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Abstract. Feature selection is central to modern data science. The ‘sta-
bility’ of a feature selection algorithm refers to the sensitivity of its
choices to small changes in training data. This is, in effect, the robustness
of the chosen features. This paper considers the estimation of stability
when we expect strong pairwise correlations, otherwise known as feature
redundancy. We demonstrate that existing measures are inappropriate
here, as they systematically underestimate the true stability, giving an
overly pessimistic view of a feature set. We propose a new statistical
measure which overcomes this issue, and generalises previous work.
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1 Introduction

Feature Selection (FS) is central to modern data science—from exploratory data
analysis, to predictive model building. The overall question we address with this
paper is “how can we quantify the reliability of a feature selection algorithm?”.
The answer to this has two components—first, how useful are the selected fea-
tures when used in a predictive model; and second, how sensitive are the selected
features, to small changes in the training data. The latter is known as stability
[9]. If the selected set varies wildly, with only small data changes, perhaps the
algorithm is not picking up on generalisable patterns, and is responding to noise.
From this perspective, we can see an alternative (and equivalent) phrasing, in
that we ask “how reliable is the set of chosen features?”—i.e. how likely are we
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to get a different recommended feature set, with a tiny change to training data.
This is particularity important in domains like bioinformatics, where the chosen
features are effectively hypotheses on the underlying biological mechanisms.

There are many measures of stability proposed in the literature, with a recent
study [14] providing a good summary of the advantages and disadvantages of
each. The particular contribution of this paper is on how to estimate stability
in the presence of correlated features, also known as feature redundancy. We
will demonstrate that any stability measure not taking such redundancy into
account necessarily gives a systematic under-estimate of the stability, thus giv-
ing an overly pessimistic view of a given FS algorithm. This systematic under-
estimation of stability can have a variety of consequences, depending on the
application domain. In biomedical scenarios, it is common to use data-driven
methods to generate candidate biomarker sets, that predict disease progression
[16]. If we are comparing two biomarker sets, we might estimate their stability,
judge one to be unstable, and discard it. However, if there are background fea-
ture correlations, and thus we are overly conservative on the stability, we might
miss an opportunity.

We provide a solution to this problem, with a novel stability measure that
takes feature redundancy into account. The measure generalises a recent work
[14] with a correction factor that counteracts the systematic under-estimation of
stability. Since the selection of a FS algorithm can be seen as a multi-objective
optimisation problem we show how the choice of a stability measure changes the
Pareto-optimal solution. Additionally, we demonstrate the utility of the measure
in the context of biomarker selection in medical trials, where strong correlations
and necessary robustness of the choices are an unavoidable part of the domain1.

2 Background

We assume a dataset D = {xn, yn}Nn=1, with a d-dimensional input x. The task
of feature selection is to choose a subset of the dimensions, of size k � d, subject
to some constraints; typically we would like to select the smallest subset that
contains all the relevant information to predict y.

2.1 Estimating the Stability of Feature Selection

Let us assume we take D and run some feature selection algorithm, such as L1
regularization where we take non-zero coefficients to be the ‘selected’ features,
or ranking features by their mutual information with the target [3]. When using
all N datapoints, we get a subset of features: sD. We would like to know the
reliability of the chosen feature set under small perturbations of the data. If the
algorithm changes preferences drastically, with only small changes in the training
data, we might prefer not to trust the set sD, and judge it as an ‘unstable’ set.

