel Kσ and the inner
product 〈·, ·〉H σ (X). Its reproducing property takes the form

〈Kσ (x, ·), f (·)〉H σ (X) = f (x),∀ x ∈ X , f ∈ Hσ (X). (24.1)

Quantile regression has been studied by means of kernel-based regularization
schemes in a vast literature, see [7, 11, 15]. Its associated loss function is the pinball
loss φτ defined by

φτ (u) =
{

(1 − τ)u, if u ≥ 0,

−τu, if u < 0,

and the regularization scheme takes the form

fz,λ := arg min
f ∈H σ (X)

1

T

T∑
i=1

φτ (yi − f (xi )) + λ

2
‖ f ‖2H σ (X). (24.2)

In this paper, SGD method (or called online learning) is taken to solve the scheme
(24.2) for its low complexity and good practical performance. Inspired by the work
in [15, 19], we consider the below SGD algorithm for quantile regression associated
with a varying ε-insensitive pinball loss φε

τ (u) with an insensitive parameter ε ≥ 0,
given as

φε
τ (u) =

⎧⎪⎨
⎪⎩

(1 − τ)(u − ε), if u > ε,

−τ(u + ε), if u < −ε,

0, otherwise.
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Definition 24.1 The SGD algorithm for (24.2) is defined by f1 = 0 and

ft+1 = ft − ηt

{(
φεt

τ

)′
− ( ft (xt ) − yt )Kσ (xt , ·) + λ ft

}
(24.3)

where {ηt } > 0 is the positive stepsize sequence, λ = λ(T ) is the regularization
parameter, {εt } > 0 is the varying insensitive parameters and

(
φεt

τ

)′
− is the left (one-

side) derivative of φεt
τ .

This algorithm is a generalization for the pinball loss φτ with ε = 0 and the ε-
insensitive loss with τ = 1

2 (median). The initial form of quantile regression with a
fixed insensitive parameter ε > 0 was introduced by [11, 16], which aims at produc-
ing possible sparsity of support vectors for the median. Then this idea was developed
to τ -quantile regression with any 0 < τ < 1 and the ε-insensitive pinball loss φε

τ (u)

was proposed in [15, 17]. In the previous work [2, 17], the corresponding mathe-
matical analysis in the batch learning has been conducted when ε change with the
sample size T and ε = ε(T ) → 0 as the sample size T goes to infinity.

Here the insensitive parameters {εt } > 0 used in the algorithm (24.3) form a
decreasing sequence converging to zero when the learning step t increases. In the
work [15], Hu et al. derived the learning rate of (24.3) with flexible insensitive
parameters {εt } under the suitable choices of the parameters (λ, ηt ) for balancing the
approximation and sparsity. Their convergence rate is closely related to the strong
assumption on the approximation power of RKHS. Actually, for a Gaussian RKHS
Hσ with the fixed variance σ > 0, the approximation error decays logarithmically
with respect to the range ofHσ ,which has been proved in [8]. So, putting this decay
into their analysis leads that the learning rate for quantile regression is rather slow,
which is unaccepted in real applications. In simulations, the variance σ ofHσ usually
serves as a tuned parameter for a good learning performance in training processes and
can be chosen in a data-dependent way such as cross-validation. Since the variance
of a Gaussian kernel reflexes the specific structure of RKHS induced by the Gaussian
or other important features of learning problems such as the frequency of function
components, choosing the varianceσ ofHσ is related to themodel selection problem,
which adjusts the complexity or the capacity of learning problems according to the
learning time or sample size. The selecting rule of σ has been studied in various
learning settings [7, 12, 18], SVM, least squares, etc.

