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Abstract. Both complex and evolving nature of time series structure
make forecasting among one of the most important and challenging tasks
in time series analysis. Typical methods for forecasting are designed to
model time-evolving dependencies between data observations. However,
it is generally accepted that none of them is universally valid for every
application. Therefore, methods for learning heterogeneous ensembles by
combining a diverse set of forecasts together appear as a promising solu-
tion to tackle this task. Hitherto, in classical ML literature, ensemble
techniques such as stacking, cascading and voting are mostly restricted
to operate in a static manner. To deal with changes in the relative perfor-
mance of models as well as changes in the data distribution, we propose
a drift-aware meta-learning approach for adaptively selecting and com-
bining forecasting models. Our assumption is that different forecasting
models have different areas of expertise and a varying relative perfor-
mance. Our method ensures dynamic selection of initial ensemble base
models candidates through a performance drift detection mechanism.
Since diversity is a fundamental component in ensemble methods, we
propose a second stage selection with clustering that is computed after
each drift detection. Predictions of final selected models are combined
into a single prediction. An exhaustive empirical testing of the method
was performed, evaluating both generalization error and scalability of
the approach using time series from several real world domains. Empir-
ical results show the competitiveness of the method in comparison to
state-of-the-art approaches for combining forecasters.

Keywords: Model clustering · Dynamic ensemble · Meta-learning ·
Drift-detection

1 Introduction

Time series forecasting is one of the most challenging tasks in time series analysis
due to the dynamic behavior of this data type, which may involve non-stationary
and complex processes [6,18,28]. Forecasting has considerably attracted the
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attention of both academic and industrial communities and has always been
one of the principal steps in real-time decision-making and planning across vari-
ous applications such as traffic prediction, weather forecasts, stock market prices
prediction [18].

Several machine learning methods have been successfully applied to time
series forecasting either by dealing with the data as an ordered sequence of
observation in an offline or a streaming fashion, or by using an embedding of the
time series to reformulate the forecasting task as a regression task [6]. However,
it is generally accepted that none of the ML methods is universally valid for every
task, in particular for forecasting. Therefore, one reasonable solution is to com-
bine the opinion of a diverse set of models using an ensemble method. Ensembles
consist of a collection of several models (i.e., experts) that are combined together
to address the same defined task [22]. Ensemble construction can be divided into
three main stages: (i) base model generation, where n multiple possible hypothe-
ses are formulated to model a given phenomenon; (ii) model pruning, where only
a subset of m < n hypotheses is kept and (iii) model integration, where these
hypotheses are combined together in one single model.

Most of the existing methods for ensemble learning on time series are focusing
on optimizing the last stage [6,22,28]. Combination strategies can be grouped
into three main families [30]. The first family relies on voting approaches using
majority or (weighted) average votes to decide for the final output (e.g. bagging
[3]). The second main family englobes methods relying on cascading strategy,
where base models outputs are iteratively included once at a time, as new features
in the training set. The third group is based on the stacking paradigm [33].
Using stacking, most often a meta-learning approach is employed to combine
the available forecasts. This method implicitly learns an adequate combination
by modelling inter-dependencies between models.

Another key point in learning ensemble for time series data is to be able to
cope the time-evolving nature of data. This can be achieved by building dynamic
ensemble selection frameworks through adaptive ensemble constructions on dif-
ferent levels (i.e. base models selection, base models/ensemble parameters adap-
tion, blind/informed retraining).

In this paper, we propose a dynamic ensemble selection framework that oper-
ates on two main ensemble construction stages: pruning and integration. Given
a pool of candidate base models, the first stage of the framework is motivated by
the fact that due to the time-evolving nature of the data structure, base models
performance changes over time. This performance is also subject to concept-
drifts, when considering the relation between the output predictions of base
models and the target time series. A drift detection mechanism is employed
to exclude models whose performance becomes significantly poor compared to
the remaining models and to identify the top base models in terms of perfor-
mance. Performance is assessed in this context using a custom measure based
on the Pearson’s correlation (i.e. commonly used to deal with time series data
[27]) between base models forecasts and the target time series on a sliding win-
dow validation set. After each drift detection, the top base models are identified.
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Since diversity is a fundamental component in ensemble methods [4], we propose
a second stage selection through clustering model outputs. Clusters and top base
models are updated after each drift detection. At each cluster computation, the
models that belong to the cluster representatives are selected. Finally, the out-
puts of the selected models are combined together using a voting strategy based
on a sliding-window weighted average. Our framework is denoted in the rest of
the paper, DEMSC: Drift-based Ensemble Member Selection using Clustering.
DEMSC is illustrated in Fig. 1.