To quantify this, we repeat the same selection procedure M times, but each
time leaving out a small random fraction δ of the original data. From this we
1 The software related to this paper is available at: https://github.com/sechidis.

https://github.com/sechidis


Stability of Feature Selection in the Presence of Feature Correlations 329

obtain a sequence S = {s1, s2, . . . , sM}, where each subset came from applying
a FS algorithm to a different random perturbation of the training data. At this
point it turns out to be more notationally and mathematically convenient to
abandon the set-theoretic notation, and use instead a matrix notation. We can
treat the sequence S as an M × d binary matrix, where the d columns represent
whether or not (1/0) each feature was chosen on each of the M repeats. For
example, selecting from a pool of d = 6 features, and M = 4 runs:

Z =

Z1 Z2 Z3 Z4 Z5 Z6⎛
⎜⎝

⎞
⎟⎠

1 0 1 0 0 0 ...z1, selections on 1st run
0 1 1 0 0 0 ...z2, selections on 2nd run
1 0 0 1 0 0 ...
0 1 0 1 0 0

(1)

We then choose some measure φ(a, b) of similarity between the resulting feature
sets from two runs, and evaluate the stability from Z, as an average over all
possible pairs:

Φ̂(Z) =
1

M(M − 1)

∑
i

∑
j �=i

φ(zi, zj) (2)

Let us take for example φ(zi, zj) to be a dot-product of the two binary strings.
For a single pair, this would correspond to the number of selected features that
are common between the two – or the size of the subset intersection. Over the M
runs, this would correspond to the average subset intersection—so on average,
if the feature subsets have large pairwise intersection, the algorithm is returning
similar subsets despite the data variations. This of course has the disadvantage
that the computation expands quadratically with M , and large M is necessary to
get more reliable estimates. Computation constraints aside, if the result indicated
sufficiently high stability (high average subset intersection) we might decide we
can trust sD and take it forward to the next stage of the analysis.

A significant body of research, e.g. [5,9,10,17], suggested different similarity
measures φ that could be used, and studied properties. Kuncheva [11] conducted
an umbrella study, demonstrating several undesirable behaviours of existing mea-
sures, and proposing an axiomatic framework to understand them. Nogueira et al.
[14] extended this, finding further issues and avoiding the pairwise, set-theoretic,
definition of φ entirely—presenting a measure in closed form, allowing computa-
tion in O(Md) instead of O(M2d). From the matrix Z, we can estimate various
stochastic quantities, such as the average number of features selected across M
runs, denoted as k̄ and the probability that the feature Xf was selected, denoted
as pf = E [Zf = 1]. Using these, their recommended stability measure is,

Φ̂(Z) = 1 −
∑

f
M

M−1 p̂f (1 − p̂f )

k̄(1 − k̄
d )

(3)

The measure also generalises several previous works (e.g. [11]), and was shown
to have numerous desirable statistical properties. For details we refer the reader



330 K. Sechidis et al.

to [14], but the intuition is that the numerator measures the average sample
variance, treating the columns of Z as Bernoulli variables; the denominator is a
normalizing term that ensures Φ̂(Z) ∈ [0, 1], as M → ∞.

In the following section we illustrate how stability becomes much more com-
plex to understand and measure, when there are either observed feature correla-
tions, or background domain knowledge on the dependencies between features.

2.2 The Problem: Estimating Stability Under Feature Correlations

The example in Eq. (1) can serve to illustrate an important point. On each run
(each row of Z) the algorithm seems to change its mind about which are the
important features—first 1&3, then 2&3, then 1&4, and finally 2&4. Various
measures in the literature, e.g. [14] will identify this to be unstable as it changes
its feature preferences substantially on every run. However, suppose we examine
the original data, and discover that features X1 and X2 are very strongly corre-
lated, as are X3 and X4. For the purposes of building a predictive model these
are interchangeable, redundant features. What should we now conclude about
stability? Since the algorithm always selects one feature from each strongly cor-
related pair, it always ends up with effectively the same information with which
to make predictions—thus we should say that it is in fact perfectly stable. This
sort of scenario is common to (but not limited to) the biomedical domain, where
genes and other biomarkers can exhibit extremely strong pairwise correlations.
A further complication also arises in this area, in relation to the semantics of
the features. Certain features may or may not have strong observable statisti-
cal correlations, but for the purpose of interpretability they hold very similar
semantics – e.g. if the algorithm alternates between two genes, which are not
strongly correlated, but are both part of the renal metabolic pathway, then we
can determine that the kidney is playing a stable role in the hypotheses that the
algorithm is switching between.