The goal of this paper is to study the convergence behavior of the algorithm (24.3)
with flexible Gaussians and investigate the effects of parameters in keeping sparsity
and nice learning power for quantile problems. Our results show that the online
quantile regression is feasible in the framework of the Gaussian RKHS, in which
the variance of Gaussian serves as a trade-off between the approximation ability and
sparsity of the algorithm. We present a selection rule for the variance σ = σ(T ) to
avoid over-fitting or under-fitting in the iteration process. The performance of the
iterates { ft } is usually measured by the convergence in terms of the excess general-
ization error. In this work, under the noise condition, we can obtain the convergence
result in Banach spaces, which implies that { ft } is closed to the target function fρ,τ

in a strong sense.
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24.2 Main Results and Effects of Parameters

For conceptual simplicity, we assume throughout this paper that the support of the
conditional distribution ρ(·|x) is [−1, 1] and our results below is applicable for the
support [−M, M] with any M > 0. Moreover, let the value of fρ,τ (x) be unique at
each x ∈ X . To demonstrate our main result in the general case, we first shall give
the following learning rate in the special case if the quantile regression function fρ,τ

lies in some smooth functional space. Its regularity is usually measured in terms of
Sobolev spaces. Recall the Sobolev space Hr (Rn) with index r > 0 consisting of

all functions in L2(Rn) with the semi-norm | f |Hr (Rn) = {(2π)−n
∫
Rn |ξ |2r | f̂ (ξ)|2} 12

finite where f̂ is the Fourier transform of f defined as f̂ (ξ) = ∫
Rn f (x)e−iξ ·xdx .

In the sequel, ρX denotes the marginal distribution of ρ on X and f̂ denotes the
projection operation on any measurable function f : X → R, given as

f̂ (x) =
⎧⎨
⎩
1, if f (x) ≥ 1,
f (x), if − 1 < f (x) < 1,
−1, if f (x) ≤ −1.

Theorem 24.1 Let X ⊂ R
n be a domain with Lipschitz boundary and ρX be the

uniform distribution on X. Assume that fρ,τ ∈ Hr (X) for some r > 0, ‖ fρ,τ‖∞ ≤ 1
and the conditional distributions {ρ(·|x), x ∈ X} have density functions given with
ζ > 0,

dρ(y|x)
dy

=
{

ζ+1
2 |y − fρ,τ (x)|ζ , if |y − fρ,τ (x)| ≤ 1;

0, otherwise.

Take ηt = − n+3r
2n+5r , λ = T− n+r

2n+5r , σ = T− 1
2n+5r and εt = t−β with β ≥ 1

2 then

Ez1,··· ,zT
[
‖ f̂T+1 − fρ,τ‖L2

ρX

]
≤ C∗T− r

(2n+5r)(ζ+2) (24.4)

where C∗ is a constant independent of T , and will be given in the proof.

Remark 24.1 Notice that the larger the index r is, the faster the projected function
fT+1 in (24.3) converges to fρ,τ . In addition, the choice of parameters λ, σ, ηt is
closely related to r. Thus, the regularity of the quantile function fρ,τ is important
in the learning process. The index β of the insensitive parameter characterizes the
sparsity and the learning rate will not be affected if β ≥ 1

2 . As the index β increases,
the value of the insensitive parameter εt will decrease at each iteration t. So, it is
suitable to choose β = 1

2 in this case. Here the variance σ of the Gaussian kernel
Kσ changes with the learning time T . This is reasonable since a small σ will lead to
over-fitting and a large σ to under-fitting. In the above example, we are considering
the quantile regression problems on a domain of Rn, so the learning rate is poor
if the dimension n is large. However, in many situations, the input space X is a
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low-dimensional manifold embedded in the large-dimensional space Rn. In such a
situation, the learning rates may be greatly improved.

Now we are in a position of stating our main result in the general case. First, a
noise condition on the measure ρ is given, which was introduced in [13].

Definition 24.2 Let 0 < p ≤ ∞ and w > 0. We say that ρ has a τ -quantile of p-
average type w if there exist two functions b and a from X to R such that {baw}−1 ∈
L p

ρX and for any x ∈ X and q ∈ (0, a(x)], there hold

ρ({y : fρ,τ (x) < y < fρ,τ (x) + q}|x) ≥ b(x)qw

and
ρ({y : fρ,τ (x) − q < y < fρ,τ (x)}|x) ≥ b(x)qw. (24.5)

This assumption can be satisfied with many common conditional distributions such
as Guassian, students’ t distributions and uniform distributions. In the following, we
will give an example to illustrate it. More examples can be found in [2, 13].