Fig. 1. Components of our method DEMSC

We validate our framework using 16-real world time series data sets. Different
variations of our method have been carried out to assess the impact of each stage
(i.e. component) by changing the clustering method or the combination rules
(i.e. for example, using stacking nstead of voting). Empirical results suggest that
our method outperforms traditional state-of-art methods for ensemble learning
and other metalearning approaches such as stacking [33] and bagging [3] and
is competitive with adaptive approaches for dynamic ensemble selection [6]. We
note that all experiments are fully reproducible. Both code and datasets are
publicly available in this repository.1

The main contributions of this paper are as follows:

– A drift-based dynamic selection ensemble framework is introduced. Oppos-
ingly to existing dynamic ensemble selection methods which rely on continu-
ous updates (i.e. blindly at each time instant or periodically), our selection is
automatically and adaptively performed in an informed manner based on
models performance drift detection mechanism.

– An online clustering approach in combination with a pre-selection is applied
for model selection. The model selection is triggered by the drift detection
mechanism.

– The framework is devised to work in an automated fashion, in the sense that
a sliding-window validation set is used for the drift inspection. The data from

1 https://github.com/AmalSd/DEMSC.

https://github.com/AmalSd/DEMSC
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the validation set is used as input for the clustering. The clustering method
also optimizes the number of clusters.

– A comparative empirical study with S.o.A ensemble methods and different
variations of our framework, including a discussion about their implications
in terms of predictive performance and computational resources, is conducted.

In the remainder of this paper, we describe the proposed approach, after dis-
cussing related work. Then, we present an exhaustive experimental evaluation
of its efficiency and scalability. Finally, the last section concludes the paper.

2 Related Works

Ensembles for time series forecasting have always attracted the attention of the
machine learning community [18,26]. More precisely, methods for dynamically
combining models outputs, using both windowing strategies [26,28] and met-
alearning approaches [6,7] have particularly intrigued the interest of the commu-
nity over the last few years. In this section, we briefly describe the state-of-the-art
methods within these approaches. We list their characteristics and limitations
and we highlight our contributions.

Combination in an ensemble can be made using the average of the available
base models’ outputs. This was commonly applied not only in forecasting [8],
but also in regression [22]. Simple averages can be enhanced by the use of model
selection before aggregation, this approach is known as trimmed means [21]. To
deal with time-evolving data, one of the most successful approaches is to compute
weighted averages over a time-sliding window, by setting up the weights to be
proportional to some performance measures [26,28]. A forgetting mechanism can
be employed to the time window to increase the impact of recent observations
(i.e most recent performance of the predictive models).

Our method uses the weighted sliding-window average for the combination
of the base models’ predictions to produce the final forecast value. However,
we have tested different variations of our method by replacing this combination
strategy with metalearning. More details are provided in Sect. 3.

Metalearning as a way for modeling the learning process of a learning algo-
rithm, can be exploited in both pruning and combination stages. Most of existing
works followed this approach to learn models combination (i.e. integration) rules
given the set of model forecasts [15,30,33].

Furthermore, combination can be performed dynamically so that its rules are
changing over time. A popular approach for dynamically combining experts is
to apply multiple regression on the output of the experts. For example, Gaillard
and Goude [15] use Ridge regression to adaptively estimate the weights that are
assigned to the base-learners. Another recent approach which has successfully
exploited metalearning based on arbitrating [6], which was originally introduced
for the combination of classifiers. Arbitrated Dynamic Ensemble (ADE) [7] uses
meta-learning for estimating each candidates errors and selects members based
on the estimated errors. ADE uses Random Forest as meta-learner. For each
candidate, a separate meta-model is trained. The selected members are combined
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with a convex combination. Each candidate weight is based on the estimated
errors combined with a softmax. The weights are additionally adapted to take
diversity between ensemble members into account.