To the best of our knowledge there are only two published stability measures
which take correlations/redundancy between features into account, however both
have significant limitations. The measure of Yu et al. [19] requires the estima-
tion of a mutual information quantity between features, and the solution of a
constrained optimisation problem (bipartite matching), making it quite highly
parameterised, expensive, and stochastic in behaviour. The other is nPOGR [20]
which can be shown to have several pathological properties [14]. In particular,
the measure is not lower-bounded which makes interpretation of the estimated
value very challenging – we cannot judge how “stable” a FS algorithm is without
a reference point. The nPOGR measure is also very computationally demand-
ing, requiring generation of random pairs of input vectors, and computable in
O(M2d). To estimate stability in large scale data, computational efficiency is a
critical factor.

In the next section, we describe our approach for estimating stability under
strong feature correlations, which also allows incorporation of background knowl-
edge, often found in biomedical domains.
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3 Measuring Stability in the Presence of Correlations

As discussed in the previous section, a simple stability measure can be derived
if we define Φ(·, ·) as the size of the intersection between two subsets of feature,
and apply Eq. (2). The more co-occurring features between repeated runs, the
more stable we regard the algorithm to be. It turns out that, to understand
stability in the presence of correlated features, we need to revise our concept of
subset intersection, to one of effective subset intersection.

3.1 Subset Intersection and Effective Subset Intersection

We take again the example from Eq. (1). We have z1 = [1, 0, 1, 0, 0, 0], and z2 =
[0, 1, 1, 0, 0, 0]. The subset intersection, given by the inner product is z1 zT2 =
1, due to the selection of the third feature. But, as mentioned, perhaps we
learn that in the original data, X1 and X2 are strongly correlated, effectively
interchangeable for the purposes of building a predictive model. When comparing
the two subsets, X1 and X2 should be treated similarly, thus increasing the size
of the intersection to 2. Hence, we do not have a simple subset intersection, but
instead an effective subset intersection, based not on the indices of the features
(i.e. X1 vs X2) but instead on the utility or semantics of the features.

We observed that the intersection between two subsets si and sj , i.e. the
two rows zi and zj of the binary matrix Z, can be written as an inner product:
ri,j = |si∩sj | = zi Id zTj where Id is the d×d identity matrix. We can extend this
with a generalised inner product, where the inner product matrix will capture
the feature relationships.

Definition 1 (Effective subset intersection). The “effective” subset inter-
section with correlated features is given by the generalised inner product:

rCi,j = |si ∩ sj |C = zi C zTj

The inner product matrix C has diagonal elements set to 1, while the off-
diagonals capture the relationships between pairs of features, i.e.

C =

⎡
⎢⎢⎢⎣

1 c1,2 . . . c1,d
c2,1 1 . . . c2,d
...

...
...

...
cd,1 cd,2 . . . 1

⎤
⎥⎥⎥⎦ (4)

with cf,f ′ = cf ′,f > 0 ∀ f �= f ′.

The entries of the matrix C could be absolute correlation coefficients cf,f ′ =
|ρXf ,Xf′ | thus capturing redundancy as explained by the data. But in gen-
eral we emphasise that entries of C are not necessarily statistical correlations
between features. For example, C could be a binary matrix, where cf,f ′ =
δ(|ρXf ,Xf′ | > θ), or constructed based on domain knowledge, thus capturing
redundancy as explained by domain experts (e.g. two biomarkers appearing in
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the same metabolic pathway). The following theorem shows why we are guar-
anteed to underestimate the stability, if feature redundancy is not taken into
account.

Theorem 2. The effective intersection is greater than or equal to intersection,

|si ∩ sj |C ≥ |si ∩ sj |

The proof of this can be seen by relating the “traditional” intersection |si ∩ sj |
and the “effective” intersection as follows:

Lemma 3. The effective intersection can be written,

|si ∩ sj |C = |si ∩ sj | +
d∑

f=1

d∑
f ′=1
f ′ �=f

cf,f ′zi,fzj,f ′

If all entries in C are non-negative, we have rCi,j ≥ ri,j—without this correction,
we will systematically under-estimate the true stability.