Example 24.1 Let the conditional distributions {ρ(·|x)}x∈X be a family of Gaus-

sian distributions with a uniform variance σ̃ > 0, i.e. dρ(y|x)
dy = 1√

2πσ̃
exp
{
− (y−μx )

2

2σ̃ 2

}
where {μx }x∈X are expectations of the Gaussian distributions {ρ(·|x)}x∈X . It is direct
to calculate that fρ,τ (x) can take the value of μx at each x ∈ X. We also find that for
any q ∈ (0, σ̃ ], there holds

ρ({y : fρ,τ (x) < y < fρ,τ (x) + q}|x) = ρ({y : μx < y < μx + q}|x)

= 1√
2πσ̃

∫ μx+q

μx

exp

{
− (y − μx )

2

2σ̃ 2

}
dy = 1√

2πσ̃

∫ q

0
exp

{
− y2

2σ̃ 2

}
dy ≥ e− 1

2√
2πσ̃

q.

Similarly, we have that ρ({y : fρ,τ (x) − q < y < fρ,τ (x)}|x) ≥ e− 1
2√

2πσ̃
q. Thus, the

measure ρ has a ∞-average type 1.

In addition, we need a condition about the continuity of the conditional distribu-
tions {ρ(·|x)}x∈X .

Definition 24.3 Let s > 0. We say that the family of conditional distributions
{ρ(·|x)}x∈X is Lipschitz-s if there exists a constant Cρ such that

ρ({y : u ≤ y ≤ v}|x) ≤ Cρ |u − v|s, ∀u < v ∈ Y, x ∈ X. (24.6)

With these preliminaries in place, we present the following learning rates whose
proof will be provided in the next section.

Theorem 24.2 Suppose that for some r > 0, the quantile regression function fρ,τ

is the restriction of some f̃ρ,τ ∈ Hr (Rn)
⋂

L∞(Rn) over X, and the density function
dρX

dx lies in L2(X). Let the parameters ηt , εt , λ, σ be of the form
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ηt = t−
n+3r
2n+5r , εt = t−β, λ = T− n+r

2n+5r , σ = T− 1
2n+5r (24.7)

with β ≥ max
{

3(n+2r)
s(2n+5r) − 1, n+2r

s(2n+5r)

}
.

Denote μ := p(w+1)
p+1 . If the measure ρ satisfies (24.5) and (24.6), then

Ez1,··· ,zT
[
‖ f̂T+1 − fρ,τ‖Lμ

ρX

]
≤ C∗T− r

(2n+5r)(w+1) . (24.8)

Here the constant C∗ is independent of T and will be given in the proof.

This theorem investigates the learning ability of the learned function f̂T+1 that
approximates the quantile regression function fρ,τ with suitable chosen parame-
ters including the variance parameter σ and the insensitive parameters {εt }. It shows
how to adapt the variance σ in the learning process while keeping the sparsity and the
learning power for the algorithm (24.3). It is also worth noticing that our leaning rate
is given in a weighted Lμ-space by the noise condition (24.5). Our rate still holds for
the generalization error (see Sect. 24.3) if the condition (24.5) is not imposed on ρ. At
the end of this section, we would like to remark that the quantile regression problem
considered here is fully nonparametric, so the parameters in (3) are usually unknown
in advance and tuned in training processes according to various quantile regression
problems. They can be chosen by a data-dependent way in training processes, e.g.
cross-validation.

24.3 Error Analysis and Proofs of Main Results

In learning theory, the performance of learning algorithms is often measured by the
generalization error. For the quantile regression, we define the generalization error
for f : X → R associated with the pinball loss φτ as

E ( f ) =
∫
Z

φτ ( f (x) − y)dρ

and the quantile regression function fρ,τ is a minimizer of E ( f ). Meanwhile, we
define the ε-insensitive generalization errorE ε( f ), given asE ε( f ) := ∫Z φε

τ ( f (x) −
y)dρ.Our error analysis is conducted based on an error decomposition for the excess
generalization errorE ( fT+1) − E ( fρ,τ ).To this end,we introduce the belowapprox-
imation error with respect to the approximation ability ofHσ (X). In the sequel, we
denote the norm ‖ · ‖H σ (X) by ‖ · ‖σ and Hσ (X) by Hσ for simplicity.