Our framework exploits metalearning in the pruning stage where a dynamic
clustering of base models is performed. Only the cluster representatives are
selected to take part in the integration phase. The idea of model clustering
was introduced in [28] to cluster a pool of base models into main families to
enhance diversity. However, in [28] the clustering was performed offline and kept
static in the online phase. Only cluster representatives changed over time in [28].
Oppositely, in our framework, model clusters are recomputed each time depen-
dencies between base models and the target series change significantly in the
current sliding-window validation set. This informed ability is a key point in
our method and to the best of our knowledge this is the first approach to perform
dynamic ensemble selection adaptively following a drift in models performance
detection mechanism. Oppositely, most of existing methods for dynamic selection
keep the learned meta-model static (i.e. no meta-learner retraining is performed)
in the testing phase and only few works state the advantage of performing peri-
odic retraining in a blind manner [7] (i.e. just setting up a fixed period for the
meta-learner retraining).

3 Methodology

This Section introduces DEMSC and its three basic components: (i) First, we
describe the drift-based pre-selection step to get the top base models in terms
of performance; (ii) The second stage consists of first clustering the top base
models and select one representative model for each cluster; (iii) Finally, each
selected model’s output is combined in a weighted average where the weights are
inversely proportional to the model recent loss.

3.1 Problem Formulation

A time series X is a temporal sequence of values X = {x1, x2, · · · , xt}, where xi

is the value of X at time i. Typical solution for time series forecasting include tra-
ditional univariate time series analysis models, such as the popular Box-Jenkins
ARIMA family of methods [2] or exponential smoothing methods [20]. Typical
regression models can be applied in the context of forecasting by using a time
delay embedding which maps a set of target observations to a K-dimensional
feature space corresponding to the K past lagged values of each observation [6].

Denote with PM = {M1,M2, · · · ,MN} the pool of trained base forecasting
models. Let x̂ = (x̂M1 , x̂M2 , · · · , x̂MN

) be the vector of forecast values of X at
time instant t + 1 (i.e. xt+1) by each of the base model in PM . The goal of the
dynamic selection is identifying which x̂Mi

values should be integrated in the
weighted average.

To do so, a two-staged selection procedure is devised. The first stage is a pre-
selection stage which aims to keep only accurate model forecasts using a model



Drift-Based Ensemble Members Selection Using Clustering 683

performance drift detection. This stage discards models with poor performance
whose forecasts inclusion in the ensemble would deteriorate the forecasting accu-
racy. This deterioration is more perceptible using simple average for integration
and can be covered to some extent using a weighting strategy. The second stage
aims to enhance diversity aspect with the use of clustering.

3.2 A Drift-Based Model Pre-selection

The drift-based time series selection was first applied in [28] in the context of
spatio-temporal features selection to be the input of a multivariate autoregres-
sive model. Similarly, we can treat the set of base models forecasts as a set of
explanatory variables or causes to our target time series. To do so, dependencies
between the set of base model forecasts and target time series can be continuously
computed and monitored over a sliding-window validation set. Suppose we want
to compute the prediction for time instant t + 1, the validation sliding-window
of size W over X is defined by the sequence XW,t = {xt−W+1, xt−W+2, · · · , xt}.
Let X̂Mi

W,t = {x̂Mi

t−W+1, x̂
Mi

t−W+2, · · · , x̂Mi
t } be the predicted sequence of values by

the model Mi on XW,t, where Mi ∈ PM .
A subset K of highly correlated models with the target, denoted “top-base”

models, are selected using a sliding-window similarity measure computed on
XW,t. K is a user-defined hyperparameter. Hereby, we propose to use a custom
measure based on the Pearson’s correlation - commonly used to deal with time
series data [27]-denoted as SRC - Scaled Root Correlation and defined as:

corr(X̂
Mi
W,t, XW,t) =

τ −
∑W

j=1 x̂
Mi
t−W+j

∑W
j=1 xt−W+j

W√
∑W

j=1(x̂
Mi
t−W+j)

2 − (
∑W

j=1 x̂
Mi
t−W+j

)2

W

√
∑W

j=1(xt−W+j)2 − (
∑W

j=1 xt−W+j)
2

W

(1)

SRC(X̂Mi

W,t,XW,t) =

√
1 − corr(X̂Mi

W ,XW )
2

∈ [0, 1] (2)

where τ =
∑W

j=1 x̂Mi

t−W+jxt−W+j . Naturally, with time-evolving data, dependen-
cies change over time and follow non-stationary concepts. Stationarity in this
context can be formulated as follow:

Definition 1 (Weak stationary Dependencies). Let Ct ∈ R
N×N be a

resulting symmetric similarity matrix between the base models and the target time
series over W (i.e. derived from the above similarity metric), where N = |PM |
and ct be a vector containing all the elements in Ct where cj,t ≥ cj−1,t,∀j ∈
{1 . . . N2}. Let μ denote the minimum SRC coefficient of PM at the initial instant
of its generation ti. The dependence structure is said to be weakly stationary if
the true mean of Δct is 0:

Δct =
∣∣c1,t − μ

∣∣ (3)
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Following this definition, we can assume that the distance between the two most
dissimilar random processes within the same pool of models sets its boundary
under a form of a logical diameter. If this boundary diverges in a significant way
over time, a drift is assumed to take place. We propose to detect the validity of
such assumption using the well-known Hoeffding Bound [19], which states that
after W independent observations of a real-value random variable with range R,
its true mean has not diverged if the sample mean is contained within ±εF :

εF =

√
R2 ln(1/δ)

2W
(4)

with a probability of 1 − δ (a user-defined hyperparameter). Once the condition
of the weak stationary dependencies presented in Definition 1 is violated, an
alarm is triggered, the top base models using Ct are updated. Afterwards, the
dependency monitoring process is continued by sliding the time window for the
next prediction and the reference diameter μ is reset by setting ti = t.

3.3 Model Clustering

One of the most important aspects for successful ensembles is diversity [4,7,
28]. Typically, this diversity is initially reflected in the distinctive patterns of
each base learner’s inductive bias derived from the different hypothesis on which
each base learner is built to model the input data and its dependence structure.
Surprisingly, the enforcement and evaluation of diversity on ensembles for time
series data is still a quite unexplored topic-especially for forecasting problems [23,
28]. However, the expected error decomposition for ensemble schemata [4,31] in
general helps to get an intuition about the importance of diversity. More precisely,
the expected error can be decomposed into bias, variance and covariance.

In DEMSC, we propose a second-stage selection that tries to ensure such
diversity through clustering. Predictions of K top-base models on the time
sequence XW,t, are considered as W -dimensional vector features to cluster the
models. To compute clusters for time series, several techniques are proposed in
literature such as K-means and hierarchical clustering [1]. However, one of the
main issues presented by time series clustering is the choice of similarity/distance
measure as most of typical distance measures such as the Euclidean distance do
not take dependence structures of time series data into account [1]. To overcome
this issue, we used an improper maximum likelihood estimator based clustering
method (IMLEC) [9], which is based on a multivariate Gaussian model where
parameters are estimated using Expectation Maximization algorithm [25].

This method has the advantage over Euclidean Distance (ED)-based clus-
tering methods by contributing to the reduction of the covariance term of the
ensemble error and thus to the reduction of the overall error. For instance, ED-
based clustering methods like K-Means, do not take into account the covariance
of the data. If we consider two candidate time series that have dependence over
a high number of components of their W -dimensional feature space (i.e. high
covariance is assumed to take place), the probability of attributing them to the
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same cluster by fitting the adequate parameters of the Gaussian mixture to the
data is higher than simply using an ED-based method, which would probably
assign them to different clusters based on their closeness to the current cluster
centres. As a results, models belonging to different clusters have more likely low
covariance. Therefore, the final step in the selection consists of selecting one rep-
resentative model for each cluster. We simply select the closest model to each
cluster center.

3.4 Model Combination

The final selected base-models are integrated using a sliding-window weighted
average [26,28]. Let PMf be the pool of final selected base models to take part
in the ensemble for the prediction of time instant t + 1 and x̂j,t+1 the output of
model Mj in time instant t + 1. The final prediction is obtained by:

x̂t+1 =
∑|P

Mf |
j=1

[(
1 − χj,t

)
x̂j,t+1

]
∑|P

Mf |
j=1

(
1 − χj,t

) : χj,t ∈ [0, 1],∀j, t (5)

where χj,t is a normalized version of the recent loss of the model Mj on [t−W +1,
t] on the random process which computation is given by an evaluation metric of
interest (i.e Normalized Root Mean Square Error (NRMSE) in our case).

This methodology was exhaustively tested over data collected from 16 real-
world datasets. Further details are provided in the following Section.

4 Experiments

In this section, we present the experiments carried out to validate DEMSC and
to answer the following research questions:

Q1: How is the performance of DEMSC compared to the state-of-the-art meth-
ods for time series forecasting tasks and to existing dynamic ensemble selec-
tion approaches?