The set-theoretic interpretation of stability is to be contrasted with the
binary matrix representation Z ∈ {0, 1}M×d. Nogueira et al. [14] proved the fol-
lowing result, bridging these two conceptual approaches to stability. The average
subset intersection among M feature sets can be written,

1
M(M − 1)

M∑
i=1

M∑
j=1
j �=i

|si ∩ sj | = k −
d∑

f=1

v̂ar(Zf )

where k is the average number of features selected over M rows, and v̂ar(Zf ) =
M

M−1 p̂f (1 − p̂f ), i.e. the unbiased estimator of the variance of the Bernoulli ran-
dom feature Zf . Then a stability measure defined as an increasing function of
the intersection can be equivalently phrased as a decreasing function of the vari-
ance of the columns of the selection matrix, thus bridging the set-theoretic view
with a probabilistic view. This property is also known as monotonicity [11,14]
and is a defining element of a stability measure. In the presence of redundancy
we instead would like our measure to be an increasing function of the effective
intersection. The following theorem bridges our set-theoretic view with the sta-
tistical properties of the selection matrix in the presence of feature redundancy
captured in the matrix C.

Theorem 4. The effective average pairwise intersection among the M subsets
can be written:

1
M(M − 1)

M∑
i=1

M∑
j=1
j �=i

|si ∩ sj |C = kC − tr(CS)
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where kC =
∑d

f=1

∑d
f ′=1 cf,f ′zf,f ′ the effective average number of features

selected over M runs. The unbiased estimator of the covariance between Zf and
Zf ′ is ĉov(Zf , Zf ′) = M

M−1 (p̂f,f ′ − p̂f p̂f ′), ∀ f, f ′ ∈ {1...d}, while S is an
unbiased estimator of the variance-covariance matrix of Z.

Proof: Provided in Supplementary material Section A.
We are now in position to introduce our new measure, which based on the

above theorem should be a decreasing function of tr(CS). There is a final element
that needs to be taken into account—we need to normalise our estimation to
bound it so that it can be interpretable and comparable between different FS
approaches, developed in the next section.

3.2 A Stability Measure for Correlated Features

Based on the previous sections, we can propose the following stability measure.

Definition 5 (Effective Stability). Given a matrix of feature relationships C,
the effective stability is

Φ̂C (Z) = 1 − tr(CS)
tr(CΣ0)

,

where S is an unbiased estimator of the variance-covariance matrix of Z, i.e.
Sf,f ′ = Ĉov(Zf , Zf ′) = M

M−1 (p̂f,f ′ − p̂f p̂f ′), ∀ f, f ′ ∈ {1...d}, while Σ0 is the
matrix which normalises the measure.

To derive a normaliser, we need to estimate the variance/covariance under the
Null Model of feature selection [14, Definition 3]. The Null Model expresses the
situation where there is no preference toward any particular subset, and all subsets
of size k have the same probability of occurrence, thus accounting for the event of
a completely random selection procedure. For a detailed treatment of this subject
we refer the reader to the definition of this, by Nogueira et al. [14].

Theorem 6. Under the Null Model, the covariance matrix of Z is given by:

Σ0 =

⎡
⎢⎣

var
(
Z1

∣∣H0

)
. . . cov

(
Z1, Zd

∣∣H0

)
...

. . .
...

cov
(
Zd, Z1

∣∣H0

)
. . . var

(
Zd

∣∣H0

)

⎤
⎥⎦ ,

where the main diagonal elements are given by: var
(
Zf

∣∣H0

)
= k

d

(
1 − k

d

)
and

the off-diagonal elements, f �= f ′ are: cov
(
Zf , Zf ′

∣∣H0

)
= k2−k

d2−d − k
2

d2

Proof: Provided in Supplementary material Section B.
It can immediately be seen that the proposed measure is a generalisation of

Nogueira et al. [14], as it reduces to Eq. (3) when C is the identity, in which case
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Algorithm 1: Recommended protocol for estimating FS stability.
Input : A dataset D = {xi, yi}N

i=1, where x is d-dimensional.
A procedure f(D) returning a subset of features sD, of size k < d.
A matrix C, specifying known feature redundancies.