Definition 24.4 For any regularization parameter λ > 0, the approximation error
D(σ, λ) of the triple (Kσ , ρ, τ ) is defined by

D(σ, λ) = min
f ∈H σ

{
E ( f ) − E ( fρ,τ ) + λ

2
‖ f ‖2σ
}
.
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The regularization function is defined as

fλ = arg min
f ∈Hσ

{
E ( f ) − E ( fρ,τ ) + λ

2
‖ f ‖2σ
}

or fλ = arg min
f ∈Hσ

{
E ( f ) + λ

2
‖ f ‖2σ
}
.

(24.9)

Then its associated insensitive regularization function for any ε > 0 is

f ε
λ = arg min

f ∈H σ

{
E ε( f ) + λ

2
‖ f ‖2σ
}
. (24.10)

Now, the error decomposition for E ( fT+1) − E ( fρ,τ ) can be displayed as

E ( fT+1) − E ( fρ,τ ) = {E ( fT+1) − E ( fλ)
}+ {E ( fλ) − E ( fρ,τ )

} ≤ {E ( fT+1) − E ( fλ)
}+ D (σ, λ). (24.11)

Notice the Lipschitz continuity of φτ and the property of RKHS with
‖ f ‖∞ ≤ ‖ f ‖σ , ∀ f ∈ Hσ . It yields that |E ( fT+1) − E ( fλ)| ≤ ‖ fT+1 − fλ‖∞ ≤
‖ fT+1 − fλ‖σ . So, the first term on the right-hand side of (24.11) will be handled
in the sequel by means of the sample error ‖ fT+1 − fλ‖σ .

24.3.1 Approximation Error

For the second term D(σ, λ), it is associated with the approximation powers of the
RKHSs induced byGaussians with variance σ > 0.The following polynomial decay
of D(σ, λ) under some Sobolev smoothness conditions on the function fρ,τ can be
found in [18].

Lemma 24.1 Suppose that for some r > 0, the quantile regression function fρ,τ is
the restriction of some f̃ρ,τ ∈ Hr (Rn)

⋂
L∞(Rn) over X, and the density function

dρX

dx lies in L2(X). Then

D(σ, λ) ≤ C ′(σ r + λσ−n), ∀ 0 < σ < 1, λ > 0, (24.12)

where C ′ is a constant independent of σ, λ.

24.3.2 Insensitive Analysis

According to the above error analysis, we need to estimate ‖ ft+1 − fλ‖σ by itera-
tion on t = 1, · · · , T . In the iteration procedure, the function ft+1 is generated by
updating ft according to the sample (xt , yt ). Here, the technical difficulty lies in the
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change of the insensitive parameters εt . This can be handled by the following lemma
in [15] for varying {εt }.
Lemma 24.2 Suppose that the family of conditional distributions {ρ(·|x)}x∈X is
Lipschitz-s satisfying (24.6). Then for any 0 ≤ u < v, we have

‖ f uλ − f vλ ‖σ ≤ Cλ−1|u − v|s . (24.13)

If the insensitive parameters εt = ε1t−β with ε1, β > 0, then

‖ f εt−1
λ − f εt

λ ‖σ ≤ Cλ−1t−(β+1)s, ∀t ≥ 2. (24.14)

Here C is a constant independent of λ and insensitive parameters.

24.3.3 One Step-Iteration

Denote ht := ‖ f εt−1
λ − f εt

λ ‖σ . We can get the one step iteration result as follows.
To obtain optimal error bounds, we shall use the flexibility caused by some free
parameters 0 < d < 2 and c1 > 0.

Lemma 24.3 Define { ft } by (24.3). Let some constants 0 < d < 2 and c1 > 0, then

Ezt

(‖ ft+1 − f εt
λ ‖2σ
) ≤ (1 + c1h

d
t − ληt

) ‖ ft − f εt−1
λ ‖2σ + h2−d

t /c1 + h2t + 4η2
t .