Q2: What is the advantage of the performance drift detection mechanism, which
triggers the ensemble members pre-selection, in terms of accuracy?

Q3: What is the impact of clustering and how does the IMLEC-clustering per-
form compared to commonly used clustering strategies for time series data?

Q4: What is the impact of different combination strategies on the performance?
Q5: Is there an advantage in terms of computational resources if the ensemble

members selection is done in an informed fashion (i.e. only triggered by the
drift detection alarm)?

4.1 Experimental Setup

The methods used in the experiments were evaluated using RMSE. In each
experiment, the time series data was split to 75% for training, and 25% for testing.
The results are compared using the non-parametric Wilcoxon Signed Rank test.
We used 16 real-world time series shown in Table 1 for our experiments. An
embedding dimension of 5 was used for all the time series.
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Table 1. List of datasets used for the experiments.

ID Time series Data source Data characteristics

1 Water consumption Oporto city [7] Daily obs. Jan, 2012–Oct, 2016

2 Temperature Bike sharing [7]

3 Feeling temperature Hourly values from Jan. 1, 2011
to Mar. 01, 20114 Humidity

5 Windspeed

6 Registered users

7 Total bike rentals

8 Global horizontal radiation Solar radiation
monitoring [7]

Hourly values Feb. 16,
2016–May 5, 20169 Direct normal radiation

10 Diffuse horizontal radiation

11 Vatnsdalsa River flow [7] Daily observations from Jan. 1,
1972 to Dec. 31, 197412 Jokulsa Eystri

13 Chill temperature Weather data [29] Hourly observations from Apr.
25, 2016 to Aug. 25, 201614 Total cloud cover

15 Wind speed

16 Precipitation

4.2 Ensemble Setup and Baselines

There is no forecasting method that performs best on every time series. For our
candidate pool, we inconstantly used and tested different families of models:

GBM Gradient Boosting Machine [12]; GP Gaussian Process [32]

SVR Support Vector Regression [11]; RFR Random Forest [3]

PPR Projection Pursuit Regr. [13]; MARS MARS [14];

PCMR [24] Principal Component Regr. DT Decision Tree Regr.;

PLS [24] Partial Least Squares Regr. MLP [17] Multilayer Perceptron

Different parameter settings for the models, generate a pool of 30 candidate
models, that we will use for the ensemble methods. We can see in Fig. 2, that the
forecasting methods have a high variance as their performance changes across
the different time series.

There is no clear best performing model. This motivates the dynamic combi-
nation of different forecasting models to an ensemble.

DEMSC has a number of hyperparameters that are summarized in Table 2.
For IMLEC-clustering, we used the R-package of the authors of [9]. The maxi-
mum number of cluster is a user-defined parameter. However, it can be automat-
ically reduced by removing outliers and noisy data that cannot be fitted to any
cluster.
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Fig. 2. Distribution of rank of the base models across the 16 time series (similar models
names in the x-axis have different parameters)

Table 2. Hyperparameter of DEMSC and their chosen values for the experiments.

Parameter Value

Number of top base models Half of candidate pool

Maximum number of clusters Half of top base models

Hoeffding-bound δ 0.95

Size of sliding window W A user-defined hyperparameter

We compare the performance of DEMSC against the following approaches:

RF [3]: Random Forest uses bagging to create an ensemble of regression trees.
GBM [12]: Gradient boosting machine that uses boosting to create an ensemble

of regression trees.
SE [8]: A static ensemble that averages the performance of all base learners

using arithmetic mean.
SWE [26]: A linear combination of the base learners predictions. The weights

are based upon recent performance over a time sliding-window.
ARIMA [2]: ARIMA model for time series forecasting.
EWA [16]: Forecasting combination with exponential weighted averages.
FS [16]: The fixed share approach from Herbster and Warmuth, which is designed

for tracking the best expert across a time series.
OGD [16]: An approach based on online gradient descent that provides theoret-

ical loss bound guarantees.
MLPOL [16]: A polynomially weighted average forecast combination.
Stacking [33]: An approach for ensembles using Random Forest as metalearner.
DETS [5]: An advanced version of SWE, selecting a subset of members based

on recent errors and uses a smoothing function on the average of recent errors
for weighting.