Output: Stability estimate Φ̂, for feature set sD.

Define Z, an empty matrix of size M × d.
for j := 1 to M do

Generate Dj , a random sample from D (e.g. leave out 5% rows, or
bootstrap)

Set sj ← f(Dj)
Set the jth row of Z as the binary string corresponding to selections sj .

Return stability estimate Φ̂(Z) using Definition 2.

tr(CS) =
∑

i var(zi). At this point we can observe that when C = Id we implicitly
assume the columns of the selection matrix to be independent variables hence
considering only their variance. In contrast, our measure accounts additionally
for all pairwise covariances weighted by the coefficients of the matrix C. As
we already discussed these coefficients can be seen as our confidence on the
correlation between the columns of the selection matrix as explained by the data
(using for example Spearman’s correlation coefficient) or by domain experts.

Finally, we can summarise the protocol for estimating the stability of a FS
procedure in a simple algorithm shown in Algorithm1. We also compare the
computational time of our measure against nPOGR, as the dimensionality of
the feature set increases—shown in Fig. 1—we observe that our measure is as
expected, orders of magnitude faster to compute.

50 100 150 200
Dimensionality d

0

500

1000

1500

Ti
m

e 
(s

ec
)

Fig. 1. Computational cost of nPOGR versus our measure as the number of features
grow. We generated randomly selection matrices Z of dimension M × d, with M =
50 and various values of d. The proposed measure remains largely unaffected by the
dimensionality (taking milliseconds).
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In the next section, we demonstrate several cases where incorporating prior
knowledge and using our proposed stability measure, we may arrive to completely
different conclusions on the reliability of one FS algorthm versus another, hence
potentially altering strategic decisions in a data science pipeline.

4 Experiments

Our experimental study is split in two sections. Firstly we will show how our
measure can be used for choosing between different feature selection criteria
in real-world datasets. We will apply the protocol described in the previous
section to estimate the stability which along with the predictive performance of
the resulting feature set can give the full picture on the performance of a FS
procedure. Secondly, we will show how we can use stability in clinical trials data
to identify robust groups of biomarkers.

4.1 Pareto-Optimality Using Effective Stability

In many applications, given a dataset we might wish to apply several feature
selection algorithms, which we evaluate and compare. The problem of deciding
which FS algorithm we should trust can be seen as a multi-objective optimisation
combining two criteria: (1) the features result in high accuracy, and (2) we want
algorithms that generate stable subsets, i.e. stable hypotheses on the underlying
mechanisms. In this context, we define the Pareto-optimal set as the set of points
for which no other point has both higher accuracy and higher stability, thus the
members of the Pareto-optimal set are said to be non-dominated [7]. In this
section we will explore whether using the proposed stability measure, Φ̂C(Z),
can result in different optimal solutions in comparison with the original measure,
Φ̂(Z), that ignores feature redundancy.

We used ten UCI datasets and created M = 50 versions of each one of them
by removing 5% of the examples at random. We applied several feature selection
algorithms and evaluated the predictive power of the selected feature sets using
a simple nearest neighbour classifier (3-nn). By using this classifier we make few
assumptions about the data and avoid additional variance from hyperparameter
tuning. For each dataset, we estimated the accuracy on the hold-out data (5%).
To ensure a fair comparison of the feature selection methods, all algorithms are
tuned to return the top-k features for a given dataset. We chose k to be the 25%
of the number of features d of each dataset. Here we provide a short description
of the feature selection methods we used and implementation details.

– Penalized linear model (LASSO): with the regularisation parameter λ
tuned such that we get k non-zero coefficients—these are the selected features.