(24.15)

Proof First, we claim that ‖ ft‖σ ≤ 1
λ
,∀t ≥ 2. It can be easily derived from f1 = 0

and the following induction by (24.3) that

‖ ft+1‖σ ≤ (1 − ληt )‖ ft‖σ + ηt ≤ (1 − ληt )
1

λ
+ ηt = 1

λ
. (24.16)

Denote Bt := (φεt
τ

)′
− ( ft (xt ) − yt )Kσ (xt , ·) + λ ft . The online algorithm (24.3) can

be written as ft+1 = ft − ηt Bt . Then

‖ ft+1 − f εt
λ ‖2σ = ‖ ft − f εt

λ ‖2σ + η2
t ‖Bt‖2σ − 2ηt 〈 ft − f εt

λ , Bt 〉σ (24.17)

Applying the reproducing property (24.1) to part of the last term of (24.17), we have
that

〈 ft − f εt
λ ,
(
φ

εt
τ

)′
− ( ft (xt ) − yt )Kσ (xt , ·)〉σ = (φεt

τ

)′
− ( ft (xt ) − yt )

(
ft (xt ) − f εt

λ (xt )
)
.

The convexity of φεt
τ implies that
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(
φεt

τ

)′
− ( ft (xt ) − yt )

(
ft (xt ) − f εt

λ (xt )
) ≥ φεt

τ ( ft (xt ) − yt ) − φεt
τ ( f εt

λ (xt ) − yt ).

For the other part of the last term of (24.17), we have that

〈 ft − f εt
λ , ft 〉σ ≥ ‖ ft‖2σ − 1

2
‖ ft‖2σ − 1

2
‖ f εt

λ ‖2σ = 1

2
‖ ft‖2σ − 1

2
‖ f εt

λ ‖2σ .

Thus, the last term of (24.17) can be bounded as

〈 ft − f εt
λ , Bt 〉σ ≥

[
φεt

τ ( ft (xt ) − yt ) + λ

2
‖ ft‖2σ
]

−
[
φεt

τ ( f εt
λ (xt ) − yt )

λ

2
‖ f εt

λ ‖2σ
]

.

Since ft only depends on z1, · · · , zt−1, then

Ezt 〈 ft − f εt
λ , Bt 〉σ ≥

[
E ( ft ) + λ

2
‖ ft‖2σ
]

−
[
E ( f εt

λ ) + λ

2
‖ f εt

λ ‖2σ
]

This together with Theorem 2 in [19], implies that Ezt 〈 ft − f εt
λ , Bt 〉σ ≥ λ

2‖ ft −
f εt
λ ‖2σ . Putting it into (24.17), then

Ezt

(‖ ft+1 − f εt
λ ‖2σ
) ≤ (1 − ληt)‖ ft − f εt

λ ‖2σ + η2
t Ezt‖Bt‖2σ . (24.18)

Now we estimate ‖ ft − f εt
λ ‖σ . It is decomposed as

‖ ft − f εt
λ ‖σ = ‖ ft − f εt−1

λ + f εt−1
λ − f εt

λ ‖σ ≤ ‖ ft − f εt−1
λ ‖σ + ht .

Applying the elementary inequality 2xy ≤ c1x2yd + y2−d/c1 with any 0 < d < 2
and c1 > 0, to x = ‖ ft − f εt−1

λ ‖σ and y = ht , then

‖ ft − f εt
λ ‖2σ ≤ ‖ ft − f εt−1

λ ‖2σ + 2‖ ft − f εt−1
λ ‖σ ht + h2t ≤ (1 + c1h

d
t )‖ ft − f εt−1

λ ‖2σ + h2−d
t /c1 + h2t .

Plugging it into (24.18) and noticing that (1 − ληt)(1 + c1hdt ) ≤ 1 + c1hdt − ληt ,
we get

Ezt

(
‖ ft+1 − f εt

λ ‖2σ
)

≤ (1 + c1h
d
t − ληt )‖ ft − f εt

λ ‖2σ + h2−d
t /c1 + h2t + η2t Ezt ‖Bt‖2σ .