ADE [6]: Uses a Random Forest for estimating each candidates errors and
selects member based on the estimated errors. Weighting is also based on the
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estimated errors combined with a softmax. Weights are additionally adapted
to take diversity between ensemble members into account.

We also compare DEMSC with some variants of itself. All of these variants except
one, use the sliding window ensemble for combining the ensemble members
predictions.

DEMSC-NoSel: Same as our method but without the Top-Base Models selec-
tion. Clusters are updated periodically.

Top-Base Models: Only the pre-selection of the Top-Base models based on
correlation (no clustering is applied afterwards)

DEMSC-kMeans: The clustering method is replaced with K-Mean with ED
distance (K is tuned using the average silhouette method).

DEMSC-DTW: The clustering method is replaced with dynamic time warping
clustering.

DEMSC-stacking: The stacking variant differs from our method only in the
combination step. Instead of a sliding window ensemble, a stacking approach
is used in this variant (PLS is used as metalearner).

4.3 Results

Table 3 presents the average ranks and their deviation for all methods. For
the paired comparison, we compare our method DEMSC against each of the
other methods. We counted wins and losses for each dataset using the RMSE
scores. We use the non-parametric Wilcoxon Signed Rank test to compute sig-
nificant wins and losses, which are presented in parenthesis (i.e. the significance
level = 0:05). Figure 3 presents the distribution of ranks across the different time
series for all methods.
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Fig. 3. Distribution of the ranks of ensemble methods across the different time series,
D is used as abbreviation for DEMSC
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Table 3. Paired comparison between DEMSC and different baseline methods for 16
time series. The rank column presents the average rank achieved by each model and
the standard deviation of the rank across the different time series. A rank of 1 means
the model was the best performing on all time series.

Method Our method

Losses Wins Avg. rank

RF 1(0) 15(13) 12.2 ± 3.7

GBM 0(0) 16(16) 17.0 ± 2.0

SE 1(0) 15(13) 10.4 ± 3.6

SWE 0(0) 16(14) 13.8 ± 3.5

ARIMA 1(1) 15(11) 11.5 ± 5.1

EWA 1(0) 15(12) 6.3 ± 2.6

FS 1(0) 15(13) 9.5 ± 3.6

OGD 1(0) 15(12) 6.3 ± 2.5

MLPOL 2(1) 14(10) 7.2 ± 3.5

Stacking 1(1) 15(14) 13.9 ± 3.8

ADE 7(7) 7(3) 3.1 ± 2.0

DETS 4(4) 7(4) 5.4 ± 2.8

DEMSC-NoSel 0(0) 16(14) 13.9 ± 4.7

Top-Base Models 1(0) 15(14) 9.2 ± 2.9

DEMSC-kMeans 0(0) 16(16) 11.7 ± 3.1

DEMSC-DTW 1(0) 15(14) 9.6 ± 3.5

DEMSC-stacking 5(2) 9(6) 5.7 ± 4.3

DEMSC – – 2.3 ± 1.7

DEMSC has advantages over the compared methods except for ADE. The
approaches for combining individual forecasters, which are SE, SWE, OGD,
FS, EWA and MLPOL, show a big difference in the average rank compared to
DEMSC. ARIMA, a state-of-the-art method for forecasting, has a big difference
in the average rank as well. Common ensemble methods like RF, GBM, OGD
and Stacking, compare poorly to all methods specialized for combining forecast-
ers. The two competitive approaches to our method are ADE and DETS, with
DETS having a higher average rank but performing well in the pairwise compar-
ison. ADE is competitive to DEMSC and have a higher average rank, but it is
comparable to DEMSC in terms of wins and losses. Looking at the distribution
of ranks in Fig. 3, we see that ADE has some clear outliers, while being robust
in the other cases. DEMSC is within the range of the first 4 ranks and has a
median of 1 with no clear outliers.

To further investigate the differences in the average ranks, we use the post-
hoc Bonferroni-Dunn test [10] to compute critical differences. We present the
critical differences between the methods relative to each other in Fig. 4. Adding
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to the results of Table 3, we note critical differences between DEMSC and most
of the other methods, with the exceptions of ADE, DETS, EWA, ODG and
MLPOL. We already discussed the comparable performance of DEMSC and
ADE. Both methods share the critical differences to other methods. Regard-
ing research question Q1, our results show that DEMSC is competitive with
ADE and outperforms other combination approaches for time series forecasting.
The average rank of DEMSC is better than ADE, but we do not see the main
advantage of our method in the performance but more in the complexity and
computational requirements, which we will discuss later.