– Tree-based methods (RF/GBM): We used Random Forest (RF) [2] and
Gradient Boosted Machines (GBM) with decision stumps [8] to choose the
top-k features with highest importance scores. For both algorithms we used
100 trees.
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– Information theoretic methods (MIM/mRMR/JMI/CMIM): We
used various information theoretic feature selection methods, each one of them
making different assumptions (for a complete description of the assumptions
made by each method we refer the reader to [3]). For example MIM quantifies
only the relevancy, mRMR the relevancy and redundancy [15], while the JMI
[18] and CMIM [6] the relevancy, the redundancy and the complementarity.
To estimate mutual and conditional mutual information terms, continuous
features were discretized into 5 bins using an equal-width strategy.

The UCI datasets do not contain information about correlated features. In order
to take into account possible redundancies we used Spearman’s ρ correlation co-
efficient to assess non-linear relationships between each pair of features. For
estimating the effective stability, we incorporate these redundancies in the C

matrix using the rule: cf,f ′ = δ(|ρXf ,Xf′ | > θ). Following Cohen [4], two features
Xf and Xf ′ are assumed to be strongly correlated, when the co-efficient is greater
than θ = 0.5.

Figure 2 shows the Pareto-optimal set for two selected datasets. The criteria
on the top-right dominate the ones on the bottom left and they are the ones that
should be selected. We observe that by incorporating prior knowledge (r.h.s. in
Fig. 2a and Fig. 2b) we change our view about the best-performing algorithms
in terms of the accuracy/stability trade-off. Notice that mRMR, a criterion that
penalizes the selection of redundant features, becomes much more stable using
our proposed measure, Φ̂C(Z). A summary of the Pareto-optimal solutions for
all datasets is given in Table 1, where we can observe that similar changes occur
in most cases.

Table 1. Pareto-optimal solutions for 10 UCI datasets. We observe that in most cases
incorporating prior knowledge about possible feature redundancies changes the optimal
solutions.

Dataset Pareto-optimal set
(accuracy vs stability)

Pareto-optimal set (accuracy
vs effective stability)

Change ?

breast LASSO, MIM MIM ✓

ionosphere LASSO, GBM, MIM LASSO, GBM, MIM mRMR ✓

landsat mRMR JMI ✓

musk2 LASSO, MIM LASSO ✓

parkinsons LASSO, MIM MIM, mRMR, JMI ✓

semeion GBM, MIM, mRMR, JMI GBM, mRMR, JMI, CMIM ✓

sonar MIM, JMI MIM, mRMR, JMI ✓

spect MIM MIM

waveform GBM, mRMR GBM, mRMR

wine MIM, CMIM MIM, CMIM
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Fig. 2. Accuracy/stability trade-off between different feature selection algorithms for
two UCI datasets. The methods on top right corner are the Pareto-optimal solutions.

Furthermore, Table 2 shows the non-dominated rank of the different criteria
across all datasets. This is computed per data set as the number of other criteria
which dominate a given criterion, in the Pareto-optimal sense, and then averaged
over the 10 datasets. Similarly to our earlier observations (Fig. 2), the average
rank of mRMR increases dramatically. Similarly JMI increases its average posi-
tion, as opposed to MIM that captures only the relevancy.

In the next section, we describe how incorporating prior knowledge about the
semantics of biomarkers may incur changes on the stability of feature selection
in clinical trials.

4.2 Stability of Biomarker Selection in Clinical Trials

The use of highly specific biomarkers is central to personalised medicine, in both
clinical and research scenarios. Discovering new biomarkers that carry prognos-
tic information is crucial for general patient care and for clinical trial planning,
i.e. prognostic markers can be considered as covariates for stratification. A prog-
nostic biomarker is a biological characteristic or a clinical measurement that
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Table 2. Column 1: Non-dominated rank of different criteria for the trade-off of accu-
racy/stability estimated by Φ(Z). Criteria with a higher rank (closer to 1.0) provide
a better tradeoff than those with a lowerrank. Column 2: As column 1 but using our
measure ΦC(Z) for estimating effective stability.