We now only need to estimate ‖Bt‖2σ . Note that ‖ (φεt
τ

)′
− ‖∞ ≤ 1 and the bound

(24.16)holds for the learning sequence { ft }. Using the reproducing property
‖Kσ (xt , ·)‖2σ = 〈Kσ (xt , ·), Kσ (xt , ·)〉σ = Kσ (xt , xt ) = 1, then

‖Bt‖σ ≤
∥∥∥(φεt

τ

)′
− ( ft (xt ) − yt )Kσ (xt − ·)

∥∥∥
σ

+ λ‖ ft‖σ ≤ ‖ (φεt
τ

)′
− ‖∞ ‖Kσ (xt , ·)‖σ + +λ‖ ft‖σ ≤ 2.

Based on the above analysis, we can get the desired conclusion (24.15).
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24.3.4 Sample Error Estimate

We are in a position to present the estimate of the sample error ‖ fT+1 − fλ‖σ ,which
is the key analysis in our study. For simplicity, denote

∏T
j=T+1

(
1 − 1

2λη j
) := 1,∑T

j=T+1 λη j := 0 and f 0λ := fλ.

Lemma 24.4 Let the parameters ηt , εt , λ be of the form as ηt = η1t−α, εt = ε1t−β

and λ = T−(1−α−ε) for any 1 − 2α < ε < 1 − α, η1 > 0, ε1 > 0 satisfying

max {1 − βs − ε, 2 − (β + 1)s − 2ε} < α < min {2(β + 1)s, 1} . (24.19)

Then we have

Ez1,··· ,zT (‖ fT+1 − fλ‖σ ) ≤ C̃T−min{(β+1)s+α−2+2ε,α− 1
2 + ε

2 ,βs−1+α+ε}

+
√
2D(σ, λ)

λ
exp

{
− λη1

8(1 − α)
(T + 1)1−α

}
(24.20)

where C̃ is a constant independent of T, given in the proof.

Proof We split ‖ fT+1 − fλ‖σ into two parts as ‖ fT+1 − f εT
λ ‖σ and ‖ fλ − f εT

λ ‖σ .

For the first term ‖ fT+1 − f εT
λ ‖σ , we shall apply the conclusion in Lemma 24.3. By

(24.14), ht ≤ Cλ−1t−(β+1)s .We take d = α
(β+1)s and c1 = 1

2η1C
−dT−(d+1)(1−α−ε) for

any 1 − 2α < ε < 1 − α. The restriction (24.19) of parameters implies that c1hdt ≤
1
2ληt and 1 + c1hdt − ληt ≤ 1 − 1

2ληt . With (24.15), it yields that

Ezt

(‖ ft+1 − f εt
λ ‖2σ
) ≤
(
1 − 1

2
ληt

)
‖ ft − f εt−1

λ ‖2σ + 2h2−d
t /c1 + 4η2

t .

Applying the relation above iteratively for t = t0, · · · , T, we obtain that

Ez1,··· ,zT
(
‖ fT+1 − f

εT
λ ‖2σ
)

≤
(
1 − 1

2
ληT

) (
1 − ληT−1

)
Ez1,··· ,zT−1

(
‖ fT − f

εT−1
λ ‖2σ

)

+ 2h2−d
T /c1 + 4η2T +

(
1 − 1

2
ληT

)(
2h2−d

T−1/c1 + 4η2T−1

)

=
T∏

t=t0

(
1 − 1

2
ληt

)
Ez1,··· ,zt0−1

(
‖ ft0 − f

t0−1
λ ‖2σ

)
+

T∑
t=t0

(
2h2−d

t /c1 + 4η2t
) T∏

j=t+1

(
1 − 1

2
λη j

)
.