2 3 4 5 6 7 8 9 10 11 12 13

CD

DEMSC
ADE

DETS
EWA
OGD
MLPol

FS
SE
ARIMA
RF
SWE
Stacking
GBM

Fig. 4. Critical difference diagram for the post-hoc Bonferroni-Dunn test, comparing
DEMSC with the other baseline ensemble methods.
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DEMSC−Stacking
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Fig. 5. Critical difference diagram for the post-hoc Bonferroni-Dunn test, comparing
DEMSC against variants of our method.

Comparing DEMSC to different variants of our method, we see a clear advan-
tage in using all the presented components. The results are the worst, if we
only use clustering for selection (DEMSC-NoSel). The pre-selection is needed
to ensure that the clustering uses the set of the most accurate models. Using
only the top-Base Models, gives a useful performance, but we show that it can
be further improved using clustering. Comparing the three different clustering
methods (DEMSC-kMeans, DEMSC-DTW, DEMSC(IMLEC)) we can see the
clear advantage of the IMLEC-clustering. Using a time warping clustering gives
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a slight improvement over K-means, but both of them do not improve the pre-
selection. Using IMLEC-clustering improves the performance drastically. This
can be explained partially by enhancing the diversity aspect discussed in Sect. 3.
We see that the combination part of our method has a small impact. Both vari-
ants using IMLEC-clustering, with either sliding window ensemble or stacking for
the combination, have a clear advantage over the other clustering variants (see
question Q3). We present in Fig. 5 the critical differences of the methods regard-
ing the average rank. The only variant, where the difference in average rank to
DEMSC is not critically different is the stacking variant (DEMSC-stacking). The
stacking variant’s average rank is higher. This answers the research question Q4
regarding the impact of each component of the method.

We can also answer research question Q2, asking about the impact of using
a drift detection to trigger the member selection. Performance wise, we see that
our method performs on the same level or even slightly better than the best
state-of-the-art approach. The motivation for using a drift detection is to update
the ensemble only when necessary. This should result in faster predictions and
less computational requirements (see question Q5). We see in Table 4 that the
average runtime of ADE is more than twice as long as the runtime of our method.
The high deviation of the runtime of our method is due to the different datasets,
that have more or less drifts detected.

Table 4. Empirical runtime comparison between DMESC and the most competitive
state-of-the-art method (ADE).

Method Avg. runtime in sec.

DEMSC 66.39 ± 26.4

ADE 156.97 ± 18.3

4.4 Discussion

We presented results that empirically show that DEMSC has performance advan-
tages compared to other ensemble methods for forecasting and is competitive
with the most recent state-of-the-art approaches for dynamically combining fore-
casting methods.

We show that our method, using a combination of clustering and a perfor-
mance based pre-selection, is able to perform on a high level. The pre-selection
assures that only accurate models are used in the ensemble. The clustering groups
similar models based on their predictions. We then select clusters representatives.
This leads to an ensemble with accurate and diverse members, which has been
theoretically shown to be required for an ensemble to outperform it’s members.
Neither of the parts can reach state-of-the-art performance on its own, but the
combination makes them very powerful.

The usage of drift detection enables our method to construct a new ensemble
given changes in the nature of the dependencies between base-models and the
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target time series. If there is no change, then there is also no need to construct
a new ensemble. Therefore, the drift detection reduces the computations.

DEMSC method and the complex meta-learning approach ADE perform on
the same level. To reach same performance, we only need pre-selection and clus-
tering, triggered by a drift detection. Compared to ADE, which needs to train
a meta-model for each candidate, our method is computationally cheaper. For
the experiments a prediction with ADE needed on average twice as long as our
method.

5 Final Remarks

This paper introduces DEMSC: a novel, practically useful dynamic ensemble
members selection framework for time series forecasting. DEMSC uses a two-
staged selection procedure which on the one hand enhances accuracy by per-
forming informed selection of base learners at test time based on a base models
performance drift detection mechanism and diversity on the other hand through
an online clustering approach. An exhaustive empirical evaluation, including 16
real-world datasets and multiple comparison algorithms shows the advantages
of DEMSC. As a future work, we aim to add a drift-informed procedure for
retraining the base-learners.
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