Accuracy/stability Accuracy/effective stability

MIM (1.6) mRMR (1.7)

GBM (1.8) MIM (2)

JMI (2.6) JMI (2.4)

LASSO (2.7) GBM (2.4)

mRMR (2.9) CMIM (2.9)

CMIM (2.9) LASSO (3.1)

RF (3.1) RF (3.1)

provides information on the likely outcome of the patient irrespective of the
applied treatment [16]. For this task, any supervised feature selection algorithm
can be used to identify and rank the biomarkers with respect to the outcome Y .
Having stable biomarker discovery algorithms, i.e. identifying biomarkers that
can be reproduced across studies, is of great importance in clinical trials. In
this section we will present a case study on how to evaluate the stability of dif-
ferent algorithms, and how we can incorporate prior knowledge over groups of
biomarkers with semantic similarities.

We focus on the IPASS study [13], which evaluated the efficacy of the drug
gefitinib (Iressa, AstraZeneca) versus first-line chemotherapy with carboplatin
(Paraplatin, Bristol-Myers Squibb) plus paclitaxel (Taxol, Bristol-Myers Squibb)
in an Asian population of 1217 light- or non-smokers with advanced non-small
cell lung cancer. A detailed description of the trial and the biomarkers used in
the IPASS study are given in the AppendixA.

In this section we will focus on two commonly used algorithms: Gradient
Boosted Machines [8] and conditional mutual information maximisation (CMIM)
[6]. GBM sequentially builds a weighted voting ensemble of decision stumps
based on single features, while CMIM is an information theoretic measure based
on maximising conditional mutual information. These two methods are quite dif-
ferent in nature: for example GBM builds decision trees, while CMIM estimates
two-way feature interactions. As a result, they often return different biomarker
subsets and choosing which one to take forward in a phased clinical study is an
important problem.

Table 3 presents the top-4 prognostic biomarkers derived by each method.
We observe that the two methods return significantly different biomarker sets;
Which one should we trust? To answer this question we estimate their stability
with respect to data variations using M = 50 and 5% leave-out. This could
simulate the scenario where for some patients we do not know the outcome e.g.
they dropped out from the trial. In Table 4 we see that when using Φ̂(Z), in
agreement with data science folklore, GBM is judged a stable method, more so
than CMIM.
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Table 3. Top-4 prognostic biomarkers in IPASS for each competing method. The
results can be interpreted by domain experts (e.g. clinicians) on their biological plau-
sibility. However, to answer in what extend these sets are reproducible and how they
can be affected by small changes in the data (such as patient dropouts) we need to
evaluate their stability.

Rank GBM CMIM

1 EGFR expression (X4) EGFR mutation (X2)

2 Disease stage (X10) Serum ALP(X13)

3 WHO perform. status (X1) Blood leukocytes (X21)

4 Serum ALT(X12) Serum ALT (X12)

But, with a closer study of the biomarkers considered in IPASS, there are
in fact groups of them which are biologically related: (Group A) those that
describe the receptor protein EGFR, X2,X3,X4, (Group B) those which are
measures of liver function, X12,X13,X14, and (Group C) those which are
counts of blood cells, X20,X21,X22,X23. There are also sub-groupings at play
here. For instance, given that neutrophils are in fact a type of leukocyte (white
blood cell), one may expect X21 and X22 to exhibit a stronger pairwise correla-
tion than any other pair of cell count biomarkers.

We can take these groupings and redundancies into account by setting to 1,
all of the elements in C matrix that represent pairs of features that belong the
same group. Table 4 compares the effective stability of the two algorithms using
our novel measure Φ̂C(Z), which takes into account the groups A, B and C. This
time, CMIM is substantially more stable than GBM—leading to the conjecture
that the instability in GBM is generated by variations between groups, while
CMIM is caused by within-group variations.