Using the above inequality with t0 = 1 and noting that ‖ fλ‖2σ ≤ 2D(σ, λ)/λ, with
the elementary inequality 1 − x ≤ e−x for any x > 0, then we have
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Ez1,··· ,zT
(
‖ fT+1 − f

εT
λ

‖2σ
)

≤ exp

⎧⎨
⎩− λ

2

T∑
t=1

ηt

⎫⎬
⎭ ‖ fλ‖2σ +

T∑
t=1

(
2h2−d

t /c1 + 4η2t
)
exp

⎧⎨
⎩− λ

2

T∑
j=t+1

ηt

⎫⎬
⎭

≤ 2 exp

⎧⎨
⎩− λ

2

T∑
t=1

ηt

⎫⎬
⎭D (σ, λ)/λ +

T∑
t=1

(
2h2−d

t /c1 + 4η2t
)
exp

⎧⎨
⎩− λ

2

T∑
j=t+1

ηt

⎫⎬
⎭

= 2 exp

⎧⎨
⎩− λη1

2

T∑
t=1

t−α

⎫⎬
⎭D (σ, λ)/λ +

T∑
t=1

(
2C2−d

c1λ2−d
t−(2−d)(β+1)s + 4η21 t

−2α

)
exp

⎧⎨
⎩− λη1

2

T∑
j=t+1

t−α

⎫⎬
⎭

:= I1 + I2.

For I1, using the elementary inequality in Lemma 4 of [19], that for any 0 < α < 1,
there holds

∑T
t=1 t

−α ≥ (T+1)1−α−1
1−α

, we have

I1 ≤ 2D (σ, λ)

λ
exp

{
− λη1
2(1 − α)

(
(T + 1)1−α − 1

)}
≤ 2D (σ, λ)

λ
exp

{
− λη1
4(1 − α)

(T + 1)1−α

}
.

For I2, we apply the following elementary inequality valid for t ∈ N, 0 < q1 < 1
and c, q2 > 0 :
t−1∑
i=1

i−q2 exp

⎧⎨
⎩−c

t∑
j=i+1

j−q1

⎫⎬
⎭ ≤ 2q1+q2

c
tq1−q2 + t

2
exp

{
− c(1 − 2q1−1)

1 − q1
(t + 1)1−q1

}
.

(24.21)

It can be derived in the proof procedure of Lemma 2 (b) of [9]. Here we omit it for
simplicity.
Take q1 = α, q2 = (2 − d)(β + 1)s and c = λη1

2 . Then the first part of I2 is bounded
as

I21 :=
T∑
t=1

(
2C2−d

c1λ2−d
t−(2−d)(β+1)s

)
exp

⎧⎨
⎩− λη1

2

T∑
j=t+1

t−α

⎫⎬
⎭ ≤ 2C2−d

[
2(2−d)(β+1)s+α+1

η1c1λ3−d
T−(2−d)(β+1)s+α

+ T

2c1λ2−d
exp

{
− η1(1 − 2α−1)λ

2(1 − α)
(T + 1)1−α

}
+ T−(2−d)(β+1)s

c1λ2−d

]
.

Note thatλ = T−(1−α−ε) implies that there exists a constantCε independent of T such

that themiddle term T
2c1λ2−d exp

{
− η1(1−2α−1)λ

2(1−α)
(T + 1)1−α

}
≤ CεT−(2(β+1)s+2α−4+4ε).

Together with the choice of d, c1, we have that

I21 ≤ A1T
−(2(β+1)s+2α−4+4ε)

where A1 := 2C2−d
(
2(2−d)(β+1)s+α+2

η2
1

Cd + Cε + 2Cd

η1

)
.

For the second part of I2, by similarity, applying (24.21) with q1 = α, q2 = 2α
and c = λη1

2 , we have that
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I22 :=
T∑
t=1

4η2
1t

−2α exp

⎧⎨
⎩−λη1

2

T∑
j=t+1

t−α

⎫⎬
⎭ ≤ A2T

−2α+1−ε

where A2 := 4η2
1

(
23α+1

η1
+ Cε + 1

)
. Based on the above analysis, we see that

Ez1,··· ,zT
(‖ fT+1 − f εT

λ ‖2σ
)

≤2D(σ, λ)

λ
exp

{
− λη1

4(1 − α)
(T + 1)1−α

}
+ (A1 + A2)T

−min{2(β+1)s+2α−4+4ε,2α−1+ε}.

For the term ‖ fλ − f εT
λ ‖σ , by (24.13), it can be bounded as ‖ fλ − f εT

λ ‖σ ≤ Cεs1T
−sβ

λ−1 = Cεs1T
−sβ+1−α−ε. Then we can get the conclusion (24.20) with C̃ =√

A1 + A2 + Cεs1.

24.3.5 Bounding the Total Error

In our analysis we shall make use of the following comparison theorem [2, 13].
Recall that μ := p(w+1)

p+1 .

Lemma 24.5 Suppose that the measure ρ has a p-average type w satisfying (24.5).
Then for any measurable function f : X → [−1, 1], we have

‖ f − fρ,τ‖Lμ
ρX

≤ Cμ

(
E ( f ) − E ( fρ,τ )

) 1
w+1 (24.22)

where the constant Cμ = 2(w + 1)
1

w+1 ‖(baw)−1‖
1

w+1

L p
ρX

.

Now we can present the proof of our error estimate for the convergence of online
algorithm (24.3) in a general form.

Proof of Theorem 24.2 Putting the explicit form (24.7) of ηt , εt , λ, σ into (24.20),
we know that there exists a constant C ′

ε independent of T or τ such that

√
2D(σ, λ)

λ
exp

{
− λη1

8(1 − α)
(T + 1)1−α

}
≤ C ′

εT
− r

2n+5r

and

min

{
(β + 1)s + α − 2 + 2ε, α − 1

2
+ ε

2
, βs − 1 + α + ε

}
= r

2n + 5r
.
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This yields that

Ez1,··· ,zT
[‖ fT+1 − fλ‖σ

] ≤ (C̃ + C ′
ε

)
T− r

2n+5r .

By (24.11), we know that

Ez1,··· ,zT
[
E ( fT+1) − E ( fρ,τ )

] ≤ Ez1,··· ,zt
[‖ fT+1 − fλ‖σ

]+ D (σ, λ) ≤
(
C̃ + C ′

ε + 2C ′) T− r
2n+5r .

Since the support of ρ(·|x) is [−1, 1], we have that φτ ( f̂ (x) − y) ≤ φτ ( f (x) − y)
for any measurable function f : X → R. It yields that E ( f̂T+1) ≤ E ( fT+1) and

Ez1,··· ,zT
[
E ( f̂T+1) − E ( fρ,τ )

] ≤ (C̃ + C ′
ε + 2C ′

)
T− r

2n+5r .

Using the relation (24.22), we can complete the proof of Theorem 24.2 with

C∗ =
(
C̃ + C ′

ε + 2C ′
) 1

w+1
Cμ.

Proof of Theorem 24.1 We shall prove Theorem 24.1 by Theorem 24.2. Since X
has a Lipschitz boundary, we know from [10] that there exists an extension function
f̃ρ,τ ∈ Hr (Rn) such that f̃ρ,τ |X = fρ,τ . Next, we check the noise condition (24.5).
Let the function a(x) = 1 and b(x) = 1

2 , we have that for any q ∈ [0, 1]

ρ({y : fρ,τ (x) ≤ y ≤ fρ,τ (x) + q}|x) =
∫ fρ,τ (x)+q

fρ,τ (x)

dρ(y|x)
dy

dy = 1

2
qζ+1.

By similarity, we have ρ({y : fρ,τ (x) − q ≤ y ≤ fρ,τ (x)}|x) = 1
2q

ζ+1. Therefore,
themeasure ρ has a τ -quantile of∞-average type ζ + 1.Meanwhile, we find that the
family of conditional distributions {ρ(·|x)}x∈X is Lipschitz-1 and (24.6) is satisfied
with Cρ = ζ+1

2 and s = 1 since the density function dρ(y|x)
dy is uniformly bounded by

ζ+1
2 . Thus, we can apply (24.8) to get that

Ez1,··· ,zT
[
‖ fT+1 − fρ,τ‖L2

ρX

]
≤ Ez1,··· ,zT

[
‖ fT+1 − fρ,τ‖Lζ+2

ρX

]
≤ C∗T− r

(2n+5r)(ζ+2) .

Then the proof is completed.
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