Table 4. Stability and effective stability of GBM and CMIM in IPASS. The instability
of CMIM is caused by variations within groups of semantically related biomarkers.
When this is taken into account using ̂ΦC(Z) the method is deemed more stable than
GBM.

GBM CMIM

Stability ̂Φ(Z) 0.87 > 0.68

- within Group A 0.96 0.45

- within Group B 0.82 0.80

- within Group C 0.14 0.43

Effective stability ̂ΦC(Z) 0.87 < 0.91
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To validate this conjecture, we calculate the stability within each group using
Φ̂(Z). In Table 4 we observe that CMIM has small stability, especially within the
groups A and C. The algorithm alternates between selecting biomarkers that are
biologically related, hence when we incorporate domain knowledge the effective
stability of CMIM increases significantly. Thus, based on our prior knowledge
on feature relationships, CMIM is the more desirable prospect to take forward.

5 Conclusions

We presented a study on the estimation of stability of feature selection in the
presence of feature redundancy. This is an important topic, as it gives an indi-
cation of how reliable a selected subset may be, given correlations in the data or
domain knowledge. We showed that existing measures are unsuitable and poten-
tially misleading, also proving that many will systematically under-estimate the
stability. As a solution to this, we presented a novel measure which allows us to
incorporate information about correlated and/or semantically related features.
An empirical study across 10 datasets and 7 distinct feature selection methods
confirmed the utility, while a case study on real clinical trial data highlighted
how critical decisions might be altered as a result of the new measure.
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A IPASS description

The IPASS study [13] was a Phase III, multi-center, randomised, open-label,
parallel-group study comparing gefitinib (Iressa, AstraZeneca) with carboplatin
(Paraplatin, Bristol-Myers Squibb) plus paclitaxel (Taxol, Bristol-Myers Squibb)
as first-line treatment in clinically selected patients in East Asia who had
NSCLC. 1217 patients were balanced randomised (1:1) between the treatment
arms, and the primary end point was progression-free survival (PFS); for full
details of the trial see [13]. For the purpose of our work we model PFS as a
Bernoulli endpoint, neglecting its time-to-event nature. We analysed the data at
78% maturity, when 950 subjects have had progression events.

The covariates used in the IPASS study are shown in Table 5. The following
covariates have missing observations (as shown in parentheses): X5 (0.4%), X12

(0.2%), X13 (0.7%), X14 (0.7%), X16 (2%), X17 (0.3%), X18 (1%), X19 (1%),
X20 (0.3%), X21 (0.3%), X22 (0.3%), X23 (0.3%). Following Lipkovich et al. [12],
for the patients with missing values in biomarker X, we create an additional
category, a procedure known as the missing indicator method [1].
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Table 5. Covariates used in the IPASS clinical trial.

Biomarker Description Values

X1 WHO perform. status 0 or 1, 2

X2 EGFR mutation status Negative, Positive, Unknown

X3 EGFR FISH status Negative, Positive, Unknown

X4 EGFR expression status Negative, Positive, Unknown

X5 Weight (0, 50], (50, 60], (60, 70], (70, 80], (80, +∞)

X6 Race Oriental, Other

X7 Ethnicity Chinese, Japanese, Other Asian, Other not Asian

X8 Sex Female, Male

X9 Smoking status Ex-Smoker, Smoker

X10 Disease stage Locally Advanced, Metastatic

X11 Age (0, 44], [45, 64], [65, 74], [75, +∞)

X12 Serum ALT Low, Medium, High

X13 Serum ALP Low, Medium, High

X14 Serum AST Low, Medium, High

X15 Bilirubin Low, Medium, High

X16 Calcium Low, Medium, High

X17 Creatinine Low, Medium, High

X18 Potassium Low, Medium, High

X19 Sodium Low, Medium, High

X20 Blood hemoglobin Low, Medium, High

X21 Blood leukocytes Low, Medium, High

X22 Blood neutrophils Low, Medium, High

X23 Blood platelets Low, Medium, High
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